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THE LOCAL INVARIANT FACTORS OF A PRODUCT OF HOLOMORPHIC MATRIX 

FUNCTIONS: THE ORDER 4 CASE. 

G. Philip A. Thijsse 

Let ACXn [ "~C~n- 1 I ' ' '  I "~C~2 [ "~C~ 1, resp. A~n I A/~n-1 I--. [Aft21A/~I be the (given) 
invariant  factors  of the square matrices A, resp. B of order n over  the ring of germs 
of holomorphic functions in 0 such that  det A(A)B(A)r A C0. A description of all 

possible invariant  factors ATnlATn-1]...LA721171 of the product C = A B  is given in the 
following cases: (i) ~1 (or ch )<2 ;  (ii) ~ 3 = 0  (or c%=0);  (iii) cxl-c~e, ~1-~m<_1, 
c~e+l=C~m+l=0. These results, which hold for arbi t rary n, are complemented with a few 
results leading to the description of all possible exponents 71,'f2,73,'~4 for 
arb i t rary  cq,c~2,cx3,cx4, ~1,~2,/3a,f14 in the case where the order n_<4. 

INTRODUCTION 

In [2] I. Gohberg and M.A. Kaashoek raised the question of describing the 

(local) invariant factors of the product C=AB of (monic) matrix polynomials A,B in 

terms of the invariant factors  of A,B. At that  time such a description was only known 

for the case where 1,.. . ,1, A,...,A are the invariant factors  of B (cf. [7]), but 

soon the description was extended to the case where 1,...,1,A/J1 are the invariant 

factors  of B (see [6], Theorem 6 and [8], Proposition 6) and the -much more 

complicated-  case where 1,...,1,AC~e,...,A c~1, (xl-c~e_<l are the invariant factors of A 

and 1,...,1,A/Jm,...,A/jl, ~1-~m_<1 are the invariant factors of B (see [6], Theorem 7). 

In [8] there was also a complete analysis of the case where the order of the matrices 

A,B was less than or equal to 3. In [9] the case where 1,A,A ~ are the only possible 

invariant factors  of B and the case where 1,...,1,AP2,A p l  are the invariant factors 

of B were dealt with, the lat ter  result also covering the order 3 case. 

Remarkably enough, a complete description of the exponents 71,. . . , ' fn of the invariant 
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factors of C = A B  in terms of those of the factors A,B - t ha t  is, of (~l,--.,am resp. 

/?l,--., fin- was already obtained, in a quite different setting, by T. Klein in 

[3],[4]. There necessary and sufficient conditions on the sequence T1,...,3~n in order 

that  ATn[...IAYi are the invariant factors of C = A B  are phrased in terms of the 

existence of a certain Young Tableau involving the sequences ch,. . .  ,an, resp. 

/?l,...,/?n of exponents of the invariant factors of A, resp. B. This result will be 

presented, with a proof  adapted to the present setting, in Section 2. Another 

complete description of the exponents Ti,--- ,~n - t o  be called the partial 

multiplicities of C = A B -  was indicated in [2], and confirmed in [6]: Choose fixed 

nilpotent matrices N(A), resp. N(B) such that  ,~c%[...]AC~l, resp. ,X/?~[...I,X fli are the 

invariant factors of M-N(A) ,  resp. M-N(B),  then all possible sequences ~Y~I..,I~ ~ 
of invariant factors turn up as the invariant factors of 

where X ranges over  all matrices of the appropriate size. This result was used 

extensively in [6]. 

A different approach has been tried in [8], [9]: It had already been observed quite 

early (see, e.g. [7]) that there exist divisibility relations involving the invariant 

fac tors  A~i,A(Ni,)~ ~i, which -using the partial  multiplicities, that  is, the exponents 

of the invariant f ac to r s -  can be expressed as inequalities, for  example, 

Tri+Tr2+... +Trm<eq+e~2+... +%n+flrl+flr2+... +/?rm , l <-rl<r~<... <rm<_n 

(see [7]) holds for each product C=AB. Now the following approach has been suggested 

by R.C. Thompson, see [14]: 

(a) find a description of all index sets (rl,...,rk, sl,...,sk, ti,...,tk) 

(to be called index triplets) such that  the inequality 

+ 7r~ +.-. + Trk < C~si + C~s2+... + C~sk +/?tl +/~t2 +.../?tk Tr 1 

holds for each product C=AB;  such inequalities will be called rules. 

(b) prove that  each triplet (Y1,--.,Tn, c5,.. . ,c%, /?l,...,t3n) of partial 

multiplicities with T l+ . . .  + T n = a l + ' " + ( x n + / ? l + ' " + / ? n  and such that  all inequalities 

derived in (a) are met, can be realized as the partial  multiplicities of a "product 

C = AB. 
Of course, in many cases it suffices already that a few of the inequalities 
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f rom (a) are  met in order  t ha t  (T1,...,'Tm cq,...,cxm fll,...,fln) can be real ized by  a 

product  C = AB. 

In [13] R.C. Thompson obta ined  cer ta in  condit ions in terms of Young tab leaux  

in order  t h a t  an  index t r iplet  (rl,...,rk, sl,...sk, tl,...,tk) genera tes  a rule. 

Apar t  f rom a cer ta in  minimality condit ion it seems t h a t  these are,  in fact ,  all 

t r iplets  genera t ing  rules. In [10],[11] this  conjecture  was confirmed for  k_<3, for  

rk -k<3 and thus,  effect ively,  for  n_<7. Also in [10],[11] several  impor tan t  "systems" 

of rules were derived which confirm tha t  the  necessary  and suff icient  conditions 

which give a full descript ion in the  cases fl1-<2, f l a=0 ,  and c q - ~ e ,  fll-/3m<-l, 

c~e+l=flm+l =0 can be  der ived from the  inequalit ies of type (a) ob ta ined  so far .  

Since C and its t ranspose  C T have  the  same inva r i an t  fac tors  it is clear 

t h a t  one may in te rchange  the  roles of (~l,.. . ,r and (fll,--.,fln) in all results. 

Fur ther  symmetry  proper t ies  of the  present  problem can be der ived from the  following 

observa t ion :  If  A(~nl...IA cq are  the  invar ian t  fac tors  of A, then,  given a_>cXl, the 

inva r i an t  fac tors  of A~A(A) -1 are  Aa-al[...IA a-c~n. Using t h a t  C=AB if and only if 

AaB = (AaA-1)C one can re la te  the  par t ia l  multiplicity sequences (T1,-..,Tn), 

((xl,...,c~n), (~l,.. . ,/~n) to  the  sequences (a+pl,...,a+~n), ( a - ~ , . . . , a - a l )  , 

(T1,---,Tn) and (a+b-Tn,. . . ,a+b-T1), ( a - ( x ~ , . . . , a - ( ~ l )  , (b-fl~,. . . ,b-fll) ,  where b>_fll. 
These symmetry  results,  which are  derived in Section 1 a f t e r  the  necessary 

in t roduc to ry  definit ions,  are quite useful in order  to  ob ta in  new theorems from 

exist ing ones (e.g., from the descript ion in the  case where c h - a e ,  r 

a ~ + l = ~ m + l = 0  one easily obta ins  a descript ion for  the case where (x~=(~e, r at+l ,  

//m+1<1) and for  limiting the  number  of special cases in need of proof.  

In Section 2 we s ta te  and prove  the above - m en t ioned  theorem of T. Klein, and we apply 

it to  ob ta in  new proofs  for  the  cases r and c h - c  % ~ - / / m _ < l ,  cr The case 

f13=0 is deal t  with in Section 3, where the  p roof  is based  on t ha t  in [9], Section 

V.2. In the  f inal  Section 4 we combine the results  obta ined  in t h e  previous  sections 

with a reduct ion technique (which might also be of in teres t  for  matr ices  of higher 

orders)  in order  to  ob ta in  a full descript ion of the  case where A, B and C = A B  are of 

order  n < 4. 

Throughou t  the  tex t  the  symbol �9 will s tand for  "end of proof"  or "end of 

example". 

1. DEFINITIONS AND AUXILIARY RESULTS 

Let the  n x n mat r ix  funct ion A(A) be analyt ic  in a ne ighbourhood of 0eC,  

such t ha t  de tA(A)r  A # 0 .  There  exist  n x n mat r ix  funct ions E,F, analyt ic  in a 

ne ighbourhood  of 0 such t ha t  d e t E ( 0 ) r  0, d e t F ( 0 ) r  0 and 
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/ )~eelle~2" 0" / 
(1.1) A(A) = E(A)D(A)F(A) = E(A) F(A), (~1 :> (~2 > - ' ' >  (~n ~ 0 

The matrix function D(A)=diag (Ac~1~Ac~,...,X c~n) is called the local Smith-form of A 

(at 0), and ,~I,A~2,...,A ~n are the (local) invariant factors of A. The nonnegative 

integers r are called the partial multiplicities of A (at 0), and 

sometimes m0(A):=cx~+cx2+. . .+c % is called the total (zero) multiplicity of A at 0. In 

this paper we consider the following problem: Given two sequences rxx>c~2_>...>cx n >_ 0, 

ill>- f2 >-...>-fin >- 0 of nonnegative integers, what sequences Yl >- T2 > --. Y~ > 0 can 

appear as partial  multiplicity sequences of a product C=AB, where r resp. 

fll,...,fln are the partial  multiplicity sequences of A, resp. B?. 

We introduce some notation: with B n w e  denote the set of all (germs of) 

n x n -mat r ix  functions that  are analytic on a neighbourhood of 0 such that  detA(A)r  

for A e 0 .  Given two finite sequences cr fl=(fli)n=l of nonnegative integers such 

that  a~>-c~>-.. .>cx m fll>/~2>-..,>-fn~ c~lled multiplicity sequences (of order n), one 

defines 

z ~ . ( a , # )  = 

9" partial multiplicity sequence of C=AB,  ] 

where A,BeB n have partial  multiplicity I 

sequence cr resp. f 

Our main problem can thus be summarized as follows: 

Given mu l t i p l i c i t y  sequences  a,// of  o r d e r  n~ desc r ibe  An(a, / / )  

Obviously, the matrices C,CT~Bn have the same partial multiplicities; since 

(AB) T=BTA T this implies that  zln(c~,fl )=  An(fl,cx ,). If r 1_>.,. >_r n are the partial 

multiplicities of A�9 then for given a>_cx 1 the sequence (a-~x), defined by 

a-cx~>_a-%~_l>...>a-c % is the sequence of partial  multiplicities of  AaA(A)-leBn; since 

AaB(A)=AaA(A)-IC(A) if C=AB, A,BeBn, one has that  a + f l e z ~ ( a - c r  ) if and only if 

7eAn(cx,fl  ) (here a+f=(a+fli)~= 1 is the partial  multiplicity sequence of AaB(A)). If cr 

are the partial  multiplicity sequences of A~B~Bn, then, choosing a>_cxl, b>fl,  one has 

Aa+bc(A)-I=AbB(A)-IAaA(A) -1 if C=AB; further,  if x<_C~n, Y<-fln then A-XA(A), A-YB(A)el3n, 

and A-(x+Y)C(A)-(A-XA(A))(A-YB(A)) if C=AB. Using these and similar relations one 
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obta ins  

PROPOSITION t .L Let c~,fl and T be multiplicity sequences of order n with 

c>71 ,  a_>cq, b>-Sv The following statements are equivalent: 

(i) vezx.(~,8); (i)' vezx.(8,~) 

(ii) a+SeAn(T,a-c~);  (ii)' a+SeAn(a- (x ,T  ) 

(ii)" b+c~eAn(T,b-8)  ; (ii)" b+(xeAn(b-~ ,7  ) 

(iii) a+b-TeAn(a-c~ ,b - f l ) ;  (iii)' a + b - T e A n ( b - 8 ,  a-c~) 

(iv) c -Be  A.(c-y,~);  (iv)' c-fleZX.((~,e-^() 

(iv)" c-c~e An(c-T,fl) ; ( iv)"  e-o~e An(fl ,e-?) 

It  is no t  difficult  to  find some necessary condit ions in order  t h a t  T e 2 ~ ( a , 8  ). If 

A �9 Bn has  the  par t i a l  multiplicities (x 1 > a 2 >_... >_ c~,,, then A(xn+I-kA(~n+2-k...A c~n is the  

g rea tes t  common divisor of M1 nonzero  k x k -minors  of detA(A). This implies t ha t  for  

k= l~2,...,n. 

(1.2) r +~=n(gcd{lAkll]Ak] # 0  k • k - m i n o r  of detA(A))), 

where n(f) denotes  the  zero  order  a t  0 of a scalar  funct ion f which is analyt ic  at  0. 

Hence for  T e A n ( a , 8  ) one has  

(1.3) Yl+Y2+--- +y,=n(detA(A)B(A)) = a l + a 2 + . . .  +Otn+81 +•2+.. .  +sin, 

whereas  it follows f rom the  Cauchy-Binet  formula  t h a t  

(1.4) ~(6+1 +*(6+2 + " "  + ~(n >-- (~6+1 + (Xg+2 + ' "  + an  + 86+1 + 86+2 + " -  + 8n 

fo r  g = l , 2 , . . . , n - 1 .  Combining (1.3) and (1.4) one obta ins  

7 1 + 7 2 +  ... +Te < cq + r ... +c~,+81 + 8 2 +  ..- +/36, 6 = 1 , 2 , . . . , n -  1. 

which is the  most  obvious of a large class of inequalit ies of the  type  

(1.5) +~f <c~ +(x +.. .+c~ +8~ +8~ + . . . + 8 ,  Trl + Tr2 + " "  rra Sl 82 Sm ~1 ~2 ~m 

which hold for  cer ta in  index sets r = { r l , . . . , r m }  , s = { s l , . . .  ,sin} , t = { t l , . . .  ,tin} with 

l <_r~,si, ti<n azld r~<r~+~, s~<si+l, t~<ti+ 1. We shall call r[ lsl t  an index triplet of 
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order m, and we say that  rHslt generates a rule if (1.5) holds for each 7~An(a , f l ) .  We 

define 

r]]s]t is an index triplet of 
Rulm(n) = r]ls]t 

order m which generates a rule 

and we set Rul(n) = [~ Rul~n(n). Important examples of such rules are the standard 
m = 0  

rules (or standard inequalities), generated by rllslt  with i+r  i = s  i+t i ,  i =  1,2~...,m. 

These rules have been obtained independently by severM authors, see e.g. [12], [9] 

and [11] Example 1.6.(i). 

The symmetry properties of An((x,fl ) give rise to similar symmetry properties 

for Rul(n) (see [11], Proposition 1.1). In order to describe these, we associate with 

the index set r={r l , . . . , rm}  c_ {1,...~n}, ri<ri+l, three further index sets, namely 
c c c c r c = {rl~... ,rn_m} = { 1,... ,n}\r ,  rj < rj+l, called the complement of r~ 

n + 1 - r = {n + 1 - r , , , . . . ,n  + 1 - r 1 }, called the reflexion of r, and 
C s 

p = { p i , . . . , p n _ m } = ( n + l - r )  = n + l - r ,  called the inversion of r. Using these new index 

sets one can associate with the index triplet rHslt eleven other index triplets each 

of which generates a rule if and only if rllsJt does so. An essential selection of 

these is provided in 

PROPOSITION 1.2. Let rHslt be an index triplet of order m. Equivalent 

are: (i) r]ls]teRUlm(n); (ii) rl[t[seRulm(n); (iii) tcHa[rCeRuln_m(n); (iv) 

(n+ l - s ) l [ (n+ l - r ) [ teRulm(n) ;  (v) p][alreRuln_m(n), where (7•r denote the inversions of s, 

resp. t. 

If r[[s[t, r'][s'[t' are index triplets of order m, and r~<ri, s~>_sl, t~>_ti, 

i= l ,2 , . . . , ra  then we write r[Is[t>r'[[s']t' , and r[]s[t generates a rule if r'l[s'[t' does 

so. Of course we should concentrate on those index triplets in Rul(n) which are 

minimal with respect to the partial ordering 5 ;  we set Rul*(n)={r[[s[teRulm(n)lr[[slt 

is minimal with respect to ___} and Rul*(n)= 5Rul* (n ) .  The correct  condition for 
T n = 0  

minimMity seems to be that  the deviation d(r][s[t)= ~ ( i + r i - s i - t i ) = O  , and, indeed, 
i = 1  

all known minimal triplets in Rul(n) have zero deviation, and no triplets with 

negative deviation have been found in Rul(n) for any n. An important class of rules 

of zero deviation was described by R.C. Thompson, [13], Theorem 2. These rules are 

characterized by the existence of certain Young Tableaux, and we shall refer  to this 

class as Tabm(n ). In [14] the class Tab is shown to be, in a sense, self recursive, 
g, 

and in [11] it is proved that Tabm(n)=Rulm(n) if n_<7~ if m < 3  or if n-m<_3. 

Now consider arbi t rary multiplicity sequences 7,(x,/3 of order n such that 

" ~ l - J - . . . + " f n = O ~ l - ~ - . . . - { - O l n + / ~ l + . . . T / ~ n  . In order that yeAn(cr ) it is a necessary condition 

that 
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in in 

iE='rq < E(%i.= + /~q) 

holds for each triplet  rllslteRulm(n), for each m~ but it is not clear~ whether this 

condition is sufficient. For given multiplicity sequences c~,f~ of order n we define 

Y is a multiplicity sequence of  order n ] 

Rn(~ Y =  (Yi)i=ln with cx l+. . .+c%+31+. . .+f ln=Yl+. . .+Tn such 

that  (1.5) holds for each rHs]t~Rul(n ) 

Since rl l t lseRul(n ) if and only if rl ls l teRul(n ) it is clear that  Rn(ct,fl)=Rn(fl,c~). 

Further, if a>_(~ 1 and yeRn(cqf l  ) then a+fleRn(a-c~,y):  Indeed, if rIIslteRul(n),  then 

m m In 

(a+/~)r i = am+ i~_lflr i <_ El( (a -~)s i  + Tti) = a m +  El('~ti--Otn+l_si ) 
i = 1  -- " =  " =  

in Ill 

if and only i f  i~=lYti > _ i~=l(~ri+(2n+l_si), that  is, if and only if 

n - i n  n - i n  

~[t <--j~=l(~r.']'Oto'j ) j : l  ~ 

where a denotes the inversion of  s. But tcllaJrCeRuln_in(n), so the final inequality 

holds, and hence the initial inequality is correct.  In this way one proves 

PROPOSITION 1.3. The conclusion of Proposition 1.1 remains valid if in each 

statement A n is replaced by R n. 

If S is some subset of Rul(n) and S((x, f l ) = { y l y  multiplicity sequence of order n, 

~ 7i= ~ (cq+fll), (1.5) holds for each rl ls] teS} c_ An(CZ,fl), then An(~,fl)=Rn(Ot,fl)= 
i=l  i=l  
S(c~,fl), as always An(c~,fl ) c_ Rn((~,fl ) c_S(c~,fl). In many cases for given c~,fl a 

relat ively small subset S of Rul(n) suffices to obtain S(c~,fl) c An(e~,fl ). This leads 

to 

CONJECTURE 1.4. For each choice of multiplicity sequences (~,fl of order n one 

has that An(Cqfl) = Rn(C~,fl ). 

Observe that  Rn((X,fl ) does not change if one replaces Rul by Rul* in the definition~ 
In In 

since rllslt>_r'lls'lt' implies t h a t  i~=l"fri<_i~=lTr ~ and  z~l(lXsi+flti)>_ >> ~ (~s,+flt,)- 
" =  i = 1  i i 

Quite often it is convenient to replace the fixed order n of the matrices involved by 

arbi t rary  orders g>_>_n. To this end one defines (xi=O,i>n for the multiplicity sequence 
n 

((xi)i=l of order n. The multiplicity sequence (x = ((:X i ) i = l  can be associated with 
n A(A) | It_nel3~, t>_n, if (cq)i= 1 is the sequence of partial  multiplicities of AeBn;  if 

00 
Od=((~i)i=l' / ~ = ( f l i ) 7 = l  a r e  multiplicity sequences with (~e+l=flm+l=O, then 7e+m+l=O for 
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each yeAk( (x , f l ) ,  k>max{g,m}. Thus one can define A((x,/3)=Ae+m(c%fl) , and An(cq/~ ) 

= { y e z l ( c q / 3 ) l T n + l = 0  } if n>max{6,m}. By setting Rul(*)= 0 Rul(*)(n), Ruls U Rul(m*)(n) 
t l = 0  n = m  

as in [10], [11] one can also define R(cq/3) independently of the order n. 

2. THE KLEIN THEOREM WITH SOME APPLICATIONS 

In this section we provide a proof  (taken from [10]) for the necessary and 

sufficient (Young-tableau) conditions for TeAn(cqf l )  which were mentioned in the 

introduction and which were derived in [3], [4] in a more r ing- theoret ica l  setting. 

Recently O. Azenhaz and E. Marquez de Sa provided a constructive proof  for matrices 

over  principal ideal domains (cf. [1]). As an application we provide necessary and 

sufficient conditions for TEA(cqf l )  if /31<_2 mad if ae+x=f l~+l=0,  c q - a , ,  fll-flm<_I. 

Further, we observe that these conditions can be derived from certain rules in Rul, 

which implies that  A((x,/3)=R(cq/3) in each of the cases mentioned above. The proof  of 

this observation derives from [9], Sections V.1 and V.3. We conclude with the 

description of some results which can be obtained by application of the symmetry 

properties from the Propositions 1.1 and 1.2. to the above -men t ioned  cases. 
n 

THEOREM 2.1. Let cr /3=(/3i)i=1 be multiplicity sequences. In  order 
71 that a multiplicity sequence T =(Ti)i=l belongs to An(cX,/3) it is necessary and 

suf f ic ient  that there exist multiplicity sequences cr 0 al . . . , ( r = T  such that (with 

/3n+1 = 0 )  

i i -1  . 
(a) D<_(Yj-(Tj <1, ~=1,2, . . . , r~ j = l , 2 , . . . , n  

~ ,  i+1 i .  < n i i - l ,  
(2.1) (b) j~=6(Gj --(Tj) _ j L e ( a j - a  I ) g = l , 2 , . . . , n ,  i = 1 , 2 , . . . , r - 1  

[ ( C )  / 3 $ - - / 3 t + 1 = # { i [  ~ "  i+1 i -  - j=l((Tj -(~j) = t)~ t = 1,2, . . . ,n  

Excluding that  a i ~+-~ = a  for some i, one has, in particular, that r=f l l .  

Below we shall provide a direct proof  of  this result; in the proof  of  the sufficiency 

part  we shall also obtain a construction algorithm, yielding a sequence S l=A1T1, 

S 2 = A 2 T 2 , . . . , S r = A r T r = A B = C  such that  (x is the multiplicity sequence of  A 1 ~ A a ~ A a 

~...~ At, a k is the multiplicity sequence of Sk, and the multiplicity sequence r k of 
k 

T k is given by rn+ 1=0 and 

k k . < n i+1 i 
(2.2) r t - r t + l = # { z + l _ k l j ~ = l ( a  j - f f j ) = t }  t = l , 2 , . . . , n .  

Thus, B = T r will have the multiplicity sequence ft. 

The conditions (2.1) were introduced by D.E. Littlewood and A.R. Richardson, [5], 



Philip and Thijsse 285 

Theorem III as rules for compounding Young tableaux C from given tableaux A,B. The 

part ial  multiplicity sequences cqf ,T  correspond to the columns lengths in the 

tableaux A,B,C,  and the column lengths of the intermediate tableaux correspond to the 
1 r - 1  

sequences a , . . . , a  In [5] the construction is phrased in terms of row lengths, 

thus it deals, in fact, with the conjugates  (or dual mult ipl ici t ies ,  see (2.4) below) 

of ~ , f , 7 -  

PROOF 2.2. of  the necess i ty  of  (2.1) in Theorem 2.1. Let C = A B  be a product 

with the multiplicity sequences 7 ,a , f l ;  write the product in the T , = T , D + - f o r m ,  (see 

[1], Lemma 2.3) i.e., B=diag(A~i)~.~=D1D2. . .D~,  where 

(2.3) D k = 

0 / 
fk 

A = diag ('~)i=1 ~ In-p~+l, 
1 

1 

with fl~ (the dual mult ipl ici t ies)  defined by 

(2.4) fl~: = # { i l f l i > k } ,  

so fl>_f2_>...>_f~>0=fl~+~. Set Sk=AD~. . .Dk,  and let k denote the multiplicity sequence 

of Sk. Since Si=Si_ lDi ,  i = 1 , 2 , . . . , r ,  the condition (2.1)(a) is met (of. [7], Section 

2,1, or [8], Proposition 3). Further, f , =  ~ ,  i i-1 ** . �9 j = l ( a j - a j  ) by construction, which proves 

(2.1)(c), since fit =flit = # {~[ f i  >t}. 

In order to prove (2.1)(b) we consider an ( n + l - t ) - m i n o r  M i in det S i such that 

n ( M i ) - j ~ = t a j ,  let Miq , Mi+l denote the corresponding minors in det Si-1, det Si+ 1. 

6 ">_j n i-1 
Then n (Mi_ l )=( j=~@)-  _~ aj-  , where 5 is the number of column indices in Mi, 

occuring in the set {1,2 , . . . , f i} .  Further, n(Mi+l)= n i , n i+1 ( ~'.oaj)+6 > ~oaj , where 5'<_5 is 

the number of column indices in ]VI i oecuring in the set {1,2,.. . ,fi+1}. Thus 

[aj - c j ) < ~ ' < 5 < _  ~ i i-1 j=d j=g(O'j--(Yj ). �9 

In order to prove the sufficiency of (2.1) we observe that,  assuming o i r  i+l for each 

i, the sequences r 1 r k , . . . ,  r have the following property: If r j  < k then 
k k + l  r 1 r 

Tj = Tj . . . . .  Tj = flj  {i.e., for each fixed j the sequence -rj , . . . ,vj is strictly 
i 

increasing until T j = f l j  -- this happens for i = f l j  - whereafter it remains constant).  
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PROOF 2.3. of the sufficiency of (2.1) in Theorem 2.1. Let a i # a i+ I, 

i = 0 , 1 , . . . , r - 1 ,  and define T -1,...,7 -r by (2.2). We construct a sequence S I=A1Tx, 

S2=A2T2, . . . ,Sr=ArTr such that for k = l , 2 , . . . , r  

(2.5) 

(a) ~rk,'f k and (x are the multiplicity sequences of 
Sk, T k and Ak, respectively, 

k 
�9 ~ . n  k n 

(b) Sk=dmg(A ~)j=l, Ak and Tk=(t i j ) i , j= 1 a r e  lower triangular,  

k k k k (c) n(tll) , . . . ,n(tnn) is a reordering of rl , . . . , rn,  whereas 

for / < j  one has n(t~i ) k ~: k >n(tij  ) >n(tjj)  o r  t i j=O , 

(d) n(tkjj)=k ~ ak>a~ -1 (where ct~ 

1 

Taking Sl=A1Tl=diag  (Ac~J)~=, diag(A~J-C~J)~=l the desired product is constructed for 

k = l .  Assume that  S t=AcT  t has been constructed for g = l , 2 , . . . , k < r .  We shall construct a 

product Sk+ 1 = Ak+lTk+ 1 such that (2.5) holds for k + 1. By induction, we obtain a 

product C = S r = A r T r = A B  such that (2.5) holds for k=r .  As ~(=a r, f l=T r this will prove the 

sufficiency of the conditions (2.1). 
T ~ . ,  k + l  k � 9  k + l  k 

We proceed as follows: Define J l :  = t ] t O ' j  --O'j = 1, n(t~j) =k},  d2: = tJ O'j --Or] = 1, 
k + l  k k n( t ) j )<k}  and J 3 : = { j  aj =aj,  n ( t ) j )=k} .  By 2.5(c) one has t i j=O for j e J 2 u J 3 ,  i # j .  

According to (2.1)(b) one has #J2-<#J3- Further, there exists a monotonically 

increasing injection r : J~  ~ J3 such that l r ( j )> j ,  j e J 2 ;  indeed, if J2={Jl , . . . , J r} ,  

Jl<J2<. . .<jr ,  then (2.1)(b) implies that # { j e J 3 ] j > j x } > y + l - x ,  x = l , 2 , . . . , y .  Observe 
k k 

that ~v is such, that c%(j)<_cri, j e J  2. 

Now construct the product S~+I=AkTI:+I by adding in the product Sk=AkT k each column 

with index r ( j )  to the column with index j (in Sk and Tk) and multiplying both sides 
v i n of the ensueing product on the right by diag (A)~=1, where Q = I ,  i e J l u r ( J e )  , Q = 0  

, rt k + l  
otherwise. Then T/r = (t~)~,y=l has the multiplicity sequence 7 , since 

k 
n(det(t~j)i,J,glU,r(j2) ) = n(det(tij)i,j~jlu:r(je)) = 

k k =F.{'rj lrj<k} + k#(J3\~(J2)), 

and n( t ) j )=k+l= 'r~ .+l  for j e J  1 u 7r(J2). Thus the final n - # J l - # J  2 partial  multiplicities 

have not increased at the transition of Tk to Ti+l, and the initial # J l + # d e  partial 

multiplicities have increased by 1. 

Next, perform some elementary column and row operations i n  the product S~+I=AkTi+I~ 

constructing an equivalent product Sk+,=A~+IT~+,: For j e J 2 ,  subtract A times t h e  jth 

column form the ~(j)th column in S~+I,T~+I, and interchange these columns. In the 
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k k 
. . . .  n ,, _Aaj+l, �9 resulting product S~+ 1 =AkTk+ 1 = (sxy)x,y= t one has S j j =  8~r(j),rc(j) =Aa'rO) and 

k 

�9 k . k + l  k + l  k k jeJ2" N o w  f o r  j e J  2 s'~,r(j)=A aJ, j e J  2. Observe that  aj+ l =aj  , a,r(j)=a~r(j) <_aj, 
k k . t h  

subtract in S~+ 1 and A k the 7r(j) th row times A(aJ-a'r(J) ) from the 3 row, and 
k + l  

multiply the jth row by (-1). The ensueing product is Sk+l=diag(A ai )~=I=A~+IT's 

Unfortunately,  the tr iangular structure of T;r (and Ak) is lost. However, the 

special structure of T k allows to restore it. 

Start with T~+I, using row operations (to be compensated by column operations in A~+ 1 

leaving Sk+ 1 unchanged), and additions of multiples of columns to columns with a 

higher index in Sk+ 1 and T~+I; the lat ter  type of elementary operations allows us to 

re t r ieve  Sk+ 1 by row operations in Sk+ 1 and Aj,+ 1. 
, ,  m n First construct a product Sk+ 1 = A~+IT~'+I, Tk+ 1 = ( txy)x ,y=l  lower triangular, 

, k + l  k + l  k + l .  (n(t]'l),n(t~'2),...,n(t'~n)) a reordering of (T 1 ,r 2 , . . . , r~  ) with n(t~: j )=k+l for 
,, ,, n ,, k j e J  1 u J2. Fix j e J  2. For Tk+l= (txy)x,y=l one has that tlr(j),rr(j )=A , t~r(j), i=O~ 

k ir (since tTr(j),i=O because of the structure of Tk, and t~(j),j was made 0 again 
k at the transition from T~r to T~+I). Let p j = n ( t j j ) < k .  Then t~,Tr(j)=A p3, ty j=-APJ +1 

, k and for certain j < i < rr(j) one might have bij:=ti,Tr(j ) = tij  # 0, namely, where 
k ~ T k" pj>n(tu)>_n(t i i  ) in This implies that  such i ~ J  1 u J3- If b i j ~ 0  for i ~ J  2 then 

t~ , j=-Abi j .  Now interchange the rows with indices j and 7r(j) for each JeJ2  (so 

t~,~(j)=bij is replaced by 0 if ieJ2,  as Ir(i)>zr(j)), and subtract ~k-pj times the new 

7r(j) th row (with entries -APJ +1, APJ on the places j ,  It(j), with zeros in between) 

from the n e w  jth row (with zero everywhere, except for A k in t h e  7r(j) th place, now 

made 0). The resulting matrix has A k+l in the ( j , j ) -pos i t i on ,  0 in the 

( j , i ) -pos i t i ons  for i > j  and some entries -Ak-PJt'j'~ in the ( j , i ) -pos i t ions ,  i<j ,  where 
k k k n(t~i ) >_ pj, as n(tii) > n(tji) > pj if tji ~ O, j > i. Possible remaining entries 

t'~,~r(j)=blj#O, j ed2 ,  i~tJ 1 u d 2 u J3 can be  removed by adding appropriate multiples of 

the i ttl column to the ~r(j) th column, starting with the lowest occurring i: Indeed, 

n(t'~) <_ n(b~j). If t':, . # 0 for some i < i' < ~r(j), then n(t~, ~) > n(t~, i,), and any 

contribution of a multiple of this entry to b.,. can be removed when dealing with the 

i ' - t h  row (this includes the possibility that  i ' e d  2 and some entry -A~-Pi't':, . is 
z~z 

present, as n( - ,kk-P~'t~, i) > Pi,) One thus obtains S~+x = A~+~T'~'+I and, indeed, 
k n(t~: j )=k+l  for  j e J ~  u d2, as required, whereas the multiplicity 7 j = p j < k  has been 

shifted to the rr( j)- location if j e J2 .  The fact  that  T~'+~ is lower tr iangular and that 

its diagonal is a reordering of its invariant factors implies that  t'~'j = 0 or 

n(t'~'j)>n(t'~'i) if j<i .  The remaining requirement in (2.5)(c) can be met by subtracting 

(in the order i = n , . . . , i = 2 )  multiples of the t h e  jth row, j < l ,  n(t~:j)>n(t"j'j) from the 
. t i t  
, row (again in decreasing order with respect to j) .  Calling the resulting matrix 
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Tk+l, the product Sk+ 1 =Ak+lTk+ 1 has been constructed. �9 

A schematic description of the proof  can be found in [10], 5.3. Observe that  because 

of (2.5)(d) the sets J1,J2,J3 are determined a priori by the given Young Tableau 

(2.1). The choice of  7r:J2-->J z is thus a special case of the Steps 1 and 2 in Algorithm 

3.4 in [1]. 

As an application of Theorem 2.1 we present a proof  of Theorem V.I.1 in [9], obtained 

there by a different argument. 
co 00 

THEOREM 2.4. Let cr fl=(fli)i=l be two multiplicity sequences with 
oo oo 0o 

i l l<2.  Then T=(Yi)i=leA(cc,fl) if and only if the sequence (6i)i=1=(7i-(~i)i=1 meets the 

following conditions: 

(i) 0<6i_<2 for all i; 

i = l  i = 1  

(iii) p: =#{i]6i=2}<m'=sup{il f l i=2 } (with sup r  

(iv) the set I={i[6i=1 } contains two disjoint subsets 11,[ 2 such that 

# I i = # I 2 = m ' - p ,  and there exists a bijection r:II-~I 2 such that 

c~r(i)<~x i for each i e I  I. 

PROOF. Sufficiency. Set J :  ={i[6i=2 ). If r 1 for some i e I ,  then i+ l~J ,  as 

yi+l<_Ti. Given sets I1,I 2 and the bijection 7- as in (iv), one can assume that  (xi=cq+ 1 

for i e I  1 implies that  i + 1 ~ I \ I  1. To see this, assume that  ff i=ffi+l  for some ieI1, 

i + l e I \ I  1. Apply the following algorithmic procedure: If (xi=Cq+l, i~I1, i+le I \ I i~  and 

i+1~I2, then replace i by i+1  in 11, leaving r(i) unchanged; if cq=(xi+,, ieI1, 

i+ l=r( i ' ) e I2 ,  then replace i by i+1  in 11, i+l=r( i ' )  by r( i ' )=i  in 12. Then CZr(i, ) 

remains unchanged. After this step ll,Iz,'r still have the properties as described in 

(iv); application of this procedure makes ~ { i [ i e l  1} strictly increase, so the 

algorithm must terminate. 

Now a~ a2=T; define a = a  1 by a / = c ~ j + l  for all j e J  u (1\11) , aj=c~j otherwise. Thus 

a j = y j - 1 ,  j e J  u 11, crj=yj otherwise. Observe that  ai>_ai+ 1 for each i: if ai<ai+l, then 

ai=cq=(xi+l<ai+l, whereas yi>_Ti+l, and thus (ri=yi-1 , that  is, ieI1, i + l e J  u (I\I1), a 

contradiction. It is clear, that Condition (2.1)(a) is met; (2.1)(b) holds~ as 
r 

E(y j -a j )=#(J .=  u 11) n {e , t :+ l , . . . ,} )  _< # ( ( J  u r(I1) n {g ,g+ l , . . . , } )  _< 

00  

<#((J  u I\I1) n {g ,g+l , . . . , } )  = ~e(aj-(xj)..= 

O~ O~ 

Set m =#{ilfli r 0} =max{i]fl i r 0}. If m=m', then I = 4 )  and j~_laj-c~j_ =j~_lyj-a j _  =m=m',  and 

(2.1)(c) holds, as f l l=/~m=2,  tim+l=0. If m>m' we have tim+l=0, t im=l ,  f lm, - f l~ ,+ l= l ,  and 
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co r 
(2.1)(c) holds, since m =  ~ f l i - m ' = # ( J  w 1)\11= s a j - c ~ j , m ' = # ( J  u Ix)= ~ 7 j - a j .  

i=1 j=l  1 j=l  
Necessity. In order that  3~:=a2eA((x, f l)  it is necessary that a = a  can be defined such 

that  (2.1) holds with a~ The validity of the conditions (i)~ (ii) of the theorem 

is then evident; if p>m',  then ~ ' f j - a j > m ' ~  ~ a i - ( ~ i > m '  , and firs,+1=2, contradicting 
j=l  i=1 

the definition of m', so (iii) holds. Finally, defining I i = { i l c q = a i < ~ f i }  one can use 

(2.1)(b) for defining an injective mapping v:I1 ->I\I1 such that r ( i )> i .  Since 

cQ=ai>ar( i )=(~r( i )+l  one thus has (~i>c%(i), i e I1 ,  and (iv) holds. �9 

REMARK 2.5. The sufficiency proof in [9] is easier, using direct sums of 

blocks 

0 O (A(Xi o)c~r(i)+2},i~i1 
C~=A~B~= [2 a~ "~cer(i) } (~ ;2) = [Ac~r(i)+l 

o~- 2 (with part ial  multiplicities cq + l ,  c%(i)+1), C j = A j B j = ( A  3)(A ), j e J ,  

Ck=AkBk=(A~ k e I \ ( I  1 u Is) , Ce=AeBt=(Aa~)(1),  ~ I  o J. This indicates that the 

construction of a product C=AB by means of the "intermediate" multiplicity sequences 
1 r-1 

a , . . . , a  from (2.1) may be a rather cumbersome approach; for example, we have been 

unable to find a proof based on (2.1) for the sufficiency part  of Theorem 3.1 below. 

The next result in this section was originally proved by L. Rodman and M. Schaps, 

[6], Theorem 7. An alternative proof, using the ( I , J ) - r u l e s ,  described in Example 

2.9.(ii) of [11], was given in [9], Theorem V.3.1 Here we present an outline of a 

proof based on Theorem 2.1. 

THEOREM 2.6. Let (~= ((xi)i=l, f l=(f l i ) i= l  be multiplicity sequences with 

C~t+l = /~m+l = O, 0~(,/~m :~: O) Ct 1 -- (:~ ~ 1, fll - tim -< 1. Then y = ("[i)7=1 e fit(Od, ~) if  and only i f  Ym+e+l = O 
and 

There exist index sets Io= {i l , . . . , i r}  c_ {1,...,~}, 

J o = { j l , . . . , j r )  c_ {1,...,m} such that # I o = # J o = r  , r>_O, and 

(2.6) integers O<_6x<_/~jx<Cqx+6x, l < x < r  , such that (Tdi=l  is the 

ordered representation of 

(*) {ail-[-(~l,...,O:ir+~r} U {~jl--~l,...,/~jr--(~r} U 
u {ai]i<_e , i~ Io}  u {fljlj<_m, J~Jo}  

The sufficiency of the conditions in this theorem is clear even for arbi t rary (x,/3 

with (~ > 0 = cq+ l,flm > 0 = ~m+ l : 

LEMMA 2.7. Let (x,fl be multiplicity sequences with c% Sin>0, (x~+l= /~m+l=O. If 

7=(7i)~=1 i8 a multiplicity sequence such that "fro+g+1=0 and condition (2.6) holds~ 

then T e A(a,/~). 
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PROOF. Construct  the product  C = A B  as a direct  sum of blocks of the  form 

10} 
C x = AxB x = = 

,'~flJx -6x /~flJx 

where C~ has the  par t ia l  multiplicities (o~ix+6x, ~jx-5~) 

1 blocks (Aai)(1), ir l_<e, resp. (1)(AZJ), jr  j<_m. �9 

[ A cq x o i 
A~Jx -~x A~jx j , 1 <_ x <_ r, 

as t~Jx- 5x <- ~ and of order  

Without  fu r the r  assumptions the converse  of Lemma 2.7 not  true:  

EXAMPLE 2.8. Let c~= (3,1,0, . . .  ), /3=(2 ,0 ,0 , . . . ) ,  T = ( 4 , 2 , 0 . . . ) .  Then TeA(c~,/~), 

according to Theorem 2.4 (cf. Remark 2.5), but  Condition (2.6) is not  met. �9 

PROOF 2.9 of the necessity part in Theorem 2.6. Set cq: = a ,  ill: = b ,  n=(+m.  It  

suffices to consider the finite sequences c~=(a i ) i= l ,  ~=(fli)i=l. Let TeA~(a , /3 ) .  There 

exist  O~=(r~ T such tha t  (2.1) holds. Define eij=~}+l-(7}, i=l ,2 , . . . ,b .  
n 

Then Qje{0 ,1} .  Because of (2.1)(b),(c) one has tha t  ~ Q j = m ,  1 < i _ < b - 1 ,  whereas 
j = l  

tz 

~ %j=m'  with l < m ' =  max{jl~j=b}<_m. 
j = l  
From the condit ion (2.1)(b) one has tha t  for  each l<_i<_b the following holds: 

if eix=O, d<z<_x<_n, then ei,x=O, i'>_i, x>_z, 

and using t ha t  a 1 b , . . . , ( i  are multiplicity sequences one has: 

(2.7) 

Using t ha t  

if Qx=O, x>d, then ~i,y=O for  all x<_y<_n, all i<_i'<_b. 

n 

j~=lcij=m, l < i < b - 1  one has from (2.1)(b) for  fixed z, fixed i < b - l :  

if C ix= l  , i<x<<_z<g then ~i,x=l~ l<x<z~ i<_i'<_b-1, 

and using t ha t  (i1 b-1 , . . . , a  are multiplicity sequences one has: 

(2.8) 
i - 1  

if g i x = l ,  (l x >_a, x<~., i<_b-1, then S i , y= l  for  all l < y < x ,  

for  all i<i'<b-1. 

The conclusion in (2.8) may be incorrect  if ~ r i - l = a - 1  (which means t ha t  x > ( ' =  
b-1 

max{j<([c~j=a} and ei,x=O , i'<_i-1). Defining h x = m i n { i h x = l }  for  ( ' < x < (  with a x = a  
b-1  

one has t ha t  h x <_ hx+ 1 if 6x+ 1 > a. 

Now we make the addi t ional  assumption tha t  % =c~e, t~l=tim; then the  l a t t e r  phenomenon 

cannot  occur, as ~ri-l>_a for  each x < g ,  and the conclusion of (2.8) holds for  i '=b as 

well. Then (2.8) implies t ha t  there  exist  kl<_k2<_... <_kb<-g, (<k~<_k~<... <_k;<_n such t ha t  
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Qj=I ,  l<j<ki ,  g<j<k~, Qj=O otherwise ,  i = 1 , 2 , . . . , b .  

Since ki+k~=m+t it is n o t  d i f f icu l t  t o  see  t h a t  fo r  l < j < m i n { g , m }  one  has  t h a t  

m a x { i l c i j  = 0} = max{i lQ,n+l_  j = 1} ="['n+l_j, and  hence  
b 

~ j  = ~ ' j  - -  { N j  = i ~=1 e i j  = ]) - -  m a x { i l Q j  = O) = b - 7n+x-j = t3j - Y n + x - j ,  

which  p r o v e s  the  des i r ed  resu l t  f o r  cq=r  ill=tim, t a k i n g  r=max{j[gj>o}. O b s e r v e  t h a t  

$1 >- 62 >---- >- 6r  > 0 in  th i s  case.  

Nex t  we cons ide r  t he  case  whe re  c q = ~ = a ,  b u t  f l l=b=fl, ,+ l. Set  y = a  b 1 ~= ~ n - (flj)j=l def ined  

b y  fl . . . .  ~,~=b-1, ~m+l=O. T h e n  ~=z~(c~, f l )  and  we can  use t he  p r e v i o u s  case  to  f ind  

~1>_~2_>... >_67>0 such  t h a t  Z[j=c~j+6~.=a+6j>b-1, 7 n §  w h e r e a s  ~(i=a, r<i<_g, 

2(i=b-1 ~ g < i < n - 7 .  Let I '={j[r  T h e n  I'c_{1,...,n-r) b e c a u s e  of  (2.7) and  wi th  

s = # { j e I ' l r < j < e } ,  t = # { j e I ' l ~ < j < n - r }  one  ha s  s + t < n - r - g  b e c a u s e  of  (2 .1)(b) ,  as r = 0 

fo r  r < j < g  a n d  fo r  j > n - r .  For  l_<j<_r,  we def ine  6 / = 6 j + 1 ,  i e I ,  6j=6j otherwise .  Obse rve  

t h a t  b - 1 - 6 i = b - ( 6 i + l ) = b - 6  i in t he  f i r s t  case.  We se t  r : = r + s  a n d  fo r  r<i<r  we h a v e  

Yi = a + 1 = c~ i + 1. We se t  6 i = 1 in th is  even t .  Since s + t < n - r -  g we can  wr i te  * ( n + l - j  = b - 1 = b - ~j, 

r<j<_r. Final ly ,  we h a v e  7j=b f o r  g<j<_g+t. O b s e r v e  t h a t  # { j e I ' l l < j < r } + t + s = m ' .  

In T h e o r e m  2.6 we can  a lways  i n t e r c h a n g e  t he  ro le  of  c~ and  /3, s e t t i ng  rlx=aix+6 x -  flJx 

as O<_~?~<_~ix<_~jx+~?x, and  thus  t he  des i red  r e su l t  a lso  ho lds  f o r  c~a=a=c~,+l , fll=fl,n=b. 

Final ly ,  we cons ide r  t he  case  whe re  ~1-c~=131-$,,=1. a g a i n ,  we se t  ~ "=ab-1, fl~ = ( f l j ) j = l , ~  n 

/31 . . . .  / 3 , n = b - 1 ,  $m+1=0.  For  -~=A(cx,/3) t h e r e  exis t  a se t  I 0 = { i l , . . . , i r } c _  {1 , . . . , e ) ,  

#_70=r ,  a n d  6 1 , - . . , ~  such t h a t  0 < 6 x _ < b - l _ < a i x + 6 x  a n d  -~ is a r e o r d e r i n g  of  

{cql+~l,b-l-61,...,OZir+67, b - l - 6 r }  W { ~ i [ i ~ ] o }  u {b-l l l<_j<_m-r}.  We can  assume t h a t  

~ > g ~ _ > . . . > ~ 7 > 0  and  t h a t  ~j=ai.+'gj, l<_j<_r. T h e n  ~ , . l _ j = b - l - 6 j .  a g a i n ,  let  
~ 3 

I ' = { j [ e b j = l  }. I f  r fo r  e ach  r<j<_g, t h e n  we app ly  the  same a r g u m e n t  as  in t he  case  

whe re  ~ l = ~ e .  Othe rwise  one  mus t  h a v e  eb_l,j=l f o r  some r < j < g  as well, b ecause  of  

(2.1)(b).  So le t  eb_l,j=l f o r  7<r'+l<_j<r'+d, r  f o r  "~<j<_r', r'+d<j<_L Eviden t ly  

~j>a fo r  r<j<<_r'+d; on t he  o t h e r  hand ,  ~ j = a / , , j ' e { 1 , . . . , e } \ 7 0  fo r  t he se  j ,  and  hence  

y j=a,  r<j<r '+d.  Fur the r ,  r f o r  j > n - r  and  hence  r  l<j<_r-d,  eb_l,j=O, 

r+l-d<<_j<_'r as e x p l a i n e d  a f t e r  (2.8). Accord ing  to  (2.8) we mus t  h a v e  ~[j=a fo r  

r-d<j<_r '  +d, as "~r_a+a>a would c o n t r a d i c t  r So #{ j e I ' ] r -d< j<_n- r }<_n- r+d ,  

w h e r e a s  #{ jeI ' ] r '+d<j<_n-r}<_n-r .  

Thus,  if # { j e I ' ] r ' - d < j < n - r } > n - r ,  t h e n  ebj=l f o r  r - d < j < 7 ,  as "T'7=a+ebr>>_yj=a+ebj, 

r < j <_r' +d. Hence #{ j~ I ' ] r  < j <_g} +#{ je l ' ]g  < j <_n- r} < n -  r in Ml events. Now we set 6j =6+ebj , 

1 _< j _< r ,  o b s e r v i n g  t h a t  "fn+~-j = b - 1 - 6j  = b - (6 j  + 1 ) ; wi th  r = r + # { j  �9 I ' l  r < j _< g } we se t  6 x = 1, 

r < x < r ,  a n d  wr i t ing  {i~+l,.. . , ir}={jeI'lr<j<_~ } t h e r e  ex is t s  f o r  e ach  r<x<_r a n  

i x e { 1 , . . . , g } \ I0  such  t h a t  Yi;, = a i  x + 1 = aix + gx, whe reas  Yn+~-x = b -  1 = b -  6 x. Set t ing  

Io=Io ~ {iT+?- . . , i r}  the  p r o o f  is comple te .  �9 
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Next we show tha t  the necessary conditions in the Theorems 2.4 and 2.6 can 

be derived from the inequalities described by Rul, thus proving tha t  R(c~,~)=A(c%~) in 

each case. 

PROPOSITION 2.10. Let c~,~ be given multiplicity sequences and assume that 

7eR(~,fl) 

(a) (iv), of Theorem I f  ~ 3 = 0 ,  then the conditions (i), (ii), (iii), 
oo oo  

2.4 are met for the sequence (6i)i=l=(Ti-cci)i=l.  

(b) I f  (x t+ l=~rn+l=0  and (~l-(Xe, ~ 1 - f l , , < 1 ,  then ye+m+l=0 and the 

condition (2.6) of Theorem 2.6 is met. 

PROOF. In bo th  cases the proof  consist in using the ident i ty  

oo  ~, ~l.~r,< - ml(O~si § flti ) Ti = (~i + fli) and inequalit ies _~ for  cer ta in  rlls ] t e Rul. We 
i =1 i =1 "= i -  
specify the  index t r iplets  which are  used, and give a reference,  if necessary,  in 

order  to  ver i fy  t h a t  they do indeed genera te  rules. 

(a) Condition (i) follows from Oq<_"fi<_O'~i+fll<_ai§ and (ii) is the identi ty 

~ . (y i - c~ i -$ i )=O;  if condit ion (iii) is not  met~ i.e., if # J - - p > m '  for  the set 
i=1 

P 
J = { i l 6 i = 2 } ,  then ~ y i =  F. (x i+2p> ~ cq+ ~ fli > _ ~ Ti, a cont radic t ion  (rllslt , with 

i~J iEJ iEJ i=1 i~J 
s = r = J , t  = {1,2, . . . ,p}).  In order  to  derive (iv) set m = #{il/~i r 0}. Then 

m+m'= ~ fli= ~, 6 i = 2 p + # I ,  where I = { i l 6 i =  1}. Thus s = # I >  2(m' -p) .  Set s ' = s - ( m ' - p ) ,  and 
i=l i=1 

write I = {il~...,is} , ij <ij . l .  Define 11= {il,...,i,~,_p}, 12 = {is,+l,...,is} , r:I1-->I 2 by 

7(j) = is,+j. Then (~(i) < (xi, i e  I1: Assume tha t  (~ik = c%(ik ) = a for  some i k e [ 1. Set 

i 0 = min{i e I](x i = a}, J0 = max{i e I I(x i = a }. Then Jo - io >- r(ik) - i k = i s,+k - ik >_ s', and {i[i o < i < Jo } 

_c I.  So for  each j e J  one has j < i  o or J>Jo. Thus, with J ' = { j e J I J < J o } ,  J " = J \ J '  one has 

P 
(2.9) ~ Tj+TJo + ~ y j  <( ~ c~j)+cqo+ ~ a j§  ~,flj)Tfljo+P+l_io 

j E J '  j e J "  j~J '  j ~ J "  j = l  

( r = J '  u {J0} u J " , s = J '  u {i0} u J" , t={1 , . . . , p }  u { j o + p + l - i o } ;  then rllslt is weakly 

zero- reducib le :  Apply [11], Proposi t ion 1.5(i),(ii) in order  to achieve J ' = r  then 

(iii) in order  to  ob ta in  J"=r  p=O). Now j o - i o + P + l > _ s ' + p + l = m + l ,  so fljo+p+l_io=O , and 

(2.9) implies tha t  cqo>_yjo=a+l=cqo+l.  Contradict ion,  so c~r(i)<c% i e [  1. 

(b) Clearly, ~fe+m+l<cq+l+flm+l=O. Set n = g + m ,  and assume tha t  g_>m for definiteness. As 

in the  p roof  of Theorem 2.6 we write a=cq~ b=bl ,  U=max{i[c~i=a}, m'=max{il /~i=b}; set 

a ' = a - 1 ,  b ' = b - 1 .  For l < j < ~ - m  we have  a'<e~m+j<_Tra+j<_O~lTflm+j=a; set  

jo=sup{l<_j<_t-mly,~+j=a} (with 0=sup r Using 
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n-i n 

E 7j  <-- ~,, (O~j-{-flj)--O~--flm <_ ~ 7 i -a ' -b ' ,  l<i<_m 
j~i, n+l-i j= l  j = l  

(rl]slt a rule of coorder 2, cf. [11], Example 2.5.(ii)) and the rule of order 

generated by r = ( i , n + l - i ) ,  s = ( 1 , ~ + 1 ) ,  t = ( 1 , m + l ) ,  see [11], Proposition 2.6, one has 

a'+b' <_ Yi+Yn+l-i <- oh+fll+~176 b, l<i<m. 

Define k=max{i<_rnITi>a }. As ~ / g + j < / ~ l = b  o n e  has b'<_Tn+l_i<_b for k+l<_i<_m. Set 

j l=sup{ l<j<m-klye+j=b}  (observe that jx=O if m=k and that  jo=O if re>k). Define the 

(disjoint} index sets Ix,I2,I 3 c {1,2,.. . ,k} by 

Ii = {l <_i<k]Ti+ Tn+l_i=a+b} ; I2= {l <_i<_ ktyi+ yn+l_i=a+b'=a'+b}; 

Ia={l  <_i<_kIYi+ Yn+l_i=a' +b'}, 

and set x = # I i ,  y=#I2,  z = # I  3. Then x<min{C-jo ,m' - j l  }. Indeed, assume that x > C - j 0 ;  

application of the so-cMled ( I , J )  - rule (see [11], Example 2.9 with 

r=I1 w {m+l,.. . ,m+jo } o n + l - I 1 ,  s={1, . . . ,x ,x+l , . . . ,x+jo } o { e + l , . . . , e + x } ,  

t = { 1 , . . . , x }  u {m+l,. . . ,m+x+jo } (where {m+l,. . . ,m+jo}= r if jo=O) then yields 

(x+jo)a+xb-= E 7j <- ~ ~j+~ t t3j=Ca+(x+Jo-C)a'+ ~ fli+O 
r i=I 

<_ (x + jo)a- (x + jo -~') + xb, 

a contradiction. The other inequality follows in the same way, with 

r=I1 u {~+l , . . . , t~+j l  } u n+l - Ia ,  s ={1 , . . . , x}  u {*+l,. . . , t+x+j~}, t={1 , . . . , x ,  

x + l , . . . , j l }  u {m+l,. . . ,m+x}. (Here { g + l , . . . , ~ + j x } =  r if jx=O), yielding the 

contradiction xa+(x+j l )b<xa+(x+j l )b- (x+j l -rn '  ) for x>ra'-j l .  

Observe that  x + y + z = k ;  this yields the identity 

ka'+kb'+2x+y=x(a+b)+y(a+b-1)+z(a'+b') = ~ ( " f i + ' ~ n + l _ i ) =  

m n - k  

= ~cq+ Z f l i -  2 7i=(ga'+C+mb'+ra')-((g-m)a'+jo+(ra-k)(a'+F)+ja) = 
i = X  i = I  / = k + l  

= ka'+C-jo+kb'+rn'-jl .  

Hence x+y>_max{e'-jo,m'-jl}, and it is possible to decompose I2=I  ~ u I~, I~ n I~=r 

with # I ~ = C - j a - x .  Then # I ' ~ = y - ( C - j o - x  ) = m ' - j l - x .  Further, z+#I~=k- (g ' - jo ) ,  

z+#I~=k- (m ' - j x ) .  We can interpret this result as: ~'i+~[n+l_i=a+b, ielx,  

yi+Tn+l_i=a+b', i~I~, 7i+yn+a_i=a'+b, ieI~, 7i+~n+x_i= a'+b', i e I  3. Setting 6 i=y i -a  , 

i e I  1 w I~, 6 i=yi-a ' ,  i e I  a u I~ and using bijections from {1 , . . .C- j0}  onto I x u I~, 

from { C + l , . . . , k + j 0  } onto 13 u I~ one forms the set I 0 as in (2.6), and J0 is defined 

analogously. This completes the proof. �9 
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COROLLARY 2.11. Let ) 'eRn(~,f l) .  Then yeAn(c~,/3) i f  one of the following 

conditions is met: (i) c~1-~,_<2; (ii) /31-/3n<_2; (iii) 71-7 ,_<2;  (iv) c q - a e < l ,  c~e+l=c~,, 

/31-/3m<_1, /3m+1=/3n; ( v ) 7 1 - 7 k < 1 ;  7/r or as+l=~n_<l ,  ( v i ) 7 2 - 7 / r  Tk+l-----Tn, 

f l l  =/3 t ,  /3t+1 =/3n  <: 1, (vii) Cq = aS, C~8+ I -- C~ n < 1, /31 = f i t ,  f l t+l =/3n  5 1, (viii) 71 = 7r, 7 r+ / -  7n < 1, 

eq-~d_<l  , ~ t + l = ~ n ;  ( ix )71= 'Yr ,  7r+1-Tn_<1, /31-/3m<_1, /3m+l=fln . 

This follows from Proposition 1.1 and Proposition 1.3. Only the condition (vii) leads 

to the description of A(c~,/3) for  certain ~,/3. 

THEOREM 2.12. Let c~,/3 be multiplicity sequences with c h = c ~ s > l  , / 31= /3 t=b>l ,  

(:g8+l = (~e =/3t+l  =/3m ----- 1, c~+1 =/3m+1 = 0 ( t a k i n g  1 <_ s < t for definiteness). Then 7 e A(c~,/3) i f  and 
, ~+ rn 

only i f  7~+m+~ = 0 and (Ti)i=1 is the ordered representation of same set 

(2.10) 

{a+6i+ei, b-6i+thll<_i<_x } w {a+Qlx+l<_i<_s} u 

u {b+~i]x+l<i<_t}  u {e,+i+~t+ill<_i<_n-(s+t)}, 

where x <_ s~ 6i,...,6s, ~i~.. . ,~]n_s, Ci~.. . ,Cn_t:>O, gi~?~i E{O,1}~ 

?2-8 ~-f:  
~i = g - s ,  F. ei = m - t ,  b-a+Tl i -e i<_6iNb-r  i. 

i = I  i = i  

This result can be derived from Theorem 2.6, by applying the description provided by 

(2.6) to (a-c~)= (cq)/=a,~ e+m (b_/3)=(/3i)i=x,~ ~+m and selecting 7=(7i)i=1,~ ~ 00 such that  y~+m+l=0. 

Then 7=(a+b-Te+m+l_i ) i=  1 has the form described by (2.10). 

3. THE CASE /33 = 0. 

If c%/3, T are multiplicity sequences, and cr denote their duals (or 

conjugates), defined according to (2.4), then known results suggest that 7 e A ( ~ , f l )  if 

and only of  y*eA(a*~/3*) (see, e.g., [15], where a conjecture of E. Marques de Sa is 

mentioned), but  no formal proof  seems to have been published. However, combining the 

Theorems III and II from [5] an indirect proof  might be available: If A,B,C are Young 

tableaux for cq/3, 7 (that is, with columns lengths c~,/3,7) then Theorem III states that 

the number of ways in which C can, according to specific rules, be compounded from A 

and B is the coefficient c 7 of the Schur function {7*} in the product {r of the 

Schur functions associated with ~*,/3". In particular, c 7 r  iff TeA(c~,/3). But Theorem 

II states a necessary and sufficient condition for c 7 r  in terms of a different set 

of rules for constructing C from A and B. This la t ter  set is completely symmetric 

with respect to rows and columns in the tableaux (and with respect to A and B), thus 

proving that  c 7 r  iff c . r . r  where c7. is the coefficient of {7} in the product 

{~}{fl} (it also shows that A(c%fl)=A(/3,cQ but that is not remarkable in the present 
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context). Unfortunately,  the proof of Theorem II in [5] is completely unrelated to 

the present setting, and Theorem III is verified only for the case where /3a=0 , that 

is, where /31<_2 (a complete proof of Theorem III of [5] is presented by I.G. Macdonald 

in his book Symmetric Functions and Hall Polynomials, Oxford, 1979, where A. Lascoux 

and M.P. Schfitzenberger and, independently, G.P. Thomas, are credited for the first 

full proof; there is no mention of Theorem II of [5]). 

Using this relationship between A(cr and A((x*,/3*) it is not  difficult to find a 

description for A((x,/3) if /3~_<2, that is, if /3a=0: just apply Theorem 2.4 to A((x*,/3*). 

Other examples of the analogy between A(cq/3) and A(c~*,/3*) can be found in [9], 

Appendix. 
00 00 

THEOREM 3.1. Let ~=(r /3=(/3i)i= i be multiplicity sequences with /3a=0. 

Then y=(Ti )~=leA(~ , f l )=R(~ , f l )  i f  and only i f  the following conditions are met: 

( i )  yi<oQ+/31,  Yi+1<_oQ+/32, i = 1 , 2 , . . . , ;  

(ii) Ti+2<cq<_Ti, i =  1,2, . . . ;  

(iii) the sequences (ei)~=l, (~7i)~=1 defined by el=O , ei=max{O,yi-Cq_l}, 

i> 2~ ~i=Yi-(oQ+ei+ei+l), i>_1 meet the following conditions: 

(a) p : =  ~ e  i _< /32; (b) ~i -< /3i-P,  i=1 ,2 , . . .  
i=l 

The proof is, with minor alterations, taken from [9], Section V.2. In the necessity 

part  we show that  yeR(cqf l ) ,  /3a=0 implies (i), (ii), (iii); in the sufficiency part 

yeA(cq/3)  is shown by constructing a product C=AB with the desired partial  

multiplicity sequences. We have not been able to describe the Young tableau which 

would allow the application of Theorem 2.1. 

PROOF 3.2 of the necessity of the conditions (i), (ii), (iii) in Theorem 

3.1. Let yeR(o~,fl) and fla=O. The necessity part  of the conditions (i), (ii) is clear, 

as they follow from well-known standard inequalities. In order to prove (iii)(a) let 

I={i>_2]Ti-c~i_a>_O}. The index triplet r[]s]t with r = I , s = I - 1 ,  t = { 2 , . . . , # I + l }  generates a 

standard rule, so ~yi<_ Y, cq_i+fl2. To show the necessity of (iii)(b) we assume that 
i e I  i ~ I  

rlk>/3i+ p for some k. As yk=cek+rlk+ek+ek+l, this implies Tk>c%+f l l - ( (  ~ Q)--(ek+ek+l) ). 
i = 2  

Let J = I k { k , k + l } ,  I as above, and set r = J  to {k}, s = ( J - 1 )  u {k}, t i = l  , ti+l=i+2 , 

l < i < # J .  Then r[ls[teRul,  as it is strongly zero-reducible in the sense of [11], 

Theorem 2.7 (remove k from r,s, 1 from t according to Theorem 2.7.(i); the reduced 

triplet generates an elementary standard rule). Thus 

Yk4. - ~ Yi<-~k"~-fll-]- ~, ( ~ j _ l = ( ~ k ~ - f l l ' ~  - ~, (yj-ei) 
j ~ J  j E J  j e J  

a contradiction. �9 
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PROOF 3.3 of the sufficiency of the conditions (i), (ii), (iii) in Theorem 

3.1. Given multiplicity sequences y,cc,fl such that  f13=O we construct a product C=AB, 

y, resp. cr resp. fl the sequence of partial  multiplicities of C, resp. A, resp. B. 

Let n = s u p { i l c q # 0 } .  Then Yn+3=O, and we can carry out the construction in 
n + l  

(n+2)  x ( n + 2 ) - m a t r i x  functions. Let (Yi)i=l be a multiplicity sequence with 

n + l  n + l  k 
y}>cq>y;+l, ~ (y~-~i)=/32.  Set Xn+l=Yn+l, Xk= ~,, (?'i--(%i)" Let row(all)i=1 denote a row 

i = 1  . k i = k  k 

(dld2...d~:) in a matrix, and dmg(fi) i= 1 the k x k -  matr ix (6qf i ) i j=v It is not 

difficult to see that  the matrix function E~+lel3~+l, 

- d i a  O~n+l-i 0 
i = 1  

(3.1) En+ 1 = " . . . . . . . . . . . . . . . . . .  
row (AXn+2-~]" A32 

\ ] i = l  

f ,~n+l is equivalent to ul~ 5A'~[x~fn+2-i~n+l[,, ] i=1. Here we shall prove that  one can choose ['(/) i=1 in 

such a way, that  for appropriate cl,...,cn+ 1 with n (q )>f l2  the matrix 

(3.2) C = 

- d i a  C~n+l-i  " 0 
.=  z 1 

] i = l  

0 

0 = 

En+i 

row (c,+2-i) ,+1 2(31 
i= l  

is equivMent to 

[diaglAYn+2-il : 0 
I k Ji=i : 

(3.3) C =  ] row[AY"+3-i] T M  A f t ' '  

[ k ] ~=I 

n + 2  
where Yn+2=Tn+2, yk=z~k(y i - y~  ) . . =  As C is equivalent to dia~tAYn+3-i~+2~t 1 "=1, this would 

complete the proof as 

- d i a g  A ~n§ " 0 0 
i = l  

. . . . . . . . . . . . . .  . . . .  ?0j 
i =1 A~i 

t , , n + l  
roWlCn+3_i~, , c' 1 

i = 2  
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fq 
where c ' = A - ~ ' z q  is hotomorphic  in 0, as n(q)>_fl2. 

, n + l  
Now we cons t ruc t  the  sequence ( ~ ' i ) i = 1  and the funct ions q , . . . , en+l .  

Let H , = { ( i , j ) l l < j < r h }  if r h ~ 0 , H i =  r if r h = 0  , and set 

n + l  

H = U H i .  
i = 1  

Then # H = / 3 x + / 3 z - 2  p. Because of condit ion (3)(ii) the re  exist  subsets KI:K z of H with 

# K l = # K z = / 3 2 - p ,  K1 n K2= r and a bi ject ion r : K I + K  2 such t ha t  j < i  if ( j , y ) = r ( i , x ) ~ K  2. We 

define 

r]~ = #Hi  n K2, r h = r h - rl~. 

Then ~i > _ #Hi  n K1, r/n+, = 0, and for  each k one has 

r t + l  n 
(3.4) s rh - E r/}_>O. 

i=  k +1 i =  k 

Now define -f~ = (~i + ~/i + Q+I -< cq + r h + ei+i + Q = Ti. Then T~ >_ (~i + ei+~ >- Yi+ ~; fur ther ,  

(3.5) 
( X i - - ' f i + l  -- ~ ' i  "{- Yi+l = O~i - (~i+1 - ~ i + l  - e l+2 - c~i -~ 1~ - e i +  1 q- (~i+1 -I- 

N 
+ el+2 + ~i+1 + ei+l = rh+l - ~i+1 - rli = rIi+l - r]~. 

n + l  n n + l  
Clearly, ~,-(~= ~ c q +  Er l}+ F, ei+l= ~ i + / 3 2 - P + p =  ~.cq+/32. Put  x (~  as defined 

i = 1  i~-0b i = 1  i = 1  i = l  i = 1  
above;  then  x I =fla- Consider the mat r ix  E~+ 1 defined in (3.1). In te rchange  in En+ 1 

the  f i rs t  and  las t  row, and then make the  f i rs t  row equM to (A 7n+1 0.. .0) by 

sub t rac t ing  multiples of the f irst  column; f inal ly make the  f i rs t  en t ry  of the last 

row zero by  sub t rac t ing  a multiple of the f irst  row. Then E~+ 1 is replaced by the 

equivalent  mat r ix  funct ion 

F =  ($"(~+a) ~ En 

where the  n x n mat r ix  funct ion E n is of the  same type  as En+l, but  with 

~ .  .--Og n i . n - 1  ' . - a l a g ( z  - h = l  ins tead of -diag(AC~n+>i)~= 1 and with row(AXn+>')~=a instead of 

�9 . X n +  2 i . n + l  ~ ( 1 )  , (0 )  ( 0 )  , n - 1  , 
rowta  - ) i = , ;  h e r e  * k  = X k = X k - X n + l - O ~ n = T n +  ~ ( y i - ~ i ) .  Repeating this procedure  i n  

i = k  

En, one a r r ives  in n steps a t  the  equivalent  mat r ix  funct ion t.~r Performing 

the  reduct ion of  E~+ 1 in C, defined by  (3.2), one obta ins  a f t e r  the  f i rs t  step the  

mat r ix  
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C' = 

F 

r , ~ n + l  
r o w  tCn+2_i) i=1 

where c~+ 1 = Cn+l, Ci = C 4+cn+l')~ c~n+Xi-'~n+l. Clearly, in order to obtain the matrix 

function C, defined in (3.3), after n steps, we must take cn+l=ffn+2=)( Y'~+2, and c~ 

must be f in .  To achieve this, we define 

(k+l, (k) (k) ( k )  ) 
X i = a n _ k + X  4 --Xn+l_k=O~n_k + X~ - - ~ r n + l _  k = 

n-k-1 
=rn-k+ ~ ( T ) - ~ j ) ,  ( i = l , 2 , . . . , n - k )  

j--1 

(0)  (1) n + l - j - -  In+l-j" F o r  (note that xi ,xi have already been defined). Obviously, x (j)  - ~ '  

k = O , 1 , . . . , n - 1  we define 

k x( i)  , 
Cn_k=AYn-k+l+ ~ A(Yn+2-1+ n - k - Y n + l - i )  

4=0 

With this definition the transit ion from (3.2) to (a.a) is guaranteed, if one 

performs in C the transformations which replace En+ 1 by diag(kYn+e-i)n+l 1. So it 

suffices to prove that  /52<n(cl). To this end we show that fie is not  greater than the 

zero order of any of the summands in 

n -  i , �9 x ( i )  , , 
c1=)u2+ y. AtY,+2-i+ 1 - 7 , + > d .  

i =D 

( n + 2 - j )  , Set t j = y j + x  I - - r j - l "  Then, with (3.4) and (3.5) one has 

n + 2  j - 2  n + l  n + 2  

b = .E. ( r~-r~)+ E ( ' f~ -~d=~2  - E ( ~ - ~ ) +  E ( r ~ - r ~ ) =  
~ = 3  4 = 1  i=j -1 i= j  

and 

a + l  n + l  

i=j-1  i=j-1 

n+2 n+l( ) n+l 

This completes the proof. �9 

If one works within the setting of multiplicity sequences (and matrices) of a fixed 

order n, then Theorem 3.1 can be rephrased to provide a description of 
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zln(c~,fl)=Rn(C~,/~ ) when fi3=~n. Using the Propositions 1.1 and 1.3 one has 

PROPOSITION 3.4. Let r be multiplicity sequences of order n, 

yeRn(a,l~ ). Then ~f eZ~((~,r if one of the following conditions is met: 

(i) c~a=c%; (ii) fla=fln; (iii) 3"s='fn; (iv) cq=c%_2; (v) /3a=/3n_2; (vi) ya=yn_2. 

and let 

If  f l=(fl i)~=l is such that  b=fll=fln_2, and c~=((xi)~= 1 is given, . then, using the 

conditions of  Theorem 3.1 for  cq+b-~ '~Z~(cq- (x ,b - f l )  one obtains 

THEOREM 3.5. Let C ~ = ( ( Y i ) i = I ,  ~ = ( f l i ) i = l  be multiplicity sequences of order n 

with b=fll=fln_ ~. Then T=(yi)~=~eA,(c~,fl)=R~((~,fl) i f  and only if  thefollowing conditions 

a t e  met :  

( i )  ~'j>--~j+fln, Tj>~O~j+l+fln-1, j=l,2,.. . ,n 
(ii) Tj<_ccj+b<_Tj_2, j=3 , . . . , n  

, , n + l  , n 
(iii) the sequences tej)j=,,  (rlflj=l, defined by e ; = e ~ + l = 0 ,  e )=max{0,e~j+l+b-Tj} ,  

2 < j < n ,  f i j = c ~ j + b - y j - e j - e j + l ,  l < j _ < n  meet the followin 9 conditions: 

(a) p= Ee) <b-fin_l; (b ) r f j<_b- t3n-p .  

Since the restriction "b=fll=fln_2" explicitly contains the order n of the multiplicity 

sequences involved in this theorem, it cannot be extended to A(c~,fl). 

4. THE CASE A4(c~,fl ). 

In this section we shall prove that  for given multiplicity sequences 
4 4 

cL=(c~i)i=l, fi=(fli)~=l one has z14(c~,fl)=R4((x,fl), i.e., T=(yi)i=leA4(c~,fl) if and only 

if ~47i= F.4(cxi+fli) and ~ y i<  F. (~i+~ fli for  all index triplets rllslteRul*(4 ). The 
i = l  i = l  r 8 t 

equivalent result has already been obtained for order n_<3 (see [8]) and Corollary 

2.11 and Proposition 3.2 cover  many other  cases: evidently, the desired result only 

needs to be proved under the additional assumptions 

-- ~ 4  = ~ 4  = 0 < CX3 ,~3 , " f4  

- r ~1>/~,  YI>V2, V3>V4 

- no two of the following conditions are  met simultaneously: 

(i) (~i-c~3_<1, (ii) ~1-~3_<1, (iii) 7 z - 7 4 < 1 ,  

- no two of the following conditions are  met simultaneously: 

(i)' (x2<l , (ii)' f12_<l, (iii)' 7 , -y3_<1 

- cq>2 ,  fl1>2, y l>Y4+2 .  

The remaining cases for yeR4(c~,fl ) will be dealt  with by means of  a reduction 

technique which might work for arbi t rary orders n as welh If yeR~(cx,fl), and 

~, Yi F. ~xi+~, fli for some (minimal) index triplet rlls * l < m < n -  = IteRulm(n), _ _ 1 then one can 
?" 8 t 
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try to "split" the problem, by considering {=(rr,)7=l, a=%)7=, a=((t)7=l_ nd 
T\~,  ~ \ g ,  3\/~. To this end one must answer the question whether "(�9 

r\~�9 5\a}. if  all inequalities generated by rl ls l teRul~(n) ,  1 < r e < n - 1  are 

strict for T�9 (that is, ~ T i < ~  r fli for each r l l s l t �9  l_<m<_n-t ) ,  then 
r 8 g 

one can replace 7 by r ' ,  /3 by /3' (or ~ by cx')  such that  "(eRn(e~,/3'), 7i<_yi, 
n n 

/3~_</3i, Y.T~< ~Yi ,  and try to prove that 7'eAn(C~,13' ) implies that reAn(C~,/3). In view 
i = 1  i = 1  

of the additional assumptions /31>/32, T~>Y2 in the case n = 4  a good candidate for this 

type of reduction is T{=T~- l~  /3i=/31-1, T}=TI, /3}=3i, i>2.  In that case y 'eA(~, /3 ' )  

would imply yeA(c~,fl): 

LEMMA 4.I. Let T,cqfl be multiplicity sequences of order n such that 

r~&(~,3) (resp. r~e~(~,Zt). Define ~,~ by ~1=r,+1, 31=~1+1, {~=r~, ~=~,  2_<i_<n. 

PROOF. Since there are no triplets rHs[teRul(n ) with r1=1,  t1>1, the 

statement is evidently true with respect to R n. So we nssume that T � 9  and that 
0 1 r (~=cr , a , . . . , a  =T,  r=f l l  be multiplicity sequences such that the conditions (2.1) of 

^ r r + l  r 
Theorem 2.1 are met for c~,fl,7. Define a~+l=T,  i.e, a~+l-a~=O, i>_2, ~t - a 1 = 1 .  Then 

0 1 r r + l  the sequence ~ ,o ,... ,a ,a also meets the conditions (2.1)(a), (b), as 

~. r + l  r (O'j --O'j)=0, 6>2, j=l({Yj~" r+l_aj)~,= 1_< ~ (o'j-~yjr r-l,) (since r=31) ,  and condition (2.1)(c) 
j = 8  j =1  

holds for /5, as #{ l< i<r ]_  ~ ' ( a j i + l - a j j i ' = t ? ' = 6 1 t + # { l < i < r - l [ _  _ ~(aji+l_~rj)i =tb" Thus 
j = 1  j = 1  

~e &(~,/3). = 

The applicability of the "splitting" principle relies on the verification of the 

following 

CONJECTURE4.2. I f  yeR,~(c~,3 ) and r[]s]teRul,n(n), l<_m<_n-1 are such that 
rn m rn 

Y" Tr, = ~' (~ then YreR,n(c%,flt), TrceRn_m(C~sc,fltc), where y r =  (Yri)i=l, 
i = !  i ~ r ~ l  i i m 

- ~ \ % ,  5to  = 5 \ 5 , .  (x, = (Otsi) i=1, fit = (flti) i=1, and Tr ~ = Y\Yr, czsc - 

If this conjecture can be verified for a fixed index triplet rl[sltERulr~(n), for each 

Y �9 R~(c~,fl), then we say that rl[s [t admits splitting. That this "splitting property" 

needs only to be considered for minimal index triplets in Rul follows from the 

observation. 

LEMMA 4.3 I f  rHslt, r'[[s'[t'eRulm(n), r l ls l ter ' l ls '] t '  and TeRn(a,/3) is such 
m ~2 m m 

thati~_tTr i = i~= (CCs +3ti) , theni~=/fr; = i~=l(e~s~+/3t~ ) as well. 
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m m m m 

Indeed, i= l  ~ "Yri-i=l < ~ Tri, <- i ~=l(OtS~-[-f ti ) <- i=l ~ (C%oi +Bitoi) if r[[s[t>_r'ils'Tt'eRulm. 

Next we describe a class of index triplets which admit splitting, and we extend this 

class by proving that  the splitting proper ty  is compatible with the symmetry 

properties of [11], Proposition 1.1. 

LEMMA 4.4. Let ri=si, t i=i , i=l ,2 , . . . ,m for r][s[teRul*(n). Then r[[s]t admits 

splitting. 

PROOF. (i) If  x[]y[zeRuldm), then we define x'[]y']z' by x ~ = r  , ' xi Yi = Sy i, 
z,'. ---- tzi ---- ~z,, i=l,2, . . . ,m.  Then x ' ] ly ' [z ' eRuldn) :  Indeed, since rj=s),  t j=j ,  one can 

apply Theorem 3.8.(JJ) in [9] in order to reduce the verif icat ion to the case where 

r=s=t={1 , . . . ,m}  and hence x '=x,  y ' = y ,  z'=z.  

(ii) If  xl]y]zeRuldn-m), then we define x'[[y'lz' as follows: x)=ri_ j if 

x j+( i - j -1 )<r i_ j<x j+l+( i - j )  , x ~ = i - j + x j  if ri_j<i-j+xj<ri_j+~, y~ is defined in the 

same way, replacing r by s, x,x' by y,y',  and z~=i, i<_m, z~=zi_m+m , i>m (x'[iy'lz '  is 
C r C 

constructed by "inserting" the index triplet rxllsy[t z into rlIsIt). Then 

x'[[y'[z'eRule+m(n): Indeed, we can use induction on m. For m = l  the statement is 

identical to the statement of Theorem 2.7(i) i n  [11]. If  the statement has been 

proved for  m - l ,  then we consider rHs]teRulm_t(n:-l) defined by ri=si=ri+l=Si+l, 
,C tC ,C t~=i, l _ < i < m - 1 ,  and construct x"]iy"]z" by inserting rx][sy [z z into r'][s'lt ' .  Then 

x"][y"]z"eRule+m_l(n-1), and the statement follows from Theorem 2.7(i) in [11] through 

removing xi ,=rl=sl=y~, l=z~ from x']ly'lz'. 
m m 

(iii) Let TeRn(a,fl) and i~=tTri=i~=l(C~si+flti). According to (i) one has ~x Trig 

~y C~si+~ z flti for x][y[zeRule(m), and x~ yrC=~x y j  - ~ryj<_(~y,O'~j+~z f l j ) - (~  s ~J+~t f l j ) =  

~y asiC+~z flt~ for xl]ytzeRule(n-m), according to (ii). Hence one has TreR,~(c%flt) and 

y\y~eR~_~(~\~, Z\Zt). �9 

LEMMA 4.5. Assume that the index triplet r][s]teRulm(n), l <m<_n admits 

splitting. Then r[]tls admits splitting, and the inversion and both re flexions and 

complements of r]ls[t, r[[t]s admit splitting. 

PROOF. Since r[[s[teRul if and only if r[[t[seRul, and R(a, fl)=R(f,c~) the first 

s tatement is, evidently,  correct.  In order to prove the second statement one observes 

that  for a given multiplicity sequence c~=(c~i)i=l, a_>al, one has that  a-~s=(a-c~)n+l_s, 

a - a s c = ( a - c x ) a .  Consider the complement t c][a]r e of r[]s[t. Assume that  for some 

yeR.n(c~,fl ) one has ~, 7i = ~,aj+ ~, flj and choose a_>cq. Then 
t C  O" r c 

E(a+Dj)=E (a-~j)+~ t ~j= E (a-~j)+E, ys=E(a-~)j+ E yj. As rllslt admits splitting this 
r ~ C  n +  1 - 8  8 g 

implies that  (a+fl)reRm((a-a)s,Tt) , (a+fl)rceR~_~((a-CX)sC,Ttc). Hence 
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7teRm(a-(a-c~)s,flr)=Rm((xn+~-~,fl~)=R~(c~ac,fl~), 7tceRn-m(a-(a-CC)s~,~rC)= R~-m(c%,flrC). 
This proves that  tc[tcr[r ~ admits splitting. Since the inversion and the reflexions of 

rllslt can be obtained by repeated transition to a complement in combination with of 

the symmetry property from in the first statement, the other claims follow as well. [] 

4 
Next, consider y=(yi)i=l~R4(o~,fl). Set m(y)=Tl+Y2+Y3+74. If m(y)_<10 then at least one 

of the additional assumptions mentioned in the beginning of this section is not met, 

and 3~eA4(e~,fl). We proceed by induction. Assume that we have proved that 7eR~(~,/?) 

implies 7 ~ A 4 ( a , 3 )  if m(y)<_k. Take 7eR4(c~,fl) with m(7)=k+l .  If y t = 7 :  or 31=/?~ then 

yeA4((x,fl ). So assume that 71>72, fll>fl2. If ~ 7 j = ~  c~j+~ flj for some index triplet 

r]]s]teRulm(4 ) which admits splitting, then y~eRm(c%,flt)=Am(C%fl~), 7rceR4_m(e~sC,fltc), 

and hence Y=Yr w 7rceA4((~,fl ). Now observe that each index triplet rl[slteRul (4) with 

l ~ r ,  l e t  admits splitting: For xllxll ,  x = 2 , 3 , 4  and for 231123112 , 24[[24112 , 341134112 

this follows from Lemma 4.4, and inversion and complementation yield all relevant 

order 3 triplets and 341114114, 34[[24113. So we need to consider only 23i113113, 

241123113 and 241113114, where the second, resp. third triplet is a reflexion, resp. 

complementation of the first, and it suffices to prove that 23[113113 admits 

splitting. To this end, let 7'eR4((x',/3') and 7~+7~ = (~{ +(x~ +fl{ +/~;. Then 

(y~,3~) e R 2 (((x~,(x;),(fli,fl~)), as y~ _< (x~ +/~i, y ;  _< c~;+fl~,(xj+fl~, and 

(yi,y;)eR~((o~,(x;),(fl; ,/~;)): From yi+7;+y;<_cq+(x;+cz;+fl'l+fl;+/~ one has y;_<(~i+fl;, 

whereas 7~_<a;+/~i follows from 7 ; + y ; + T ; _ < a ~ + e i + ~ ; + f l ; + 3 ; + / ? ~ _ < ~ ; + c ~ ; + a ; + $ 1 + / ? ~ + 3 ~  

and y ;_<~;+f l ;  is derived in the same way. Now assume that ~ y j < ~  ~ j + ~  ~ for each 

r[Islt~RuI*(4) with l ~ r ,  l e t .  Then ysR4(c~,~), where ~ = 7 ~ - 1 ,  /~=/3~-1 ,  / ~ = ~ ,  ~=~f~, 

i=2 ,3 ,4 .  As m ( y ) = k  this implies that ~eA4((~,/~), and Lemma 4.1 yields that yezl4(~,f l  ). 

Hence we have shown that 7eA4((~,fl) for each 7eR~((x,fl) with m ( 7 ) = k + l .  By induction we 

thus have proved the following result: 
4 4 THEOREM 4.6. Let O ~ = ( C ~ i ) i = I ,  f l = ( f l i ) i = l  be multiplicity sequences of order 4. 

In order that 7=(Ti)i=leA4(O~,/~) it is necessary and sufficient that 7eR4((x,/~) i.e., 
4 that ~4yi= ~ (cq+/~i) and ~ yi<_~ cq+~ fli for each rl[slteRul*(4). 

i = 1  i = I  r 8 t 

Added in proof: Since the completion of the present paper a formal proof for 
the equivalence Tez]((~,fl) r 7*eA((x*,fl*) (see the introduction of Section 3) was 
presented by Ion Zaballa, of. [16]. A private communication of the same author 
provided the additional information that this equivalence can also be obtained as an 
easy consequence of some of the results in Ch. I of I.G. Macdonalds book S~metric  
Functions and Hall Polynomials. 
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