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Abstract 

The discrete functional classes of enteric neurons in the mammalian gastrointestinal tract have been 

successfully distinguished on the basis of the unique combination of molecules and enzymes in 

their cell bodies (“chemical coding”). Whether the same chemical coding exists in varicose axons of 

different functional classes has not been systematically tested. In this study, we quantified the 

coexistence of markers that define classes of nerve cell bodies in the myenteric plexus of the 

guinea-pig ileum, in varicose axons of the same neurons. Profound differences between the 

combinations of immunohistochemical markers in myenteric nerve cell bodies and in their 
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varicosities were identified. These discrepancies were particularly notable for classes of neurons 

that had previously been classified as cholinergic, based on immunoreactivity for choline 

acetyltransferase (ChAT) in their cell bodies. To detect cholinergic varicose axons of enteric 

neurons in this study, we used antiserum against the vesicular acetylcholine transporter (VAChT). 

ChAT-immunoreactivity has been reported to be consistently co-localized with 5-

hydroxytryptamine (5-HT) in interneuronal cell bodies, yet only 29±5% (n=4) of 5-HT-

immunoreactive varicosities contained vesicular acetylcholine transporter (VAChT). Somatostatin 

coexists with ChAT-immunoreactivity in a class of descending interneuron but only 21±1% (n=4) 

of somatostatin-immunoreactive varicosities were VAChT-immunoreactive. Comparable 

discrepancies were also noted for non-cholinergic markers. The results suggest that chemical coding 

of cell bodies does not necessarily reflect chemical coding of varicose axon terminals and that the 

assumption that nerve cell bodies that contain ChAT are functionally cholinergic may be 

questionable.  

 

 

Introduction 

The enteric nervous system, the “third” division of the autonomic nervous system, is composed of 

two ganglionated plexus, the myenteric plexus and submucosal plexus, within the wall of the gut. 

Both plexus contain neural circuits that regulate gastrointestinal functions. In small laboratory 

animals, the myenteric plexus contains intrinsic sensory neurons, interneurons and motorneurons 

that regulate the contractility of the circular and longitudinal smooth muscle layers, while the 

submucosal plexus is largely involved in regulating local blood flow and secretion by enterocytes 

[7].  
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The enteric nervous system has been intensively studied in the guinea-pig ileum. Enteric neurons in 

this preparation have been divided into discrete functional classes based on their 

electrophysiological properties, axonal projections and the neurochemical coding of their nerve cell 

bodies [4]. The majority of enteric neurons express choline acetyltransferase (ChAT) in their cell 

bodies, and have been presumed to be functionally cholinergic. Within the myenteric plexus there 

are ascending and descending interneurons that underlie polarised reflexes and coordinated patterns 

of motility [14]. Acetylcholine, acting at nicotinic receptors is a major contributor to fast excitatory 

post-synaptic potentials, but also causes muscarinic slow excitatory post-synaptic potentials [8,18]. 

Acetylcholine from enteric motor neurons also contracts the circular and longitudinal smooth 

muscle layers via muscarinic receptors [15]. Muscarinic and nicotinic antagonists profoundly 

interfere with gastrointestinal motility [9]. Given the major functional role of cholinergic 

neurotransmission, identification of cholinergic enteric neurons is a significant undertaking.  

 

Immunohistochemical localisation of the key enzymes or transporters has been used to identify 

neurotransmitters in nerve cell bodies. One class of descending interneurons is distinguished by 

immunoreactivity for both 5-hydroxytryptamine (5-HT) and ChAT in cell bodies [4]. It has been 

widely assumed that markers in cell bodies are also expressed in varicose axons; however, this has 

never been systematically tested. Whether all varicose axons of these interneurons contain both 5-

HT- and ChAT-immunoreactivity has not been reported. To study this, we quantified the co-

localization of cholinergic markers in 5-HT-containing varicosities. Vesicular acetylcholine 

transporter (VAChT) accumulates acetylcholine in synaptic vesicles and is a marker for cholinergic 

axons [17]. The VAChT coding region is contained within the ChAT gene locus [6]. Transcription 

of both genes is controlled by the same or neighbouring promoters, which thereby coordinate 

expression of the two proteins, both of which are required to establish a cholinergic phenotype [5]. 

In this study, we examined the distribution of VAChT in varicosities in myenteric ganglia and 
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compared coexistence with previously published reports in which ChAT and other markers were 

co-localized in cell bodies of myenteric neurons [4].  

 

Materials and Methods 

Adult guinea-pigs of either sex (weight 230–360g) were stunned and killed by exsanguination, in a 

manner approved by the Animal Welfare Committee of Flinders University, South Australia. 

Animals were opened along the ventral midline and the ileum was removed, intestinal contents 

were flushed and the preparation placed in Krebs solution (118mM NaCl, 4.75 mM KCl, 1.0mM 

NaH2PO4, 25 mM NaHCO3, 1.2mM MgSO4, 11.1 mM D-glucose, 2.5mM CaCl2, bubbled with 

95%O2/5%CO2). Segments of ileum were pinned in a Sylgard-lined petri dish (Dow Corning, 

Midland, MI) filled with phosphate buffered saline (PBS: 0.15M NaCl, 0.01M NaH2PO4, pH 7.2), 

opened longitudinally along the mesenteric border, and maximally stretched. The wholemount was 

immersed in modified Zamboni’s fixative (2% formaldehyde, 15% saturated picric acid in 0.1M 

phosphate buffer, pH 7.0) for approximately 24 hours at 4°C. It was then fixed, cleared with three 

washes of 100% dimethylsulphoxide (DMSO), and stored in PBS at 4°C. The mucosa, submucosa 

and circular muscle were removed via sharp dissection, yielding strips of circular muscle or 

preparations with the myenteric plexus and longitudinal muscle intact.  

 

Preparations of myenteric plexus and longitudinal muscle or circular muscle were incubated with 

antisera to combinations of markers (Table 1) at room temperature for two days. Preparations were 

rinsed three times in PBS and incubated with secondary antisera (Table 2) for 4 hours at room 

temperature. After a final rinse with PBS, preparations were equilibrated with 50%, 70%, and 100% 

carbonate-buffered glycerol, and mounted in 100% carbonate-buffered glycerol (pH 8.6). All 

antibodies were diluted in 0.1 M PBS (0.3 M NaCl) containing 0.1% sodium azide. Controls for 

double-labeling were performed by omitting one or more primary antibodies from the procedure, 
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and by ensuring that all combinations of primary and secondary antisera were free of cross-

reactivity. 

 

Specimens were examined on an Olympus IX71 microscope (Japan) equipped with epifluorescence 

and highly discriminating filters (Chroma Technology Co., Battledore, VT). Images were captured 

using a Roper scientific (Coolsnap) camera at 1392 x 1080 pixels, using AnalySIS Imager 5.0 

(Olympus-SIS, Münster, Germany) and saved as TIFF files. Matched micrographs of 

immunohistochemically-labeled nerve structures were captured using a 40x objective water-

immersion lens and displayed in ImageJ (NIH, Bethesda, MD) as a stack. We used a previously 

characterized method to identify coexistence of markers in varicosities [13]. We selected 

varicosities by moving the cursor to a random site in a ganglion and selecting the varicosity closest 

to the cursor. Varicosities were considered immunoreactive when they were clearly discernible 

above background labeling. All varicosities that met this criterion were present in micrographs 

where all pixels less than or equal to three standard deviations above the mean value of background 

fluorescence had been removed. Varicosities were excluded when: they could not be easily 

distinguished above background labeling; were out-of-focus; were overlying nerve cell bodies or 

other immunoreactive structures. Five or ten varicosities were selected at widely separated sites in 

each ganglion and either 20 or 10 stacks were examined, giving total counts of 100 varicosities, in 

each of four guinea-pigs. To analyze axons in the muscle layers, a transect line was drawn and the 5 

varicosities closest to the line were quantified from each of 20 stacks, resulting in total counts of 

100 varicosities in each of the four animals. Group data are expressed as percentage means (mean 

number of varicosities from a sample of 100) ± standard error of the mean (SEM), with n referring 

to the number of animals.  
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Figures were generated from grayscale images adjusted for contrast and brightness in Adobe 

Photoshop CS5 and were cropped and resized to improve display of varicosities of interest.  

 

Results 

Reliability of VAChT and ChAT antisera to label varicosities 

We first quantified the coexistence of VAChT and ChAT in varicosities (Fig. 1). The two markers 

coexisted in varicosities in the deep muscular plexus (ChAT+/VAChT+: 85 ± 1.3%; 

VAChT+/ChAT+: 86 ± 2%, n=4) and tertiary plexus (ChAT+/VAChT+: 66 ± 4.3%; 

VAChT+/ChAT+: 70 ± 3.8%, n=4). In myenteric ganglia, 75 ± 0.6% of ChAT-IR varicosities were 

VAChT-IR. The high density of ChAT labeling in myenteric ganglia precluded quantification with 

VAChT the other way around. These observations suggest that both ChAT and VAChT labeling 

might underestimate the total population of cholinergic varicosities.  

 

Coexistence of neuronal markers in myenteric ganglia  

We tested whether markers present in the cell bodies of different classes of enteric neurons were 

also present in their varicosities. The first classes studied were the ascending and descending 

interneurons and intrinsic sensory neurons. In myenteric ganglia, varicosities belong mostly to these 

populations [3]. All cell bodies of ascending interneurons are immunoreactive for calretinin and 

ChAT [4], but just 29 ± 4.8% (n=4) of calretinin-IR varicosities in myenteric ganglia were 

immunoreactive for VAChT (Fig. 2). One class of descending interneuron contain both 

somatostatin (SOM) and ChAT in their cell bodies [4]; only 21 ± 0.8% (n=4) of SOM-IR 

varicosities were VAChT-IR in myenteric ganglia (Fig. 2). Another class of descending 

interneurons has been defined by 5-HT and ChAT in their cell bodies [4], yet just 28 ± 2.9% (n=4) 

of 5-HT-IR varicosities were immunoreactive for VAChT in myenteric ganglia (Fig. 2). These 

results indicate that there may be differences in the expression of cholinergic markers between cell 
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bodies and axon terminals of some interneurons, which are not reflected by other neurochemical 

markers such as calretinin, SOM and 5-HT.  

 

All nitric oxide synthase (NOS)-IR cell bodies in myenteric ganglia are immunoreactive for 

vasoactive intestinal polypeptide (VIP) [4]. To test whether all varicose axons of descending 

interneurons were immunoreactive for NOS and VIP, we quantified their coexistence in myenteric 

ganglia. Just 43 ± 2.9% (n=4) of NOS-IR varicosities were VIP-IR. Similarly, the cell bodies of all 

calretinin-IR interneurons are reported to be SP-IR [4], but when we studied the axon terminals of 

these neurons in myenteric ganglia, only 6 ± 1.5% (n=4) of calretinin-IR varicosities were SP-IR. 

These findings indicate that the neurochemical coding of cell bodies of descending and ascending 

interneurons may differ from that of their varicose axons, in non-cholinergic markers too. 

 

We also quantified the coexistence of calbindin, substance P (SP) and VIP with VAChT in 

varicosities in myenteric ganglia. Calbindin is present in most cell bodies of intrinsic primary 

afferent neurons, some of which contain ChAT in their cell bodies [4]. VIP and ChAT coexist in all 

cell bodies of a class of descending interneurons [4]; VIP also coexists with NOS in the cell bodies 

of another class of descending interneurons [4]. SP coexists with ChAT in the same class of 

ascending interneurons that contain calretinin, but is also present in some cell bodies of intrinsic 

primary afferent neurons [4]. Therefore, interpretation of VAChT with these other neuronal markers 

in varicosities is difficult because not all nerve cell bodies that contain calbindin, SP and VIP 

contain ChAT. Of calbindin-IR varicosities, 43 ± 6.1% (n=4) were VAChT-IR. Just 8 ± 0.9% (n=4) 

of VIP-IR varicosities were VAChT-IR and 18 ± 0.9% (n=4) of SP-IR varicosities were VAChT-

IR. We tested whether NOS coexisted with the cholinergic marker, VAChT, in varicosities in 

myenteric ganglia. On average, 20 ± 1% (n=4) of NOS-IR varicosities in ganglia were VAChT-IR, 

suggesting the presence of a class of enteric neurons that utilize both nitric oxide and acetylcholine.  
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Coexistence of neuronal markers in the deep muscular plexus 

The circular muscle layer in the gut wall is innervated by excitatory and inhibitory motorneurons 

that have their cell bodies in the myenteric plexus [4]. The axons of these neurons are contained 

mostly in the deep muscular plexus, with some in the circular muscle plexus [4]. All cell bodies of 

excitatory motorneurons to the circular muscle are ChAT-IR and SP-IR [3]; all inhibitory 

motorneurons to the circular muscle express immunoreactivity for NOS and VIP in their cell bodies 

[3]. In the deep muscular plexus, there was almost complete overlap of NOS with VIP and VAChT 

with SP in varicosities (Fig. 3). Nearly all SP-IR varicosities were VAChT-IR (96 ± 0.8%, n=4), 

and most VAChT-IR varicosities were SP-IR (95 ± 1.5%, n=4). Of VIP varicosities, 93 ± 2.2% 

(n=4) were NOS-IR, and 86 ± 1.5% (n=4) of NOS varicosities were VIP-IR. There was almost no 

overlap between these two distinct populations, as only 0.5 ± 0.3% (n=4) of ChAT-IR varicosities 

were NOS-IR, and 0.5 ± 0.3% (n=4) of NOS-IR varicosities were ChAT-IR. These results confirm 

previous findings that there are just two neurochemically-distinct populations of motorneurons that 

supply the circular muscle [10].  

 

Coexistence of neuronal markers in the tertiary plexus 

The longitudinal muscle receives innervation from excitatory and inhibitory motorneurons in the 

myenteric plexus. The axons of these neurons lie in the tertiary plexus [4]. The cell bodies of 

inhibitory motorneurons are immunoreactive for NOS and VIP [4]. Cell bodies of excitatory 

motorneurons are immunoreactive for ChAT or SP, or both [4]. Coexistence of NOS and VIP in 

varicosities in the tertiary plexus was limited (Fig. 3). Just 22 ± 2.8% (n=4) of VIP-IR varicosities 

were NOS-IR, and 33 ± 2.1% (n=4) of NOS-IR varicosities were VIP-IR. Of VAChT-IR 

varicosities, 29 ± 1.9% (n=4) were SP-IR, and 31 ± 2.3% (n=4) of SP-IR varicosities were VAChT-
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IR. There was no overlap between VIP and ChAT in varicosities (ChAT+/VIP+: 0 ± 0%; 

VIP+/ChAT+: 0 ± 0%, n=4).  

 

Discussion  

In this study, we determined if the neurochemical coding of nerve cell bodies predicts the coding of 

varicose axons, particularly for cholinergic markers, in the myenteric plexus of the guinea-pig 

ileum. Our results suggest that coexistence of markers in nerve cell bodies is often not a good 

predictor for coexistence in varicose axons in the guinea-pig ileum. For example, all nerve cell 

bodies containing 5-HT-, calretinin- and SOM-immunoreactivity in the myenteric plexus of the 

guinea-pig ileum are immunoreactive for the rate-limiting enzyme for acetylcholine synthesis; 

choline acetyltransferase (ChAT) [4]. However, fewer than 30% of varicosities immunoreactive for 

5-HT, calretinin or SOM were VAChT-IR in myenteric ganglia. Likewise, all NOS-IR cell bodies 

in the guinea-pig ileum myenteric plexus are VIP-IR [4], but fewer than 50% of NOS-IR 

varicosities in myenteric ganglia were VIP-IR, and fewer than 30% of NOS-IR varicosities in the 

tertiary plexus were VIP-IR. In contrast, all SP-IR nerve cell bodies are also ChAT-IR, and in the 

deep muscular plexus, VAChT- and SP-immunoreactivity almost always coexisted in varicose 

axons of motorneurons, as did NOS- and VIP-immunoreactivity. In combination, these results 

suggest that there are large differences in the extent to which levels of neurochemical markers in 

varicose axons resemble those in nerve cell bodies. To our knowledge, this is the first report of such 

a phenomenon in the enteric nervous system. 

 

The discrepancies in labeling of cell bodies and varicose axons were most profound for the classes 

of enteric neurons that express immunoreactivity for ChAT in their cell bodies. This could be 

explained by failure of the VAChT and ChAT antiserum to adequately reveal these proteins in 

many varicosities. It is possible that VAChT and ChAT would have been detected in previously 
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unlabeled varicosities with higher concentrations of antisera, potentially even in varicosities where 

it would not be expected to be expressed. However, the dilution of antisera used provided the 

highest signal-to-noise and increasing the concentration would have compromised our ability to 

quantify coexistence. Therefore, this possibility was not investigated. These observations illustrate 

the limits of the immunohistochemical detection technique, wherein the apparent absence of 

immunoreactivity for a marker is often taken for granted when there is a clearly defined pattern of 

cell-selective expression.  

 

ChAT and VAChT are synthetic enzymes required for the synthesis and uptake of acetylcholine 

into synaptic vesicles, respectively [5]. The ChAT gene locus contains the entire sequence of 

VAChT cDNA, enabling transcription of VAChT and ChAT mRNA from the same or neighboring 

promoters [6]. Our observations suggest that there is a mechanism that operates to regulate the level 

of ChAT protein expression in nerve cell bodies independently of their axons. Such a mechanism 

may be regulated by a number of factors [1]. If ChAT- and VAChT-immunoreactivity are markers 

of functionally cholinergic presynaptic terminals, our results raise the intriguing possibility that a 

single neuron is not either cholinergic or non-cholinergic, but that it may show different levels of 

cholinergic transmission at different times. We speculate that axons might cyclically change in their 

functionality, playing a major role in cholinergic transmission at some times and less of a role at 

others. Alternatively, or perhaps in addition, there may be a reserve pool of axons in some classes 

of cholinergic enteric neurons, which are not normally involved in cholinergic transmission but may 

switch to a cholinergic phenotype under some conditions. They might assist in maintaining 

gastrointestinal function in the face of age-related loss of cholinergic neurons in the myenteric 

plexus [12] or be recruited to a functionally cholinergic state under pathological situations, such as 

inflammation [11]. The notion of a reserve pool of axons capable of changing their functionality is 
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supported by functional studies showing the apparent absence of neurotransmitter release from 

enteric and autonomic nerve terminals invaded by an action potential [2, 16].  

 

In conclusion, we have shown that coexistence of markers in nerve cell bodies is often not a good 

predictor for coexistence in varicose axons in the guinea-pig ileum. Whether this is common to 

other regions of the nervous system remains to be investigated. 
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Figure 1. Paired micrographs of myenteric ganglia (A&B), tertiary plexus (C&D), and deep 
muscular plexus (E&F) from guinea-pig ileum immunohistochemically-labeled with antisera 
against ChAT and VAChT. At all three sites, there were varicosities that contained both VAChT- 
and ChAT-immunoreactivity, which are indicated by arrows. Scale bars = 20μm. Abbreviations: 
ChAT, choline acetyltransferase; VAChT, vesicular acetylcholine transporter.  
 
Figure 2. Paired micrographs of myenteric ganglia from guinea-pig ileum immunohistochemically-
labeled with antisera against two different markers. Arrows indicate varicosities immunoreactive 
for both markers and arrowheads indicate varicosities immunoreactive for one of the two markers. 
A&B: Immunoreactivity for VAChT and 5-HT coexisted in a proportion of varicosities in 
myenteric ganglia. C&D: Immunoreactivity for VAChT and calretinin coexisted in subsets of 
varicosities in myenteric ganglia. E&F: VIP- and NOS-immunoreactivity did not coexist in all 
labeled varicosities in myenteric ganglia. G&H: Just a subset of SOM-IR varicosities were 
VAChT-IR in myenteric ganglia. Scale bars = 20μm. Abbreviations: 5-HT, 5-hydroxytryptamine; 
IR, immunoreactive; NOS, nitric oxide synthase; SOM, somatostatin; VAChT, vesicular 
acetylcholine transporter; VIP, vasoactive intestinal polypeptide. 
 
Figure 3. Paired micrographs of deep muscular plexus (A-D) and tertiary plexus (E-H) from 
guinea-pig ileum immunohistochemically-labeled with antisera against either VAChT and SP or 
NOS and VIP. Arrows indicate varicosities immunoreactive for both markers and arrowheads 
indicate varicosities immunoreactive for one of the two markers. Almost always, VIP- and NOS-
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immunoreactivity, and VAChT- and SP-immunoreactivity, coexisted in varicosities in the deep 
muscular plexus. However, in the tertiary plexus, only a subset of varicosities contained both NOS 
and VIP, and VAChT and SP. Scale bars = 20μm. Abbreviations: IR, immunoreactive; NOS, nitric 
oxide synthase; SP, substance P; VAChT, vesicular acetylcholine transporter; VIP, vasoactive 
intestinal polypeptide. 
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