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THE LOCAL INVARIANT FACTORS OF A PRODUCT OF HOLOMORPHIC MATRIX
FUNCTIONS: THE ORDER 4 CASE.

G. Philip A. Thijsse

Let A%ty 3%22%  resp.  APnpPri %2081 be  the  (given)
invariant factors of the square matrices A, resp. B of order n over the ring of germs
of holomorphic functions in 0 such that det A(A)B(A)#0, A#0. A description of all

possible invariant factors /\'Y"l/\"/""ll...|/\7"’|/\'y1 of the product C=AB is given in the
following cases: (i) f(; (or o4)<2; (i) B3=0 (or o3=0); (i) oy-oy, Bi-Bp<l,
Ogy1=PBms1=0. These resuits, which hold for arbitrary n, are complemented with a few
results leading to the description of all possible exponents v,7,73Yse for
arbitrary oy,00,045,04, B1,82,03,04 in the case where the order n<4.

INTRODUCTION

In {2] I. Gohberg and M.A. Kaashoek raised the question of describing the
(local) invariant factors of the product C=A4B of (monic) matrix polynomials A,B in
terms of the invariant factors of A,B. At that time such a description was only known
for the case where 1,...;1, A,...,A are the invariant factors of B (cf. [7]), but
soon the description was extended to the case where 1,...,1,/\ﬂ1 are the invariant
factors of B (see [6], Theorem 6 and [8], Proposition 6) and the -much more
complicated— case where 1,...,1,/\0“,...,/\0“, o, -0, <1 are the invariant factors of A
and 1,...,1,)\/3”’,...,)\ﬁ1, Bi=-PBn<1l are the invariant factors of B (see [6], Theorem 7).
In [8] there was also a complete analysis of the case where the order of the matrices
A,B was less than or equal to 3. In [9] the case where 1,/\,/\2 are the only possible
invariant factors of B and the case where 1,...,1,/\ﬂz,,\ﬁ1 are the invariant factors
of B were dealt with, the latter result also covering the order 3 case.

Remarkably enough, a complete description of the exponents vy,...,7, of the invariant
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factors of C=AB in terms of those of the factors A,B -that is, of oy,...,0,, resp.
B1,---,8n— was already obtained, in a quite different setting, by T. Klein in
[3],[4]. There necessary and sufficient conditions on the sequence +;,...,7, in order
that )\‘Y”|...|/\Y1 are the invariant factors of C=AB are phrased in terms of the
existence of a certain Young Tableau involving the sequences oy,...,0p, Tesp.
B15-.sBn 0of exponents of the invariant factors of A, resp. B. This result will be
presented, with a proof adapted to the present setting, in Section 2. Another
complete  description of the exponents ,...,v, -to be called the partial
multiplicities of C=AB- was indicated in [2], and confirmed in [6]: Choose fixed
nilpotent matrices N(A), resp. N(B) such that Aa"|...1)\a1, resp. /\ﬁ "|...[/\'6 ! are the
invariant factors of A -N(A), resp. AI-N(B), then all possible sequences /\"("|...|/\Y1

of invariant factors turn up as the invariant factors of

N4) X
M-

o NB)

where X ranges over all matrices of the appropriate size. This result was used
extensively in [6].

A different approach has been tried in [8], [9): It had already been observed quite
early (see, e.g. [7]) that there exist divisibility relations involving the invariant
factors )\Yi,/\ai,)\ﬂi, which —using the partial multiplicities, that is, the exponents

of the invariant factors— can be expressed as inequalities, for example,
7T1+7T2+... +7rmsozl+042+... +0‘"‘+ﬂr1+ﬁrz+"' +ﬂrm, I<ri<ry<...<rp<n

(see [7]) holds for each product C=AB. Now the following approach has been suggested
by R.C. Thompson, see [14]:
(a) find a description of all index sets (ry,....;Tk,  SpeySky fneeesli)

(to be called index triplets) such that the inequality

7T1+7T2+... +7Tk50c51+0132+... +o¢sk+,8t1+,3t2+...ﬂtk

holds for each product C=AB; such inequalities will be called rules.

(b) prove that each triplet (yy,--.y7n, y.--yOp,  Bpy....8,) of  partial
multiplicities with 7y,+...+y,=04+...+a,+8;+...+8, and such that all inequalities
derived in (a) are met, can be realized as the partial multiplicities of a *product
C=A4B.

Of course, in many cases it suffices already that a few of the inequalities
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from (a) are met in order that (yy...,Vny Qy...5%pn, Bi,-..,0n) can be realized by a
product C=AB.

In [13] R.C. Thompson obtained certain conditions in terms of Young tableaux
in order that an index triplet (ry,...,7%; S15.-.8ks  t1,...,0x) generates a rule.
Apart from a certain minimality condition it seems that these are, in fact, all
triplets generating rules. In [10],[11] this conjecture was confirmed for k<3, for
r,—k<3 and thus, effectively, for n<7. Also in [10],{11] several important “systems”
of rules were derived which confirm that the necessary and sufficient conditions
which give a full description in the cases f;<2, f3=0, and o;-0oy Bi-Br<l,
Ogy1=Pms1=0 can be derived from the inequalities of type (a) obtained so far.

Since C and its transpose ¢T have the same invariant factors it is clear
that one may interchange the roles of (oy,...,,) and (fBq,...,8,) in all results.
Further symmetry properties of the present problem can be derived from the following
observation: If )\0‘"|‘..|)\0‘1 are the invariant factors of A4, then, given a>q,, the
' are A"®1...|A"°r. Using that C=AB if and only if
/\aB=()\aA-1)C one can relate the partial multiplicity sequences  (Yg,-..,Yn)s

invariant factors of A"A(\)”

(Otgy-en5Cly)y (B1se-s8n) to the sequences (a+fq,...,645,), (&= Qpyery 6= 04),
(Y15-->Yn) and (e+b—7g,...,a+d—-7y), {(a-oy,....,a-0y), (b-PB,,....b-B,), where b>pB,.
These symmetry results, which are derived in Section 1 after the necessary
introductory definitions, are quite useful in order to obtain new theorems from
existing ones (e.g., from the description in the case where o;-coy, Bi—fFn<l,
1=y =0 one easily obtains a description for the case where o=y, B1=Fm s
Bm+1<1) and for limiting the number of special cases in need of proof.
In Section 2 we state and prove the above-mentioned theorem of T. Klein, and we apply
it to obtain new proofs for the cases 8,<2 and o;—0y, By—PBm<l, 0pry=Pme1=0. The case
B3=0 is dealt with in Section 3, where the proof is based on that in [9], Section
V.2. In the final Section 4 we combine the results obtained in the previous sections
with a reduction technique (which might also be of interest for matrices of higher
orders) in order to obtain a full description of the case where A, B and C=AB are of
order n<4.

Throughout the text the symbol M will stand for ”end of proof” or ”end of

example”.

1. DEFINITIONS AND AUXILIARY RESULTS

Let the n x m matrix function A(A) be analytic in a neighbourhood of 0eC,
such that detA(A)#0, A#0. There exist n x » matrix functions E,F, analytic in a
neighbourhood of 0 such that detZ(0) =0, detF(0)0 and
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The matrix function D(A)=diag (A%12%2  A°") s called the local Smith—form of A
(at 0), and A°L,A%2...A°" are the (local) invariant factors of A. The nonnegative
integers oy >0p>...04,>0 are called the partial multiplicities of A (at 0), and
sometimes mg(A): =y +0,+...+o, is called the total (zero) multiplicity of A at 0. In
this paper we consider the following problem: Given two sequences o >ay>...20q, > 0,
B12B5>...28, > 0 of nonnegative integers, what sequences vy, > v, > ... v, 2 0 can
appear as partial multiplicity sequences of a product C=AB, where o,...,0,, resp.
B1,-..,0, are the partial multiplicity sequences of A, resp. B?

We introduce some notation: with B, we denote the set of all {(germs of)
n x n-matrix functions that are analytic on a neighbourhood of 0 such that detA(A)z0
for A#0. Given two finite sequences o =(04)i_;, B=(8;)i=; of nonnegative integers such
that o2 0>... 20, Bi>B:>...20, called multiplicity sequences {of order n), one

defines

v partial multiplicity sequence of C=AB,
Ago,By= {v=(vi)7=1 | where A,BeB, have partial multiplicity

sequence ¢, resp. §
Our main problem can thus be summarized as follows:
Given multiplicity sequences «,3 of order n, describe A, («,3)

Obviously, the matrices C,CTGB,, have the same partial multiplicities; since
(AB)T=BTAT this implies that A,(o,8)=4,08,,). If o>...>x, are the partial
multiplicities of AeB,, then for given a>«; the sequence (a-«), defined by
G- 28—y >... 26—, IS the sequence of partial multiplicities of A“A()\)'leBn; since
/\aB(/\)zz\aA(/\)'IC(/\) if C=AB, A,BeB,, one has that e+feA (a—oa,y) if and only if
yeA,(o,8) (here a+8=(a+pB;)i-, is the partial multiplicity sequence of NBV)). If o,f
are the partial multiplicity sequences of A,BeB,, then, choosing e>cqy, b>f;, one has
Ao = APBOA) AN if C=AB; further, if x<oy,, y<fB, then A AN), AVB(\)eB,,
and /\_(XW)C(A):(/\_xA()\))(A_yB()\)) if C=AB. Using these and similar relations one
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obtains

PROPOSITION 1.1. Let «,f and vy be multiplicity sequences of order n with

€27y, a20y, b>p,. The following statements are equivelent:

(i) v €Ap(,B); iy T €A (B,%)

(i)  e+Belyr,a-a); (i) a+Belyla-o,7)

{{)"  btoedy(y,b-B); (i1)” b+oedn(b-B,7)

(il)  e+b-veAya—a,b-B); (i)  a+b-yeAb-B, a—o)
(iv)  c~-Bedy(c-v,a); (iv)’ c~pfeAp(a,c-y)

(iv)"  c-aedy(c-7,8); (iv)”  e-aeAy(f,e-7)

It is not difficult to find some necessary conditions in order that yeA,(«,8). If
AeB, has the partial multiplicities o;>0,>...2q,, then AOnt1kpOme2zk  \On g the
greatest common divisor of all nonzero k x k-minors of detA(\). This implies that for
k=1,2,...,n.

(1.2) Qni1-k+ s kt... +O=n({gcd{| 4| |14x]| #0 k x k—minor of detA(\)}),

where n(f) denotes the zero order at 0 of a scalar function f which is analytic at 0.

Hence for yeA,(w,B) one has
{1.3) YitYat.. +Yn=n(detA(M)B(A)) = oy + 0o+ 40+ 81+ 85+ ... + B,
whereas it follows from the Cauchy-Binet formula that
(1.4) YerrTYer2t o T Tn2 Qg+ 0pot .o + 0+ o1+ B2t + 55
for £=1,2,...,n-1. Combining (1.3) and (1.4) one obtains
YitYot+ .o +YeS0+0+ . 0+ S+ P+ + 08, £=1,2,...,n-1.
which is the most obvious of a large class of inequalities of the type
(1.5) 7r1+77’2+“'+7rmsasl+°‘sz+‘”+°‘sm+ﬁt1+ﬁt2+"'+ﬂtm

which hold for certain index sets 7r={r;...,r}, $={$1,-.-,Sp}y E={t;,-.-,tm} With

1<y st;<n and  T3<Thy,  8;<Si, §<fi;. We shall call r|s|t an index triplet of
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order m, and we say that rfs|t generates a rule if (1.5) holds for each yea,{«,3). We

define

Rul,(n)= {'r||5|t

r||s]t is an index triplet of
order m which generates a rule

and we set Rul{n) = GRulm(n). Important examples of such rules are the standard
rules (or standard z‘n?tezg,alities), generated by r|s|t with i+r,=s5;+4¢;, i=1,2,...,m.
These rules have been obtained independently by several authors, see e.g. [12], [9]
and [11] Example 1.6.(i).

The symmetry properties of A,(o,B) give rise to similar symmetry properties
for Rul(n) (see [11], Proposition 1.1). In order to describe these, we associate with
the index set r={r,....,7m} < {1,...,n}, 7;<7;,, three further index sets, namely
= {r], Pt ={1,...,n \T, < called the complement of 7,
ntli-r={n+1-74,...,n+1-7¢}, called the reflexion of T, and
p:{pl,...,pn,m}E(n+1—r)6=n+1—‘rc, called the inversion of r. Using these new index
sets one can associate with the index triplet r|s|t eleven other index triplets each
of which generates a rule if and only if r|s|t does so. An essential selection of
these is provided in

PROPOSITION 1.2. Let r|s|t be an index triplet of order m. Equivalent
are: (i)  r|s|teRul,(n); (i)  rt[seRuln(n); (i)  t)o]r eRulm(n);  (iV)
(n+l1-s)(n+1-r)teRul,(n); (v) plo|reRul, ,{(n), where o,7 denote the inversions of s,
resp. L.

If r|s|t, r|s’|t are index triplets of order m, and ri<7T, S§;=s;, G2l
i=1,2,...,m then we write rfs|t>r|s'|t’, and 7r[s|t generates a rule if r'|s’[t" does
so. Of course we should concentrate on those index ftriplets in Rul{n) which are

minimal with respect to the partial ordering <; we set Ruly(n)={r|s|teRul,(n)|r|s]t
n

is minimal with respect to <} and Rul*(n) = URul,’:L(n). The correct condition for
m=0

minimality seems to be that the deviation d(r||s|t)——-)’i"lj (i+r;~s;—-t;)=0, and, indeed,
all known minimal triplets in Rul(n) have zero de?ziation, and no triplets with
negative deviation have been found in Rul(n) for any n. An important class of rules
of zero deviation was described by R.C. Thompson, [13], Theorem 2. These rules are
characterized by the existence of certain Young Tableaux, and we shall refer to this
class as Tab,(n). In [14] the class Tab is shown to be, in a sense, self-recursive,
and in [11] it is proved that Taby,(n) =Rulp(n) if n<7, if m<3 or if n—m<3.

Now consider arbitrary multiplicity sequences v,0,8 of order n such that
Vit -t Yp=0 4. +0y+ 01 +... + 8, In order that yeA,(o,8) it is a necessary condition
that
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L1, < Loy + B

holds for each triplet r|s|teRul,(n), for each m, but it is not clear, whether this

condition is sufficient. For given multiplicity sequences o, of order n we define

v is a multiplicity sequence of order n
Rp(o,8) =17 = (7i)?=1 with oy +... +ap+61+... +8,=71+... +75 such
that (1.5) holds for each r|s|t<Rul(n)

Since r|t|{seRul(n) if and only if r|s|teRul(n) it is clear that R,(o,8)=R,(5,o).
Further, if a>w®; and yeR,(a,3) then a+F ek, (a—,y): Indeed, if r||s|teRul(n), then

m m m m
L(a+B), =am+ B, < ¥ ((a-a)s +7e)=am+ L (Ye,~Unsi-s)
i =1 T i=1 ! i=1 4 g i=1 ! i
m m . » .
if and only if } Ye;2 T (ﬂri+an+lnsi)v that is, if and only if
i=1 i=1
n-m n-m
< +a
B T =L Bgre)

where o denotes the inversion of s. But ¢°Jjo/r°eRul, ,(n), so the final inequality
holds, and hence the initial inequality is correct. In this way one proves

PROPOSITION 1.3. The conclusion of Proposition 1.1 remains valid if in each
statement A, is replaced by R,.

If § is some subset of Rul(n) and S(o,8)={y|y multiplicity sequence of order n,

Lvi= L (0u+f;), (1.5) holds for ecach rls|teS} € Ap(a,B), then A c,B)=Ry(c,f)=
g‘?&,ﬂ),zzés always Ayla,B) € Ry(o,B) € S(a,8). In many cases for given o, a
relatively small subset S of Rul(n) suffices to obtain S{a,8) ¢ A, (x,B). This leads
to

CONJECTURE 1.4. For each choice of multiplicity sequences «,8 of order m one
has that Aj(o,8)=R,(o,06).

Observe that R,(w,B) does not change if one replaces Rul by Rul® in the definition,

m m m m
since 7|s{t>7'||s'|¢" implies that Y v, < ¥ v, and ¥ (o +53.)> > Y (0, +8).
i=1 t i=1 4 i=1 ¢ 4 i=1 2 i

Quite often it is convenient to replace the fixed order n» of the matrices involved by
arbitrary orders £>n. To this end one defines «;=0,i>n for the multiplicity sequence
(oci)ri;l of order 7. The multiplicity sequence ot=(o¢,-)°:=1 can be associated with
AN @ Iy ,eB, L2n, if ((xi)?:l is the sequence of partial multiplicities of AeB,; if

oc:(oci):;l, ﬁ=(ﬂi)°:_1 are multiplicity sequences with o,;=0,,1=0, then yg =0 for
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each veAg(o,B), k>max{¢,m}. Thus one can define A(w,3)=A,n(,F), and A,(x,f)

={y€A(®,8)|Vpsy =0} if n>max{€,m}. By setting Rul(") = URul(*) (n), Rul{® = U Rul$")(n)

as in [10}], [11] one can also define R(o,S) independently of the order n.

2. THE KLEIN THEOREM WITH SOME APPLICATIONS

In this section we provide a proof (taken from ([10]) for the necessary and
sufficient (Young-tableau) conditions for yeA,{o,f) which were mentioned in the
introduction and which were derived in [3], [4] in a more ring-theoretical setting.
Recently O. Azenhaz and E. Marquez de Sa provided a constructive proof for matrices
over principal ideal domains (cf. [1]). As an application we provide necessary and
sufficient conditions for yeA(w,f) i $;<2 and if oy =8,13=0, -0y, B—-Br<1.
Further, we observe that these conditions can be derived from certain rules in Rul,
which implies that A(wo,8)=R(a,f) in each of the cases mentioned above. The proof of
this observation derives from [9], Sections V.1 and V.3. We conclude with the
description of some results which can be obtained by application of the symmetry
properties from the Propositions 1.1 and 1.2. to the above-—mentioned cases.

THEOREM 2.1. Let o=(o;)i,, B=(B))i=1 be multiplicity sequences. In order
that a multiplicity sequence 7y={v;)7=, belongs to A, (w,B) it is mnecessary and
sufficient that there exist multiplicity sequences a:ao,al,...,arzy such that (with
Bri1=0)

(2.1) (b) ):: o
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(€)  Bi=Brn=Hil (“‘ o=t} t=1,2,...,n

IIM:&

Excluding that o' =o' for some i, one has, in particular, that r=p5;.

Below we shall provide a direct proof of this result; in the proof of the sufficiency
part we shall also obtain a construction algorithm, yielding a sequence S5,=AT),
Sy =A,T,,...,S.,=AT,=AB=C such that « is the multiplicity sequence of A; ~ A, ~ A;
~om o Apy 0" is the multiplicity sequence of S, and the multiplicity sequence 7 of

T, is given by TZH:O and
(2.2) R = # i1 <k ); (i -oh) =t} t=12,...n

Thus, B=T, will have the multiplicity sequence 3.
The conditions (2.1) were introduced by D.E. Littlewood and A.R. Richardson, [5],
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Theorem III as rules for compounding Young tableaux C from given tableaux A,B. The
partial multiplicity —sequences o,8,y correspond to the columns lengths in the
tableaux A,B,C, and the column lengths of the intermediate tableaux correspond to the
sequences al,...,ar_l. In [5] the construction ‘is phrased in terms of row lengths,
thus it deals, in fact, with the conjugates (or dual multiplicities, see (2.4) below)
of «,8,y.

PROOF 2.2. of the mnecessity of (2.1) in Theorem 2.1. Let C=AB be a product
with the multiplicity sequences v,c,3; write the product in the T*=T*D+—form, (see

[1], Lemma 2.3} i.e., B= dlag(/\ﬂ’);l—0102 .D,, where

with B8} (the dual multiplicities) defined by

(2.4) Bt =#{i|B; 2k},

so f12f32...28;>0=45;,,. Set Sy=AD,...D;, and let 0" denote the multiplicity sequence
of Sy Since 5;=8;,D;, i=1,2,...,r, the condition (2.1)(a) is met (cf. [7], Section

2,1, or [8], Proposition 3). Further, g%= Z (a ;1 by construction, which proves

(2.1)(c), since B, =B} =#{i|f; > 1}.

In order to prove (2.1)(b) we consider an (n+1-¢)-minor M; in det S; such that
n o
M;)= E a;; let M;;, M;, denote the corresponding minors in det S;,, det S, 1

—
Then n( )= Zo -6 .Eea;‘l, where 6 is the number of column indices in M,
j=

1

n o,
occuring in the set  {1,2,.. ,ﬁ*} Further, n(M;,,)= ):a; +6> Ea”, where 6'<é is

the number of column indices in M; occuring in the set {i 2,. ,[3, +1} Thus

n : . n . .
j);e(a;“—o;) <8<é< ¥ (oj-0; ). m

7=

In order to prove the sufficiency of (2.1) we observe that, assuming o' 20" for each

. 1
i, the sequences 7
T AL, i f h fixed j th TS
§=T5 = =8; (e, or eac ixe 7 e sequence Ty ...,T;

increasing untll 5 _ﬂ] — this happens for i=4; — whereafter it remains constant).

,-.»T have the following  property: If TI;<]C then
is  strictly
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PROOF 2.3, of the sufficiency of (2.1) in Theorem 2.1. Let ai;&am,

i=0,1,...,r—1, and define Tl,...,'rr by (2.2). We construct a sequence S;=A4,T,,
Sy=A,T,,...,5.=A,T, such that for k=1,2,...,r

(a) ak,rk and o are the multiplicity sequences of
S, Ty and A;, respectively,

k

(b) Skzdiag(/\”f)Ll, Ay and Tk=(tfj)';,j=1 are lower triangular,
(2.5)
c)  nlty3)y...,B{ty,) is a reordering of 7y,...,7,, whereas
(©) Ul nthy) dering of 74,...,7, Wh

for i<j one has n(t'f,»)>n(t’f]-)zn(t’;]-) or t§j=0,

(d) n(t’;-j)=k “ a§>a};~_1 (where o° =a).

n

Taking S;=A,T,=diag ()\aj )'}=1 diag (Aa;_aj) j=1 the desired product is constructed for
k=1. Assume that S,=A4,T, has been constructed for £=1,2,....,k<r. We shall construct a
product Sy, =A4;,,Txy1 such that (2.5) holds for k+1. By induction, we obtain a
product C =5, =A,T,=AB such that (2.5) holds for k=7. As y=0", =7 this will prove the
sufficiency of the conditions (2.1).

We proceed as follows: Define J1:={j|0§+1—0}?=1, n(t%):ic}, J2:={j]<7';+1

J
n(t’;j)<k} and J3:={j|a’;+l=a§, n(t’;-j)zk}. By 2.5(c) one has t’f]-=0 for jed,uld;, i#j.

k
—0'}':1,

According to (2.1)(b) one has #Jy<#J;. Further, there exists a monotonically
increasing injection w:J, = Jy; such that w(j)>j, jeJy; indeed, if Jy={j;,...,Jy},
J1<iz<...<jy, then (2.1)(b) implies that #{jeJs|j>j}2zy+1-x, x=1,2,...,y. Observe
that m is such, that aﬁ(j)sag, jed,.

Now construct the product Syi,,=4;T%,; by adding in the product Sy=A,T, each column
with index #(j) to the column with index j (in S; and Ty) and multiplying both sides
of the ensueing product on the right by diag (A*)7_,, where ¢;=1, ieJyun(J,), &=0

1

otherwise. Then T} _I_ls(t,'(},);z,)g1 has the multiplicity sequence 7 , since

. x
n(det(t;); jes um(ry)) = M i5)ijes un(r,) =
=L{r5 175 <k} + K#(I\T(J2),

and n(t]'j)=k,+1='r’;-+l for jeJ; U m(J,). Thus the final n—#J,-#J, partial multiplicities
have not increased at the transition of T, to Ti,;, and the initial #J,+#J, partial
multiplicities have increased by 1.

Next, perform some elementary column and row operations in the product Siy=A4;Ti41,
constructing an equivalent product Sy, =Ag.Tie: For jeJd,, subtract A times the jth

column form the ={ j}"h column in S.1,Ths, and interchange these columns. In the
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k
resulting product Si,;=AiTi,= (s,},), y=1 One has sj;= —/\af”, =\ 7"(]) and

iJ
oF
b\ J, jed,. Observe that a +1= Uk“, a,’f.‘{%:a:(j)sa

Sx(j),m(5) =

85,x(j) = jedy,. Now for jeJ,

ko k
subtract in Sp,; and A, the n(j)™ row times A%5=97G5)  from  the ;™ row, and
k+1
multiply the jth row by (-1). The ensueing product is Sk+l=diag()\ai Vie1=AriThr

Unfortunately, the triangular structure of Ti,; (and A;) is lost. However, the
special structure of T allows to restore it.

Start with Tj,;, using row operations (to be compensated by column operations in Az,
leaving S,; unchanged), and additions of multiples of columns to columns with a
higher index in Si,; and Tj,;; the latter type of elementary operations allows us to

retrieve Sp,, by row operations in Sy, and Ag,,.

First ~ construct a  product  Sp.=A4;5,T%:1, Tin= (t',"'},)::,y=1 lower  triangular,
m " m k+1  k+1 k+1 s m
(n(t11),n(t32),..-,(tyn)) @ reordering of (77,75 ,...,Tq ) With w(t7;)=k+1 for

. " " " k "
jedyu Jy Fix jedy, For Tiu=(ty)xy—1 one has that irg) y=X, tr) =0,
i#m(j) (since t,’f.(j)’i=0 because of the structure of Ty, and tr;; was made 0 again

" P+l
Gy =AM, th= - AP
and for certain j<i<w(j) one might have bij.=ti,,r(j)=tij¢0, namely, where

>n(ti;)>n(ts;) in T". This implies that such igJ, U Js. If b;#0 for igJ, then
p] i it p. J

at the transition from Ty,; to T%,;). Let pj=n( j)<k. Then ¢

t;j= —Aby;. Now interchange the rows with indices j and =(j) for each jelJ, (so
Uix(j)=Dhi; is replaced by 0 if ield,, as w(i)>m(j)), and subtract APi times the new
7'r(j)th row (with entries —)\pj+1, Mi on the places j, =(j), with zeros in between)
from the new jth row (with zero everywhere, except for A in the ( j)th place, now
made 0). The resulting matrix has AT in the (j,j)—position, 0 in the
(j,%) —positions for i>j and some entries -)\k_pjt’j'i in the (j,i)—positions, i<j, where
n{t5;) 2 pj, as n(t‘fi) > n(tl;-,-) 2p; if t’;-i #0, j>i. Possible remaining entries
Uiy =bij 20, jed,y, igJ, U J, U J3 can be removed by adding appropriate multiples of
the i"™ column to the m( j)th column, starting with the lowest occurring i: Indeed,
n(ti)<nlby). If tlz’",z’#O for some i<i'<w@(j), then n(t:,,i)zn(t;,7i,), and any
contribution of a multiple of this entry to bi,j can be removed when dealing with the
i'~th row (this includes the possibility that i'eJ, and some entry AR ’t“ is
present, as n(-— NePirgr )> Ppi). One thus obtains £.',C+1=A}C’+1T’k”+1 and, inéeed
n(t;)=k+1 for jel; u J2, as required, whereas the multiplicity T =pj<k has been
shifted to the =(j)-location if jeJ, The fact that T%,, is lower triangular and that
its diagonal is a reordering of its invariant factors implies that ti;=0 or
n{ti;)2n(ty;) if j<i. The remaining requirement in (2.5)(c) can be met by subtracting
(in the order i=mn,...,i=2) multiples of the the jth row, j<1, n(tj;)=n(t7;) from the

™ row (again in decreasing order with respect to j). Calling the resulting matrix



288 Philip and Thijsse

Tk41, the product Sy,;=Ag Ty has been constructed. W

A schematic description of the proof can be found in [10], 5.3. Observe that because
of (2.5)(d) the sets J;,J,,J; are determined a priori by the given Young Tableau
{2.1). The choice of w:J,»J; is thus a special case of the Steps 1 and 2 in Algorithm
3.4 in [1].
As an application of Theorem 2.1 we present a proof of Theorem V.1.1 in [9], obtained
there by a different argument.

THEOREM 2.4. Let o =(04)7ey, B=(8:)7= be two multiplicity sequences with
8,<2. Then v=(v;) - 1€ A(o,B) if and only if the sequence (8;) ;= /{(vi—0;)7=y Meets the

following conditions:

(i) 0<6;<2 for all i;
< w©
(i) Lo = T8
i=1 f=1
(iii) p: = #{i|8;=2} <m' = sup{i|8; =2} (with sup ¢=0)
(iv) the set I={i|6;=1} contains two disjoint subsets I,,I, such that

#I,=#I,=m'-p, and there exists a bijection 7:I,>I, such that

Uy <oy for each iel;.

PROOF. Sufficiency. Set J:={i|§;=2}. If o;=0;,,; for some iel, then i+1¢J, as
Yis1<7v;: Given sets I,,I, and the bijection 7 as in (iv), one can assume that o;=0;,
for iel; implies that i+1&£I\I,. To see this, assume that o;=0q;,, for some iel,
i+1el\I;. Apply the following algorithmic procedure: If oy=0y,,, i€l;, i+lel\l;, and
i+1¢I, then replace i by i+1 in I;, leaving 7(¢) unchanged; if o;=0y,,, iel],
i+1=7(i')el,, then replace i by i+l in [}, i+1=7() by 7(i')=i in I,. Then a g,
remains unchanged. After this step [,,7,,7 still have the properties as described in
(iv); application of this procedure makes Y{iliel,} strictly increase, so the
algorithm must terminate.
Now 00=0¢, 02=7; define o =0" by o;=a;+1 for all jeJ u (I\l), o;=0a; otherwise. Thus
o;=v;-1, jeJ u I, o;=7v; otherwise. Observe that o;>0;,, for each i: if o;<0y,, then
O; =0 =04 <0;41, Whereas v;>7v,;,1, and thus o;=v;~1, that is, iel;, i+leJ u (I\[}), a

contradiction. It is clear, that Condition (2.1)(a) is met; (2.1)(b) holds, as

Ee(yj-aj)s#u U L) n{6,e+1,...}) < #((J U (1) N {&,E+1,.0,}) <
j=

<SHE(J U DY) N {8,841,...,}) = i;(aj-aj).

Set m=#{i|3; # 0} =max{i|8; #0}. If m=m', then I=¢ and Ea -0y = ):‘)r] gj=m=m, and
(2.1)(c) holds, as By =Fmn=2, Bmy1=0. If m>m' we have ﬂmﬂ_o ﬂm—l B =By =1, and
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(2-1)(¢) holds, since m= ):ﬂ, ~-m'=#(J v INL;= ):o —aym' =#(J U Il) 27]—0

=1 i=
Necessity. In order tha.t y =0 eA(a,ﬁ) it is necessary that o=0¢" can be defined such
that (2.1) holds with o"=a. The validity of the conditions (i), (ii) of the theorem

o
is then evident; if p>m', then E'r] o;>m', Y oj-a;>m, and B, =2, contradicting
=
the definition of m', so (iii) holds Finally, defining I,={ilo;=0;<7v;} one can use
(2.1)(b) for defining an injective mapping 7:I;>I\I; such that r(i)>i. Since

Q; =032 0,(;) = Ur(jy+ 1 one thus has o;>o0,(;, i€l;, and (iv) holds. m

REMARK 2.5. The sufficiency proof in [9] is easier, using direct sums of

2% 0 1 0 A% 0
Ci=AB; = | o= , tely
0 /\041.(1-) )‘ /\2 )\oc.,.(,-)+l Aoc,.(.,-)+2

(with partial multiplicities o;+1, iyt 1)s Ci=4A;B;= (A% )()\2), jed,
Cr=ABre=(A"%)N), kel\(I; U L), C,=AB,=(\")(1), €¢I U J. This indicates that the
construction of a product C=AB by means of the ”intermediate” multiplicity sequences

01,...,ar_1 from (2.1) may be a rather cumbersome approach; for example, we have been

blocks

unable to find a proof based on (2.1} for the sufficiency part of Theorem 3.1 below.

The next result in this section was originally proved by L. Rodman and M. Schaps,
[6], Theorem 7. An alternative proof, using the (I,J)-rules, described in Example
2.9.(i1) of [11], was given in [9], Theorem V.3.1 Here we present an outline of a
proof based on Theorem 2.1.

THEOREM  2.6. Let o=(o;)io, B=(8;)ie1 be multiplicity sequences with
iy = Bmsr =0, Ay #0, 0y~ <1, 1~ B, < 1. Then v = (v;);21€ A(, B) if and only if Ymits1=0
and
There exist index  sets Ig={iy,...,i,} ¢ {1,...,€},

Jo={l,---1dr} € {1,...,m} such that #l,=#Jo=7, r>0, and
(2.6) { integers 0<6,<B; <oy +6,1<x<rT, such that (v,)i] is the
ordered representation of
(*) {0‘i1+51,---70¢z‘r+5r} u {ﬁj1—61,...,ﬂjr—6r} U

U {oylist, iglo} U {Bjljsm, je o)

The sufficiency of the conditions in this theorem is clear even for arbitrary o,8
with ;> 0=04,1,8,>0 =Bt

LEMMA 2.7. Let «,f be multiplicity sequences with oy, B,>0, 0= Bm=0. If
Y=(v)5y i a multiplicity sequence such that vp.0,,=0 and condition (2.6) holds,
then vy e Ao, f).
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PROOF. Construct the product C=AB as a direct sum of blocks of the form

A% 0
Cr=AB, =

0 1

1 0 A%y 0
= 1<x<r
Mt AP Mibe 3P| ’

where C, has the partial multiplicities ((xix+6x, ﬂjx—éx) as ﬁjx—éxsoc,-x, and of order
1 blocks (A%)(1), igl,, 1<£, tesp. (1)(A9), jedy, j<m. m

Without further assumptions the converse of Lemma 2.7 not true:

EXAMPLE 2.8. Let a=(3,1,0,...), 8=(2,0,0,...), v=(4,2,0...). Then yeA(c,j),
according to Theorem 2.4 (cf. Remark 2.5), but Condition (2.6) is not met. H

PROOF 2.9 of the necessity part in Theorem 2.6. Set oy:=a, f;:=b, n=L+m. It
suffices to consider the finite sequences o =(cy)imy, B=(8;)ie;r Let yeAy(a,B). There

exist a:ao,al,...,ab"l,ob='y such that (2.1) holds. Define sijzajﬂ

—a;-, 1=1,2,...,bh.
n
Then e;;€{0,1}. Because of (2.1)(b),(c) one has that Y e;=m, 1<i<b-1, whereas
Jj=1
n
L ey =m with 1<m'= max{j|8;=>b}<m.
Jj=1
From the condition (2.1)(b) one has that for each 1<i<b the following holds:
if £;4=0, £<z<x<mn, then &;,=0, i'>i x>z,
and using that 01,...,ab are multiplicity sequences one has:
(2.7) if ¢;,=0, x>£, then g;,,=0 for all x<y<n, all i<i'<h.
n
Using that ¥ e;;=m, 1<i<b~1 one has from (2.1)(b) for fixed z, fixed i<h-1:
j=1
if e=1, 1<x<z<¥ then g;,=1, 1<x<z, i<i'<b-1,

and using that 01,...,01’_1 are multiplicity sequences one has:

(2.8) if g=1, ai_lza, x<4é, i<h-1, then g,,=1 for all 1gy<x,

for all i<i <b-1.

The conclusion in (2.8) may be incorrect if aid:a—l (which means that x>¢&'=
max{j<é|o;=a} and ¢;,=0, ¢'<i-1). Defining hy=min{i|e, =1} for £ <x<& with o£_1=a
one has that hy<h,,; if az;iza.

Now we make the additional assumption that o =c, f;=0n,; then the latter phenomenon
cannot occur, as ai_lza for each x<¢, and the conclusion of (2.8) holds for i'=5 as

well. Then (2.8) implies that there exist ky<k,<...<kp<é, €<ky<k;<...<kz<n such that
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e5=1, 1<j<k;, £<j<k; €;=0 otherwise, i=1,2,...,b.

Since k;+kj=m+4£ it is not difficult to see that for 1<j<min{¢,m} one has that

max{i|e;; =0} =max{i|€; n41-j =1} =Yns1-4 and hence
b
Sj=vj-0y= i)=:l€ij=b-max{i|€ij=0}=b—7n+1-j=5j-7n+1-j’

which proves the desired result for o; =0y, B;=8,, taking r=max{jjd;>0}. Observe that
$;26,>...>8,>0 in this case.

Next we consider the case where oy =y =a, but 8, =b=0,,+1. Set '?:017'1, E: (ﬁj)’}=1 defined
by E:...ﬁm=b—1, E,,,H:O. Then ¥ =A(a,f) and we can use the previous case to find
512522... 26;>0 such that 'T/j=ozj+§j=a,+3jzb—1, §n+1_j=b—1—5j, whereas ;/f:a, r<i<d,
vi=b-1, £<i<n-r. Let I'={jlep;=1}. Then I'¢{l,...,n-7) because of (2.7) and with
s=#{jel'|r<j<t}, t=#{jeI'|(L<jsn—1':} one has s+t <n—7—£ because of (2.1)(b), as €p1,; =0
for r<j<#é and for j>n—;. For lsjs;, we define §;: =5j+1, iel, 6j=gj otherwise. Observe
that b—1~3,-=b—(5,~+1)=b—6,- in the first case. We set r:=r+s and for 7<i<r we have
Yi=6+1=0;+1. We set §;=1 in this event. Since s+t<m—7-4 we can write Yns1-j=b—-1=b-6;
r<j<r. Finally, we have v;=Db for £<j<&+t. Observe that #{jel’[lsjs;}+t+s=m'.

In Theorem 2.6 we can always interchange the role of o and 8, setting nx=0¢,-x+6x— ﬁjx
as Osn,scxixgﬁjx+nx, and thus the desired result also holds for oy =e=0,+1, f;=F,=0.
Finally, we consider the case where a;-o,=p8;-8,=1. Again, we set '7:0"_1, ﬁ:(ﬁj)'JLI,
ﬁ1=...,§m=b—1, Bml:O‘ For ;:A(a,ﬁ) there exist a set 70={i1,...,i;}g {1,...,€},
#ly=7, and 61,...,6; such that 056x5b—1ga§x+6x and vy is a reordering of
{oci1+61,b—1—61,...,(xi:+6;,b—1—6;} U {oyligl} U {b-1]1<j<m~-r}. We can assume that
612622...26;>0 and that 7j=~<x,-j+6j, 1<j<r. Then Yp. j=b-1-6; Again, let
I'={jleyj=1}. If g,;=0 for each r<j<¢, then we apply the same argument as in the case
where oy =, Otherwise one must have &, ;=1 for some r< j<& as well, because of
(2.1)(b). So let g, ;=1 for 1~"<r’+1sjsr'+d, €pq,;=0 for ;<jsr', r'+d<j<¢. Evidently
%-za for 77<jgr’+d; on the other hand, Svfj:aj.,j'e{l,...,é}\fﬂ for these j, and hence
77]-=a,, r<j<r +d. Further, €p.y,;=0 for j>n—7 and hence €p1,;=1, 1sjg;—d, sb_l,]-——;0,
r+l-d<j<r as explained after (2.8). According to (2.8) we must have ;jza, for

r—d<j<r’ +d, as ¥;_d+1 >a would contradict Sk

= gy =0- S0 #{jel'|r-d<j<n-r}<n-r+d,

whereas #{je['[r‘+d<j5n—;}sn—;.

Thus, if #{je[’|7~”'—d<jsn—;}>n—;, then Eb]-=1bfor ;~d<js;, as §:=a+eb;27j=a+abj,
r<j<r'+d.Hence #{jeI'|r<j<t}+#{jel'|lL<j<n-r}<n -7 in all events. Nowweset6j=3+sbj,
1<j<7, observing that Y,y j=b~1-8;=b—(8,+1); with r=r+#{jel'|T<j<t} we set 6,=1,
;<xs?7 and writing {z’i‘Ll,...,i,L}={jeI’[;<js£} there exists for each 7<x<r an
iye{l,...,¢ \I, such that Yi&=aix+1=aix+5"’ whereas v,, ,=b-1=b-§,. Setting
Iy=14 U {i;ﬂ,...,z’r} the proof is complete. W
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Next we show that the necessary conditions in the Theorems 2.4 and 2.6 can
be derived from the inequalities described by Rul, thus proving that R{c,3)=A(w,B) in

each case.

PROPOSITION 2.10. Let «,8 be given multiplicity sequences and assume that
7 eR(a,B)
(a) If pB3=0, then the conditions (i), (%), (i), (iv), of Theorem
2.4 are met for the sequence (8;)7—;=/(Yi~9%)51-
(b)  If Og1=PBpu=0 and oy-oy, B-B,<1, then Yeymp=0 and the
condition (2.6) of Theorem 2.6 is met.

PROOF. In both cases the proof consist in using the identity

Q0 © m m
Y v:i= ¥ (o;+08;) and inequalities Ey,is }:(ocsi+ﬂti) for certain r|ls|teRul. We
i=1 i =1 i=1 i=1
specify the index triplets which are used, and give a reference, if necessary, in
order to verify that they do indeed generate rules.

(a) Condition (i) follows from o;<y;<o;+5<o;+2, and (ii) is the identity
©
T (y;i—o;—8;)=0; if condition (iii) is not met, ie., if #J=p>m' for the set
i=1

2

J={il6;=2}, then Y y;,=Y o+2p> Y o;+ ¥ B;2 Y 7; a contradiction (r|s]t, with
iel ie iel i=1 ieJ

s=r=J,t={1,2,...,p}). In order to derive (iv) set m=4#{i|F;#0}. Then

Y 0
m+m'=Y B;= ¥ 6;=2p+#I, where I ={i|6;=1}. Thus s=#I22(m'-p). Set s'=s—(m'~p), and
i=1  i=1
write  [={iy,...,5}, §;<ijy. Define I1={if,...,inp}, Iz={lgs,---y8}; T:I1»Iy Dby
7(j) =4s4+5» Then op;<ay, del;r Assume  that Q= Olr(s) =0 for some iel,. Set
ip=min{iel|oy=a}, jo=max{iel|o;=a}. Then jy—iy>T(%)—ilp =1~ 25, and {i|ig<i<jo}

c I. So for each jeJ one has j<iy or j>j,. Thus, with J'={jeJ|j<Jo}, J"=J\J' one has

s

(2.9) L 7i+Yipt L v (L oy)lvoq+ L o ( L B+ B upei-ig
J

jel je jeJ jed” j=1

(r=J" v {jg} v Js=J u {ig} v J"t={1,...,p} U {ju+Pp+1-14}; then 7|s|t is weakly
zero-reducible: Apply [11], Proposition 1.5(i),(ii) in order to achieve J'=¢, then
(iii) in order to obtain J'=¢, p=0). Now jy—ip+p+12s'+p+l=m+1, so ﬁjo+P+1_,~0=O, and
(2.9) implies that aioz‘yj0=a+l=oc,-0+1. Contradiction, so ;) <oy, (€;.

(b) Clearly, Yiime1<%e1+08me1=0. Set n=£4+m, and assume that £>m for definiteness. As
in the proof of Theorem 2.6 we write a=cy, b=b, &' =max{ila;=a}, m'=max{i|8;=5}; set
¢'=a-1, b=b-1. For 1<j<é-m we have @' <0, ;<YnyjS0+P0n=0; set

Jo=sup{l<j<l-mly, ;=a} (With O=sup ¢). Using
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n-1

» Yi £ L(o+85)—0p—Bn <
J®i, n+l-t Jj=1 .

S,
ek

vj—e'-b, 1<i<m
1

(rsjt a rule of coorder 2, cf. [11], Example 2.5.(ii)) and the rule of order 2
generated by r=(i,n+1-14), s=(1,£+1), t=(1,m+1), see [11], Proposition 2.6, one has
&+b < Yit Yo < Pt tBna=a+b, l1gigm.

Define k=max{i<m|y;2a}. As 74;<B;=b one has b'<yp,i<b for k+l<i<m. Set
i=sup{l<j<m-—k|ye;=>0} (observe that j; =0 if m=k and that jo=0 if m>k). Define the
(disjoint} index sets I,I,,7; < {1,2,...,k} by

L={1<i<klyi+Tnr-i=0+5}; L ={1<i<k]yit Y y=a+b =a' +b};
13={1$i5k|7i+7’n+1—i=a"+b’}7

and set x=#I;, y=#I,, z=#I;. Then x<min{t'—js,m' - #}. Indeed, assume that x>£&—j;;
application of the so—called ({,J)-rule (see [11], Example 2.9 with
r=I, U {m+1,....m+j} U n+1-1,, s={1,...,0,x+1,...,x+jo} U {€+1,....6+x},
t={1,....,x} U {m+1,...,m+x+j} (where {m+1,...,m+j}=¢ if jo,=0) then yields

X
(x+jo)atxb= ¥ v;< ¥ a;+); ﬁ,-=€'a+(x+jo—€’)a'+_Z:lﬁz-+0
r 3 =
S{x+jole~(x+jo—¢') +xb,

a  contradiction. The other inequality follows in the same way, with
r=I U {£+1,...8+j} untl-I, s={1,...,x} U {€+1,...,8+x+7}, t={1,...,x,
x+1,..,0} U {m+1,...,m+x}.  (Here {€+1,....8+5}=¢ if j=0), yielding the
contradiction xa+(x+j;)b<xa+(x+j)b—(x+j;-m') for x>m'~j,.

Observe that x+y+z=k; this yields the identity
ka'+kb'+2x+y=x(a+b)+y(a+b-1)+2(a'+b) = L(Yi+Vnu-i)=
é m n-k R X X
= Lot ,Elﬁi— L JYi= (o' + & mb em’) — ((£-m)a’+jo+ (m—k)(a'+b) + ;) =
3= i= i =k+
= ka'+4 ~jo+kb +m' —j;.
Hence x+y>max{€'-j,m -7}, and it is possible to decompose I,=I, u I, I, n I3=¢,
with  #I,=4£'-jo—x. Then #Ij=y~('~jy—x)=m'—j~x. Further, z+#I,=k—(£ -7,
z+#l;=k—-(m'-j). We can interpret this result as:  y;+ypy.i=a+b, iely,
TitYna-i=0+b', i€ly, Yi+Ypui=0'+b, i€l ¥i+Ynu-i= a'+b', il Setting &;=7;-a,
iel, u I, 6;=v;-a', i€l U, and using bijections from {1,...£'—j,} onto I, u Ij,

from {€'+1,...,k+4,} onto Iy U I; one forms the set I; as in (2.6), and J, is defined

analogously. This completes the proof. ®
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COROLLARY 2.11. Let yeRu{w,B). Then ved,(a,B) if one of the following
conditions is met: (i) oy—0,<2; (i) B1-Fn<2; (ill) 71=7Tn<2; (iv) oy-0p<L, gy =0y,
B1=Bm<l, Bmar=Fni (V) T1=72S15 Y1 =Vny 01 =0 Oy =0, <1, (Vi) v1-76<1, Yoy =V
Br=Pe Bear=PBn<1, (Vil) 0y =04, Quu—0n<1, B1=F4 Bri=Fp<1, (Vill) v1=7r, Yru-¥n<l

0~ 1, Oy =0; (iX) Y1=Yr Yra1—Yn<1l, B1=BnsLls Buii=Fn

This follows from Proposition 1.1 and Proposition 1.3. Only the condition (vii) leads

to the description of A(wx,f) for certain a,B.

THEOREM 2.12. Let o,8 be multiplicity sequences with ogy=0,>1, B,=08;=b>1,
g1 =0 =B1=Bm=1, Cpy1=Pms1 =0 (taking 1<s<t for definiteness). Then vy e A, B) if and

only if Yeemser=0 and (yi)fl'f is the ordered representation of some set

{a+68;+€s b—6;+m;]1<i<x} U {a+glx+1<i<s} U

U {b+m|x+1<i<t} U {gg i+ eyl l<isn—(s+1)},
(2.10)
where xX<s, 6:‘7“'76.9’ Niye e 9Mn-g9 6,',.-.,5,—,420, €T 6{071}7

n-38 n-~t
Lmi=¢-s, Le=m~t, b-a+tn-¢;<6;<b-e;
= i1

This result can be derived from Theorem 2.6, by applying the description provided by
~ 8 =8 L~ ~
(2.6) to (a-o)=(0y)ilT, (b-F)=(B)ill, and selecting y=(Y;)icy, such that Yemy=0.

Then 7= (6+b—Tesmsri)iey has the form described by (2.10).

3. THE CASE S;=0.

If «o,8,y are multiplicity sequences, and ot a5 "

denote their duals (or
conjugates), defined according to (2.4), then known results suggest that yeA(w,3) if
and only of Y*eA(a*,ﬂ*) (see, e.g., [15], where a conjecture of E. Marques de Sa is
mentioned), but no formal proof seems to have been published. However, combining the
Theorems III and II from [5] an indirect proof might be available: If 4,B,C are Young
tableaux for o,B3,y (that is, with columns lengths «,f,y) then Theorem Il states that
the number of ways in which C can, according to specific rules, be compounded from A
, of the Schur function {y"} in the product {a}B"} of the

Schur functions associated with o ,8". In particular, ¢, #0 iff yeA(a,F). But Theorem

and B is the coefficient ¢

Il states a necessary and sufficient condition for ¢,#0 in terms of a different set
of rules for constructing C from A and B. This latter set is completely symmetric
with respect to rows and columns in the tableaux (and with respect to A4 and B), thus
proving that c,#0 iff c,x#0, where c,» is the coefficient of {y} in the product
{o}{B} (it also shows that Alc,B)=A(B,«) but that is not remarkable in the present
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context). Unfortunately, the proof of Theorem I in [5] is completely unrelated to
the present setting, and Theorem III is verified only for the case where ﬁ;:o, that
is, where ;<2 (a complete proof of Theorem III of [5] is presented by I.G. Macdonald
in his book Symmetric Functions and Hall Polynomials, Oxford, 1979, where A. Lascoux
and M.P. Schiitzenberger and, independently, G.P. Thomas, are credited for the first
full proof; there is no mention of Theorem II of [5]).
Using this relationship between A(a,8) and A(a*,8%) it is not difficult to find a
description for A(o,8) if B1<2, that is, if @;=0: just apply Theorem 2.4 to A(a™,™).
Other examples of the analogy between A(a,f) and A(a™,8%) can be found in [9],
Appendix.
THEOREM 3.1. Let (x:(a,-)of=1, B=(8;)7=1 be multiplicity sequences with Bs=0.

Then v = (7)€ Ale, 8) = R(w,8) if and only if the following conditions are met:

(1) 7igou+By, Vi <oty =12,

() Yie$ou<yy =12,

(iii) the sequences (&), (7],~)°§=1 defined by & =0, g =maex{0,y;—;},

122, my=y;—{(0;+&;+€4), i>1 meet the following conditions:
0
(@) pr=1X& < fo5 (B) mi < By-p, i=1,2,...

The proof is, with minor alterations, taken from ([9], Section V.2. In the necessity
part we show that yeR(a,f8), f;=0 implies (i), (ii), (ill); in the sufficiency part
yeA(a,B) is shown by constructing a product C=AB with the desired partial
multiplicity sequences. We have not been able to describe the Young tableau which

would allow the application of Theorem 2.1.

PROOF 3.2 of the necessity of the conditions (i), (ii), (ili) 4n Theorem
3.1. Let yeR(x,8) and B;=0. The necessity part of the conditions (i), (ii) is clear,
as they follow from well-known standard inequalities. In order to prove (iii)(a) let
I'={i>2]7;-w; 1 >0}. The index triplet r|s|t with r=I,s=I-1, t={2,...,#]+1} generates a
standard rule, soiglyisigloci_ﬁﬂz. To show the necessity of (iii)(b) we assume that
Nk>pB1+p for some k. As yr=opg+my+ertery, this implies 7k>°‘k+,81_((igzei)”(gk'*'skﬂ))'
Let J=I\{k,k+1}, I as above, and set r=J u {k}, s=(J-1) U {k}, t;=1, t;,1=i+2,
1<i<#J. Then r|s[teRul, as it is strongly =zero-reducible in the sense of [11],

Theorem 2.7 (remove k from r,s, 1 from t according to Theorem 2.7.(i); the reduced

triplet generates an elementary standard rule). Thus

Yet L visog+pi+ L oja=oq+ft+ T (vj-€)
jeJ JjeJ jeJ

a contradiction. ®
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PROOF 3.3 of the sufficiency of the conditions (i), (ii), (iil) én Theorem
3.1. Given multiplicity sequences v,o,8 such that B;=0 we construct a product C=AB,
Y, resp. «, resp. f the sequence of partial multiplicities of C, resp. A, resp. B.
Let n=sup{iloy#0}. Then +%,,3=0, and we can carry out the construction in

(n+2) x (n+2)-matrix functions. Let (7;-)?2 be a multiplicity sequence with
. , n+1 s , n+l , x
'YiZOCiZYia»laigl(yi_o‘i)=ﬂ2' Set Xpyy =Tn41 xk=i);k(‘)’i—0‘i)- Let row(d;);~, denote a row
(didy...d;) in a matrix, and diag(f,-)’f=1 the k x k- matrix (6,-]-]‘,-)’,?,]-:1. It is not

difficult to see that the matrix function E, . €B.,1,

n .
~diag (,\"‘nﬂ-f] D0
i=1 -

[

(81)  Enu= :
row (/\xnn—ij )‘52

i=1

is equivalent to diag (/\7”+2‘i) "+l Here we shall prove that onme can choose (7,)7:2 in

such a way, that for appropriate cy,...,Cn1 With n(c;) > 5, the matrix

n
~diag (A‘X"“- ') S0 0

i=1: ;

n En+1 0
(3.2) C= row (,\xn+2-f ) Moo | 2 :

=1

row(cn,,?,_,-)")'l ¢y AP row(cnﬂ_,-)mr1 !
=2 i=1

is equivalent to
' ) n+l .
diag (/\7”"2")_ .0

i=1 -

(3.3) C=

’

row (/\yn+3~i] e )‘/31

i=]

n+2
i=

n+2 ~ .
where Vpi2="Tniz Y= .Ek('yi—y;). As C is equivalent to diag(,\y"”") 1, this would
=

complete the proof, as
o A"
—diag ()\ "“"') .0 0
i=1"
n

C=AB= row(A"n+2-i) 1 0 |-diag (1)@

=1

10w (Cp3-4) r::: ¢ 1
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where c'=/\—ﬁ 2¢, is holomorphic in 0, as n{e)>f,.
AT+l .
Now we construct the sequence (v;)7r; and the functions CiyeeyCrpl-

Let Hy={(&,/)|1<j<m} if n;#0,H;=¢ if 7;=0, and set

Then #H=p,+f,-2p. Because of condition (3)(ii) there exist subsets K;,K, of H with
#K, =#K,=0,-p, K; N K,=¢ and a bijection 7:K;>K, such that j<i if (j,y)=7{i,x)eK,. We

define
ni=#H; 0 Ky, mi=m;-n}.

Then 52-2#3‘{5 N Ky, 1,.1=0, and for each k one has

n+l . n ,
(3.4) L m - Xm0
i=k+1 i=k

Now define y;=oy+nj+&;, <0+M+61+6:=7; Then yi>ou+e;>7vs,q; further,

O—Yir1~ Vit Yirt =%~ Xig1 = Tip1 —€in2 = O+ 75— Eipn + Xypr +
(3.5)

+€ir2H Mis1 + €441 = Mgt = Nis1 — i = Nivr — M-

CIearly,zv, zoc,+zn,+ 25z+1—20‘+ﬂ2—1’+1’ zcx+ﬂz Put x(” =x,, as defined

above; then xl _ﬂ2 Con51der the matrix E,,; def]ned in (3.1). Interchange in E,,;

the first and last row, and then make the first row equal to (/\7"“ 0...0) by
subtracting multiples of the first column; finally make the first entry of the last
row zero by subtracting a multiple of the first row. Then E,,, is replaced by the

equivalent matrix function

F= (/\7n+1) ® En

where the n x n matrix function £, is of the same type as FKE,,, but with

~diag(A®™1)721  instead of —diag(A®™*~)7_, and with row AEn+i- i1, instead of
g =1 g 1

row(/\x"”‘ )',li}; here x,gl):xé:xfco)—xflﬁ—a =Yp+ E —o;). Repeating this procedure in

E,, one arrives in n steps at the equivalent matrix function (/\7"+2‘i)?;i. Performing
the reduction of E,,; in C, defined by (3.2), one obtains after the first step the

matrix
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TOW (Cpyg-i) "+i AP

where  ¢/41 = Cnu, c;=c,-+cn+1v\(x"+x"'7"”. Clearly, in order to obtain the matrix
function €, defined in (3.3), after 7 steps, we must take cn+1=>\y"+2=>s7"+2, and ¢,

must be A" To achieve this, we define

k+1 k k k .
xé ¥ )=0‘n—k+x5 )_x£+;—k=0‘n—k+ (XE )—Yn+1-k) =

n-k-1
=71’1—k+ Z (7]""0‘]‘)7 (i=1a2a'--7n_k)

{note that x&o),x(,-l) have already been defined). Obviously, x,(,ﬁ_j=y,’,+1_j. For

k=0,1,...,n-1 we define
k i .
Cn—kz/\yn_k+l+ T /\(yn+2—1+x1(11))c—7n+1—i).
i=p
With this definition the fransition from (3.2) to (3.3) 1is guaranteed, if one
performs in C the transformations which replace E,,; by dia,g(/\y'”z'*)?;i. So it
suffices to prove that F,<n(c;). To this end we show that 3, is not greater than the

zero order of any of the summands in

€= /\'Y2 + rfil/\(ym»i!-i + xil) - 71'1+1-i ) .
=0

Set tj=yj+x§"+2'j)—'y}-_1. Then, with (3.4) and (3.5) one has

n+2 ji-2 n+1 n+2
tj= L (Yi=vd)+ L (vi—ow)=F~ L (vi-ou)+ T (vi-7i)=
t=3 i=1 =g -1 i=j
n+1 i+l

=Bt L (ha=Yin-viteu) =fat T (lin=ni) 25,
and

n+2 n+l n+l

V2= _22(71-—7;-) =P+ 1_)=21 ((ml -Yisg)— (7é+ocz‘)) =82+ igl(nm-ﬂé) > fa.

i=

This completes the proof. ®

If one works within the setting of multiplicity sequences (and matrices) of a fixed

order n, then Theorem 3.1 can be rephrased to provide a description of
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(o, 8) =Rp(0,B) when B3=p,. Using the Propositions 1.1 and 1.3 one has

PROPOSITION 3.4. Let «o,B,y be multiplicity sequences of order n, and let
yeR,(o,B). Then yeA,(o,B) if one of the following conditions is met:
(1) ag=om; (i) Bz=Fn; (ill) Y3=7n; (V) y=0ps; (V) B1=Fn2; (Vi) 71="no

If B=(Bi)i=y is such that b=8;=F,, and o={w);_; is given, .then, using the
conditions of Theorem 3.1 for oy +b-ye€A (o, —a,b—fF) one obtains

THEOREM 3.5. Let a=(0;)ie;, B=(8:)i=1 be multiplicity sequences of order n
with b=8,=F,5 Then v=(7,)io1€An(,B) =R (o,8) if and only if thefollowing conditions

are met:

(i) Y2 0%5+PBny Y2+, J=1,2,...5m

(it)  y;<05+b<yj,, j=3,..,n

(iii) the sequences (sj’-)?;i, (77})7];17 defined by € =€p,,=0, &;=max{0,0;,,+b-7;},
2<jgn, nj=0;+b-v;-¢€j—¢€;;, 1<j<n meet the following conditions:
(@) p= L&; <b-fn; (b) n;<hb-B,-p

Since the restriction ”b=g#;=48,," explicitly contains the order n» of the multiplicity

sequences involved in this theorem, it cannot be extended to A(w,A).

4. THE CASE A, (w,B).

In this section we shall prove that for given multiplicity sequences
a=(a)iey B=(B)im ome has Ay,f)=Ry(a,f), ie., 7=(7)imel(,B) if and only
if 27, ): (o;+6;) and ): ¥ < Z o; +): 8; for all index triplets |s|teRul®(4). The
equ1va1ent result has already been obtamed for order n<3 (see [B8]) and Corollary
2.11 and Proposition 3.2 cover many other cases: evidently, the desired result only
needs to be proved under the additional assumptions
- 0y=f,=0<03,837,

- >y F1>8 Y1>Y2 V5> 7Va

— no two of the following conditions are met simultaneously:
(1) oy-a<l, (i) Bi-Fa<1, (i) v2-74<],

~ no two of the following conditions are met simultaneously:
(1) op<l, (ii) B2<1, (i) v1-7a<1

- y>2, 81>2, yi>v4+2.

The remaining cases for yeR a8} will be dealt with by means of a reduction
technique which might work for arbitrary orders n as well: If yeR,(x,8), and

E Y= Z Q; +E B; for some (minimal) index triplet r|s|teRulyi(n), 1<m<n—1 then one can
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try~ to ”Nsplit” the problem, by considering ')f (7 i)<_1, &:(asl)'?zl, ﬁ:(ﬁti)';;l and
T\Y, o\, #\B. To this end one must answer the question whether vyeR,(a,f),
y\;eR _m(a\&, ;?\EJA If all inequalities generated by rl[slteRulm(n}, l1<m<n-1 are
strict for yeR,(a,8) (that is, ¥ v;<E o;+L B; for each r|siteRuln(n), 1<m<n-1), then
one can replace v by ¥, /; by s,@’ (oi‘ a by o) such that y'eR,(ou8"), ¥i<Y:

B3i< By, Zy,< ):y,, and try to prove that y'eA,(o,B') implies that yeA,(o,8). In view
of the a,ddltlonal assumptions 3;>8,, v;>7, in the case =4 a good candidate for this
type of reduction is yi=v,-1, fi=5-1, vi=7: Bi=F; iz2. In that case y'eA(o,F)
would imply veA(w,B):

LEMMA 4.1. Let ~,0,8 be multiplicity sequences of order n  such that
YE AL 0,8) (resp. YeRa(0,8)). Define 7,8 by yi=v1+1, Bi=p1+1, vi=7i, Bi=8s 2<i<n.
Then yeA,(o,B) (resp. v€Rn(,8))

PROOF. Since there are no ftriplets r|s|teRul(n) with r=1, ¢;>1, the
statement is evidently true with respect to R,. So we assume that yeA,(o,f) and that

oc:oo,al,...,crr=y, r=0; be multiplicity sequences such that the conditions (2.1) of

Theorem 2.1 are met for «,p3,y. Define a”l:';/} ie, a;”—aZ:O i>2, 6;+1—01;=l. Then
the  sequence oo,al,...,ar,a'r“ also meets the conditions (2.1)(a), (b), as
n n n

T (0} -af) =0, €22, T (0]7-0j)=1< T (0]-0}") (since r=4,), and condition (2.1)(c)

i=¢ j=1 i=1

holds for B, as #{l<i<r| ):(a”‘ ol =ty =8 +#{1<i<r-1| z(a’“_o})=t}. Thus
yeh(a,f). B

The applicability of the 7splitting” principle relies on the verification of the

following

CONJECTURE 4.2. If veR,(o,8) end 7t|s|teRuln(n), l<m<n-1 are such that
m m
L7, = Lleg+h,),  then  YreRn(agBy),  YioSRum(gefy),  where Tr= (0, )i,
& =(« )ﬂ:zla ﬁt=([3ti)n;=1, and 77,4::7\71-7 0‘5c=O‘\0‘sv ﬂtc=ﬂ\ﬁt'

1

If this conjecture can be verified for a fixed index triplet r||s|teRul:l(n), for each
yeR,(e,B), then we say that ris|t edmits splitting. That this 7splitting property”
needs only to be considered for minimal index triplets in Rul follows from the
observation.

LEMMA 4.3 If r|slt, 7'||s'|t' €Rul,(n), rls|tzr'|s'|t' and vyeR,(a,B) is such

m

m
that E 7y E (045‘+ﬂt‘)7 then ¥ V= by (a5,+ﬁt;) as well.

i=1 Ti =1 i % i=1 "1 i=1 Z
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m m m
Indeed, T v, < T7,.< T (o +6, )< £ (o +8,) if rllslt>rs' |t <Ruly,
i=1 TiT ST ist Si i=1 %l

Next we describe a class of index triplets which admit splitting, and we extend this
class by proving that the splitting property is compatible with the symmetry
properties of [11], Proposition 1.1.

LEMMA 4.4. Let r;=s;, t;=i, i=1,2,...,m for r|s|teRulp(n). Then r|s|t admits
splitting.

PROOF. (i) If x|y|zeRulym), then we define x'|y'|z" by x_'rx, y;:.syi,
z;-=tzi=z,», i=1,2,...,m. Then x'||y’'|z'eRuly(n): Indeed, since r;=s; t;=3j, one can
apply Theorem 3.8.(ii) in [9] in order to reduce the verification to the case where
r=s=t={1,...,m} and hence x'=x, y =y, zZ'=2.

(ii)) I xfy|zeRulyn-m), then we define x'[ly'|z’ as follows: x;=r.; if
Xt (i=j- Y <ry<a;+{i-7), xi=t-j4+x; i 7j<i—j4x;<ri 4y, y; is defined in the
same way, replacing r by s, x,x’ by y,¥, and zj=i, i<m, zj=z;, ,+m, i>m (X'|y'|z’ is
constructed by  ”inserting” the index  triplet rol s; |t into riis[t).  Then
x'||y'|2'eRuly,pm(n): Indeed, we can use induction on m. For m=1 the statement is
identical to the statement of Theorem 2.7(i) in [11]. If the statement has been
proved for m-1, then we consider r'|s'|t'eRuly (n—1) defined by T§= 8= Tigy = Sipy,
t;i=i, 1<i<m-1, and construct x"||y"|z” by inserting 7, ||s °lz° into r'||s'|t'. Then
x"[y"|z"€Rulgypm-1(n~1), and the statement follows from Theorem 2.7(i) in [1i] through

removing xp=r;=35=1vy;, l=2z; from x'||y'|2".

(iiiy Let vyeR,(o,B) and 'Zn)')f = g‘(a +ﬂ ). According to (i) one has ):7
i=1

E o +L By for xly|zeRuly(m), “and E ¥ c—E i - L YJ_(E o+ Bi)=(L oy +E ﬁ,

E o c+E ,Bc for xny{zeRulg(n m), accordmg to (ii). Hence one has yreR( s,ﬂ,) and

Y\YreRn—m((x\asa ﬁ\lgt)

LEMMA 4.5, Assume that the index triplet r|s|teRuli(n), l<m<n admits
splitting. Then r|t|s admits splitting, and the inversion and both reflexions and

complements of r|s|t, r|t|s admit splitting.

PROOF. Since r|s|teRul if and only if r|t|seRul, and R(a,B)=R(B,a) the first
statement is, evidently, correct. In order to prove the second statement one observes
that for a given multiplicity sequence o= (x;)7—;, ez0¢y, one has that &—o,={¢—)p,is
a-0e=(a~a), Consider the complement t“|o|r® of r||s|t. Assume that for some
yeR,(a,B) one has )_“,Cyj = }U:ozj + Ecﬂ ; and choose a>o. Then

t r
;(a+ﬂj)=): (a.—ocj)+§ 7j=n+)1:_s(a,-cxj)+); 7j=§(a,—ot)j+{t) 7;- As 7| s|t admits splitting this

a

implies that (a’+ﬂ)r€Rm((a'_a)377t)a (a'+ﬁ)TCERn—m((‘Z_o‘)SmY!c)' Hence
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’YteRm(a'—<a'—0‘)s7ﬂr)=Rm(0‘n+1—sﬂ@r)=Rm(0‘acaﬂr)a YtCERn—m(a'—(a'_o‘)smﬁTc)= Rn—m(aaaﬂrc)'
This proves that t°o|r® admits splitting. Since the inversion and the reflexions of
r||s[t can be obtained by repeated transition to a complement in combination with of

the symmetry property from in the first statement, the other claims follow as well. ®

Next, consider y:(y,-)LleR‘i(oc,ﬂ). Set m(y)=v1+Y2+Y3+tYv4- If m(y)<10 then at least one
of the additional assumptions mentioned in the beginning of this section is not met,
and yeA,(o,B). We proceed by induction. Assume that we have proved that yeR,(c,f)
implies yeA,(o,8) if m(y)<k. Take yeR,(c,f) with m{y)=k+1. If y =7, or B;=0, then
yedy(a,B). So assume that yy>7ve B1>f2 If T v;= E o +)_j B; for some index triplet
rls|tcRuln(4) which admits splitting, then 7,€Rn(0ty8:) = An(eigfi)s ¥ o€ R (€t By
and hence y=1v,. U yrceA4(oc,ﬂ). Now observe that each index triplet rlis|teRul (4) with
1¢r, let admits splitting: For x|x|1, x=2,3,4 and for 23{23{12, 24|24|12, 34|34[12
this follows from Lemma 4.4, and inversion and complementation yield all relevant
order 3 triplets and 34[14|14, 34[24|13. So we need to consider only 23[13[13,
24(123|13 and 24[[13|14, where the second, resp. third triplet is a reflexion, resp.
complementation of the first, and it suffices to prove that 23[|13{13 admits
splitting. To  this end, let y'eRy«'\f) and 7y,+ys=c+oz+8;+F3.  Then
(Y373) €  Ro((o4,08),(61,835)), as vi < oi+Bi, vi < oi+f505+f;, and
(Y1,74) € Ryl (03,045), (B3,84)):  From Yi+vé+7{;Soci+0<é+0<3’+ﬁi+ﬂé+ﬂé one has yi<a;+Bs
whereas 7i<as+f follows from yy+y3+viSoq+aptos+fotfst+fi<aitagtoag+fi+fa+h;
and vy<0,+3; is derived in the same way. Now assume that Z 7]<E o +§ B; for each
r|s|teRul*(4) with 1¢7, 1et. Then YeRdw, ﬂ) where 71 1 B, = ﬁl—l Bi=Bi, Yi=7s
i=2,3,4. As m(y)=k this implies that veA, o, f), and Lemma 4.1 yields that yeA,(o,f).
Hence we have shown that ye A, (e, 8) for each yeRy(«,f) with m(y)=k+1. By induction we
thus have proved the following result:

THEOREM 4.6. Let oc=(oz,~)3=1, ﬂ:(ﬂi)?,__l be multiplicity sequences of order 4.
In order that 7:(7i)‘;=1eA4(oc,ﬁ) it is necessery and sufficient that yeR(«,B3) i.e.,
thatizyiz i)_::((x,--;—ﬂi) and ; 7i5§ oci-f—ztj 8, for each r|s|teRul*(4).

Added in proof: Since the completlon of the present paper a formal proof for
the equivalence yeA(x,f3) & 7 T e Al ﬁ) (see the introduction of Section 3) was
presented by Ion Zaballa, cf. [16] A private communication of the same author
provided the additional information that this equivalence can also be obtained as an
easy consequence of some of the results in Ch. I of I.G. Macdonalds book Symmeiric
Functions and Hall Polynomials.
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[13]
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