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Summary. In many existing markets demanders wish to buy more than one unit
from a group of identical units of a commodity. Often, the units are sold simul-
taneously by auction. The vast majority of literature pertaining to the economics
of auctions, however, considers environments in which demanders buy at most one
object. In this paper we derive necessary and sufficient conditions for a set of bidding
strategies to be a symmetric monotone Bayes—Nash equilibrium to a uniform price
sealed bid auction using the “first rejected bid pricing rule” in an independent private
values environment with two-unit demands. In any symmetric monotone Bayes—
Nash equilibrium, all bidders submit one bid equal to their higher valuation and
one bid lower than their lower valuation. We characterize the equilibrium and
derive the exact amount of underrevelation in the lower bid.

1. Introduction

Auctions are used in every part of the world to transact trillions of dollars worth
of objects every year. The omnipresence of auctions has certainly not gone
unnoticed by economists who have generated a huge literature on the subject. Most
of the literature focuses on environments where a single seller has one or more
indivisible object(s) to be sold to multiple bidders, each of whom wants to buy at
most one of the objects. In the first major paper on the subject, Vickrey (1961)
introduces the second price sealed bid auction and its multi-unit generalization,
the uniform price sealed bid auction with “first rejected bid” pricing. In an
environment in which each demander independently draws one valuation, known
only to her, from a distribution which is known to all demanders, these auctions
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are demand revealing. Each bidder has a dominant strategy to submit a bid equal
to the value she has drawn.!

In most markets where auctions are currently used, however, it is common for
buyers to wish to buy more than one unit of the commodity. If a demander wishes
to and is permitted to purchase more than one unit, non-uniform pricing is required
to induce demand revelation (Vickrey (1961), Forsythe and Isaac (1982), Weber
(1983)).2 The demand revealing auctions are quite complex and in many appli-
cations the simplicity of a uniform pricing rule may be preferred or required.
Assessing the consequences of using a uniform price auction and the resulting
strategic behavior on the part of bidders requires an analysis of the equilibrium
properties of the particular auction applied. Characterization of equilibria for a
simple uniform price auction is thus the focus of this paper.

In the next section we model a uniform price sealed bid auction with “first
rejected bid” pricing in an independent private values environment with two-unit
demands. In theorem 1, we list necessary conditions for a bidding rule to be a
symmetric undominated strictly monotone Bayes—Nash equilibriura. In equili-
brium, each demander bids his valuation for his higher-valued unit and less than
his valuation for his lower-valued unit. The exact amount of underrevelation is
derived in lemma 2. The bidding function must be separable, in the sense that
each bidder’s lower bid is independent of his higher valuation and vice-versa. In
theorem 2, sufficient conditions for a bidding function satisfying the conditions of
theorem 1 to be an equilibrium are given.

2. The uniform price sealed bid auction

In this section we consider the theoretical properties of a simple uniform price sealed
bid auction within a two-unit demand independent private values environment.
Necessary and sufficient conditions for a bidding function to be a symmetric
monotone Bayes—Nash equilibrium are derived, and an example is provided.

2.1. The model

Let there be k (> 1) identical units to be sold and n + 1 (> 1) demanders indexed by
i=1,...,n+ 1. Each demander draws two valuations independently from a fixed
and common distribution y(v), where y(v) has strictly positive density on [0,5] < R*
and y(v)e C%. Order the two values from higher to lower and index them 1 and 2
respectively, so that v > vf, > 0 are the valuations of demander i. Define G(v}, v}) =
Prob (v, <v',v, <)), where v, and v, are a pair of values independently drawn
from y(v). Let g(v,, v,) denote the probability density function of G. Since g is a joint
density of order statistics drawn from a distribution with positive density on [0, 7],
g(v,,v,) > 0 for all v,,v, such that 0 <v, <v, <7. All demanders are risk neutral.
Valuations are private information but y, n and k are common knowledge.

! Forsythe and Isaac (1982) show that the second price auction is the only demand revealing direct
mechanism in the single-unit environment.
2 Al of the demand revealing auctions are variations of Groves mechanisms.
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2.2. The game

All demanders submit two non-negative bids. The highest k bids are accepted and
the corresponding demanders pay a per-unit price equal to the k + 1st highest bid.
A tie for kth highest bid is broken by randomly allocating a unit to one of the tied
demanders. A bid which is equal to zero is never accepted.

3. Symmetric equilibria
3.1. Necessary conditions

In theorem 1 we derive a necessary condition for a bidding strategy to be a
symmetric monotone Bayes—Nash equilibrium. Let a bidding function, B(v,,v,) =
(B,(vy,v,), B,(v,,0,)): [0,6]*—>R**, map two valuations into two bids. Two
definitions are required for the statement and proof of the theorem.

Definition 1. A bidding function, B(v,,v,) is type M if:
1) B(0,0)=(0,0),
2) B is continuous in v, and v,,
3) B,(0,0) = B,(p, ),
4) 3 a function 9;(v.) such that B;(v,,v;) = 0; iff v; < 6;(v.), for z #j; z, jel, 2.

0B. 0B;
5) a—J exists and is >0 if B;>0 and -éJ exists and is >0,z #j if B;> 0.

v; v,

Definition 1 describes a notion of continuous monotonicity. B, and B, are
monotone in both of their arguments and strictly monotone in one of them.
However, 1) and 3) impose restrictions on the bidding function which make type
M differ from more standard notions of monotonicity. The type M class allows
bidding strategies which specify that B;(v,v,) =0 for all v, <4, and v, < é,, for
any 9,€[0,0] and any 0,€[0,7]. It includes, as a special case, bidding functions
which are strictly increasing in v; and v, (where 0 = ¢, = #; ). The important concept
of separability is described in definition 2.

Definition 2. A bidding function is separable if B(v,,v,) = (B,(v,), B5(v,)). That is, a
demander’s bid for his higher (lower) valued unit is independent of his lower (higher)
valuation.

We also introduce some additional notation, the functions H, T, and F, which are
functions of order statistics that help make the statement and proof of theorems 1
and 2 more concise. Let

n! !
H(z,,z,,G,mn )= m(f ‘[ Ul,vz)dvzdm)

<Jf g(vy,0,)dv,dv,) <J‘J g(v,,0, dvzdul> m—l. (1

The function H(-) is the probability that in a sample of size n drawn from g(v,, v,),
exactly / observations have the property that (v; <z,, v, <z,), exactly m obser-
vations have the property that (v, > z,, v, <z,) and exactly n —m —[ have the
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property that (v, >z, v, > z,). Let

Zm,l;m+ll=2n—k+IH(Zl’ZZ’n’ m’l)

- 2
2n aH aH
Zq=2n—k+2 mlim+21=q + -

0z, 02,1,

T(le22’23>Ga n, k) =

The function T(-) describes the amount by which bidders underbid on their lower
valued unit in a symmetric Type M equilibrium. Let

(F,'(x)| B) = Prob (at least v bids made by bidders other than i are less than or equal
to x if all bidders except for bidder i use B).

(F7'(x)|B) is defined for v=0,...,2n. For v> 0, (F(x)|B) is the cumulative
distribution function of the vth order statistic of bids made by n randomly chosen
demanders using strategy B. Let f(x)|B denote the corresponding density
function.

Theorem 1. A bidding function is a symmetric undominated type M Bayes—Nash
equilibrium only if it equals B(vy,v,) = (B,(vy, v3), B2(vy, ;). where:

Bilvy) =v, (3)
and:
0 v, < v}
Uy} =< _ 4
Falva) {ﬂz(vz) vy > 0%, @
where:
5_ *
ot = T(O, o2, 020D n,k> 5)
v,
and B, solves the differential equation:
_ _ 8B, (v
Falvy) = v, — T(ﬂz(vz), 0y, P22 n,k>, ©)
v,
with the initial conditions:
vi=0; ifn>k~—1
B,0)=w ifn<k—1
B,(0)=0; ifn=k—1. (7

Theorem 1 is proven using lemmas 1 and 2, which are stated and proven in this
subsection and lemmas 3-7 in the appendix.

Lemma 1. If a bidding function B(v,,v,) =(f1(vy,0,), B5(vy,0,)), is a symmetric
undominated type M Bayes—Nash equilibrium, then f,(v;)=v,.

Proof: Suppose all n + 1 bidders are using the same equilibrium bidding function
B*(v,,v,). For notational ease, let F; *(x) = F(x)| B*. Since B* is symmetric, y is
common, and valuations are drawn independently, F ~"*(x) = F¥(x); Vi. Bidder ’s
expected profit is given in equation (8).



Equilibria in a bid auction 341

L
Eﬂ'=j (Ul - 2,, k+])f;n—k+1(M2n~k+1)dM2n*k+1

J (U +vz M,y i) 5k s My 5)dM
_bl)(F*nka(bl) F2n k+z(bi2))- (8)

where M is the vth lowest order statistic of bids made by bidders other than bidder
i and bj. is the jth highest bid made by bidder i. The first term indicates the profit
when the purchase price is between i’s two bids, in which case the purchase price
equals M,,_,.,. The second term gives the profit when both of i’s bids are
accepted, in which event he obtains two units at a per-unit price of M,,_, ,, and
the third term gives the profits when i’s lower bid is the k + 1st highest, in which
event he receives one unit and pays a per-unit price of b,. In all other cases, i’s profits
equal 0.

In equilibrium, bidder i’s two bids, b and b, are chosen to maximize (8) subject
to b\, >0, b, > 0. The first order necessary (Kuhn-Tucker) conditions are given in
equations (9) and (10):

OET . .
ob =y —b)f 3 (0D =0; by >0,
<0; b =0, (9)
aEﬂ.'i i i
ob! = (vh ~ by 5, s (b)) — (F3, k1 (B5) = 3,y 5(03)=0; b, >0,
2

<0, bi=0. (10)

If f% _,.,(b1)>0, then B* is separable and B¥(v,)=v, for v;>0. If
fZ"_kH(b’)—O, then there can be more than one solution but any strategy is
weakly dominated by B¥(v,)=v,. b} <v} results is profits lower than b} =v} if
bl <M,,_,., <v, and equal otherwise. b} > v’ results in profits to bidder i lower
than b| =o' if v\ <M, _, ., <b\ and equal otherwise. []

We have shown that in equilibrium, each bidder’s higher bid equals his higher
valuation. We derive the lower bid in lemmas 2-7. Lemma 2 contains the most
important property of the lower bid, that it must satisfy the differential equation
in (6), which describes the exact amount of strategic underbidding. The proof of
lemmas 3-7 establish initial conditions and boundary values for equation (6). We
cannot establish one initial condition that always holds. However, given the number
of bidders and units sold, we can always derive one initial condition. The differences
are illustrated in figure 1.

Figure 1 depicts the general form that 8,(v,) may have. There are three possible
cases. In the first case, in which the number of bidders if strictly less than the number
of units being sold, that is, n < k — 1, it must be the case that §,(0) = . It is possible
that v} >0 and f,(v3) =0 for all v5 < v%. In the second case, where n>k — 1, v}
must equal 0. Thus #,(v,) is required to be strictly monotone at all values of v, from
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n <kl n> k-1

v - v+
B,y
B,|(y) B,|(vy)
B,(v,)
- r 4“_,_ —
Yy v (0,0) v v
V2 V2

Figure 1. 8,(v,) under different values of n and k.

0 to . In the third case, when n = k — 1, it must be the case that $,(0) = 0. However
v¥ may be strictly greater than 0 so that for all v9 < v¥, §,(15)=0.

Lemma 2. If B* is a Type M undominated symmetric Bayes—Nash equilibrium, then
B3(v1,0,) = Ba(vy); where B,(v5) = B,(v,); for vy > v} and B,(v,) solves:

— _ OB
ﬁZ(UZ) =U; — T(ﬂZ(”Z)? U3, %s G7 n, k>

Uy
Proof: The first order conditions require b} = v}, — (F%,_, ., (b3) — F%, _,,,(b5))/
3 _is,(b%) for any symmetric equilibrium bidding function B*. By lemma 10,
% _iso(bh) > 0so the last expression is defined. Since B* is being used by all players
and B¥(v,) = vy:

Prob (v, < B (b)) = Prob (u; < b\). (11)
O0B*
Also, because 0B (v) > 0 for v, > 6, and B¥(v,) =0 for v, < d,:
Uy

Prob (B%(v,) < b)) = Prob (v, < V,(b})), (12)

where the function V,(x):[0, B¥(8)]— [0,,7], and V,(x) = B, '*(x). Consider the
probability that a randomly drawn bidder, named y # i, submits 2 bids that are less
than or equal to b,. The probability that two of y’s bids are less than b is the
probability of the following event:

‘ ) Vabl) (b
Prob (¥} gb;,b;sb;)=f J g(v,,v,)dv, dv,. (13)

0 ¢

Similarly, exactly one of y’s bids is less than or equal to b}, when either of the two
following events occurs:

Vabl) (6
Prob(byl>b"2,b§sbi2)=J J g(vy,v;)dv,dv,, (14)

0 blz
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or

Prob (b} < b}, b} > b)) j f g(vy,v,)dv,do,. (15)
Vb))

The last expression equals 0 because it requires that (v} < b, v} > V,(bL)),
an event that occurs with probability zero; since (F%, _,, (b5)—F%,_,.,(b5)/
% _s,(b5) =0 (because the numerator is a probability and the denominator is a
density), it must be the case that V,(b,) > b’,; but by assumption v} >v%. The
probability that demander y makes 0 bids less than or equal to b}, is given by

Prob (b > b}, b} > b)) f j (vy,v5)dv,du,. (16)
Vz(b) l7
Suppose now that each of the n bidders other than bidder i draws one pair of
valuations from G(v,,v,). Exactly I of the buyers make two bids less than or equal
to b}, exactly m buyers make one, and exactly (n —m — I) bidders make zero bids
less than or equal to b%,. The probability of this event is given by:

Prob (exactly | observations of B¥(v[ ) < b}, exactly m+1 observations of
B}(v;") < b))

n! Va(by) b .
:mfﬁyq L g(vl,vz)dvlduz>
Vz(b ) 5 —_
<J' f U1,Uz)dl)1dl)2> (f J‘ g(vl,vz)dvlduz> ) (17)

Vz(b ) b

The previous expression equals H(b%, V,(b5), G, n,m,l) where H is as defined in
equation (1). It follows that:
(F5 e (B5)— F%, (b)) = > H(b, V,(b), G, n,m, 1), (18)
Im;2i+m=2n—k+1
2n

F3_ )= ¥ Y HGLV,0,).Gnml),  (19)
g=2n—k+21Im2l+m=gq
and
2n
_ oH  3H v,
* _ bl — . 20
i+ 2(03) qulz—k+21'M32[+m=q(abl 5V @b') 20

The last three equations imply that:
: Vo\~!
(F;:n k+1(b‘) Zn k+2(b ))/f;cn—k+2(blz) (bIZa Vz(bz) (abl > ’Gv n’k>' (21)

Since all bidders are using the same strategy, b, must equal B%(v%). Therefore:

. . 0 ~1 .. O0B*
T(b;l@(b;)(%f) ,G,n,k>=T<BZ‘(U’2),U}_,002(02),G,n,k>. 22)

2 Uy
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Using equations (10), (21) and (22), we see that equation (6) and the second part of
equation (4) must hold. [J

Proof of Theorem 1. The proof follows directly from lemmas 1-7. It has now
been shown that B*(v,,v,) is a type M undominated symmetric Bayes—Nash equi-
librium, only if it equals 5. [

There is underrevelation on the lower-valued unit for the following reason: since
there is positive probability that a demander’s lower bid is the k + 1st highest, he
has some incentive to underbid for it in order to lower the price he pays for the unit
he receives (the fact that the lower bid is the k + 1st highest implies that the higher
bid is among the k highest, and therefore the demander receives exactly one unit).
There is no incentive to underbid on the higher-valued unit, since in the event that
the demander’s higher bid is the k + 1st highest, he wins no units, and his profits
are zero. Overbidding is always a dominated strategy.

The two symmetric equilibrium bids are separable, indicating that the extent of
underrevelation on the lower unit depends only upon the rank of the unit, the
distribution of valuations, the number of bidders and the number of units sold, and
is independent of the bidder’s higher valuation and his higher bid. The independence
results from the fact that the price paid is independent of the amount of the higher
bid, and therefore the gains from lowering the final price depend only upon how
many bids are accepted in the event that the lower bid is the k + 1st highest.

3.2. A simple example

Suppose (v} is uniform on the interval from 0 to 1, n+ 1 =2 and k = 3. We know
that B,(v')=v} in an undominated symmetric equilibrium. The calculation of
B,(vh), which equals v}, — T(-), proceeds in the following manner. First note that
—L = 1. Using the fact that v, > v,, we can derive the following equation
'm!(n—m— D!
which gives the probability that a bidder makes exactly two bids less than or equal
to b

Va(bl) (b% b, bl ‘
J J g(vl,vz)dvldvzzj J Q(Ulsvz)d%dvzz(blz)z- (23)

0 0 o 0

The probability that a randomly chosen bidder makes exactly one bid less than or
equal to b}, equals:

v o | o

j j g(v1,v)dv, dvy = 2V5(bh) — (Va(b)))* — (by)*. 24
0 b;

and again using v; > v,, we can derive the probability that a randomly chosen

bidder makes exactly zero bids that are less than or equal to b’,. The probability is

given by:

j J‘ g(v,,vy)dv dv, = J‘
v

Valbl) ¥ b

Jv gy, v)dv,do, = (1 — Vz(biz))z- (25)

2(b5) ¥ Va(bh)
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The numerator of T equals the following expression (note 2n —k + 1 =0):

H(b,, Vy(bY), Glvy,v,),n,m, D) = (1 — V(b)) (26)
(mlim+2l=2n—-k+1)
Next, we derive the denominator of T. F,, , ,(b}) equals (b})*+ 2V,(b) —
(V,(b5))? — (b)? and therefore f,, _,, ,(b}) = (2 — 2V,(b%)) V', (b}). Since the equili-
brium is symmetric, V,(b5) = v},. The solutions to the first order necessary conditions
are given by:

b =Bi(v)=1vi; b >0,

>vi; bh =0, 27)
. . (1—1vh)? .
by = Bolog) = th — — 2 b0,
=Pl =0 o el
. 1— iy2 )
> ( Uz) : b,z =0, (28)

2 R- 2V 0)
with the initial condition 8,(1) = 1 because n < k — 1. Solving for V,(b}) we obtain:
11—
2(vh, —bh)
A solution can be found by setting b}, = (v})* which implies that V,(b5) = (b5)'/* and

also that V7, = 3(v,)~'. We obtain:

B(Uhuz):(l’u("z)z) (30)

Vi(by) = (29)

3.3. Sufficient conditions

In theorem 1 we provided necessary conditions for a bidding function to be a
symmetric undominated Type M Bayes—Nash equilibrium. In theorem 2 sufficient
conditions are given for f§ to be an equilibrium. There are two conditions: A and B.
Condition A insures that the appropriate second order conditions are satisfied; if
all other demanders use f, the payoff function of bidder i is concave in bidder i’s
strategy. Condition B insures that £ is type M.

Condition A: f satisfies Condition A if:

" 0H 0*W, @&*H _0H 0H oW, 0*H [ow,\?
> 22—t
g=2n—k+2 ml;2l+m=q aWZ @bz abz abz aWZ abz aWZ abZ
2n
0H OH oW
#(Wyby)—byy< ¥ <’+—2> 31
q=2n—k+1mi2i+m=q \Oby OW, 0b,

for all b, such that 0 <b, <o where W,(x):[0, 8,(8)]— [v¥, 7], Wa(x)= B, (x),
where H = H(b,, W,(b,), G,n,m, 1)

Condition B: g satisfies condition B if:
1 —dT/dv,



346 C. Noussair

Theorem 2. Suppose that B satisfies (3)—(7) and conditions A and B. Under condi-
tions A and B, the bidding function B(vy,v,)=(B(v{,0,), B2(v1,0,)) is a symmetric
undominated Type M Bayes—Nash equilibrium.

Proof: The theorem is proven in lemmas 8 and 9 in the appendix. [

It can be readily verified that the second order conditions hold for the example
in the last subsection.

4. Summary and concluding remarks

We generalized some important theoretical properties of a uniform price sealed bid
auction with “first rejected bid” pricing to an independent private values environ-
ment with two-unit demands. We considered a class of bidding functions called
type M, essentially a general type of continuous monotonicity. A necessary condition
for a bidding function to be a type M symmetric undominated Bayes—Nash equili-
brium was derived. The dominant strategy equilibrium of the single-unit demand
environment results as a special case. In any equilibrium, there is underbidding for
each demander’s lower-valued unit, as demanders, even as they behave non-
cooperatively, underreveal demand in an attempt to shift the market price in their
favor. An interesting property of type M equilibria, separability, is also obtained.
A sufficient condition for a solution to the necessary conditions to be an equilibrium
is also deduced and an example of a type M equilibrium is provided.

Clearly, intuition which follows only from knowledge of equilibrium properties
of uniform price sealed bid auctions in the single-unit demand environment is not
valid when considering multi-unit demand environments. Although this has been
known for some time, this paper extends previous results by characterizing the
precise extent of strategic behavior in a simple uniform price auction in a multi-unit
demand environment.

A. Additional proofs

8B (v*
Lemma 3. f,(03)=0; vi= T<O, vf,%, G, n,k>.
Uy
. L ; oV,(0)\ ™!
Proof: Equation (10) implies that for b, =0, 0> V,(0) — T(0, V,(0), )
2

AV,(0)\*
G, n, k). The inequality holds with equality if V,(0) = T(O, VZ(O),< 8%215 )> ,G,n, k),
which implies that V,(0)=v%. O 2

Lemma 4. B,(v,)=0; if v, <v}.

oV, !
Proof: Consider any v <v%. Then 0> v} — T(O, VZ(O),< 6129’( )> ,G, n,k). By
equation (10), B¥(v3)=0. [ 2

Lemma 5. v¥=0;ifn>k— 1.
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0B3(v3)

Uy
the last equation, f%,_, , ,(0) > 0. If the numerator is equal to zero, it would imply
that v% = 0. The numerator is:

Proof: Consider v* = T(O, v3, ,G,n, k). By lemma 10, the denominator of

t
H(O, V,(0), G, n,m, 1) = v

Lm;2l+m=2n—k+1 l,m;21+m:2n—k+1”m!(n_m_l)!

~0 [ V2(0) L/ 5 [V2A0) m
*(J f g(vl,vz)dvzdm) (J J g(vl,vz)duzdm)
0 Jo 0J0
v *v n—m-—1
*<J J g(vl,vz)dvzdm) . (33)
0 v V,(0)

The last expression equals 0 unless [ = 0. If | equals 0, the expression equals:

n! EJ\Vz(O) d d >m<J‘ﬁJﬁ ( )d d >n—m (34)
o . Ydv,dv, .
m=z;k+1m!(n—m)!(Jo 0 g0Mvadn, 0 Vz(mg :

Since m >0, the last expression equals O if n>k — 1. Therefore, v¥ =0 when
n>k—1. [

Lemma 6. §,(5)=0; if n<k—1.

6B*( D)
U,
lemma 10. If viz = p, the numerator of T equals:

Proof: Consider T<B*( D), U, ,G,n, k). The denominator of T is positive by

!
H(B(5),5,G,n,m, ) = .
Lm2l+m=2n—k+1 Lm2itm=2n—k+1 Iml(n—m—1[)!
B (v) il m
<J J Uhvz)dvzd%)(‘[ J g(Ux,Uz)dl’sz1>
B0
—m—1
(J J g(vy,v,) dvzdv1> . (35)
BV

The previous equation equals O unless n=m + L It also equals 0 unless 2/ + m =
2Zn—k+1.n=m+1land 21+ m=2n—k + 1 cannot be satisfied simultaneously if
n<k—1since Ql+m=2n—k+1) < Q+n—I1=2n—k+1) = (=n—k+1).

oB%
Since [ > 0, it follows thatif n < k — 1, T(B*( v), D, ®) ,G,n, k> = 0 implying that
BXp)=0. 0O b2
Lemma 7. $,(0)=0;if n=k — 1.
_ = 0B*(0)
Proof: Define B(0) to be: B%(0) = 0, B*( ), ,G,n,k ). The numerator
5)
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of Tequals:
= n!
H(B%(0),0,G,n,m,l) =

Lm;2l+m=2n—k+1 l,m;21+m=2n—k+1l!m!(n_m_l)!

B3(0) o L/ (o 0 m
*(J‘ J Q(Uhvz)dvde) <J. f Q(Ul’vz)dvzdvl>
0 0 Bi0) Y0
n—-m—1
(J J g(vy,v,) dvzdm) . (36)

B 5(0)

Equation (36) equals zero unless [ = 0 and m = 0. If | = m = 0, (36) equals zero unless
2n—k+1 equals zero. If 2n—k +1=0, then n#k — 1 if n>0. Therefore, for

dB*(0
n=k—1, T(O B%(0), 20 ,G, ,k) 0, which implies that B*(0)=0 when n =
k—1. 02

Lemma 8. If condition B holds, § is Type M.

Proof: Suppose condition B holds. Clearly $(0,0) = (0,0) and § is continuous in v,

and v,. #,(v,) =0, 8,(v)) =% and B(¢,0) =0 = B,(v,79). Since f,(v,)=v, — 'Bl
U1
Now consider f,(v,) = v, — ([32, vy fz G,n, k> for §, > 0. The partial derivative
Uy

of i, with respect to v, satisfies:

% =1 _E%Z _ﬂ LZ@T_@% > (37)

ov, op,0v, ¢ov, 1+08T/op,

0By _ 0B,

=0. O

Finally, since f§ is separable: — =
v, Ovy

Lemma 9. If conditions A and B hold, f§ is an undominated Type M symmetric
Bayes—Nash equilibrium.

Suppose all bidders except for bidder i are using the bidding function f(v,, v,).
The objective function for bidder i is given by:

En[ﬁ j M,, k+1)f2n k+1(M2n—k+1)dM2n—k+1

+J W+ 05 =2M ) ke s My )M,
0

+(Ui1_biz)(an-—k+1(bi2)_an—k+2(biz)) (38)

where F (x) = F | f. Bidder i chooses b’ and b}, to maximize the objective function
subject to b} >0, b, > 0. By lemma 11, the objective function is twice differentiable.
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The first order necessary conditions are given by equations (39) and (40):

JEn . . . )
6bt _( ll_bll)f2n~k+1(b11)=0; b11>0a
<0, b;=0, (39)
oET _ _
abi ( bl )on k+2(b ) ( 2n— k+1(b ) 2n*k+2(b12))=0; b;'>0,
2

<0; b,=0. (40)

The second derivatives are (omitting the superscript designating demander for
notational ease):
J0*En

=0 = D) ks 10D = F o1 (1), (1)
obs
2 2
ﬁEnzaEn___O’ )
0b,0b, 0b,0b,
0*En ,
‘2=(02_bz)fzn—k+z(b2)’"fzn—k+1(b2)- (43)
ob3
2 O*E
The second order conditions are then: aaf <0, and 273 < 0.
1 2

It follows from (39) thatif f,, _, . ,(b5)>0, thenb, =v, forv, >0.1{f, _, . ,(b})=0,
then there can be more than one solution to (39) but any strategy is weakly
dominated by b, = v,. Therefore b} = f,(v}) = ¢. Since f being used by all players
besides i and ,B'is type M, we can derive the following equation Prob (exactly l obser-
vations of §,(v;?) < b}, exactly m + | observations of f§,(v;?) < b%)

n! Wby (b .
mq J g0, v,)dv, duz>
Watbh) o
(f f g(Up Uz dUldb2> (J J g(Ul, Uz dl] dl?z) . (44)

W(b) b

The previous expression equals H(bh, W,(b), G, n,m, 1), and it follows that:

. . . . (AW, (b)\
(an_k+1<b;>~Fz,,_ku(b;))/fzwku(b;):T(b;,wzwz),( ‘.2)) ,G,n,k).

ob,,
(45)
We can rewrite the first order condition in (40) for b5 > 0 as:
C . [ OWL (B!
b = of, — T<b'z, AL (;azﬁ 2’) G, n,k). (46)
2

One solution to the last equation is to set b, = f,(v}):

-1
ﬁz(v3>=v2—T<ﬁz( )Wz(ﬁz(uzn( ﬁ2> ,G,n,k>. (47)
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Recailing the fact that W(x) = 8, ' (x), we see that:

. Of,(0h)
ﬂ( )‘—U “T<ﬁ2( )7 U5, ﬁz 2,G,}’l,k>. (48)
v,
The first order conditions also imply that for b}, = 0:
03 Wy(0) - (ﬁz( ). ﬁz,G,n,k) 9)
002
The last inequality holds with equality when W,(0)=v%. Now consider some
v; < vl
ow. -t
0>u2—T<0, 2,( 2_(0)> ,G,n,k>. (50)
ob},

By (40), by(v3) = B, (v

Consider v} = T(O, v¥,—= .By Lemma 10

aﬁz(vz) G k) F2n—k+1(o)*F2n—k+2(0)
Uz San-i+200)
Son-r+2(0)>0.Also,asinlemma 5, F,, . (0)—F,, ,,,(0)=0ifn>k—1imply-

ing that v* = 0ifn > k — 1. As in lemma 6, T(ﬁz() 8’;2( 9 LGk ) =0ifn<k—1,

Uy
_ 0
and therefore B,(2) = vif n < k — 1. Finally, asinlemma 7, T ( $2(0),0, gzv( ) , G, ,k>
— 2

0, implying that (0)=0,forn=%k — 1.

We have now shown that f(v,,v,) is a solution to the first order conditions in
(39) and (40). If the appropriate second order conditions hold, f§ is a best response.
The second order conditions are:

0*En
> :(Ul_bl)flzn—k+1(b1)_fznvk+1(b1)<0 (51)
0b?
O’En
b2 :(Uz_bz)flzn~k+2(b2)_fz,,~k+1(b2)<0~ (52)
2
*En . ) .
5 <01s satisfied if by = v, and f,,_,,,(b,)>0.1f f,, _, . (b;)=0, then many
1 2En

solutions are possible but b, = v, dominates any solution that has b; # v,. 3 <0
is insured by condition A. To see this, consider: 2
2n
. éH O0H oW,
e 2By = —+ = |
f2n }(+2( 2) Z Z (éblz aWZ ébgz >

g=2n—-k+2 ml;2l+m=gq

(53)

Equation (53) implies that /%, _, . ,(b})
& W, & W,  0*H (oW, \?
(LH oW, OH_ ,O0HoH W, (6 .2> ) (54)
oW, ob:  ob? ob, oW, ab, oW\ ab,
and it is now apparent from equations (31), (52) and (54) that assumption A is

lﬂ

gq=2n—k+2 2ltm=gq

satisfied if and only 1f

<0 for all b, such that 0 < b, <&. (Ex’ is strictly ‘
2
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concave in b}, when all demanders besides bidder i use the strategy ). We have now
shown that f is a best response to itself under conditions A and B. [

Lemma 10. If all n players besides bidder i use a bidding function that is type M and
undominated, then [ ,(x) >0 for 0 < x < B,(v, ).

Proof: Recall that F, equals Prob(At least [ bidders make 2 bids that are less
than or equal to x, at least m + [ bidders make at least 1 bid that is less than or
equal to x).

The probability that a randomly chosen bidder makes 2 bids that are less than
or equal to x is given by:

J J g(vy,v,)dv,do,. (55)
0 JO

The term in (55) follows from the fact that if B is undominated, that v > v >
B,{v},v%) (bidding an amount higher than one’s valuation is dominated). The term
is clearly strictly increasing in x if B is type M and undominated for x such that
0 < x < 0. Now consider the probability that a randomly chosen bidder makes at
least one bid that is less than or equal to x. The probability equals:

1— Jv Jv g(v,,v,)dv,dv,. (56)

B, (walvi =x) ¥ B} Y(va2lvi =x)

The last term results from the fact that underbidding on the higher valued unit is
dominated by bidding an amount equal to the higher valuation and from the fact
that v% > v%. This last equation is also strictly increasing in x for all x such that
0<x <o It follows that F,(x) is strictly increasing in x and that f,(x)>0;
0<x<B,(0,0). I

Lemma 11. Ex|f is twice differentiable.

Proof: By assumption yeC? It follows that g(v,,v,)eC’, since g(v,,v,)=
2y(va)dy(v2)(y(vy) — y(v2))dy(v,). Since g(o,, vz)GC‘JS 09(v1, v2)dv,doy 1s twice dif-
ferentiable with respect to x and y and thus continuous in x and y. It follows that
H(x,y, G,n,m,l), the product of twice differentiable functions, is twice differentiable
with respect to x and y, and thus continuous in x and y. Therefore, F (x)=
Zj';v Zl,m;21+m=q H(x, B~ (x), G,n, m, ) is twice differentiable in x. This implies that
f,(x) is differentiable and continuous in x.

En'(b,b}) is differentiable in b} and b) because an anti-derivative of a
continuous function is differentiable. Clearly therefore, the first derivatives are
differentiable in b} and b},. We have now shown that En‘(b’,b) is twice differen-
tiable. [
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