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The global optimization problem, finding the lowest minimizer of a nonlinear function of several 
variables that has multiple local minimizers, appears well suited to concurrent computation.  This 
paper presents a new parallel algorithm for the global optimization problem. The algorithm is a 
stochastic method related to the multi-level single-linkage methods of Rinnooy Kan and Timmer 
for sequential computers. Concurrency is achieved by partitioning the work of each of the three 
main parts of  the algorithm, sampling, local minimization start point selection, and multiple local 
minimizations, among the processors. This parallelism is of  a coarse grain type and is especially 
well suited to a local memory multiprocessing environment.  The paper presents test results of  a 
distributed implementat ion of this algorithm on a local area network of computer  workstations. 
It also summarizes the theoretical properties of  the algorithm. 
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1. Introduction 

This paper  presents a parallel algorithm for the global optimization problem. The 
algorithm is a stochastic method related to the multi-level single-linkage method of 
Rinnooy Kan and Timmer  (1984) for sequential computers.  The parallelism is of  a 
coarse grain type and is especially well suited to a local memory multiprocessing 
environment. The paper  presents test results of a distributed implementation of this 
algorithm on a local area network of computer  workstations. It also summarizes 
the theoretical properties of the algorithm. 
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DCR-8403483, and NSF cooperative agreement DCR-8420944. 
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The global optimization problem is to find the lowest function value of a function 
that may have multiple local minimizers. We denote the problem as follows: 

given f ( x ) : R n ~ R  and S_~Rn 
(1.1) 

find x ,  ~ S for which f (x , )  <~f(x) for all x c S. 

We refer to x ,  as the global minimizer o f f  and f (x , )  as the global minimum. The 
term "global" contrasts with a local minimizer of f which is the lowest value of 
f (x)  in some open neighborhood in S. Thus a function may have multiple local 
minima but it can have only one global minimum value. In this paper we assume 
that f is a nonlinear, twice continuously differentiable function. We also assume 
that the feasible region S is given by a set of lower and upper bounds on each 
variable, i.e. 

S={xlli<~xi<~ui, i = l , . . . , n }  

and that the global minimizer lies in the interior of S. 
Global optimization problems of the above form occur in many practical applica- 

tions including data fitting, structural design, optimal control, econometrics, and 
many more (see e.g. Dixon and Szego (1978)). Most optimization software, however, 
is only constructed to find local minimizers (see e.g. Gill, Murray and Wright (1981) 
or Dennis and Schnabel (1983)). One reason is that it is difficult to construct reliable 
algorithms for finding the global minimizer of general nonlinear functions. A second 
reason is that it often is very expensive to solve the global optimization problem 
reliably, since it requires many evaluations o f f ( x )  and many iterations and arithmetic 
operations within the optimization code itself. In practical optimization applications, 
the evaluation o f f ( x )  is often very expensive so that the large number of function 
evaluations is the dominating expense. 

There has been a moderate amount of work done in developing global optimization 
algorithms for sequential computers. Among these approaches, we shall favor 
stochastic methods, which include some random sampling of the function domain, 
because these methods provide some guarantee of their reliability while still appear- 
ing at least as efficient as other approaches. 

Due to the expensive nature of global optimization and the practical need to 
solve such problems, there is ample incentive to devise parallel global optimization 
methods if they can lead to significantly faster solution of this problem. It appears 
that the global optimization problem is well suited to parallel solution in a number 
of  ways. 

In this paper we concentrate on the high level, coarse grain concurrency available 
within the global optimization algorithm itself. Obvious opportunities for high level 
parallelism include conducting multiple local minimizations concurrently, or 
evaluating the objective function f at multiple random sample points concurrently. 
Such an approach is intended to utilize multiple processors efficiently in solving 
the global optimization problem whether or not the evaluation o f f ( x )  is expensive. 
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An alternative, lower level use of parallelism in global optimization would be to 

apply a parallel algorithm to evaluate f (x ) .  In cases where the function evaluation 

is very expensive this approach might be very effective. We do not pursue it for 

several reasons. First, parallelization of objective function evaluation is strongly 

problem dependent and outside the realm of the optimization algorithm designer. 

Second, if one has an efficient parallel code for evaluating f ( x ) ,  then it can be used 

in conjunction with the approach presented here. For example, if evaluation o f f ( x )  
vectorizes welt (as is often the case), then the appropriate computational environment 

would be a multiprocessor where each node is a vector processor. In this environment 

the function evaluations could be performed on individual vector processors while 

the higher level parallelism in our algorithm could still be realized among these 

processors. Indeed, we believe that this computational environment (currently 

embodied by machines including the Cray X-MP and the Alliant) will be a very 

important one in the future. In other cases where the computation o f f ( x )  requires 
multiple processors, it would be possible to divide the processors into groups, with 

a group of processors being used to evaluate f ( x )  and the groups themselves being 
used to implement the high level parallelism of our algorithm. 

The implementation of the type of coarse grain parallel algorithm we develop 

requires a computer capable of executing multiple independent instruction streams 

at the same time. In the taxonomy of Flynn these are known as Multiple Instruction 
Multiple Data (MIMD) computers. The class of MIMD computers includes both 
shared and local memory multiprocessors. 

Shared memory multiprocessors are computers with multiple processors that are 

all connected, via a switching network or global bus, to a shared memory which 

they all can access. The processors may have local memory as well. Synchronization 

or communication between processors is carried out using this shared memory and 

usually is nearly as fast as a local memory access, 

Local memory multiprocessors are computers with multiple processors, each with 
its own local memory, connected by some sort of interconnection network. Examples 

currently in use include the hypercube computers pioneered at Caltech (Seitz (1985)) 

and local area networks of computers. On these machines, synchronization or 

communication between processors is achieved by passing messages between the 

processors. Generally message throughput rates are several orders of magnitude 

slower than the arithmetic operation rate. Thus local memory multiprocessors are 

best suited to parallel algorithms where, on the average, many instructions (say 1000 
or more) are executed on individual processors in between synchronization or 

communication points with other processors. Such algorithms are generally referred 

to as medium grain or coarse grain parallel algorithms. 

Since the global optimization problem is amenable to solution by a coarse grain 

parallel algorithm, a local memory multiprocessor is an appropriate parallel environ- 

ment for this problem. For this reason, we have chosen to implement our parallel 

algorithm on the local area network of workstations that is being used for 
parallel computation at the University of Colorado. Due to the small amount of 
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synchronization and communication in our parallel algorithm, our experimental 
results are likely to be indicative of the performance we would obtain in other 

MIMD environments. 
In summary, the goal of  this research was to develop an efficient and reliable 

parallel algorithm for the global optimization problem that is well suited to 
implementation in a local memory multiprocessing environment. By reliable, we 
mean that the algorithm should be successful in finding the global minimum and 
preferably that there be some theoretical guarantee of this reliability. By efficient, 
ideally we mean that our parallel algorithm, when implemented on P identical 
processors, should require 1/P of the time that the best sequential algorithm would 
on one of these processors to solve the same problem. 

To approach this efficiency goal, three important performance goals must be met. 
First, the algorithm should keep all processors (nearly) fully busy, i.e. processor 
idle time should be minimized. Second, the algorithm should introduce little new 
work that was not required by the best sequential algorithm; this rules out extensive 
overhead computations introduced in order to utilize multiple processors. Third, 
the interprocess communication requirements, in this case the number of messages, 
should be small. The experimental results in this paper will show that these goals 
have been met quite well. 

In Section 2 we briefly describe sequential methods for global optimization, 
concentrating on the approach from which our parallel algorithm is derived. Section 
3 presents our parallel global optimization method. In Section 4 we briefly summarize 
the theoretical properties of  this method. In Section 5 we first describe the multipro- 
cessing environment, a network of computer workstations, used in our experiments. 
Then we present our computational results in this environment. Some comments 
on future directions for this work are presented in Section 6. 

2. Sequential global optimization methods 

The methods that have been developed to solve the global optimization problem 
can be divided into two main classes, deterministic methods and stochastic methods 
(Dixon and Szego (1978)). This section briefly surveys these methods, concentrating 
on those most closely related to our concurrent algorithms. 

Deterministic methods do not incorporate any random or stochastic features. A 
wide variety of approaches are contained in this class, including trajectory methods 
(Branin (1972), Branin and Hoo (1972)), deflation methods (Goldstein and Price 
(1971), Levy and Gomez (1985), Levy and Montalvo (1985)), piecewise approxima- 
tion methods (Shubert (1972)), and interval arithmetic methods (Hansen (1980), 
Hansen and Sengupta (1980), Walster, Hansen and Sengupta (1985)). Most of these 
methods either do not provide a guarantee that they will find the global minimizer, 
or do so only at the expense of making additional assumptions about the objective 
func t ion f  which are difficult to verify in practice. The most common such assumption 
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is that some derivative of f obeys a Lipschitz condition with a constant that is 
bounded above by a known number. In addition, many deterministic methods tend 
to require a large computational effort to find the global minimizer. 

Stochastic methods differ in that they incorporate stochastic features, generally 
the sampling o f f ( x )  at randomly selected points in the feasible region. This enables 
these methods to provide a probabilistic guarantee that the global minimizer will 
be found, assuming only that f is continuously differentiable. Generally, these 
methods combine the random sampling phase with a phase where local minimization 
algorithms are performed from some of the sample points. The earliest stochastic 
methods, such as random search (Brooks (1958), Anderssen (1972)), random direc- 
tion (Devroye (1979), Price (1979), Solis and Wets (1981)) and simple multi-start 
methods, were rather crude and not computationally efficient. More recent stochastic 
methods, such as those of  Boender, Rinnooy Kan, Stougie and Timmer (1982), and 
Rinnooy Kan and Timmer (1984, 1985a,b,c), combine random search and local 
minimization carefully and appear to be quite efficient in computational experiments. 
In addition, they also provide probabilistic guarantees of their computational 
efficiency. 

Thus, modern stochastic methods appear to provide an attractive choice from 
both the theoretical and computational points of view. For these reasons, we have 
chosen to base our concurrent global optimization algorithms on a stochastic 
approach. 

In particular, our concurrent method is most closely related to the recent multi-level 
single linkage method of Rinnooy Kan and Timmer (1984). This method appears 
to combine state-of-the-art computational performance with strong theoretical 
properties. The remainder of this section briefly reviews sequential multi-level single 
linkage methods, with emphasis on aspects that will have importance for our 
concurrent methods. 

The multi-level single linkage method is an iterative algorithm. Each iteration 
consists of a sampling phase, in which the function is evaluated at a number of 
randomly sampled points, followed by a minimization phase, in which a local 
minimization procedure is started from a subset of the sample points. A probabilistic 
stopping rule is applied to determine whether the algorithm should be continued, 
and if it should, the next iteration is begun. Here, an outline of the algorithm is given. 

Algorithm 2.1. Multi-level single linkage method for global optimization 
Given f :  R r' ~ R, feasible region S. 
At iteration number k: 
1. Generate sample points and function values. Add N points, drawn from a 

uniform distribution over S, to the (initially empty) set of sample points, and 
evaluate f ( x )  at each new sample point. 

2. Select start points for local searches. (Optional: calculate a cut off level; all 
sample points with function values above this level will be excluded from the 
start point selection.) 
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Determine a (possibly empty) subset of  the sample points from which to start 
local searches. 

3. Perform local minimizations from all start points. 
4. Decide whether to stop. I f  stopping rule is satisfied, regard the lowest local 

minimizer found as the global minimizer, otherwise go to Step 1. 

Several portions of  Algorithm 2.1 require further elaboration. Most important to 
the practical and theoretical success of  the method is the selection of start points 
for local minimizations in Step 2. At iteration k, each sample point x is selected as 
a start point for a local minimization if it has not been used as a start point at a 
previous iteration, and if there is no sample point y within the critical distance r(k) 
of  x with a lower function value, i.e. with 

IIx-yll<~r(k) and f ( x ) < f ( y ) .  

The critical distance is given by 

[ ( +2 n) logkN-] 'In 
r(k)  = ~r -1/2 F 1 m(S) -ZE- j (2.1) 

where re(S) denotes the Lebesque measure of  S, F denotes the gamma function, ¢r 

is a positive constant, and N is the sample size per iteration. 
The above selection procedure may optionally be applied only to the y k N  sample 

points with the lowest function values, where y is any fixed number in (0, 1]. This 
corresponds to the application of a cut off'level to the sample. The use of a cut off 
level does not affect the theoretical reliability and efficiency of the multi-level single 

linkage method, but appears  to enhance its computational  performance. 
The local minimizations are performed by any standard unconstrained minimiz- 

ation code. The theoretical analysis of  the multi-level single linkage method simply 
assumes that the unconstrained minimization code will find a local minimizer x* 
when started within the basin of  x*, i.e., the set of points x from which all strictly 
descent paths converge only to x*. The methods of Rinnooy Kan and Timmer 
(1985a,c) use the VA10AD variable metric subroutine from the Harwell Subroutine 
Library, while the methods reported in this paper  use the line-search BFGS code 

in the U N C M I N  package of Schnabel, Koontz and Weiss (1985). Both are well-tested 
and widely used codes. 

A Bayesian stopping rule of  Boender and Rinnooy Kan (1984) (see also (Zielinski 
(1981))) is applied in Step 4. To explain this rule, let w denote the number  of local 
minimizers found after k iterations, and let s =- y k N  be the (reduced) sample size 
after k iterations. In addition, define the region of attraction of a local minimizer 
x* for a particular local search method to be the set of  all starting points x from 
which the local search method will converge to x*. Boender and Rinnooy Kan show 

that a Bayesian estimate of  the total number  of  local minimizers is given by 

w(s - 1) (2.2) 
s - w - 2  
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and that a Bayesian estimate of  the portion of S covered by the regions of  attraction 
of the local minimizers found so far is given by 

(s-w-1)(s+w) 
s ( s  - 1) (2.3) 

The stopping rule used is that the algorithm is terminated after the kth iteration if 
and only if the estimate given by (2.2) is greater than w by less than 0.5, and the 
estimate given by (2.3) is ~>0.995. 

Strong theoretical properties of the multi-level single linkage algorithm have been 
proven in Timmer (1984), Rinnooy Kan and Timmer (1985b,c). I f  the critical distance 
is given by (2.1) with o- > 0, then with probabili ty 1, all the isolated local minimizers 

o f f ( x )  will be found within a finite number  of  iterations. I f  o ->4  in (2.1), then, 
even if the sampling continues forever, the total number  of  local searches started 
by the algorithm will be finite with probabili ty 1. Thus both the accuracy and the 
efficiency of the method are guaranteed in a strong probabilistic sense. 

Test results for the multi-level linkage algorithm are reported in Rinnooy Kan 
and Timmer (1985a,c). The algorithm has been tested on a standard set of  test 

problems and compared with a number of  other approaches for global optimization. 
Overall, it seemed to offer the best combination of efficiency and reliability of the 

methods tested. 

3. A concurrent algorithm for stochastic global optimization 

The global optimization problem seems conducive to solution by highly parallel 
algorithms in ways that makes it suitable to a variety of parallel computing environ- 

ments. In particular certain methods to solve the problem can be decomposed into 
a number  of  relatively large and independent subtasks. Concurrent algorithms can 
exploit this coarse grain parallelism while requiring only infrequent interprocess 
communication and little or no shared memory.  Thus these algorithms seem well 
suited to a local memory or shared memory multiprocessing environment. In this 

section we discuss one such global optimization algorithm, a synchronous concurrent 
multi-level single linkage method. 

We can readily identify three sources of  high level parallelism in the multi-level 
single linkage method. In the first phase of  each iteration, the sampling phase, each 
processor can generate 1 / P  of the sample points (P  is the number  of  processors) 
and evaluate the function at each of them. In the second phase, start point selection, 
each processor can select start points from its own subsample. (Some checking in 
other subsamples may be required; this is discussed later.) Finally in the third phase, 

local minimization, each processor can be responsible for one or more of the local 
searches. 

An obvious mechanism for achieving this concurrency is to divide the feasible 
region into P subregions of  equal size, and assign each subregion to a different 
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processor. Then the sampling phase can be implemented concurrently simply by 
having each processor sample its subregion, and the major part  of  the start point 

selection can be accomplished by having all the processors concurrently generate 
the start points for their subregions based on their own samples. It is possible, 
however, that the number  of  start points for local searches may vary widely between 
subregions, and the lengths of  local searches also may vary widely. Thus it may not 
be advantageous to have each processor simply handle the local searches for the 
start points from its own region. Instead, in our algorithm a master process collects 
all the start points from all the subregions and then distributes them back to the 
processors as evenly as possible. This is discussed in more detail below. The master 
process also coordinates the small amount of synchronization and communication 

that is required. 
At this point it may be useful to indicate a basic difference between the second 

source of parallelism described above and the other two sources. The first and the 
third phases of  the algorithm, sampling and local minimization, are generally 
dominated by the costs of the evaluations o f f ( x ) .  Thus our concurrent algorithm 
essentially is distributing these function evaluations among the processors. In the 
second phase, start point selection, however, there are no function evaluations, and 
our concurrent algorithm is carrying out part  of  the global optimization algorithm 

itself in parallel. The impact  of  the latter type of concurrency relative to the former 
on the overall speedup of the algorithm clearly will be determined by the percentage 
of time spent in various phases of  the algorithm; this in turn will depend on the 
cost per function evaluation and the number  of  function evaluations required to 

solve a particular problem. The more time spent on function evaluations, the more 
important  the concurrency from the sampling and local minimization phases of  the 
algorithm. In fact, if function evaluations are sufficiently expensive it may be 
prof i table--as  discussed before- -a lso  to exploit a lower level of parallelism, perform- 
ing parallel function evaluations within the individual local minimizations (see 
Section 6). 

A concurrent multi-level single linkage algorithm employing P processors and 
making use of  all three high level sources of  parallelism is outlined in the following 

algorithm: 

Algorithm 3.1. A concurrent multi-level single linkage method for global optimization 
Given f :  Rn-~ R, feasible region S and P processors. 
O. Partition S. Subdivide S into P equal size, regular shaped subregions Si, 

i = 1 , . . .  P, and assign subregion S~ to processor i for i = 1 , . . . ,  P. 
At iteration number  k: 
1. Generate sample points and function values. For i = 1 , . . . ,  P: 

Add N I P  points, drawn from a uniform distribution over subregion i, to the 

(initially empty) set of  sample points, and evaluate f ( x )  at each new sample 
point. 
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2. Select start points for local searches. [Optional: calculate a cut off level; all 
sample points with function values above this level will be excluded from the 

start point selection.] 
F o r i = l , . . . , P :  
Determine a (possible empty) set of  start points in subregion i, disregarding 
sample information from all other subregions. 
Resolve start points near borders between subregions. 

3. Perform local minimizations from all start points. Collect all start points and 
distribute one to each processor, which performs a minimization from that 
point. Issue a new start point to a processor as soon as it terminates its current 
local search, until local searches from all start points have been completed. 

4. Decide whether to stop. I f  stopping rule is satisfied, regard the lowest local 

minimizer found as the global minimizer, otherwise go to Step 1. 

The four basic steps of this algorithm are identical to those of  the sequential 
multi-level single linkage algorithm, Algorithm 2.1. Concurrency is achieved in the 
implementation of each of these steps, with the exception of Step 4, which hardly 
contributes to the algorithm's running time. The remainder of  this section consists 
of  a more detailed discussion of Algorithm 3.1. In Subsections 3.1-3.3 we focus on 

the aspects where the concurrent algorithm differs from the sequential method in 
Steps 1, 2 and 3, respectively. In Subsection 3.4 we make some comments on how 
the concurrent algorithm is expected to meet the goals of reliability and efficient 
utilization of a local memory multiprocessing environment that were mentioned in 

the introductory section. 

3. I. The generation of sample points and function values 

In the sampling phase, each processor i extends its set of sample points by N / P  
new points and evaluates the function f at each of them. Whereas the random 
sampling was done from a uniform distribution over the entire region S in the 
sequential method, in the concurrent algorithm each processor generates a random 
sample from a uniform distribution over its own subregion S,. As will be discussed 
in Section 4, this necessitates that the theoretical analysis of the algorithm be modified 

but it turns out not to alter the theoretical properties of the method. 

3.2. The selection of start points for local searches 

The selection of start points for local minimizations is carried out in two phases 
(three if the optional sample reduction procedure is applied). The first, local, phase 
is performed independently and concurrently by each processor. Processor i selects 
the points in its own subregion Si which locally satisfy the start point selection rule 
described in Section 2 for the multi-level single linkage method. That is, at iteration 

k each sample point x c Si is selected as a candidate start point if it has not been 
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used as a start point in a previous iteration, and if there is no sample point y c Si 
within the critical distance r(k) of  x given by eq. (2.1) with a smaller function value. 

For a given sample over the entire region S, any sample point that would be 
selected as a start point by the sequential algorithm will also be selected as a 
candidate start point by this first start point selection phase of the concurrent 
algorithm. However, if x is within the critical distance of any border of  its subregion, 
it is possible that it will be selected as a candidate start point by the first phase of 
the concurrent algorithm but not by the sequential algorithm, because some sample 
point in another subregion but within the critical distance has a smaller function 
value. To prevent the initiation of unnecessary local searches from these points, the 
local selection phase of  the concurrent algorithm is followed by a second, global 

selection step. First, all candidate start points within the critical distance of a border 
between subregions are distributed to all processors. Then, each processor determines 
whether its sample contains a point within the critical distance of one of these 
candidate start points with a lower function value. I f  so, this candidate point is not 

used as a start point for a local minimization. The remaining start points will be 
the same ones that would have been selected from the same sample by the sequential 
method. 

The start point selection procedure may optionally be preceded by a sample 

reduction procedure. As in the sequential algorithm, the aim of this step is to retain 
only the ykN sample points with the lowest function values in the entire region S, 
where 3' c (0, 1) is fixed. In the sequential algorithm, a cut off level equal to the 
ykNth lowest function value is determined and all sample points with higher function 

values are eliminated. In order to determine a corresponding cut off level for the 
entire region S in the concurrent method, some exchange of information between 
subregions is required. 

In order to keep both the interprocess communicat ion and the computational 
costs of  this step small, the goal of the sample reduction phase for the concurrent 
algorithm is relaxed slightly. We require that the cut off level be chosen so that 
the number  of  reduced sample points, i.e. all sample points with function values 
below the cut off level, deviates from the target size ykN by at most cbykN for a 

fixed precision ~b c (0, 1). This can be achieved by setting g = [(20ykN+ P-1) /PJ  
and requiring each subregion to determine the (ig)th largest function value 
(i = 1, . . . ,  [kN/(2OykN+P-1)J) and to report those to the master process. The 
cut off level in each region is then taken to be equal to Gth largest function value 
in this selection, where G is the integer closest to (2ykN-(P-1) (g-1) ) / (2g) .  
It is not hard to see that this procedure determines the cut off level within the 
relative accuracy required (Dert (1986)). 

3.3. The local minimizations 

The distribution of the computational effort in the local minimization phase is fairly 
straightforward. After all the local search start points have been identified in the 
previous step, all these points are reported to the master process. The master process 
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then distributes one start point to each processor, and if there are more start points 
than processors, a processor that completes one local search is given another start 

point until they all have been processed. 
As discussed in the beginning of this section, this phase may not keep all the 

processors equally busy. The remaining issue is in what order to assign the local 
minimizations in order to keep processor idle time as small as possible. I f  we knew 

in advance how long each local search would take, we could use a scheduling 
heuristic to minimize the total time, and thus the idle time, needed to complete all 
minimizations. A well known, simple heuristic with attractive theoretical properties 
for similar scheduling problems is the longest processing t ime rule (see e.g. Frenk 

and Rinnooy Kan (1986)), which states that the jobs should be scheduled in order 
of  descending processing time. 

In the case of  local minimizations we do not know in advance how long each 
minimization will take, so we cannot order the start points according to processing 
time. One crude way to estimate these times is to guess that the higher the function 
value at the start point, the longer the minimization will take. Our computational 
experiments indicate that the use of this heuristic has given slightly better results 
than using an arbitrary ordering and at least as good results as any other heuristic 
we have attempted. 

3.4. C o m m e n t s  

In this subsection we make some general remarks concerning the expected efficiency 

and reliability of the concurrent global optimization algorithm that we have just 
described. We will also examine how effectively the algorithm is likely to utilize a 
local memory multiprocessing environment. 

From the point of view of the sample points that are used, the local minimizations 
that are performed, and the answer that is found, the concurrent algorithm differs 
from the sequential one only in that it samples from a slightly different distribution. 
Therefore we expect that the number of  sample points, function evaluations and 
local searches that are used by the sequential and concurrent methods on any 
particular problem will be very similar. Furthermore we expect that the number  of 
minimizers found by the two methods will be roughly the same, and that they usually 

will find the same global minimizer. This similarity between the two algorithms is 
reinforced by the theoretical analysis discussed in Section 4. 

Let us now turn to the parallel characteristics of Algorithm 3.1. Notice that it 
requires very little synchronization of processes or communicat ion or sharing of 
information between them. Information is exchanged at four places in the algorithm: 
after the local phase of  Step 2 is completed, the candidate start points within the 
critical distance of the subregion border must be collected and sent to the other 

subregions; after the border  resolution phase of Step 2 is completed, the final start 
points must be collected and distributed to the processors; after the local minimiz- 
ations are completed in Step 3 each process must report the minimizers found to 
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the process making the stopping test; and at the beginning of the next iteration, 
some results from the previous iteration must be distributed to the processors. The 
only synchronization requirements are inherent in these actions: the local phase of  
Step 2 must be completed by all subregions before the global phase is begun, and 
all the local searches must be completed before the stopping test is made. I f  sample 

reduction is used, the implementat ion of Algorithm 3.2 also requires that every gth 
function value from each subregion be collected from all processors and that the 
cut off level be communicated back to each processor: 

In our implementation, a master process, which resides on the same processor 
as one of the subregion processes, takes care of the coordinating activities described 

above. It collects the candidate start points that are near subregion borders and 
distributes them to the subregion processes when it has all of  them; it collects the 
start points and distributes them to the processors using the heuristic discussed in 
Section 3.3; and when all local searches are completed, it performs the stopping 
test (two simple equations) and starts the next iteration if required. If  sample 
reduction is used it also collects the function value information from all subregions 
and, when it has all the information, it calculates the cut off level and sends it back 

to all the processors. 
This organization makes it clear that our concurrent algorithm requires very little 

shared information, and therefore is well suited for implementation on a local 
memory multiprocessor. I f  a local memory multiprocessor is used, at each iteration 
the number  of  messages received and sent by each subregion process will be two 
plus the number  of local searches conducted by that processor, plus one more if 
sample reduction is applied. At each iteration the master process will receive, and 

send, 2P messages (3P with sample reduction) plus the total number  of  local 
searches for that iteration. The messages all are short, containing either one 
number,  one n-vector, or a small number  of  n-vectors. Thus the total interprocess 
communicat ion requirements are quite small. 

Finally, we will examine how much overhead is introduced by the parallelization 
of  the algorithm at Steps 1, 2 and 3 of Algorithm 3.1, and how fully we expect all 
processors to be utilized. 

In Step 1 each processor samples N/P points and evaluates the function at each 

one of them. This step requires no interprocess communication or parallel overhead, 
and is expected to achieve equal utilization of all processors as long as the time 
required to evaluate f(x) at different points x is (nearly) uniform. 

Now consider the start point selection step without sample reduction. Since the 
selection of candidate start points requires each processer to consider the same 

number  of  points (kN/P), we expect equal utilization of all processors during this 
portion of Step 2. In our experience, the second part of  the step, in which the border 

points are resolved, requires very little running time in comparison. So in Step 2 
we introduce little parallel overhead or interprocess communication (each process 

has to send and read one message), and as in Step 1 we expect all processors to do 
the same amount of  work. In fact, we will see in Section 5 that Step 2 has the 
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interesting effect of applying a divide and conquer strategy that actually causes 
greater than linear speedup in comparison to some standard sequential implementa- 

tions. 
I f  Step 2 is run with a cut off level, however, the distribution of work among the 

processors may no longer be uniform. This is because the reduced sample points 

may not be equally distributed among the subregions and therefore the reduced 
sample size per processor may differ substantially. Processors handling a subregion 
with a relatively small reduced sample size will complete the selection of candidate 
start points faster than processors with a large reduced sample. These processors 
will then be idle until all processors have finished selecting their candidate start 
points and the border resolution phase can be started. The effects of  this imbalance 

will be seen in some of the computational results in Section 5. 
Recall, however, f rom the discussion at the beginning of this section, that the 

imbalance in utilization of processors in Step 2 caused by the sample reduction 
phase becomes unimportant  as the cost of  function evaluations rise. This is because 
the costs of Steps 1 and 3 then dominate the running time, and the cost of  Step 2, 
which involves no function evaluations, becomes insignificant. This phenomenon 

is reflected in the simulated results for expensive functions given in Section 5. 
The imbalance in Step 2 caused by sample reduction also would be less important 

if the processors early finishing could be employed in some other useful manner. 
To some extent this seems possible. If  the subregion handled by the early finishing 
processor contains a candidate start point that is not within the critical distance of 
any subregion border, the processor could avoid being idle by starting a local search 
from this point immediately. This possibility is also examined in Section 5. 

Finally, consider Step 3, the local minimization phase. Again, the cost of inter- 
processor communication in this phase is small (one message sent and received for 

each local search) and no other parallel overhead is introduced. As we have discussed 
previously, however, this step will probably not utilize all processors evenly due to 
the uneven lengths of local searches, and the fact that the number of  searches may 
be less than the number of  processors. This is one of the main effects that we will 

examine in Section 5. We will also present some results about improving the efficiency 
of the local minimization phase by introducing concurrency into the individual local 
minimizations. 

In summary,  the concurrent global optimization algorithm adds few new costs, 
either new operations or interprocess communication,  to those present in the sequen- 
tial algorithm. In the sampling phase, and the start point selection phase if run 
without sample reduction, it appears to readily allow full utilization of all processors. 

In the local minimization phase, and the start point selection phase if sample 
reduction is used, the synchronization requirements may cause some processors to 
be idle at some times. In problems where function evaluation is expensive, the 
expense of the algorithm is dominated by the sampling and local minimization 

steps, so that the efficiency of these steps is most important and the start point 
selection step becomes relatively unimportant  anyhow. 
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4. Theoretical properties of concurrent multi-level single linkage 

Although the concurrent and sequential multi-level single linkage algorithms are 
very similar in terms of  the sampling and searching they perform, the assumptions 
under which the theoretical properties of the sequential multi-level single linkage 
algorithm are proven do not all hold for the concurrent method. In particular, the 
analysis of the sequential method assumes that the sample points are drawn from 
a uniform distribution over the feasible region S. In the concurrent algorithm this 
is no longer the case; instead, the sample points are generated from uniform 
distributions over the subregions. 

The analysis of the sequential multi-level single linkage algorithm can be adapted, 
however, to show that the two properties mentioned in Section 2 also hold for the 
concurrent algorithm we discussed in Section 3. First, if the critical distance tends 
to 0 with increasing k, then with probability 1 all isolated local minima with values 
below the cut off level will be identified in a finite number of iterations. Second, if 
in (2.1) cr > 4, then if sampling continues forever, the number of local searches will 
be finite with probability 1. The proofs for these results involve appropriate 
modifications of the proofs for the sequential case; we refer to (Dert (1986)) for 
the details. 

As in the sequential case, it is also possible to carry out a theoretical analysis of 
the expected running time of the algorithm. Through the use of appropriate data 
structures (cf. Section 5.2), it can be shown that the sequential algorithm requires 
a computational effort that in expectation increases as a linear function of the sample 
size. This result continues to hold for the concurrent version, even if a cut off level 
has to be computed centrally. A crucial role in the required computation of every 
gth value is then played by a dynamic selection method by Postmus, Rinnooy Kan 
and Timmer (1983), whose expected running time has very attractive properties. 
Again, we refer to (Dert (1986)) for full details. 

5. Computational testing 

We have implemented and tested the concurrent global optimization algorithm 
described in Section 3 on a network of computer workstations. This section reports 
the results of these tests. First, we briefly describe our parallel computing 
environment. 

5.1. The testing environment 

The University of Colorado is engaged in a large research project on the use of a 
network of computer workstations for concurrent computation. This project includes 
developing and implementing numerical algorithms for important practical problems 
that are well suited to this loosely coupled multiprocessing environment. It also 
includes the development of  systems and software support that will make a network 
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of computers easier to use for distributed concurrent computation. This project is 

supported by a Coordinated Experimental Research grant from the National Science 

Foundation as well as individual research grants. The concurrent global optimization 

algorithm described in Section 3 is an excellent candidate for solution in this 

environment. 

Our current test environment consists of a network of Sun workstations, connected 

on an ethernet and sharing several file servers. The experiments reported in Section 

5.2 were conducted on a dedicated subnet consisting of four or eight Sun-3 work- 
stations. That is, when we conducted these experiments we were the only users of 

these workstations and the subnet was physically disconnected from the remainder 

of our computer network. Thus, the subnet functioned as a dedicated local memory 

multiprocessor. 

Our ability to use the network of workstations for distributed concurrent process- 

ing is based upon the Sun version of the Berkeley Unix 4.2 operating system, which 
each workstation runs. The Berkeley Unix 4.2 operating system provides the basic 

interprocessor communication facility, the ability to send messages between proces- 

ses on different machines, that is needed to use a network of computers as a 

multi-processor. In Berkeley Unix 4.2, this capability is provided by stream sockets, 

reliable point to point connections between two processors, as well as datagram 

sockets. When combined with the Unix fork and exec commands, these facilities 

allow a process on one computer to start a process on another computer and 
subsequently to communicate with it. 

Researchers in the Computer Science Department at the University of Colorado 

have built a distributed processing utilities package, called DPUP, that makes a 

network of computers running the Berkeley Unix 4.2 operating system easier to use 

for distributed concurrent processing (Gardner et al. (1986)). DPUP builds upon 

the interprocessor communication facilities in Berkeley 4.2 to provide two models 

of concurrent computation. The first is a master-slave model where all processes 
are linked to one master in a "spokes of a wheel" arrangement and all communication 

is through the master. The second is a broadcast model where each process is an 

equal member of a ring of processes and can send messages to all of the processes 

at once. For both models, DPUP provides several basic concurrency capabilities 

including the creation and termination of remote processes (with required communi- 

cation connection automatically established) and various means to send and receive 

messages. Our concurrent global optimization software uses the master-slave model 
of DPUP. 

Our parallel algorithm has recently been ported to the lntel hypercube and 

relatively little difficulty (see Eskow and Schnabel (1987)). As expected, due to the 

small amount of synchronization and communication required, the performance is 

quite similar to that on the network of workstations. We would expect similar 

behavior on almost any MIMD computer. As noted in Eskow and Schnabel (1987), 

once each function evaluation requires about 10 000 floating point operations, the 
cost of function evaluations will swamp all other costs of the parallel algorithm, 
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including communication, and so our expensive function results (Tables 5.6, 5.12) 

will be indicative of the performance on any M I M D  computer. 

5.2. Computational results 

Both the sequential and the concurrent global optimization algorithms have been 

run on the test problems given in Dixon and Szego (1978), and on some problems 
from Levy and Gomez (1985). At present these seem to be among the few widely 

accepted global optimization test problems. We comment first on our results on the 

Dixon-Szego test set, and then more briefly on our results on the Levy-Gomez 

problems. 

The characteristics of the problems from Dixon and Szego (1978) are summarized 

in Table 5.1. The problems are low dimensional (up to 6 variables) with only few 

local minimizers (up to 10). In addition, evaluation of the test functions is very 
cheap. These characteristics limit what one can determine from the test set, and 

how one should interpret the computational results, in several ways. 

Table 5.1 

Test problem data, Dixon-Szego problems 

Problem n a m e  Abbreviation Number of Number of 
variables local minimizers 

Goldstein-Price GP 2 4 
Branin BR 2 3 
Hartman 3 H3 3 4 
Hartman 6 H6 6 4 
Shekel 5 $5 4 5 
Shekel 7 $7 4 7 
Shekel 10 S10 4 10 

The small number of variables and local minimizers limits the amount of parallel- 

ism that can be obtained in solving the global optimization problem. The number 

of  sample points required, the number of local searches required, and often the 

number of  iterations required would all be significantly higher for more difficult 
problems, which in turn would enable the use of more concurrency. The Levy-Gomez 
problems have considerably more local minimizers, but the number of  variables still 

is small. 

The fact that the evaluation of the test functions themselves is very cheap (some- 

times requiring only a few floating point operations) means that our timing results 

are not indicative of  performance on many real world problems where function 

evaluation is the dominant cost. Therefore we will report two speedup measures. 

The first measure is the actual timed speedup, the time required by the sequential 
algorithm to solve a problem divided by the time required by the concurrent algorithm 
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to solve the same problem, i.e. 

elapsed time sequential algorithm 
speeduptimed--elapsed time concurrent algorithm" (5.1) 

In many of our experiments this measure is dominated by the start point selection 
phase, which in fact requires no function evaluations. Thus this measure is an 
interesting indication of how well we have sped up the overhead calculations of  
the algorithm, and also gives some indication of how practical our approach would 
be on small problems with very inexpensive function evaluations. 

In many practical optimization problems, however, the evaluation of  the objective 
function f(x) is very expensive. The computat ional  effort then will consist mainly 
of  computing function values. So in this case one is primarily interested in the 
distribution of function evaluations among the processors. To use our test results 
to indicate the speedup our concurrent algorithm would achieve on this type of 
problem, we introduce a second speedup measure. Let ~ , j  denote the number  of 
function evaluations done by the ith processor at the j th  iteration, and let the total 
number  of processors and iterations be P and I, respectively. Then the speedup for 

expensive function evaluations may be approximated by 

~ 1 Y ~ L ,  ~ j (5.2t speedupexpe ,as ive t ' tmc-  / 

This measure is the limit of  the timed speedup ratio we would obtain on our test 
problems if the function values were unchanged but the cost of  each function 
evaluation was increased without bound. Contrary to the first measure, it is indepen- 
dent of the speedup achieved during the start point selection phase. 

Our test results are presented for four different modes of operation of the sequential 
and concurrent algorithms: using 200 or 1000 sample points per iteration, and with 
and without sample reduction. When sample reduction was used, the sample size 
was reduced to 100k points, where k is the iteration number. The parameter  cr was 
set to 4 in all cases. Since the algorithm is stochastic, the results are influenced 
to some extent by the random sample that is generated. To dampen the effect of 
the variation in random samples, 10 independent runs were performed for each 
problem/algor i thm combination. 

The reliability of each algorithm on each problem is summarized in Table 5.2, 
and the average costs in function evaluations are given in Table 5.3. (These data 
are given for the 8 processor concurrent algorithm but are very similar when using 
different numbers of processors.) On these simple test problems, using 200 sample 
points per iteration usually led the algorithm to require fewer total function evalu- 
ations, although the reliability of the algorithm was somewhat better with 1000 

points per iteration. (The reliability results are similar to those reported in Rinnooy 
Kan and Timmer (1985a) and no attempt was made to change the algorithm to 
improve upon them.) We consider the 1000 point per iteration size, however, to be 
far more indicative of what would be required on problems with more variables or 
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Table 5.2 

Number times global minimizer found in 10 runs, Dixon-Szego problems (8 processors) 

Problem: GP BR H3 H6 $5 $7 S 10 

200 points per iteration, 10 10 10 10 8 6 6 

no sample reduction 

1000 points per iteration, 10 10 10 10 10 7 7 
no sample reduction 

200 points per iteration, 10 10 10 10 8 6 6 

sample reduction to 100 

1000 points per iteration, 10 10 10 10 10 7 7 

sample reduction to 100 

Table 5.3 

Number of function evaluations, averaged over 10 runs, Dixon-Szego problems (8 processors) 

Problem: GP BR H3 H6 $5 $7 S10 

200 points per iteration, 412 

no sample reduction 

1000 points per iteration, 1420 
no sample reduction 

200 points per iteration, 376 

sample reduction to 100 

1000 points per iteration, 1112 
sample reduction to 100 

306 380 1522 487 469 447 

1150 1213 3104 1395 1346 1375 

26l 307 658 327 330 327 

1064 1161 1972 1177 1203 1884 

more local minimizers. Therefore we consider the test results with 1000 sample 
points per iteration to be the more important ones. In general, using sample reduction 
appears to lead to a more efficient algorithm. As discussed in Section 3.4, our 
concurrent start point selection algorithm may incur significant idle time when used 
with sample reduction. This affects our timing results where the start point selection 
has a significant impact, but not the expensive function evaluation results where 
start point selection is irrelevant. 

When we first timed our concurrent global optimization algorithm (without sample 
reduction) on a network of  3 Sun-2 workstations, the speedups in comparison to 
the sequential algorithm on a Sun-2 were consistently greater than 3. In fact, they 
generally ranged from about 3 to about 8. The reason for this was fairly easy to 
see. A large portion o f  the time was being spent in the start point selection phase, 
which in the sequential case used an O ( N  2) algorithm, where N is the number of  
sample points. The concurrent algorithm was essentially applying one stage of  divide 
and conquer to this algorithm, first dividing the process into 3 equal parts (which 
reduces the total work o f  an O ( N  2) algorithm by a factor of  3 and thus would 
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induce a speedup of 9 in our situation), and then applying the border  resolution 
strategy to patch together the 3 regions. But since the border  resolution strategy is 
only applied to a small portion of the original sample, its cost is small and the total 
speedup for the start point phase was still close to 9. Indeed, when we modified 
the sequential algorithm to use the identical strategy, that is divide the feasible 

region into 3 equal parts, do the start point selection in each separately, and then 
do border resolution, the sequential algorithm times dropped significantly and the 
speedups by the concurrent algorithm no longer were greater than 3. Instead, they 

ranged from about 2 to 3. 
From a theoretical point of  view, it is known that one can do better than the 

straightforward O(N 2) algorithm for start point selection. Timmer (1984) shows 

that the spiral search technique of Bentley, Weide and Yao (1980) can be applied 
so that the expected running time of the start point selection phase, when totaled 
over all the iterations of the algorithm, is linear in the total number  of sample points 
used. We subsequently implemented this technique in the manner  suggested by 
Timmer. We found that it is more efficient than the one stage divide and conquer 
strategy described above only for problems of very small dimension. For example, 

with sample size 1000 and n = 4, the time required by a 16 subdivision divide and 
conquer algorithm is roughly equivalent to that required by spiral search, while 
when n ~ 6 a 4 subdivision divide and conquer algorithm already is about as efficient 
as spiral search and a 16 subdivision divide and conquer is about 4 times more 
efficient. Thus for our computational results on sequential machines, we have chosen 
to use the one stage divide and conquer approach:  when comparing to a P processor 
concurrent algorithm, we use a sequential algorithm that also subdivides into P 
subregions in the start point selection phase. (This accounts for the different times 
for the same sequential algorithms in Tables 5.4 and 5.5.) Note that from a computa- 

tional point of view, our research into concurrent global optimization algorithm 
seems to have led to an improved sequential algorithm as well. 

Tables 5.4 and 5.5 give the timed speedups of our concurrent global optimization 
algorithm using 4 and 8 processors, respectively. The differences between the times 
for the same sequential algorithms in the two tables shows that they are dominated 
by the start point selection phase. In the two cases without sample reduction, there 
often is almost a factor of two difference in the sequential times between Table 5.4 
and 5.5. This is accounted for by the factor of  nearly 2 reduction in the start point 
selection phase when switching from the 4 subdivision to 8 subdivision sequential 
algorithm, as discussed above; the times required by all other phases of the sequential 
algorithm are identical in the two cases but take a small portion of the total. 

The times for 4 processors without sample reduction show good speedup. This 
is especially true with sample size 1000 where the speedups average about 3.6. In 

this case the start point selection phase is dominant  and is parallelized almost fully. 
Recall that this sample size is more indicative of the sample size that would be used 
on most real-world problems. For sample size 200 the speedups are somewhat less 
good, averaging about 2.8. Here the total running time has become small enough 
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Table 5.4 

Times and speedups on 4 processors, averaged over 10 runs, Dixon-Szego problems (times in seconds) 

Problem: GP BR H3 H6 $5 $7 $10 

200 points per iteration, 
no sample reduction 

Sequential Time 
Concurrent Time 
Speedup 

1000 points per iteration, 
no sample reduction 

Sequential Time 
Concurrent Time 
Speedup 

200 points per iteration, 
sample reduction to 100 

Sequential Time 
Concurrent Time 
Speedup 

1000 points per iteration, 
sample reduction to 100 

Sequential Time 
Concurrent Time 
Speedup 

4.7 5.0 9.0 31.2 9.3 10.1 10.9 

1.6 1.7 3,2 10.0 3.7 3.8 3.6 
2.9 3.0 2,8 3.1 2.5 2.7 3.0 

142.2 152.1 184.0 339.0 186.1 189.0 188.0 

38.0 40.9 55.8 98.8 51.3 51.2 51.1 
3.7 3.7 3.3 3.4 3.6 3.7 3.7 

1.6 1.8 4.2 16.9 3.2 3.7 4.3 

1.0 1.1 1.7 5.3 1.5 1.6 1.7 
1.6 1.6 2.5 3.2 2.1 2.3 2.5 

4.0 4.0 9.1 24.3 6.3 7.5 17.0 

1.8 2.0 3.7 7.9 2.5 2.8 5.2 

2.2 2.0 2.5 3.1 2.5 2.7 3.3 

that the idle time in the search phase and the small communications overhead begins 
to have an effect. When sample reduction is used, the speedups are a little lower 
still, averaging abou(2.3 and 2.5 for the two sample sizes. This reduction in speedup 
is caused mainly by the inefficiency in start point selection phase when sample 
reduction is used; the various subregions often turn out to have quite different 
reduced sample sizes and thus all but one processor must wait until the processor 
with the most reduced sample points selects its candidate start points. Recall that 
since the start point selection phase requires no function evaluations, the algorithmic 
aspects that mainly determine these timing results will be irrelevant in the expensive 
function results. 

The speedups for 8 processors are still quite good with 1000 sample points and 
no sample reduction, averaging about 6.2. By comparison to the 8 processor line 
for this algorithm in Table 5.6, it is seen that these speedups are fairly close to the 
expensive function limits. The reason is that with 8 processors, the start point 
selection time per processor has become relatively small and the sampling and 
search phases are beginning to dominate. The limit in the parallelism is caused by 
the small total number of local searches (usually there are fewer than 8) and the 
unequal lengths of the searches. 

The speedups for the other algorithms with 8 processors are not very good, 
averaging 3.0 for 200 points without sample reduction and 2.3 and 3.1 for the two 
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Table 5.5 

Times and speedups on 8 processors, averaged over 10 runs, Dixon-Szego problems (times in seconds) 

Problem: GP BR H3 H6 $5 $7 S10 

200 points per iteration, 
no sample reduction 
Sequential Time 2.7 3.1 5.1 27.7 6.0 6.5 6.9 
Concurrent Time 1.2 1.2 1.7 5.8 2.2 2.3 2.2 
Speedup 2.3 2.6 3.0 4.8 2.7 2.8 3.1 

1000 points per iteration, 
no sample reduction 
Sequential Time 68.3 74.0 76.7 223.0 94.7 94.8 97.6 
Concurrent Time 11.7 10.9 12.3 40.7 51.1 15.2 14.5 
Speedup 5.8 6.8 6.2 5.5 6.3 6.2 6.7 

200 points per iteration, 
sample reduction to 100 
Sequential Time 1.5 1.5 3.7 15.7 3.0 3.6 3.8 
Concurrent Time 1.1 1.0 1.8 3.5 1.5 1.6 1.7 
Speedup 1.4 1.5 2.1 4.5 2.0 2.3 2.2 

1000 points per iteration, 
sample reduction to 100 

Sequential Time 4.0 4.0 9.l 23.5 6.3 7.6 17.4 
Concurrent Time 1.9 2.0 2.9 5.5 2.0 2.4 4.5 
Speedup 2.t 2.0 3.1 4.3 3.2 3.2 3.9 

algori thms with sample reduction.  The main  reason for these results is that the run  

times are so small that the interprocessor  comm un i c a t i on  overhead and  the idle 

times in the search phase have a large effect. Indeed,  in the case of 200 points  with 

sample reduct ion,  the run  times with 8 processors are essentially the same as with 

4 processors. A careful b reakdown of these times showed that the increase in 

interprocess communica t i on  times when going from 4 to 8 processors was a few 

tenths of a second, and  offset the small decreases that were possible in the sampling,  

start poin t  selection, and  search phases of the algorithm. This demonstra tes  the l imit 

to the grain of paral le l ism that is effective in our  mul t i compute r  mul t iprocess ing 

env i ronment ,  and is s imply a consequence  of the very inexpensive  func t ion  

evaluat ions.  

The expensive funct ion  evaluat ion speedups for each algori thm are given in Table  

5.6. Note that once we have run  our global opt imizat ion  algori thm on a par t icular  

p roblem with any par t icular  n u m b e r  of processors,  we know the total n u m b e r  of 

i terations it will use, the total n u m b e r  of sample points  it will use, and  the n u m b e r  

and  length of local searches it will perform at each i teration,  regardless of the 

n u m b e r  of processors. (There can be slight variat ions due to the stochastic effects 

and  the effect of  requir ing an equal n u m b e r  of sample points  per subregion.)  Thus,  

given the rule for ordering and  dis tr ibut ing local searches in the concur ren t  algori thm, 

we can calculate the expensive funct ion  speedup on this problem for any other  
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Table 5.6 

Simulated speedups for expensive function evaluations, averaged over 10 runs, Dixon-Szego problems 

Number of Problem: 
processors GP BR H3 H6 $5 $7 $10 

200 points per iteration, 2 1.9 1.9 1.9 2.0 1.8 1.8 1.9 

no sample reduction 4 3.4 3.5 3.3 3.6 2.7 3.0 3.1 
8 4.6 5.0 4.8 6.1 3.5 3.9 4.1 

16 5.4 6.4 5.7 8.6 4.1 4.6 4.8 

32 5.9 7.4 6.3 9.6 4.4 5.1 5.3 

64 6.1 8.0 6.6 9.8 4.6 5.3 5.5 
200 6.3 8.4 6.9 10.0 4.8 5.5 5.7 

1000 points per iteration, 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

no sample reduction 4 3.9 3.9 3.8 3.8 3.6 3.6 3.7 

8 7.1 7.1 6.7 6.8 6.0 6.3 6.5 
16 11.0 11.2 10.3 11.7 8.9 9.4 9.5 

32 14.6 15.9 14.0 15.4 12.0 12.5 12.4 
64 17.5 20.2 17.3 16.7 14.6 15.2 14.9 

1000 21.4 27.0 21.6 18.1 18.3 18.7 17.9 

200 points per iteration, 2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 
sample reduction to 100 4 3.3 3.4 3.0 3.2 3.0 3.3 3.1 

8 4.4 5.0 4.0 4.3 4.1 5.1 4.1 

16 5.1 6.7 4.8 4.9 4.9 6.6 5.0 

32 5.6 7.9 5.3 5.1 5.4 7.1 5.6 

64 5.9 8.8 5.6 5.3 5.7 7.4 5.9 
200 6.1 9.4 5.9 5.3 6.0 7.7 6.2 

1000 points per iteration, 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

sample reduction to 100 4 3.8 3.8 3.8 3.7 3.8 3.8 3.8 

8 6.8 6.9 6.5 6.5 6.8 6.7 6.8 
16 11.1 11.8 10.1 9.7 10.6 10.4 11.0 

32 16.2 18.0 13.9 11.4 14.7 14.2 15.7 
64 21.4 24.8 17.2 12.6 18.4 17.5 20.3 

1000 29.9 37.0 21.7 13.8 23.7 22.0 27.7 

number of  processors from eq. (5.2). We use this flexibility to calculate expensive 
function speedups, for each problem and algorithm, for 2, 4, 8, 16, 32, and 64 
processors. (The data from the 8 processor concurrent algorithm is used.) In addition, 
the speedup with the number of processors equal to the number of sample points 
per iteration, 200 or 1000, is given. Since the number of local searches per iteration 
is always far less than 200, the cost of an iteration of the concurrent algorithm in 
this case is 1 (for the sampling phase) plus the number of function evaluations in 
the longest local search. This is the limiting speedup for this algorithm; i.e. if more 
processors were available the expensive function speedup would not change. 

For the algorithms with 1000 sample points per iteration, the expensive function 
speedups are reasonably high, whether or not sample reduction is used. With 8 
processors most problems make at least 80% utilization of the processors, with 16 
processors the utilization is generally at least 60%, and even with 32 processors the 
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utilization is often around 50%. The limiting speedups (for 1000 processors) are 

over 20 in most cases: Since the maximum parallelism in the local search phase is 

generally between 5 and 10, the sampling phase is having a large effect; in the 

problem with the longest searches, Hartman 6, the speedups are lower. The effect 

of sample reduction on the speedups is uneven; reducing the sample tends to reduce 

the number of local searches which reduces parallelism, but the length of the longest 

search sometimes decreases which increases the speedup. 
When 200 sample points per iteration are used, the expensive function speedups 

are much lower, with limiting speedups between 5 and 10. In this case the sampling 

phase is a much smaller portion of the algorithm and the local search phase 

dominates. The speedups are simply a reflection of the small number of local 

searches. The concurrency in this case could be improved by parallelizing the 

individual local searches; this is discussed briefly in Section 6. 

We have also tested our parallel global optimization algorithm on four of the test 
problems from Levy and Gomez (1985). These problems differ from those in Dixon 

and Szego (1978) in that the number of local minimizers is much larger. The number 

of variables still is small, and the cost of function evaluation still is very low. The 

characteristics of the problems we have tested are summarized in Table 5.7. 

Table 5.7 

Test problem data, Levy-Gomez problems 

Problem number Number of Number of 
(Levy-Gomez (1985)) variables local minimizers 

3 2 760 
7 2 25 
8 3 125 
9 4 625 

It is likely that the stochastic methods described in this paper are not the best 

methods for problems with hundreds or thousands of minimizers, because they are 

oriented towards finding all the local minimizers, or at least all below a certain 

cutoff level. In addition, the stopping rule that is used in the stochastic methods, 

derived from (2.2), requires that the sample size be greater than 2w x, where w is 

the number of local minimizers found, and this may be too large when there are 

very many local minimizers. Research still is necessary to construct a global optimiz- 
ation method that is efficient on such problems and also has strong theoretical 

properties. Our primary interest in this paper, however, is not in constructing such 

a method, but rather in studying how effectively the sequential stochastic approach 

can be adapted to parallel computers, and how this depends on the problem 

characteristics. Therefore we have applied the algorithms described in Sections 2 

and 3 to the Levy-Gomez problems, with one modification. Rather than satisfy the 

standard stopping rule, we have simply asked our algorithm to do the same amount 
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of work as for a lmost  all the problems in the first test set, that is one i terat ion with 

either 200 or 1000 sample points ,  either with or without  sample reduction.  Table  

5.8 shows that  the algori thm still found  the global  minimizer  in 79 of our  80 test 

runs,  so that  addi t ional  i terations would only have served to confirm the global 

minimizer .  Table 5.9 shows that the average n u m b e r  of funct ion  evaluat ions  is higher 

than  for the Dixon-Szego  test problems;  this is due to the large n u m b e r  of local 

searches conducted ,  a consequence  of the larger n u m b e r  of local minimizers.  Due  

to the greater expense of these test problems,  we made  5 rather than 10 runs for 

each case. 

Our  test results on the Levy -Gomez  problems are summarized  in Tables 5.10-5.12. 

In  general  they are very similar to the test results for the Dixon-Szego  test set. The 

t iming results for 4 and  8 processors are given in Tables 5.10 and  5.11, respectively. 

On  the average, the speedups  without  sample reduct ion are 10-20% lower than for 

the Levy -Gomez  test set; this is due to the algori thm spending a higher propor t ion  

of its t ime in the local search phase,  which does not  parallelize perfectly, and  a 

Table 5.8 

Number times global minimizer found in 5 runs, Levy-Gomez problems 

Problem No.: 3 7 8 9 

200 points per iteration, 5 5 5 5 
no sample reduction 

1000 points per iteration, 5 5 5 5 
no sample reduction 

200 points per iteration, 5 5 5 4 
sample reduction to 100 

1000 points per iteration, 5 5 5 5 
sample reduction to 100 

Table 5.9 

Number of function evaluations, averaged over 5 runs, Levy-Gomez problems 
(8 processors) 

Problem No.: 3 7 8 9 

200 points per iteration, 519 422 465 1116 
no sample reduction 

1000 points per iteration, 1804 1702 2756 3837 
no sample reduction 

200 points per iteration, 470 314 274 831 
sample reduction to 100 

1000 points per iteration, 1478 1194 1769 1988 
sample reduction to 100 
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Table 5.10 

Times and speedups on 4 processors, averaged over 5 runs, Levy-Gomez problems 
(times in seconds) 

25 

Problem No.: 3 7 8 9 

200 points per iteration, 
no sample reduction 
Sequential Time 9.2 5.2 8.9 14.7 
Concurrent Time 3.7 2.1 3.7 6.1 
Speedup 2.5 2.5 2.4 2.4 

1000 points per iteration, 
no sample reduction 

Sequential Time 69.6 105.2 135.4 190.8 
Concurrent Time 21.5 30.4 45.9 62.0 
Speedup 3.2 3.5 3.0 3.1 

200 points per iteration, 
sample reduction to 100 
Sequential Time 9.0 3.5 5.6 9.7 
Concurrent Time 3.5 1.5 2.4 3.9 
Speedup 2.6 2.3 2.4 2.5 

1000 points per iteration, 
sample reduction to t00 
Sequential Time 28.2 7.2 17.8 28.1 
(2 oncurrent Time 9.3 2.9 8.7 11.2 
Speedup 3.0 2.5 2.0 2.5 

cor respondingly  lower por t ion of its time in the sampl ing and  start point  phases, 

which parallelize better. When sample reduct ion  is used, this effect is decreased,  

and  in fact the average speedups for the Levy -Gomez  problems are a bit higher 

than for the Dixon-Szego  problems.  

The t iming results of  Tables 5.10-5.11 are indicat ive of the per formance  of our  

algori thm when funct ion evaluat ion is very inexpensive.  Table 5.12 indicates what  

the per formance  of our  algori thm would  be on the Levy-Gomez  problems if the 

funct ion  evaluat ions were expensive (say at least a few thousand  floating point  

operat ions  per funct ion  evaluat ion)  but  the problems were otherwise unchanged .  

Again,  speedups  for from 2 to 64 processors,  as well as the l imiting case of 200 or 

1000 processors,  are calculated.  In general,  the speedups are somewhat  higher than  

for the Dixon-Szego  problems in Table 5.6. This is pr imari ly  due to the larger 

n u m b e r  of local searches, which permit  a more effective ut i l izat ion of the processors 

dur ing  the local search phase. 

Taken  together, the results of this section confirm that our  concur ren t  global  

opt imizat ion  algori thm is able to exploit  paral le l ism reasonably  well, to the extent 

that it is available in the problem. The paral le l ism that is possible is l imited by the 

n u m b e r  of variables, the n u m b e r  of local minimizers ,  and  the expense of the func t ion  

evaluat ions.  It appears that it is possible to obta in  good ut i l izat ion of a modera te  
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Table 5.11 

Times and speedups on 8 processors, averaged over 5 runs, Levy-Gomez problems 
(times in seconds) 

Problem No.: 3 7 8 9 

200 points per iteration, 
no sample reduction 

Sequential Time 8.7 3.8 6.2 14.1 
Concurrent Time 3.8 1.4 2.4 4.8 
Speedup 2.3 2.7 2.6 2.9 

1000 points per iteration, 
no sample reduction 
Sequential Time 52.5 49.6 86.0 121.0 
Concurrent Time 14.1 7.2 17.0 24.8 
Speedup 3.7 6.9 5.1 4.9 

200 points per iteration, 
sample reduction to 100 
Sequential Time 8.9 3.1 4.5 11.8 
Concurrent Time 3.5 1.3 1.9 5.6 
Speedup 2.5 2.4 2.3 2.1 

1000 points per iteration, 
sample reduction to 100 
Sequential Time 24.6 7.3 16.7 30.7 
Concurrent Time 6.2 2.3 4.7 6.8 
Speedup 4.0 3.1 3.6 4.5 

n u m b e r  of processors even for problems with inexpensive func t ion  evaluations,  and 

that quite effective use of mul t ip le  processors can be made for problems with 

expensive func t ion  evaluat ions.  As expected, the speedups for problems with expen- 

sive func t ion  evaluat ions are higher when the n u m b e r  of local minimizers  and  

searches is higher. Besides the inherent  l imitat ions of the problem sizes, the ma in  

deterents from achieving even higher speedups with the current  algori thm are the 

sequent ia l  na ture  of the ind iv idua l  local searches, and the imbalance  in the start 

po in t  selection phase when sample reduct ion is used. In the next section we briefly 

discuss several techniques for in t roduc ing  addi t ional  concurrency  into the global 

opt imiza t ion  algori thm that deal with these problems.  

6. Future research directions 

The concurrent  global opt imizat ion  algori thm discussed in this paper  appears to 

have two impor tan t  l imitat ions.  First, the a m o u n t  of paral lel ism is l imited by the 

n u m b e r  of local min imiza t ions  at each i terat ion and  possibly by the dis t r ibut ion of 

their  lengths. Secondly,  the sampl ing  effort is dis tr ibuted un i formly  over the entire 

feasible region regardless of the characteristics of the objective function.  (This 
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Table 5.12 

Simulated speedups for expensive function evaluations averaged over 5 runs, Levy-Gomez problems 

Number of Problem No.: 
processors 3 7 8 9 

200 points per iteration, 2 2.0 1.9 1.8 1.9 
no sample reduction 4 3.7 3.6 3.3 3.6 

8 6.7 6.2 4.2 5.4 
16 9.8 9.5 4.8 5.9 
32 11.1 11.2 5.1 6.1 
64 11.8 12.1 5.3 6.2 

200 12.4 12.9 5.4 6.3 

1000 points per iteration, 2 2.0 2.0 2.0 2.0 
no sample reduction 4 3.9 3.9 3.8 3.8 

8 7.7 7.4 7.4 7.2 
16 14.2 13.7 12.7 12.0 
32 22.8 23.6 18.4 15.2 
64 28.6 31.2 20.7 16.3 

1000 36.8 42.1 23.1 17.4 

200 points per iteration, 2 1.9 1.9 1.6 1.9 
sample reduction to 100 4 3.7 3.6 2.5 3.4 

8 6.7 5.6 3.2 4.9 
16 9.1 7.3 3.8 5.3 
32 10.4 8.5 4.2 5.5 
64 11.1 9.3 4.4 5.6 

200 11.7 9.9 4.5 5.6 

1000 points per iteration, 2 2.0 2.0 2.0 2.0 
sample reduction to 100 4 3.9 3.8 3.8 3.8 

8 7.5 7.3 7.1 6.4 
16 13.9 12.8 11.4 8.5 
32 20.3 19.3 /4.4 9.8 
64 26.0 26.0 16.5 10.7 

1000 34.6 37.6 19.1 11.6 

l i m i t a t i o n  is s h a r e d  b y  t h e  s e q u e n t i a l  a l g o r i t h m . )  W e  a re  w o r k i n g  o n  ways  to  

o v e r c o m e  b o t h  l i m i t a t i o n s .  

W h e n  f u n c t i o n  e v a l u a t i o n  is e x p e n s i v e ,  o n e  way  to i n t r o d u c e  m o r e  p a r a l l e l i s m  

i n t o  t he  loca l  m i n i m i z a t i o n  p h a s e  o f  o u r  a l g o r i t h m  is to  d i s t r i b u t e  t h e  g r a d i e n t  

c a l c u l a t i o n s  ( a s s u m i n g  t h e y  a re  d o n e  b y  f in i te  d i f f e r e n c e s  as is o f t e n  t h e  ca se )  a m o n g  

v a r i o u s  p r o c e s s o r s .  T h i s  h a s  t h e  p o t e n t i a l  to  i n c r e a s e  t h e  p a r a l l e l i s m  o b t a i n e d  b y  

u p  to  a f a c t o r  o f  n, a l t h o u g h  a s p e e d u p  o f  a b o u t  n / 2  is t h e  m o s t  o n e  c a n  e x p e c t  i f  

e a c h  g r a d i e n t  e v a l u a t i o n  is p r e c e d e d  b y  a f u n c t i o n  e v a l u a t i o n  t h a t  is p e r f o r m e d  

s e q u e n t i a l l y .  I f  t h e r e  a re  n o t  e n o u g h  p r o c e s s o r s  to  e v a l u a t e  n f u n c t i o n  v a l u e s  f o r  

e a c h  loca l  s e a r c h  s i m u l t a n e o u s l y ,  t h e n  a s t r a t e g y  fo r  o r d e r i n g  f u n c t i o n  a n d  g r a d i e n t  

e v a l u a t i o n s  is r e q u i r e d ,  a n d  t h i s  s t r a t e g y  m a y  a l so  b e  u s e d  to  a t t e m p t  to  g ive  t h e  

l o n g e r  l oca l  s e a r c h e s  h i g h e r  p r io r i ty .  W e  h a v e  c o n d u c t e d  s o m e  p r e l i m i n a r y  t e s t s  o f  

s u c h  a s t r a t e g y  o n  t h e  t e s t  p r o b l e m s  o f  S e c t i o n  5. O u r  i n d i c a t i o n s  a re  t h a t  it c a n  
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significantly increase the speedup of  the local minimizat ion phase o f  each iteration, 

if funct ion evaluat ion is expensive and the number  o f  processors significantly exceeds 

the number  o f  local searches for that iteration. Further  modifications, including 

conduct ing  funct ion and gradient evaluations s imultaneously before it is known 

whether  the gradient  actually is needed and using multiple gradient values at 

an iteration, are currently being investigated in the contexts o f  local and global 

minimization.  
A second approach  for  obtaining more  parallelism in global optimizat ion is to 

move towards  a more asynchronous  algorithm. By this we mean that there are fewer 

synchronizat ion points where a task on one processor  cannot  start until a task on 

another  processor  has completed.  In  our  concurrent  global opt imizat ion algorithm, 

these synchronizat ion points occur  at the end of  the start point  selection phase 

before the local minimizat ion phase can begin, and at the end of  the local minimiz- 

at ion phase before the next iteration can begin. One way to reduce synchronizat ion 
within the f ramework o f  a concurrent  multi-level single-linkage algorithm is to make 

each subregion au tonomous ,  meaning  that it decides on its own to conduct  searches 

or  whether  to go on to the next iteration. Instead of  the synchronizat ion in our  

present algorithm, in this approach  a scheduler  process distributes the local minimiz- 

ation tasks and sampl ing/s tar t  point  selection tasks that are generated. This approach  

also natural ly permits work to be concentra ted in subregions o f  greatest interest. 

We currently are developing such an algorithm. 
Finally, there is an impor tant  need for more difficult global opt imizat ion test 

problems,  especially test problems drawn from actual applications. 
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