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Background 

Enteric viscerofugal neurons provide cholinergic synaptic inputs to prevertebral sympathetic 

neurons, forming reflex circuits that control motility and secretion. Extracellular recordings of 

identified viscerofugal neurons have not been reported. 

Methods 

Preparations of guinea pig distal colon were maintained in organotypic culture for 4-6 days 

(n=12), before biotinamide tracing, immunohistochemistry, or extracellular 

electrophysiological recordings from colonic nerves. 

Results 

After 4-6 days in organ culture, CGRP and TH immunoreactivity in enteric ganglia was 

depleted, and capsaicin-induced firing (0.4µM) was not detected, indicating that extrinsic 

sympathetic and sensory axons degenerate in organ culture.  Neuroanatomical tracing of 

colonic nerves revealed that viscerofugal neurons persist and increase as a proportion of 

surviving axons. Extracellular recordings of colonic nerves revealed ongoing action 

potentials. Interestingly, synchronous bursts of action potentials were seen in 10 of 12 

preparations; bursts were abolished by hexamethonium, which also reduced firing rate 

(400µM, p<0.01, n=7). DMPP (1,1-dimethyl-4-phenylpiperazinium, 10
-4

M) evoked 

prolonged action potential discharge. Increased firing preceded both spontaneous and stretch-

evoked contractions (Χ2
=11.8, df=1, p<0.001).  Firing was also modestly increased during 

distensions that did not evoke reflex contractions. All single units (11/11) responded to von 

Frey hairs (100 - 300mg) in hexamethonium or Ca
2+

-free solution.  

Conclusions & Inferences 

Action potentials recorded from colonic nerves in organ cultured preparations originated from 

viscerofugal neurons. They receive nicotinic input, which coordinates ongoing burst firing. 

Large bursts preceded spontaneous and reflex-evoked contractions, suggesting their synaptic 
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inputs may arise from enteric circuitry that also drives motility. Viscerofugal neurons were 

directly mechanosensitive to focal compression by von Frey hairs. 

Keywords: afferent, enteric nervous system, organotypic culture, sensory, sympathetic, 

viscerofugal 
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Extrinsic reflex circuits from the intestine can bypass the central nervous system to modulate 

gut function (1). Viscerofugal neurons form the afferent arm of this circuit, with cell bodies in 

enteric ganglia and axons that project outside the gut through extrinsic nerve trunks and 

synapse onto prevertebral sympathetic neurons (2) . These, in turn, project back to the gut 

wall of the same, or more proximal regions, where they modulate gastrointestinal motility (3) 

and secretion (4). Localised gut distension activates this circuit, causing inhibition of gut 

contractility orally and locally (1). Characterizing activity of individual viscerofugal neurons 

would help us better understand and model gastrointestinal motility and secretion. 

In isolated preparations of intestine with intact connections to decentralized prevertebral 

ganglia, converging synaptic inputs from viscerofugal neuron populations onto sympathetic 

neurons can be recorded (2). Luminal distension increases the frequency of nicotinic synaptic 

inputs to sympathetic neurons (2). Intestinal distension under synaptic blockade in the 

intestine reduces, but does not abolish synaptic input to sympathetic neurons – suggesting 

some viscerofugal neurons may be directly mechanosensory (5-7).  

Intracellular recordings of retrogradely labelled viscerofugal cell bodies, showed they receive 

fast nicotinic excitatory synaptic inputs, suggesting they may function as interneurons (8). 

However, mechanical stimuli could not be tested during intracellular recording, preventing 

analysis of single viscerofugal neuron responses to mechanical stimuli. Extracellular 

recordings of viscerofugal neuron axons, located in colonic or mesenteric nerve trunks, would 

allow investigation of the effects of mechanical and pharmacological stimuli at a single 

neuron level. Many extracellular electrophysiological recordings from mesenteric nerve 

trunks have been made to study vagal and spinal afferent neurons innervating the intestines 

(9-14). Despite this, no neuronal firing activity has been identified which could be 

unequivocally attributed to viscerofugal neurons. It is not known whether viscerofugal axons 

contribute to extracellular recordings of nerve activity in colonic/mesenteric nerve trunks. We 
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hypothesized that: (a) selective ablation of severed extrinsic nerve fibers in colonic nerve 

trunks can be achieved in isolated gut preparations during organotypic culture, leaving 

viscerofugal axons intact; (b) that this would permit extracellular recordings from identified 

viscerofugal neurons, and; (c) individual viscerofugal neuron firing activity and responses to 

mechanical stimuli can be characterized. 
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Materials and Methods 

 

Dissection and extracellular recording setup 

Adult guinea pigs, weighing 200-350g, were killed by stunning and exsanguination as 

approved by the Animal Welfare Committee of Flinders University. Segments of distal colon 

(>20mm from the anus) and attached mesentery were removed and immediately placed into a 

Sylgard-lined petri dish (Dow Corning, Midland, MI) filled with oxygenated Krebs solution at 

room temperature. Krebs solution contained (mM): NaCl 118; KCl 4.7, NaH2PO42H2O 1; 

NaHCO3 25; MgCl26H2O 1.2; D-Glucose 11; CaCl2.2H2O 2.5; bubbled with 95%O2 and 

5%CO2. Segments were cut open along the mesenteric border, pinned flat with the mucosa 

uppermost. In organ-cultured and acute control preparations, the mucosa and submucosa were 

removed by sharp dissection. Extrinsic nerve trunks (1-3 trunks per preparation, 3-10mm 

long) and a strand of connective tissue were dissected free from surrounding mesentery.  

 

Organ-cultured preparations were maintained in sterile culture medium (Dulbecco's modified 

Eagle's [DME]/Han’s F12, Sigma [1:1 ratio mix, supplemented with L-glutamine and 15 mM 

HEPES]; including 10% fetal bovine serum, 1.8 mM CaCl2, 100 IU/ml penicillin, 100 g ml
-1

 

streptomycin D, 2.5 g ml
-1

 amphotericin B, 20 g ml
-1

 gentamycin, Cytosystems, Castle Hill, 

NSW, Australia) and slowly agitated for 4-6 days in a humidified incubator (36C, 5% CO2 in 

air) (15). Culture medium was replaced every 24 hours. During electrophysiological recordings, 

preparations were superfused with Krebs solution (35°C). Acute control preparations were set 

up for recording or biotinamide tracing immediately after dissection. 

 

Dissected nerve trunks and connective tissue were pulled into a paraffin oil-filled chamber 

(1mL volume) under a coverslip and sealed with silicon grease (Ajax Chemicals, Sydney, 
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Australia) as described previously (16). Differential extracellular recordings were made 

between a nerve trunk and the connective tissue strand using 100µm Pt/Ir electrodes. Signals 

were amplified (ISO80; WPI, Sarasota, FL, USA) and recorded at 20kHz (MacLab16sp, 

LabChart 7, ADInstruments, Castle Hill, NSW, Australia); single units were discriminated by 

amplitude, duration and spike shape using Spike Histogram and Scope View software 

(ADInstruments). In some preparations, a 10mm array of hooks (Biomedical Engineering, 

Flinders Medical Centre, Bedford Park South Australia) connected the preparation to an 

isotonic transducer (Harvard Bioscience, model 52-9511, S. Natick, MA, USA), allowing 

distending loads to be applied in the circumferential axis while measuring changes in length. 

Sensitivity to transient focal tissue compression was assessed with calibrated von Frey hairs 

(100-300mg). Ca
2+

-free Krebs solution (6mM Mg
2+

, 1 mM ethylenediaminetetraacetic acid 

[EDTA]) was used to differentiate direct and indirect effects. 

 

Biotinamide labelling 

A bubble of biotinamide solution (5% biotinamide (N-[2-aminoethyl] biotinamide 

hydrobromide), dissolved in artificial intracellular solution (150 mmol L
-1

 monopotassium L-

glutamic acid, 7 mmol L
-1

 MgCl2, 5 mmol L
-1

 glucose, 1 mmol L
-1

 ethylene glycolbis(ß-

aminoethyl ether)-N,N,N=,N=-tetraacetic acid, 20 mmol L
-1

 HEPES buffer, 5 mmol L
-1

 

disodium adenosine triphosphate, 0.02% saponin, 1% dimethyl sulfoxide, 100 IU mL
-1

 

penicillin, 100 µg mL
-1

 streptomycin, and 20g mL
-1

 gentamycin sulphate) was placed on a 

dissected nerve trunk and the main chamber was filled with sterile culture medium (17). 

Preparations were incubated overnight (12-16 hours; 36C, 5% CO2 in air). After incubation, 

preparations were fixed overnight in Zamboni’s fixative (15% saturated picric acid, 2% 

formaldehyde in 0.1 M phosphate buffer, pH 7.0). Preparations were cleared in DMSO (3 x 10 

minute washes) then washed in 0.1M phosphate-buffered saline (0.15 M NaCl, pH 7.2; 3 x 10 
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minute washes) followed by incubation for 3 hours in 3-1-O-(2-cyanoethyl)-(N,N-

diisopropyl)indo-carbocyanine (CY3) conjugated streptavidin. Preparations were then washed 

with PBS (3 x 10 minute) and equilibrated in a series of carbonate-buffered glycerol solutions (50, 

70 and 100% solutions; 3 x 10 minutes) prior to mounting on glass slides in buffered glycerol (pH 

8.6). 

 

Image analysis 

Biotinamide-labelled nerves were viewed and analysed on an Olympus IX71 epifluorescence 

microscope fitted with an appropriate dichroic mirror and filter. Images were captured with a 

Roper Scientific Photometrics digital camera operating with a HP Compaq dc7100 CMT 

computer with a Microsoft Windows XP operating system, running AnalySIS 5.0 software 

(build 1153). Figures 1G & 1H were acquired with a Leica SP5 scanning confocal microscope 

(Leica Microsystems, Mannheim, Germany). CY3 fluorophores were excited with 561nm 

laser light. Emitted photons (565-645nm) were captured with a photon multiplier tube, 

pinhole set to 1 Airy unit. Laser power, photon multiplier tube gain and offset were adjusted 

as required. Z-stacks were taken with a 63x oil-immersion lens at 0.5µm slices through the Z-

axis.  Brightness and contrast adjustments, cropping, pseudocolouring and photomontages of 

biotinamide labelled preparations were performed using Adobe Photoshop (CS1, Adobe 

Systems Inc, San Jose, CA). 

 

Quantification of viscerofugal axons in nerve trunks 

In organ-cultured and acute preparations, biotinamide-labelled viscerofugal cell bodies, as 

well as all biotinamide-filled axons were visualized on an epifluorescence microscope and 

counted to obtain the percentage of viscerofugal axons among all labelled axons. Axons were 
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counted where bundles of mesenteric nerves spread out as they enter the myenteric plexus, 

taking care to focus throughout the depth of each trunk. 

 

Immunohistochemistry 

Preparations were incubated with primary antibodies for 16–72 hours at room temperature, 

rinsed with phosphate-buffered saline and incubated with secondary antibodies for 2–4 hours, 

mounted and analysed as described above. Primary Antibodies were as follows: Rabbit anti-

CGRP (Peninsula, cat. no. IHC6006) used at 1:1600, Mouse anti-TH (Diasorin, cat. no. 

021048) used at 1:600. Secondary Antibodies: CY3 – Donkey anti-rabbit (Jackson, cat. no. 

74548) used at 1:400, CY5 – Donkey anti-mouse (Jackson, cat. no. 86275) used at 1:100.  

 

Drugs 

Stock solutions of drugs were made as follows: 10
-2

M nicardipine hydrochloride in water 

(Sigma; N7510), 10
-3

M hyoscine hydrobromide in water (Sigma; S0929), 10
-1

M 

hexamethonium chloride in water (Sigma; H2138), 10
-1

M 1,1-dimethyl-4-phenylpiperazinium 

iodide (DMPP) in water (Sigma; D5891), 3x10
-4

M tetrodotoxin (TTX) in water (Alomone; T-

500), 10
-2

M N-Vanillylnonanamide (synthetic capsaicin) in ethanol (Sigma; V9130). All 

drugs were kept refrigerated and diluted to working concentrations in Krebs solution, shortly 

before use. 

 

Statistical analysis 

Statistical analysis was performed by Student’s two-tailed t-test for paired or unpaired data or 

by repeated measures analysis of variance using Prism v.5 software (GraphPad Software, Inc., 

San Diego, CA, USA). Differences were considered significant if P<0.05. Results are 
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expressed as mean ± standard deviation except where otherwise stated. The number of 

animals used in each set of experiments is indicated by lower case “n”.   

 

Results 

 

Rapid biotinamide filling of colonic nerves in acute and organ-cultured preparations 

Flat sheet preparations of guinea-pig distal colon (1-2cm in length, mucosa and submucosa 

removed) were maintained in organotypic culture for 4-5 days to determine whether severed 

axons of spinal afferent and sympathetic efferent neurons would degenerate during this 

period. Biotinamide filling of colonic nerve trunks in acute preparations (freshly removed 

from animal, n=6) revealed viscerofugal cell bodies and dense labelling of fine branching 

varicose fibers of spinal afferent and sympathetic neurons, see figure 1E (17). The same 

protocol was then applied to 6 preparations after culture (4-5 days). In these preparations, the 

density of biotinamide-labelled fibers was considerably reduced, and most remaining fibers 

could be traced to viscerofugal neuron cell bodies (figure 1F). This suggested that 

viscerofugal neurons persisted in culture, while extrinsic nerve fibers had degenerated. To 

quantify this effect, biotinamide labelled axons, and viscerofugal cell bodies, were counted 

(see methods) to obtain the proportion of axons that belonged to viscerofugal neurons.  In 

acute preparations (n=6), viscerofugal axons were a minority, comprising 8.6±4.2% of all 

filled axons within labelled nerve trunks. After culture, the proportion of viscerofugal axons 

of labelled axons in colonic nerve trunks increased to a majority of 67.1±13.8% (n=6, 

p<0.001), confirming that viscerofugal neurons and their axons persisted in organ culture and 

were considerably enriched as a proportion of all surviving axons.  
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Immunohistochemistry  

The most likely explanation for the increased proportion of biotinamide-labelled viscerofugal 

neuron axons after organ culture was that spinal afferent neurons and symapthetic neurons 

degenerated, while intrinsic neurons, including viscerofugal neurons, persisted (15). To test 

this, preparations were immunohistochemically labelled for common neurochemical markers 

of sympathetic and spinal sensory axons: tyrosine hydroxylase (TH), and calcitonin gene-

related peptide (CGRP), respectively. In control preparations, fixed shortly after removal from 

the animal, a dense network of TH-immunoreactive varicose branching axons was visualised 

within myenteric ganglia (figure 1C).  There was also an abundance of CGRP-

immunoreactive varicose axons (figure 1A), previously shown to belong to spinal afferent 

neurons (18).  In organ-cultured preparations, TH-immunoreactive axons were nearly 

abolished (figure 1D). Likewise, CGRP-immunoreactivity was greatly diminished in organ-

cultured preparations (figure 1B); except for occasional intrinsic CGRP-immunoreactive cell 

bodies seen in 2 out of 4 preparations. In organ-cultured preparations, no colocalization of 

biotinamide-labelled axons with either CGRP or TH-immunoreactivity was evident. These 

results suggest that 5 days in organ culture was sufficient to cause nearly-complete 

degeneration of extrinsic axons in these preparations. 

 

Cell body morphology 

The degeneration of extrinsic axons in organ culture allowed examination of the detailed 

morphology of biotinamide-labelled viscerofugal nerve cell bodies, without the complication 

of a dense network of labelled axons surrounding the cell. A total of 78 retrogradely labelled 

cell bodies in organ-cultured preparations were examined in this way.  In 36 cells, their axons 

could be unequivocally distinguished from other labelled axons-of-passage.  All of these cells 

were uni-axonal (examples in figure 1G & 1H) and either had lamellar dendritic Dogiel type I 
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morphology or a few short filamentous and/or lamellar dendrites typical of “small simple 

cell” Dogiel type I morphology (19).  No cells had two axons emerging from the cell body; 

thus none had Dogiel type II morphology. The remaining 42 cells could not be unequivocally 

classified due to the proximity of processes from other neurons or due to faint labelling. It is 

worth noting that viscerofugal neuron cell bodies were always labelled by biotinamide applied 

to colonic nerves after organ culture (average: 27±22 per preparation). Variability between 

preparations in the number of retrogradely traced cell bodies (range 4-61) probably reflects an 

uneven distribution between extrinsic nerve trunks (20).   

 

Electrophysiology 

Extracellular recordings of colonic nerve trunks were made from 12 preparations maintained 

for 5-6 days in organ culture (n=8). Spontaneous action potentials were recorded in all 

preparations, from which 14 single units could be readily discriminated by spike amplitude 

and duration (mean firing rate 4.0±1.9Hz, 14 units, n=7).  Units in 10 of 12 preparations 

showed regular spontaneous bursts of firing (inter-burst interval 2.4±0.2s, burst duration 

190±6ms). Bursts of firing involved several single units, distinguishable by spike amplitude 

and duration, suggesting synchronization of firing in pools of viscerofugal neurons.  Single 

units fired an average of 5.4±2.3 action potentials within a burst (mean instantaneous 

frequency 34±15Hz). In 4 units from 4 preparations, firing was regular without bursts (4/12 

preparations). Typical examples are shown in figure 2A. All firing was abolished by 

tetrodotoxin applied in the organ bath (1µM, 3/3 preparations tested). 

 

Capsaicin activates 85% of medium-high threshold spinal afferent neurons innervating the gut 

wall (13). Capsaicin (0.4µM) reliably evoked robust firing responses from many units in 

colonic nerves of freshly dissected, control preparations (5/5 preparations). In contrast, the 
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same concentration of capsaicin evoked no change in firing in organ-cultured preparations 

(8/8 tested; figure 2C), consistent with degeneration of severed axons of extrinsic sensory 

neurons during 5-6 days organ culture.   

 

Viscerofugal neurons in the guinea-pig colon have been reported to express nicotinic 

receptors (2, 8, 21).  Application of the nicotinic receptor agonist, DMPP (10
-4

M) in the 

recording chamber increased firing up to 50Hz in colonic nerves from organ-cultured 

preparations (mean 37.9±8.6Hz; 10 units, n=6, figure 2B).  Responses persisted when smooth 

muscle was paralysed with nicardipine (1µM) and hyoscine (1µM), indicating that increases 

in firing rate was not a result of muscle contraction.  All responses were blocked by pre-

administration of 400µM hexamethonium (12 units, n=7) 

 

The nicotinic receptor antagonist, hexamethonium (400µM) significantly reduced, but did not 

abolish, spontaneous firing in 7 organ-cultured preparations (12 units, n=7, p<0.01; figure 3A 

& 3B). Hexamethonium abolished bursts of firing activity (5/5 preparations; example figure 

3C), suggesting that nicotinic receptors were required to synchronize and drive multi-unit 

burst-firing. 

 

Spontaneous contractions  

Preparations kept in organ culture for 5-6 days showed irregular spontaneous contractions of 

the circular smooth muscle (Δlength 2.2±1.4mm, 23 contractions, mean frequency 0.8±0.2 per 

min during active periods, n=5). Large bursts of viscerofugal neuron firing preceded the onset 

of all spontaneous contractions by 2.3±2.1s, (23/23 contractions, 7 units, n=5). These bursts 

were significantly longer than regular bursts (burst duration 1.91±0.3s, p<0.001 paired t-test; 

figure 4A). Overall, average firing rate in the 5 seconds preceding spontaneous contractions 
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(11.5±5.0Hz) was significantly greater than both mean basal firing (5.2±3.2Hz) and mean 

firing during contractions (4.0±3.0Hz, 7 units, n=5, p<0.001 1 way ANOVA).  This suggests 

that viscerofugal neurons are activated, prior to contraction, by enteric neuronal circuits that 

subsequently cause spontaneous smooth muscle contractions. 

 

Circumferential stretch 

The effects of circumferential stretch on firing in organ-cultured preparations were examined 

(1-3g, 8 preparations, 9 units, n=6).  In some cases (10/35 stretches), distension evoked reflex 

contractions of the circular muscle.  On these occasions, large bursts of firing preceded 

contractions (by 2.75±0.52s) (figure 4B). There was a significant association between these 

large bursts of firing (defined by being more than 1s long with firing rates exceeding 10Hz) 

and stretch-evoked contractions (X
2
=11.8, df=1, p<0.001, using Yates’ correction for 

continuity). A summary of the effect of distension is shown in table 1 and a typical example is 

shown in figure 4B.  Firing was also increased when distension failed to evoke a measureable 

reflex response.  Overall (including all stretches, regardless of whether a contraction was 

evoked), stretch caused a significant load-dependent increase in firing rate of viscerofugal 

neurons (9 units, n=6, p<0.05, 1 way ANOVA; figure 4C).  

 

Focal tissue compression 

In a further series of experiments, single viscerofugal units were assessed for sensitivity to 

focal tissue compression by von Frey hairs (100-300mg). In 5 preparations (n=5), 11 of 11 

recorded single units promptly discharged a train of action potentials to focal probing of a 

single site of about 200μm diameter on the preparation in normal Krebs (11/11 units tested), 

which persisted in 400μM hexamethonium (4/4 units tested, n=1) or Ca
2+

free Krebs (7/7 units 
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tested, n=4). Thus, probing resulted in direct mechanosensory firing responses, probably 

transduced at a single cell body (typical firing response shown in figure 4D).  

   

Discussion 

In this study, we have developed a preparation to preserve functional viscerofugal neurons but 

selectively degenerate CGRP positive spinal nerve trunks that innervate the distal colon of 

guinea-pigs. Several lines of evidence indicate that viscerofugal neurons were recorded in this 

study. First, viscerofugal cell bodies were always revealed by biotinamide applied to colonic 

nerves in both cultured and acute preparations. After organ culture, viscerofugal axons 

constituted the majority of all surviving axons in colonic nerve trunks. The common markers 

for extrinsic spinal afferent neurons and sympathetic efferent neurons (CGRP and TH, 

respectively) were almost entirely depleted by 5 days organ culture apart from a few intrinsic 

neurons containing CGRP. This strongly implicates degeneration of severed extrinsic fibers, 

including spinal afferent neurons.  Correspondingly, the absence of responses to capsaicin, 

which activates spinal afferent neurons (22), provides further support that extrinsic 

mechanosensitive nerves were depleted.  Sensitivity to nicotinic receptor agonists, regardless 

of the contractile state of the gut, is consistent with previous reports of viscerofugal neuron 

pharmacology (2), which have been shown immunohistochemically to express nicotinic 

receptors (21). Finally, the punctate mechanosensitive sites revealed by von Frey hairs in this 

project are consistent with responses by isolated viscerofugal neurons but not with the 

extensive fields of innervation of extrinsic sensory neurons in the gut wall.  Based on these 

data, it is reasonable to conclude that viscerofugal neurons were the source of the action 

potentials recorded from colonic nerve trunks in cultured preparations. 
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Viscerofugal neuron firing and motor activity 

Burst firing patterns in viscerofugal neurons has not previously been reported in any 

electrophysiological studies. Previous extracellular recordings in the small intestine of enteric 

neurons, in vitro, identified “burst” and “single spike” units (23). Burst-type units were sub-

classified into “steady” and “erratic” bursters based on the variability of their inter-burst 

interval (24). The activity of the latter type was blocked in Ca
2+

-free solution while the former 

was not (24). From the present study, viscerofugal neurons are similar to ‘erratic bursters’ 

with inter-burst interval and the number of action potentials within each burst similar to 

Wood’s report (2.9±1.4s and 4.2±1.4 action potentials per burst (25), and 2.4±0.2s inter-burst 

interval and 5.4±2.3 actions potentials in the present study).  

In vitro, the guinea pig colon demonstrates irregular ongoing activation of motor pathways to 

both circular and longitudinal muscle layers (26), driven by myenteric neuronal circuitry 

which is largely hexamethonium-sensitive (27).  This activity cycles at 2 – 5 s intervals.  We 

speculate that burst firing of viscerofugal neurons may reflect synaptic input from the same 

motor circuits.  This would also explain why viscerofugal neuron firing typically increased 

before spontaneous contractions of smooth muscle. It may also explain why the peak response 

to distension was reached after the onset of stretch just prior to a reflex contraction evoked by 

the stretch.  Compatible with this, Miller and Szurszewski (2002 (28)) showed that fast 

synaptic inputs (from viscerofugal neurons) to sympathetic ganglion neurons peaked prior to 

phasic contractions of the intestine with reduced firing at the peak of contraction (when the 

intestine was empty and the circumference was shortened).  The amplitude of viscerofugal 

neuron responses to stretches that did not evoke reflex contractions was modest, rarely 

doubling above the basal firing rate.  This modest response amplitude is comparable to the 

small increase in frequency of synaptic fast potentials recorded in inferior mesenteric 

ganglion of the guinea pig in response to colonic distension (5, 6, 29-31).  With the largest 
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stimulus applied, the peak firing was less than 8Hz, compared to basal ongoing firing close to 

4 Hz in the absence of distension. 

 

Dual roles of viscerofugal neurons 

Distension activates robust cholinergic pathways from the gut to sympathetic pre-vertebral 

ganglion neurons, mediated via viscerofugal neurons.  When nicotinic receptors in the gut 

wall are pharmacologically blocked, distension-evoked viscerofugal synaptic input to 

sympathetic neurons is significantly depressed (2). This suggests that viscerofugal neurons 

may be synaptically driven via cholinergic pathways, similar to many other classes of enteric 

neurons (32-35).  However, some viscerofugal output from the gut persists, even when 

synaptic transmission in the gut is entirely blocked by Ca
2+

-depleted solution (5-7). This has 

been interpreted as evidence that viscerofugal neurons may also be directly mechanosensitive.  

However, it has also been suggested that fast cholinergic synaptic inputs in prevertebral 

ganglia may also arise from collaterals of spinal afferent neurons (36). The present study 

suggests that viscerofugal neuron cell bodies are directly mechanosensory.  When tested, 

direct, localised responses to von Frey hairs (100-300mg) occurred in all viscerofugal units 

identified in our recordings at a single restricted site on the preparation.  The observation that 

some enteric neurons are both mechanosensitive and receive synaptic input is not 

unprecedented. Recordings using voltage-sensitive dyes suggest that many enteric 

interneurons and motor neurons with fast synaptic inputs (S/Type I cells) may function as 

rapidly adapting mechanosensors to physiological stimuli (37). In addition, slowly-adapting 

Dogiel type 1 “sensory interneurons” in the guinea pig distal colon are both mechanically and 

synaptically activated by ongoing distension of the gut wall (38). 
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Subtypes of viscerofugal neurons 

Retrograde tracing studies, using biotinamide or fast blue, or intracellular dye filling with 

biocytin, suggest that viscerofugal neurons are uniaxonal with smooth or irregular shaped cell 

bodies and short lamellar or filamentous dendrites (8, 17, 39-45). A study using DiI and 

intracellular filling with Lucifer Yellow in guinea pig colon revealed a subset (30%) of 

multiaxonal viscerofugal neurons, although the majority were uniaxonal (21). In the present 

study, degeneration of sympathetic and sensory fibers in organ culture allowed observation of 

large numbers of biotinamide-filled viscerofugal neurons uncomplicated by surrounding 

nerve fibers.  All appeared to be uni-axonal and we were not able to distinguish clear 

morphological subtypes. The discrepancy in morphological identification may be related to 

the type of tracer used (DiI labelling tends to be punctate and lucifer yellow gives less 

complete fills that biotin derivatives) (46), or differences between strains of guinea pigs.  

 

Conclusion 

The present study has demonstrated that action potentials of enteric viscerofugal neurons can 

be recorded from colonic nerves in organ-cultured tissue.  Viscerofugal neurons appear to 

function as both mechanosensory neurons and interneurons.   Future studies in acute 

preparations are warranted to identify and characterize the optimal mechanical stimuli for 

viscerofugal activation, their proximal enteric neuronal inputs, and to determine whether all, 

or just a subset of viscerofugal neurons are capable directly transducing mechanical stimuli.  
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Tables 

Table 1 – The effect of circumferential stretch on evoked contractions of the circular muscle 

and occurrence of ‘large burst’ firing. 

Stretches 

‘Large burst’ 

firing (+) 

‘Large burst’ 

firing (−) 

Contraction (+) 8 3 

Contraction (−) 2 21 
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