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1 Introduction

The owner of a power plant has the option to convert an energy source into electricity at every

moment during the lifetime of the power plant. We assume that this lifetime is divided in hours,

mimicking the micro structure of many day-ahead markets1. During the lifetime of the plant,

the plant owner has a series of hourly options to convert an energy source into electricity; he can

exercise an option to produce power or not at any hour during the lifetime of the power plant2.

The timing of the exercise decision depends on the markets in which the plant operates and the

risk from changes in power prices that he is willing to accept. If he only trades in day-ahead

markets, he decides every day how much to produce in every hour tomorrow. He might decide

to produce tomorrow between 6pm and 7pm and not between 3am and 4am for instance. The

option to produce is not transferable (if the plant does not produce during an hour, that produc-

tion capacity cannot be stored and used in another hour) and the owner decides to produce or

not and he makes this decision for every hour of the day. As a result, the profit from the power

plant is uncertain as the day-ahead prices and fuel costs are variable and difficult to predict far

ahead in the future3.

If the plants owner also trades in futures markets, in addition to day-ahead markets4, he has

an opportunity to make his future income less uncertain, more predictable. He then can sell

a futures contract committing to deliver, for instance, a flow of 1 MW against a fixed price

in every hour during the delivery period specified in the contract. With the futures contract,

the plant owner fixates the selling price for a part of his output during a future delivery period,

thereby making his revenues more certain. The uncertainty that remains is the costs of the fuels

needed (and emission rights if applicable) since profits decline on the volume sold against a fixed

price when fuel costs rise. How can the plant owner deal with this situation? This resembles

how a market maker (or traders) in equity futures contracts5 deals with risk. When that market

maker sells a futures contract to deliver a stock against a fixed price at a future moment in time

without having the stock in his portfolio, he faces the risk that the stock price rises between

the moments of sale and delivery such that, as a consequence, he has to purchase to stock

against a higher price than the futures price. The risk origins from not having the stock in his

portfolio and he can easily eliminate the risk by purchasing directly the stock after he has sold

the futures contract and store the stock in his portfolio until delivery. The purchasing costs to

eliminate his risk is equal to the stock price plus financing costs. Knowing the costs of the risk

eliminating strategy, a risk averse market maker will charge a futures price that is at least equals

1This assumption can easily be relaxed and the remaining discussion can be based on shorter time intervals,

depending on the application at hand.
2We abstract from maintenance periods, during which the power plant is not operational, here for convenience.
3There is a huge amount of literature that documents the dynamics of day-ahead power prices such as sea-

sonality, mean reversion, time-varying volatility and sudden price spikes. We refer to Huisman [2009], Janczura

and Weron [2010] and Fleten et al. [2014].
4Day-ahead contracts can be seen as one-day futures contracts, but we apply the European convention here

and see one-day futures as day-ahead contracts and to define futures contracts as contracts that deliver into

periods farther away than one day. We assume no differences between forward and futures contracts in this paper.
5Or market makers in any other financial assets such as currencies and interest rates products.
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the purchasing costs. When the stock market is competitive and perfectly liquid, the market

futures price equals the costs of the risk eliminating strategy as otherwise a risk free arbitrage

opportunity emerges.

This thinking is based on the theory of storage as originally proposed by Kaldor [1939], Working

[1948], Telser [1958] and Brennan [1958]. The theory relates the price of a futures contract

on an asset to costs of holding inventories of the asset to eliminate risks (storage and financing

costs) and benefits (also called convenience yield) from holding the asset (such as dividends in

case of a stock). Let us apply this thinking to the situation of the plant owner who sold a futures

contract to deliver power against a fixed price during some future time period. Suppose that

the plant converts a (fossil) fuel into electricity and that futures contracts are traded on that

specific fuel for the same delivery period as the sold electricity futures contract. This applies

for instance to coal and natural gas fired power plants as relatively liquid futures markets for

coal and gas exist. The plant owner can almost eliminate his risk from selling an electricity

forward by purchasing the appropriate amount of fuel and emission rights contracts. After do-

ing so, the owner is almost free of risk as he sold power against a fixed price, purchased the

fuel and emission rights against a fixed price and has the plant to convert the fuel into power

during the delivery period. He is not perfectly free of risk as the power plant might break down.

This risk, however, is manageable for the plant owner through maintenance. Assuming that the

plant owner is risk averse, he will purchase the appropriate amount of fuel and emission rights

contracts after selling a power futures contract to eliminate risk. And knowing this strategy, he

will charge a price in relation to these costs of the fuel and emission rights. If electricity, fuel

and emission rights futures markets are liquid and competitive and if we assume that all power

plants in the market use the same fuel to convert fuel into power with the same efficiency and

that there is no risk of plant failure, the futures price of electricity equals the value of the fuel

and emission rights futures contracts needed to eliminate risk, just as in equity futures markets6.

Based on this argument, one expects a direct relation between the futures price of electricity

and the futures prices of the fuel and emission rights.

That we compare the risk eliminating strategy of an equity market maker and the plant owner

is done on purpose to emphasise the interesting difference between stock and electricity. Every

equity market maker has access to exactly the same stock. When equity market makers com-

pete, they can apply the exact same risk eliminating strategy using the exact same stock; the

exact same underlying asset that can be stored. In electricity markets, the underlying asset,

electricity, cannot be stored (at least not yet in an economically efficient way) and power plants

compete in conversion technology. One power plant (a.k.a. market maker) converts natural

gas into power. Another converts coal into power. In addition, plants differ in efficiency (the

amount of fuel needed to produce one unit of power). In addition, some producers have no

6This reasoning also holds in case there is no futures market for the underlying fuel as long as the fuel can be

purchased in spot markets and stored in which case the electricity futures price relates to the value of the fuel

needed purchased in the spot market plus storage and financing costs and convenience yields if any.
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fuel costs at all, such as solar and wind power plants7. Furthermore, it takes time to increase

or decrease the production volume of a fuel fired power plant (ramping times), a power plant

owner might be willing to sell against losses in some hours in order to make profits in others

(must-run situations). The dynamics of price setting in power futures markets differ from eq-

uity and other financial markets for that reason. And, as a consequence, the futures price of

electricity might not directly relate to the price of one specific fuel. This is what is found in

different studies about the relation between electricity futures prices and futures prices of under-

lying fuels. Emery and Liu [2002] show evidence for a relation between electricity futures prices

and futures prices of fuels in terms of a co-integration relationship between gas and electricity

futures prices of the American California-Oregon Border and Palo Verde markets. Mohammadi

[2009] examines long-term relations and short-run dynamics between electricity prices and prices

for coal, natural gas and oil using annual U.S. data covering the period 1960–2007. Similar to

Emery and Liu [2002], the relations are examined by testing for co-integration and using a vector

error-correction model. Mohammadi [2009] only finds significant long-term relations between

coal and electricity prices and an unidirectional short-run causality from coal and natural gas

prices to electricity prices. Redl et. al [2009] examine the relationship between risk premiums of

fuel markets and electricity using the German EEX and the Nord Pool futures contracts. In this

model, the futures price of electricity is a function of primary fuel costs (gas or coal) and the

costs for carbon emissions. The EEX electricity prices show higher correlation with gas and coal

than the Nord Pool electricity prices. This can be explained by the fact that gas and coal are

more often the marginal fuels for generating electricity than they are for Nord Pool where elec-

tricity is mainly generated by hydro power. This was confirmed by Povh and Fleten [2009]. They

modeled the relationship between long-term futures contract prices on fuels (such as oil, coal

and natural gas), the price of emission allowances, imported electricity and the long-term price

of electricity forwards for the Nord Pool market. The cointegration analysis reveals a long-run

relationship between all variables except for natural gas. The mutual interactions of electricity,

gas and carbon prices in the UK were quantified by Fezzi and Bunn [2009]. Energy producers

vary in the technology of energy supply and the prices of energy futures contracts relate to the

prices of these different technologies.

The literature about pricing electricity forwards contracts develops in two streams. Within the

first stream, futures prices are obtained from a stochastic multi-factor process mostly derived

from the Schwartz [1997] stochastic models for commodity prices. Lucia and Schwartz [2002] is

a direct application to power futures prices (among others). futures prices are seen as stochastic

in this stream, consisting of different stochastic factors such as long and short term price devel-

opments and convenience yields. Prices do not directly relate to underlying fundamentals such

as fuels or the market structure although the stochastic processes reflect these fundamentals

somehow. We focus in this paper on the second stream. Within this stream forward electricity

prices relate to fundamentals. Deng [2000] relate fuel and electricity prices to model the value of

electricity generating and transmission assets. Carmona et al. [2013] propose a structural model

7The marginal costs of hydro power depends on the reservoir levels and the option to delay production. See

Huisman et. al [2013].
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for spot and derivative electricity prices using a stochastic model of the bid stack. The model

has a multi-fuel setting such that each fuel can set the market price and become the marginal

fuel. Dong and Liu [2007] use storable fuels (natural gas and coal) in their model for electricity

spot prices and futures prices are derived through a Nash bargaining process. According to Falbo

et al. [2010] the value of a futures contract is equal to the sum of the expected marginal pro-

duction cost and the spread option embedded in spot selling. Pirrong and Jermakyan [1999] and

Pirrong and Jermakyan [2000] model the equilibrium price as a function of two state variables,

electricity demand and the futures price of the marginal fuel. Routledge et al. [2001] derive the

equilibrium futures prices by explicitly considering the conversion option of gas and other fuels

to electricity (the model is in fact the Routledge et al. [2000] approach for pricing commodity

futures contracts adapted to deal with electricity market specifics). Bessembinder and Lemmon

[2002]’s equilibrium model implies that the relationship between forward power price and the fu-

ture spot price is a function of both expected demand and demand variance. As a consequence,

the futures price will generally be a biased forecast of the future spot price, with the forward

premium positively related to the skewness of the wholesale price and negatively related to the

variance of the wholesale price. Suenaga and Williams [2005] extend the Bessembinder and

Lemmon [2002] model with fuel prices.

All these studies price electricity forwards by seeing futures prices as a biased predictor of future

spot prices, they assume that the supply stack during the trading period of a futures contract

is constant, or assume that all producers have the same supply function. They need these as-

sumptions to derive futures price models. The objective of this paper is not to derive electricity

futures price formulas but to examine the price formation process during the lifetime of an elec-

tricity futures contract seen from the risk reduction strategies of power producers. We focus on

the relation between the power futures price and prices of fuel and emission forwards assuming

that different power producers use different conversion technologies.

The idea of time-variation in the relation between electricity prices and explanatory variables is not

new. Karakatsani and Bunn [2008] show, for the British market, that a model explaining changes

in day-ahead (a one-day futures contract) electricity prices with market fundamentals (supply

and demand variables) and time-varying coefficients exhibits the best predictive performance for

day-ahead prices. We extend this thinking from day-ahead prices to futures prices and examine

the relation between electricity futures prices and futures prices of underlying fuels and emission

rights. Our study assumes a linear relation between electricity futures prices and the prices of

underlying fuel futures prices and compares the fits of different specifications of the model in

terms of allowing coefficients to be time-varying or not. By doing so, we test the hypothesis

that a model with constant coefficients explains variation in electricity futures prices best against

the alternative that allowing for at least one time-varying parameter explains better. Section 2

discusses the methodology that we apply and how we formulate and test different hypotheses.
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2 Methodology and data

We expect that the price of a power futures contract relates in a time-varying manner to the

prices of underlying fuel futures contracts. We test this view as follows. Let Fp,t,T be the price

of a power futures contract at time t for delivery of 1 MW during the future period of time T .

Let Mc,t,T be the value of a portfolio at time t that contains the appropriate amount of coal

futures contracts and emission rights contracts need for producing power with a coal fired plant

during delivery period T . We call this the marginal cost of future production for a coal fired

power plant. Similarly, Mg,t,T is the marginal cost of future production for a gas fired power

plant. To determine appropriate amounts, we assume an average coal plant with efficiency 0.38

(one unit of fuel generates 0.38 units of power) and that emits 0.971 tonnes of CO2 per one

MWh of power produced (net)8. The marginal cost of future production equals

Mc,t,T = ((Fc,t,T /29.31)/0.2777) ∗ (1/0.38) + 0.971 ∗ Fe,t,T , (1)

for the average coal producer. Fc,t,T is the price of a coal futures contract and Fe,t,T is the price

of a futures contract that allows to emit carbon (both prices are observed at time t and deliver

during period T ). The numbers 29.31 and 0.2777 convert the coal futures contract from tonnes

into MW. For an average natural gas power producer, the marginal cost of future production

equals

Mg,t,T = 2 ∗ Fg,t,T + 0.404 ∗ Fe,t,T . (2)

Fg,t,T is the price of a futures contract that delivers gas during period T . The numbers 2 and

0.404 in equation 2 apply to an average plant and are obtained from Bloomberg. We relate the

price of a power futures contract linearly to the average coal and gas plant marginal cost of

future production:

Fp,t,T = at + btMc,t,T + ctMg,t,T + vt , (3)

where vt is an error term and at , bt , and ct are parameters. Our goal is to test whether or

not the price of a power futures contract relates in a time-varying manner to the prices of un-

derlying fuel futures contracts. To do so, we test the null hypothesis that the parameters at ,

bt , and ct are constant against the alternative that at least one of the parameters is time-varying:

H0: at , bt , and ct are constant

versus

H1: at least one of at , bt , ct is time-varying.

We have not discussed what we mean with time-varying. The coefficients at , bt , and ct are

unobservable and we have to assume their dynamics. One way to test is to apply rolling re-

gressions to observe whether the coefficients change over time. We prefer a different approach

8We obtained the efficiency rates and the number of emission rights for average coal and gas plant from

Bloomberg.
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which makes it possible to better compare the fits of different specifications of the model. It’s

is convenient to represent the model in state-space9 to capture the dynamics of the observed

Fp,t,T in terms of the unobserved (3x1) state vector ηt = (at bt ct)
′. The following equation

described the dynamics of the state-vector:

ηt+1 = ηt + wt+1, (4)

where the (3x1) vector wt is taken to be IID N(0,Q) with Q being a (3x3) covariance matrix.

We assume that the coefficients are mutually independent, i.e. that the non-diagonal elements

of Q are zero. The observed variable Fp,t,T is presumed to be related to the state vector through

the observation equation:

Fp,t,T = Htηt + vt , (5)

where Ht is the (1x3) vector Ht = (1 Mc,t,T Mg,t,T ) and vt is the IID N(0,R) measurement

error. Having defined these, we apply the Kalman Filter to obtain estimates for the unobserved

coefficients in the vector. We estimate Q, R and the initial η0 using maximum likelihood.

We test the null hypothesis against the alternative by comparing the log-likelihood of the constant

parameters model with various specifications of the time-varying parameters model. Likelihood

ratio tests help us then to observe whether the time-varying parameters model, consistent with

H1, fits better than the constant parameters model consistent with H0. Likelihood ratio tests

suit as the the constant parameters specification is in fact a restricted version of the time-varying

specification as a parameters assumed to be constant has zero variance in the transition equation

4; that is, we set the diagonal element in Q, that contains the variance of the parameter to be

held constant, to zero. We then test the hypothesis H0 against an alternative, by comparing

the likelihood under H0 against the likelihood of a specification under H1 where at least one of

the variances in Q is set to zero.

2.1 Sample selection

To observe whether our findings are consistent over contract types and countries we analyse

prices of peak load and non-peak load futures contracts in Germany and in the United Kingdom.

We selected those countries as power is produced by coal and gas (among other sources) in

both countries and active futures markets exist for coal and gas. Secondly, the German and

U.K. power markets are not (directly) connected such that we may assume that the supply and

demand conditions in Germany vary independently from the U.K. and vice versa (apart from

being dependent on coal and gas). By examining two different markets, we can compare the

results between the two countries to conclude whether results are consistent.

9We follow Hamilton [1994] in describing the model in state-space form.
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2.2 Data

To estimate the parameters, we use the complete history of prices of the German (The Euro-

pean Energy Exchange (EEX)) calendar year 2013 base load10 and peak load11 contracts and the

U.K. (The Intercontinental Exchange (ICE)) October 2013 and April 2013 base load and peak

load seasonal contracts12. The delivery period of the base load contract overlaps the delivery

period of the peak contract as peak delivery takes place during the peak part of the day and

base delivery is for the whole day. We use the base load and peak load price to calculate the

implied off peak price to observe the price of two non-overlapping delivery periods (peak and off

peak), consistent with market practice. The implied off peak prices13 are calculated as (24 ×
base load price −12× peak load price) / 12. We then examine the non-overlapping peak and

off peak prices.

The EEX calendar year futures contract starts trading approximately six years before delivery.

The sample period for the calendar year 2013 contracts that we examine is from 2 July 2007

through 5 December 2012, yielding 1369 daily closing price observations (AC/MWh). The nat-

ural gas futures prices in AC/MWh are from the NetConnect Germany (NCG) futures contract

traded on the EEX. The coal prices in $/1000 tonnes and the emission rights derivative prices

in AC/tonne are obtained from the yearly Amsterdam-Rotterdam-Antwerp (ARA) coal futures

contract and the European Carbon Future (ECF) futures contract traded at the EEX. The

ICE seasonal futures contract starts trading approximately 7–8 consecutive seasons before de-

livery. The price series for both seasonal contracts range from February 16th, 2010 until March

27th, 2013 for the April 2013 seasonal futures contract and September 26th, 2013 for the

October 2013 seasonal futures contract, having 805 and 935 daily closing price observations,

respectively (£/MWh). The natural gas futures contract prices in £/therm14 are from the

National Balancing Point (NBP) seasonal futures contracts traded on the ICE. The coal prices

in $/1000 tonnes and the emission rights in AC/tonne futures prices are obtained by the yearly

Amsterdam-Rotterdam-Antwerp (ARA) coal futures contract and the EU allowances (EUA) fu-

tures contract traded at the ICE. The currency conversion is made by using the exchange rate

provided by Reuters. All data is obtained from Bloomberg, Thomson Reuters Datastream and

Montel database.

Figures 1, 2 and 4 show the price history of the marginal cost of future production with coal

and natural gas plants (as in eq. (1) and (2)) and the power futures prices. Table 1 provides

summary statistics.

10Delivering 1 MW during any hour of the day.
11Delivering 1 MW from Monday to Friday between 8 am and 8 pm.
12Seasons always comprise a strip of Apr–Sep or Oct–Mar.
13Delivering 1MW from Monday to Friday outside the 8 am and 8pm period.

14The following formula is used to convert the gas price from £/therm into £/MWh Fg,t ∗
3.6( GJ

MWh )

0.1055( GJ
therm )

∗ 1
100
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Figure 1: Power futures prices and marginal cost of future production (Ger-

many; calendar 2013).
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Figure 2: Power futures prices and marginal cost of future production (UK;

April - September 2013).

10



Figure 3: Power futures prices and marginal cost of future production (UK ;

October 2013 - March 2014.
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Table 1: Descriptive statistics for power futures

prices and marginal cost of future production with

coal and natural gas.

EEX Cal 2013 Peak Off-peak Coal Natural Gas

Mean 80.350 39.431 42.313 58.905

St.dev 18.350 4.177 7.993 9.208

Observations 1384 1384 1384 1384

ICE Apr 2013 Peak Off-peak Coal Natural Gas

Mean 57.942 44.064 33.310 45.335

St.dev 4.330 3.503 5.948 3.791

Observations 805 805 805 805

ICE Oct 2013 Peak Off-peak Coal Natural Gas

Mean 63.965 47.787 31.729 50.880

St.dev 3.864 3.046 6.784 3.382

Observations 935 935 935 935

Notes: Descriptive statistics of the daily peak and off-peak power

prices and the forward marginal cost of production with coal and

gas between July 2007 and December 2012 for the EEX Cal 2013

contract and from February 2010 until March 2013 for the ICE April

2013 seasonal futures contract and September 2013 for the ICE

October 2013 seasonal futures contract.

3 Results

Table 2 shows the log-likelihoods of the different parameter specifications for model 3. The

table shows the results for the peak and off-peak load contracts for delivery during 2013 in

Germany and during two seasons in 2013 in the U.K. The first row with results in the table

shows the log-likelihoods for that specification in which both at and bt are assumed to be con-

stant and ct is set to zero using peak load contracts. This specification relates the futures

price of electricity linearly to a constant term and the marginal cost of future production for a

coal fired plant with constant, that is not time-varying, coefficients. Using all the prices during

the life time of the futures contracts, we have calculated the log-likelihood that the model fits

the data and for Germany that log-likelihood equals -4,414.796. For the U.K. contracts, the

log-likelihoods equal -1,586 for the April-September 2013 delivery contract and -1,749 for the

October 2013 through March 2014 delivery contract. The log-likelihoods are meaningless in

itself, but help to compare the fits of different specifications. For instance, when we consider

the second row, the one that includes the marginal cost of future production with a gas plant

instead of a coal plant with constant parameters, we observe that the log-likelihood is less for

Germany (4,545 instead of 4,415 for the specification in row 1) but higher for the U.K. con-

tracts. The higher the log-likelihood, the more likely it is that the model fits the data. Hence,
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we conclude that the model that consists of the marginal cost of future production with a gas

plant fits the data better for the U.K. contracts but not for the German contract. When we

include both the marginal cost of future production with a coal plant and a gas plant (the third

row), we observe that the log-likelihoods are higher than in the two previous rows, meaning

that out of these three specifications, this one is most likely to describe the data for all the

contracts that we examine. When we consider constant parameters only, we want to include

both the marginal cost of future production with a coal and gas fired power plants to fit the data.

But likelihoods dramatically increase when we allow one or more parameters to vary over time.

All the rows with t.v. (time-varying) for some of the parameters have higher log-likelihoods than

the constant parameters specifications. This holds for all the contracts that we examine, for

peak and off-peak load, for Germany and the U.K. and for calendar year and seasonal contracts.

Without assessing the significance of this result for now, it is clear that allowing at least one of

the parameter to vary over time makes the model more likely to fit the data. This is in line with

our view that we expect that the price of a power futures contract to relate in a time-varying

manner to the prices of underlying fuel futures contracts. To test this more formally, we com-

pare the log-likelihood of a specification under our null hypothesis that parameters are constant

with one specification under the alternative hypothesis that at least one of the parameters is

time-varying. Using the likelihood ratio test, we then assess whether the log-likelihood under

the alternative hypothesis is significantly higher than the one under the null hypothesis. For

instance, let’s focus on peak load contracts and compare the log-likelihoods in rows three and

sixteen for the German contract. That is, we focus on a model that includes a constant term

and the marginal cost of future production with a coal and gas plant and compare the fits of

the specification in which all parameters are assumed to be constant (null hypothesis) with the

specification that all parameters are time-varying (the alternative hypothesis). The log-likelihood

under the null hypothesis is -4,414.796 and the log-likelihood of the second is -633.519. The

test statistic equals D = −2× (LLH0
−LLH1

) = −2× (−4, 414.796−−633.519) = 7, 562.554.

The statistic D is Chi-squared distributed with degrees of freedom equal to the difference in

the number of free parameters between the specifications. Under the alternative hypothesis, we

have three more parameters in this case, as all σa, σb, and σc are free under the alternative hy-

pothesis and restricted to zero under the null hypothesis. Hence, the degrees of freedom of the

Chi-squared distribution is three. The value of the test statistic D is so large that the p-value,

the probability that we falsely reject the null that the parameters are constant, equals zero.

This also holds when we compare the other constant parameters specifications in rows 1 and 2

for all the contracts that we examine. We therefore find compelling support to reject the null

hypothesis of constant parameters against the alternative that at least one of the parameters is

time-varying, supporting our view that we expect time-variation as the dependence of electricity

futures prices on the prices of underlying fuels varies over time as demand for futures contracts

progresses over the supply curve.
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Table 2: Log likelihoods for different specifications of

the model Fp,t,T = at + btMc,t,T + ctMg,t,T + σvt .

coal gas Germany UK UK

at bt ct 2013 Apr 2013 Oct 2013

Peak load futures

1. const const — -4,414.796 -1,585.742 -1,748.653

2. const — const -4,544.917 -954.169 -1,204.952

3. const const const -4,378.618 -365.641 -664.435

4. const t.v. — -584.879 123.304 201.312

5. const — t.v. -609,527 541.150 750.206

6. const t.v. t.v. -558.130 612.183 786.488

7. const t.v. const -554.462 616.265 790.837

8. const const t.v. -554.900 541.291 750.690

9. t.v. const — -689,815 113.679 176.444

10. t.v. — const -714.980 560.397 744.241

11. t.v. const const -648.493 561.245 744.848

12. t.v. t.v. const -542.726 615.640 790.113

13. t.v. const t.v. -538.383 557.236 750.178

14. t.v. t.v. — -573.140 109.950 215.719

15. t.v. — t.v. -590.058 556.508 749.694

16. t.v. t.v. t.v. -546.286 611.712 785.998

Off peak load futures

1. const const — -2,665.872 -1,491.563 -1,557.524

2. const — const -2,638.203 -601.486 -1,046.676

3. const const const -2,604.051 -378.624 -720.037

4. const t.v. — -642.181 88.927 76.619

5. const — t.v. -674.112 444.732 487.128

6. const t.v. t.v. -633.377 516.262 548.570

7. const t.v. const -629.935 520.218 552.664

8. const const t.v. -634.934 453.471 492.903

9. t.v. const — -771.892 60.978 24.359

10. t.v. — const -809.168 468.451 495.389

11. t.v. const const -762.445 475.789 501.764

12. t.v. t.v. const -630.118 519.679 552.122

13. t.v. const t.v. -635.589 471.628 497.514

14. t.v. t.v. — -642.361 94.425 83.570

15. t.v. — t.v. -674.312 464.298 491.144

16. t.v. t.v. t.v. -633.519 515.860 548.219

# observations 1,383 804 934

Notes:
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Table 2 shows more than only support for our time-varying parameters claim. We have printed

the most likely specification, the one with the highest log-likelihood, in bold face. The most

likely specifications reveal how the electricity futures prices relate to the marginal cost of future

production. We find one dominant specification; one that applies to all contracts except for the

Germany peak load contract. The dominant specification includes both the marginal cost of

future production with a coal plant and a gas plant as explanatory variables and has the coef-

ficient for the coal plant time-varying and the others constant. Figures 5 through 9 show the

behaviour of the coefficients over time for these contracts. Let us take Figure 6 as an example

for discussion; it shows the results for the U.K. peak contract for delivery from April through

September 2013. The top graph shows that price of the electricity futures contract exceeds the

marginal cost of future production with gas and coal for most of the time. The second graph

shows the value of at , which value is 16.242 and remains constant by assumption as the most

likely specification is one for which at is constant. This parameter estimate, and all others for

the most likely specifications, are listed in Table 3. The third graph shows the value for bt ,

the coefficient for the marginal cost of future production with coal, which value is estimated to

be -0.016 at the start of the sample (see b0 in Table 3) and varies over time with a standard

deviation
√
Qb equal to 0.006 per day; i.e. a very low standard deviation15. The fourth graph

shows the value for the coefficient ct , which is the one for the marginal cost of future produc-

tion with gas. It’s value is 0.937 (see Table 3) and remains constant by assumption. Figure 6

shows that the coefficient bt declines over time, which makes sense as the electricity futures

price seems to follow the marginal cost of future production with gas with an apparent constant

spread reflected by the constant at and the almost unity estimate for the constant ct and the

marginal costs of coal deviation more and more from the marginal costs of gas over time. From

this we conclude that this specification captures the dynamics in the relation between electricity

futures prices and the marginal cost of future production over time.

A different case is the German peak load contract for delivery in 2013. It’s characteristics are

plotted in Figure 5. From the top graph, we observe that the electricity price converges to the

marginal costs of gas over time. Put it differently, the spread declines and this behaviour is

apparent from the dynamics of at in the second graph. The spread declines after observation

600, probably being cause by the increase of P.V. and wind power in the German supply curve.

By assumption, the influence of coal remains constant with its coefficient bt equal to 0.419 (see

Table 3). The coefficient ct for gas varies by assumption. It starts at 0.06 and changes daily

with a standard deviation of 0.011 (see again Table 3). On average, the coefficient ct is not

trending and converges to about 0.1 at the end of the sample.

15We chose to report the standard deviations
√
Q instead of the variances Q as the numbers are small and

standard deviations have a clear interpretation in case of a normal distribution like 68% of the observations lie in

a one-standard deviation interval around the mean.
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Table 3: Parameter estimates and the log-likelihood maximising

specification of the model Fp,t,T = at + btMc,t,T + ctMg,t,T + vt .

Germany U.K. U.K.

year 2013 Apr–Sep 2013 Oct 2013–Mar 2014

peak off peak peak off peak peak off peak

a0 60.583 13.523 16.242 3.168 18.502 0.212
√
Qa 0.223 — —- — — —

b0 0.419 0.249 -0.016 0.070 0.056 0.102
√
Qb — 0.000 0.006 0.007 0.005 0.006

c0 0.060 0.156 0.937 0.946 0.893 0.973
√
Qc 0.011 — — — — —
√
R 0.000 0.023 0.032 0.054 0.083 0.116

LogLik -538.383 -629.935 616.265 520.218 790.837 552.664

# observations 1,383 804 934

Notes:
√
Qa is the square root of the first diagonal element in Q;

√
Qb and

√
Qc are the

square roots of the second and third elements in Q.

Figure 4: German peak load power 2013 futures price, marginal cost of future

production and coefficients for the most likely model according to Table 2.
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Figure 5: German off peak load power 2013 futures price, marginal cost of

future production and coefficients for the most likely model according to Table

2.

Figure 6: U.K. peak load power April 2013–September 2013 futures price,

marginal cost of future production and coefficients for the most likely model

according to Table 2.
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Figure 7: U.K. off peak load power April 2013–September 2013 futures price,

marginal cost of future production and coefficients for the most likely model

according to Table 2.

Figure 8: U.K. peak load power October 2013–March 2014 futures price,

marginal cost of future production and coefficients for the most likely model

according to Table 2.
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Figure 9: U.K. off peak load power October 2013–March 2013 futures price,

marginal cost of future production and coefficients for the most likely model

according to Table 2.

The difference in the price evolution of the Germany peak power contract and the other contracts

is that the spread at declined probably due to the change in the supply curve in Germany due

to an increase in renewables. The U.K. contracts show a declining influence of the marginal

costs of coal over time, while having at constant. For the contracts that we examined, time-

variation is either observable in at or in one of the marginal costs coefficients bt or ct . Again,

we conclude that assuming time-variation in one of the parameters is more likely than assuming

all coefficients to be constant. But as the exact parameter that needs to be time-varying differs

among contracts (and perhaps over sample periods as well), we cannot say ex-ante which of the

parameters should be time-varying. That implies that one cannot make a consistent choice which

parameters to hold constant and which to allow to vary over time. Looking back at the results

of table 2, we observe that the log-likelihoods for those specifications that allow all parameters

to be time-varying (in rows 16), do not deviate too much from the most likely specifications.

Consider for instance the German peak contract. The optimal specification yields a log-likelihood

of -538.383. The specification in row 16 yields a log-likelihood of -546.286. A difference of about

8. These differences are significantly different from zero (according to likelihood-ratio tests),

but the deviation from the most likely specification is much less than when we would assume

constant parameters. The constant parameters specifications in rows 1, 2 and 3 all yield much

lower (more negative) log-likelihoods than the ones in row 16. This holds for all contracts. We

therefore conclude that if a practitioner has to choose ex-ante the best specification, he should

choose the one in which all parameters are allowed to vary over time.
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4 Conclusions

Electricity is a derived commodity that is generated from conversion of various forms of fuels

or other fundamental energy sources. This paper focuses on how changes in market-determined

prices for future delivery of underlying fuels affect the corresponding prices for future delivery

of electricity. We find evidence of a time-varying relation between electricity futures prices and

fundamentals being the prices of contracts for fossil fuels. We argue that the reason for this

is that supply curves are not constant and different producers have different marginal costs of

production (think of gas versus coal). For contracts with different delivery periods (calendar

year and seasons, peak and off-peak) from Germany and the U.K., we conclude that one has to

choose a time-varying specification to relate the futures price of power to prices of underlying

fundamentals.

4.1 Discussion of the results

Our paper supports the view that one better relates the price of a power futures contract to

the futures prices of underlying commodities such as coal, natural gas and emission rights in a

time varying way. We leave it as future research to determine the exact impact of making the

wrong assumption of constant instead of time-varying coefficients, but we take the opportunity

to discuss where we see that this could have impact. In the energy sector, natural objects of

analysis include spreads, such as the clean spark spread being the difference between the price

of electricity and the marginal production costs of a natural gas producer. Or the clean dark

spread, being the coal plant counterpart of the clean spark spread. Clean refers to the inclusion

of emission costs. These spreads reflect the profits that power plants can lock in and different

derivatives such as spread options and swaps are traded to hedge risk of changes in spark spreads.

Thinking about spread option pricing, one can make a serious mistake if the option valuation

model would assume a relation between the price of electricity and the underlying commodities.

Option pricing models that allow for a time-varying relation are then needed.

One can also think about a risk manager measuring the risk of a portfolio of energy contracts.

Our results implicates that correlation between electricity prices and underlying commodities

vary over time and should be taken into account as such to correctly measure the amount of

portfolio risk. This related to cross-hedging issues in which one offsets price risk in one energy

commodity by taking an opposite position in an appropriate number of contracts in another

energy commodity. This appropriate number is likely to vary if the relationship between the two

commodities is time varying.

In this paper, we define time-variation in a simple way. We do not relate for instance changes

in the supply curve directly in the coefficients, although one would expect that a change in

the supply curve would immediately affect the relation between electricity prices and underlying

commodities in a certain way. We leave this issue for future research.
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