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System Identifiability from Finite Time Series* 

CHRISTIAAN HEIJ t  

The possibility to identify linear systems from finite data, e.g. a partial 
impulse response, is determined by the degree of corroboration of system 

restrictions by the observed data. 
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Ala~ 'Kt- - In  this paper we investigate the identification of 
systems from time series observed over a finite time interval. 
The data generating system is supposed to be finite 
dimensional, linear and time invariant, but not necessarily 
controllable. The minimal number of time series needed to 
identify a system is characterized by the identifiability index 
of a system, which measures the rank drop of autoregressive 
representations. We formulate a procedure for modelling 
finite time series which takes the corroboration of system 
restrictions into account. This also gives a new solution for 
the partial realization problem. 

1. INTRODUCTION 

STATED IN GENERAL terms, identifiability concerns 
the question whether the information contained 
in the available data on an object suffices to 
determine or identify that object uniquely. The 
investigation of identifiability requires a specifi- 
cation of the available information, of the 
characteristics of interest, and of the method to 
infer characteristics from the data. Within the 
context of dynamical systems mainly two 
specifications have received attention, which we 
denote by parameter identifiability and system 
identifiability. 

The parameter identifiability problem has 
received most attention in statistics, econometr- 
ics and systems theory. The main question is 
whether the model parameters can be uniquely 
deduced from the available information. In the 
case of stochastic dynamical systems this 
information is of a probabilistic nature, e.g. the 
spectrum of the process. For deterministic 
systems the information consists of functional 
relationships, e.g. the transfer function. A 
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special case is the so-called realization problem, 
which concerns the deduction of the parameters 
of a state space model from the spectrum or the 
transfer function. There is an abundant literature 
on parameter identifiability and the related issue 
of canonical forms, see e.g. Fisher (1966), Hsiao 
(1983), Gevers and Wertz (1984, 1987), Hannan 
and Deistler (1988), and the references therein. 

Parameter identifiability can be seen as a 
matter of deduction of the internal model 
parameters from complete information on the 
external system characteristics. System iden- 
tifiability is more a matter of perfect induction. 
It concerns the question of whether the external 
system behaviour can be exactly estimated from 
observed data generated by the system. The 
answer will depend on the information content 
in the data and on the method of inference, i.e. 
the identification procedure for modelling the 
observed time series. Some experiments are 
particularly informative. For example, the 
impulse response gives a complete characteriza- 
tion of the transfer function for linear, time 
invariant and controllable input-output systems. 
This requires that the response is measured over 
an infinitely long time interval. As another 
example, the response to sinusoidal inputs also 
characterizes the system, provided that the 
model order is known and that the frequency of 
the sinusoid is varied sufficiently often. The 
system identifiability problem from arbitrary 
exact data of deterministic controllable input- 
output systems has been investigated by, among 
others, Grewal and Glover (1976), Sontag (1979, 
1980), Kalman (1983) and Chen (1987). A 
closely related question for stochastic systems is 
that of consistency, i.e. the question of whether 
the generating system can be identified in the 
limit if the number of observations tends to 
infinity, cf. Ljung (1987) and Caines (1988), and 
the references therein. 
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In this paper we investigate system iden- 
tifiability from arbitrary exact data without 
assuming any prior information on the input- 
output structure or the controllability of the 
system. We consider a system as a set of 
admissible trajectories for the external variables 
under consideration. This system concept in 
terms of the external behaviour was introduced 
in Willems (1986a, b, 1987, 1991). It has the 
advantage that system concepts and properties 
can be analysed directly by means of the 
behaviour, that is, independent of the chosen 
system representation such as polynomial 
descriptions, transfer functions, or state space 
models. 

The assumed available information on the 
system consists of observed data and structural 
information. We suppose that the data consist of 
a finite number of multivariate time series 
observed over finite time intervals. The structu- 
ral information consists of qualitative properties 
of the data generating system, i.e. that it is 
linear, time invariant, and complete in the sense 
that it can be specified by local restrictions. No 
information is assumed concerning quantitative 
properties like the number of input and output 
variables, the number and initial conditions of 
state variables, or the observabiilty indices. The 
system also need not be controllable. 

The central question is whether observation of 
finite time series generated by a linear, time 
invariant, complete system allows us to infer the 
full external system behaviour, i.e. the set of all 
time series which are compatible with this 
system. Hereby it is assumed that the data are 
exact, i.e. the time series are indeed generated 
by a linear, time invariant, complete system and 
they are not disturbed in any way. This system 
identifiability problem resembles that investi- 
gated by Guidorzi (1975, 1981). A main issue is 
that the computation of the system from 
observed data requires that all the non- 
controllable modes must be excited (Guidorzi 
(1981)). As our analysis will show, if only a 
single realization of a non-controllable system is 
observed it may be impossible to fulfil this state 
excitation condition. The so-called identifiability 
index of a system describes the minimally 
required number of experiments needed for the 
identification of the non-controllable part of the 
system. Further, in the case of finite time series 
there may arise an incompatibility of the 
regularities exhibited in the data obtained from 
the different experiments. The present paper 
analyses these problems and proposes an 
identification procedure which takes these 
aspects into account. The data generating system 
can be recovered by this procedure if sufficient 

experiments have been performed for a 
sufficiently long time. 

The main result of this paper is the definition 
and analysis of a procedure for modelling a finite 
number of observed finite time series (Section 4) 
which has attractive identifiability properties 
(Section 5). It also provides an alternative 
solution for the partial realization problem 
(Section 6), The procedure is based on principles 
of falsification and corroboration. First we 
determine the collection of all relationships 
which are unfaisified by the data, and then some 
or all of these relationships may be eliminated if 
they are not sufficiently corroborated. The 
resulting procedure has the property that more 
precise systems are identified if the observation 
interval is increased. System identifiability is 
characterized in terms of the identifiability 
index. This measures the rankdrop of an 
autoregressive representation of the system, that 
is, the difference between the maximally and 
minimally achievable rank of the system 
representation. 

In order to describe the procedure and the 
identifiability results we first present some 
preliminary concepts and results (Sections 2 and 
3). This paper on identifiability from data 
consisting of multiple finite time series completes 
corresponding results for infinite time series in 
Heij (1992) and for a single finite time series in 
Heij (1988, 1992). 

2. PRELIMINARY CONCEPTS 

In this section we summarize some concepts 
related to systems and identifiability which are 
more thoroughly exposed in, respectively, 
Willems (1986a, b, 1987, 1991) and Heij (1992). 

Assume that the data concerns q real-valued 
variables observed in discrete time. A dynamical 
system is defined as a subset ~ of the set of all 
q-dimensional time series, i.e. ~ c  (Rq) z. The 
structural information on the observed system 
consists of the qualitative properties of linearity, 
time invariance, and completeness. This means 
that ~ is a linear and shift invariant set which 
imposes only local restrictions on the data (in 
the sense that a time series w belongs to ~ if and 
only if wi t  • ~ l r  for all finite time sets T c ~). 

A system is called controllable if every past 
can be driven into any future (in the sense that 
for all w~, w2 • ~ and q,  t2 • ~ there exist w • 
and n • ~  such that w](_=,,l=wll(_=.t,l and 
W[l,,+,.~j= WEl[t2.®)). A system is called auton- 
omous if the past uniquely implies its future 
(i.e. if w ~ , w 2 ~  and t e Y  with w~h_=.,l= 
w2[c . . . .  I, then w~ = WE). 
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Let B denote the class of linear, time invari- 
ant, complete systems. Such systems have auto- 
regressive representations, expressing a system 
as the solution set of a number of equations 
~ k ,  RkW(t + k) = 0 ,  t e7/,  with Rk g X q real 
matrices for some g • t~. This is denoted by 
~ = ~ ( R ) : = { w • ( R q ) l ;  R(o, o - ' ) w  = 0}, 
where o denotes left shift and R • ~s×q[s, s -~] 
denotes the polynomial matrix R k2 = ~k=k IRkS k. 
The representation of a system ~ • ~ $  by 
autoregressive laws is highly non-unique. A 
minimal representation contains as few equa- 
tions as possible and the equations are of lowest 
possible degree. Here  the degree of r =  
Y'k=k,k2 rks k • RI×q[S, S -l] is defined as 
max {k; rk #:0} -- min {k; rk ~ 0 } .  The degrees of 
a minimal representation coincide with the 
(Kronecker)  system observability indices v,--- 
• . .  > - v p -  0. The minimal number  p of equa- 
tions gives the number of output  variables of the 
system, the number of input variables is 
m : = q - p ,  and n := E,P=t v~ is the number of 
state variables in a minimal realization of the 
system. 

Let the data consist of N time series w~ • (~q)z 
observed on the time interval T~ c 7/, i • [1, N], 
so that d = {w~[r,; i • [1, N]}. Let D denote  any 
subset of the set of all finite numbers of observed 
time series of finite or infinite length. An 
identification procedure specifies which systems 
are identified for the observed data. In this 
paper we will require that the identified system is 
unique and belongs to B, so that the procedure 
is a mapping P :  D ---* B. 

Our procedures are based on the autoregres- 
sive laws satisfied by the data. A law 
r • R~×q[s, s -~] is called unfalsified by the data if 
w,l~,e ~(r)lT ' for all i e [1, N]. A collection of 
laws L~R~×q[s,s -~] is called compatible with 
the data if the conjunction of all laws in L is 
unfaisified (i.e. WilT, • ((-] {~( r ) ;  r • L}) l r  ' for all 
i • [1, N]). 

Further we use a generalization of the 
algebraic genericity concept for finite dimen- 
sional spaces. A set G c((Rq)z)  N is called 
G-generic if its complement  is small in the sense 
that ( ~ N \ G )  ~ [ . . J , ~  {p~-'(0); n • N}, where 
p ,  : ((Rq)Z)N--~ R are non-zero polynomials. 

Definition 2.1. A system ~ is called (N, T) 
identifiable by a procedure P if for observed data 
d = {w~lr,;i e [1, N]}, T = {Tl, • . . , TN}, there 
holds P(d) = ~ for generic {wl . . . . .  WN} e ~N. 

Hence a system is identifiable if it can be 
identified on the basis of generic observed data. 
It can be shown that for the procedures 
considered in this paper the identiftability 

condition is equivalent to the existence of some 
(as opposed to generic) data d such that 
P(d) = ~ .  This equivalence is essentially similar 
to that for real-valued polynomial functions, i.e. 
such a function is generically non-zero if and 
only if it is somewhere non-zero. 

The following corroboration concept reflects 
the idea that there can be no evidence from 
observed data for laws which are of a type which 
are generically also unfalsified for observations 
from the lawless system ~ = (Rq) z. 

Definition 2.2. 
(i) If for (Rq)L-generic data observed on 

T =  {T, . . . . .  TN} there exists an unfal- 
sifted law of  degree 6, then laws of this 
degree are uncorroborated.  

(ii) A law is called corroborated by data on T 
if it is unfalsified and not uncorroborated.  

In order  to clarify these somewhat abstract 
notions we give two simple examples. 

Example 1. As a first example we consider the 
univariate system described by ~ = ~ ( o -  1 )=  
{ w e • Z ; w ( t + l ) = w ( t )  for all t e Z } ,  that is, 
the system consisting of constant time series. 

First consider the case N = 1 of one time series 
observed on the interval T = [1, r]. If t = 1, then 
~ [ r = R  and of course no regularity can be 
detected. If r = 2 ,  then the system behaviour 
~ l r  is non-generic in the observation space R z, 
as {w •1~"; wi t  • ~ ] r }  = P - I ( 0 )  where p(w):= 
w ( 2 ) -  w(1). However,  this system behaviour is 
not fully observed and only a single realization 
of it is available. Note that for generic data 
observed on T = [1, 2] there exists an unfalsified 
law of degree one. Indeed, for wit  • ~2 with 
w(1)#:0  there holds w(2)--flw(1), where 
f l=w(2)/w(1).  For observations from ~ we 
obtain fl = 1, but this is no more surprising than 
finding any other value of fl for observations 
from other systems than ~ .  This means that laws 
of degree one are not corroborated for such a 
short observation interval. Now suppose that 
r -> 3. For w • ~# define p(w) := det (H,),  where 
H~ is the Hankel matrix 

(w(1) w(2)'~ 
H , =  \w(2)  w(3)/" 

Generically on R z there does not exist an 
unfalsifted law of degree one, as this would 
require that p(w) = w(1)w(3) - {w(2)} 2 = 0. As 
for observations Wlr • ~ l r  such a law is indeed 
unfalsified, this means that the system law o -  1 
is corroborated by data from ~l r  for t >- 3. 

Finally consider the case of N = 2 observations 
w~ on intervals T~, i = 1, 2. If t ,  = r2 = 1 then no 
regularities can be detected. If, e.g. r, =~'2 = 2 
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then the data show an exceptional regularity, as 
they satisfy det (H2) = 0 where 

H2 = \w,(2)  w2(2)/" 

Such a relationship is non-generic in the 
observation space ~ 2 × ~ 2 ,  so that the law 
( o -  1)wi = 0, i = 1, 2, is corroborated.  

These results suggest certain identifiability 
properties of the system ~ .  Genera l  results are 
obtained in, e.g. Theorem 5.2 and Proposition 
5.6 of this paper.  

Example 2. Our  second example is related to 
deterministic realization theory. We consider 
data consisting of the (causal) impulse response 
of a linear system. Suppose that the input u and 
the output y of the system are related according 
to y(t) =y(t-4)  + u(t-  1) + u(t-  2) + u(t-  3). 
If the input consists of an impulse, i.e. u(0) = 1 
and u(t)=0 for t g:0,  then the corresponding 
(causal) output response on the time interval 
[1, ~)  is given by 

y = ( l  1 1 0 1 1 1 0 1 1 1 0 . . . ) .  

The available data consist of y observed on the 
partial interval T = [ 1 ,  ~]. Unfalsified laws 
correspond to linear dependencies between the 
rows of the Hankel  matrix 

/ l  , 1 0  , !) 
l 1  1 0 1 1 1 

H = / 1 0 1 1 1 0 " 

! i i ! ! i 
A law of degree 6 corresponds to the linear 
dependency of row 6 + 1 in H on the foregoing 
ones. For the partial observation such a 
dependency can only be checked in the left top 
corner of H ,  and this involves a matrix of size 
( 6 + l ) x ( r - 6 ) .  Such a row dependency is 
generic if the number  of columns is less than the 
number  of rows. So an unfalisfied law is 
corroborated if and only if ~ -  6-> 6 + 1, i.e. if 
6 -~ ( r  - 1 ) / 2 .  

If T = I  or r = 2  then there are no 
corroborated laws. For T = 3 the law ( o -  1)y = 
0 is corroborated.  It is easily checked that for 
4 < r <-8 there are no corroborated laws. For 
r = 9 the leading 5 x 5 submatrix of H has rank 
4. as the fifth row is equal to the first one. The 
corresponding law ( 0 4 -  l)y = 0 is corroborated.  
The same holds true for r-> 10. 

This indicates certain implications for the 
partial realization problem. For example,  if r = 5 
then the partial Hankel  matrix has rank 3 and 
there exists a third order  law, e.g. ( 0 3 +  0 2 -  
l)y = 0. However ,  there is no reason to conclude 

from this that the impulse response is generated 
by a third order system. Indeed, for systems of 
every state dimension the partial impulse 
response on T = [1, 5] will generically satisfy a 
third order law. On the other hand, the fourth 
order law on T = [1, 9] is not generic. So there is 
then evidence that the data come from a fourth 
order system. 

In modelling the impulse response it would of 
course make more sense to take also the input 
into account. The corresponding partial realiza- 
tion problem is further discussed in Section 6. 

3. PRELIMINARY RESUL3~ 

In this section we summarize some iden- 
tifiability results for data consisting either of  
infinite time series or of a single finite time 
series. For details and illustrations we refer to 
Heij (1992). 

First we consider the case where the data 
consist of a number  N of time series given over  
the full time set 7/, so that T=7/n and 
d = {wl . . . . .  wN} with wi e (~q)Z, i • [1, N]. 

Proposition 3.1. For data on T = 7 / N  every 
unfalsified law is corroborated and the collection 
of all unfalsified laws is compatible  with the 
data. 

For a polynomial matrix R E~g×q[s,s -l] 
define the rank drop as 

I(R) := max {rank (R(s, s - I l l ;  0 4:s • C} 

- min {rank (R(s, s - I l l ;  ():gs • C}, 

and for ~ = ~0(R) define the identifiability index 
as l(~):=max{1,1(R)}. This index is well- 
defined, i.e. independent of the choice of the 
representation R of the system ~ .  The next 
result describes identifiability propert ies of the 
procedure of most powerful unfalsified model-  
ling, defined by P*(d) := ( ]  {~ ( r ) ;  r unfalsified 
by d}. 

Theorem 3.2. A system ~ I B  is (N, ZN) 
identifiable by P* if and only if N >- 1(°~). 

Next we consider the case where the data 
consist of a single multivariate time series 
observed on a finite time interval T of length r, 
i.e. d = {wit} for some w • (Rq) ~. 

Proposition 3.3. For data consisting of one finite 
time series observed on an interval of length r 
there holds: 

(i) an unfalsified law is corroborated if and 
only if it has degree 6 <-- ( r  - q)/(q + 1); 

(ii) for most systems 90 e 1~ the collection of 
all unfaisified laws is ~-generical ly not 
compatible with the data; 
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(iii) for every system G • ~ the collection of 
all corroborated laws is G-generically 
compatible with the data. 

Define P~ as the procedure which accepts all 
corroborated laws provided that they are 
compatible with the data, i.e. provided that the 
system which satisfies all corroborated laws is 
unfalsified by the data. Formally, let G*(d ) : =  
(-] {G(r); r corroborated by d}, then P~(d)= 
G*(d) if d • G*(d ) IT  and P ; (d )  = (lieU) '~ 
otherwise. 

Theorem 3.4. A system G • B is (1, T) identifi- 
able by P~' if and only if I (G)  = 1 and the length 
of the observation interval is ~ >- (vl + 1)(q + 
1 )  - 1, where v~ is the largest observability index 
of G. 

Example 3. We illustrate the foregoing results 
by considering again the partial impulse response 
data as in Example 2. There we showed that 
corroboration requires that the number of 
columns in a corresponding partial Hankel 
matrix is not less than the number of rows. For a 
single q-variate time series and a law of degree ,5 
this partial matrix has size q ( 6 +  1 )x  ( ~ - 6 ) .  
Corroboration then requires that r - 6 - q(6 + 
1), which shows Proposition 3.3 (i). 

If, e.g. r = 11 then it is easily checked that the 
collection of all unfalsified laws is not compatible 
with the data. Not only the law (ix 4 -  1)y = 0 is 
unfalsified, but also, e.g. the law (09 - 1 ) y  = 0. 
The conjunction of these two laws would require 
that (o - 1)y = 0 which is of course falsified. On 
the other hand, the collection of all corroborated 
laws is compatible with the data. It is easily 
checked from the leading 6 x 6 partial Hankel 
matrix that this class of laws is given by 
r(a,/3) : =  (ao +/~)(o" - 1), a ,  ~ • R.  T h e  con-  
junction of all these laws gives the system 
('q {G(r(a, /~));  or, fl • ~} = G(o  4 -  1) which is 
unfalsified by the data. Similar results hold true 
for other values of the length r of the 
observation interval. 

For these data the law (0 4 -  1)y = 0  which 
holds true for the full impulse response is 
identified by the procedure P~' for r-> 9. This 
illustrates Theorem 3.4, as in this case 1 = 1, 
q = l a n d v , = 4 .  

4. IDENTIFICATION PROCEDURE FOR MULTIPLE 
OBSERVED FINITE TIME SERIES 

In this section we formulate a procedure for 
modelling a finite number of observed finite time 
series. We use the following notation. Let the 

data consist of d =  {WiIT,;i•[1, N]}, where 
N • M denotes the number of time series and 
where w~e(Rq) z is observed on an interval 
T~ c Z of finite length zi, i • [1, N]. We order the 
observations so that ~, >- r2 -> • • • -> rN -> 1. Let 
T = {T1 . . . . .  TN} and let 

6 * ( T) : =  max {6; E~=, [ r i -  6] + >-q(6 + 1)}, 

where [r~ - 6] + := max {r~ - 6, 0}. 
The following proposition expresses the main 

respect in which the case of multiple observed 
finite time series differs from that of a single 
observed finite time series, cf. Proposition 3.3. 

Proposition 4.1. For data consisting of multiple 
observed finite time series, i.e. with N > 1, there 
holds that 

(i) an unfalsified law is corroborated if and 
only if it has degree 6 - 6*(T); 

(ii) the collection of all corroborated laws 
need not be generically compatible with 
the data, i.e. there exist systems G • 
and (N, T) for which this collection is 
G-generically not compatible. 

Proof. See Appendix. 

Example 4. The main idea is that, e.g. one 
relatively long time series may lead to a large 
collection of laws of high degree which are 
corroborated by this time series, while this 
collection implies laws of low degree which are 
falsified by other time series observed on 
shorter time intervals. 

We illustrate this by a simple example. 
Consider the system in q = 3 variables described 
by G =  {w • (l~3)z; ( t r -  1)w =0} = {w e (l~3)z; 
::lc • R 3 such that w(t) = c, Vt e Z}. Let the data 
consist of N = 2 observations d = {wilT,, w2lr2}, 
SO that wi(t) = ci, t • Z, for some c~ • ~3, i = 1, 2. 
Let K, :=ker(c~) ,  i =  1, 2, then there holds 
G-generically that dim ( K1 ) = 2  and dim (K, A 
K2) = 1. To be explicit, {(wl, w2) • G2; 
dim (K1A K2) ~ 1} = {(w~, w2) • G2; cl = 0 or 
c ~ = 0  or c l = c z } = p - l ( O )  where p(w, ,w2):- -  
q(wa)q(w2)q(wl - w2) with q(w)  := w(O)rw(O). 
Evidently, p is not identically zero on G 2. 
Suppose that the data are generic in this sense, 
so that there exists an a • KI\K2. Then the static 
law arw = 0 is satisfied by the first observation 
but not by the second one. Now suppose that the 
first observation interval is much longer than the 
second one, in particular that there exists ,5 • [~ 
for which ~2 -< 6 ~ (r,  - 3)/4. This means that 
laws of degree 6 are unfalsified (and uncor- 
roborated) by the second observation. Further, 
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for every r • ~[s, s-~] of degree 6 the law r .  a r 
is corroborated by the first observation, as it is of 
course unfalsified and it has degree 6 -< tS*(T) = 
max{b ;  r t - 6 - > 3 ( 6 +  1 ) } = ( r l - 3 ) / 4 .  Altho- 
ugh every such law is individually corroborated 
by the data, the collection of these laws 
{ r . a r ; d ( r ) = 6 }  is not compatible with the 
data. Indeed, the system which satisfies all these 
laws is given by ( ~ { ~ 3 ( r ' a r ) ; d ( r ) = 6 }  = 
°~(ar), and w2 ~ ~(a r) as a7c2~:0. This implies 
that also the collection of all corroborated laws 
is not compatible with the data. 

We mention that for controllable systems such 
problems generically do not occur. Controllable 
systems have identifiability index one, so that 
according to Theorem 3.4 the system is identified 
from generic observations on a sufficiently long 
time interval. The corroborated laws then 
consist of system laws, so that falsification by 
short time series cannot take place. 

As the corroborated laws need not be 
compatible we have to decide which laws should 
be accepted and which should be rejected. It 
seems attractive to accept laws with a large 
degree of corroboration,  defined as the number 
of times a law is independently verified by the 
data. Note that a law of degree 6 can be verified 
by the ith observation if and only if z, - 6 + 1, 
in which case the law implies ~ - 6 independent 
restrictions. 

Definition 4.2. A corroborated law of degree 6 
has a degree of corroborat ion C6 := ~ : ~  [ r i -  

61 ÷ 

The following procedure P~ accepts the most 
strongly corroborated laws. More precisely, 
corroborated laws of a certain degree of 
corroboration are accepted if and only if they are 
compatible with the collection of laws with a 
larger degree of corroboration.  

Definition 4.3. For data d consisting of multiple 
observed finite time series let ~a denote the set 
of all unfalsified laws of degree at most 6 and let 
~ * = ~ a .  with 6* := max {6 • [0, 6*(T)] ;  ~a 
compatible with d}. Then P~ accepts the laws of 
~* ,  i.e. P~(d):=(") ( ~ ( r ) ;  r e ~*}.  

In the case of a single observation this 
procedure coincides for generic data with the 
procedure P~ defined in Section 3, cf. 
Proposition 3.3 (iii). The identified system PT(d) 
can be determined by checking row depend- 

encies in (partial) Hankel matrices defined in 
terms of the observed data. We illustrate this by 
means of a simple example and then give an 
outline of the general algorithm. 

Example 5. Consider the same system and data 
as presented in Example 4, with observation 
intervals T~ = [1, r/I, i = 1, 2, rt -> r2. 

First we suppose that r~ = 5 and rE = 3. In this 
case we analyse the following partial Hankel 
matrix (a * denotes an unobserved element).  

%(1)  w: ( l )  %(2)  w2(2 ) % ( 3 )  wz(3) % ( 4 )  * wl(5 ) * 

wl(2) w2(2) wt(3) w2(3) w~(4) * w,(5) * * * 

%(3)  w43)  w~(4) * w.(5) . . . . .  

w,(4)  * wj(5) * * . . . . .  

w1(5 ) * * * . * . * . . 

As before, let wi(t) = ci ~: 0 and Ki = ker (c[) ,  
i = 1, 2, with dim ( K i n  K2) = 1, and let 0 g: 
a0 • K~ rl K2. Then r0 = a0 r is the only unfaisified 
law of degree 0. This is checked by determining 
the left kernel of the first block-row with 
dimension 3 x 8. Unfalsified laws of degree 1 are 
obtained from the left kernel of the matrix 

w,(1) w2(1) w,(2) w2(2) w,(3) w,(4)~ 

w,(2) w2(2) w,(3) w2(3) w,(4) w,(5)/" 

Note that this matrix has dimension 6 x 6, so 
that a row-rank deficiency is non-generic. This is 
reflected by the corroboration condition 6-< 
6 * ( T ) =  1. A basis for the left kernel cor- 
responds to the autoregressive laws ( o -  1)w = 0 
and (otar+flaroo)w=O. These corroborated 
laws are compatible with the data, and laws of 
degree larger than one are not corroborated.  
Hence in this case the identified system is 

n ~(a,~. 
Next suppose that rl = 11 and z2 = 2, so that 

6*(T) = 2. The corroborated laws of degrees 0 
and 1 are as before. Additional corroborated 
laws of degree 2 are given by 

0 , 2 -  O ' - -  a w = 0 ,  

where a~ • KI\K2. However,  these laws are not 
compatible with the laws ( a - 1 ) w  = 0 ,  as this 
would imply that a rw = 0 which is falsified by 
the second observation. The procedure P7 only 
accepts the most strongly corroborated laws, so 
that also in this case 9~ n is identified. 

It is easily checked that for ~1 = "rE = 1 there 
holds P~(d)= (R3) z, that for r 2 =  1 and z]-->2 
there holds P~(d)-- 9~(a(r), that the same holds 
true for r2--> 2 and r~ + ~2 -< 7, and that in other  
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cases P ] ( d ) = ~ N ~ ( a r o ) .  In case of three 
observations there holds that generically 
PT(d) = (~3)z if d i * ( T ) = 0  and also if di*(T)-> 1 
and ts = 1, and otherwise generically PT(d) = ~ .  
So the system is (3, T) identifiable, provided that 
ts is sufficiently large• 

Algorithm. An algorithm for computing the 
system identified by P7 for general data is as 
follows. Assume without loss of generality that 
T,.=[1, ti], i e[1,  N], and define the q x N  
matrix W(t)  := [wl(t)- • • wN(t)], t e T1, inserting 
• for unobserved elements. For di e [0, di*(T)] 
define the q(di + 1) x N(r t  - di) block-Hankel 
matrix M~ by 

[ W(1) W(2) 

• W(3) M a = ( W ! 2 )  . 

\W(6"+ 1) W(6"+2) 

• .. W(~,-  5) \ 
| 

• . .  w ( ~ , -  ~ + 1)1. 

• .. w(~,) / 

Let H6 consist of those columns of Ma which are 
fully observed, i.e. which contain no *. It is 
easily seen that Ha has Ca columns and that a 

vk0+~ a ' × ~ [ s ,  s - ' ]  law of degree 6, say r = ~k-ko rks k e 
with rko ~ 0 ~ rko+6, is corroborated if and only if 
(rko, rk0+t . . . . .  rko+,)" Ha = O. 

The identified system PT(d) can be obtained 
as follows• Let D6 c- [1, q(di + 1)] denote the set 
of indices of those rows in Ha which are linearly 
dependent on the foregoing ones• Then the 
number di* in Definition 4.3 is given by 
di* = max {die [0, di*(T)]; O~ N [1, qdi] = Oa-~}, 
i.e. incompatibility is obtained if there exists 
i • [1, qdi] with i e Da\Da-l .  The  Hankel struc- 
ture of H6 implies that there exist a number 
p • [0, q], distinct indices {Jr . . . . .  Jp} ~ [1, q], 
and numbers di* >- v~ >-. • • >- Vp >-0, such that 
for die [0, di*] there holds Da = {j e [1, q(di + 
1)]; j = j k + n . q ,  n>--Vk, k e [ 1 ,  p]}. Then the 
identified system has p outputs and (v~ . . . . .  vp) 
are its observability indices. An autoregressive 
representation is obtained as follows. Laws of 
degree 6 : =  Vk can be computed from the 
coefficients expressing the dependency of row 
]k + vkq in H~ on the foregoing rows of H~. This 
is achieved, e.g. by determining a basis for the 
left kernel of the submatrix of Ha obtained by 
deleting rows with index in D6-~ U {Ik + diq; k e 
[1, p] such that Vk < di}. 

Similar algorithms are described in Willems 
(1986b, 1987) for the procedure P*, when 
TI . . . . .  T N = Z ,  and in Heij (1992) for the 
procedure P~', when N = 1. 

5. SYSTEM IDENTIFIABILITY 

In this section we describe identifiability of 
systems in B on the basis of multiple observed 

finite time series by means of the procedure P ;  
introduced in Section 4. 

We use the following notation. Let the system 
e B have identifiability index I and let it have 

p outputs and observability indices v : =  
(vl . . . . .  vp), v l - > - ' - > - v p - > 0 .  Let wie ,~ ,  
i e l l ,  N], and let the most powerful unfalsi- 
fled model for these data have p~ outputs and 
observability indices v~ := (v~ . . . . .  v~,). 
Suppose that the actually observed data consists 
of d = {wilr,;i e [1, N]}, and as before assume 
that the observation intervals have lengths 
t~ ->. • • - rN -> 1. Let the identified model P~(d) 
have ,or outputs and observability indices 
v / := ( ~ ,  . . . .  ~/) .  Define a partial ordering by 

r t {(vl . . . . .  vp)<--(vl . . . . .  v'p)} :¢:> {vk -< vk for all 
k e [ 1 , p ] } .  

Proposition 5.1. For every ~ e IB the following 
holds 9~-generically: 

(i) for every die[0,  di*(T)] the class of 
corroborated laws of degree di for the 
observed data d =  {wilT,; i e [1 ,  N]} 
coincides with the class of unfalsified laws 
of degree di for {wt . . . . .  wN~}, where 
Na = m a x  {i e[1, N]; r~-> di + l}; 

(ii) p r < p ~ ,  o r p l  = p ~  and vi<-v®; 
(iii) if N < 1 then po~ = p, v~ <- v, and v~ ~ v: 

(iv) if N - > I  and 1 : ,>- [q+ l ] [v ,  + 1 ] - 1 ,  then 

Pt = P ~ = P  and v I = vo~= v. 

Proof. See Appendix. 

The main identifiability result is expressed in 
the following theorem. 

Theorem 5.2. A system ~ e B with identifiability 
index I is (N, T) identifiable by P~ if and only if 
N-> I and ~t is sufficiently large, with sufficient 

condition that h ->  [q  + X][v, + 1 ] - 1 .  

Proof. See Appendix. 

Corollary 5.3. A controllable system ~ e IB is 
(1, T) identifiable by P~ if ~-> (v~ + 1)(q + 1) - 
1. 

Proof. See Appendix. 

It is intuitively evident that a system should be 
more easily identifiable if more observations 
from the system become available. In particular, 
if a system is (N, T) identifiable then it should 
also be identifiable in case of additional 
information on (N',  T ')  with N ' -  > N and with 
T~ ~ T/ for all i e [1, N]. We call a procedure 
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conservative if it has this property for every 
system in lB. 

Theorem 5.4. The procedure P~ is conservative. 

Proof. See Appendix. 

Remarks. (i) The class of systems identifiable by 
N finite time series coincides with that 
identifiable by N infinite time series. In this 
sense there is no essential difference between the 
cases of infinite and finite time series. This is due 
to the completeness of the generating system. 
Indeed, systems which are not complete are not 
identifiable by finite time series. For example, 
observations on finite time intervals can not 
distinguish the incomplete system / 2 : = { w •  
(l~q)z; F~_ ~llw(t)12<oo} from the system 
(l~qy'. 

(ii) Parameter identifiability is usually inter- 
preted as a bijective correspondence between 
the parameters and the corresponding external 
behaviour. Without additional a priori 
information a similar bijective correspondence 
between observed time series and the underlying 
generating system can not be obtained. For 
example, the system (~q)Z can never be 
definitely rejected as a candidate. A system can 
be generically uniquely identifiable in this 
stronger sense if the observability indices are 
known a priori. 

(iii) The procedure P~ could be slightly 
refined. For example, not only the degree of 
unfalsified laws but also the number of non-zero 
coefficients could be taken into account, cf. Heij 
(1988). Further, if the identified system has 
rank drop equal to the number of observations it 
could be argued that some more corroborated 
laws should be rejected, cf. Heij (1992). 

(iv) One could obtain alternative procedures 
by simpler direct generalizations of the proce- 
dure P~' for a single finite time series, as defined 
in Section 3. For observed data d =  {w, lT,;i• 
[1, N]} let ~*:=Pl(w/[1;)  denote the system 
identified from the ith observation. Define 
P÷(d) := Y~,  ~* as the procedure which only 
accepts laws that are corroborated by all 
observations, and let P_(d):=(-'l~=~ ~7 be the 
procedure which accepts all laws that are 
corroborated by at least one observation. 
Further let P~(d):=(-'1 {°~(r); r corroborated by 
d} provided that d is compatible with this 
system, and let P~(d)= (Rq) z otherwise. These 
procedures have unattractive properties. The 
procedures PTv and P+ are not conservative. In 
particular, identifiability by P~ can be obstructed 
by observing a given time series over a larger 
time interval, and identifiability by P÷ can be 

obstructed by observing an additional time series 
on a small time interval. Finally, no system 

• B with identifiability index 1 > !  is identifi- 
able by P_. 

Next assume that all time series are observed 
on intervals of equal length. Consider data 
d-- {w, lT,;i • [1, NI) and d'  = {w:[.t;.;i • [1,N']} 

observed from a system ~ • [B, and assume that 
wi = w[ for all i • [1, NI n [1, N'] and 3 ' : =  3'~ = 

t p 32 . . . . .  3,v. The following proposition ex- 
presses monotonicity properties of Pf  with 
respect to additional information. 

Proposition 5.5. For every ?,0 • B the following 
holds ~-generically: 

(i) if N = N '  is fixed and T / ~ T :  for all 
i • [1, N], then P~(d) c P; (d ' ) ;  

(ii) if N - N ' ,  T ,=T[  for all i • [ l , N ' ]  and 
r = 3' is fixed and sufficiently large, then 
P;(d) = P;(d'). 

Proof. See Appendix. 

The result in (i) means that for a fixed number 
of observed time series the identified system can 
generically be computed in a recursive way. On 
obtaining additional information the laws which 
were already identified are reconfirmed and it 
only remains to determine newly corroborated 
laws, i.e. those of maximal degree. Additional 
information of this kind leads to more restrictive 
systems. On the other hand, the result in (ii) 
shows that the identified system can get larger if 
an additional time series is observed. This is 
explained by the fact that the richness of the 
non-controllable part of the behaviour is only 
gradually detected when additional data become 
available. 

To obtain system identifiability, a sut~cient 
condition on the length of the observation 
intervals is given in Theorem 5.2. The next 
proposition provides a minimal bound in case all 
intervals have equal length 3 := 3~ . . . . .  3N. It 
shows that the (largest) observability index of a 
system has an interpretation in terms of system 
observability in the sense of identifiability, and 
not only in classical terms of state observability. 

Proposition 5.6. 
(i) A system ~ • B is (N, T) identifiable by 

/'7 if and only if N>-I(~)  and 3 > _ 

v, + max { l , q  (v, + 1)}; 

(ii) in particular, if N is sufficiently large 
then ~ is identifiable if and only if 
3_>vj + 1. 

Proof. See Appendix. 
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The results of this section show intrinsic 
limitations in the identifiability of non- 
controllable systems. For instance, systems with 
identifiability index larger than one can not be 
recovered by a single experiment. In this case 
the data only provide partial information on the 
system behaviour. 

6. I D E N T I F I A B I L I T Y  F R O M  A P A R T I A L  I M P U L S E  
R E S P O N S E  

In this section we consider modelling of a 
partially observed impulse response. 

For every system ~ • B its q variables w can 
be partitioned into m (causal) input variables, 
denoted by u, and p : = q - m  output variables, 
denoted by y. For a given system the numbers 
m and p are unique, but the partitioning of the 
system variables into inputs and outputs need 
not be unique, cf. Willems (1989). In the sequel 
we assume that m - 1 and p -> 1, that the choice 
of inputs and outputs is fixed, and that 

The impulse response of a system ~ • B with 
m inputs is defined as the subset ~m ~ l~m given 

by ~ m : = { I R  (w,, . W,,)•~Im;w~ (U~) 
Yt 

is the ith unit pulse on time t=O, ie[1 ,m]} .  

This set is an atline space of finite dimension, 
and it need not be a singleton. Usually a special 
element of ~m is called "the" impulse response 
of ~ ,  i.e. the unique element IR~• ~m 
characterized by the fact that all outputs are zero 
in the past, i.e. y~(t)--O for t < 0 ,  i • [ 1 ,  m]. 
We call IR~ the causal impulse re- 
sponse of ~.  The sequence {[yl ( t )" -y , , ( t ) ] ,  
t->0} corresponding to IR~ consists of the 
Markov parameters of ~.  

First we summarize some identifiability results 
for data consisting of a fully observed impulse 
response and for the procedure P* of most 
powerful unfalsified modelling, cf. Heij (1991). 
We call a subset V c ~tn of the impulse response 
generic if (~m\V) ~ [._J {p~-l(0); n • ~}, where 
p, :((Rq)Z)m---~ R are polynomials which are not 
identically zero on ~m. 

Theorem 6.1. 
(i) A system ~ • ~  is identifiable by the 

causal impulse response, i.e. P*(IRc)= 
~,  if and only if ~ is controllable; 

(ii) a system is identifiable by generic impulse 
responses, i.e. P*(IR)= ~ for generic 
IR • ~lr ,  if and only if m >- I (~) ;  

(iii) systems with m->p are identifiable from 
generic impulse response observations. 

Observation of the causal impulse response is 
related to the minimal realization problem for 
controllable systems, cf. Kalman et al. (1969) 
and Silverman (1971). The theorem states that 
there are also non-controllable systems which 
are identifiable from (non-causal) impulse 
response observations. 

Next we consider the case where an impulse 
response is only partially observed, i.e. on a 
finite time interval. 

Example 6. Consider the system ~ • I~ with m 
inputs and p outputs related by oy~ =u~, 
oyi+,=yi, i • [ 1 , p - 1 ] .  Let ei denote the ith 
unit vector in •P and let E; := [e~ 0. • • 0] • R p×" 
and A : = [ e 2 . . . e , ,  0]•~P×P. Then ~ has 

autoregressive representation ~ : = { ( ~ )  • 

(ll~"+P)z; (al - A)y - E,u = 0}. The system is 

controllable and has observability indices v~ = 
. . . .  vp = 1. The impulse response consists of 
the single element IRe with IRc(t) = E,, t • [1, p], 
and zero otherwise. The Hankel matrix cor- 
responding to the observation IRc is given by 

. . . . .  0 0 1 0 0 . . . . .  0 0 0 . . . . .  

. . . . .  0 0 0 E I E 2 . . . . .  Ep_ ,  Ep 0 . . . . .  

. . . . .  0 1 0 0 0 . . . . .  0 0 0 . . . . .  

. . . . .  0 0 E l  E2 E3 . . . . .  Ep 0 0 . . . . .  

Now suppose that IRe is observed on a finite 
interval T c 2. We consider several cases. First 
suppose that we do not observe the past, so that 
T=[0 ,  r]. If the system law o y t = u l  is 
corroborated, then also the law oy I + out = u~ is 
corroborated by the data, as (ou,)ir  =0.  This 
shows that the corroborated laws of degree 1 
are incompatible with the data, as they would 
imply that u~ =0.  Hence the system ~ is not 
identified by P7 for any ~ • ~ ,  even if the 
condition of Proposition 5.6 on the length of the 
observation interval is satisfed. The same holds 
true for every observation interval T c [0, o¢). 
This is caused by the fact that P7 is a procedure 
for modelling arbitrary time series, while in this 
case the input is highly non-generic. Next 
suppose that T c ( - ~ ,  r] where the future 
observation interval [1, r] satisfies the condition 
of Proposition 5.6, i.e. • -> 3 + (2p/m). If 3, m 
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and p are such that 3+(2p/m)<_ r ~ p -  1, e.g. 
r =  4, m = 10 and p = 5, then in the system 
identified by ,°7 the pth component of y will be 
identically zero, so that .°)3 is not identified. This 
shows that the observation interval should 
contain a sufficiently long part of past and 
future. 

From the Hankel matrix it is evident that 
ef(IRIr)--~, i.e. that ~3 is identified from a 
partial impulse response, provided that T ~  
[ - 1 , p ]  and that T has length at least 
3 + (2p/m). 

The following theorem states conditions for 
system identifiability on the basis of a partially 
observed impulse response. It is not assumed 
that there is any a priori information concerning 
the number or partitioning of input and output 
variables or concerning the number of state 
variables. 

Theorem 6.2. A system ~ • I~ is identifiable by 
/'7 from an impulse response observation on the 
interval T, i.e. PT(IRIr) = ~ for some IRe ~m, 
if and only if m -> 1(~)  and T extends sutficiently 
far into past and future. A sufficient condition is 
that T = [ - r ~ , r z ] ,  with r2_>2n and r , -  > 

max { P  (n +1) ,  2r2}. In this case ~ is identified 
1 

from generic partial impulse response observa- 
tions on 7". 

Proof. See Appendix. 

Remarks. (i) The definition of P~ as a proce- 
dure for modelling arbitrary time series implies 
certain limitations for its application in case of 
particular data. Of special interest is the 
(classical) case of a partial observation of the 
causal impulse response on the interval [0, r], 
i.e. starting at the moment of the impulse. It is 
clearly undesirable that Pf also needs the zero 
past of this observation. If the input-output  
decomposition and the zero past are given a 
priori, then the procedure P~ can be used to 
identify an autonomous system for the output 
signals, i.e. for the Markov sequence. It can be 
shown that ~ is identifiable from a partial 
Markov sequence on the interval [0, r] if and 
only if ~ is controllable, the output consists of 
the causal impulse response, and the observation 

interval is sufficiently large, e.g. r ~- m + 1 x 

(v, + 1). 
(ii) The minimal partial realization problem 

corresponds to a procedure P,,~, which deter- 
mines controllable systems in I~ with smallest 
possible state dimension compatible with a 

partially observed causal impulse response, cf. 
Tether (1970), Kalman (1971) and Antoulas 
(1986). This procedure identifies systems of 
larger dimension if more observations become 
available. This seems somewhat unattractive, as 
additional information leads to less restrictive 
identified laws, i.e. to more indeterminateness of 
the system variables. On the other hand, the 
procedure P~ determines the system in IB which 
is optimally corroborated by the data, and 
Proposition 5.5 (i) shows that P~ generically 
identifies more precise systems if the observation 
interval gets larger. This also holds true for 
partial impulse response observations from 
controllable systems in [B with generic Markov 
parameters. The monotonicity property does not 
hold true for non-generic Markov parameters, 

like for the system ~=l (u]e (R2)~;o~y=u~ .  / \  / ) y 

If the impulse response is observed on 
T = [ - t ,  r], then P~' identifies the system 

{ ( U ) ; y = 0 /  if y - < n - 1 ,  the system (1~2) z' if 

n -< r < [(3n + 1), and ~ if r >- ½(3n + 1). 

7. CONCLUSION 

This paper describes results on identifiability 
of linear, time invariant, complete systems from 
data consisting of a finite number of observed 
finite time series. For this purpose an identifica- 
tion procedure is presented that identifies the 
system which is optimally corroborated by the 
data. This procedure has attractive properties, 
and the identified system can be determined by 
an algorithm based on Hankel matrices defined 
in terms of the data. A complete result on 
identifiability is obtained. A specification is given 
of the minimally required number of observed 
time series and of the minimally required length 
of the observation intervals. The case of a 
partially observed impulse response is analysed 
in detail. 

The results presented in this paper complete 
identifiability results for infinite time series or a 
single observed finite time series as presented in 
Heij (1988, 1992). The main distinction is that 
for multiple observed finite time series the 
collection of all corroborated laws is in general 
not compatible with the observed data. This 
problem is solved by accepting only the most 
strongly corroborated laws. 
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APPENDIX: PROOFS 

Proof of Proposition 4.1. For (ii) a simple example is given 
in the text. Similar results hold true for systems with 
identifiability index ! ( ~ )  ~ 2. 

In order to show (i) define the q x N matrix W(t):= 
[w~(t)- • • WN(t)], t • Z, inserting * for unobserved elements. 

For 6 ~ N U {0} define the block-Hankel matrix M a by 

Ma = W(t) W(t.+ 1) W(t.+ 2) . 

W ( t + ' 6 - 1 )  W( t+6)  W ( t + 6 + l )  

Further let Ha consist of those columns of Ma which are fully 
observed, i.e. which contain no *. So Ha has q(6 + 1) rows 
and ~ 1  [ti - 6]+ columns. 

It is easily verified that a law of degree 6 is unfaisified by 
the data if and only if it, considered as a 1 x q(6 + 1) real 
vector, belongs to the left kernel of H a. For 6 > 6*(T) this 
kernel is always non-zero, so that no law of such degree is 
corroborated. It remains to prove that for 6 < 6*(T) there 
holds that generically rank(Ha)=q(6+l  ). Define the 
polynomial in the data p(d):= det (HA), where H A is the 
square submatrix of Ha consisting of its first q ( 6 +  1) 
columns. Taking into account the Hankel structure of HA it 
follows that the polynomial term obtained by the product of 
the elements on the diagonal of H A has coefficient + 1 in p. 
SO for 6 < 6*(T) the matrix Ha generically has full row rank. 

Proof of Proposition 5.1. The proof of these crucial results is 
rather technical and lengthy. We prove the parts of the 
proposition in the order (i), (iii), (ii), (iv). 

(i) Let ~ e B ,  N e N  and T = { T  I . . . . .  TN} be fixed. For 
simplicity of notation we assume that T, = [1, t~], i e[1, N]. 
For wle f~, i e [1, N], and 6=>0 defn¢ Wa e (Rq×r¢s) t by 
Wa(t):=[wl(t)''" WNA(t)], t e Z ,  and define Ha(Wa)• 
Rq ~6+l)×z by Ha(14)'~):=col(Wa, oWa . . . . .  oaWa). Then 
for observed data d={wi[r ; ie[ l ,N]}  the submatrix 
Ha • R q(a+l)xcr, defined in t[ic proof of Proposition 4.1, 
consists of those columns of Ha(Wa) which are fully 
observed. Define the set of dependency indices Da(Wa) and 
Da(d) as the set of indices of those rows in Ha(Wa) and 
Ha(d) respectively which are linearly dependent on the 
foregoing ones. Finally let H~ed(Wa) and H~ed(d) denote the 
matrices obtained from respectively Ha(Wa) and Ha(d) by 
deleting the rows with index in respectively Da(Wa) and 
Da(d). 

We will show that generically for all 6 • [0, 6°(T)] there 
holds Da(d ) = Da(Wa) if d = {W~lr,;i • [1, N]}. Assuming 
for the moment that this holds true, (i) is shown as follows. 
Clearly any unfalsified law r of degree 6 < 6*(T) for W a is a 
corroborated law for the data d, as in particular 
wilT, e (~(r)Jr ,)  = (Rq) "~ for i • [N a + 1, N]. It remains to 
show that every law r of degree 6 < 6 " ( T )  which is 
corroborated by d is also unfalsified by W a. Such a law r 
corresponds to dependency of a row with index j • [q6 + 
1, q(6 + 1)] of Ha(d ), denoted by p/(d), on the foregoing 
rows. Then pj(d)= aH'oCd(d) expresses the law r for some 
appropriate rowvector a. As j eDa(d ) there holds by 
assumption that j e Da(Wa). In this case the j th  row of 
Ha(Wa), denoted by Pi(Wa), can be expressed as 

r ed  pj(Wa) = a'H a (W~). This Implies that in particular Pi(d)= 
red red a'l ' l  a (d), and as H a (d)  has ful l  row rank it fo l lows that 

a '  = a. This shows that the law r is also unfalsi f ied by W a. 
Final ly we show that for  6 ~ 6 * ( T )  generical ly D~(d)= 

Da(Wa). The inclusion Da(Wa)cDa(d) is trivial, so it 
remains to show that generically Da(d)c Dn(Wa). If this 
would not hold true then there would exist an index 
j e [1, q(6 + 1)] such that j ~ Da(d)\Da(Wa) is not generically 
false. Let ]o be the smallest index with this property, let W a 
be such that Io • Da(d)\Da(Wa) and let H~ub(d ) and H~,b(Wa) 
denote the submatrices of respectively Ha(d ) and Ha(Wa) 
consisting of the rows with index in [1,jo]\Da(Wa), i.e. 
including ]0. Denote the number of rows of H,,b(d ) and 
l-l~b(Wa) by n. The foregoing would imply that 
rank(Hsub(d))<n is not generically false, and hence 
rank(H,,b(d))<n-1 for all data d. As 6 < 6 " ( T )  there 
holds that the number of columns of H,,b(d) is 
C a > q ( 6  + 1)>  n. Hence there exists a column with index 
m < n of H~,b(d ) which is generically linearly dependent on 
the foregoing ones. 

It is simple matter of exploiting the Hankel structure of 

AUTO~:~R 
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H~b(d ) to show that generic dependence of one colunm in 
H~u~(d) on the foregoing ones implies that generically also all 
its next columns are linearly dependent  on the foregoing 
ones. This simply requires a reordering of the numbering of 
the N observations, in case the next column concerns a next 
time series on the same interval {t, t + ~S] as the current 
column, or a relabelling of time, in case the next column 
concerns a time series on a next time interval It + 1, t + ~ + 
I 1. This implies in particular that generically 
rank(H~t,(W~) ) -< m - 1 <- n - 1, contradicting the fact that 
H,~b(W~) has full rank as its rows correspond to indices in 
[1 ,q(6  + 1)]\/),(14I,). This contradiction shows that 
generically an index j .  as indicated does not exist, i.e. that 
genetically D~ ( d) c D~ ( W~ ). 

(iii) Let the components  of w be ordered such that w = 

( ~ ) ,  where u consists of m input variables and v of output P 

variables of :~. Let W : =  (w~ . . . . .  w x ) e  H '~' and let 
d={w,  l r , ; ie[ l ,N]} .  

As all laws of H are unfalsified by W, it follows that 
P°(W) := f-] {H(r); r unfalsified by W} c H. This implies 
that p~>-p and that vk<-v, for all k e [ l , p ] .  As u is free in 
H, i.e. for every u e ( R " )  7 there exist y E(~P) ": with 

( ~ )  ~ H, it follows from Proposition 3.1 that generically the 

matrix in ~,,,(e,,~×:- consisting of the input rows of 
Ha(W):=coI(W . . . . .  o ' W )  has rank re(b+ I). Hence 

generically q - p ~  = lim 6 - t r ank  (H^(W))>-m. i.e. p~ ~ p .  

We conclude that generically p~ = p and v~. -< v. It remains 
to show that v~ 4= v. It is easily shown that for every H'  ~ IB 
there holds d im(H ' l l  ~ ~ ) = m ' r + ~ _ ~ v , ( ( ~ ' )  for all r ~  
v (H') .  If v~ = v, t h e n ' P ° ( W ) ~  H and dim (P ' (W)]I  t , I )=  
d i m ( H i t , , )  would imply that P*(W)II , ,I = Hal, ,I for all 
r->v~. Shift nvariance and completeness imply that 
P*(W) = H. It is shown in Heij (1992, Proposition 22(ii)) 
that for N < I(H) always P * ( W ) ~  H. Hence it follows that 
V~:~ V. 

(ii) It follows from (iii), for N < I, and from Theorem 3.2, 
for N ->/, that genetically p,~ = p. Hence generically no law 
on the input variables is unfalsified for W, = (w, . . . . .  w%) 
i.e. genetically j+nq~D~(W~)  for every j ~ [ l , m ] ,  n>-0 ,  
6->0. The proof of (i) shows that hence generically 
i + n q ¢ D ~ ( d )  for every . / ~ [ l , m ] ,  n->0,  6 e l 0 ,  6"(T)].  
This means that the variables u are also input variable in 
P~(d), hence p/-< p.  Suppose that p / =  p, then it remains to 
sh'ow that ~ < -  v~ for all k ~ [ l , p ] .  If p[ = p  then for every 
output variable v~, k • [ l , p ] ,  P~ accepts the corroborated 
law of least degree ~ .  There holds that either ~ ~ ~S*(T) < 
v~ or v~ :'< b*(T).  In the last case there evidently is a 
corroborated law of degree v~" for data d, hence ~ <- v~. 

(iv) Theorem 3.2 implies that generically p~.=p and 
v~. = v, and (ii) implies that it suffices to show that p/ >-p 

and v / > v .  The condition r t - > ( q + l ) ( v , + l ) - I  implies 

that 0"(T)-> v~, and as I(H)--<-p <-q it follows that N , - > /  
for all 6 ~ [0, v~]. The result in (i) shows that generically 
every corroborated law of degree 6 _<. v t for data d is an 
unfalsified law for W~=(w~ . . . . .  w~,,), and as N~>-I 
Theorem 3.2 implies that generically this is a law of .96'. So 
genetically the class of all corroborated laws of degree at 
most v~ is compatible with the data d. Definition 4.3 implies 
that hence generically P~(d)~ H, so p / - > p .  As moreover 
every corroborated law of degree b <- v~ is generically a law 
of H it follows that v~ <; ~ ,  k • [ I .p ] .  

Froo]of Theorem 5.2. If N < I then Proposmon 5. I (it) and 
(iii) imply that generically p;  < p  or v: #: v, so P~(d) :/: H for 
genetic data. Hence identifiability requires that N>-I. 
Moreover, r t should be sufficiently large, as for laws of 
degree 6-> r I the observations i e [ l ,  N] provide no 

additional corroboration. ["or N>-I and r , > ( q +  l ) ( v , +  

1 ) -  I it follows from Proposition 5.1 (iv) that generically 

p/ = p  and v : = v .  The proof of Prol~)sition 5.1 (iv) 
moreover shows that generically P~(d)~ :~. The reasoning 
given in the last part of the proof of Proposition 5.1 (iii) 
shows that then P~(d) = :~. 

Proof of Corollary 5.3. This follows from Theorem 5.2, as 
for a controllable system H =  H(R) rank (R(s , s  i)) is 
constant over C\{0}, so that 1(~)  = I. 

Proof of Theorem 5.4. Suppose that H e  B is (N, T) 
identifiable by P~ and let (N', T')>-(N, T). Let d ' : =  
{w, lr.;i ~ [1, N'I} and define d := {W,|r;i • [1, N]}. Accord- 
ing to Theorem 5.2 there holds N >~,  and as P~(d)= H 
genetically there holds 6*(T)-> v t. As (N' ,  T ' ) ->(N,  T) it 
follows that N'>-N>-I, ~ * ( T ' ) > v l ,  r : : > t ,  for ie[1,  N], 
and hence N~>-N~ for all 6<-b*(T) .  Proposition 5.1 (i) 
states that genetically every law of degree 6 <-- 6*(T) which is 
corroborated by d' is also unfalsified for (w~ . . . . .  w.,%), 
hence also for ( w ~ , . . . ,  wN~), and then it is corroborated 
by d, i.e. generically it is a law of ~ .  This implies that 
genetically PT(d') c H, so p~ >-p and v} <-- v. Proposition 5.1 
(ii) and Theorem 3.2 imply that hence p~ = p. As generically 
every law of degree 6 -< 6*(T) which is corroborated by d '  is 
also corroborated by d it follows that genetically v = v/-< v}. 
Hence P~d')  ~ H, p~ =p and v; = v. The reasoning given in 
the last part of the proof of Proposition 5.1 (iii) shows that 
then generically P~d') = H, i.e. H is (N' ,  T')  identifiable by 
P: 

Proof of Proposition 5.5. For all 6 -< b*(T') <- 6*(T) there 
holds N;, = N^ = N, and Proposition 5.1 (i) implies that 
generically the class of corroborated laws of degree at most 6 
for d coincides with that class for d ' .  This holds true 
especially for 6 := vl(PT(d')) , and Definition 4.3 implies that 
then P~d) c PT(d'). This proves (i). 

In order to prove (ii), let N >- N'  and W' = (w I . . . . .  wk), 
W = (w I . . . . .  wN). All unfalsified laws for W are clearly 
unfaisified for W' ,  so P*(W)~P*(W') .  It suffices to show 
that for r sufficiently large there holds generically that 
PT(d) = P*(W). We show that this holds true for 

r - > v t + m a x { I , q ( v , + l ) } .  Indeed, in this case b*(T) >_ 

vj, for all 6-< 6*(T) there holds N, = N. and Proposition 
5.1 (i) and Definition 4.3 imply that generically P~d)= 
P*(W). 

Proof of Proposition 5.6. Identifiability requires N - > I  and 

¢S*(r) ~_ vt, i.e. r ~- v I + max 1, ~ ( v  I + 1) . That these are 

also sutficient conditions follows from the proof of 
Proposition 5.5 (ii) and from Theorem 3.2. This shows (i), 
and (ii) is an immediate corollary. 

Proof of Theorem 6.2. Denote the observation interval by 
T = [ - r  I,r2]. If r j < 0  or r 2 < 0  then evidently the input 
variables u are modelled by P7 as being identically zero. 
t tence identifiability requires that r,  -> 0 and t 2 --- 0, and r~ 
and r z should be sufficiently large. Further, if m < I(H) then 
H is not identifable by any partial impulse response. Indeed, 
using the notation of Proposition 5.1, if the number and the 
components of the output variables are correctly identified. 
i.e. p / = p ,  then the reasoning given in the last part of the 
proof of Proposition 5.1 (ii) shows that v! "< v~. Moreover, 
as evidently p~ = p for every IR~ H m, the reasoning given in 
the last part of the proof of Proposition 5.1 (iii) shows that 
v~ <- v and v~ :~ v. We conclude that for rn < / ( H )  either the 
outputs are not correctly identified or v/:~ v, hence in this 
case ~ is not identifiable by P7 for any partial impulse 
response observation. 
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Next we show that ~ is identifiable from generic partial 
impulse response observations if m > ! ( ~ )  and the 
observation interval T satisfies the conditions r z ~ 2 n  and 

~, -> max { P  (n + 1), 2r2}. It is straightforward to show that 

these conditions imply that 6 * ( T ) > - n > - v t .  Using the 
notation of the proof of  Proposition 5.1 we state an auxiliary 
lemma. 

Lemma 
(i) There exist no corroborated laws for the inputs; 
(ii) for every I R • ~ t R  and all b < v  t there holds 

Da(IRlr) = D~(IR). 
Supposing for the moment that this lemma holds true, the 

theorem is shown as follows. The reasoning in the proof of 
Proposition 5.1 (i) shows that (ii) implies that every 
corroborated law of degree 6 -< v~ for the partial ly observed 
impulse response is also unfalsified for the full response IR. 
Hence in particular the collection of  all corroborated laws of 
degree 6-< v~ is compatible with IRIr ,  and especially the 
laws of a minimal representation of  ~ are corroborated and 
compatible, so P [ * ( I R I T ) C ~ .  Moreover,  (i) implies that 

p / = p ® ,  and (ii) that v /=  v®. T h e  reasoning given in the last 
part of  the proof of Proposition 5.1 (iii) shows that then 
P*(IR) = P ~ I R I r  ). According to Theorem 6.1 (ii) the fact 
that m > I ( ~ )  implies that generically P*(IR)  = ~ and hence 
also P:*(IR[T) = ~ ,  which proves the theorem• 

It remains to prove the lemma. If the system ~ is 
memoryless, i.e. the minimal number of  state variables is 
n = 0, then this result is trivial. So suppose that n > 1, and 
let (A, B, C, D) be a minimal realization of ~ ,  i.e. ~ = 

ax  B x 

with n : =  E~=l vj,, cf. Willems (1986, Theorem 6). Define 
the subspace ~ c R "  by l ° o : = A k ~ o i m ( A k ) ,  then the 
inverse of AI~ exists and will be denoted by ,4__. It is easily 
seen that l~m is parametrized by arbitrary initial conditions 
Xo := (x1(0) . . . . .  xm(0)) • ~ such that Y ( t )  = C A ' _ X o  for 
t < 0  Y ( O ) = C X o + D ,  and Y ( t ) = C A " " ( B + A X o )  for 
t > 0. As X o  is a polynomial function of IRI i  _, ._ tl it suffices 
to prove that the lemma holds true for generic X 0 ¢ ~1~' o . 
Using the notation of the proof  of Proposition 4.1 and 
defining X 1:= B + A X  o, it follows that for ~ <  b*(T)  the 
matrix H a is given by 

~ =  

0 

C A  "_'Xo 

0 

C A  "_1 - I X  o 

0 

C A  "I - aXo 

• . .  0 0 . . .  ! 0 . . .  0 

A a+ • . .  C .. I X  o CA~ 'Xo  . . .  C X o + D  C X t  " "  C A ' 2 - ' - a X I  

• . 0 0 . . .  0 0 . . .  0 

CA~_Xo ~,-t . . . .  . .  C A _  X o " C X  I C A X 1  C A ' 2 - a X I  

. .  0 ! . . .  0 0 " "  0 

• " C A _ X o  C X o +  D • • • C A ~ - I X t  C A a X t  " • • C A ' 2 - 1 X 1  

Denote Ha := [Hi, 1t2, H3] with HI • R q (a+°×" ( ' ' - ~ ) ,  H2¢ 
R q<a+~)x"~a+° a n d / / 3 •  R q(6+~)×"('2-a) 

We first show part Q) of the lemma. Let 6 <-6"(T)  and 
suppose that j • D ~ ( I R I T )  concerns an input variable. It is a 
matter of simple calculation to show that the conditions on 
the observation interval T imply that t t - 6*(T)-> n,  so that 
Ht contains at least n m-block columns. Let Z o : = A t ~ X o ,  
then an input dependency would mean that there exist 
vectors a and b, with 0 ~ b e I~", such that 
aT[co l (C ,  C A  . . . . .  CAt ' )]  • [Zo, A Z o  . . . . .  A ' l - a - l Z o ,  
A '~-~Zo]  = (0, bT) .  This is not possible as ~1 - 6 ->n. 

In order to show part (ii) of  the iemma, it suffices to 
consider dependencies concerning output variables. Suppose 
that 6 < v I and that j • Da ( IR  I r )  is a dependency concerning 
an output variable. The conditions on the observation 
interval Timply that ¢~ -> vl + n, i = 1, 2, so that both H~ and 
H 3 have at least n m-block columns• Taking account of the 
Hankel structure of HI and H3 it follows that the same 
dependency is obtained if ¢1 ---,°c and r2 ---,0o, so that 
j •D~( IR) .  This shows that for 6 - < v  I there holds 
D~(IR[T ) , -  D~( IR) .  As evidently D a ( I R )  c D a ( l R l r )  this 
proves part (ii) of the lemma. 


