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Abstract

We investigate the added value of combining density forecasts for asset return pre-

diction in a specific region of support. We develop a new technique that takes into

account model uncertainty by assigning weights to individual predictive densities us-

ing a scoring rule based on the censored likelihood. We apply this approach in the

context of recently developed univariate volatility models (including HEAVY and Re-

alized GARCH models), using daily returns from the S&P 500, DJIA, FTSE and

Nikkei stock market indexes from 2000 until 2013. The results show that combined

density forecasts based on the censored likelihood scoring rule significantly outperform

pooling based on the log scoring rule and individual density forecasts. The same re-

sult, albeit less strong, holds when compared to combined density forecasts based on

equal weights. In addition, VaR estimates improve at the short horizon, in particular

when compared to estimates based on equal weights or to the VaR estimates of the

individual models.
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1 Introduction

Value-at-Risk (VaR) is a commonly used measure of downside risk for investments. Financial

institutions are allowed by regulation (i.e. the Basel accords) to report VaR estimates for

their asset portfolios obtained from their own “internal” model. An important related issue

in this estimation is model uncertainty, as each model has its prespecified known form and

takes no account of possible uncertainty regarding the model structure. In addition, given

the availability of a considerable number of different risk-management methods, based on

academic literature and/or his expertise, it is a difficult task for a decision-maker to choose

the “best” model. Moreover, each model is an incomplete description of reality. Hence

relying upon a single model is dangerous when constructing a VaR, i.e. a density forecast

in the left tail, as any model is “wrong” in some sense.

In this paper, we investigate the usefulness of combining density forecasts with the focus

on a particular region of the density. This is motivated in the first place by well known

advantages of combining point or density forecasts.1 We aim to obtain more accurate VaR

estimates and density forecasts in the left tail. This motivates the investigation of combining

density forecasts based on their behavior in the left tail as using the whole density does not

necessarily lead to the same quality of forecasts as focusing purely on the left tail, which is the

case for the VaR. Therefore, we develop a density forecast combination method that extends

the method of Geweke and Amisano (2011), which uses the whole density, by considering

the censored likelihood (csl) scoring rule of Diks et al. (2011) that focuses on a region of

the densities’ support of particular interest, such as the left tail.

We use our novel methodology in an empirical application involving several recently de-

veloped univariate volatility models. Hence, as a second contribution to the literature, we

make a comparison between these models with respect to their predictive ability in terms of

density forecasts. In particular, beyond the traditional (Threshold) GARCH model (Boller-

slev, 1986; Glosten et al., 1993), we consider the Heavy model (Shephard and Sheppard,

2010) and the Realized GARCH model (Hansen et al., 2012) that include realized measures,

as well as the GAS model (Creal et al., 2013). All models are applied to daily returns on

the S&P 500, DJIA, FTSE and Nikkei stock market indexes from 2000 until 2013.

1We discuss this literature in more detail below.

1



We evaluate the added value of combining density forecasts both statistically and eco-

nomically. First, we test equal predictive accuracy in the left tail of a combined density

forecast based on our new method and three alternatives: (i) the method based on the

whole density, (ii) a benchmark that consists of equal weights, and (iii) the density fore-

cast of each individual model. Second, we compare 1- and 5-day VaR estimates based on

these methods using the Unconditional Coverage (UC) test and the Independence test of

Christoffersen (1998). In addition we test on equal accuracy with the use of an asymmetric

tick-loss function and the test procedure of Giacomini and White (2006).

Our results show statistically that density forecasts in the tail are more accurate if we

pool density forecasts using the csl scoring rule than using the log score based on the whole

density, using equal weights or using the density forecast of any individual volatility model.

This gain in accuracy holds in particular when the density forecasts of our new method are

compared to the density forecasts based on the log score function; the gain with respect

to the equal weights is only apparent in case of the FTSE and Nikkei index. In addition,

the 95% one-day VaR estimates improve significantly compared to all univariate volatility

models (except the HEAVY Skewed-t model), such that either less violations are made and

the unconditional coverage matches more closely the nominal value, or according to the

asymmetric tick-loss function. Moreover, the new combination method outperforms the

pooling method based on equal weights for most stock indexes (by means of the UC test or

the tick-loss function) but outperforms the pooling method based on the log score function

only in case of the DJIA returns. Finally, we show that the combination weights based on

the csl scoring rule differ considerably from the weights obtained by using the whole density.

Hence, a certain volatility model could get no or less weight based on the log scoring rule,

but may be useful in our new method.

We contribute to the literature on combining forecasts. Starting with the seminal work of

Bates and Granger (1969), combining point forecasts appears to be a successful forecasting

strategy, improving upon individual forecasts. Timmermann (2006) surveys the literature

on forecast combination and shows from a theoretical point of view why forecast combina-

tions could work well. This is confirmed by numerous empirical applications in different

areas including macroeconomic and financial forecasting. For example, forecasting output

growth using individual predictors typically delivers forecasts that are unstable over time.
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Combining forecasts offers more stable forecasts which improve upon autoregressive fore-

casts (Stock and Watson, 2004). Rapach et al. (2010) provide similar evidence in the context

of equity premium prediction, by showing that combining forecasts leads to statistically and

economically significant out-of-sample gains relative to the historical average return.

Although the literature shows the usefulness of combining point forecasts, point forecasts

themselves are not very informative if there is no indication of their uncertainty (see Granger

and Pesaran, 2000; Garratt et al., 2003). This finding has led to a growing interest in

density forecasts, which represent a full predictive distribution of a random variable and

hence provide the most complete measure of this uncertainty. It is a natural step forward to

bring together the concepts of forecast combinations and density forecasts. The literature

on combining density forecasts is yet scarce, although the interest in this topic grows with

applications in, for example, macro-economics (Jore et al., 2010; Aastveit et al., 2011).

One of the earliest examples of combining density forecasts is Wallis (2005), who consid-

ers a finite mixture distribution, taking a weighted linear combination of multiple density

forecasts. Hall and Mitchell (2007) address the issue how to choose the weights assigned

to each competing density. They propose a methodology with the aim to obtain the most

accurate density forecast from a statistical point of view. This boils down to using the loga-

rithmic scoring rule, which takes the log of the predictive density evaluated at the observed

value of the variable of interest. Closely related is the work of Geweke and Amisano (2011),

who use the logarithmic scoring rule to obtain weights to form optimal linear combinations

of predictive densities. We extend this approach, by substituting the log score rule by the

censored likelihood scoring rule. Krüger (2014) studies the added value of combining density

forecasts by comparing various scoring rules from both a theoretical and empirical point of

view, with an application to combined density forecasts of the UK inflation. Recently, the

literature departures from linear density combinations to non-linear opinion pools (Gneiting

and Ranjan, 2013; Fawcett et al., 2014). Another extension is to specify a dynamic structure

for the combination weights (Del Negro et al., 2013; Billio et al., 2013). Although this paper

considers static weights, by means of re-optimizing the weights using a rolling window, we

still capture the possible time-varying weight dynamics.

The remainder of this paper is organized as follows. Section 2 puts forward our method-

ology of combining density forecasts using the csl scoring rule. In Section 3, we provide
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an overview of the univariate volatility models and the related assumed conditional density

functions, which are used in the empirical application (Section 4). Section 5 concludes.

2 Combining density forecasts

Suppose a decision maker has n different models for a variable of interest y. Conditional on

information available up to and including time t − 1, the predictive density corresponding

with a particular model at time t is of the form pt(yt|It−1, θAi
, Ai), where It−1 indicates

the information set up to and including time t − 1, Ai denotes the particular model i,

(i = 1, . . . , n) and θAi
the estimated parameters of model Ai given It−1. Suppose further

that the decision maker aims to choose the best predictive density at time T + 1, given

the available density forecasts from time t = 1, . . . , T . An often used approach is to make

use of scoring rules. A scoring rule measures the quality of density forecasts by assigning

a numerical score. Typically, this rule is a objective function that depends on the density

forecast and the actually observed value, such that a higher score is associated with a

“better” density forecast. According to Gneiting and Raftery (2007), a scoring rule is

proper if it satisfies the condition that incorrect density forecasts do not receive a higher

average score than the true density. This property is important and a natural requirement

for any rational decision maker.

A well founded scoring rule is the log score function (see Mitchell and Hall, 2005; Amisano

and Giacomini, 2007). This function for a particular model Ai at a specific time t is defined

as

Sl(yt;Ai) = log pt(yt|It−1, Ai), (1)

with Sl the abbreviation of the log scoring rule, which simply takes the logarithm of the

predictive density evaluated at yt. This scoring rule is closely related to information the-

oretic goodness-of-fit measures such as the Kullback-Leibler Information Criterion (KLIC)

associated with the density forecast pt(yt|It−1, Ai). It can be shown that a higher value of

the logarithmic score coincides with a lower value of the KLIC. Put differently, maximizing

the logarithmic score is equivalent with minimizing the KLIC.
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It is highly unlikely that one model is the true model for constructing a predictive den-

sity. Hence it might be beneficial to combine various densities. The literature dates back

to Bacharach (1974), who considers linear combinations of (subjective) probability distri-

butions, known as linear opinion pools. Hall and Mitchell (2007) and Geweke and Amisano

(2011) also study linear opinion pools and introduce this idea into the econometric fore-

casting literature. In particular, Geweke and Amisano (2011) combine predictive densities

using the log score function as stated in (1), and consider predictive densities of the form

n
∑

i=1

wipt(yt|It−1, Ai), (2)

for i = 1, . . . , n and weights wi, restricted such that they are positive and sum to one to

ensure that (2) is a valid probability density function. It is natural to choose the weights

in such a way that the log score function in (1) is maximized (and hence the KLIC is

minimized):

Sl(YT , C) =
T
∑

t=1

log

[

n
∑

i=1

wipt(yt|It−1, Ai)

]

, (3)

with YT = {y1, . . . , yT}, and C representing the fact that a combination of models is evalu-

ated instead of a single model Ai.

The main idea of this paper is to extend the approach of Geweke and Amisano (2011)

by focusing on a particular region of interest of the predictive density. In order to do so,

we consider a scoring rule based on the censored likelihood (csl), advocated by Diks et al.

(2011). They prove that this scoring rule is proper and show the usefulness of this scoring

rule if one is interested in the accuracy of density forecasts in a specific region. In this study,

the focus is on the left tail, which is important for risk management purposes. The csl score

function for a specific region Bt for model Ai at time t reads

Scsl(yt|Ai) = I[yt ∈ Bt] log pt(yt|It−1, Ai)

+I[yt ∈ Bc
t ] log

(

∫

Bc
t

pt(y|It−1, Ai)dy

)

(4)

with Bc
t the complement of Bt and I[·] an indicator function that takes the value 1 if the
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argument is true. The first part of this scoring rule focuses on the behavior of the density

forecast in the region of interest Bt. The second part computes the cdf of the density in

the region outside Bt. Hence any observation outside Bt ignores the shape of pt(yt|It−1, Ai)

outside Bt. Note that (4) simplifies to the log scoring rule of (1) if Bt represents the full

sample space.

The next step is combine the predictive densities based on the csl scoring rule. That is,

we consider again predictive densities as defined in (2), however with the weights obtained

by optimizing the corresponding censored likelihood score function over the values YT =

{y1, . . . , yT}:

Scsl(YT , C) =

T
∑

t=1

log

[

n
∑

i=1

wi

(

I[yt ∈ Bt]pt(yt|It−1, Ai)

+ I[yt ∈ Bc
t ]

∫

Bc
t

pt(y|It−1, Ai)dy

)]

.

(5)

We end this section by a brief comment about the optimization of the weights wt in

(3) and (5). Although (numerical) constrained optimization techniques may be used, we

consider the algorithm of Conflitti et al. (2012). This iterative algorithm is easy to implement

works well even when the number of forecasts to combine gets large. See Appendix A for

more details.

3 Models and distributions

This study focuses on density forecasting in the context of univariate volatility models.

We consider several classes of models, including the standard GARCH model of Bollerslev

(1986) and the Threshold GARCH extension of Glosten et al. (1993), the HEAVY model

of Shephard and Sheppard (2010), the Realized GARCH model of Hansen et al. (2012)

and the GAS model of Creal et al. (2013). All models are based on the following general

specification for yt, the return for a financial asset at day t:

yt = µ+
√

htzt, with zt|It−1 ∼ D(0, 1), (6)
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where µ denotes the conditional mean of the returns, ht the conditional variance and zt

the standardized unexpected return following a certain conditional distribution D(·) with

mean zero and unit variance. For ease of exposition, we assume the conditional mean

is constant over time, although it could easily be extended to a time-varying mean µt.

Further, It denotes the information set up to and including time t. The following subsections

differentiate between various specifications for the dynamics of ht and possible choices for

the conditional return density function D(·).

3.1 Univariate volatility models

The first model we consider is the traditional GARCH(1,1) model (Bollerslev, 1986) for the

conditional variance ht:

ht = ω + α(yt−1 − µ)2 + βht−1, (7)

with ω > 0, α > 0 and β > 0 to ensure a positive variance. The past squared demeaned

return in this model is the innovation for the conditional variance. We also consider the

Threshold GARCH model of Glosten et al. (1993), which is given by

ht = ω + α(yt−1 − µ)2 + γ(yt−1 − µ)2I[yt−1 − µ < 0] + βht−1. (8)

This model captures the so called ‘leverage effect’, which is often empirically found in

stock returns: a negative return increases volatility more than a positive return of the

same magnitude. Although many extensions of the GARCH model are proposed (e.g. the

EGARCH model Nelson, 1991), we only consider this extension because of its popularity.

We restrict also the other considered model classes in this study to the basis specification,

although many variants/extensions are possible. The reason is that the main goal is to

compare model classes combined with distributions, and not models within a specific class.

Creal et al. (2013) develop a broader set of models which also includes the GARCH model

of (7), namely the Generalized Autoregressive Score (GAS) models. The key property of

these models is that innovations for time-varying parameters are based on the score of the
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probability density function at time t.2 In terms of our univariate volatility models, the

time-varying parameters are the conditional variances ht. The GAS(1,1) model proposes

the following structure for ht:

ht = ω + αst−1 + βht−1,

st = Qt∇t, (9)

∇t =
∂ log p(yt|ht, It−1θ)

∂ht

,

with p(yt|ht, It−1, θ) the conditional return density, θ the parameter vector, ∇t the score and

Qt a scale factor. We follow Creal et al. (2013) and define the scale factor as 1/Et−1[∇2
t ],

where Et denotes the expectation with respect to the return density p(yt|ht, It−1, θ). For

example, when the returns yt follow a conditional Normal distribution, the GAS model

corresponds exactly to the GARCH(1,1) model of (7).3 In case of a fat-tailed Student-t

distribution for yt, the score based volatility model reads

ht = ω + α(1 + 3/ν)
ν + 1

(ν − 2) + (yt−1−µ)2

ht−1

(yt−1 − µ)2 + βht−1, (10)

and will be labeled as the GAS-t model. The specification downweights the more extreme

observations, in the sense that if the distribution is more heavy tailed, it is less likely that an

extreme observation is due to an increase in volatility. Note that this is a function of ν; when

ν → ∞, (10) converges to the GARCH(1,1) model of (7). We again impose ω > 0,α > 0

and β > 0 in the estimation of the parameters.

The third and fourth model classes in this study include realised measures to describe

the dynamics of daily volatility. A realised measure is a high-frequency estimator of the

variance of a particular asset return during the times the asset is trade on an exchange. For

example, the realised variance (RV) for a particular day sums the squared returns during

a specific intra-day period. The intuition is that realised measures are a more accurate

estimate of daily volatility than the squared daily return, as used in the GARCH models

2Note that we use the term ‘score’ twice: (i) a number that is assigned to measure density forecasts
and (ii) here in the GAS models to indicate the derivative of the logarithm of the density with respect to a
certain parameter.

3When yt ∼ N(0, ht), ∇t = −0.5h−1

t + 0.5h−2

t y2t and Qt = 2h2
t . Hence the GAS model becomes

ht = ω + α(y2t − ht) + βht, which is equivalent with the GARCH model of (7).
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(see Andersen et al., 2003).

A recently developed model that explicitly introduces high-frequency estimators in daily

volatility models is the HEAVY model of Shephard and Sheppard (2010). In particular, this

model assumes the following structure for the conditional variance ht and the expectation

of the realised measure ξt = E[RMt|It−1]:

ht = ω + αRMt−1 + βht−1, (11)

ξt = ωR + αRRMt−1 + βRξt−1. (12)

All parameters should be positive to avoid negative values of ht and ξt. The Heavy model

is seen to consist of a GARCH structure for both ht and ξt, with RMt as innovation term.

One may also include the squared (demeaned) daily return in (11), however in practice the

estimate of the corresponding parameter is generally close to zero and insignificant, as noted

by Shephard and Sheppard (2010). Equation (12) “completes” the system, in the sense that

without this equation one can only perform one-step ahead forecasts of the conditional

variance h from (11) since future values of the realised measure are unknown at time t.

A second model that relates conditional volatility with realised measures is the Realized

GARCH model (RGARCH) of Hansen et al. (2012). The basic specification is given by:

ht = ω + αRMt−1 + βht−1, (13)

RMt = δ + φht + τ(zt) + ut, (14)

with τ(zt) the leverage function, defined in the basic form as τ1zt+ τ2(z
2
t −1). This function

allows for the empirical finding that negative and positive shocks may have a different

impact on the volatility. Except τ1, which is typically negative, all parameters are restricted

to be positive. The dynamics for ht are similar for both the HEAVY and RGARCH model,

however the difference arises in the specification of (the expectation of) RMt. The HEAVY

model proposes a GARCH structure for E[RMt|It−1], while the RGARCH model explicitly

relates RMt to the conditional variance at time t and additionally introduces a leverage

component.
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3.2 Conditional distributions

We consider four possible distributions D(·) of zt in (6), which corresponds with the condi-

tional density of the returns yt . The starting point is the conditional Normal distribution,

since this distribution is simple and often used. However, to take into account possible con-

ditional non-normality, skewness, and excess kurtosis, we also allow the return yt to follow

a Student-t distribution with mean µ, variance ht and ν degrees of freedom. That is,

f(yt|µ, ht, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√

ht(ν − 2)π

(

1 +
(yt − µ)2

ht(ν − 2)

)

−
ν+1

2

. (15)

The degrees of freedom ν is treated as an unknown parameter and is estimated together with

the volatility parameters. In addition, ν > 2 is required to ensure a existing variance. The

excess kurtosis of the Student-t distribution is equal to 6/(ν − 4), hence it is only defined if

ν > 4. In general, a lower value of ν implies a more fat-tailed distribution. Third, we consider

the Laplace distribution, which also exhibits fatter tails than the Normal distribution, but

does not involve additional parameters:

f(yt|µ, ht) =
1√
2ht

exp

(

−
√
2
|yt − µ|√

ht

)

(16)

with again mean µ and variance ht. Finally the Skewed-t distribution of Hansen (1994)

enables returns to be distributed asymmetrically, in contrast to the three symmetric distri-

butions discussed above. For a zero mean and unit variance variable zt = (yt − µ)/
√
ht, the

distribution reads

f(zt;λ, ν) =







bc
(

1 + 1
ν−2

( bzt+a
1−λ

)2
)

−
ν+1

2 , if zt < −a
b
,

bc
(

1 + 1
ν−2

( bzt+a
1+λ

)2
)

−
ν+1

2 , if zt ≥ −a
b
,

(17)

with

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, and c =

Γ(ν+1
2
)

√

π(ν − 2)Γ(ν
2
)

such that f(yt|µ, ht, ν, λ) = 1/htf(zt;λ, ν). Further, λ is the skewness parameter and ν

again represents the degrees of freedom. A (positive) negative value of λ indicates (positive)
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negative skewness.

Table 1 summarizes the various choices for the dynamics of the conditional variance ht

and a conditional distribution D(·), both defined in the general specification for the daily

return of (6). For the GARCH(1,1), TGARCH(1,1), HEAVY and RGARCH models, we

estimate their parameters in combination with the assumption of the four described condi-

tional distributions of this section (i.e. Normal, Student-t, Laplace and Skewed-t). Further,

we assume a Student-t and Laplace distribution for the GAS models. This delivers 18 mod-

els in total. We estimate all models by Maximum Likelihood. This is not a computationally

involved step, since we are dealing with univariate models with a maximum of 8 parameters

(RGARCH models) to be estimated. In addition, we can estimate the HEAVY parameters

of (11) and (12) separately, see Shephard and Sheppard (2010) for more details.

Table 1: Overview of volatility models and conditional distributions
This table reports the various choices for the dynamics of the conditional variance ht and the possible
conditional distributions D(·), both apparent in the general specification of (6). An “x” (“-”) denotes that
an particular specification together with a conditional distribution is (not) chosen.

Normal Student-t Laplace Skewed-t
GARCH(1,1) x x x x
TGARCH(1,1) x x x x
GAS(1,1) xa x x -b

Heavy x x x x
RGARCH x x x x
a The GAS(1,1) model with Normal distributed errors is the
same as the GARCH(1,1) model with Normal errors.
b The GAS(1,1) with Skewed-t distributed errors is not devel-
oped yet, and is we leave it therefore as a topic of further research.

4 Application

This section contains the application of our new method of combining density forecasts in

the context of univariate volatility models. In the following subsections, we discuss the data

and implementation details, the evaluation of the density forecasts and finally the results.
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4.1 Data and implementation details

We apply the volatility models of Section 3 to daily returns from four major stock market

indexes: S&P 500, DJIA, Nikkei and the FTSE. The sample period goes from January 3,

2000 until June 28, 2013. Daily returns as well as their corresponding realized measures

are obtained from the Oxford-Man Institute’s ‘realised library’.4 We follow Shephard and

Sheppard (2010) and use the realised kernel (see Barndorff-Nielsen et al., 2008) as the

realised measure at time t (RMt). When the exchange is closed, days are deleted from the

sample.5 Figure 1 shows the dynamics of the S&P 500 index and Japanese Nikkei equity

index, together with the square root of the realised kernel estimate of the daily variance.

The dynamics of both indexes are quite similar, however the Nikkei index contains more

downward spikes (e.g. the 2011 Tohoku earthquake). Nevertheless, both return graphs

clearly show the presence of conditional heteroskedasticity, since calm periods and periods

of high volatility occur in an alternating pattern. Similar alternating patterns are observed

for the FTSE and DJIA indexes.

We apply a rolling window scheme to estimate the model parameters and construct

density forecasts. More specifically, we use an estimation window of approximately 3 years

(Test = 750 observations), estimate the model parameters and construct 1- until 5-step ahead

forecasts of ht at each time t (t = Test, Test + 1, . . . , T − 5). Given these forecasts, we also

construct the corresponding 1- and 5-step ahead density forecasts. After 750 subsequent

density forecasts (Tw = 750) have been obtained for each model, we optimize (3) and (5)

to obtain wt. In case of the csl score function, we define the region Bt as the left tail

yt < r̂κt with r̂κt the κth quantile of the empirical CDF of the 750 returns corresponding

with the estimation window Test. We repeat also this optimization by means of a rolling

window scheme with a window of Tw density forecasts evaluations at each time t (t =

Test + Tw + 1, Test + Tw + 2, . . . , T − 5). We choose κ equal to 0.15 and 0.25 respectively.

We choose Test = 750 such that there is a sufficient number of observations for parameter

estimation of the models. Further, we emphasize the trade-off in the choice of κ. Given

our interest in the left tail, we should take a small value of κ. However, the corresponding

4See http://realized.oxford-man.ox.ac.uk/
5We have to delete 1-1.5% of the days on the S&P500, DJIA and FTSE index and 3% in case of the

Nikkei index.
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Figure 1: Daily returns and realised measures
This figure depicts the daily (close-to-close) returns on the S&P 500 index and the Nikkei index (upper part) and a realised kernel estimate of the
corresponding daily (open-to-close) volatility (bottom part) from January 3, 2000, through June 27, 2013 (3,364 and 3,206 observations respectively). Both
daily returns and volatilities are given in percentages.

2001 2003 2005 2007 2009 2011 2013

−10

−5

0

5

10

S&P 500 returns

2001 2003 2005 2007 2009 2011 2013

−10

−5

0

5

10

Nikkei returns

2001 2003 2005 2007 2009 2011 2013
0

2

4

6

8

10
S&P 500 realised kernel

2001 2003 2005 2007 2009 2011 2013
0

2

4

6

8

10
Nikkei realised kernel

13



number of observations in the region of interest becomes very low, such that the variation

in the csl scores of the different models declines.6 Similarly, there is a trade-off in the

choice of Tw. On the one hand, one would choose Tw as high as possible in order to use

the largest amount of available observations to compute the weights wt. But on the other

hand, if the relative performance of different models varies through time, one should take

this into account and choose a smaller value of Tw. In addition, Tw and κ are related in

the sense that a low value of κ combined with a small window results in a small amount

of observations within the region Bt. Hence given these trade-offs and the relation between

those two variables, we choose Tw and κ as 750 and 0.15 (0.25) such that there are 112 (187)

observations in the left tail.

4.2 Evaluation

We assess the accuracy of our (combined) density forecasts in two ways. First, we focus

purely on the predictive density in the left tail and investigate statistically whether pooling

based on censored densities adds any value. Following Diks et al. (2011), we test the null

hypothesis of equal performance of two density forecasts pt(yt; It−1, Ai) and pt(yt; It−1, Aj)

based on the scoring rule of (4).7 That is, given a sample of density forecasts and corre-

sponding realizations for m periods, define the relative score dt as

dt = Scsl(yt;Ai)− Scsl(yt;Aj) (18)

with corresponding null-hypothesis H0 : E[dt] = 0 for all m periods. The resulting Diebold

and Mariano (1995) test-statistic is then given by

tm =
d̄m

√

σ̂2
m/m

, (19)

with d̄m the sample average of the score differences and σ̂2
m a HAC-consistent variance

estimator of the true variance σ2
m of dt. A positive value means that the density forecasts in

6Recall that if yt is outside the region Bt with Bt the left tail yt < r̂κt , the csl score is the cdf of yt in
the complement of the region.

7In case we consider density forecasts using combinations, the density forecast is given by
∑n

i=1
witpt(yt; It−1, Ai).
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the tail of model Ai are more accurate than the corresponding density forecasts of model Aj.

This test allows for parameter estimation uncertainty and fits the framework of Giacomini

and White (2006), who show that the use of a rolling window of m past observations for

parameter estimation simplifies the asymptotic theory of tests of equal predictive accuracy.

Moreover, the test allows to compare density forecasts of both nested and non-nested models.

The second way to explore the additional value of using censored densities in this study is

based on 1- and 5-day Value-at-Risk (VaR) estimates. For the individual models considered

in this study, the 1-day VaR estimate reads

V aR1−q
t = µ+ zq

√

ht, (20)

with µ the estimated conditional mean return, ht the (forecasted) conditional variance, and

zq represents the q-th quantile of the assumed cdf. However, we cannot apply (20) when our

predictive distribution is a combination of individual distributions.8 This also holds for the

h-day (h ≥ 2) VaR estimates if the assumed distribution is non-Normal. We use simulation

techniques to overcome this issue. That is, we simulate daily returns from each individual

model/distribution according to the assigned weight (and conditional variance) to obtain

the required quantile of the total distribution to compute the (1− q)% VaR.

Finally, we test the accuracy of the VaR estimates by focusing on two aspects. First,

we assess the frequency of the VaR violations with the unconditional coverage (UC) of

Kupiec (1995) and Christoffersen (1998). These tests compare the actual with the expected

number of violations. In addition, we test whether the violations occur in clusters by means

of the Independence test (Ind) of Christoffersen (1998). In order to apply both tests on the

estimated 5-day VaRs, we create first 5 different sub-series to avoid any overlap. Thus, sub-

series j contains the estimates {V aR1−q
j , V aR1−q

j+5, V aR1−q
j+10, . . .} for j = 1, . . . , 5. According

to the suggestion of Diebold et al. (1998), we use Bonferroni bounds for the 5 sub-series.

That is, we assume that the VaR series has autocorrelation up to and including lag 4 (since

we make 5-step ahead predictions of ht on a daily basis), whereas each sub-series should

have correct coverage and independent VaR violations. Hence we therefore backtest each

sub-series separately with a size of α/5, with α the used significance level. Rejecting the

8The VaR of a mixture of densities is not equal to the weighted average of each individual VaR.

15



null hypothesis of unconditional coverage/independence occurs when the null is rejected

for any of the 5 sub-series. Second, we compare the 1-day VaR estimates of two different

methods/models using the following asymmetric linear (tick) loss function of order q, which

is also used in the Conditional Predictive Ability (CPA) test of Giacomini and White (2006):

L
q
Ai
(et) = (q − I[et < 0])et, (21)

where q = 5% and 10% and et = yt − V aR1−q
t . The loss function is asymmetric in the sense

that if there occurs a violation (i.e. et < 0)) the negative number q − 1 is multiplied by the

magnitude of the violation et, resulting in a penalization of (1− q)× et. In contrast to this,

if there is no violation, the loss is equal to q × et, which is considerable lower.9 Hence a

model Ai is more penalized when a VaR violation is observed. The larger the magnitude

of this violation, the larger the penalization. Similar to the density forecasts, we define the

relative loss as

dqt = L
q
Ai
(et)− L

q
Aj
(et) (22)

and consider again a Diebold and Mariano (1995) type statistic as given in (19). A negative

value of the unconditional mean of dqt means that on average the VaR estimates of model

Ai are better than the corresponding estimates of model Aj .

4.3 Results

In this subsection, we present both the statistical and economic results. In order to interpret

these results, we first present the weights which are obtained by optimizing the log score

function (3) and the csl score function as given in (5). Figure 2 shows the result of the

iterative process of optimizing weights according to both score functions. The sub-graphs

depict the dynamics of the weights using daily returns from the DJIA index according to the

18 models listed in Table 1.10 The upper panel of the figure corresponds with the log score

function, while the lower panel corresponds with the csl score function with κ = 0.25. The

9Suppose the 95% 1-day VaR of model A and B are equal to -5% and -8% respectively, while the actual
return is -6%. The loss associated with model A is equal to (0.05− 1)(−1) = 0.95, while the loss of model
B is equal to (0.05− 0)(−2) = 0.10.

10Figure B.1 in Appendix B provides weights corresponding to the other three stock market indexes.
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upper panel shows that using the log score function results in a large weight for the Heavy

model with Skewed-t distributed errors until mid 2007. Subsequently, the weight of the

Heavy Skewed-t model declines to zero and there is room for the TGARCH and RGARCH

models with skewed-t errors. The years 2010-2012 combines almost four models, where

the Heavy model with normal and Laplace distributed returns getting the most weights.

Nevertheless, the Heavy Skewed-t model appears again and dominates from 2012 onwards,

with a subsequently minor role for the Threshold GARCH Laplace model.

A rather different dynamic pattern arises from the lower part of Figure 2, i.e. when the

csl score function is optimized. Although the graph is similar in the sense that the Heavy

Skewed-t model dominates the other models during 2006 and since 2012, the years 2008-

2012 show two main differences. First, the GARCH and RGARCH models with skewed-t

distributed errors have more impact in case of the csl score function during the period 2007-

2009. For example, the GARCH skewed-t model reaches a maximum weight of 0.49 at the

start of 2007. Second, the HEAVY Lap model almost dominates from 2010 until mid 2012,

while the upper figure attributes less weight to the Laplace distribution during 2011-2012.

To ease the interpretation of this finding, Figure 3 sums up the weights according to

each model class (upper part) and distribution (lower part), for both types of scoring rules.

It seems that in case of the log score function, the Heavy model dominates the remaining

models, with an important role for the Skewed-t distribution. In contrast to this, focusing of

the left tail of the distribution does lead to more influence of the RGARCH class of models.

While Figure 2 indicates the most weight for the HEAVY class of models during 2010-2012,

it seems that in aggregation the most weight goes to the RGARCH models. Furthermore,

the Laplace distribution is more apparent during the years 2009-2012, with a climax at the

start of 2012. Finally, both the Laplace and Normal distribution characterize 2012, while

the log score function allocates the most weight to the Skewed-t distribution in that year.

4.3.1 Statistical results

Table 2 provides the importance of pooling of censored densities by showing results of

the t-test on equal predictive accuracy, as provided in(19). We test equal accuracy of the

combined density forecasts based on the csl score function and based on the log score

function. In addition, we test the accuracy of the individual censored density of each
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Figure 2: Pooling weights DJIA index
This figure depicts the evolution of weights based on optimizing the logarithmic score function (upper
part) of (3) or the csl score function (bottom part) of (5) with a moving window of T = 750 one-step
ahead evaluated density forecasts using daily returns of the DJIA Index. In case of the csl score function,
Bt represents the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of the moving
estimation window of 750 returns. The labels refer to the models that have the highest weight at a given
period. The abbreviations “ST”, “Lap” and “N” stand for Skewed-t, Laplace and Normal respectively.
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Figure 3: Pooling weights per model and distribution
This figure sums up the optimized weights per model class (top panels) and distribution (bottom panels) based on optimizing the logarithmic score function
(left part) of (3) or the csl score function of (5) (right part) with a moving window of T = 750 one-step ahead evaluated density forecasts using daily
returns of the DJIA Index. In case of the csl scoring function, Bt represents the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of
the moving estimation window of 750 returns.
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competing model. Panel A reports HAC-based t-statistics of the test of equal accuracy

of density forecasts made by means of combination, using the csl or log score function of

Section 2. As a benchmark, we consider also the case of equal weights assigned to each

competing density. A positive number corresponds with more accurate density forecasts of

the forecast method based on the csl score function. The table suggests that (except for the

FTSE returns), combined forecasts based on the csl score function statistically outperform

the density forecasts based on the log scoring rule, especially in case of one-step ahead

forecasts. In addition, the combined density forecasts using equal weights are also improved,

as indicated by the positive numbers. This improvement is statistically significant for the

FTSE returns for both κ = 0.15 and 0.25 (2.58, 3.07, 4.00 and 4.72) and the NIKKEI index

when κ = 0.25 (1.65). The final part of Panel A addresses the potential loss made when the

accuracy is tested by means of the log score, while the weights are based on the csl score

function. For the U.S. stock market indexes, the csl weights still outperform the weights

based on the log score function, which in particular holds for the 5-step ahead forecasts. The

opposite holds for the FTSE returns. All in all, there is a strong indication that (combined)

density forecasts in the left tail significantly improves when using weights based on the csl

score function compared to using weight based on the log score function. The improvement

is less strong when compared to using equal weights. Finally, using only the left tail to

forecast the whole density does not always imply less accurate density forecasts.

Panel B shows test results of using combined forecasts based on the left tail and the

individual censored density forecasts. In general, using the csl score function results sta-

tistically in better density forecasts, as indicated by the positive numbers. This holds in

particular when κ = 0.25.11 Even if the null hypothesis cannot be rejected for a particular

model, this result is not consistent for all data sets. For example, the Heavy Laplace model

performs well in case of the U.S. stock market indexes, but is statistically beaten in case

of the FTSE returns. In general, there is no striking difference between the results drawn

from the 1-step and the 5-step ahead density forecasts. Interestingly, considering the S&P

500 and DJIA indexes in the upper part of Panel B, the RGARCH model with Normal or

11Table B.1 in Appendix B provides results where the weights are based on the log score function. The
results indicate that the pooled density forecasts do not add any value in case of the S&P 500, DJIA and
Nikkei indexes. Only in case of the FTSE index, there is evidence that the combined density forecasts
statistically outperform the individual density forecasts.
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Table 2: Evaluation of 1- and 5-day ahead censored density forecasts
This table reports results of testing equal predictive accuracy using the censored likelihood and log scoring
rule of (4) and (1). In case of the csl score function, Bt represens the left tail yt < r̂κ with r̂κ the κth
quantile of the empirical CDF of the in-sample returns. We set κ equal to 0.15 and 0.25 respectively. The
weights are repeatedly optimized based on a moving window of 750 evaluated density forecasts. The test
statistic is given in (19). Panel A compares combined density forecasts where the weights are based on
the csl score function, log score function or each competing model gets the same weight. In Panel B, we
test equal predictive accuracy of combined density forecasts and density forecasts of each competing model
using the csl score function, where the weights of the combined density forecasting are also based on the
csl score function. All models are estimated with a moving window of 750 daily returns from the S&P500,
DJIA, FTSE and Nikkei index through the period January, 2000 - June, 2013. The test statistics are
based on HAC-based standard errors and 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei)
out-of-sample observations respectively.

Panel A: Comparison of combined forecasts
1-step ahead forecasts 5-step ahead forecasts

S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

Loss function: csl score function
κ = 0.15

csl vs log 3.46∗∗∗ 3.84∗∗∗ 0.31 2.81∗∗∗ 4.13∗∗∗ 4.25∗∗∗ −0.65 2.08∗∗

csl vs eqw 1.12 1.17 2.58∗∗∗ 1.03 0.67 1.04 3.07∗∗∗ 0.41
κ = 0.25

csl vs log 3.11∗∗∗ 3.66∗∗∗ −0.71 2.17∗∗ 3.36∗∗∗ 3.62∗∗∗ −0.41 1.61
csl vs eqw 1.33 1.54 4.00∗∗∗ 1.65∗ 0.43 0.79 4.72∗∗∗ 0.79

Loss function: log score function
κ = 0.15

csl vs log 0.71 0.83 −2.84∗∗∗ −0.20 3.31∗∗∗ 2.30∗∗ −4.69∗∗∗ −0.10
κ = 0.25

csl vs log 1.75∗ 2.55∗∗ −3.05∗∗∗ 0.06 2.84∗∗∗ 2.11∗∗ −3.21∗∗∗ 0.63

Panel B: Pooled (csl score function) vs. individual
κ = 0.15

GARCH N 3.23∗∗∗ 3.25∗∗∗ 4.25∗∗∗ 2.26∗∗ 2.28∗∗ 2.36∗∗ 3.83∗∗∗ 2.00∗∗

GARCH T 3.26∗∗∗ 3.04∗∗∗ 4.36∗∗∗ 2.30∗∗ 1.58 1.55 4.47∗∗∗ 1.50
GARCH Lap 1.52 1.53 4.59∗∗∗ 2.72∗∗∗ 0.17 0.41 4.39∗∗∗ 1.14
GARCH ST 6.03∗∗∗ 5.77∗∗∗ 3.09∗∗∗ 3.72∗∗∗ 6.23∗∗∗ 5.95∗∗∗ 2.64∗∗∗ 3.41∗∗∗

TGARCH N 2.15∗∗ 2.39∗∗ 4.48∗∗∗ 1.79∗ 1.89∗ 2.17∗∗ 4.14∗∗∗ 1.90∗

TGARCH T 1.97∗∗ 2.09∗∗ 4.30∗∗∗ 2.67∗∗∗ 0.93 1.41 4.46∗∗∗ 1.71∗

TGARCH Lap 0.63 0.60 4.38∗∗∗ 2.37∗∗ −0.56 −0.14 4.18∗∗∗ 0.52
TGARCH ST 5.59∗∗∗ 5.36∗∗∗ 2.26∗∗ 3.81∗∗∗ 5.73∗∗∗ 5.64∗∗∗ 1.61 3.55∗∗∗

HEAVY N 1.39 1.48 3.25∗∗∗ 1.34 1.54 1.46 3.63∗∗∗ 1.57
HEAVY T 0.85 1.14 3.08∗∗∗ 0.29 0.25 0.52 3.92∗∗∗ 1.23
HEAVY Lap −0.30 −0.13 3.30∗∗∗ 0.26 −1.00 −0.72 3.48∗∗∗ −0.02
HEAVY ST 5.33∗∗∗ 4.96∗∗∗ 0.22 3.31∗∗∗ 5.56∗∗∗ 4.98∗∗∗ 0.21 2.89∗∗∗

RGARCH N 1.42 1.40 3.60∗∗∗ 2.20∗∗ 3.06∗∗∗ 2.89∗∗∗ 5.70∗∗∗ 3.31∗∗∗

RGARCH T 1.11 1.02 3.68∗∗∗ 1.40 2.65∗∗∗ 3.06∗∗∗ 5.62∗∗∗ 2.85∗∗∗

RGARCH Lap 0.12 0.19 3.79∗∗∗ 3.11∗∗∗ 1.50 1.87∗ 4.88∗∗∗ 3.57∗∗∗

RGARCH ST 5.19∗∗∗ 4.91∗∗∗ −1.29 5.35∗∗∗ 6.67∗∗∗ 6.69∗∗∗ 1.13 6.00∗∗∗

GAS T 3.05∗∗∗ 2.77∗∗∗ 4.36∗∗∗ 2.09∗∗ 1.75∗ 1.31 4.53∗∗∗ 1.75∗

GAS Lap 1.47 1.60 4.56∗∗∗ 2.58∗∗∗ 0.18 0.40 4.42∗∗∗ 1.07
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(continued from previous page)

1-step ahead forecasts 5-step ahead forecasts
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

κ = 0.25
GARCH N 3.74∗∗∗ 3.86∗∗∗ 5.83∗∗∗ 2.53∗∗ 2.48∗∗ 2.51∗∗ 4.86∗∗∗ 2.09∗∗

GARCH T 3.71∗∗∗ 3.66∗∗∗ 5.94∗∗∗ 3.11∗∗∗ 1.51 1.53 5.91∗∗∗ 2.01∗∗

GARCH Lap 1.90∗ 2.08∗∗ 5.58∗∗∗ 3.37∗∗∗ 0.04 0.34 5.50∗∗∗ 1.65∗

GARCH ST 6.02∗∗∗ 5.62∗∗∗ 2.63∗∗∗ 3.25∗∗∗ 5.64∗∗∗ 5.38∗∗∗ 2.56∗∗ 3.08∗∗∗

TGARCH N 2.93∗∗∗ 3.24∗∗∗ 6.26∗∗∗ 1.99∗∗ 2.28∗∗ 2.47∗∗ 5.28∗∗∗ 1.99∗∗

TGARCH T 2.80∗∗∗ 3.08∗∗∗ 6.00∗∗∗ 3.36∗∗∗ 1.27 1.69∗ 5.91∗∗∗ 2.10∗∗

TGARCH Lap 1.18 1.36 5.40∗∗∗ 3.07∗∗∗ −0.50 −0.05 5.34∗∗∗ 1.08
TGARCH ST 5.31∗∗∗ 4.92∗∗∗ 1.90∗ 2.91∗∗∗ 4.97∗∗∗ 4.80∗∗∗ 1.66∗ 2.95∗∗∗

HEAVY N 2.14∗∗ 2.35∗∗ 5.21∗∗∗ 1.52 2.06∗∗ 2.02∗∗ 5.11∗∗∗ 1.65∗

HEAVY T 1.66∗ 2.34∗∗ 4.92∗∗∗ 1.28 0.83 1.26 5.70∗∗∗ 1.53
HEAVY Lap 0.20 0.75 4.45∗∗∗ 1.41 −0.86 −0.34 4.87∗∗∗ 0.81
HEAVY ST 5.04∗∗∗ 4.54∗∗∗ −1.07 2.33∗∗ 5.25∗∗∗ 4.56∗∗∗ −0.08 2.49∗∗

RGARCH N 2.57∗∗ 2.67∗∗∗ 5.67∗∗∗ 2.52∗∗ 3.97∗∗∗ 3.55∗∗∗ 7.18∗∗∗ 3.55∗∗∗

RGARCH T 2.26∗∗ 2.23∗∗ 5.53∗∗∗ 2.40∗∗ 3.46∗∗∗ 3.40∗∗∗ 7.32∗∗∗ 3.45∗∗∗

RGARCH Lap 0.65 0.86 4.86∗∗∗ 3.81∗∗∗ 1.30 1.67∗ 6.12∗∗∗ 4.11∗∗∗

RGARCH ST 5.60∗∗∗ 5.44∗∗∗ −1.67∗ 7.41∗∗∗ 8.37∗∗∗ 8.13∗∗∗ 1.98∗∗ 8.39∗∗∗

GAS T 3.45∗∗∗ 3.41∗∗∗ 5.92∗∗∗ 2.85∗∗∗ 1.70∗ 1.35 5.99∗∗∗ 2.19∗∗

GAS Lap 1.82∗ 2.11∗∗ 5.54∗∗∗ 3.34∗∗∗ 0.01 0.28 5.55∗∗∗ 1.69∗

Student-t distributed errors produces accurate 1-step ahead density forecasts, while fore-

casting 5 steps ahead results in inaccurate forecasts compared to pooled density forecasts

with weights based on the 15th quantile of the in-sample return distribution.

We take a closer look to the statistical results in Table 3, which lists results of equal

predictive accuracy using the csl score function, but now across different model classes and

distributions. All subsets are tested against the combined density forecasts using all 18

models. A positive number again means relatively better density forecasts by the combined

method. Considering model classes, t-statistics corresponding with the model classes in-

cluding realised measures produce accurate 1-step ahead density forecasts. This effect is

stronger is somewhat stronger when κ = 0.15. The RGARCH model performs worse than

the HEAVY model - especially when 5-step ahead forecasts are made - which could be due

to more parameter uncertainty since 8 parameters has to be estimated, while the HEAVY

models requires only 3 or 6 parameters.

Turning to the performance across various distributions, the Laplace distribution pro-

duces statistically the best forecasts, as suggested by the minus sign of the t-statistic. How-

ever, also the Normal and Student-t distribution does a good job when κ = 0.15, since

the combined method is not able to consistently beat these distribution. However, when
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the 0.25th quantile is used to generate 1-step ahead density forecasts, t-statistics of 2.11,

1.91, 2.35 and 2.19 indicate that the Normal and Student-t distribution are significantly

outperformed. Only the Skewed-t distribution is statistically outperformed by using all

combinations of models and distributions for both values of κ, except for the FTSE returns.

This is consistent with the figures shown earlier, as the skewed-t disappears during the years

2008-2011.

Table 4 reports additional evidence of the added value of pooling using the csl score

function, by providing the csl score over the out-of-sample period:

T
∑

t=1

log

[

n
∑

i=1

w∗

i,t−1

(

I[yt ∈ Bt] log pt(yt; It−1, Ai)

+ I[yt ∈ Bc
t ]

∫

Bc
t

pt(y; It−1, Ai)dy

)]

,

(23)

where w∗

i,t−1 is the optimized weight for model Ai at the end of trading day t − 1, based

on the evaluated density forecasts at time t − Tw through t − 1. In addition, we provide

corresponding values of the individual models with bold numbers the csl scores which are

exceeding the pooled csl score. The low amount of bold numbers indicates that the pooled

csl scores are higher than the csl scores of most of the individual models. If this is not

the case, the differences are small, with a maximum difference of 9 points (S&P 500, 5-

step ahead forecasts with κ = 0.25). Further, the csl score of our pooling method are

higher than the scores of the remaining 17 models (16 in case of the U.S. stock market

indexes), with differences that can be quite substantial. For example, if one favours the

best performing individual model, i.e. the Heavy Laplace model, this results in a loss of 41

or 42 points with respect to the pooled csl score based with κ = 0.15 in case of the FTSE

data set. Finally, there is quite some positive difference between the csl scores of pooling

with weights based on the csl score function and simply using equal weights. For the U.S.

and Japanese indexes, the difference is on average around 8 points, however in case of the

FTSE index, the difference increases to 20 (κ = 0.15) or 45 (κ = 0.25) points respectively.

Note that the table relates to Table 2, in the sense that a negative t-stat of a particular

model corresponds with a higher csl score of that model than the pooled csl score. We refer

to Table B.2 in Appendix B for similar type of results regarding the log scores.
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Figure 4: Censored likelihood scores w.r.t. individual models
This figure depicts the cumulative sum of the difference of the censored likelihood score corresponding with
one-step ahead density forecasts of the pooled densities and the csl score of the three competing individual
models according to Table 4. The weights of the pooled densities are based on maximizing the csl score
function of (5) with a moving window of 750 evaluated density forecasts, using daily returns of the DJIA
index. Further, Bt the left tail yt < r̂0.25 with r̂0.25 the κth quantile of the empirical CDF of the in-sample
returns.
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Figure 4 illustrates the evolution of the cumulative gain in the csl scores of Table 4

through time. In particular, it shows the cumulative difference of the csl scores corre-

sponding with the combined density forecasts relative to the csl scores of the TGARCH

Skewed-t model, the Heavy Laplace model and the combined density forecasts based on

equal weights. The figure shows two different patterns. First, the gain of pooling with

respect to the HEAVY Laplace model and the equal weighted combination method occurs

mainly during the first years, decreases during the crisis period and increases slowly from

2009 onwards. Second, pooling does not add much value with respect to the Skewed-t dis-

tribution during the first years. However, the gain becomes striking at the end of 2008 and

in 2011. This result is related with Figure 3, as the Skewed-t distribution dominates all the

other distributions until the end of 2009.

4.3.2 Economic results

Tables 5 and 6 shed light on the economic impact of pooling (censored) density forecasts

in the context of VaR estimates. For each data set, we first compare the frequency and

independence of the VaR violations corresponding with the combined densities based on

pooling, either using the csl or log scoring rule or using equally weights. The latter can be

seen as a benchmark. We report results of two approaches based on equal weights. The

first approach takes into account that the VaR of a mixture of densities is not equal to the

weighted VaR of the individual densities, while the second approach ignores this fact and

simply takes the average of all individual VaR’s, as also done in Giacomini and Komunjer

(2005). We label these approaches as eqw(1) and eqw(2) respectively. Second, we show

results of each individual model per data set. Furthermore, we compare the accuracy of

the 1-day VaR estimates based on the csl scoring rule with VaR estimates from any other

pooling method or from any individual model by applying a t-test based on the asymmetric

tick loss function of (22). A negative number indicates that the pooled csl based VaR

estimates are more accurate. Apart from this test, both tables contain the same type of

results, although Table 5 focuses on the 1-day VaR estimates, while Table 6 provides results

of the 5-day VaR estimates.

Three main conclusions are apparent from Table 5. First, the VaR estimates correspond-

ing with our new proposed technique outperform the benchmark of using equal weights, both
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Table 3: Predictive accuracy per model class and distribution
This table reports results of testing equal predictive accuracy using the censored likelihood scoring rule of
(4), with Bt represens the left tail yt < r̂κ with r̂κ the κth quantile of the empirical CDF of the in-sample
returns. We set κ equal to 0.15 and 0.25 respectively. The weights are repeatedly optimized based on
a moving window of 750 evaluated density forecasts. The test statistic is given in (19). The table tests
combined density forecasts based on each model class/distribution against density forecasts based on all
models and distributions, where the weights of the each combined density forecast are also based on the
csl score function. All models are estimated with a moving window of 750 daily returns from the S&P500,
DJIA, FTSE and Nikkei index through the period January, 2000 - June, 2013. The test statistics are
based on HAC-based standard errors and 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei)
out-of-sample observations respectively.

1-step ahead forecasts 5-step ahead forecasts
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

κ = 0.15
GARCH 3.05∗∗∗ 2.89∗∗∗ 3.66∗∗∗ 2.71∗∗∗ 1.33 1.52 3.35∗∗∗ 1.06
TGARCH 2.11∗∗ 1.82∗ 3.17∗∗∗ 2.66∗∗∗ −0.27 0.43 2.36∗∗ 0.24
HEAVY 0.19 0.09 1.26 −2.57∗∗ −1.49 −0.71 0.70 −0.48
RGARCH 0.12 0.25 −0.08 1.56 2.33∗∗ 2.75∗∗∗ 1.68∗ 3.01∗∗∗

GAS 2.78∗∗∗ 2.53∗∗ 4.21∗∗∗ 2.24∗∗ 1.25 1.00 4.35∗∗∗ 1.15
Normal 1.03 1.18 3.65∗∗∗ 1.40 1.63 1.71∗ 4.11∗∗∗ 1.93∗

Student t 0.90 0.91 3.61∗∗∗ −0.28 0.67 0.73 4.41∗∗∗ 0.52
Laplace −0.22 −0.01 3.54∗∗∗ 0.22 −0.73 −0.46 3.65∗∗∗ 0.21
Skewed t 5.20∗∗∗ 4.71∗∗∗ −1.49 3.62∗∗∗ 5.93∗∗∗ 5.51∗∗∗ −0.01 3.32∗∗∗

κ = 0.25
GARCH 3.86∗∗∗ 3.30∗∗∗ 4.19∗∗∗ 2.92∗∗∗ 0.62 1.34 4.12∗∗∗ 1.06
TGARCH 2.98∗∗∗ 2.21∗∗ 3.39∗∗∗ 2.52∗∗ −1.02 0.10 3.22∗∗∗ 0.18
HEAVY −0.53 −0.72 2.02∗∗ −3.62∗∗∗ −2.24∗∗ −0.92 1.25 −0.23
RGARCH 2.02∗∗ 2.15∗∗ 0.55 2.57∗∗ 2.35∗∗ 2.84∗∗∗ 2.61∗∗∗ 3.77∗∗∗

GAS 3.20∗∗∗ 2.89∗∗∗ 5.52∗∗∗ 2.89∗∗∗ 1.39 0.83 5.55∗∗∗ 1.58
Normal 2.11∗∗ 2.35∗∗ 5.54∗∗∗ 1.64 2.13∗∗ 2.24∗∗ 5.63∗∗∗ 2.10∗∗

Student t 1.91∗ 2.19∗∗ 5.36∗∗∗ 0.94 1.17 1.30 6.04∗∗∗ 1.08
Laplace 0.38 0.84 4.70∗∗∗ 1.40 −0.74 −0.13 5.02∗∗∗ 0.94
Skewed t 4.94∗∗∗ 4.50∗∗∗ −2.25∗∗ 3.05∗∗∗ 5.80∗∗∗ 5.21∗∗∗ 0.15 3.18∗∗∗
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Table 4: Censored likelihood scores
This table reports censored likelihood scores corresponding with individual models and combined models,
where the weights are based on optimizing the csl score function of (5), with Bt the left tail yt < r̂κ with
r̂κ the κth quantile of the empirical CDF of the in-sample returns. We set κ equal to 0.15 and 0.25. The
weights are repeatedly optimized based on a moving window of 750 evaluated density forecasts. In addition,
csl scores are reported of combined models using equal weights (eqw). The bold numbers represent the
scores exceeding the pooled csl score. All models are estimated with a moving window of 750 daily returns
from the S&P500, DJIA, FTSE and Nikkei index through the period January, 2000 - June, 2013. The
number of out-of-sample observations are equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766
(Nikkei)respectively.

1-step ahead forecasts 5-step ahead forecasts
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

κ = 0.15
GARCH N -1052 -1014 -1019 -1002 -1081 -1031 -1050 -1083
GARCH T -1030 -991 -1002 -937 -1038 -993 -1013 -956
GARCH Lap -1019 -980 -1001 -934 -1029 -984 -1009 -952
GARCH ST -1091 -1043 -964 -961 -1105 -1049 -973 -986
TGARCH N -1038 -1002 -1016 -1013 -1066 -1024 -1049 -1067
TGARCH T -1022 -984 -1001 -938 -1035 -994 -1016 -957
TGARCH Lap -1012 -972 -999 -933 -1023 -981 -1008 -948
TGARCH ST -1082 -1036 -959 -960 -1099 -1046 -967 -985
HEAVY N -1026 -990 -988 -979 -1055 -1005 -1027 -1061
HEAVY T -1013 -976 -983 -919 -1029 -986 -1006 -962
HEAVY Lap -1004 -966 -986 -919 -1019 -977 -1000 -944

HEAVY ST -1075 -1028 -946 -950 -1092 -1038 -959 -994
RGARCH N -1022 -981 -990 -1011 -1080 -1022 -1050 -1124
RGARCH T -1014 -974 -989 -931 -1049 -1007 -1022 -992
RGARCH Lap -1008 -969 -991 -951 -1040 -996 -1016 -1000
RGARCH ST -1075 -1028 -940 -986 -1109 -1059 -964 -1057
GAS T -1031 -991 -1005 -941 -1043 -993 -1015 -965
GAS Lap -1020 -981 -1001 -935 -1029 -984 -1010 -951
pooled csl -1007 -967 -945 -917 -1027 -982 -958 -944
eqw -1013 -974 -969 -923 -1031 -986 -983 -947

κ = 0.25
GARCH N -1480 -1443 -1364 -1338 -1507 -1458 -1398 -1421
GARCH T -1454 -1419 -1343 -1274 -1461 -1417 -1358 -1295
GARCH Lap -1440 -1404 -1336 -1273 -1447 -1405 -1348 -1291
GARCH ST -1505 -1459 -1270 -1281 -1521 -1468 -1286 -1312
TGARCH N -1468 -1433 -1363 -1349 -1495 -1454 -1399 -1405
TGARCH T -1448 -1414 -1343 -1275 -1459 -1420 -1361 -1295
TGARCH Lap -1433 -1397 -1334 -1272 -1441 -1401 -1347 -1287
TGARCH ST -1496 -1449 -1265 -1276 -1513 -1463 -1280 -1309
HEAVY N -1453 -1421 -1332 -1313 -1486 -1438 -1376 -1398
HEAVY T -1436 -1405 -1324 -1253 -1454 -1415 -1352 -1300
HEAVY Lap -1422 -1389 -1320 -1256 -1437 -1398 -1338 -1283
HEAVY ST -1485 -1439 -1244 -1265 -1511 -1460 -1266 -1318
RGARCH N -1454 -1414 -1336 -1349 -1517 -1458 -1400 -1464
RGARCH T -1440 -1402 -1330 -1270 -1479 -1437 -1370 -1332
RGARCH Lap -1427 -1391 -1325 -1288 -1460 -1418 -1354 -1338
RGARCH ST -1494 -1450 -1241 -1342 -1547 -1499 -1280 -1428
GAS T -1455 -1420 -1346 -1278 -1465 -1416 -1360 -1303
GAS Lap -1440 -1405 -1336 -1274 -1446 -1405 -1349 -1291
pooled csl -1420 -1381 -1250 -1243 -1446 -1402 -1267 -1276
eqw -1430 -1394 -1295 -1254 -1450 -1407 -1316 -1282
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Table 5: Evaluation of 1-day Value-at-Risk estimates
This table provides the accuracy of 1-day VaR estimates of the daily return of the S&P 500, DJIA, FTSE
and Nikkei index, obtained by combining density forecasts with weights based on the csl scoring rule of
(4), the log scoring rule of (1) or equal weights. In case of using equal weights, we report the approach
by means of simulation (eqw(1)) and the approach that takes simply the average of all individual VaR
estimates (eqw(2)). Further, we report results based on VaR estimates of the individual models. The
columns represent for both 95% and 90% VaRs the number of violations, the percentage of violations with
respect to the total number of VaR estimates in parentheses, the p-values of the Unconditional Coverage
(UC) of Christoffersen (1998) and finally HAC-based t-statistics of the unconditional test on predictive
ability of the combination method/individual model and the combined density forecasts with weights based
on the csl score function, using the tick-loss function presented in (22). Bold numbers represent those
models which have a p-value for the UC test above 5% for both the 90% and 95% VaR estimates. The
number of estimated VaRs for each series is equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766
(Nikkei) respectively.

S&P500
Model/Sc. rule V(%) puc t-stat V(%) puc t-stat

95% VaR 90% VaR
csl 110 (5.91) 0.078 198 (10.65) 0.358
log 110 (5.91) 0.078 −1.18 200 (10.75) 0.284 −0.07
eqw(1) 111 (5.97) 0.063 −1.78∗ 199 (10.70) 0.320 −0.32
eqw(2) 114 (6.13) 0.031 −1.96∗∗ 207 (11.13) 0.110 −0.70
GARCH N 124 (6.67) 0.002 −3.33∗∗∗ 192 (10.32) 0.644 −2.18∗∗

GARCH T 132 (7.10) 0.000 −3.40∗∗∗ 230 (12.37) 0.001 −2.76∗∗∗

GARCH Lap 121 (6.51) 0.004 −3.17∗∗∗ 231 (12.42) 0.001 −2.70∗∗∗

GARCH ST 122 (6.56) 0.003 −3.32∗∗∗ 211 (11.34) 0.058 −2.40∗∗

TGARCH N 120 (6.45) 0.006 −2.63∗∗∗ 192 (10.32) 0.644 −0.90
TGARCH T 130 (6.99) 0.000 −2.73∗∗∗ 216 (11.61) 0.023 −1.43
TGARCH Lap 116 (6.24) 0.018 −2.51∗∗ 224 (12.04) 0.004 −1.45
TGARCH ST 108 (5.81) 0.119 −2.54∗∗ 191 (10.27) 0.700 −0.89
HEAVY N 125 (6.72) 0.001 −1.20 191 (10.27) 0.700 2.18∗∗

HEAVY T 133 (7.15) 0.000 −1.25 215 (11.56) 0.028 0.32
HEAVY Lap 115 (6.18) 0.024 0.15 222 (11.94) 0.007 0.71
HEAVY ST 110 (5.91) 0.078 0.47 198 (10.65) 0.358 1.70∗

RGARCH N 115 (6.18) 0.024 −1.35 182 (9.78) 0.756 0.07
RGARCH T 123 (6.61) 0.002 −1.96∗ 209 (11.24) 0.081 −1.51
RGARCH Lap 110 (5.91) 0.078 −1.51 218 (11.72) 0.016 −1.61
RGARCH ST 106 (5.70) 0.176 −0.77 190 (10.22) 0.758 −0.43
GAS T 129 (6.94) 0.000 −3.21∗∗∗ 224 (12.04) 0.004 −2.46∗∗

GAS Lap 121 (6.51) 0.004 −2.94∗∗∗ 227 (12.20) 0.002 −2.50∗∗

DJIA
csl 110 (5.91) 0.080 201 (10.79) 0.258
log 115 (6.18) 0.024 0.54 201 (10.79) 0.258 −1.09
eqw(1) 114 (6.12) 0.032 0.06 206 (11.06) 0.132 −0.73
eqw(2) 119 (6.39) 0.008 −0.41 207 (11.12) 0.114 −0.75
GARCH N 130 (6.98) 0.000 −2.85∗∗∗ 198 (10.63) 0.366 −1.87∗

GARCH T 138 (7.41) 0.000 −2.74∗∗∗ 222 (11.92) 0.007 −2.37∗∗

GARCH Lap 117 (6.28) 0.014 −2.26∗∗ 222 (11.92) 0.007 −2.30∗∗

GARCH ST 125 (6.71) 0.001 −2.35∗∗ 213 (11.44) 0.042 −2.06∗∗

TGARCH N 124 (6.66) 0.002 −1.83∗ 199 (10.69) 0.328 −1.14
TGARCH T 132 (7.09) 0.000 −1.84∗ 222 (11.92) 0.007 −1.69∗

TGARCH Lap 108 (5.80) 0.122 −1.14 227 (12.19) 0.002 −1.50
TGARCH ST 108 (5.80) 0.122 −1.20 207 (11.12) 0.114 −1.08
HEAVY N 130 (6.98) 0.000 0.62 201 (10.79) 0.258 1.42
HEAVY T 138 (7.41) 0.000 0.07 214 (11.49) 0.035 −0.18
HEAVY Lap 108 (5.80) 0.122 1.53 217 (11.65) 0.020 0.47
HEAVY ST 111 (5.96) 0.064 1.57 203 (10.90) 0.200 0.87
RGARCH N 118 (6.34) 0.011 −0.31 189 (10.15) 0.829 0.78
RGARCH T 126 (6.77) 0.001 −1.53 203 (10.90) 0.200 −1.21
RGARCH Lap 106 (5.69) 0.179 −0.24 202 (10.85) 0.228 −0.89
RGARCH ST 104 (5.59) 0.255 −0.00 191 (10.26) 0.712 0.01
GAS T 136 (7.30) 0.000 −2.58∗∗∗ 213 (11.44) 0.042 −1.90∗

GAS Lap 114 (6.12) 0.032 −2.32∗∗ 220 (11.82) 0.011 −2.02∗∗
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FTSE
Sc. rule/Model V(%) puc t-stat V(%) puc t-stat

95% VaR 90% VaR
csl 122 (6.50) 0.004 208 (11.08) 0.126
log 112 (5.96) 0.063 0.92 209 (11.13) 0.109 1.25
eqw(1) 115 (6.12) 0.031 −0.77 206 (10.97) 0.167 −0.25
eqw(2) 116 (6.18) 0.024 −0.87 209 (11.13) 0.109 −0.42
GARCH N 122 (6.50) 0.004 −2.18∗∗ 203 (10.81) 0.248 −1.30
GARCH T 129 (6.87) 0.000 −2.29∗∗ 222 (11.82) 0.010 −1.73∗

GARCH Lap 108 (5.75) 0.144 −1.90∗ 224 (11.93) 0.007 −1.87∗

GARCH ST 112 (5.96) 0.063 −2.00∗∗ 212 (11.29) 0.068 −1.28
TGARCH N 120 (6.39) 0.008 −1.97∗∗ 204 (10.86) 0.218 −1.58
TGARCH T 130 (6.92) 0.000 −1.98∗∗ 223 (11.87) 0.008 −1.97∗∗

TGARCH Lap 103 (5.48) 0.342 −1.45 229 (12.19) 0.002 −2.09∗∗

TGARCH ST 103 (5.48) 0.342 −1.45 204 (10.86) 0.218 −1.46
HEAVY N 124 (6.60) 0.002 0.61 202 (10.76) 0.280 1.96∗∗

HEAVY T 135 (7.19) 0.000 −0.10 219 (11.66) 0.019 1.14
HEAVY Lap 106 (5.64) 0.209 1.26 224 (11.93) 0.007 0.84
HEAVY ST 108 (5.75) 0.144 1.23 200 (10.65) 0.353 1.65∗

RGARCH N 128 (6.82) 0.001 −1.58 203 (10.81) 0.248 0.42
RGARCH T 138 (7.35) 0.000 −2.32∗∗ 221 (11.77) 0.013 −1.74∗

RGARCH Lap 115 (6.12) 0.031 −0.49 226 (12.03) 0.004 −1.82∗

RGARCH ST 116 (6.18) 0.024 −0.58 203 (10.81) 0.248 −0.39
GAS T 126 (6.71) 0.001 −2.40∗∗ 217 (11.55) 0.028 −1.72∗

GAS Lap 98 (5.22) 0.666 −2.14∗∗ 224 (11.93) 0.007 −1.71∗

Nikkei
csl 87 (4.94) 0.904 171 (9.70) 0.678
log 87 (4.94) 0.904 −0.66 170 (9.65) 0.621 −1.49
eqw(1) 93 (5.28) 0.595 −1.58 166 (9.42) 0.414 −2.33∗∗

eqw(2) 90 (5.11) 0.836 −2.05∗∗ 163 (9.25) 0.289 −2.75∗∗∗

GARCH N 104 (5.90) 0.091 −1.34 166 (9.42) 0.414 −2.44∗∗

GARCH T 108 (6.13) 0.035 −1.55 189 (10.73) 0.314 −2.24∗∗

GARCH Lap 90 (5.11) 0.836 −1.19 182 (10.33) 0.647 −2.40∗∗

GARCH ST 99 (5.62) 0.242 −1.13 178 (10.10) 0.887 −2.20∗∗

TGARCH N 99 (5.62) 0.242 −1.40 161 (9.14) 0.221 −2.14∗∗

TGARCH T 106 (6.02) 0.058 −1.91∗ 178 (10.10) 0.887 −2.13∗∗

TGARCH Lap 86 (4.88) 0.818 −1.03 176 (9.99) 0.987 −1.93∗

TGARCH ST 95 (5.39) 0.456 −1.53 166 (9.42) 0.414 −2.12∗∗

HEAVY N 91 (5.16) 0.752 0.82 162 (9.19) 0.254 0.62
HEAVY T 99 (5.62) 0.242 0.45 176 (9.99) 0.987 1.43
HEAVY Lap 75 (4.26) 0.142 0.87 176 (9.99) 0.987 0.76
HEAVY ST 86 (4.88) 0.818 1.72∗ 170 (9.65) 0.621 1.42
RGARCH N 84 (4.77) 0.652 −1.90∗ 144 (8.17) 0.008 −2.82∗∗∗

RGARCH T 87 (4.94) 0.904 −2.14∗∗ 157 (8.91) 0.121 −2.23∗∗

RGARCH Lap 69 (3.92) 0.030 −2.76∗∗∗ 149 (8.46) 0.027 −3.17∗∗∗

RGARCH ST 76 (4.31) 0.176 −2.71∗∗∗ 152 (8.63) 0.050 −3.20∗∗∗

GAS T 106 (6.02) 0.058 −1.84∗ 191 (10.84) 0.246 −2.12∗∗

GAS Lap 86 (4.88) 0.818 −2.07∗∗ 184 (10.44) 0.538 −2.80∗∗∗
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Table 6: Evaluation of 5-day Value-at-Risk estimates
This table provides the accuracy of 5-day VaR estimates of the daily return of the S&P 500, DJIA, FTSE
and Nikkei index, obtained by combining density forecasts with weights based on the csl scoring rule of
(4), the log scoring rule of (1) or equal weights. In case of using equal weights, we report the approach
by means of simulation (eqw(1)) and the approach that takes simply the average of all individual VaR
estimates (eqw(2)). Further, we report results based on VaR estimates of the individual models. For each
combination method/model, we have 5 different sub-series of VaRs. The table reports for both 95% and
90% VaRs the sub-series corresponding with the lowest p-value of the test on unconditional coverage of the
VaR estimates. The columns represents the corresponding number of violations, the percentage of violations
with respect to the total number of VaR estimates in parentheses and the p-values of the Unconditional
Coverage (UC) and Independence (Ind) test of Christoffersen (1998). The number of estimated VaRs for
each series is equal to 372 (S&P 500), 372 (DJIA), 375(FTSE) and 352 (Nikkei) respectively.

S&P500
Model/sc. rule V(%) puc pm,ind V(%) puc pind

95% VaR 90% VaR
csl 24 (6.45) 0.218 0.263 32 (8.63) 0.367 0.880
log 23 (6.18) 0.312 0.626 43 (11.56) 0.327 0.993
eqw(1) 26 (6.99) 0.096 0.511 46 (12.37) 0.141 0.396
eqw(2) 24 (6.45) 0.218 0.652 44 (11.83) 0.252 0.394
GARCH N 26 (6.99) 0.096 0.479 45 (12.10) 0.190 0.461
GARCH T 28 (7.53) 0.037 0.390 56 (15.05) 0.002 0.302
GARCH Lap 25 (6.72) 0.147 0.544 50 (13.44) 0.035 0.196
GARCH ST 25 (6.72) 0.147 0.544 48 (12.90) 0.073 0.567
TGARCH N 23 (6.18) 0.312 0.626 32 (8.63) 0.367 0.598
TGARCH T 27 (7.26) 0.060 0.979 46 (12.37) 0.141 0.164
TGARCH Lap 24 (6.45) 0.218 0.712 47 (12.63) 0.102 0.134
TGARCH ST 14 (3.76) 0.253 0.313 31 (8.36) 0.279 0.675
HEAVY N 27 (7.26) 0.060 0.455 43 (11.56) 0.327 0.993
HEAVY T 28 (7.53) 0.037 0.531 45 (12.10) 0.190 0.821
HEAVY Lap 26 (6.99) 0.096 0.889 47 (12.63) 0.102 0.648
HEAVY ST 23 (6.18) 0.312 0.690 43 (11.56) 0.327 0.993
RGARCH N 23 (6.18) 0.312 0.729 30 (8.06) 0.199 0.802
RGARCH T 24 (6.45) 0.218 0.712 43 (11.56) 0.327 0.993
RGARCH Lap 24 (6.45) 0.218 0.263 43 (11.56) 0.327 0.993
RGARCH ST 15 (4.03) 0.376 0.585 29 (7.80) 0.142 0.337
GAS T 28 (7.53) 0.037 0.363 52 (13.98) 0.015 0.570
GAS Lap 24 (6.45) 0.218 0.263 50 (13.44) 0.035 0.196

DJIA

csl 26 (6.99) 0.096 0.511 46 (12.37) 0.141 0.733
log 25 (6.72) 0.147 0.579 46 (12.37) 0.141 0.733
eqw(1) 26 (6.99) 0.096 0.351 46 (12.37) 0.141 0.733
eqw(2) 27 (7.26) 0.060 0.418 48 (12.90) 0.073 0.567
GARCH N 32 (8.60) 0.004 0.830 48 (12.90) 0.073 0.567
GARCH T 29 (7.80) 0.022 0.570 53 (14.25) 0.010 0.254
GARCH Lap 28 (7.53) 0.037 0.492 47 (12.63) 0.102 0.134
GARCH ST 28 (7.53) 0.037 0.492 47 (12.63) 0.102 0.337
TGARCH N 26 (6.99) 0.096 0.351 43 (11.56) 0.327 0.609
TGARCH T 28 (7.53) 0.037 0.492 51 (13.71) 0.023 0.360
TGARCH Lap 24 (6.45) 0.218 0.668 45 (12.10) 0.190 0.461
TGARCH ST 25 (6.72) 0.147 0.755 44 (11.83) 0.252 0.532
HEAVY N 27 (7.26) 0.060 0.933 48 (12.90) 0.073 0.567
HEAVY T 28 (7.53) 0.037 0.977 53 (14.25) 0.010 0.494
HEAVY Lap 22 (5.91) 0.431 0.810 49 (13.17) 0.051 0.492
HEAVY ST 24 (6.45) 0.218 0.652 46 (12.37) 0.141 0.733
RGARCH N 23 (6.18) 0.312 0.729 30 (8.04) 0.194 0.763
RGARCH T 25 (6.72) 0.147 0.579 43 (11.56) 0.327 0.609
RGARCH Lap 13 (3.49) 0.160 0.331 30 (8.04) 0.194 0.763
RGARCH ST 13 (3.49) 0.160 0.331 29 (7.80) 0.142 0.570
GAS T 30 (8.06) 0.012 0.278 49 (13.17) 0.051 0.492
GAS Lap 27 (7.26) 0.060 0.418 45 (12.10) 0.190 0.821
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FTSE
Sc. rule/Model V(%) puc pind V(%) puc pind

95% VaR 90% VaR
csl 25 (6.65) 0.162 0.312 33 (8.80) 0.430 0.504
log 23 (6.12) 0.336 0.184 32 (8.53) 0.333 0.171
eqw(1) 22 (5.85) 0.460 0.535 32 (8.53) 0.333 0.047
eqw(2) 23 (6.13) 0.330 0.736 32 (8.53) 0.333 0.047
GARCH N 24 (6.40) 0.232 0.232 34 (9.07) 0.541 0.098
GARCH T 25 (6.65) 0.162 0.080 41 (10.90) 0.564 0.029
GARCH Lap 22 (5.85) 0.460 0.030 33 (8.80) 0.430 0.074
GARCH ST 24 (6.40) 0.232 0.232 33 (8.80) 0.430 0.074
TGARCH N 22 (5.85) 0.460 0.535 30 (8.00) 0.183 0.090
TGARCH T 25 (6.65) 0.162 0.312 34 (9.07) 0.541 0.085
TGARCH Lap 15 (4.00) 0.358 0.623 31 (8.27) 0.250 0.118
TGARCH ST 15 (4.00) 0.358 0.623 28 (7.47) 0.088 0.176
HEAVY N 24 (6.38) 0.237 0.059 33 (8.80) 0.430 0.214
HEAVY T 25 (6.65) 0.162 0.788 41 (10.90) 0.564 0.073
HEAVY Lap 14 (3.73) 0.240 0.540 33 (8.80) 0.430 0.214
HEAVY ST 15 (4.00) 0.358 0.130 33 (8.80) 0.430 0.214
RGARCH N 26 (6.91) 0.106 0.375 32 (8.53) 0.333 0.430
RGARCH T 27 (7.18) 0.068 0.409 33 (8.80) 0.430 0.214
RGARCH Lap 24 (6.38) 0.237 0.230 31 (8.27) 0.250 0.774
RGARCH ST 26 (6.91) 0.106 0.375 32 (8.53) 0.333 0.430
GAS T 24 (6.40) 0.232 0.232 41 (10.90) 0.564 0.029
GAS Lap 16 (4.27) 0.504 0.169 33 (8.80) 0.430 0.192

Nikkei
csl 11 (3.13) 0.084 0.399 20 (5.67) 0.003 0.890
log 13 (3.69) 0.239 0.317 20 (5.67) 0.003 0.890
eqw(1) 10 (2.83) 0.043 0.274 20 (5.67) 0.003 0.890
eqw(2) 11 (3.12) 0.082 0.341 20 (5.67) 0.003 0.890
GARCH N 14 (3.97) 0.356 0.575 24 (6.80) 0.034 0.767
GARCH T 13 (3.68) 0.234 0.492 27 (7.65) 0.126 0.957
GARCH Lap 12 (3.40) 0.144 0.414 23 (6.52) 0.021 0.678
GARCH ST 13 (3.68) 0.234 0.492 25 (7.08) 0.055 0.859
TGARCH N 12 (3.40) 0.144 0.414 24 (6.80) 0.034 0.569
TGARCH T 13 (3.68) 0.234 0.492 25 (7.08) 0.055 0.499
TGARCH Lap 10 (2.83) 0.043 0.444 19 (5.38) 0.002 0.979
TGARCH ST 12 (3.40) 0.144 0.414 25 (7.08) 0.055 0.499
HEAVY N 13 (3.69) 0.239 0.317 21 (5.95) 0.006 0.804
HEAVY T 14 (3.98) 0.362 0.576 25 (7.08) 0.055 0.859
HEAVY Lap 9 (2.56) 0.021 0.491 19 (5.38) 0.002 0.979
HEAVY ST 14 (3.98) 0.362 0.281 21 (5.95) 0.006 0.804
RGARCH N 13 (3.68) 0.234 0.080 18 (5.10) 0.001 0.009
RGARCH T 11 (3.12) 0.082 0.341 17 (4.82) 0.000 0.044
RGARCH Lap 9 (2.56) 0.021 0.215 14 (3.97) 0.000 0.575
RGARCH ST 12 (3.40) 0.144 0.005 16 (4.53) 0.000 0.003
GAS T 21 (5.97) 0.419 0.802 28 (7.93) 0.181 0.590
GAS Lap 11 (3.12) 0.082 0.341 26 (7.37) 0.085 0.431
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regarding the frequency of violations and the test on equal accuracy.12 Using equal weights

leads to rejection of the nominal frequency of 5% for the DJIA (eqw(1) and eqw(2)) and

S&P 500 (eqw(2)) indexes, while this is not the case for VaR estimates based on the csl

score function. Furthermore, the violation frequencies for the 90% VaR estimates using the

csl scoring rule are closer to the nominal value of 0.10 in case of the DJIA, S&P 500 and

Nikkei indexes. According to the t-statistics of equal accuracy of the VaR estimates, using

the csl score function produces significantly better VaR estimates than the benchmark in

case of the S&P 500 index (95% VaR estimates) and the Nikkei index (95% and 90%).

Second, pooling based on the csl scoring rule improves pooling based on the log scoring

rule, although the gain is less strong than the gain with respect to using equal weights.

Considering the DJIA returns, using the whole density implies a violation frequency that is

significantly different from 5% (using a significance level of 5%), while it is not significant

using the csl scoring rule. Focusing on the S&P 500 and the Nikkei indexes, the number

of violations does not differ, only the t-statistics are negative (although not significant)

indicating that the VaR estimates of the csl score functions are slightly better. The opposite

is true for the FTSE returns, where the violation frequency corresponding with the csl score

function is to high (6.5%), and the positive t-statistics favor the log score function. This is

in line with the results on the statistical tests presented in Table 2.

Third, only the HEAVY Skewed-t model consistently outperforms our method of combin-

ing density forecasts. Each remaining model fails at least once in the frequency of violations

or in the test of equal accuracy. The best competitors are the HEAVY and RGARCH model

classes. Consistent with the statistical results of 4.3.1, again the HEAVY model performs

better according to the asymmetric tick-loss function and the number of violations than the

RGARCH models although both model classes are quite similar in their specification. As

noted earlier, this could be affected by the amount of parameter uncertainty when estimating

the RGARCH class of models.

The differences between our various methods to estimate a VaR vanish if we put atten-

tion to the 5-day estimated VaRs, as indicated by Table 6. Using the Bonferroni bound

corresponding with a 5% significance level, we conclude that using the csl scoring rule or

12For the sake of space, we do not show the p-values corresponding with the Independence test. Moreover,
all methods/models pass this test. These results are available upon request.
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the log scoring rule to obtain weights does not make a clear difference in the VaR estimates.

In addition, the individual models perform also well. This could be explained partly by the

decreasing power of the tests when the number of exceptions decreases.

To summarize, short-horizon VaR estimates improve compared to using equal weights

and individual volatility models when using combined density forecasts based on the csl

score function, either with respect to the nominal size and/or with respect to the statistical

accuracy using the asymmetric tick-loss function of (22). The gain of using the csl score

function instead of the log-score function is less strong, and holds in particular for the DJIA

returns.

5 Conclusion

We investigate the benefits of combining density forecasts based on a specific region of

interest. We develop a new density forecast method that combines density forecasts of

different models based on the censored likelihood scoring rule (Diks et al., 2011). Using daily

returns from the S&P 500, DJIA, FTSE and Nikkei stock market indexes from 2000 until

2013, we apply our technique on recently developed univariate volatility models, including

the HEAVY, GAS and Realized GARCH models.

Our results show that density forecasts in the tail are statistically more accurate if one

pools density forecasts using the censored likelihood scoring rule than using density forecasts

based on the log score rule, using the benchmark of equal weights or density forecasts of any

individual volatility model. Second, we show that the 1-day 95% VaR estimates improve

significantly compared to the combined density forecast method using equal weights and

performs better than the method based on the log scoring rule in case of the DJIA stock

market index. Moreover, the VaR estimates of 17 out of 18 individual models are beaten,

either with respect to the nominal frequency of the VaR violations, or with respect to a

statistical test on equal accuracy of the VaR estimates. Our results imply that risk managers

and portfolio managers might benefit from combining density forecasts with the focus on

the left tail using the csl scoring rule.
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Appendix

A Optimizing weights

We follow Conflitti et al. (2012) to optimize the weights according tot the log or csl score

function of (3) and (5) respectively. We provide here only an outline of the algorithm.

Define p(yt+1) as the vector of n density forecasts pi(yt+1) = pt+1(yt+1; Yt, Ai) (i =

1, . . . n) of the variable yt+1 at time t over a one-day horizon. The combined density is then

equal to:

p(yt+1) = w
′

p(yt+1) =

n
∑

i=1

wipi(yt+1), (A.1)

with the assumption that the weights are positive and sum to one. For both scoring rules,

we have to maximize the logarithm of the combined (censored) density over a given time

period:

Φ(w) =
1

T − 1

T−1
∑

t=1

log p(yt+1). (A.2)

Note that we omitted the factor 1
T−1

in equation (4) and (1). This does not change the

result as it is a constant. Define the (T − 1) × n matrix P with non-negative elements

Pti = pi(yt+1). Now, (A.2) can be rewritten as 1
T−1

∑T−1
t=1 log(Pwt). Denote wopt as the

maximum of Φ(w) subject to the weight constraints. Further, the Lagrange multiplier is

introduced to take into account these constraints:

Φλ(w) =
1

T − 1

T−1
∑

t=1

log(Pwt)− λ

N
∑

i=1

wi. (A.3)

Instead of optimizing (A.3), Conflitti et al. (2012) consider the following ‘surrogate’ function,

which depends on a vector a of arbitrary weights:

Ψλ(w;a) =
1

T − 1

T−1
∑

t=1

n
∑

i=1

bti log

(

wi

ai

n
∑

l=1

logPtlal

)

− λ

n
∑

i=1

wi. (A.4)

with bti =
Ptiai∑n
l=1

Ptlal
. Further, the function has the properties Ψλ(a;a) = Ψλ(a) for any a
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and Ψλ(w;a) ≤ Ψλ(w) for any a and w.

The iterative algorithm is defined as

w
(k+1)
λ = argmax

w

Ψλ(w;w
(k)
λ ) (A.5)

which yields a monotonic increase of Ψλ, according to the two aforementioned properties.

Setting the derivatives of Ψλ(w;w
(k)
λ ) with respect to wi equal to zero, leads to the maximum

wλ,i = (1/λ)
∑T−1

t=1 bti. Using the constraint that the weights should sum up to one, it holds

that λ = T − 1. This changes (A.5) into

w
(k+1)
i = w

(k)
i

1

T − 1

T−1
∑

t=1

Pti
∑n

l=1 Ptlw
(k)
l

, (A.6)

where we replace ai by w
(k)
i in the expression of bti. We start the algorithm with equal

weights, that is w0
i = 1/n and use as a stopping criterion a tolerance of 10−6 of the sum of

the absolute deviation of two successive iterations.
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B Pooling weights of remaining data sets and pooling

results of the log score function

Figure B.1: Pooling weights of the S&P 500, FTSE and Nikkei index
This figure depicts the evolution of weights based on optimizing the logarithmic score function (left part) of
(3) or the csl score function (right part) of (5) with a moving window of T = 750 one-step ahead evaluated
density forecasts using daily returns of the S&P500, FTSE and Nikkei indexes. In case of the csl score
function, Bt the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of the in-sample
returns. The labels refer to the models that have the highest weight at a given period. The abbreviations
“ST”, “Lap” and “N” stand for Skewed-t, Laplace and Normal respectively.
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Table B.1: Evaluation of 1- and 5-day ahead censored density forecasts based

on the log scoring rule
This table reports results of testing equal predictive accuracy using the censored likelihood scoring rule of
(4), with Bt the left tail yt < r̂κ with r̂κ the κth quantile of the empirical CDF of the in-sample returns.
We set κ equal to 0.15 and 0.25 respectively. The weights are repeatedly optimized based on a the log score
function of (3), using a moving window of 750 evaluated density forecasts. We focus on 1- and 5-step ahead
density forecasts. The test statistic is given in (19) and compares censored density forecast with weights
based on the log score function and density forecasts of each competing model, which are listed in Table
1. All models are estimated with a moving window of 750 daily returns from the S&P500, DJIA, FTSE
and Nikkei index through the period January, 2000 - June, 2013. The test statistics are based on HAC-
based standard errors and 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei) out-of-sample
observations respectively.

Pooled (log score function) vs. individual
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

1-step ahead forecasts 5-step ahead forecasts
κ = 0.15

GARCH N 0.64 0.48 4.16∗∗∗ 1.86∗ 0.71 0.55 3.92∗∗∗ 1.81∗

GARCH T −0.85 −1.07 4.21∗∗∗ 0.35 −1.89∗ −1.93∗ 4.47∗∗∗ −0.34
GARCH Lap −1.64 −1.89∗ 4.44∗∗∗ 0.11 −2.64∗∗∗ −2.66∗∗∗ 4.32∗∗∗ −0.75
GARCH ST 6.40∗∗∗ 5.01∗∗∗ 3.45∗∗∗ 3.35∗∗∗ 5.81∗∗∗ 4.69∗∗∗ 2.71∗∗∗ 3.57∗∗∗

T GARCH N −0.15 −0.17 4.36∗∗∗ 1.49 0.15 0.28 4.19∗∗∗ 1.68∗

T GARCH T −1.44 −1.56 4.15∗∗∗ 0.42 −2.03∗∗ −1.77∗ 4.38∗∗∗ −0.29
T GARCH Lap −2.22∗∗ −2.46∗∗ 4.23∗∗∗ 0.00 −3.06∗∗∗ −2.94∗∗∗ 4.09∗∗∗ −0.95
T GARCH ST 6.11∗∗∗ 4.77∗∗∗ 2.49∗∗ 3.27∗∗∗ 5.52∗∗∗ 4.77∗∗∗ 1.69∗ 3.41∗∗∗

HEAVY N −0.83 −0.77 3.08∗∗∗ 0.99 −0.33 −0.71 3.95∗∗∗ 1.38
HEAVY T −2.12∗∗ −2.18∗∗ 2.90∗∗∗ −1.85∗ −2.50∗∗ −2.47∗∗ 4.16∗∗∗ 0.21
HEAVY Lap −2.78∗∗∗ −2.90∗∗∗ 3.15∗∗∗ −1.52 −3.34∗∗∗ −3.30∗∗∗ 3.54∗∗∗ −1.46
HEAVY ST 5.75∗∗∗ 4.38∗∗∗ 0.02 2.84∗∗∗ 4.66∗∗∗ 3.70∗∗∗ 0.98 2.42∗∗

RGARCH N −1.16 −1.55 3.38∗∗∗ 1.88∗ 0.89 0.28 6.11∗∗∗ 3.30∗∗∗

RGARCH T −2.14∗∗ −2.35∗∗ 3.46∗∗∗ −0.20 −1.11 −0.90 5.67∗∗∗ 2.42∗∗

RGARCH Lap −2.47∗∗ −2.61∗∗∗ 3.62∗∗∗ 1.50 −1.72∗ −1.68∗ 4.93∗∗∗ 2.86∗∗∗

RGARCH ST 4.70∗∗∗ 3.33∗∗∗ −1.73∗ 4.79∗∗∗ 6.20∗∗∗ 6.40∗∗∗ 1.38 6.68∗∗∗

GAS T −0.71 −0.97 4.24∗∗∗ 0.65 −1.42 −1.84∗ 4.53∗∗∗ 0.47
GAS Lap −1.59 −1.80∗ 4.43∗∗∗ 0.19 −2.59∗∗∗ −2.63∗∗∗ 4.35∗∗∗ −0.85

κ = 0.25
GARCH N 1.82∗ 1.58 6.01∗∗∗ 2.33∗∗ 1.43 1.17 5.28∗∗∗ 2.00∗∗

GARCH T 0.68 0.49 6.01∗∗∗ 2.05∗∗ −0.67 −0.84 6.06∗∗∗ 1.08
GARCH Lap −0.29 −0.45 5.55∗∗∗ 1.97∗∗ −1.61 −1.63 5.25∗∗∗ 0.60
GARCH ST 6.12∗∗∗ 5.09∗∗∗ 3.55∗∗∗ 3.09∗∗∗ 5.38∗∗∗ 4.44∗∗∗ 2.92∗∗∗ 3.11∗∗∗

T GARCH N 1.17 1.09 6.42∗∗∗ 1.84∗ 1.08 1.07 5.68∗∗∗ 1.88∗

T GARCH T 0.19 0.14 6.06∗∗∗ 2.13∗∗ −0.73 −0.57 6.03∗∗∗ 1.05
T GARCH Lap −0.80 −0.95 5.36∗∗∗ 1.75∗ −2.00∗∗ −1.86∗ 5.05∗∗∗ 0.20
T GARCH ST 5.34∗∗∗ 4.28∗∗∗ 2.69∗∗∗ 2.60∗∗∗ 4.64∗∗∗ 3.99∗∗∗ 1.89∗ 2.74∗∗∗

HEAVY N 0.45 0.45 5.24∗∗∗ 1.35 0.73 0.42 5.69∗∗∗ 1.55
HEAVY T −0.60 −0.45 4.92∗∗∗ 0.21 −1.07 −0.94 6.04∗∗∗ 1.01
HEAVY Lap −1.46 −1.38 4.40∗∗∗ 0.38 −2.27∗∗ −2.08∗∗ 4.61∗∗∗ −0.08
HEAVY ST 5.05∗∗∗ 3.72∗∗∗ −1.14 2.00∗∗ 4.63∗∗∗ 3.62∗∗∗ 0.31 2.28∗∗

RGARCH N 0.55 0.15 5.70∗∗∗ 2.37∗∗ 2.36∗∗ 1.59 7.93∗∗∗ 3.59∗∗∗

RGARCH T −0.31 −0.60 5.50∗∗∗ 1.54 0.70 0.54 7.42∗∗∗ 3.28∗∗∗

RGARCH Lap −1.14 −1.28 4.80∗∗∗ 2.86∗∗∗ −0.66 −0.74 5.77∗∗∗ 3.58∗∗∗

RGARCH ST 5.40∗∗∗ 4.44∗∗∗ −1.66∗ 7.17∗∗∗ 8.41∗∗∗ 8.03∗∗∗ 2.21∗∗ 9.02∗∗∗

GAS T 0.71 0.50 6.03∗∗∗ 2.13∗∗ −0.31 −0.83 6.12∗∗∗ 1.56
GAS Lap −0.29 −0.41 5.52∗∗∗ 2.07∗∗ −1.61 −1.65∗ 5.25∗∗∗ 0.64
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Table B.2: Log scores
This table reports log scores corresponding with individual models and combined models, where the weights
are based on optimizing the log score function of (3). The weights are repeatedly optimized based on a
moving window of 750 evaluated density forecasts. The bold numbers represent the maximum of all models
per data set. All models are estimated with a moving window of 750 daily returns from the S&P500, DJIA,
FTSE and Nikkei index through the period January, 2000 - June, 2013. The number of out-of-sample
observations are equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei)respectively.

S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei
1-step ahead forecasts 5-step ahead forecasts

GARCH N -2687 -2610 -2338 -2500 -2735 -2647 -2400 -2642
GARCH T -2651 -2574 -2314 -2434 -2672 -2588 -2348 -2491
GARCH Lap -2642 -2568 -2338 -2454 -2662 -2583 -2364 -2499
GARCH ST -2652 -2505 -1948 -2377 -2710 -2563 -2017 -2480
T GARCH N -2642 -2563 -2320 -2509 -2701 -2620 -2384 -2618
T GARCH T -2618 -2539 -2299 -2433 -2660 -2579 -2342 -2494
T GARCH Lap -2616 -2539 -2327 -2453 -2648 -2570 -2357 -2498
T GARCH ST -2582 -2419 -1905 -2364 -2666 -2513 -1977 -2483
HEAVY N -2622 -2552 -2269 -2459 -2697 -2614 -2350 -2604
HEAVY T -2603 -2532 -2263 -2399 -2660 -2584 -2321 -2490
HEAVY Lap -2604 -2534 -2304 -2430 -2646 -2573 -2342 -2483
HEAVY ST -2542 -2402 -1812 -2301 -2680 -2544 -1914 -2464

RGARCH N -2635 -2560 -2279 -2518 -2780 -2682 -2416 -2766
RGARCH T -2618 -2542 -2277 -2446 -2724 -2644 -2371 -2583
RGARCH Lap -2616 -2544 -2314 -2480 -2703 -2624 -2380 -2597
RGARCH ST -2612 -2489 -1835 -2670 -2872 -2748 -2041 -2988
GAS T -2654 -2574 -2317 -2439 -2681 -2592 -2353 -2495
GAS Lap -2644 -2568 -2339 -2457 -2662 -2583 -2366 -2494
pooled log -2489 -2377 -1864 -2310 -2593 -2481 -1957 -2411
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