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Abstract

The multivariate choice problem with correlated binary choices is investigated.

The Multivariate Logit [MVL] model is a convenient model to describe such choices

as it provides a closed-form likelihood function. The disadvantage of the MVL model

is that the computation time required for the calculation of choice probabilities

increases exponentially with the number of binary choices under consideration. This

makes maximum likelihood-based estimation infeasible in case there are many binary

choices. To solve this issue we propose three novel estimation methods which are

much easier to obtain, show little loss in efficiency and still perform similar to the

standard Maximum Likelihood approach in terms of small sample bias. These three

methods are based on (i) stratified importance sampling, (ii) composite conditional

likelihood, and (iii) generalized method of moments. Monte Carlo results show that

the gain in computation time in the Composite Conditional Likelihood estimation

approach is large and convincingly outweighs the limited loss in efficiency. This

estimation approach makes it feasible to straightforwardly apply the MVL model

in practical cases where the number of studied binary choices is large.
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1 Introduction

Multivariate choice models are widely used to describe correlated binary decision data in

different fields of applied research. For example, grocery product choices by consumers

are likely to be correlated across different brands or product categories (Chib et al., 2002).

Choices for different types of insurances are correlated (Donkers et al., 2007), and effects

of a medicine treatment on two or more physiological systems are also related (Ashford

& Sowden, 1970). As a final example, Feddag (2013) investigates several ‘health-related

quality of life’-questions in a survey among cancer patients and the answers to these

questions are likely to be correlated. Hence, simultaneous binary decisions occur in many

different fields of research.

The number of choices to be made in multivariate decision problems can be rather

large. The number of brands in a supermarket is large; individuals have to decide upon

life, car, house insurances, and so forth; and the number of questions in a survey might

also be large. There is therefore a need for a model that is applicable in these settings. In

principle such models are available. However, current econometric estimation methods for

multivariate choice models suffer from a computational burden if the number of choices

grows large.

The standard econometric model to describe correlated multivariate binary choices

is the Multivariate Probit model (Ashford & Sowden, 1970; Edwards & Allenby, 2003).

The main disadvantage of this model is that the computation of the choice probabilities

involves high-dimensional integrals which cannot be solved analytically. Numerical integ-

ration methods are not very accurate and slow and simulation-based estimation methods

are often used instead (Cappellari, 2006). However, the computational efforts to perform

simulation-based estimation become excessive when a large number of correlated choices

is considered. To avoid the evaluation of integrals one may opt for multivariate binary

decision models based on correlated logistic regressions. These models are nonetheless

difficult to generalize to higher dimensions (Carey et al., 1993; Glonek & McCullagh,

1995).

To avoid these difficulties we opt for the Multivariate Logit [MVL] model (Cox, 1972).

Russell & Petersen (2000) show that this model can be written as a restricted Multinomial

Logit [MNL] specification over all possible outcomes of the multivariate binary choices.

The multivariate choice problem over K choices is reformulated as a multinomial choice

model over 2K alternatives.
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The problem of this MVL specification is that the outcome space of the multivariate

binary random variable, and thereby the computation time, increases exponentially with

the number of choices. From a practical point of view, standard Maximum Likelihood [ML]

parameter estimation becomes computationally infeasible even for a moderate number of

choices. Russell & Petersen (2000) apply the model to four binary choices only and state

that “as the number of categories becomes large, the approach taken in our research will

clearly become infeasible”. Guimares et al. (2003) propose to use a more feasible approach

based on Poisson regression. Unfortunately, this method only holds for the conditional

logit specification where explanatory variables differ across choices. It therefore does not

solve the infeasibility for all Multivariate Logit specifications.

In this paper, we propose three novel estimation methods for the MVL model which

provide parameter estimates in an acceptable amount of time even if the number of binary

choices is large. In the first proposed method, we use a sampling method to reduce the

number of alternatives in the estimation routine. Using the method proposed by Ben-

Akiva & Lerman (1985) we can obtain consistent estimators for the model parameters.

In the second method we take advantage of the fact that the MVL model has simple

conditional probabilities. We use these conditional probabilities in a Composite Condi-

tional Likelihood [CCL] approach (Lindsay, 1988). The use of conditional probabilities

avoids the computation of the joint probabilities over all possible combinations of binary

choices. Finally, we consider a Generalized Method of Moments [GMM] estimator based

on the conditional probabilities. Monte Carlo results show that the three novel estimation

methods are much faster, have similar small sample biases as the standard ML approach

of Russell & Petersen (2000), and that the loss in efficiency is very limited.

The remainder of this paper is organized as follows. In Section 2 we describe the

Multivariate Logit model as discussed by Russell & Petersen (2000). Parameter inference

is considered in Section 3. We first present standard ML parameter estimation followed

by our three alternative methods. Section 4 describes the results of the Monte Carlo study

which compares the estimation methods with respect to computation time, small sample

bias, and efficiency. Section 5 gives a small illustration of an MVL model with 10 binary

choices for store choices of households in a shopping mall. Finally, Section 6 concludes.
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2 Model Specification

In this section we discuss the model specification for the Multivariate Logit model. We

use the specification as introduced by Cox (1972) and further implemented by Russell &

Petersen (2000).

Following Russell & Petersen (2000), we let Yi denote the K-dimensional random

variable describing the joint set of choices for individual i = 1, . . . , N , defined as

Yi = {Yi1, . . . , YiK}, (1)

where Yik denotes the k-th binary choice for individual i, for k = 1, . . . , K. The set of

possible realizations of Yi is called S which contains 2K elements. It can immediately

be seen that the number of realizations grows exponentially with the number of binary

choices K.

The choices in Yi may be correlated. To describe these dependencies Russell & Petersen

(2000) specify the conditional probabilities of the kth random variable Yik given all other

choices, that is, yil for l 6= k. These conditional probabilities are a Logit function of

individual characteristics Xi, model parameters α, β and ψ, and yil, that is

Pr[Yik = 1|yi1, . . . , yik−1, yik+1, . . . , yiK , Xi] =
exp (Zik)

1 + exp (Zik)
(2)

with

Zik = αk +Xiβk +
∑
l 6=k

yilψkl, (3)

where yil is the realization of Yil, αk are alternative-specific intercepts, Xi is a (1×p)-vector

of explanatory variables with corresponding parameter vector βk, and where ψkl are asso-

ciation parameters. The association parameters capture the correlation between Yik and

Yil for l 6= k. Positive association implies that options k and l tend to have similar values

and negative association implies that they tend to be different. Conditional independence

between Yik and Yil occurs when ψkl = 0. As we can only consider correlations and no

causal impacts, we have to impose ψkl = ψlk for symmetry, see also Russell & Petersen

(2000). The model can be extended by including explanatory variables that differ across

individuals and the different binary choices. Such an extension is straightforward, but to

simplify notation we do not include such variables here.

Using the results in Besag (1974) the joint distribution of Yi follows directly from the

full set of conditional distributions. Russell & Petersen (2000) show that the conditional
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distributions in (2) imply an MNL specification for the joint distribution of Yi, that is

Pr[Yi = yi|Xi] =
exp (µyi)∑
si∈S exp (µsi)

, (4)

where yi is a possible realization from the outcome space S and where µyi is defined as

µyi =
K∑
k=1

yik(αk +Xiβk) +
∑
l>k

yikyilψkl. (5)

Hence, the parameters αk and βk only occur in the numerator of the probability function

when Yik = 1. Further, the association parameter ψkl only occurs in the numerator when

both Yik = 1 and Yil = 1.

The interpretation of the impact of the intercept parameters and Xi follows from the

log odds ratio

log

(
Pr[Yi = yi|Xi]

Pr[Yi = (0, . . . , 0)|Xi]

)
=

K∑
k=1

yik(αk +Xiβk) +
∑
l>k

yikyilψkl, (6)

where we use that µ(0,...,0) = 0 for identification. Clearly, the odds ratio equals µyi as

defined in (5) and provides the probability to observe yi relative to the base set of choices

where all choices are 0.

The association parameter ψkl is in theory an unbounded parameter and thus does not

directly give a correlation. Log odds ratios give a direct interpretation of these association

parameters. That is, it is easy to show that

log

(
Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0, yl = 1, 0, . . . , 0)|Xi] Pr[Yi = (0, . . . , 0)|Xi]

Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0)|Xi] Pr[Yi = (0, . . . , 0, yl = 1, 0, . . . , 0)|Xi]

)
= ψkl. (7)

A positive ψkl thus implies that choices k and l more often move together than apart.

The MVL model can be used to find dependencies in multivariate choices. In the next

section we discuss several estimation methods to uncover these dependencies. We discuss

why standard ML estimation using the joint probabilities (4) is not computationally

feasible in case K is large. New feasible methods are therefore introduced.

3 Parameter Inference

This section proposes four estimation methods for the MVL model specification defined in

Section 2. The first approach is a standard Maximum Likelihood estimation procedure.

This approach however is computationally infeasible when the number of choices K is

large. We therefore propose three alternative novel estimation methods.
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Standard ML

The first estimation method directly follows Russell & Petersen (2000). To estimate the

model parameters they suggest to use the joint probabilities in (4). That is, Russell &

Petersen (2000) use an MNL specification on the full outcome space S which results in

the log-likelihood function

`r(θ; y) =
N∑
i=1

I[Yi = yi] log Pr[Yi = yi|Xi], (8)

where I[·] is an indicator function which equals 1 if the argument is true and 0 otherwise

and the joint probabilities Pr[Yi = yi|Xi] are given in (4). Further, θ summarizes all model

parameters. To distinguish between the several methods we add the superscript r to the

likelihood function. Standard errors of the estimator can be obtained in the same way as

for standard MNL models, see, for example Amemiya (1985).

This estimation approach is very suitable when the number of choices K is small.

However, the number of alternatives S increases exponentially with K. For example, ten

binary choices already lead to 210 = 1024 potential outcomes of Yi. This leads to very

small probabilities in (4) and a sum of many terms in the denominator, which may both

lead to computational problems. Furthermore, the computation time of the probabilities

and hence the log-likelihood function will increase rapidly with the number of choices. We

therefore propose three alternative novel estimation methods which avoid the computation

of the joint probabilities.

Stratified Importance Sampling

The first alternative method reduces the number of elements in the denominator and

thereby avoids the large summation. To achieve this we use a stratified subset of the full

outcome space, where the selection probabilities for outcomes differ. Straightforwardly

using such a selection may however result in an inconsistent ML estimator. We use

the correction term of Ben-Akiva & Lerman (1985, Section 9.3) to correct for taking a

stratified subset. This correction term is related to the sampling probability of the subset.

Formally, let D be a subset of the full outcome space S. We know from McFadden

(1978) that maximization of the conditional log-likelihood

`s(θ; y) =
N∑
i=1

∑
yi∈D

I[Yi = yi] log Pr[Yi = yi|D,Xi] (9)
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yields consistent parameter estimates. From Bayes’ theorem we can write

Pr[Yi = yi|D,Xi] =
Pr[Yi = yi|Xi] Pr[D|Yi = yi, Xi]∑
di∈D Pr[Yi = di|Xi] Pr[D|Yi = di, Xi]

=
exp (µyi + log (Pr[D|Yi = yi, Xi]))∑
di∈D exp (µdi + log (Pr[D|Yi = di, Xi]))

, (10)

where we use that Pr[Yi = yi|Xi] for all yi in S follows from (4). Hence, the correction

term in the MNL specification for using a sub-sample D instead of the full outcome space

S is log (Pr[D|Yi = yi, Xi]).

To select an appropriate sub-sample D we follow Ben-Akiva & Lerman (1985). They

propose to use Stratified Importance Sampling [SIS] for the creation of the subset D and

to find the values for the correction term. This selection method creates disjoint strata

containing comparable alternatives. One randomly selects (with equal probabilities) a

fixed number of alternatives within each stratum. For stratum r we select nr alternatives.

For the stratum that contains yi we make sure that yi is contained in the selected set.

Specifically, we create strata of singles, pairs, triplets et cetera in the multivariate

binary choice data. Even though there may be many triplets, SIS allows us to limit the

number of triplets we actually need to consider.

Formally, let R be the number of disjoint strata and let qr be the stratum-specific

probability to be in subset D based on the fixed amount of alternatives to be drawn. This

probability equals nr divided by the number of alternatives in stratum r. Then, referring

to Ben-Akiva & Lerman (1985),

Pr[D|Yi = yi, Xi] ∝
1

qr(yi)
, (11)

where r(yi) is the stratum containing the joint set of binary choices under consideration.

Hence, the correction term equals the negative logarithm of the stratum-specific se-

lection probabilities. The joint probabilities in (10) are then given by

Pr[Yi = yi|D,Xi] =
exp

(
µyi − log

(
qr(yi)

))∑
di∈D exp

(
µdi − log

(
qr(di)

)) . (12)

Replacing the joint probabilities in (8) by (12) provides a stratified log-likelihood. The

stratified importance ML estimator is consistent but there is loss in efficiency due to the

sampling.

It is easy to see the advantages of this approach over the standard ML approach of

Russell & Petersen (2000). Using only a subset D in Stratified Importance Sampling
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reduces the dimension in the MVL model and thereby avoids the large summation in the

denominator of (4). Furthermore, an optimal choice of strata R and sampling probabilities

qr will not imply large efficiency losses. Nonetheless, small sampling probabilities qr

decreases computation time but increases effiency loss. A Monte Carlo study has to shed

light on the effect of the size of D on efficiency losses. In the remainder of this section we

introduce two alternative novel estimation methods.

Composite Conditional Likelihood

Given the structure of the Multivariate Logit model it is possible to use Composite Con-

ditional Likelihood (Lindsay, 1988) for parameter estimation. Where both the method

by Russell & Petersen (2000) and the method proposed in the previous paragraph write

the MVL model as a Multinomial Logit specification on a large outcome space, the CCL

representation uses the conditional probabilities in (2) as separate, nonetheless correlated,

choices. Hence, CCL avoids summation over the complete outcome space. It can be shown

that the CCL approach provides consistent estimators at the cost of a loss in efficiency

(Varin et al., 2011).

Following Molenberghs & Verbeke (2005, Chapter 12), the conditional probabilities in

(2) lead to the composite log-likelihood function for the MVL model, that is

`c(θ; y) =
N∑
i=1

`c(θ; yi)

=
N∑
i=1

K∑
k=1

`c(θ; yik)

=
N∑
i=1

K∑
k=1

log Pr[Yik = yik|yil for l 6= k,Xi],

(13)

where the superscript c stands for CCL. The estimator θ̂ which follows from maximizing

(13) is consistent (Varin et al., 2011).

Varin et al. (2011) furthermore show that standard errors in CCL can be computed

using the Godambe (1960) information matrix, which has a sandwich form and equals

Gc
θ̂

= Hc
θ̂

(
J c
θ̂

)−1
Hc
θ̂

(14)

with

Hc
θ̂

=
1

N

N∑
i=1

K∑
k=1

∇`c(θ̂; yik)∇`c′(θ̂; yik) (15)
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and

J c
θ̂

=
1

N

N∑
i=1

∇`c(θ̂; yi)∇`c′(θ̂; yi) (16)

where ∇`c(θ̂; yik) and ∇`c(θ̂; yi) denote the first derivatives of the corresponding log-

likelihood contributions in (13). The covariance matrix of the parameter estimates then

follows from(
−Gc

θ̂

)−1
. (17)

Although Composite Conditional Likelihood does not correspond to the correct likeli-

hood function, it still takes dependencies in the MVL model into account. The advantage

over the full multinomial representation in (4) is that CCL avoids the large summation

in the denominator. Therefore, CCL will be more robust in computation time against a

large number of choices. Nonetheless, since the composite instead of the true likelihood

function is used, the estimator is not efficient. A Monte Carlo study in Section 4 will

however show that the efficiency loss is rather small and acceptable.

Generalized Method of Moments

The final estimation method we consider for the Multivariate Logit model is Generalized

Method of Moments (Hansen, 1982). To reduce the computation time we base the moment

conditions only on the conditional probabilities. Assuming exogeneity of the explanatory

variables the moment conditions

E(Yik − Pr[Yik = 1|yil for l 6= k,Xi]) = 0 ∀ k = 1, . . . , K,

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Xi) = 0 ∀ k = 1, . . . , K, (18)

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Yil) = 0 ∀ l 6= k

are valid to estimate the parameters in θ.

The number of moment conditions equals (1+p+(K−1))K. If K > 1, the number of

moment conditions exceeds the number of parameters in the model and we use a two-step

GMM approach (Cameron & Trivedi, 2005, Chapter 6). First, we estimate the parameters

assigning equal weight to all moment conditions. In the second step, we optimally weigh

the moment conditions according to the covariance matrix to obtain the final parameter

estimates. That is, in the second step we solve

min
θ
M ′WM, (19)
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where M collects (the empirical analog of the) moment conditions and where W is the

optimal weighting matrix.

The covariance matrix of the parameter estimates from GMM follows from(
Hg′
θ̂

(
Jg
θ̂

)−1
Hg

θ̂

)−1
(20)

with

Hg

θ̂
=

N∑
i=1

∇mi(θ̂) (21)

and

Jg
θ̂

=
N∑
i=1

mi(θ̂)m
′
i(θ̂), (22)

where the superscript g stands for GMM and where mi(θ̂) are the values for the (empirical

analog of the) moment conditions for observation i as defined in (19).

The GMM approach uses conditional probabilities (2) instead of joint probabilities

(4) and hence the large summation in the denominator of (4) is avoided. GMM therefore

has the same computational advantages as the CCL approach. As the suggested GMM

approach has more moment conditions than parameters it is possible to use a standard

test for over-identifying restrictions to test for the validity of the MVL model specification.

In sum, in this section we have proposed four parameter estimation methods for the

Multivariate Logit model. Since the standard ML method is computationally infeasible

when the number of choices is large, we have proposed three novel estimation methods.

In the next section we compare these new estimation methods with the standard ML

approach in a Monte Carlo study. We focus on small sample bias, loss in efficiency and

computation time for several correlated binary choices K and sample sizes N .

4 Monte Carlo Study

In this section we conduct a Monte Carlo study to investigate the properties of the four

estimation methods described in the previous sections. First, we compare computation

times of the four methods. Second, we examine small sample bias and efficiency losses by

looking at the average parameter estimates and the root mean squared error [RMSE] over

the replications. Since the standard ML method uses the full information likelihood func-

tion, this method is expected to be most efficient. We compare the three alternative novel
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estimation methods to this method to analyze loss in efficiency. Finally, we check whether

standard errors provided by the methods allow for valid inference in small samples.

For our Monte Carlo study we consider the MVL specification in (4) and (5). The

number of choices is either small (K = 4), medium (K = 8) or large (K = 12). We

consider a relatively small sample size (N = 500) and a large sample (N = 5000). As

explanatory variables Xi we take two positively correlated random variables; one con-

tinuous and one discrete. Both variables are drawn from a bivariate normal distribution

with variances 0.25 and correlation 0.75 and the second variable is made discrete based

on a zero threshold. The parameters of our Data Generating Processes [DGPs] are chosen

such that different correlation structures in our binary variables occur, see Tables 2 to 4

for the values of the DGP-parameters. The GMM approach uses the discussed two-step

estimator. For the stratified sampling approach we have to choose R and qr. Since the

sets of binary choices within a stratum should be comparable, we create strata of singles,

pairs, triplets et cetera. An intuitive choice for qr is the relative fraction of stratum r in

the data. We consider two alternatives: one where the size of subset D is 2K/2 and one

where it is 2K/3.

All estimation methods are implemented in Matlab R2013a. Before we discuss the

results of the Monte Carlo study, we first focus on computation time. Table 1 displays the

average computation time over 100 replications and N = 1000 observations for different

values of K, where we use the DGP from Tables 2 to 4. Since large summations in

the denominator of (4) and small joint probabilities do not occur for small K, standard

ML estimation is still computationally feasible. However, for larger K, differences in

computation time grow rapidly. For instance, the computation time for standard ML

when K = 12 is on average 25.6 minutes and the other three methods have a clear

advantage. The computation time of CCL is more than 275 times faster (only 5.6 seconds).

If the small sample bias and losses in efficiency are both small, the alternative estimation

methods are sound alternatives for parameter estimation in the large MNL specification

with large K. Note that the difference in computation time will further increase if we

include more explanatory variables in the model or consider even larger K.

Tables 2 to 4 display the average and RMSE of the estimators over 5000 replications.

The DGP with N = 5000 shows that the bias is quite small for all estimation methods. For

small sample sizes, the deviation of the parameter estimates from the DGP values is larger.

Nonetheless, all methods find comparably accurate estimates. Our newly introduced

estimation methods thus are as accurate as the regular likelihood approach.
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To analyze the loss in efficiency between the three novel estimation methods and

standard ML, we consider the RMSE in Tables 2 to 4. As expected, standard ML is most

efficient. The subset in SIS causes a loss of information and thereby an increase in RMSE.

Obviously, the smaller the subset, the larger the loss in efficiency. The largest difference

in RMSE between ML and SIS with a subset D of size 2K/2 is 7 percent. A smaller subset

of size 2K/3 yields a maximum efficiency loss of 20.4 percent. For CCL and GMM, only

small efficiency losses occur. The largest difference in RMSE between standard ML and

GMM is 7.3 percent, although this difference is much smaller for the parameters of the

covariates. For CCL the maximum difference is only less than 1 percent.

In practice one usually opts for the most efficient approach. However, the estimation

method should also be computationally feasible such that parameter estimates can be

obtained in a reasonable amount of time. The large summation over all possible alternat-

ives in the standard ML method may lead to long computation times for large K. CCL

and GMM seem to be useful alternatives for standard ML and produce valid parameter

estimates in little time. The small sample bias is similar and the loss in efficiency is rather

small. For SIS, there is a tradeoff between the size of the subset and the loss in efficiency.

Apart from bias and efficiency, we also consider the validity of the standard errors

with respect to significance testing of the model parameters. Tables 5 to 7 display the

empirical size of the t-test for N = 5000 for both tails of the t-statistic. The table shows

that size distortions are rather small. The largest size distortions are found for the GMM

approach. For example, a theoretical 90 percent confidence interval for ψ3,12 in GMM

turns out to have a coverage of 84.2%. This size distortion is still acceptable. For the

other approaches the size distortions are smaller. The same coverage probability is 89.9%

for the CCL approach. Unreported results show that for small N size distortions of ML,

SIS and CCL are still negligible. Hence, hypothesis tests can be carried out in the usual

manner for these estimation methods. In accordance with existing literature (Altonji &

Segal, 1996), size distortion for the GMM approach are larger in small samples.

In sum, the Monte Carlo study shows that the novel estimation methods are sound

alternatives for the regular likelihood approach. Where computation times in standard

ML increase exponentially over the number of choices, the computation time stays limited

using CCL, GMM or SIS. Further, small sample biases are comparable and efficiency losses

are rather small and acceptable. Given the win in computation time, small small sample

biases and negligible losses in efficiency, CCL is the most promising alternative estimation

method.
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5 Application

In this section we illustrate the use of an MVL model with many choices. We consider

survey data of 2046 individuals on store visits in a particular Dutch specialized shopping

mall. Visits to different stores are likely to be correlated and hence, it is convenient

to model these simultaneous decisions using a Multivariate Logit specification. In this

application we consider simultaneous choices for ten different stores. All stores fall under

the general theme of home decoration and do-it-yourself. Table 8 details the types of

stores. Our dependent variable can take 210 = 1024 different values. As explanatory

variables we have Family size, Age, Gender, Income, Number of visits and Appreciation

of the shopping mall.

The simulation study in Section 4 showed that for this size of the outcome space,

large differences in computation time occur. Hence, one may not be willing to use the

standard Maximum Likelihood estimation. Based on the simulation results we consider

the CCL approach (fast and accurate) to estimate the model parameters1. As benchmark

we will also consider the standard ML approach. The standard ML approach takes about

1.6 hours on a duo-core Intel 3.4Ghz processor with 4GB RAM which shows that this

method is not very convenient if you want to estimate several model specifications. The

CCL approach on the other hand only takes 2.3 minutes.

First, we test for independence among the choices for store visits. The LR-statistic in

the Maximum Likelihood approach for the restriction that all ψ = 0 is 1373.4 (45 degrees

of freedom). This statistic clearly shows that independence is rejected. Hence, we find

evidence for correlations between visiting the different store types and the MVL model

from Section 2 thus is applicable to the data. An adjusted LR-test for CCL (Varin et al.,

2011) yields the same conclusion.

Tables 8 to 11 display the parameter estimates and standard errors for the two es-

timation methods. The parameter estimates are very similar and both methods find the

same parameter estimates to be significantly different from 0. The standard errors in the

CCL approach are slightly smaller than in the standard ML estimation approach but this

may be due to the relatively small sample size. Unreported results show that the GMM

and SIS approach also provide similar results. The results of SIS indicate that subset D

should be large to get results close to standard ML.

The negative estimates of the choice-specific intercepts in Talbes 8 and 10 show that

1The results of the other two approaches are available upon request.
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most stores are visited only by a minority of the individuals. The order of the intercepts

shows that stores selling kitchens are visited least, where stores selling building materials

are visited by the most individuals.

Several relations between the explanatory variables and store visits are found. For

example, the more frequent visitors of the mall visit more stores selling paint/wallpaper,

building materials and hardware and thus are the perfervid handymen. Furthermore,

visitors who very much appreciate the mall are more likely to also buy their furniture,

lamps and floor and wall decorations at this shopping mall.

The association parameters in Table 11 show the relations between the visits to differ-

ent stores. Clear interpretations can be given. For example, individuals who visit a store

selling an odd jobs article (paint/wallpaper, building materials or hardware) are likely also

to visit other odd jobs stores. The same holds for stores selling lamps, curtains/carpets

and furniture since the corresponding association parameters are positive. Negative and

significant association parameters are for instance found for the combination hardware

and curtains/carpets. Apparently, individuals seem to be unlikely to visit both these

store types in this shopping mall.

In sum, the MVL model gives understandable and interpretable parameter estimates

for the data of store visits in a Dutch shopping mall. Furthermore, the standard ML and

CCL approach yield very similar estimation results and conclusions. The clear advantage

of the CCL approach is the time it takes to obtain consistent parameter estimates with

small loss in efficiency. The reduction in computation time is large, and with the CCL

method it becomes feasible to easily consider several model specifications.

6 Conclusion

The Multivariate Logit model is used to model correlated simultaneous binary choices.

In this paper we proposed three novel estimation methods for this model: estimation by

(i)Stratified Importance Sampling; (ii) Composite Conditional Likelihood; and by (iii)

Generalized Method of Moments. The new estimation methods are especially of interest

when the dimension of the choice problem is large. Methods available in the literature go

together with a large computational burden. The new methods in this paper circumvent

this problem.

Results from a Monte Carlo study show that the new estimation methods yield compar-

able small sample biases as a standard (full information) Maximum Likelihood approach
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as proposed by Russell & Petersen (2000). Furthermore, efficiency losses compared to

the full likelihood approach are rather small. Because of these findings, the gain in com-

putation time is a clear advantage of our proposed estimation methods. The Composite

Conditional Likelihood approach turns out to have the largest gain in computation time

and shows to have a very small loss in efficiency and accurate standard errors.

In an application, we applied the methods to store visits in a shopping mall. Mul-

tivariate binary choice data occur widely in practice. Hence, other applications in different

fields of research can be given. Since the dimension of the choice problem will often be

large, our methods are highly useful in applied research.

Several extensions to the current research are possible. For instance, a Conditional

Logit specification can easily be derived. Furthermore, the association parameters can

also depend on exogenous variables or be individual-specific (in panel data models). Fi-

nally, instead of binary choices, this model can be extended to a multivariate multinomial

specification. The feasible estimation methods proposed in this paper can be used in all

these cases.
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A Tables

Table 1: Average computation time over 100 replic-

ations (1000 observations)a

Estimation method

Number of choices K ML SIS
2K/2 SIS

2K/3 CCL GMM

4 0.79 1.02 0.89 0.25 1.22

8 37.33 15.89 8.17 1.66 7.25

12 1538.94 200.76 70.94 5.57 33.73

a In seconds in Matlab R2013a on a Quad-Core Intel Xeon

2.67Ghz processor (8GB RAM) running Windows 7 64 bits

Table 2: Average parameter estimates and RMSE in a simulation study

with 4 binary choices (5000 replications)a

DGP ML SIS
2C/2 SIS

2C/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.35 -0.358 0.230 -0.354 0.257 -0.365 0.298 -0.358 0.230 -0.381 0.239

β2 -1 -1.018 0.277 -1.027 0.320 -1.037 0.364 -1.018 0.277 -0.990 0.274

-0.5 -0.503 0.251 -0.508 0.286 -0.508 0.315 -0.504 0.252 -0.498 0.252

ψ1,4 0.35 0.354 0.220 0.357 0.259 0.361 0.277 0.354 0.220 0.355 0.236

ψ2,4 -0.9 -0.912 0.231 -0.926 0.260 -0.930 0.277 -0.913 0.231 -0.851 0.239

ψ3,4 0.55 0.559 0.212 0.562 0.248 0.567 0.279 0.559 0.212 0.562 0.230

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.35 -0.350 0.071 -0.349 0.079 -0.351 0.091 -0.350 0.071 -0.353 0.071

β2 -1 -1.003 0.085 -1.003 0.098 -1.003 0.108 -1.003 0.086 -0.998 0.085

-0.5 -0.499 0.077 -0.500 0.088 -0.501 0.095 -0.499 0.077 -0.499 0.076

ψ1,4 0.35 0.351 0.068 0.352 0.079 0.353 0.085 0.351 0.068 0.352 0.069

ψ2,4 -0.9 -0.902 0.071 -0.904 0.081 -0.903 0.084 -0.902 0.071 -0.894 0.070

ψ3,4 0.55 0.551 0.067 0.552 0.078 0.553 0.086 0.551 0.067 0.551 0.069

a To save space we only report results of six parameters. The results for the other

parameters are similar and available upon request.

18



Table 3: Average parameter estimates and RMSE in a simulation study

with 8 binary choices (5000 replications)a

DGP ML SIS
2C/2 SIS

2C/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.95 -0.972 0.269 -0.974 0.286 -0.973 0.316 -0.972 0.270 -1.014 0.287

β3 -1 -1.024 0.330 -1.032 0.352 -1.050 0.393 -1.026 0.333 -0.986 0.331

-0.5 -0.511 0.295 -0.517 0.310 -0.521 0.345 -0.512 0.296 -0.504 0.299

ψ1,8 0 -0.009 0.262 -0.008 0.275 -0.011 0.299 -0.009 0.263 0.003 0.271

ψ2,7 0.15 0.146 0.257 0.148 0.269 0.151 0.294 0.146 0.257 0.152 0.266

ψ3,5 -0.9 -0.928 0.296 -0.936 0.309 -0.959 0.331 -0.931 0.297 -0.824 0.302

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.95 -0.949 0.082 -0.949 0.087 -0.949 0.096 -0.949 0.082 -0.954 0.084

β3 -1 -1.003 0.099 -1.004 0.105 -1.005 0.115 -1.003 0.099 -0.994 0.100

-0.5 -0.501 0.090 -0.502 0.093 -0.503 0.103 -0.501 0.090 -0.499 0.090

ψ1,8 0 -0.001 0.080 -0.001 0.084 -0.001 0.090 -0.001 0.080 0.002 0.082

ψ2,7 0.15 0.149 0.079 0.149 0.082 0.148 0.087 0.149 0.079 0.150 0.080

ψ3,5 -0.9 -0.905 0.092 -0.906 0.094 -0.908 0.101 -0.905 0.092 -0.875 0.097

a To save space we only report results of six parameters. The results for the other

parameters are similar and available upon request.

Table 4: Average parameter estimates and RMSE in a simulation

study with 12 binary choices (5000 replications)a

DGP MLb SIS
2C/2

b SIS
2C/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -1.55 – – – – -1.602 0.368 -1.591 0.314 -1.645 0.347

β4 -1 – – – – -1.074 0.451 -1.040 0.386 -0.995 0.390

-0.5 – – – – -0.525 0.401 -0.508 0.340 -0.518 0.352

ψ3,12 -0.35 – – – – -0.405 0.432 -0.390 0.397 -0.346 0.395

ψ5,10 0.15 – – – – 0.136 0.398 0.133 0.368 0.114 0.371

ψ7,8 0.55 – – – – 0.570 0.390 0.554 0.349 0.486 0.374

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 -0.35 – – – – -1.558 0.106 -1.555 0.094 -1.561 0.097

β4 -1 – – – – -1.007 0.128 -1.005 0.116 -0.993 0.115

-0.5 – – – – -0.503 0.117 -0.502 0.103 -0.505 0.103

ψ1,4 0.35 – – – – -0.355 0.121 -0.352 0.116 -0.341 0.116

ψ2,4 -0.9 – – – – 0.151 0.113 0.150 0.107 0.139 0.109

ψ3,4 0.55 – – – – 0.548 0.111 0.547 0.103 0.519 0.110

a To save space we only report results of six parameters. The results for the

other parameters are similar and available upon request.
b As estimation for ML and SIS2K/2 take too long (see Table 1) we do not

include them in the 5000 replications simulation.
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Table 5: Empirical size of the distribution of the

four estimators of the MVL model with 4 binary

choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.026 0.052 0.099 0.896 0.949 0.977

β2 0.025 0.048 0.098 0.894 0.947 0.972

0.024 0.048 0.097 0.902 0.950 0.975

ψ1,4 0.024 0.050 0.099 0.901 0.949 0.976

ψ2,4 0.023 0.047 0.097 0.896 0.946 0.972

ψ3,4 0.026 0.052 0.099 0.898 0.949 0.977

SIS
2C/2 α1 0.028 0.051 0.100 0.897 0.949 0.975

β2 0.024 0.049 0.096 0.898 0.947 0.972

0.024 0.049 0.098 0.898 0.949 0.975

ψ1,4 0.027 0.051 0.103 0.900 0.953 0.975

ψ2,4 0.023 0.046 0.096 0.892 0.944 0.972

ψ3,4 0.025 0.050 0.100 0.900 0.949 0.976

SIS
2C/3 α1 0.026 0.051 0.098 0.896 0.948 0.974

β2 0.022 0.049 0.099 0.899 0.948 0.975

0.025 0.047 0.096 0.906 0.952 0.977

ψ1,4 0.024 0.049 0.097 0.899 0.949 0.975

ψ2,4 0.025 0.050 0.101 0.898 0.948 0.973

ψ3,4 0.027 0.049 0.101 0.895 0.946 0.975

CCL α1 0.027 0.052 0.099 0.896 0.948 0.977

β2 0.025 0.049 0.098 0.893 0.946 0.972

0.025 0.048 0.098 0.903 0.950 0.975

ψ1,4 0.025 0.050 0.099 0.900 0.949 0.974

ψ2,4 0.023 0.048 0.099 0.895 0.945 0.972

ψ3,4 0.025 0.053 0.099 0.898 0.949 0.977

GMM α1 0.029 0.057 0.106 0.888 0.943 0.972

β2 0.027 0.053 0.105 0.889 0.942 0.970

0.027 0.050 0.100 0.903 0.950 0.973

ψ1,4 0.032 0.062 0.111 0.888 0.940 0.969

ψ2,4 0.033 0.063 0.116 0.881 0.933 0.965

ψ3,4 0.032 0.061 0.111 0.885 0.940 0.970

a To save space we only report results of six parameters. The

results for the other parameters are similar and available

upon request.
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Table 6: Empirical size of the distribution of the

four estimators of the MVL model with 8 binary

choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.022 0.048 0.098 0.900 0.948 0.972

β3 0.021 0.044 0.099 0.899 0.949 0.978

0.026 0.051 0.101 0.899 0.954 0.977

ψ1,8 0.025 0.048 0.096 0.901 0.952 0.976

ψ2,7 0.025 0.052 0.104 0.891 0.947 0.975

ψ3,5 0.022 0.048 0.100 0.898 0.944 0.974

SIS
2C/2 α1 0.027 0.052 0.102 0.900 0.949 0.975

β3 0.023 0.047 0.099 0.900 0.948 0.976

0.026 0.050 0.102 0.892 0.950 0.976

ψ1,8 0.027 0.053 0.096 0.899 0.952 0.978

ψ2,7 0.025 0.056 0.103 0.894 0.948 0.975

ψ3,5 0.025 0.047 0.093 0.893 0.945 0.974

SIS
2C/3 α1 0.023 0.050 0.105 0.902 0.948 0.976

β3 0.022 0.045 0.098 0.897 0.948 0.973

0.027 0.050 0.100 0.900 0.954 0.979

ψ1,8 0.026 0.047 0.098 0.899 0.951 0.977

ψ2,7 0.023 0.049 0.099 0.898 0.947 0.975

ψ3,5 0.025 0.049 0.098 0.890 0.946 0.974

CCL α1 0.023 0.048 0.100 0.900 0.948 0.972

β3 0.022 0.044 0.100 0.898 0.949 0.976

0.026 0.051 0.103 0.899 0.952 0.977

ψ1,8 0.026 0.049 0.099 0.896 0.951 0.974

ψ2,7 0.027 0.054 0.105 0.888 0.945 0.975

ψ3,5 0.024 0.049 0.100 0.897 0.942 0.970

GMM α1 0.029 0.057 0.109 0.887 0.941 0.967

β3 0.028 0.054 0.107 0.886 0.941 0.970

0.029 0.055 0.105 0.892 0.949 0.976

ψ1,8 0.035 0.060 0.117 0.874 0.931 0.961

ψ2,7 0.039 0.069 0.119 0.868 0.931 0.963

ψ3,5 0.034 0.064 0.121 0.873 0.930 0.958

a To save space we only report results of six parameters. The

results for the other parameters are similar and available

upon request.
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Table 7: Empirical size of the distribution of the

four estimators of the MVL model with 12 binary

choices (5000 observations, 5000 replications)a

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

SIS
2C/3 α1 0.025 0.048 0.093 0.900 0.950 0.975

β4 0.023 0.051 0.098 0.903 0.957 0.977

0.023 0.044 0.095 0.898 0.949 0.975

ψ3,12 0.024 0.046 0.093 0.902 0.949 0.975

ψ5,10 0.021 0.046 0.094 0.901 0.953 0.977

ψ7,8 0.024 0.042 0.094 0.904 0.947 0.974

CCL α1 0.025 0.050 0.095 0.894 0.948 0.974

β4 0.024 0.051 0.106 0.894 0.946 0.975

0.024 0.048 0.097 0.902 0.949 0.971

ψ3,12 0.024 0.048 0.098 0.891 0.947 0.974

ψ5,10 0.023 0.049 0.101 0.895 0.948 0.974

ψ7,8 0.025 0.050 0.098 0.898 0.950 0.972

GMM α1 0.036 0.066 0.119 0.876 0.935 0.965

β4 0.030 0.065 0.120 0.882 0.938 0.967

0.028 0.055 0.102 0.892 0.943 0.968

ψ3,12 0.044 0.076 0.127 0.862 0.918 0.953

ψ5,10 0.043 0.069 0.129 0.862 0.920 0.954

ψ7,8 0.045 0.072 0.125 0.870 0.925 0.954

a To save space we only report results of six parameters. The

results for the other parameters are similar and available

upon request.
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