
A Multivariate Model for Multinomial Choices

Koen Bela∗ Richard Paapa

aEconometric Institute

Erasmus School of Economics

Erasmus University Rotterdam

13th October 2014

Econometric Institute Report 2014-26

Abstract

Multinomial choices of individuals are likely to be correlated. Nonetheless, eco-

nometric models for this phenomenon are scarce. A problem of multivariate mul-

tinomial choice models is that the number of potential outcomes can become very

large which makes parameter interpretation and inference difficult. We propose a

novel Multivariate Multinomial Logit specification, where (i) the number of para-

meters stays limited; (ii) there is a clear interpretation of the parameters in terms

of odds ratios; (iii) zero restrictions on parameters result in independence between

the multinomial choices and; (iv) parameter inference is feasible using a composite

likelihood approach even if the multivariate dimension is large. Finally, these nice

properties are also valid in a fixed-effects panel version of the model.
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1 Introduction

It is common practice in applied research to use Multinomial Logit [MNL] models to

describe multinomial choice data (McFadden, 1983, Chapter 24). These MNL models

are suited to describe single multinomial choices. In practice we are often dealing with

multiple correlated multinomial decisions. Answers to survey questions with two or more

choice possibilities are likely to be correlated. The choice for job location may be correlated

with residence choice. In corporate finance one may want to model simultaneously the

strategy to takeover another company and the ways to finance this takeover. In marketing

one may be interested in dependencies in brand choices for several product categories.

Hence, simultaneous multinomial decisions occur in different areas of research.

In this paper we propose a relatively straightforward model to describe simultaneous

multinomial decisions. As far as we know there are hardly any models available to model

correlated multinomial decisions, see de Rooij & Kroonenberg (2003) for a similar conclu-

sion. An obvious way to model simultaneous multinomial decisions is to use a correlated

Multinomial Probit [MNP] approach, see Hausman & Wise (1978). Parameter estimation

of such models implies solving high-dimensional integrals using numerical integration or

simulation methods. Given the computational burden in univariate MNP models (Geweke

et al., 1994, 1997), frequentist inference in a multivariate MNP model is unlikely to be

feasible. Another option is to use mixed Logit models (Hensher & Greene, 2003) and let

unobserved heterogeneity capture correlation among decisions. Again, computation of the

choice probabilities implies solving integrals which becomes infeasible when the number

of simultaneous decisions is already moderately large. A Nested Logit specification (Mad-

dala, 1983, Chapter 3) is perhaps a more feasible approach. However, this model handles

the data as if decisions are made sequentially, which is often not the case in practice.

Finally, one may consider an MNL model for all possible combinations of the multino-

mial variables. The number of choice combinations however becomes easily large, see also

Amemiya (1978) and Ben-Akiva & Lerman (1985, chapter 10). Clearly, the number of

parameters and model interpretation get out of hand. Furthermore, parameter estimation

becomes infeasible as the computation of choice probabilities requires summation over all

potential outcomes.

As far as we know the multivariate MNL model of de Rooij & Kroonenberg (2003) is

the only recent contribution to the simultaneous multinomial choice modelling literature.

Their model is however specially designed for the problem and data set at hand and
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cannot be applied in general. The work in Burda et al. (2008) is related although in their

paper individuals make numerous choices on the same attribute. We focus on numerous

separated multinomial choices. To fill the gap in the literature, we propose a general and

novel Multivariate Multinomial Logit [MV-MNL] specification to describe simultaneous

multinomial decisions. In essence, we extend the Multivariate (binary) Logit [MVL] model

of Cox (1972) and Russell & Petersen (2000) to multivariate multinomial decisions. The

advantages of this multivariate multinomial model specification are that (i) the number

of parameters stays limited; (ii) there is a clear interpretation of the model parameters

in terms of odds ratios and (iii) zero restrictions on a subset of parameters result in

independence between the multinomial choices.

The model is related to the multivariate MNL specification of Amemiya (1978) and

Ben-Akiva & Lerman (1985, chapter 10) but in contrast to these specifications we ex-

plicitly focus on the dependence structure in the multinomial choices. Furthermore, our

proposed MV-MNL specification allows for an easy and computationally feasible para-

meter estimation method. Due to its special structure we can avoid the summation over

all potential combinations of the multivariate multinomial choices by considering condi-

tional probabilities in the estimation approach. Parameter estimates are obtained from

a Composite Likelihood function (Lindsay, 1988) containing conditional probabilities, see

Bel et al. (2014) for a similar approach in MVL models. Hence, the Composite Likelihood

method avoids the computation of the joint probabilities over all possible combinations.

Finally, the novel multivariate MNL specification can easily be extended to a fixed-effects

specification for panel data. Parameter estimation stays feasible by using sufficient stat-

istics in combination with the composite likelihood approach.

The remainder of this paper is organized as follows. In Section 2, we introduce the

new MV-MNL specification. We also discuss parameter identification, interpretation and

parameter inference. A small Monte Carlo study shows the accuracy of the parameter

estimates and a small loss in efficiency due to the use of the composite instead of the

true likelihood. An extension to panel data is discussed in Section 3. Section 4 provides

two illustrations of the use of MV-MNL models. The first illustration concerns a cross-

sectional survey on satisfaction about life and the second illustration deals with the choice

for tuna using a household panel scanner data set. Finally, Section 5 concludes.
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2 Model Specification

In this section we discuss the model specification for the Multivariate Multinomial Logit

model. This model is an extension of the Multivariate Logit model introduced by Cox

(1972) and Russell & Petersen (2000). To start the discussion, we first consider briefly this

MVL specification in Section 2.1. The extension to a multinomial specification is proposed

in Section 2.2. We discuss model specification, parameter identification and interpretation

of the model parameters. Finally, Section 2.3 shows the model representation for the

choice probabilities in a simple bivariate trinomial Logit model to clarify the structure of

the model.

2.1 A Multivariate Binomial Logit Model

First, we consider the Multivariate Logit model to describe correlated binary decisions

following the ideas in Russell & Petersen (2000). Let Yi denote the K-dimensional random

variable describing the joint set of choices for individual i = 1, . . . , N , defined as

Yi = {Yi1, . . . , YiK}, (1)

where Yik describes the k-th binary choice for individual i for k = 1, . . . , K. Note that

there are 2K possible realizations of the random variable Yi. The set of possible realizations

is called S.

The K choices in Yi may be correlated. The starting point for modeling these depend-

encies is the conditional probabilities for each choice decision k given all choice decisions

l 6= k, see Russell & Petersen (2000). These conditional probabilities are a Logit func-

tion of the individual characteristics Xi, the model parameters α, β and ψ and the other

choices yil, that is

Pr[Yik = 1|yil for l 6= k,Xi] =
exp(Zik)

1 + exp(Zik)
(2)

with

Zik = αk +Xiβk +
∑
l 6=k

yilψkl, (3)

where yil are the actual realizations of Yil, Xi is a vector of explanatory variables with

corresponding parameter vector βk, αk are alternative-specific intercepts, and where ψkl

are association parameters for l 6= k. Hence, the correlation between Yik and Yil is captured
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by the association parameter. Association means the relative change in the exponent Zik

if choices k and l move together compared to being opposite. When ψkl > 0 this implies

positive association and when ψkl < 0 we have negative association. For ψkl = 0 we

have independence between Yik and Yil. As we can only describe correlations, we have to

impose ψkl = ψlk for symmetry.

The theorem of Besag (1974) states that all properties of the joint distribution follow

from the full set of conditional distributions. Russell & Petersen (2000) use this result

to show that the conditional distributions in (2) imply the following Multinomial Logit

model for the joint distribution of Yi:

Pr[Yi = yi|Xi] =
exp(µyi)∑
si∈S exp(µsi)

, (4)

where yi is a possible realization from the outcome space S, and where µyi is defined as

µyi =
K∑
k=1

yik(αk +Xiβk) +
∑
l>k

yikyilψkl. (5)

Hence, the parameters αk and βk only occur if the corresponding choice equals 1. Fur-

thermore, the association parameter ψkl only occurs if both yik = 1 and yil = 1.

It can be shown that the association parameters ψkl equals the log odds ratio

ψkl = ln

(
Pr[Yi = (0, . . . , 0, yk, 0, . . . , 0, yl, 0, . . . , 0)′|Xi] Pr[Yi = (0, . . . , 0)′|Xi]

Pr[Yi = (0, . . . , 0, yk, 0, . . . , 0)′|Xi] Pr[Yi = (0, . . . , 0, yl, 0, . . . , 0)′|Xi]

)
(6)

which again illustrates that the parameter describes the simultaneity in the binary de-

cisions. In the next subsection we will extend the idea of this section to the situation of

simultaneous multinomial decisions and we will derive a Multivariate Multinomial Logit

model.

2.2 A Multivariate Multinomial Logit Model

Assume now that we have K multinomial choices and that the k-th choice decision has

Jk potential outcomes. Again we define a vector of random variables Yi as in (1) but now

Yik = j if individual i chooses j = 1, . . . , Jk for the k-th choice. The number of potential

outcomes of Yi is
∏K

k=1 Jk. Let S again denote the set of possible realizations of Yi. We

consider the conditional probabilities for the k-th choice given all other choices yil, that

is

Pr[Yik = j|yil for l 6= k,Xi] =
exp(Zik,j)∑Jk
l=1 exp(Zik,l)

(7)
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with

Zik,j = αk,j +Xiβk,j +
∑
l 6=k

ψkl,jyil , (8)

where αk,j are alternative- and choice-specific intercepts, Xi a vector of explanatory vari-

ables with corresponding parameter vector βk,j, yil the choice decision of individual i for

the l-th choice and where ψkl,jh are association parameters between choosing j for the

k-th choice and choosing h for the l-th choice. Not all parameters in (7) are identified. It

is easy to see that when all ψkl,jh-parameters are 0, the conditional probabilities simplify

to standard multinomial logit probabilities where the K choices are independent. Hence,

to identify the parameters we have to impose the standard identification restrictions of

the Multinomial (binary) Logit model, that is, αk,1 = 0 and βk,1 = 0 for all k. Further-

more, using similar arguments as in the Multivariate Logit case we impose the symmetry

restriction on the association parameters, that is ψkl,jh = ψlk,hj for all j and h.

Finally, as utility differences determine choice, we cannot identify all association para-

meters. Without loss of generality we impose that ψkl,j1 = ψkl,1h = 0 for all j and h.

Note that it is possible to impose other identification restrictions. Our choice however

(i) is a straightforward extension to the binomial example in the previous section; (ii) is

universal, that is, can be applied for all possible values of K and Jk and (iii) yields direct

interpretations of the association parameters via odds ratios.

The model in (7) is a straightforward extension of the MVL model discussed in Sec-

tion 2.1. In Appendix A.1 we show that Besag (1974)’s Theorem can also be used in this

multinomial setting leading to the joint probabilities given in (4) but now with

µyi =
K∑
k=1

αk,yik +Xiβk,yik +
∑
l>k

ψkl,yikyil . (9)

It is easy to see that the equation contains αk and βk corresponding to the specific choice

for the k-th choice and ψkl,jh corresponding to the observed choice pairs yik and yil. The

base alternative in this model is yi = (1, . . . , 1) where under the identification restrictions

the corresponding µ equals 0.

The discussion can easily be extended to a Multivariate Conditional Logit specifica-

tion where the explanatory variables instead of parameters vary over alternative choices.

Hence, the exponent in (7) then writes

Zik,j = αk,j +Wik,jγk +
∑
l 6=k

ψkl,jyil , (10)
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where Wik,j denotes the value of the explanatory variables which now differs over i, k and

j and γk denotes the corresponding parameter. The joint probabilities are then given by

(4) with

µyi =
K∑
k=1

αk,yik +Wik,yikγk +
∑
l>k

ψkl,yikyil . (11)

The proof directly follows from the proof for the MV-MNL specification in Appendix A.11.

The role of the intercept parameters and Xi follows from the log odds ratio

ln

(
Pr[Yi = yi|Xi]

Pr[Yi = (1, . . . , 1)′|Xi]

)
=

K∑
k=1

αk,yk +Xiβk,yk +
∑
l>k

ψkl,ykyl , (12)

where we use that under the identification restrictions Pr[Yi = (1, . . . , 1)|Xi] ∝ 1. Clearly,

this odds ratio equals µyi in (9) and provides the probability to observe yi relative to the

base set of choice decisions.

The parameters ψkl,jh indicate the associations between choices k and l. ψkl,jh is in

theory an unbounded parameter and thus does not directly resemble correlation between

choices j and h. To give a direct interpretation to these associations, we use log odds

ratios. It is easy to show that

ψkl,ykyl = ln

(
Pr[Yi = (1, . . . , 1, yk, 1, . . . , 1, yl, 1, . . . , 1)′|Xi] Pr[Yi = (1, . . . , 1)′|Xi]

Pr[Yi = (1, . . . , 1, yk, 1, . . . , 1)′|Xi] Pr[Yi = (1, . . . , 1, yl, 1, . . . , 1)′|Xi]

)
.(13)

Hence, a positive ψkl,jh implies that the choices j and h more often move together than

apart. Hence, this indeed implies positive ψkl,jh for positive correlations and negative

association parameters for negative correlations.

Finally, the model can easily be extended with individual-specific association para-

meters by replacing the expression for ψkl,jh in (9) by

ψi,kl,jh = ξkl,jh +Xiδkl,jh, (14)

where ξkl,jh and δkl,jh are additional parameters. The association between decisions j and

h now depends on individual characteristics Xi. The resulting model comes closer to the

specifications of Amemiya (1978) and Ben-Akiva & Lerman (1985, chapter 10).

1The proof requires that Zik,1 = 0 which does not hold for this specification. We can however rewrite

the model such that Zik,j = αk,j + (Wik,j −Wik,1)γk +
∑

l 6=k ψkl,jyil
with Zik,1 = 0 such that the proof

is similar as in Appendix A.1.
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2.3 A Bivariate Trinomial Logit Model

To illustrate the properties of the proposed Multivariate Multinomial Logit model and the

need for identification restrictions we consider a bivariate trinomial Logit specification.

Hence, we assume that K = 2 and J1 = J2 = 3. The conditional probabilities with the

proper identification restrictions imposed are defined as

Pr[Yi1 = 1|yi2, Xi] ∝ 1

Pr[Yi1 = 2|yi2, Xi] ∝ exp(α1,2 +Xiβ1,2 + ψ12,2yi2)

Pr[Yi1 = 3|yi2, Xi] ∝ exp(α1,3 +Xiβ1,3 + ψ12,3yi2) (15)

Pr[Yi2 = 1|yi1, Xi] ∝ 1

Pr[Yi2 = 2|yi1, Xi] ∝ exp(α2,2 +Xiβ2,2 + ψ12,yi12)

Pr[Yi2 = 3|yi1, Xi] ∝ exp(α2,3 +Xiβ2,3 + ψ12,yil3).

These conditional probabilities imply the following 9 choice probabilities:

Pr[Yi = (1, 1)′|Xi] ∝ 1

Pr[Yi = (1, 2)′|Xi] ∝ exp(α2,2 +Xiβ2,2)

Pr[Yi = (1, 3)′|Xi] ∝ exp(α2,3 +Xiβ2,3)

Pr[Yi = (2, 1)′|Xi] ∝ exp(α1,2 +Xiβ1,2)

Pr[Yi = (2, 2)′|Xi] ∝ exp(α1,2 + α2,2 +Xi(β1,2 + β2,2) + ψ12,22) (16)

Pr[Yi = (2, 3)′|Xi] ∝ exp(α1,2 + α2,3 +Xi(β1,2 + β2,3) + ψ12,23)

Pr[Yi = (3, 1)′|Xi] ∝ exp(α1,3 +Xiβ1,3)

Pr[Yi = (3, 2)′|Xi] ∝ exp(α1,3 + α2,2 +Xi(β1,3 + β2,2) + ψ12,32)

Pr[Yi = (3, 3)′|Xi] ∝ exp(α1,3 + α2,3 +Xi(β1,3 + β2,3) + ψ12,33).

As we have 9 probabilities we can only identify 8 different intercept parameters. The im-

posed identification restrictions result in exactly 4 α-parameters and 4 ψ-parameters and

thus cause identifiability. It is easy to see that imposing ψ12,22 = ψ12,23 = ψ12,32 = ψ12,33 =

0 implies that the joint probabilities can be written as the product of two independent

Multinomial Logit probabilities. Furthermore we see that

ψ12,jh = ln

(
Pr[Yi = (j, h)′|Xi] Pr[Yi = (1, 1)′|Xi]

Pr[Yi = (j, 1)′|Xi] Pr[Yi = (1, h)′|Xi]

)
. (17)

Hence, a positive value of ψ12,jh implies positive association between choosing j for choice

1 and h for choice 2.
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2.4 Parameter Inference

To estimate the parameters of the Multivariate binary Logit model Russell & Petersen

(2000) suggest to use Maximum Likelihood using a log-likelihood function based on the

joint probabilities, that is

`(θ; y) =
N∑
i=1

I[Yi = yi] Pr[Yi = yi|Xi], (18)

where I[A] = 1 if A holds true and 0 otherwise, Pr[Yi = yi|Xi] is given in (4) and where

θ summarizes the model parameters.

The same approach is of course possible for our MV-MNL specification. The disad-

vantage is however that the computation of these joint probabilities may be a burden if

the dimensions of the Logit specification are large. For example, for K = 10 and Jk = 5

for all k we have to take the sum of 510 different terms in the denominator of the joint

probabilities. The outcome space of the multivariate multinomial random variable rapidly

grows large and the computation time thereby increases exponentially with the number

of choices.

To avoid this large computation time, we propose another estimation approach based

on the ideas in Bel et al. (2014) for the MVL specification. Bel et al. (2014) propose to

use a Composite Likelihood approach (Lindsay, 1988) using all conditional probabilities

(2) in the likelihood specification (Molenberghs & Verbeke, 2005, chapter 12) instead

of the joint probabilities (4). The resulting Composite Conditional Likelihood [CCL]

representation only uses conditional probabilities and hence it avoids summation over the

complete outcome space. It can be shown that the CCL approach provides consistent

estimators (Varin et al., 2011) but at the cost of loss in efficiency.

The conditional probabilities in (7) lead to the composite log-likelihood function of

the MV-MNL specification, that is

`c(θ; y) =
N∑
i=1

`c(θ; yi)

=
N∑
i=1

K∑
k=1

`c(θ; yik)

=
N∑
i=1

K∑
k=1

Jk∑
j=1

I[Yik = j] logP [Yik = j|yil for l 6= k,Xi].

(19)

The estimator θ̂ which follows from maximizing (19) is consistent. Varin et al. (2011) show

that standard errors in CCL can be computed using the Godambe (1960) information
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matrix, which has a sandwich form and writes

Gθ̂ = Hθ̂J
−1
θ̂
Hθ̂ (20)

with

Hθ̂ =
1

N

N∑
i=1

K∑
k=1

∇`c(θ̂; yik)∇`c
′
(θ̂; yik) (21)

and

Jθ̂ =
1

N

N∑
i=1

∇`c(θ̂; yi)∇`c
′
(θ̂; yi). (22)

where ∇`c(θ̂; yik) and ∇`c(θ̂; yi) denote the first derivatives of the corresponding log-

likelihood contributions in (19). The covariance matrix of the parameter estimates is

then given by

(−Gθ̂)
−1. (23)

To test for independence in the multinomial decisions one can use a Likelihood Ratio

[LR] statistic for the restriction that the association parameters ψ equal 0. This LR-

statistic does not have a standard distribution when the CCL estimation approach is

used. Based on results by Satterthwaite (1946) and Kent (1982), Varin et al. (2011)

propose to use an adjusted LR-statistic which for our test for independence boils down to

LR =
ν

Qλ̄
2
(
`c(θ̂; y)− `c(α̂, β̂; y)

)
, (24)

where `c(θ̂; y) is the value of the CCL evaluated in the estimate under the alternative

hypothesis and `c(α̂, β̂; y) the value of the CCL evaluated in the estimate under the null

and where Q is the number of ψ parameters. This LR-statistics is asymptotically χ2(ν)

distributed with

ν =

(∑Q
q=1 λq

)2
∑Q

q=1 λ
2
q

, (25)

where λ1, . . . , λQ are eigenvalues of (Gψ(H−1)ψ)−1 with Gψ the Q × Q submatrix of the

Godambe information matrix corresponding to ψ. Moreover, λ̄ denotes the average of the

eigenvalues.

Although the Composite Conditional Likelihood does not correspond to the true like-

lihood function, it still takes the correlation between choice decisions in the Multivariate
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Multinomial Logit model into account. The advantage over the full multinomial repres-

entation in (4) is that CCL avoids the large summation in the denominator. Therefore,

CCL will be more robust in computation time in case of a large number of choices and

alternatives. Nonetheless, since the composite instead of the true likelihood function is

used, the estimator is not efficient. Bel et al. (2014) show that the loss in efficiency is

quite small for MVL models. In the next subsection we conduct a small Monte Carlo

study to analyze the efficiency loss for the MV-MNL specification.

2.5 Monte Carlo Study

In this section we conduct a Monte Carlo study to investigate the properties of the Com-

posite Likelihood estimator for the parameters of a Multivariate Multinomial Logit spe-

cification. We focus on potential small sample bias and loss in efficiency caused by using

the composite instead of the exact log-likelihood specification in the estimation procedure.

Finally, we check whether the normal distribution can be used to approximate the small

sample distribution of the CCL estimator.

For our Monte Carlo study we consider the MV-MNL specification (4) with (9). The

number of choices K is fixed to 3 and the number of choice alternatives per choice are

J1 = 3, J2 = 4 and J3 = 5. We consider a relatively small sample size N = 250 and a large

sample N = 5000. As explanatory variables Xi we take two positively correlated random

variables; one continuous and one discrete. Both variables are drawn from a bivariate

normal distribution with variances 0.25 and correlation 0.75. The second variable is made

discrete based on a zero threshold. The parameters of our DGP are chosen such that

there is an unequal distribution over the choice alternatives but still substantial choice

probabilities for every choice combination, see Tables 1 and 2 for the values of our DGP

parameters.

Tables 1 to 4 display the mean and root mean squared error of the CCL estimator.

The final two tables show that for N = 5000 the bias in the estimator is quite small. For

a smaller sample size N = 250, the deviation from the DGP parameters is larger. Unre-

ported results2 show that the bias is almost the same as the bias in a regular Maximum

Likelihood approach. The RMSE shows that there is a large variance of the estimator for

small sample sizes. This is not a surprise as we in fact try to estimate the parameters of

an MNL model with 3× 4× 5 = 60 choice alternatives using only 250 observations.

2Detailed results are available upon request.
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To analyze the loss in efficiency between CCL and the regular likelihood approach,

we consider the ratio of the RMSEs of both approaches. Table 5 shows that the ratios

are close to 1 and hence the loss in efficiency is rather limited even in small samples. For

example, for the largest difference, CCL is only 1.3 percent worse in RMSE than regular

ML. Hence, CCL seems to be a valid alternative for Maximum Likelihood to estimate

the parameters of an MV-MNL model. The small sample bias is similar and the loss in

efficiency is very small.

Apart from bias and efficiency, we also consider the validity of using a normal distri-

bution for testing for significance of the parameters. Table 6 displays the empirical size

of the t-tests for N = 250 for both tails of t-statistics. The table shows that even for

N = 250 size distortions are rather small. For example, a theoretical 90 percent confid-

ence interval for ψ13,33 turns out to have coverage of 88.8 percent. This size distortion is

still acceptable.

In sum, the simulation study shows that the Composite Likelihood estimator has

similar small sample biases as the Maximum Likelihood estimator and that efficiency

losses are limited. Inference based on t-statistics seems to be valid even in relatively small

samples. Because of the advantages of CCL over ML when dimensions increase, CCL is

a good alternative for the estimation of parameters in a Multivariate Multinomial Logit

specification. In Section 4.1, we will use the CCL approach in a small application.

3 A Panel Specification

The MV-MNL model can easily be extended to a fixed-effects panel data specification.

Let Yit denote the K-dimensional random variable describing the joint set of choices for

individual i = 1, . . . , N at time t = 1, . . . , T and let Yitk = j if individual i chooses

j = 1, . . . , Jk for the k-th choice at time t. The choice probabilities are given by

Pr[Yit = yit|Xit] =
exp(µyit)∑
sit∈S exp(µsit)

, (26)

where yit is a possible realization from the outcome space S and where µyit is defined as

µyit =
K∑
k=1

αik,yitk +Xitβk,yitk +
∑
l>k

ψikl,yitkyitl . (27)

Hence, both the intercepts and the association parameters are individual specific. A spe-

cial case of the model is where the association parameters are pooled across the individuals

in which case we replace ψikl,yitkyitl in (27) by ψkl,yitkyitl .
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3.1 Parameter Estimation

In practice the number of cross sections is usually limited and hence parameter estimation

suffers from the incidental parameter problem. To solve this, we follow Chamberlain

(1980) and Lee (2002, Chapter 6) who condition on a sufficient statistic which eliminates

the fixed effects from the model specification. We extend the solution of Chamberlain

(1980) for a univariate panel MNL model to our multivariate multinomial setting in (26).

The appropriate sufficient statistics are given by

v
(1)
i,s =

T∑
t=1

I[Yit = s] = ci,s ∀s ∈ S, (28)

where ci,s is the number of times the combination of choices s occurs for individual i.

Thus, only the alternatives containing the same choice sets over time as observed for

individual i are used in the logit specification. That is, only the permutations of choices

of individual i over time are taken into account. Since no permutations can be made for

individuals where no change takes place over time, these observations are not of interest

and discarded. Appendix A.2 shows that the choice probabilities conditionally on these

sufficient statistics are given by

Pr[Yi = yi|v(1)i , Xi] =
exp

(∑T
t=1

∑K
k=1Xitβk,yitk

)
∑

di∈B exp
(∑Ti

t=1

∑K
k=1Xitβk,ditk

) , (29)

where B is the set of alternatives for which v
(1)
i holds. Hence, the individual-specific

parameters (intercepts and association parameters) are removed from the probabilities

and the β-parameters can be estimated consistently using a log-likelihood function where

we condition on the sufficient statistics. Note that this approach only works if Xit does

not depend on lagged dependent variables.

In case the association parameters are of core interest, these should not be discarded

from the specification. Therefore, we make ψkl,jh not individual-specific and we have to

consider other sufficient statistics

v
(2)
i,k,j =

T∑
t=1

I[Yitk = j] = ci,k,j ∀k, j, (30)

where ci,k,j now is the number of times that individual i chooses option j for the k-th

choice. Appendix A.2 shows that when we condition on these sufficient statistics the

13



choice probabilities are given by

Pr[Yi = yi|v(2)i , Xi] =
exp

(∑T
t=1

∑K
k=1Xitβk,yitk +

∑
l>k ψkl,yitkyitl

)
∑

di∈B exp
(∑T

t=1

∑K
k=1Xitβk,ditk +

∑
l>k ψkl,ditkditl

) , (31)

where ψkl,jh does not drop out since the combination of choices may differ over the al-

ternatives in set B where v
(2)
i holds. Hence, we now can find estimates of both βk,j and

the association parameters ψkl,jh describing the relation of the choices in the Multivariate

Multinomial Logit specification. Again this approach is only valid if Xit does not contain

lagged dependent variables.

The disadvantage of using the log-likelihood function conditional on the sufficient stat-

istics for parameter estimation is again the sum over the alternatives in the denominator

of the choice probabilities. In Appendix A.3 we however show that the Composite Like-

lihood method can also be applied in a panel data setting thereby avoiding the extensive

sum and making parameter estimation of MV-MNL models feasible in a panel context.

In the next section we illustrate the possibilities of the MV-MNL model by applications

of its panel version discussed in this section and its cross-sectional counterpart from

Section 2 to household panel scanner data and a survey on life satisfaction, respectively.

4 Illustration

This section considers two illustrations of our newly proposed MV-MNL model. First, we

apply the model on cross sectional survey data on satisfaction. Satisfaction is measured

at an ordinal scale and satisfaction on different items are likely to be correlated. Hence,

the MV-MNL model specification from Section 2 and the CCL estimation procedure from

Section 2.4 can be used. Second, we investigate the product choice of canned tuna fish

in a household panel scanner data set. Various multinomial choices on the characteristics

of canned tuna fish are made. As these decisions are made simultaneously the model

presented in Section 3 is highly applicable.

14



4.1 Survey Data on Satisfaction

To illustrate the MV-MNL model discussed in Section 2, we consider modeling satisfaction

of 2012 Dutch respondents to an extensive survey from 20043. Satisfaction is represented

by 5 ordinal dependent variables: Satisfaction about Life, Income, the Social security

system, Democracy and the Government. For Life, Income and Democracy respondents

can be Satisfied, Unsatisfied or In between. Social and Goverment have two options: either

the respondent is Satisfied or (s)he is Unsatisfied. The base category is Satisfied such that

a positive β-parameter indicates less satisfaction if xi is large and positive. To describe

relations in satisfaction level we consider the MV-MNL model of Section 2.2 with K = 5,

J1 = J2 = J4 = 3 and J3 = J5 = 2. As explanatory variables we have Gender, Age,

Unemployment, (self-reported) Health status, Religion, Political interest and Income.

Since our dependent variables are ordered multinomial variables we opt for a Stereo-

type Logit specification (Anderson, 1984). That is, we adjust our model specification

in (9) such that the parameter estimates are restricted to be monotically increasing or

decreasing over the choice options. Formally, we change (9) into

µyi =
K∑
k=1

αk,yik + φk,yik(Xiβk) +
∑
l>k

ψkl,yikyil , (32)

where 0 = φk,1 < · · · < φk,Jk = 1 for ordering and identification purposes. This addition

to the model specification does not change the general setup of our proposed estimation

procedures.

We use the Composite Likelihood method to estimate the model parameters in (32).

First, we test for independence among the five satisfaction levels. The LR-statistic for

the restriction that all ψkl,jh are 0 equals 1808.94. Since the degrees of freedom of the

approximate χ2-distribution is 50.44, independence is clearly rejected. Hence, we find

positive support for association between the levels of satisfaction under consideration.

Tables 7 and 8 display the parameter estimates and estimated standard errors from the

CCL method. The majority of respondents is satisfied about life, income, social security

and the government, which results in negative estimates of the choice-specific intercepts

although the effect for Government is modest. The positive estimate of the α2 intercept

shows less baseline satisfaction on democracy.

3This data is freely available at the website of the The Netherlands Institute for Social Research:

http://www.scp.nl/Onderzoek/Bronnen/Beknopte onderzoeksbeschrijvingen/Culturele veranderingen in

Nederland CV

15



Several relations between the explanatory variables and satisfaction are found. Note

that since Satisfied is the base category, a negative β-parameter indicates that the prob-

ability to be satisfied gets larger when xi increases. For example, individuals with low

(high) self-reported Health status are ceteris paribus more likely to report low (high) sat-

isfaction about life. Furthermore, both women and respondents of higher age are more

satisfied about their income than respectively men and respondents of average age. Unem-

ployed respondents are more likely to report low satisfaction on the social security system.

Respondents with low political interest tend to have ceteris paribus less satisfaction on

democracy. Finally, religious respondents report to be more satisfied about the (at that

time Christian-Liberal) government than nonreligious respondents.

The estimates of the association parameters ψ in Table 8 indicate the relation between

reported satisfaction levels for the five dependent variables. Clear interpretations can be

given. All parameter values that are significantly different from 0 are positive. That is,

there is a positive relation between the reported satisfaction levels of respondents. For

example, φLife Income,33 indicates that respondents who report Unsatisfied on Income are

likely also to be unsatisfied about life. Respondents unsatisfied about the social security

system are more likely also to be unsatisfied about both Democracy and Government.

This can be explained by the Labor party ending second in the previous elections with

27% of the votes but not being in charge.

4.2 Household Panel Scanner Data

To illustrate the MV-MNL model in a panel data setting we consider product choices

of canned tuna in 21 supermarkets belonging to 4 chains for 1092 individuals during the

period 1986(week 25)–1987(week 23) in Springfield, Missouri4. For each household we take

the first 5 purchases in the sample and hence T = 5. The product choice of canned tuna

concerns choosing from four characteristics: Brand (Chicken of the Sea, Star-Kist, CTL),

whether it is Oil-based or not, whether it is a Light-product or not and Volume of the can.

There are three choice options for Brand and two for the remaining characteristics. We

assume that individuals make choices for these characteristics simultaneously and hence

the Multivariate Multinomial choice model of Section 3 is applicable. That is, we consider

a panel data MV-MNL model with K = 4, J1 = 3 and J2 = · · · = J4 = 2 with N = 1092

4This data set is from the ERIM Database and publicly available at

http://research.chicagobooth.edu/kilts/marketing-databases/erim/erim-dataset
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and T = 5. The base category for each of the 4 choices is taken to be the characteristic

of the market leader.

As explanatory variables for product choice, we take the product-specific marketing-

mix variables Price of the product, Display and Feature. Hence, (27) becomes

µyit =
K∑
k=1

αik,yitk +Wityitγ +
∑
l>k

ψikl,yitkyitl , (33)

where Wityit are now choice-specific variables. We consider two model specifications. In

the first specification the ψ-parameters are individual-specific. The second specification

contains ψ-parameters for all households. Hence, we respectively use v
(1)
i,s and v

(2)
i,s .

Table 9 displays the parameter estimates and estimated standard errors from the

model specification with individual-specific association parameters. Parameter estimates

are obtained using a likelihood approach using (28) as sufficient statistic. Hence, the

individual-specific association parameters ψ are not estimated.

To interpret the parameter estimates, we opt for the conditional marginal effects

∂ Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]

∂wityit
= γ Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]×

(1− Pr[Yitk = j|yitl for l 6= k,Xit,Wityit ]) . (34)

By averaging these over yitl (l 6= k) and the explanatory variables, that is,

1

N

N∑
i=1

1

T

T∑
t=1

∂ Pr[Yitk = j|yitl for l 6= k,W ]

∂w
(35)

we obtain an estimate for the average marginal effects. Table 10 reports these effects.

An increase in Price leads to a decrease in the probability for each product character-

istic. Equation (34) shows that the maximum marginal effect takes place when Pr[Yitk =

j|Xit,Wityit ] = 0.5 and equals 1/4 of the parameter estimate in Table 9. The effect is

on average larger for the probability to buy large Volume products and relative small for

water-based canned tuna. Both increases in Display and Feature have a positive effect

on the probability for each product characteristic, where the effect of Feature is larger.

A product with characteristics Brand Star-Kist, Oil-based, Light and large volume would

especially gain from advertisements, given the relatively large marginal effects.

Table 11 displays the parameter estimates and standard errors from the model specific-

ation with fixed association parameters. The parameter estimates of the marketing-mix

variables are very similar to the previous specification. The advantage of this specific-

ation is that we also can interpret the association between characteristics of tuna sales.
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For example, given that ψ̂12,22 = 1.548, it is likely that if individuals buy Brand Star-

Kist they also choose for the Oil-based tuna. The opposite conclusion holds for Brand

CTL (ψ12,32 = −1.491). Obviously, the choice for Oil-based tuna is negatively associated

with the Light product. Given the large association parameter estimate for ψ13,22 Brand

Star-Kist apparently is market leader in low fat tuna.

To conclude, the two examples in this section show that the MV-MNL model can

be used to model simultaneous multinomial decisions in a cross-sectional and in a panel

context.

5 Conclusion

In this paper we have introduced a novel Multivariate Multinomial Logit specification

to describe simultaneous multinomial decisions. The advantages of the new model spe-

cification over other potential model specifications are that (i) the number of parameter

stays limited; (ii) there is a clear interpretation of model parameters and; (iii) parameter

estimation is feasible even if the multivariate dimension is large.

To estimate the parameters of the MV-MNL model we have proposed to use a Com-

posite Likelihood function. This method limits the computational burden of a regular

likelihood approach and is computationally feasible even if the multivariate dimension is

large. The resulting maximum Composite Likelihood estimator is consistent. A small

Monte Carlo study shows that the small sample bias of this estimator is comparable with

a regular Maximum Likelihood estimator and that the loss in efficiency is small.

The applicability of the novel MV-MNL specification is illustrated in an application to

self-reported satisfaction about life, income, social security, democracy and government.

The proposed extension to panel data is illustrated using a household panel scanner data

set, where we describe the purchase choice of canned tuna which we disentangle in several

characteristics like brand, oil/water based and can size.

Finally, the present model specification can be extended in several directions. A

possible extension is to include dynamics to the panel data model. Parameter estimation

will be straightforward unless one opts for dynamics together with individual-specific

effects (Honore & Kyriazidou, 2000; Carro, 2007). Other potential extensions are to

adjust the model for multivariate ordered and rank ordered data or to take into account

that not all choice options have to be in the consideration set of each individual.
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A Derivations

A.1 Joint probabilities in MV-MNL

In this section we derive the joint probability Pr[Y = y] in the MV-MNL model taking

as starting point the conditional probabilities. To derive the joint probability Pr[Y = y]

(from now on abbreviated as Pr[y]) in the MV-MNL model, we use the identity

Pr[y]

Pr[1]
=

K∏
k=1

Pr[yk|y1, . . . , yk−1, 1, . . . , 1]

Pr[1|y1, . . . , yk−1, 1, . . . , 1]
. (36)

which follows from the theorem of Besag (1974). The denominator in the conditional

probabilities (7) is the same in both the numerator and denominator of (36) and hence

drops out of the ratio. Second, the numerator of Pr[1|y1, . . . , yk−1, 1, . . . , 1] is simply

proportional to 1 due to our identification restrictions. Therefore (36) simplifies to

Pr[y]

Pr[1]
=

K∏
k=1

exp
(
αk,yk +Xβk,yk +

∑
l<k

ψkl,ykyl +
∑
l>k

ψkl,yk1

)
. (37)

Due to the restriction ψkl,yk1 = 0 we obtain after rewriting

Pr[y]

Pr[1]
= exp

( K∑
k=1

αk,yk +Xβk,yk +
∑
l>k

ψkl,ykyl

)
. (38)

To obtain Pr[y] we use the identity

Pr[y] =
Pr[y]/Pr[1]∑
s∈S Pr[s]/Pr[1]

, (39)

where S is the set of all possible choice combinations. Substituting (38) in (39) results in

Pr[y] =
exp(µy)∑
s∈S exp(µs)

, (40)

where

µy =
K∑
k=1

αk,yk +Xβk,yk +
∑
l>k

ψkl,ykyl . (41)
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A.2 Choice probability conditional on sufficient statistic

In this section we derive the panel joint choice probabilities conditional on the proposed

sufficient statistics in a fixed-effects MV-MNL model of Section 3. If we condition on the

sufficient statistic in (28) or (30), only the choice alternatives where the sufficient statistic

holds are relevant, that is

Pr[yi|v(r)i ] =
Pr[yi]∑
di∈B Pr[di]

, (42)

where r = {1, 2}, and where B is the subset of alternatives which corresponds to v
(r)
i .

Since we assume no dynamics we can write

Pr[yi|v(r)i ] =

∏T
t=1 Pr[yit]∑

di∈B
∏T

t=1 Pr[dit]
(43)

and as the denominator of the probabilities in both the numerator and denominator are

the same, this simplifies to

Pr[yi|v(r)i ] =
exp(

∑T
t=1 µyit)∑

di∈B exp(
∑T

t=1 µdit)
. (44)

If we opt for the sufficient statistics in (28), we can substitute (27) for µyit and rewrite

this as

Pr[yi|v(1)i ] =
exp(

∑T
t=1

∑K
k=1 αik,yitk +

∑
l>k ψikl,yitkyitl)∑

di∈B exp(
∑T

t=1

∑K
k=1 αik,ditk +

∑
l>k ψikl,ditkditl)

×

exp(
∑T

t=1

∑K
k=1Xitβk,yitk)∑

di∈B exp(
∑T

t=1

∑K
k=1Xitβk,ditk)

. (45)

As the combination of αik,j and ψikl,jh is by assumption constant over time, it drops out

of the equation and hence we obtain

Pr[yi|v(1)i ] =
exp(

∑T
t=1

∑K
k=1Xitβk,yitk)∑

di∈B exp(
∑T

t=1

∑K
k=1Xitβk,ditk)

. (46)

For the sufficient statistics in (30), we follow the same approach and substituting (27)

for µyit results in

Pr[yi|v(2)i ] =
exp(

∑T
t=1

∑K
k=1 αik,yitk)∑

di∈B exp(
∑T

t=1

∑K
k=1 αik,ditk)

×

exp(
∑T

t=1

∑K
k=1Xitβk,yitk +

∑
l>k ψkl,yitkyitl)∑

di∈B exp(
∑T

t=1

∑K
k=1Xitβk,ditk +

∑
l>k ψikl,ditkditl)

. (47)
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As now only αik,j is constant over time, only the intercepts drop out of the equation and

we obtain

Pr[yi|v(2)i ] =
exp(

∑T
t=1

∑K
k=1Xitβk,yitk +

∑
l>k ψkl,yitkyitl)∑

di∈B exp(
∑T

t=1

∑K
k=1Xitβk,ditk +

∑
l>k ψikl,ditkditl)

. (48)

A.3 Composite Conditional Likelihood in panel data setting

In this section we show that the composite likelihood approach is also applicable in a

fixed-effects panel MV-MNL model. This section presents a panel data analog, where

composite likelihood and the use of sufficient statistics is combined.

We use sufficient statistics to remove the individual-specific effects from the conditional

probabilities. The sufficient statistics imply that we have to consider permutations of the

choices over time. Given the panel equivalence of the specification in (7) any permutation

over time of the choices Yitk, k = 1, . . . , K, yields the same set of intercepts but a different

set of association parameters. Hence, we can only deal with the situation of individual-

specific intercepts αik,j but the ψkl,jh parameters have to pooled. Using sufficient statistic

(30) we get

Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] =

exp(
∑T

t=1 αik,yik)∑
dik∈B exp(

∑T
t=1 αik,dik)

×

exp(
∑T

t=1Xitβk,yik +
∑

l 6=k ψkl,yikyil)∑
dik∈B exp(

∑T
t=1Xitβk,dik +

∑
l 6=k ψkl,dikyil)

. (49)

As the set of intercepts αik,j is constant over time, they drop out of the equation resulting

in

Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] =

exp(
∑T

t=1Xitβk,yik +
∑

l 6=k ψkl,yikyil)∑
dik∈B exp(

∑T
t=1Xitβk,dik +

∑
l 6=k ψkl,dikyil)

. (50)

Hence, using the full set of conditional probabilities Pr[yik|yil for l 6= k,Xi, v
(2)
ik ] in Com-

posite Likelihood estimation yields an approximation of the full likelihood conditional

on the sufficient statistics. As shown by the simulation study in Section 2.5 Composite

Likelihood estimation in cross-sectional data finds accurate parameter estimates with only

small loss of efficiency. Unreported results show that the same holds in panel data setting.
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B Tables

Table 1: Mean and RMSE of the estimator for the MV-MNL model parameters based

on a Monte Carlo study with N = 250 (10000 replications)a

k = 1 k = 2 k = 3

θ θ̂ RMSE θ θ̂ RMSE θ θ̂ RMSE

α1,2 0.15 0.165 0.684 α2,2 0.15 0.172 0.758 α3,2 0.150 0.164 0.827

α1,3 0.25 0.278 0.690 α2,3 0.25 0.290 0.753 α3,3 0.250 0.262 0.830

α2,4 0.375 0.426 0.757 α3,4 0.375 0.424 0.781

α3,5 0.475 0.540 0.777

X1 β1,2 1.05 1.110 0.525 β2,2 1.05 1.122 0.661 β3,2 1.05 1.138 0.723

β1,3 1.45 1.533 0.526 β2,3 1.45 1.545 0.650 β3,3 1.45 1.556 0.710

β2,4 1.75 1.864 0.650 β3,4 1.75 1.878 0.677

β3,5 1.95 2.083 0.674

X2 β1,2 0.25 0.258 0.464 β2,2 0.25 0.272 0.635 β3,2 0.25 0.274 0.702

β1,3 0.45 0.479 0.452 β2,3 0.45 0.490 0.602 β3,3 0.45 0.486 0.671

β2,4 0.65 0.696 0.594 β3,4 0.65 0.697 0.637

β3,5 0.80 0.850 0.628

a The DGP is given in Section 2.5 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.

24



T
ab

le
2:

M
ea

n
an

d
R

M
S
E

of
th

e
es

ti
m

at
or

fo
r

th
e

as
so

ci
at

io
n

p
ar

am
et

er
s

b
as

ed
on

a
M

on
te

C
ar

lo

st
u
d
y

w
it

h
N

=
25

0
(1

00
00

re
p
li
ca

ti
on

s)
a

k
=

2

2
3

4

k
=

1
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E

2
0.

47
5

0.
51

3
0.

61
2

0
.2

5
0

0
.2

6
7

0
.5

9
8

0
-0

.0
0
1

0
.6

0
1

3
0.

25
0

0.
27

1
0.

61
7

0
.4

7
5

0
.4

9
2

0
.5

9
7

0
.2

5
0
.2

4
9

0
.5

8
8

k
=

3

2
3

4
5

k
=

1
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E

2
-0

.3
75

-0
.4

09
0.

70
4

-0
.1

5
-0

.1
5
5

0
.6

6
3

0
-0

.0
0
2

0
.6

3
6

0
.1

5
0
.1

5
2

0
.6

4
6

3
-0

.1
50

-0
.1

68
0.

67
2

-0
.3

7
5

-0
.3

8
9

0
.6

6
8

-0
.1

5
-0

.1
6
6

0
.6

3
6

0
-0

.0
1
0

0
.6

4
2

k
=

3

2
3

4
5

k
=

2
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E
ψ

ψ̂
R

M
S

E

2
0.

47
5

0.
51

2
0.

81
4

0
.2

5
0

0
.2

8
9

0
.8

2
7

0
0
.0

0
8

0
.7

9
9

-0
.2

5
-0

.2
6
2

0
.7

8
0

3
0.

25
0

0.
27

8
0.

83
3

0
.4

7
5

0
.5

2
9

0
.8

0
8

0
.2

5
0
.2

6
8

0
.7

7
2

0
0
.0

0
4

0
.7

5
6

4
0

0.
01

1
0.

86
2

0
.2

5
0

0
.2

8
8

0
.8

3
4

0
.4

7
5

0
.5

1
2

0
.7

8
1

0
.2

5
0
.2

6
5

0
.7

6
1

a
T

h
e

D
G

P
is

gi
ve

n
in

S
ec

ti
on

2.
5

w
it

h
K

=
3

a
n

d
J
1

=
3
,
J
2

=
4

a
n

d
J
3

=
5
.

25



Table 3: Mean and RMSE of the estimator for the MV-MNL model parameters based

on a Monte Carlo study with N = 5000 (10000 replications)a

k = 1 k = 2 k = 3

θ θ̂ RMSE θ θ̂ RMSE θ θ̂ RMSE

α1,2 0.15 0.141 0.131 α2,2 0.150 0.143 0.154 α3,2 0.150 0.138 0.166

α1,3 0.25 0.243 0.137 α2,3 0.250 0.242 0.149 α3,3 0.250 0.241 0.167

α2,4 0.375 0.375 0.145 α3,4 0.375 0.367 0.149

α3,5 0.475 0.467 0.158

X1 β1,2 1.05 1.049 0.107 β2,2 1.05 1.062 0.129 β3,2 1.05 1.046 0.144

β1,3 1.45 1.447 0.101 β2,3 1.45 1.462 0.128 β3,3 1.45 1.454 0.141

β2,4 1.75 1.762 0.130 β3,4 1.75 1.752 0.138

β3,5 1.95 1.953 0.136

X2 β1,2 0.25 0.254 0.098 β2,2 0.25 0.243 0.122 β3,2 0.25 0.258 0.147

β1,3 0.45 0.455 0.099 β2,3 0.45 0.443 0.120 β3,3 0.45 0.455 0.137

β2,4 0.65 0.644 0.121 β3,4 0.65 0.658 0.132

β3,5 0.80 0.806 0.133

a The DGP is given in Section 2.5 with K = 3 and J1 = 3, J2 = 4 and J3 = 5.
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Table 5: Relative RMSE

of the maximum CCL

and the regular ML

estimatora

Sample size

Parameter 250 5000

α1,2 1.007 1.003

α2,3 1.007 1.003

α3,4 1.007 1.000

β1,3 1.008 1.000

1.002 1.000

β2,4 1.013 1.000

1.004 1.001

β3,5 1.013 1.003

1.002 1.001

ψ12,22 1.005 1.001

ψ13,33 1.005 1.000

ψ23,44 1.006 1.002

a We only report results

for a subset of paramet-

ers. The results for the

other parameters are sim-

ilar and available upon re-

quest.

28



Table 6: Empirical size of the distribu-

tion of the estimators based on a Monte

Carlo study with N = 250 (10000

replications)a

Theoretical 0.025 0.05 0.95 0.975

α1,2 0.028 0.055 0.951 0.976

α2,3 0.027 0.053 0.954 0.977

α3,4 0.022 0.048 0.957 0.980

β1,3 0.031 0.058 0.954 0.979

0.027 0.053 0.953 0.978

β2,4 0.031 0.056 0.910 0.957

0.029 0.055 0.908 0.958

β3,5 0.029 0.054 0.962 0.982

0.031 0.055 0.961 0.982

ψ12,22 0.034 0.059 0.952 0.977

ψ13,33 0.026 0.054 0.943 0.971

ψ23,44 0.029 0.056 0.954 0.979

a We only report results for a subset of para-

meters. The results for the other paramet-

ers are similar and available upon request.
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Table 9: Parameter es-

timates of the MV-MNL

model for a household

panel scanner data set

on canned tuna product

choice (standard errors

in parentheses)a

γ̂ s.e.

Price -0.366 (0.017)

Display 0.888 (0.117)

Feature 1.416 (0.087)

a Results are obtained us-

ing sufficient statistics

(28).
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Table 11: Parameter estimates of the MV-MNL model for a panel data set on

tuna sales (standard errors in parentheses)a

Brand Oil Light Volume

Star-Kist CTL Yes Yes Large

Association parametersb

Brand

Star-Kist 1.548 (0.150) 2.862 (0.436) 1.937 (0.253)

CTL -1.491 (0.203) 0.259 (0.526) 0.275 (0.327)

Oil

Yes -1.653 (0.755) -1.190 (0.221)

Light

Yes −∞c –

Product-specific characteristics

Price -0.297 (0.014)

Display 0.882 (0.106)

Feature 1.508 (0.086)

a Results are obtained using sufficient statistics (30).
b As the association parameters are symmetric only the upper triangular matrix is given.
c This combination of choices does not occur in the dataset.
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