
Mathematical Programming 46 (1990) 1-29 1
North-Holland

C O N C U R R E N T S T O C H A S T I C M E T H O D S F O R
G L O B A L O P T I M I Z A T I O N

Richard H. BYRD
Department of Computer Science, University of Colorado, Boulder, Colorado, 80309, USA

Cornelius L. DERT
Econometric Institute, Erasmus University Rotterdam, The Netherlands and
Department of Computer Seienee, University of Colorado, Boulder, Colorado, 80309, USA

Alexander H.G. R I N N O O Y K A N
Econometric Institute, Erasmus University Rotterdam, The Netherlands

Robert B. SCHNABEL
Department of Computer Science, University ~?[Colorado, Boulder, Colorado, 80309, USA

Received 17 November 1986
Revised manuscript received 10 May 1988

The global optimization problem, finding the lowest minimizer of a nonlinear function of several
variables that has multiple local minimizers, appears well suited to concurrent computation. This
paper presents a new parallel algorithm for the global optimization problem. The algorithm is a
stochastic method related to the multi-level single-linkage methods of Rinnooy Kan and Timmer
for sequential computers. Concurrency is achieved by partitioning the work of each of the three
main parts of the algorithm, sampling, local minimization start point selection, and multiple local
minimizations, among the processors. This parallelism is of a coarse grain type and is especially
well suited to a local memory multiprocessing environment. The paper presents test results of a
distributed implementat ion of this algorithm on a local area network of computer workstations.
It also summarizes the theoretical properties of the algorithm.

Key words: Global optimization, concurrent, parallel, stochastic, network of computers.

1. Introduction

This paper presents a parallel algorithm for the global optimization problem. The
algorithm is a stochastic method related to the multi-level single-linkage method of
Rinnooy Kan and Timmer (1984) for sequential computers. The parallelism is of a
coarse grain type and is especially well suited to a local memory multiprocessing
environment. The paper presents test results of a distributed implementation of this
algorithm on a local area network of computer workstations. It also summarizes
the theoretical properties of the algorithm.

Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF grant
DCR-8403483, and NSF cooperative agreement DCR-8420944.

R.H. Byrd et aL / Concurrent global optimization

The global optimization problem is to find the lowest function value of a function
that may have multiple local minimizers. We denote the problem as follows:

given f (x) : R n ~ R and S_~Rn
(1.1)

find x , ~ S for which f (x ,) <~f(x) for all x c S.

We refer to x , as the global minimizer o f f and f (x ,) as the global minimum. The
term "global" contrasts with a local minimizer of f which is the lowest value of
f (x) in some open neighborhood in S. Thus a function may have multiple local
minima but it can have only one global minimum value. In this paper we assume
that f is a nonlinear, twice continuously differentiable function. We also assume
that the feasible region S is given by a set of lower and upper bounds on each
variable, i.e.

S={xlli<~xi<~ui, i = l , . . . , n }

and that the global minimizer lies in the interior of S.
Global optimization problems of the above form occur in many practical applica-

tions including data fitting, structural design, optimal control, econometrics, and
many more (see e.g. Dixon and Szego (1978)). Most optimization software, however,
is only constructed to find local minimizers (see e.g. Gill, Murray and Wright (1981)
or Dennis and Schnabel (1983)). One reason is that it is difficult to construct reliable
algorithms for finding the global minimizer of general nonlinear functions. A second
reason is that it often is very expensive to solve the global optimization problem
reliably, since it requires many evaluations o f f (x) and many iterations and arithmetic
operations within the optimization code itself. In practical optimization applications,
the evaluation o f f (x) is often very expensive so that the large number of function
evaluations is the dominating expense.

There has been a moderate amount of work done in developing global optimization
algorithms for sequential computers. Among these approaches, we shall favor
stochastic methods, which include some random sampling of the function domain,
because these methods provide some guarantee of their reliability while still appear-
ing at least as efficient as other approaches.

Due to the expensive nature of global optimization and the practical need to
solve such problems, there is ample incentive to devise parallel global optimization
methods if they can lead to significantly faster solution of this problem. It appears
that the global optimization problem is well suited to parallel solution in a number
of ways.

In this paper we concentrate on the high level, coarse grain concurrency available
within the global optimization algorithm itself. Obvious opportunities for high level
parallelism include conducting multiple local minimizations concurrently, or
evaluating the objective function f at multiple random sample points concurrently.
Such an approach is intended to utilize multiple processors efficiently in solving
the global optimization problem whether or not the evaluation o f f (x) is expensive.

R.H. Byrd et al. / Concurrent global optimization 3

An alternative, lower level use of parallelism in global optimization would be to

apply a parallel algorithm to evaluate f (x) . In cases where the function evaluation

is very expensive this approach might be very effective. We do not pursue it for

several reasons. First, parallelization of objective function evaluation is strongly

problem dependent and outside the realm of the optimization algorithm designer.

Second, if one has an efficient parallel code for evaluating f (x) , then it can be used

in conjunction with the approach presented here. For example, if evaluation o f f (x)
vectorizes welt (as is often the case), then the appropriate computational environment

would be a multiprocessor where each node is a vector processor. In this environment

the function evaluations could be performed on individual vector processors while

the higher level parallelism in our algorithm could still be realized among these

processors. Indeed, we believe that this computational environment (currently

embodied by machines including the Cray X-MP and the Alliant) will be a very

important one in the future. In other cases where the computation o f f (x) requires
multiple processors, it would be possible to divide the processors into groups, with

a group of processors being used to evaluate f (x) and the groups themselves being
used to implement the high level parallelism of our algorithm.

The implementation of the type of coarse grain parallel algorithm we develop

requires a computer capable of executing multiple independent instruction streams

at the same time. In the taxonomy of Flynn these are known as Multiple Instruction
Multiple Data (MIMD) computers. The class of MIMD computers includes both
shared and local memory multiprocessors.

Shared memory multiprocessors are computers with multiple processors that are

all connected, via a switching network or global bus, to a shared memory which

they all can access. The processors may have local memory as well. Synchronization

or communication between processors is carried out using this shared memory and

usually is nearly as fast as a local memory access,

Local memory multiprocessors are computers with multiple processors, each with
its own local memory, connected by some sort of interconnection network. Examples

currently in use include the hypercube computers pioneered at Caltech (Seitz (1985))

and local area networks of computers. On these machines, synchronization or

communication between processors is achieved by passing messages between the

processors. Generally message throughput rates are several orders of magnitude

slower than the arithmetic operation rate. Thus local memory multiprocessors are

best suited to parallel algorithms where, on the average, many instructions (say 1000
or more) are executed on individual processors in between synchronization or

communication points with other processors. Such algorithms are generally referred

to as medium grain or coarse grain parallel algorithms.

Since the global optimization problem is amenable to solution by a coarse grain

parallel algorithm, a local memory multiprocessor is an appropriate parallel environ-

ment for this problem. For this reason, we have chosen to implement our parallel

algorithm on the local area network of workstations that is being used for
parallel computation at the University of Colorado. Due to the small amount of

4 R.H. Byrd et al. / Concurrent global optimization

synchronization and communication in our parallel algorithm, our experimental
results are likely to be indicative of the performance we would obtain in other

MIMD environments.
In summary, the goal of this research was to develop an efficient and reliable

parallel algorithm for the global optimization problem that is well suited to
implementation in a local memory multiprocessing environment. By reliable, we
mean that the algorithm should be successful in finding the global minimum and
preferably that there be some theoretical guarantee of this reliability. By efficient,
ideally we mean that our parallel algorithm, when implemented on P identical
processors, should require 1/P of the time that the best sequential algorithm would
on one of these processors to solve the same problem.

To approach this efficiency goal, three important performance goals must be met.
First, the algorithm should keep all processors (nearly) fully busy, i.e. processor
idle time should be minimized. Second, the algorithm should introduce little new
work that was not required by the best sequential algorithm; this rules out extensive
overhead computations introduced in order to utilize multiple processors. Third,
the interprocess communication requirements, in this case the number of messages,
should be small. The experimental results in this paper will show that these goals
have been met quite well.

In Section 2 we briefly describe sequential methods for global optimization,
concentrating on the approach from which our parallel algorithm is derived. Section
3 presents our parallel global optimization method. In Section 4 we briefly summarize
the theoretical properties of this method. In Section 5 we first describe the multipro-
cessing environment, a network of computer workstations, used in our experiments.
Then we present our computational results in this environment. Some comments
on future directions for this work are presented in Section 6.

2. Sequential global optimization methods

The methods that have been developed to solve the global optimization problem
can be divided into two main classes, deterministic methods and stochastic methods
(Dixon and Szego (1978)). This section briefly surveys these methods, concentrating
on those most closely related to our concurrent algorithms.

Deterministic methods do not incorporate any random or stochastic features. A
wide variety of approaches are contained in this class, including trajectory methods
(Branin (1972), Branin and Hoo (1972)), deflation methods (Goldstein and Price
(1971), Levy and Gomez (1985), Levy and Montalvo (1985)), piecewise approxima-
tion methods (Shubert (1972)), and interval arithmetic methods (Hansen (1980),
Hansen and Sengupta (1980), Walster, Hansen and Sengupta (1985)). Most of these
methods either do not provide a guarantee that they will find the global minimizer,
or do so only at the expense of making additional assumptions about the objective
func t ion f which are difficult to verify in practice. The most common such assumption

R.H. Byrd et al. / Concurrent global optimization 5

is that some derivative of f obeys a Lipschitz condition with a constant that is
bounded above by a known number. In addition, many deterministic methods tend
to require a large computational effort to find the global minimizer.

Stochastic methods differ in that they incorporate stochastic features, generally
the sampling o f f (x) at randomly selected points in the feasible region. This enables
these methods to provide a probabilistic guarantee that the global minimizer will
be found, assuming only that f is continuously differentiable. Generally, these
methods combine the random sampling phase with a phase where local minimization
algorithms are performed from some of the sample points. The earliest stochastic
methods, such as random search (Brooks (1958), Anderssen (1972)), random direc-
tion (Devroye (1979), Price (1979), Solis and Wets (1981)) and simple multi-start
methods, were rather crude and not computationally efficient. More recent stochastic
methods, such as those of Boender, Rinnooy Kan, Stougie and Timmer (1982), and
Rinnooy Kan and Timmer (1984, 1985a,b,c), combine random search and local
minimization carefully and appear to be quite efficient in computational experiments.
In addition, they also provide probabilistic guarantees of their computational
efficiency.

Thus, modern stochastic methods appear to provide an attractive choice from
both the theoretical and computational points of view. For these reasons, we have
chosen to base our concurrent global optimization algorithms on a stochastic
approach.

In particular, our concurrent method is most closely related to the recent multi-level
single linkage method of Rinnooy Kan and Timmer (1984). This method appears
to combine state-of-the-art computational performance with strong theoretical
properties. The remainder of this section briefly reviews sequential multi-level single
linkage methods, with emphasis on aspects that will have importance for our
concurrent methods.

The multi-level single linkage method is an iterative algorithm. Each iteration
consists of a sampling phase, in which the function is evaluated at a number of
randomly sampled points, followed by a minimization phase, in which a local
minimization procedure is started from a subset of the sample points. A probabilistic
stopping rule is applied to determine whether the algorithm should be continued,
and if it should, the next iteration is begun. Here, an outline of the algorithm is given.

Algorithm 2.1. Multi-level single linkage method for global optimization
Given f : R r' ~ R, feasible region S.
At iteration number k:
1. Generate sample points and function values. Add N points, drawn from a

uniform distribution over S, to the (initially empty) set of sample points, and
evaluate f (x) at each new sample point.

2. Select start points for local searches. (Optional: calculate a cut off level; all
sample points with function values above this level will be excluded from the
start point selection.)

R.H. Byrd et al. / Concurrent global optimization

Determine a (possibly empty) subset of the sample points from which to start
local searches.

3. Perform local minimizations from all start points.
4. Decide whether to stop. I f stopping rule is satisfied, regard the lowest local

minimizer found as the global minimizer, otherwise go to Step 1.

Several portions of Algorithm 2.1 require further elaboration. Most important to
the practical and theoretical success of the method is the selection of start points
for local minimizations in Step 2. At iteration k, each sample point x is selected as
a start point for a local minimization if it has not been used as a start point at a
previous iteration, and if there is no sample point y within the critical distance r(k)
of x with a lower function value, i.e. with

IIx-yll<~r(k) and f (x) < f (y) .

The critical distance is given by

[(+2 n) logkN-] 'In
r(k) = ~r -1/2 F 1 m(S) -ZE- j (2.1)

where re(S) denotes the Lebesque measure of S, F denotes the gamma function, ¢r

is a positive constant, and N is the sample size per iteration.
The above selection procedure may optionally be applied only to the y k N sample

points with the lowest function values, where y is any fixed number in (0, 1]. This
corresponds to the application of a cut off'level to the sample. The use of a cut off
level does not affect the theoretical reliability and efficiency of the multi-level single

linkage method, but appears to enhance its computational performance.
The local minimizations are performed by any standard unconstrained minimiz-

ation code. The theoretical analysis of the multi-level single linkage method simply
assumes that the unconstrained minimization code will find a local minimizer x*
when started within the basin of x*, i.e., the set of points x from which all strictly
descent paths converge only to x*. The methods of Rinnooy Kan and Timmer
(1985a,c) use the VA10AD variable metric subroutine from the Harwell Subroutine
Library, while the methods reported in this paper use the line-search BFGS code

in the U N C M I N package of Schnabel, Koontz and Weiss (1985). Both are well-tested
and widely used codes.

A Bayesian stopping rule of Boender and Rinnooy Kan (1984) (see also (Zielinski
(1981))) is applied in Step 4. To explain this rule, let w denote the number of local
minimizers found after k iterations, and let s =- y k N be the (reduced) sample size
after k iterations. In addition, define the region of attraction of a local minimizer
x* for a particular local search method to be the set of all starting points x from
which the local search method will converge to x*. Boender and Rinnooy Kan show

that a Bayesian estimate of the total number of local minimizers is given by

w(s - 1) (2.2)
s - w - 2

R.H. Byrd et al. / Concurrent global optimization 7

and that a Bayesian estimate of the portion of S covered by the regions of attraction
of the local minimizers found so far is given by

(s-w-1)(s+w)
s (s - 1) (2.3)

The stopping rule used is that the algorithm is terminated after the kth iteration if
and only if the estimate given by (2.2) is greater than w by less than 0.5, and the
estimate given by (2.3) is ~>0.995.

Strong theoretical properties of the multi-level single linkage algorithm have been
proven in Timmer (1984), Rinnooy Kan and Timmer (1985b,c). I f the critical distance
is given by (2.1) with o- > 0, then with probabili ty 1, all the isolated local minimizers

o f f (x) will be found within a finite number of iterations. I f o ->4 in (2.1), then,
even if the sampling continues forever, the total number of local searches started
by the algorithm will be finite with probabili ty 1. Thus both the accuracy and the
efficiency of the method are guaranteed in a strong probabilistic sense.

Test results for the multi-level linkage algorithm are reported in Rinnooy Kan
and Timmer (1985a,c). The algorithm has been tested on a standard set of test

problems and compared with a number of other approaches for global optimization.
Overall, it seemed to offer the best combination of efficiency and reliability of the

methods tested.

3. A concurrent algorithm for stochastic global optimization

The global optimization problem seems conducive to solution by highly parallel
algorithms in ways that makes it suitable to a variety of parallel computing environ-

ments. In particular certain methods to solve the problem can be decomposed into
a number of relatively large and independent subtasks. Concurrent algorithms can
exploit this coarse grain parallelism while requiring only infrequent interprocess
communication and little or no shared memory. Thus these algorithms seem well
suited to a local memory or shared memory multiprocessing environment. In this

section we discuss one such global optimization algorithm, a synchronous concurrent
multi-level single linkage method.

We can readily identify three sources of high level parallelism in the multi-level
single linkage method. In the first phase of each iteration, the sampling phase, each
processor can generate 1 / P of the sample points (P is the number of processors)
and evaluate the function at each of them. In the second phase, start point selection,
each processor can select start points from its own subsample. (Some checking in
other subsamples may be required; this is discussed later.) Finally in the third phase,

local minimization, each processor can be responsible for one or more of the local
searches.

An obvious mechanism for achieving this concurrency is to divide the feasible
region into P subregions of equal size, and assign each subregion to a different

8 R.H. Byrd et al. / Concurrent global optimization

processor. Then the sampling phase can be implemented concurrently simply by
having each processor sample its subregion, and the major part of the start point

selection can be accomplished by having all the processors concurrently generate
the start points for their subregions based on their own samples. It is possible,
however, that the number of start points for local searches may vary widely between
subregions, and the lengths of local searches also may vary widely. Thus it may not
be advantageous to have each processor simply handle the local searches for the
start points from its own region. Instead, in our algorithm a master process collects
all the start points from all the subregions and then distributes them back to the
processors as evenly as possible. This is discussed in more detail below. The master
process also coordinates the small amount of synchronization and communication

that is required.
At this point it may be useful to indicate a basic difference between the second

source of parallelism described above and the other two sources. The first and the
third phases of the algorithm, sampling and local minimization, are generally
dominated by the costs of the evaluations o f f (x) . Thus our concurrent algorithm
essentially is distributing these function evaluations among the processors. In the
second phase, start point selection, however, there are no function evaluations, and
our concurrent algorithm is carrying out part of the global optimization algorithm

itself in parallel. The impact of the latter type of concurrency relative to the former
on the overall speedup of the algorithm clearly will be determined by the percentage
of time spent in various phases of the algorithm; this in turn will depend on the
cost per function evaluation and the number of function evaluations required to

solve a particular problem. The more time spent on function evaluations, the more
important the concurrency from the sampling and local minimization phases of the
algorithm. In fact, if function evaluations are sufficiently expensive it may be
prof i table--as discussed before- -a lso to exploit a lower level of parallelism, perform-
ing parallel function evaluations within the individual local minimizations (see
Section 6).

A concurrent multi-level single linkage algorithm employing P processors and
making use of all three high level sources of parallelism is outlined in the following

algorithm:

Algorithm 3.1. A concurrent multi-level single linkage method for global optimization
Given f : Rn-~ R, feasible region S and P processors.
O. Partition S. Subdivide S into P equal size, regular shaped subregions Si,

i = 1 , . . . P, and assign subregion S~ to processor i for i = 1 , . . . , P.
At iteration number k:
1. Generate sample points and function values. For i = 1 , . . . , P:

Add N I P points, drawn from a uniform distribution over subregion i, to the

(initially empty) set of sample points, and evaluate f (x) at each new sample
point.

R.H. Byrd et al. / Concurrent global optimization 9

2. Select start points for local searches. [Optional: calculate a cut off level; all
sample points with function values above this level will be excluded from the

start point selection.]
F o r i = l , . . . , P :
Determine a (possible empty) set of start points in subregion i, disregarding
sample information from all other subregions.
Resolve start points near borders between subregions.

3. Perform local minimizations from all start points. Collect all start points and
distribute one to each processor, which performs a minimization from that
point. Issue a new start point to a processor as soon as it terminates its current
local search, until local searches from all start points have been completed.

4. Decide whether to stop. I f stopping rule is satisfied, regard the lowest local

minimizer found as the global minimizer, otherwise go to Step 1.

The four basic steps of this algorithm are identical to those of the sequential
multi-level single linkage algorithm, Algorithm 2.1. Concurrency is achieved in the
implementation of each of these steps, with the exception of Step 4, which hardly
contributes to the algorithm's running time. The remainder of this section consists
of a more detailed discussion of Algorithm 3.1. In Subsections 3.1-3.3 we focus on

the aspects where the concurrent algorithm differs from the sequential method in
Steps 1, 2 and 3, respectively. In Subsection 3.4 we make some comments on how
the concurrent algorithm is expected to meet the goals of reliability and efficient
utilization of a local memory multiprocessing environment that were mentioned in

the introductory section.

3. I. The generation of sample points and function values

In the sampling phase, each processor i extends its set of sample points by N / P
new points and evaluates the function f at each of them. Whereas the random
sampling was done from a uniform distribution over the entire region S in the
sequential method, in the concurrent algorithm each processor generates a random
sample from a uniform distribution over its own subregion S,. As will be discussed
in Section 4, this necessitates that the theoretical analysis of the algorithm be modified

but it turns out not to alter the theoretical properties of the method.

3.2. The selection of start points for local searches

The selection of start points for local minimizations is carried out in two phases
(three if the optional sample reduction procedure is applied). The first, local, phase
is performed independently and concurrently by each processor. Processor i selects
the points in its own subregion Si which locally satisfy the start point selection rule
described in Section 2 for the multi-level single linkage method. That is, at iteration

k each sample point x c Si is selected as a candidate start point if it has not been

10 R.H. Byrd et al. / Concurrent global optimization

used as a start point in a previous iteration, and if there is no sample point y c Si
within the critical distance r(k) of x given by eq. (2.1) with a smaller function value.

For a given sample over the entire region S, any sample point that would be
selected as a start point by the sequential algorithm will also be selected as a
candidate start point by this first start point selection phase of the concurrent
algorithm. However, if x is within the critical distance of any border of its subregion,
it is possible that it will be selected as a candidate start point by the first phase of
the concurrent algorithm but not by the sequential algorithm, because some sample
point in another subregion but within the critical distance has a smaller function
value. To prevent the initiation of unnecessary local searches from these points, the
local selection phase of the concurrent algorithm is followed by a second, global

selection step. First, all candidate start points within the critical distance of a border
between subregions are distributed to all processors. Then, each processor determines
whether its sample contains a point within the critical distance of one of these
candidate start points with a lower function value. I f so, this candidate point is not

used as a start point for a local minimization. The remaining start points will be
the same ones that would have been selected from the same sample by the sequential
method.

The start point selection procedure may optionally be preceded by a sample

reduction procedure. As in the sequential algorithm, the aim of this step is to retain
only the ykN sample points with the lowest function values in the entire region S,
where 3' c (0, 1) is fixed. In the sequential algorithm, a cut off level equal to the
ykNth lowest function value is determined and all sample points with higher function

values are eliminated. In order to determine a corresponding cut off level for the
entire region S in the concurrent method, some exchange of information between
subregions is required.

In order to keep both the interprocess communicat ion and the computational
costs of this step small, the goal of the sample reduction phase for the concurrent
algorithm is relaxed slightly. We require that the cut off level be chosen so that
the number of reduced sample points, i.e. all sample points with function values
below the cut off level, deviates from the target size ykN by at most cbykN for a

fixed precision ~b c (0, 1). This can be achieved by setting g = [(20ykN+ P-1) /PJ
and requiring each subregion to determine the (ig)th largest function value
(i = 1, . . . , [kN/(2OykN+P-1)J) and to report those to the master process. The
cut off level in each region is then taken to be equal to Gth largest function value
in this selection, where G is the integer closest to (2ykN-(P-1) (g-1)) / (2g) .
It is not hard to see that this procedure determines the cut off level within the
relative accuracy required (Dert (1986)).

3.3. The local minimizations

The distribution of the computational effort in the local minimization phase is fairly
straightforward. After all the local search start points have been identified in the
previous step, all these points are reported to the master process. The master process

R.H. Byrd et al. / Concurrent global optimization 11

then distributes one start point to each processor, and if there are more start points
than processors, a processor that completes one local search is given another start

point until they all have been processed.
As discussed in the beginning of this section, this phase may not keep all the

processors equally busy. The remaining issue is in what order to assign the local
minimizations in order to keep processor idle time as small as possible. I f we knew

in advance how long each local search would take, we could use a scheduling
heuristic to minimize the total time, and thus the idle time, needed to complete all
minimizations. A well known, simple heuristic with attractive theoretical properties
for similar scheduling problems is the longest processing t ime rule (see e.g. Frenk

and Rinnooy Kan (1986)), which states that the jobs should be scheduled in order
of descending processing time.

In the case of local minimizations we do not know in advance how long each
minimization will take, so we cannot order the start points according to processing
time. One crude way to estimate these times is to guess that the higher the function
value at the start point, the longer the minimization will take. Our computational
experiments indicate that the use of this heuristic has given slightly better results
than using an arbitrary ordering and at least as good results as any other heuristic
we have attempted.

3.4. C o m m e n t s

In this subsection we make some general remarks concerning the expected efficiency

and reliability of the concurrent global optimization algorithm that we have just
described. We will also examine how effectively the algorithm is likely to utilize a
local memory multiprocessing environment.

From the point of view of the sample points that are used, the local minimizations
that are performed, and the answer that is found, the concurrent algorithm differs
from the sequential one only in that it samples from a slightly different distribution.
Therefore we expect that the number of sample points, function evaluations and
local searches that are used by the sequential and concurrent methods on any
particular problem will be very similar. Furthermore we expect that the number of
minimizers found by the two methods will be roughly the same, and that they usually

will find the same global minimizer. This similarity between the two algorithms is
reinforced by the theoretical analysis discussed in Section 4.

Let us now turn to the parallel characteristics of Algorithm 3.1. Notice that it
requires very little synchronization of processes or communicat ion or sharing of
information between them. Information is exchanged at four places in the algorithm:
after the local phase of Step 2 is completed, the candidate start points within the
critical distance of the subregion border must be collected and sent to the other

subregions; after the border resolution phase of Step 2 is completed, the final start
points must be collected and distributed to the processors; after the local minimiz-
ations are completed in Step 3 each process must report the minimizers found to

12 R.H. Byrd et aL / Concurrent global optimization

the process making the stopping test; and at the beginning of the next iteration,
some results from the previous iteration must be distributed to the processors. The
only synchronization requirements are inherent in these actions: the local phase of
Step 2 must be completed by all subregions before the global phase is begun, and
all the local searches must be completed before the stopping test is made. I f sample

reduction is used, the implementat ion of Algorithm 3.2 also requires that every gth
function value from each subregion be collected from all processors and that the
cut off level be communicated back to each processor:

In our implementation, a master process, which resides on the same processor
as one of the subregion processes, takes care of the coordinating activities described

above. It collects the candidate start points that are near subregion borders and
distributes them to the subregion processes when it has all of them; it collects the
start points and distributes them to the processors using the heuristic discussed in
Section 3.3; and when all local searches are completed, it performs the stopping
test (two simple equations) and starts the next iteration if required. If sample
reduction is used it also collects the function value information from all subregions
and, when it has all the information, it calculates the cut off level and sends it back

to all the processors.
This organization makes it clear that our concurrent algorithm requires very little

shared information, and therefore is well suited for implementation on a local
memory multiprocessor. I f a local memory multiprocessor is used, at each iteration
the number of messages received and sent by each subregion process will be two
plus the number of local searches conducted by that processor, plus one more if
sample reduction is applied. At each iteration the master process will receive, and

send, 2P messages (3P with sample reduction) plus the total number of local
searches for that iteration. The messages all are short, containing either one
number, one n-vector, or a small number of n-vectors. Thus the total interprocess
communicat ion requirements are quite small.

Finally, we will examine how much overhead is introduced by the parallelization
of the algorithm at Steps 1, 2 and 3 of Algorithm 3.1, and how fully we expect all
processors to be utilized.

In Step 1 each processor samples N/P points and evaluates the function at each

one of them. This step requires no interprocess communication or parallel overhead,
and is expected to achieve equal utilization of all processors as long as the time
required to evaluate f(x) at different points x is (nearly) uniform.

Now consider the start point selection step without sample reduction. Since the
selection of candidate start points requires each processer to consider the same

number of points (kN/P), we expect equal utilization of all processors during this
portion of Step 2. In our experience, the second part of the step, in which the border

points are resolved, requires very little running time in comparison. So in Step 2
we introduce little parallel overhead or interprocess communication (each process

has to send and read one message), and as in Step 1 we expect all processors to do
the same amount of work. In fact, we will see in Section 5 that Step 2 has the

R.H. Byrd et al. / Concurrent global optimization 13

interesting effect of applying a divide and conquer strategy that actually causes
greater than linear speedup in comparison to some standard sequential implementa-

tions.
I f Step 2 is run with a cut off level, however, the distribution of work among the

processors may no longer be uniform. This is because the reduced sample points

may not be equally distributed among the subregions and therefore the reduced
sample size per processor may differ substantially. Processors handling a subregion
with a relatively small reduced sample size will complete the selection of candidate
start points faster than processors with a large reduced sample. These processors
will then be idle until all processors have finished selecting their candidate start
points and the border resolution phase can be started. The effects of this imbalance

will be seen in some of the computational results in Section 5.
Recall, however, f rom the discussion at the beginning of this section, that the

imbalance in utilization of processors in Step 2 caused by the sample reduction
phase becomes unimportant as the cost of function evaluations rise. This is because
the costs of Steps 1 and 3 then dominate the running time, and the cost of Step 2,
which involves no function evaluations, becomes insignificant. This phenomenon

is reflected in the simulated results for expensive functions given in Section 5.
The imbalance in Step 2 caused by sample reduction also would be less important

if the processors early finishing could be employed in some other useful manner.
To some extent this seems possible. If the subregion handled by the early finishing
processor contains a candidate start point that is not within the critical distance of
any subregion border, the processor could avoid being idle by starting a local search
from this point immediately. This possibility is also examined in Section 5.

Finally, consider Step 3, the local minimization phase. Again, the cost of inter-
processor communication in this phase is small (one message sent and received for

each local search) and no other parallel overhead is introduced. As we have discussed
previously, however, this step will probably not utilize all processors evenly due to
the uneven lengths of local searches, and the fact that the number of searches may
be less than the number of processors. This is one of the main effects that we will

examine in Section 5. We will also present some results about improving the efficiency
of the local minimization phase by introducing concurrency into the individual local
minimizations.

In summary, the concurrent global optimization algorithm adds few new costs,
either new operations or interprocess communication, to those present in the sequen-
tial algorithm. In the sampling phase, and the start point selection phase if run
without sample reduction, it appears to readily allow full utilization of all processors.

In the local minimization phase, and the start point selection phase if sample
reduction is used, the synchronization requirements may cause some processors to
be idle at some times. In problems where function evaluation is expensive, the
expense of the algorithm is dominated by the sampling and local minimization

steps, so that the efficiency of these steps is most important and the start point
selection step becomes relatively unimportant anyhow.

14 R.H. Byrd et al. / Concurrent global optimization

4. Theoretical properties of concurrent multi-level single linkage

Although the concurrent and sequential multi-level single linkage algorithms are
very similar in terms of the sampling and searching they perform, the assumptions
under which the theoretical properties of the sequential multi-level single linkage
algorithm are proven do not all hold for the concurrent method. In particular, the
analysis of the sequential method assumes that the sample points are drawn from
a uniform distribution over the feasible region S. In the concurrent algorithm this
is no longer the case; instead, the sample points are generated from uniform
distributions over the subregions.

The analysis of the sequential multi-level single linkage algorithm can be adapted,
however, to show that the two properties mentioned in Section 2 also hold for the
concurrent algorithm we discussed in Section 3. First, if the critical distance tends
to 0 with increasing k, then with probability 1 all isolated local minima with values
below the cut off level will be identified in a finite number of iterations. Second, if
in (2.1) cr > 4, then if sampling continues forever, the number of local searches will
be finite with probability 1. The proofs for these results involve appropriate
modifications of the proofs for the sequential case; we refer to (Dert (1986)) for
the details.

As in the sequential case, it is also possible to carry out a theoretical analysis of
the expected running time of the algorithm. Through the use of appropriate data
structures (cf. Section 5.2), it can be shown that the sequential algorithm requires
a computational effort that in expectation increases as a linear function of the sample
size. This result continues to hold for the concurrent version, even if a cut off level
has to be computed centrally. A crucial role in the required computation of every
gth value is then played by a dynamic selection method by Postmus, Rinnooy Kan
and Timmer (1983), whose expected running time has very attractive properties.
Again, we refer to (Dert (1986)) for full details.

5. Computational testing

We have implemented and tested the concurrent global optimization algorithm
described in Section 3 on a network of computer workstations. This section reports
the results of these tests. First, we briefly describe our parallel computing
environment.

5.1. The testing environment

The University of Colorado is engaged in a large research project on the use of a
network of computer workstations for concurrent computation. This project includes
developing and implementing numerical algorithms for important practical problems
that are well suited to this loosely coupled multiprocessing environment. It also
includes the development of systems and software support that will make a network

R.H. Byrd et al. / Concurrent global optimization 15

of computers easier to use for distributed concurrent computation. This project is

supported by a Coordinated Experimental Research grant from the National Science

Foundation as well as individual research grants. The concurrent global optimization

algorithm described in Section 3 is an excellent candidate for solution in this

environment.

Our current test environment consists of a network of Sun workstations, connected

on an ethernet and sharing several file servers. The experiments reported in Section

5.2 were conducted on a dedicated subnet consisting of four or eight Sun-3 work-
stations. That is, when we conducted these experiments we were the only users of

these workstations and the subnet was physically disconnected from the remainder

of our computer network. Thus, the subnet functioned as a dedicated local memory

multiprocessor.

Our ability to use the network of workstations for distributed concurrent process-

ing is based upon the Sun version of the Berkeley Unix 4.2 operating system, which
each workstation runs. The Berkeley Unix 4.2 operating system provides the basic

interprocessor communication facility, the ability to send messages between proces-

ses on different machines, that is needed to use a network of computers as a

multi-processor. In Berkeley Unix 4.2, this capability is provided by stream sockets,

reliable point to point connections between two processors, as well as datagram

sockets. When combined with the Unix fork and exec commands, these facilities

allow a process on one computer to start a process on another computer and
subsequently to communicate with it.

Researchers in the Computer Science Department at the University of Colorado

have built a distributed processing utilities package, called DPUP, that makes a

network of computers running the Berkeley Unix 4.2 operating system easier to use

for distributed concurrent processing (Gardner et al. (1986)). DPUP builds upon

the interprocessor communication facilities in Berkeley 4.2 to provide two models

of concurrent computation. The first is a master-slave model where all processes
are linked to one master in a "spokes of a wheel" arrangement and all communication

is through the master. The second is a broadcast model where each process is an

equal member of a ring of processes and can send messages to all of the processes

at once. For both models, DPUP provides several basic concurrency capabilities

including the creation and termination of remote processes (with required communi-

cation connection automatically established) and various means to send and receive

messages. Our concurrent global optimization software uses the master-slave model
of DPUP.

Our parallel algorithm has recently been ported to the lntel hypercube and

relatively little difficulty (see Eskow and Schnabel (1987)). As expected, due to the

small amount of synchronization and communication required, the performance is

quite similar to that on the network of workstations. We would expect similar

behavior on almost any MIMD computer. As noted in Eskow and Schnabel (1987),

once each function evaluation requires about 10 000 floating point operations, the
cost of function evaluations will swamp all other costs of the parallel algorithm,

16 R.H. Byrd et al. / Concurrent global optimization

including communication, and so our expensive function results (Tables 5.6, 5.12)

will be indicative of the performance on any M I M D computer.

5.2. Computational results

Both the sequential and the concurrent global optimization algorithms have been

run on the test problems given in Dixon and Szego (1978), and on some problems
from Levy and Gomez (1985). At present these seem to be among the few widely

accepted global optimization test problems. We comment first on our results on the

Dixon-Szego test set, and then more briefly on our results on the Levy-Gomez

problems.

The characteristics of the problems from Dixon and Szego (1978) are summarized

in Table 5.1. The problems are low dimensional (up to 6 variables) with only few

local minimizers (up to 10). In addition, evaluation of the test functions is very
cheap. These characteristics limit what one can determine from the test set, and

how one should interpret the computational results, in several ways.

Table 5.1

Test problem data, Dixon-Szego problems

Problem n a m e Abbreviation Number of Number of
variables local minimizers

Goldstein-Price GP 2 4
Branin BR 2 3
Hartman 3 H3 3 4
Hartman 6 H6 6 4
Shekel 5 $5 4 5
Shekel 7 $7 4 7
Shekel 10 S10 4 10

The small number of variables and local minimizers limits the amount of parallel-

ism that can be obtained in solving the global optimization problem. The number

of sample points required, the number of local searches required, and often the

number of iterations required would all be significantly higher for more difficult
problems, which in turn would enable the use of more concurrency. The Levy-Gomez
problems have considerably more local minimizers, but the number of variables still

is small.

The fact that the evaluation of the test functions themselves is very cheap (some-

times requiring only a few floating point operations) means that our timing results

are not indicative of performance on many real world problems where function

evaluation is the dominant cost. Therefore we will report two speedup measures.

The first measure is the actual timed speedup, the time required by the sequential
algorithm to solve a problem divided by the time required by the concurrent algorithm

R.H. Byrd et al. / Concurrent global optimization 17

to solve the same problem, i.e.

elapsed time sequential algorithm
speeduptimed--elapsed time concurrent algorithm" (5.1)

In many of our experiments this measure is dominated by the start point selection
phase, which in fact requires no function evaluations. Thus this measure is an
interesting indication of how well we have sped up the overhead calculations of
the algorithm, and also gives some indication of how practical our approach would
be on small problems with very inexpensive function evaluations.

In many practical optimization problems, however, the evaluation of the objective
function f(x) is very expensive. The computat ional effort then will consist mainly
of computing function values. So in this case one is primarily interested in the
distribution of function evaluations among the processors. To use our test results
to indicate the speedup our concurrent algorithm would achieve on this type of
problem, we introduce a second speedup measure. Let ~ , j denote the number of
function evaluations done by the ith processor at the j th iteration, and let the total
number of processors and iterations be P and I, respectively. Then the speedup for

expensive function evaluations may be approximated by

~ 1 Y ~ L , ~ j (5.2t speedupexpe ,as ive t ' tmc- /

This measure is the limit of the timed speedup ratio we would obtain on our test
problems if the function values were unchanged but the cost of each function
evaluation was increased without bound. Contrary to the first measure, it is indepen-
dent of the speedup achieved during the start point selection phase.

Our test results are presented for four different modes of operation of the sequential
and concurrent algorithms: using 200 or 1000 sample points per iteration, and with
and without sample reduction. When sample reduction was used, the sample size
was reduced to 100k points, where k is the iteration number. The parameter cr was
set to 4 in all cases. Since the algorithm is stochastic, the results are influenced
to some extent by the random sample that is generated. To dampen the effect of
the variation in random samples, 10 independent runs were performed for each
problem/algor i thm combination.

The reliability of each algorithm on each problem is summarized in Table 5.2,
and the average costs in function evaluations are given in Table 5.3. (These data
are given for the 8 processor concurrent algorithm but are very similar when using
different numbers of processors.) On these simple test problems, using 200 sample
points per iteration usually led the algorithm to require fewer total function evalu-
ations, although the reliability of the algorithm was somewhat better with 1000

points per iteration. (The reliability results are similar to those reported in Rinnooy
Kan and Timmer (1985a) and no attempt was made to change the algorithm to
improve upon them.) We consider the 1000 point per iteration size, however, to be
far more indicative of what would be required on problems with more variables or

18 R.H. Byrd et al. / Concurrent global optimization

Table 5.2

Number times global minimizer found in 10 runs, Dixon-Szego problems (8 processors)

Problem: GP BR H3 H6 $5 $7 S 10

200 points per iteration, 10 10 10 10 8 6 6

no sample reduction

1000 points per iteration, 10 10 10 10 10 7 7
no sample reduction

200 points per iteration, 10 10 10 10 8 6 6

sample reduction to 100

1000 points per iteration, 10 10 10 10 10 7 7

sample reduction to 100

Table 5.3

Number of function evaluations, averaged over 10 runs, Dixon-Szego problems (8 processors)

Problem: GP BR H3 H6 $5 $7 S10

200 points per iteration, 412

no sample reduction

1000 points per iteration, 1420
no sample reduction

200 points per iteration, 376

sample reduction to 100

1000 points per iteration, 1112
sample reduction to 100

306 380 1522 487 469 447

1150 1213 3104 1395 1346 1375

26l 307 658 327 330 327

1064 1161 1972 1177 1203 1884

more local minimizers. Therefore we consider the test results with 1000 sample
points per iteration to be the more important ones. In general, using sample reduction
appears to lead to a more efficient algorithm. As discussed in Section 3.4, our
concurrent start point selection algorithm may incur significant idle time when used
with sample reduction. This affects our timing results where the start point selection
has a significant impact, but not the expensive function evaluation results where
start point selection is irrelevant.

When we first timed our concurrent global optimization algorithm (without sample
reduction) on a network of 3 Sun-2 workstations, the speedups in comparison to
the sequential algorithm on a Sun-2 were consistently greater than 3. In fact, they
generally ranged from about 3 to about 8. The reason for this was fairly easy to
see. A large portion o f the time was being spent in the start point selection phase,
which in the sequential case used an O (N 2) algorithm, where N is the number of
sample points. The concurrent algorithm was essentially applying one stage of divide
and conquer to this algorithm, first dividing the process into 3 equal parts (which
reduces the total work o f an O (N 2) algorithm by a factor of 3 and thus would

R.H. Byrd et al. / Concurrent global optimization 19

induce a speedup of 9 in our situation), and then applying the border resolution
strategy to patch together the 3 regions. But since the border resolution strategy is
only applied to a small portion of the original sample, its cost is small and the total
speedup for the start point phase was still close to 9. Indeed, when we modified
the sequential algorithm to use the identical strategy, that is divide the feasible

region into 3 equal parts, do the start point selection in each separately, and then
do border resolution, the sequential algorithm times dropped significantly and the
speedups by the concurrent algorithm no longer were greater than 3. Instead, they

ranged from about 2 to 3.
From a theoretical point of view, it is known that one can do better than the

straightforward O(N 2) algorithm for start point selection. Timmer (1984) shows

that the spiral search technique of Bentley, Weide and Yao (1980) can be applied
so that the expected running time of the start point selection phase, when totaled
over all the iterations of the algorithm, is linear in the total number of sample points
used. We subsequently implemented this technique in the manner suggested by
Timmer. We found that it is more efficient than the one stage divide and conquer
strategy described above only for problems of very small dimension. For example,

with sample size 1000 and n = 4, the time required by a 16 subdivision divide and
conquer algorithm is roughly equivalent to that required by spiral search, while
when n ~ 6 a 4 subdivision divide and conquer algorithm already is about as efficient
as spiral search and a 16 subdivision divide and conquer is about 4 times more
efficient. Thus for our computational results on sequential machines, we have chosen
to use the one stage divide and conquer approach: when comparing to a P processor
concurrent algorithm, we use a sequential algorithm that also subdivides into P
subregions in the start point selection phase. (This accounts for the different times
for the same sequential algorithms in Tables 5.4 and 5.5.) Note that from a computa-

tional point of view, our research into concurrent global optimization algorithm
seems to have led to an improved sequential algorithm as well.

Tables 5.4 and 5.5 give the timed speedups of our concurrent global optimization
algorithm using 4 and 8 processors, respectively. The differences between the times
for the same sequential algorithms in the two tables shows that they are dominated
by the start point selection phase. In the two cases without sample reduction, there
often is almost a factor of two difference in the sequential times between Table 5.4
and 5.5. This is accounted for by the factor of nearly 2 reduction in the start point
selection phase when switching from the 4 subdivision to 8 subdivision sequential
algorithm, as discussed above; the times required by all other phases of the sequential
algorithm are identical in the two cases but take a small portion of the total.

The times for 4 processors without sample reduction show good speedup. This
is especially true with sample size 1000 where the speedups average about 3.6. In

this case the start point selection phase is dominant and is parallelized almost fully.
Recall that this sample size is more indicative of the sample size that would be used
on most real-world problems. For sample size 200 the speedups are somewhat less
good, averaging about 2.8. Here the total running time has become small enough

20 R.H. Byrd et al. / Concurrent global optimization

Table 5.4

Times and speedups on 4 processors, averaged over 10 runs, Dixon-Szego problems (times in seconds)

Problem: GP BR H3 H6 $5 $7 $10

200 points per iteration,
no sample reduction

Sequential Time
Concurrent Time
Speedup

1000 points per iteration,
no sample reduction

Sequential Time
Concurrent Time
Speedup

200 points per iteration,
sample reduction to 100

Sequential Time
Concurrent Time
Speedup

1000 points per iteration,
sample reduction to 100

Sequential Time
Concurrent Time
Speedup

4.7 5.0 9.0 31.2 9.3 10.1 10.9

1.6 1.7 3,2 10.0 3.7 3.8 3.6
2.9 3.0 2,8 3.1 2.5 2.7 3.0

142.2 152.1 184.0 339.0 186.1 189.0 188.0

38.0 40.9 55.8 98.8 51.3 51.2 51.1
3.7 3.7 3.3 3.4 3.6 3.7 3.7

1.6 1.8 4.2 16.9 3.2 3.7 4.3

1.0 1.1 1.7 5.3 1.5 1.6 1.7
1.6 1.6 2.5 3.2 2.1 2.3 2.5

4.0 4.0 9.1 24.3 6.3 7.5 17.0

1.8 2.0 3.7 7.9 2.5 2.8 5.2

2.2 2.0 2.5 3.1 2.5 2.7 3.3

that the idle time in the search phase and the small communications overhead begins
to have an effect. When sample reduction is used, the speedups are a little lower
still, averaging abou(2.3 and 2.5 for the two sample sizes. This reduction in speedup
is caused mainly by the inefficiency in start point selection phase when sample
reduction is used; the various subregions often turn out to have quite different
reduced sample sizes and thus all but one processor must wait until the processor
with the most reduced sample points selects its candidate start points. Recall that
since the start point selection phase requires no function evaluations, the algorithmic
aspects that mainly determine these timing results will be irrelevant in the expensive
function results.

The speedups for 8 processors are still quite good with 1000 sample points and
no sample reduction, averaging about 6.2. By comparison to the 8 processor line
for this algorithm in Table 5.6, it is seen that these speedups are fairly close to the
expensive function limits. The reason is that with 8 processors, the start point
selection time per processor has become relatively small and the sampling and
search phases are beginning to dominate. The limit in the parallelism is caused by
the small total number of local searches (usually there are fewer than 8) and the
unequal lengths of the searches.

The speedups for the other algorithms with 8 processors are not very good,
averaging 3.0 for 200 points without sample reduction and 2.3 and 3.1 for the two

R.H. Byrd et al. / Concurrent global optimization 21

Table 5.5

Times and speedups on 8 processors, averaged over 10 runs, Dixon-Szego problems (times in seconds)

Problem: GP BR H3 H6 $5 $7 S10

200 points per iteration,
no sample reduction
Sequential Time 2.7 3.1 5.1 27.7 6.0 6.5 6.9
Concurrent Time 1.2 1.2 1.7 5.8 2.2 2.3 2.2
Speedup 2.3 2.6 3.0 4.8 2.7 2.8 3.1

1000 points per iteration,
no sample reduction
Sequential Time 68.3 74.0 76.7 223.0 94.7 94.8 97.6
Concurrent Time 11.7 10.9 12.3 40.7 51.1 15.2 14.5
Speedup 5.8 6.8 6.2 5.5 6.3 6.2 6.7

200 points per iteration,
sample reduction to 100
Sequential Time 1.5 1.5 3.7 15.7 3.0 3.6 3.8
Concurrent Time 1.1 1.0 1.8 3.5 1.5 1.6 1.7
Speedup 1.4 1.5 2.1 4.5 2.0 2.3 2.2

1000 points per iteration,
sample reduction to 100

Sequential Time 4.0 4.0 9.l 23.5 6.3 7.6 17.4
Concurrent Time 1.9 2.0 2.9 5.5 2.0 2.4 4.5
Speedup 2.t 2.0 3.1 4.3 3.2 3.2 3.9

algori thms with sample reduction. The main reason for these results is that the run

times are so small that the interprocessor comm un i c a t i on overhead and the idle

times in the search phase have a large effect. Indeed, in the case of 200 points with

sample reduct ion, the run times with 8 processors are essentially the same as with

4 processors. A careful b reakdown of these times showed that the increase in

interprocess communica t i on times when going from 4 to 8 processors was a few

tenths of a second, and offset the small decreases that were possible in the sampling,

start poin t selection, and search phases of the algorithm. This demonstra tes the l imit

to the grain of paral le l ism that is effective in our mul t i compute r mul t iprocess ing

env i ronment , and is s imply a consequence of the very inexpensive func t ion

evaluat ions.

The expensive funct ion evaluat ion speedups for each algori thm are given in Table

5.6. Note that once we have run our global opt imizat ion algori thm on a par t icular

p roblem with any par t icular n u m b e r of processors, we know the total n u m b e r of

i terations it will use, the total n u m b e r of sample points it will use, and the n u m b e r

and length of local searches it will perform at each i teration, regardless of the

n u m b e r of processors. (There can be slight variat ions due to the stochastic effects

and the effect of requir ing an equal n u m b e r of sample points per subregion.) Thus,

given the rule for ordering and dis tr ibut ing local searches in the concur ren t algori thm,

we can calculate the expensive funct ion speedup on this problem for any other

22 R.H. Byrd et al. / Concurrent global optimization

Table 5.6

Simulated speedups for expensive function evaluations, averaged over 10 runs, Dixon-Szego problems

Number of Problem:
processors GP BR H3 H6 $5 $7 $10

200 points per iteration, 2 1.9 1.9 1.9 2.0 1.8 1.8 1.9

no sample reduction 4 3.4 3.5 3.3 3.6 2.7 3.0 3.1
8 4.6 5.0 4.8 6.1 3.5 3.9 4.1

16 5.4 6.4 5.7 8.6 4.1 4.6 4.8

32 5.9 7.4 6.3 9.6 4.4 5.1 5.3

64 6.1 8.0 6.6 9.8 4.6 5.3 5.5
200 6.3 8.4 6.9 10.0 4.8 5.5 5.7

1000 points per iteration, 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0

no sample reduction 4 3.9 3.9 3.8 3.8 3.6 3.6 3.7

8 7.1 7.1 6.7 6.8 6.0 6.3 6.5
16 11.0 11.2 10.3 11.7 8.9 9.4 9.5

32 14.6 15.9 14.0 15.4 12.0 12.5 12.4
64 17.5 20.2 17.3 16.7 14.6 15.2 14.9

1000 21.4 27.0 21.6 18.1 18.3 18.7 17.9

200 points per iteration, 2 1.9 1.9 1.9 1.9 1.9 1.9 1.9
sample reduction to 100 4 3.3 3.4 3.0 3.2 3.0 3.3 3.1

8 4.4 5.0 4.0 4.3 4.1 5.1 4.1

16 5.1 6.7 4.8 4.9 4.9 6.6 5.0

32 5.6 7.9 5.3 5.1 5.4 7.1 5.6

64 5.9 8.8 5.6 5.3 5.7 7.4 5.9
200 6.1 9.4 5.9 5.3 6.0 7.7 6.2

1000 points per iteration, 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0

sample reduction to 100 4 3.8 3.8 3.8 3.7 3.8 3.8 3.8

8 6.8 6.9 6.5 6.5 6.8 6.7 6.8
16 11.1 11.8 10.1 9.7 10.6 10.4 11.0

32 16.2 18.0 13.9 11.4 14.7 14.2 15.7
64 21.4 24.8 17.2 12.6 18.4 17.5 20.3

1000 29.9 37.0 21.7 13.8 23.7 22.0 27.7

number of processors from eq. (5.2). We use this flexibility to calculate expensive
function speedups, for each problem and algorithm, for 2, 4, 8, 16, 32, and 64
processors. (The data from the 8 processor concurrent algorithm is used.) In addition,
the speedup with the number of processors equal to the number of sample points
per iteration, 200 or 1000, is given. Since the number of local searches per iteration
is always far less than 200, the cost of an iteration of the concurrent algorithm in
this case is 1 (for the sampling phase) plus the number of function evaluations in
the longest local search. This is the limiting speedup for this algorithm; i.e. if more
processors were available the expensive function speedup would not change.

For the algorithms with 1000 sample points per iteration, the expensive function
speedups are reasonably high, whether or not sample reduction is used. With 8
processors most problems make at least 80% utilization of the processors, with 16
processors the utilization is generally at least 60%, and even with 32 processors the

R.H. Byrd et al. / Concurrent global optimization 23

utilization is often around 50%. The limiting speedups (for 1000 processors) are

over 20 in most cases: Since the maximum parallelism in the local search phase is

generally between 5 and 10, the sampling phase is having a large effect; in the

problem with the longest searches, Hartman 6, the speedups are lower. The effect

of sample reduction on the speedups is uneven; reducing the sample tends to reduce

the number of local searches which reduces parallelism, but the length of the longest

search sometimes decreases which increases the speedup.
When 200 sample points per iteration are used, the expensive function speedups

are much lower, with limiting speedups between 5 and 10. In this case the sampling

phase is a much smaller portion of the algorithm and the local search phase

dominates. The speedups are simply a reflection of the small number of local

searches. The concurrency in this case could be improved by parallelizing the

individual local searches; this is discussed briefly in Section 6.

We have also tested our parallel global optimization algorithm on four of the test
problems from Levy and Gomez (1985). These problems differ from those in Dixon

and Szego (1978) in that the number of local minimizers is much larger. The number

of variables still is small, and the cost of function evaluation still is very low. The

characteristics of the problems we have tested are summarized in Table 5.7.

Table 5.7

Test problem data, Levy-Gomez problems

Problem number Number of Number of
(Levy-Gomez (1985)) variables local minimizers

3 2 760
7 2 25
8 3 125
9 4 625

It is likely that the stochastic methods described in this paper are not the best

methods for problems with hundreds or thousands of minimizers, because they are

oriented towards finding all the local minimizers, or at least all below a certain

cutoff level. In addition, the stopping rule that is used in the stochastic methods,

derived from (2.2), requires that the sample size be greater than 2w x, where w is

the number of local minimizers found, and this may be too large when there are

very many local minimizers. Research still is necessary to construct a global optimiz-
ation method that is efficient on such problems and also has strong theoretical

properties. Our primary interest in this paper, however, is not in constructing such

a method, but rather in studying how effectively the sequential stochastic approach

can be adapted to parallel computers, and how this depends on the problem

characteristics. Therefore we have applied the algorithms described in Sections 2

and 3 to the Levy-Gomez problems, with one modification. Rather than satisfy the

standard stopping rule, we have simply asked our algorithm to do the same amount

24 R.H. Byrd et al. / Concurrent global optimization

of work as for a lmost all the problems in the first test set, that is one i terat ion with

either 200 or 1000 sample points , either with or without sample reduction. Table

5.8 shows that the algori thm still found the global minimizer in 79 of our 80 test

runs, so that addi t ional i terations would only have served to confirm the global

minimizer . Table 5.9 shows that the average n u m b e r of funct ion evaluat ions is higher

than for the Dixon-Szego test problems; this is due to the large n u m b e r of local

searches conducted , a consequence of the larger n u m b e r of local minimizers. Due

to the greater expense of these test problems, we made 5 rather than 10 runs for

each case.

Our test results on the Levy -Gomez problems are summarized in Tables 5.10-5.12.

In general they are very similar to the test results for the Dixon-Szego test set. The

t iming results for 4 and 8 processors are given in Tables 5.10 and 5.11, respectively.

On the average, the speedups without sample reduct ion are 10-20% lower than for

the Levy -Gomez test set; this is due to the algori thm spending a higher propor t ion

of its t ime in the local search phase, which does not parallelize perfectly, and a

Table 5.8

Number times global minimizer found in 5 runs, Levy-Gomez problems

Problem No.: 3 7 8 9

200 points per iteration, 5 5 5 5
no sample reduction

1000 points per iteration, 5 5 5 5
no sample reduction

200 points per iteration, 5 5 5 4
sample reduction to 100

1000 points per iteration, 5 5 5 5
sample reduction to 100

Table 5.9

Number of function evaluations, averaged over 5 runs, Levy-Gomez problems
(8 processors)

Problem No.: 3 7 8 9

200 points per iteration, 519 422 465 1116
no sample reduction

1000 points per iteration, 1804 1702 2756 3837
no sample reduction

200 points per iteration, 470 314 274 831
sample reduction to 100

1000 points per iteration, 1478 1194 1769 1988
sample reduction to 100

R.H. Byrd et al. / Concurrent global optimization

Table 5.10

Times and speedups on 4 processors, averaged over 5 runs, Levy-Gomez problems
(times in seconds)

25

Problem No.: 3 7 8 9

200 points per iteration,
no sample reduction
Sequential Time 9.2 5.2 8.9 14.7
Concurrent Time 3.7 2.1 3.7 6.1
Speedup 2.5 2.5 2.4 2.4

1000 points per iteration,
no sample reduction

Sequential Time 69.6 105.2 135.4 190.8
Concurrent Time 21.5 30.4 45.9 62.0
Speedup 3.2 3.5 3.0 3.1

200 points per iteration,
sample reduction to 100
Sequential Time 9.0 3.5 5.6 9.7
Concurrent Time 3.5 1.5 2.4 3.9
Speedup 2.6 2.3 2.4 2.5

1000 points per iteration,
sample reduction to t00
Sequential Time 28.2 7.2 17.8 28.1
(2 oncurrent Time 9.3 2.9 8.7 11.2
Speedup 3.0 2.5 2.0 2.5

cor respondingly lower por t ion of its time in the sampl ing and start point phases,

which parallelize better. When sample reduct ion is used, this effect is decreased,

and in fact the average speedups for the Levy -Gomez problems are a bit higher

than for the Dixon-Szego problems.

The t iming results of Tables 5.10-5.11 are indicat ive of the per formance of our

algori thm when funct ion evaluat ion is very inexpensive. Table 5.12 indicates what

the per formance of our algori thm would be on the Levy-Gomez problems if the

funct ion evaluat ions were expensive (say at least a few thousand floating point

operat ions per funct ion evaluat ion) but the problems were otherwise unchanged .

Again, speedups for from 2 to 64 processors, as well as the l imiting case of 200 or

1000 processors, are calculated. In general, the speedups are somewhat higher than

for the Dixon-Szego problems in Table 5.6. This is pr imari ly due to the larger

n u m b e r of local searches, which permit a more effective ut i l izat ion of the processors

dur ing the local search phase.

Taken together, the results of this section confirm that our concur ren t global

opt imizat ion algori thm is able to exploit paral le l ism reasonably well, to the extent

that it is available in the problem. The paral le l ism that is possible is l imited by the

n u m b e r of variables, the n u m b e r of local minimizers , and the expense of the func t ion

evaluat ions. It appears that it is possible to obta in good ut i l izat ion of a modera te

26 R.H. Byrd et aL / Concurrent global optimization

Table 5.11

Times and speedups on 8 processors, averaged over 5 runs, Levy-Gomez problems
(times in seconds)

Problem No.: 3 7 8 9

200 points per iteration,
no sample reduction

Sequential Time 8.7 3.8 6.2 14.1
Concurrent Time 3.8 1.4 2.4 4.8
Speedup 2.3 2.7 2.6 2.9

1000 points per iteration,
no sample reduction
Sequential Time 52.5 49.6 86.0 121.0
Concurrent Time 14.1 7.2 17.0 24.8
Speedup 3.7 6.9 5.1 4.9

200 points per iteration,
sample reduction to 100
Sequential Time 8.9 3.1 4.5 11.8
Concurrent Time 3.5 1.3 1.9 5.6
Speedup 2.5 2.4 2.3 2.1

1000 points per iteration,
sample reduction to 100
Sequential Time 24.6 7.3 16.7 30.7
Concurrent Time 6.2 2.3 4.7 6.8
Speedup 4.0 3.1 3.6 4.5

n u m b e r of processors even for problems with inexpensive func t ion evaluations, and

that quite effective use of mul t ip le processors can be made for problems with

expensive func t ion evaluat ions. As expected, the speedups for problems with expen-

sive func t ion evaluat ions are higher when the n u m b e r of local minimizers and

searches is higher. Besides the inherent l imitat ions of the problem sizes, the ma in

deterents from achieving even higher speedups with the current algori thm are the

sequent ia l na ture of the ind iv idua l local searches, and the imbalance in the start

po in t selection phase when sample reduct ion is used. In the next section we briefly

discuss several techniques for in t roduc ing addi t ional concurrency into the global

opt imiza t ion algori thm that deal with these problems.

6. Future research directions

The concurrent global opt imizat ion algori thm discussed in this paper appears to

have two impor tan t l imitat ions. First, the a m o u n t of paral lel ism is l imited by the

n u m b e r of local min imiza t ions at each i terat ion and possibly by the dis t r ibut ion of

their lengths. Secondly, the sampl ing effort is dis tr ibuted un i formly over the entire

feasible region regardless of the characteristics of the objective function. (This

R.H. Byrd et al. / Concurrent global optimization 27

Table 5.12

Simulated speedups for expensive function evaluations averaged over 5 runs, Levy-Gomez problems

Number of Problem No.:
processors 3 7 8 9

200 points per iteration, 2 2.0 1.9 1.8 1.9
no sample reduction 4 3.7 3.6 3.3 3.6

8 6.7 6.2 4.2 5.4
16 9.8 9.5 4.8 5.9
32 11.1 11.2 5.1 6.1
64 11.8 12.1 5.3 6.2

200 12.4 12.9 5.4 6.3

1000 points per iteration, 2 2.0 2.0 2.0 2.0
no sample reduction 4 3.9 3.9 3.8 3.8

8 7.7 7.4 7.4 7.2
16 14.2 13.7 12.7 12.0
32 22.8 23.6 18.4 15.2
64 28.6 31.2 20.7 16.3

1000 36.8 42.1 23.1 17.4

200 points per iteration, 2 1.9 1.9 1.6 1.9
sample reduction to 100 4 3.7 3.6 2.5 3.4

8 6.7 5.6 3.2 4.9
16 9.1 7.3 3.8 5.3
32 10.4 8.5 4.2 5.5
64 11.1 9.3 4.4 5.6

200 11.7 9.9 4.5 5.6

1000 points per iteration, 2 2.0 2.0 2.0 2.0
sample reduction to 100 4 3.9 3.8 3.8 3.8

8 7.5 7.3 7.1 6.4
16 13.9 12.8 11.4 8.5
32 20.3 19.3 /4.4 9.8
64 26.0 26.0 16.5 10.7

1000 34.6 37.6 19.1 11.6

l i m i t a t i o n is s h a r e d b y t h e s e q u e n t i a l a l g o r i t h m .) W e a re w o r k i n g o n ways to

o v e r c o m e b o t h l i m i t a t i o n s .

W h e n f u n c t i o n e v a l u a t i o n is e x p e n s i v e , o n e way to i n t r o d u c e m o r e p a r a l l e l i s m

i n t o t he loca l m i n i m i z a t i o n p h a s e o f o u r a l g o r i t h m is to d i s t r i b u t e t h e g r a d i e n t

c a l c u l a t i o n s (a s s u m i n g t h e y a re d o n e b y f in i te d i f f e r e n c e s as is o f t e n t h e ca se) a m o n g

v a r i o u s p r o c e s s o r s . T h i s h a s t h e p o t e n t i a l to i n c r e a s e t h e p a r a l l e l i s m o b t a i n e d b y

u p to a f a c t o r o f n, a l t h o u g h a s p e e d u p o f a b o u t n / 2 is t h e m o s t o n e c a n e x p e c t i f

e a c h g r a d i e n t e v a l u a t i o n is p r e c e d e d b y a f u n c t i o n e v a l u a t i o n t h a t is p e r f o r m e d

s e q u e n t i a l l y . I f t h e r e a re n o t e n o u g h p r o c e s s o r s to e v a l u a t e n f u n c t i o n v a l u e s f o r

e a c h loca l s e a r c h s i m u l t a n e o u s l y , t h e n a s t r a t e g y fo r o r d e r i n g f u n c t i o n a n d g r a d i e n t

e v a l u a t i o n s is r e q u i r e d , a n d t h i s s t r a t e g y m a y a l so b e u s e d to a t t e m p t to g ive t h e

l o n g e r l oca l s e a r c h e s h i g h e r p r io r i ty . W e h a v e c o n d u c t e d s o m e p r e l i m i n a r y t e s t s o f

s u c h a s t r a t e g y o n t h e t e s t p r o b l e m s o f S e c t i o n 5. O u r i n d i c a t i o n s a re t h a t it c a n

28 R.H. Byrd et al. / Concurrent global optimization

significantly increase the speedup of the local minimizat ion phase o f each iteration,

if funct ion evaluat ion is expensive and the number o f processors significantly exceeds

the number o f local searches for that iteration. Further modifications, including

conduct ing funct ion and gradient evaluations s imultaneously before it is known

whether the gradient actually is needed and using multiple gradient values at

an iteration, are currently being investigated in the contexts o f local and global

minimization.
A second approach for obtaining more parallelism in global optimizat ion is to

move towards a more asynchronous algorithm. By this we mean that there are fewer

synchronizat ion points where a task on one processor cannot start until a task on

another processor has completed. In our concurrent global opt imizat ion algorithm,

these synchronizat ion points occur at the end of the start point selection phase

before the local minimizat ion phase can begin, and at the end of the local minimiz-

at ion phase before the next iteration can begin. One way to reduce synchronizat ion
within the f ramework o f a concurrent multi-level single-linkage algorithm is to make

each subregion au tonomous , meaning that it decides on its own to conduct searches

or whether to go on to the next iteration. Instead of the synchronizat ion in our

present algorithm, in this approach a scheduler process distributes the local minimiz-

ation tasks and sampl ing/s tar t point selection tasks that are generated. This approach

also natural ly permits work to be concentra ted in subregions o f greatest interest.

We currently are developing such an algorithm.
Finally, there is an impor tant need for more difficult global opt imizat ion test

problems, especially test problems drawn from actual applications.

Acknowledgement

We thank Betty Eskow for her extensive help in cont inuing computer testing o f our
parallel algorithms after Cees Deft returned to the Netherlands. This included all

o f the testing o f the L e v y - G o m e z problems.

References

R.S. Anderssen, "Global optimization," in: R.S. Anderssen, LS. Jennings and D.M. Ryan, eds. Optimiz-
ation (University of Queensland Press, 1972).

C.G.E. Boender, "The generalized multinormal distribution: a Bayesian analysis and applications,"
Ph.D. thesis, Econometric Institute, Erasmus University (Rotterdam, The Netherlands, 1984).

C.G.E. Boender and A.H.G. Rinnooy Kan, "Bayesian stopping rules for a class of stochastic global
optimization methods," Technical Report, Erasmus University (Rotterdam, The Netherlands, 1983).

C.G.E. Boender, A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer, "A stochastic method for global
optimization," Mathematical Programming 22 (1982) 125-140.

F.H. Branin, "Widely convergent methods for finding multiple solutions of simultaneous nonlinear
equations," IBM Journal of Research Developments (1972) 504-522.

F.H. Branin and S.K. Hoo, "A method for finding multiple extreme of a function of n variables," in:
F.A. Lootsma, ed., Numerical Methods of Nonlinear Optimization (Academic Press, London, 1972).

R.H. Byrd et al. / Concurrent global optimization 29

S.H. Brooks, "A discussion of random methods for seeking maxima," Operations Research 6 (1958)
244-251.

J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Nonlinear Equations and Unconstrained
Optimization (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).

C.L. Dert, "A parallel algorithm for global optimization," Masters thesis, Econometric Institute, Erasmus
University (Rotterdam, The Netherlands, 1986).

L. Devroye, "A bibliography on random search," Technical Report, McGill University (Montreal, 1979).
L.C.W. Dixon and G.P. Szego, eds., Towards Global Optimization 2 (North-Holland, Amsterdam, 1978).
E. Eskow and R.B. Schnabel, "Using mathematical modeling to aid in parallel algorithm development,"

Proceedings of Third SIAM Conference on Parallel Processing for Scientific Computation (Los Angeles,
1987).

J.B.E. Frenk and A.H.G. Rinnooy Kan, "The asymptotic optimality of the LPT rule," Mathematics of
Operations Research (to appear).

T.J. Gardner, I.M. Gerard, C.R. Mowers, E. Nemeth and R.B. Schnabel, "DPUP: A distributed processing
utilities package," Technical Report CU-CS-337-86, University of Colorado, Department of Computer
Science (Boulder, Colorado, 1986).

P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London, 1981).
A.A. Goldstein and J.F. Price, "On descent from local minima," Mathematics of Computation 25 (1971)

569-574.
E.R. Hansen, "Global optimization using interval analysis The multidimensional case," Numerical

Math 34 (1980) 247-270.
E.R. Hansen and S. Sengupta, "Global constrained optimization using interval analysis," in: K. Nickel,

ed., Interval Mathematics (Academic Press, London, 1980).
A.V. Levy and S. Gomez, "'The tunneling method applied to global optimization," in: P.T. Boggs, R.H.

Byrd and R.B. Schnabel, eds., Numerical Optimization 1984 (SIAM, Philadelphia, 1985) 213 244.
A.V. Levy and A. Montalvo, "The tunneling algorithm for the global minimization of functions," SIAM

Journal on Scientific and Statistical Computing 6 (t985) 15 29.
J.T. Postmus, A.H.G. Rinnooy Kan and G.T. Timmer, "An etl]cient dynamic selection method," Communi-

cations of the ACM 26 (1983) 878 881.
W.L. Price, "A controlled random search procedure for global optimization," in: L.C.W. Dixon and

G.P. Szego, eds., Towards Global Optimization 2 (North-Holland, Amsterdam, 1978) 71 84.
A.H.G. Rinnooy Kan and G.T. Timmer, "Stochastic methods for global optimization," American Journal

o/Mathematical and Management Sciences 4 (1984) 7 40.
A.H.G. Rinnooy Kan and G.T. Timmer, "A stochastic approach to global optimization," in: P. Boggs,

R. Byrd and R.B. Schnabel, eds., Numerical Optimization 1984 (SIAM, Philadelphia, 1985a) 245 262.
A.H.G. Rinnooy Kan and G.T. Timmer, "Stochastic global optimization methods--Part l: Clustering

methods," Report 85391A, Econometric Institute, Erasmus University (Rotterdam, The Netherlands,
1985b).

A.H.G. Rinnooy Kan and G.T. Timmer, "Stochastic global optimization methods--Part 11: Multi-level
methods," Report 85401A, Econometric Institute, Erasmus University (Rotterdam, The Netherlands,
1985c).

C.L Seitz, "The cosmic cube," Communications of the ACM 28 (1985) 22-33.
B.a. Shubert, "A sequential method seeking the global maximum of function," SIAM Journal on

Numerical Analysis 9 (1972) 379-388.
F.J. Solis and R.J.E. Wets, "Minimization by random search techniques," Mathematics of Operations

Research 6 (1981) 19-30.
G.T. Timmer, "Global optimization: A Bayesian approach," Ph.D. thesis, Econometric Institute, Erasmus

University (Rotterdam, The Netherlands, 1984).
G.W. Walster, E.R. Hansen and S. Sengupta, "Test results for a global optimization algorithm," in: P.

Boggs, R.H. Byrd and R.B. Schnabel, eds., Numerical Optimization 1984 (SIAM, Philadelphia, 1985)
272-287.

R. Zielinski, "A stochastic estimate of the structure of multi-external problems," Mathematical Program-
ming 22 (1981) 104-116.

