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Convergence Property of the Iri-Imai Algorithm 
for Some Smooth Convex Programming Problems 

S. Z H A N G  l 

Communicated by Z. Q. Luo 

Abstract. In this paper, the Iri-Imai algorithm for solving linear and 
convex quadratic programming is extended to solve some other smooth 
convex programming problems. The globally linear convergence rate of 
this extended algorithm is proved, under the condition that the objec- 
tive and constraint functions satisfy a certain type of convexity, called 
the harmonic convexity in this paper. A characterization of this con- 
vexity condition is given. The same convexity condition was used by 
Mehrotra and Sun to prove the convergence of a path-following 
algorithm. 

The Iri-Imai algorithm is a natural generalization of the original 
Newton algorithm to constrained convex programming. Other known 
convergent interior-point algorithms for smooth convex programming 
are mainly based on the path-following approach. 

Key Words. Convex programming, interior-point methods, Iri-Imai 
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1. Introduction 

Since Karmarkar (Ref. 1) presented the first polynomial time interior 
point algorithm for linear programming, a large number of research papers 
have been devoted to the interior point method. The focus of the researches 
was first on developing theoretically and/or empirically more efficient 
interior point algorithms for linear programming. In this respect, mainly 
four classes of interior point algorithms have been developed. They are: the 
projective method (represented by the original Karmarkar's algorithm), the 
potential reduction method [e.g., Ye (Ref. 2), Freund (Ref. 3), and 
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Gonzaga (Ref. 4)], the affine scaling method [cf. Dikin (Ref. 5), Barnes 
(Ref. 6), and Vanderbei et al. (Ref. 7)], and the path following method [cf. 
Renegar (Ref. 8), Megiddo (Ref. 9), and Den Hertog et al. (Ref. 10)]. 
Some potential reduction algorithms and path following algorithms are 
shown to have better time complexity than the original Karmarkar al- 
gorithm. Numerical results show that the interior point method is indeed a 
promising approach for linear programming. Some of these algorithms 
have been proved to work for convex quadratic programming as well. 

More recently, the interior point approach has been used to attack 
some combinatorial optimization problems [cf. Karmarkar (Ref. 11) and 
Mitchell (Ref. 12)] mainly based on the projective and the potential 
reduction methods. Other researchers have extended the interior point 
method to solve some convex programming problems. For the references of 
the second approach, see Jarre (Ref. 13), Mehrotra and Sun (Ref. 14), Den 
Hertog et al. (Ref. 15), and Den Hertog et al. (Ref. 16). To the best of the 
author's knowledge, only the path-following method has so far been 
successfully extended to solve convex programming problems. 

Among many variants of the interior point method for linear pro- 
gramming, there is an interesting algorithm proposed by Iri and Imai (see 
Ref. 17). That algorithm does not fall into the four conventional classifica- 
tions of the interior point algorithms mentioned above. As a matter of fact, 
the idea of the Iri-Imai algorithm is based on a multiplicative barrier 
function approach for nonlinear programming. In simple words, it views a 
linear programming problem (in the form that all constraints are inequali- 
ties) as a constrained nonlinear programming problem (supposing that the 
interior of the feasible region is nonempty) and constructs a multiplicative 
barrier function for points inside the interior of the feasible region, as is 
usual for constrained nonlinear programming. After having such a multi- 
plicative barrier function, Iri and Imai proposed to apply the Newton 
method using a line search to optimize the barrier function. The multiplica- 
tive barrier function in the linear programming case, however, resembles 
very well the potential function. In Iri and Imai (Ref. 17), it was shown 
that this algorithm has a locally quadratic convergence rate. Numerical 
experiments presented in the same paper showed that this algorithm 
converges always globally, and it converges very fast indeed. A proof of the 
global convergence property was given in Zhang and Shi (Ref. 18) and 
Zhang (Ref. 19). Based on this convergence proof, the polynomiality of the 
Iri-Imai algorithm follows by replacing the exact line search with some 
fixed step searches. However, the number of iterations estimated in Zhang 
and Shi (Ref. 18) and Zhang (Ref. 19) is about (9(mSL) comparing to 
(9(mL) of Karmarkar's algorithm, where m is the number of constraints 
and L is the input length of the problem. Later, Imai (Ref. 20) proved that 



JOTA: VOL. 82, NO. 1, JULY 1994 123 

the running time bound of the algorithm is at most O(m4L) for linear 
programming. In Ref. 21, Imai further showed that the bound is at most 
(9(m2L) for linear programming. Recently, Iri (cf. Ref. 22) gave an elegant 
proof which shows that the I r i - Imai  algorithm actually has the same order 
of polynomial running time bound as the original Karmarkar algorithm for 
linear programming. Moreover, he showed in Ref. 22 that the I r i - Imai  
algorithm can be extended to solve convex quadratic programming with the 
same polynomial running time bound. In this paper, using similar ap- 
proaches as in Ref. 22, the convergence result of  the I r i - Imai  algorithm 
applied to a larger class of smooth convex programming problems is 
presented. More precisely, under some smoothness and convexity assump- 
tions, we prove that the I r i - Imai  algorithm has a globally linear conver- 
gence rate for convex programming. The main condition on the objective 
and constraint functions used to prove the convergence is called the 
harmonic convexity. The same condition was used in Mehrotra and Sun 
(Ref. 14) as well. A characterization of the harmonic convexity is given in 
this paper. This condition is easier to check and requires less continuity 
than the so-called relative Lipschitz condition used in Refs. 13, 15, 16. 

This paper is organized as follows. In Section 2, we introduce the 
I r i - Imai  algorithm for convex programming. In Section 3, the convergence 
result is presented. We conclude the paper in Section 4. 

2. lri-lmai Algorithm for Convex Programming 

Consider the following convex programming problem: 

(P) min go(x), 

s.t. gi(x) >0, i= 1 , 2 , . . .  ,m,  

x E ~n, 

where gi is second-order continuously differentiable, for i = 0, 1 . . . .  , m, go 
is convex and gi is concave for i = 1, 2 . . . . .  m. 

We will assume from now on that rn >__ 1. As we will see later, the Iri 
and Imai algorithm is an extension of Newton's method for constrained 
problems. 

To simplify the analysis, we first make the following assumption 
on (P). 

Assumption 2.1. The optimum value of (P) is known, for simplicity, 
to be zero. 
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We observe that this assumption is not essential (see Section 4) and 
can be dropped if the forthcoming algorithm is properly modified. 

Now, we define harmonic convexity as follows. Note that two square 
matrices MI and M2 satisfy Ml < Mz iff M2 - M~ is a positive-semidefinite 
matrix. 

Definition 2.1. A second-order continuously differentiable convex 
function f is called harmonically convex on its convex domain X iff there 
exists a positive constant 2 such that the relation 

(1/2)V2f(y) < VZf(x) < 2VZf(y) 

holds for any x and y in X, where V2fdenotes the Hessian matrix off .  Such 
a constant 2 is called a harmonic constant. 

In convex analysis, a function is called uniformly convex if, for any 
point in its domain, the Hessian matrix exists and is positive definite; 
moreover, the largest and smallest eigenvalues of the Hessian matrix are 
strictly bounded by some positive constants from both above and below, 
respectively. The following lemma is readily seen. 

Lemma 2.1. All linear functions, convex quadratic functions, and 
uniformly convex functions are harmonically convex. 

We will give a characterization of harmonic convexity in the following 
lemma. 

Lemma 2.2. A funct ionf is  harmonically convex on ~ "  iff there exists 
a nonsingular matrix A such that f (Ax)  =fl  (x') +f2(x"), where x' and x" 
form a partition of  x, f~ is a uniformly convex function, and fz is a linear 
function. 

Proof. Fix a point y E ~  n. The Hessian V2f(y) is positive semidefinite, 
and so there exists a nonsingular matrix A such that 

Consider the function 

f (x )  ,=f(Ax). 

Since 

v2f(x) = A ~V2f (Ax)A, 

by the harmonic convexity o f f  we have 

( l / 2) V2f ( y) <_ V2f (Ax) < )~ VZf ( y). 
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Therefore, 

Based on the above inequalities, decompose the Hessian matrix VZf(x) 
accordingly into four blocks. Let x '  correspond to variables involved in the 
left-up block, and let x" correspond to variables involved in the right-lower 
block. Due to the above inequalities, it can be verified that only the left-up 
block, namely V2xf(X'), is nonzero and satisfies 

( 112)1 <_ V~,f(x') < 2/. 

This proves that f (Ax)  can be indeed decomposed into two required 
separate parts. 

It is easy to check that this condition is also sufficient for f to be 
harmonically convex. [] 

Now, we state two more assumptions on Problem (P). 

Assumption 2.2. The functions go and - g i ,  1 < i < m, are all har- 
monically convex. For simplicity, we let 2 be their common harmonic 
constant. 

Assumption 2.3. The convex programming problem (P) satisfies the 
Slater condition; i.e., there exists some xeYg" such that g i (x )>0  for 
i = 1 , 2  . . . . .  m. 

Since the functions gi, i --- I, 2 , . . . ,  m, are all continuous, the Slater 
condition implies that the feasible region of  (P) has a nonempty interior. In 
fact, the Slater condition is sufficient to guarantee that the set formed by 
the optimal Lagrange multipliers is nonempty and compact [cf. Bertsekas 
(Ref, 24) and Rockafellar (Ref. 25)]. 

Let the feasible set of  (P) be 

F,={x: gi(x) >0, 1 < i <m}  ~_~l". 

By Assumption 2.3 and due to the fact that gi, 1 <_ i < m, is concave, we 
know that the set F is full-dimensional and convex. We denote the 
nonempty interior of F by/~, given by 

I~'.={x:g~(x) >0 ,  1 <_i <_m} ~_~1". 

Notice that F is an open and convex set. 
In order to simplify the analysis, we further make the following 

assumption. 
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Assumption 2.4. The feasible set F of (P) is bounded. Namely, there 
is a constant M such that Ilxl[ _ M  for any xeF .  

Now we define a multiplicative barrier function G for problem(P) as 
follows: 

m 

G(X) :=(gO(x))m+l[H gi(x), for x e F ,  (1) 
i = 1  

where l > 1 is some given positive integer. 
We observe that the multiplicative barrier function G is well defined on 

the open and convex set F. Moreover, we will see in Lemma 2.3 that G is 
a strictly convex function on P under the following assumption. 

Assumption 2.5. Problem (P) is assumed to satisfy one of the follow- 
ing two conditions: (i) one of the functions go, - g l  . . . . .  - g , ,  is strictly 
convex; (ii) rank{Vgi(x): i = O, 1 . . . .  , m} = n for all xe/~. 

Lemma 2.3. If  I > 1 and Assumption 2.5 holds, then the multiplica- 
tive barrier function G is strictly convex on the open and convex set F. 

Proof. See Theorem 5.16 of Avriel et al. (Ref. 23) and Iri (Ref. 22). 
[] 

For x e F  and go(X) > 0 (x not optimal), since G(x) is positive in this 
case, we define 

g(x) -'=log G(x) = (m + l) log go(x) - ~ log gi(x). (2) 
i = l  

The function g is called the logarithmic barrier function. Notice that g 
is a quasi-convex function since G is convex. 

The following lemma shows that, by using the multiplicative barrier 
function G or the logarithmic barrier function g, we have essentially 
converted the constrained problem (P) into an unconstrained problem. 

Lemma 2.4. For any sequence {xk: k > 1} with xk~F, k > 1, suppose 
that limk_~ +~ G(x k) = 0, or equivalently lim~_~+oog(X k) = - o o .  Then, any 
cluster point of {xk: k > 1 } is an optimal solution of (P). 

Proof. If  limk_.+~o G(x ~) = 0, by (1) and Assumption 2.4 we conclude 
that 

lim go(X k) = O. 
k ~ + o o  

By Assumption 2.1, the claimed result follows. [] 
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Based on Lemma 2.4, it is clear that, to solve problem (P), it suffices 
to minimize G or g in F. To minimize the twice differentiable convex 
function G, the well-known Newton method is appropriate. This results in 
the following I r i - Imai  algorithm for the convex programming problem (P) 
[cf. the original I r i - Imai  algorithm for linear programming (Ref. 17)]. 

lri-Imai Algorithm for Convex Programming. For this algorithm, the 
input includes the initial interior point x ~  and the precision parameter 
E > 0. The output consists in a sequence of solutions xk~, r k > 1. 

Step 0. Let k.'= 0. 

Step 1. Solve the Newton equation 

V 2 G ( x k ) ~  ~ = - V G ( x ~ ) .  

Find x k+ l ' .=xk + tkr k such that 

G(x k + tk~ k) = min G(x ~ + tr 
t>O 

Go to Step 2. 

Step 2. I f  G(x k+ 1)< e, stop; otherwise, let k ".=k + 1, and go to 
Step 1. 

Remark 2.1. The above-described procedure requires an exact line 
search procedure at Step 1. As we will see from the analysis presented in 
Section 3, the globally linear convergence holds even for some inexact 
seareh procedure. 

Remark 2.2. For a nonoptimal x on the boundary of F[i.e., gi(x)  = 0 
for some 1 < i < m, and go(X) > 0], it is easy to see that 

lim G(y)  = + oo. 

This implies by using the line search argument that, if xk~P  and x ~ 
is not optimal, then either x ~+1 is optimal or xk+l~P. So, if we let the 

precision parameter e be 0, and if the whole sequence {x k} produced by 
the above algorithm is not finite, then the whole sequence will be contained 
in P. 

3. Analysis 

In this section we will first introduce some relations between the first 
order and the second order derivatives of G and g. 
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For a given x ~/~ (x not optimal), we have 

Vg(x) = VG(x) / G(x) = (m + l) Vgo (x)/go (x) - ~ Vg, (x)/g, (x), (3) 
i = 1  

V2g(x) = v 2 6 ( x ) / 6 ( x )  - ( V 6 ( x ) / 6 ( x ) )  . ( V G ( x ) / 6 ( x ) )  " 

----- (m + l)[VEgo(x) /go(x) - (Vgo(x) /go(x)) " (Vgo(x) /go(x)) r] 
r t l  

-- ~ [V2g i ( x ) /g i ( x ) -  (Vgi(x) /g i (x) ) .  (Vgi(x)r/gg(x))]. (4) 
i = l  

To simplify the notations, we denote the scaled gradient and Hessian by 

Vf'.= V f / f  and ~2f:= W f / f  

Now let the Newton direction at the point x ~F  be ~, i.e., 

,= - ( ~ 2 G ( x ) ) - ' ~ G ( x ) ,  (5) 

and let 

h ..= - Vg(x) r~. (6) 

It follows from (4), (5), and (6) that 

h = ~ rV2g(x)~ + h 2. (7) 

Concerning the Newton direction 4, we have the following lemma. 

Lemma 3.1. 

= arg max [ - qG(x)  rrl [x/rl rV2G(x)r/]. 

Proof. See Iri (Ref. 22). [] 

Let the optimal solution of (P) be x*. It follows from Lemma 3.1 that 

>_ - 6 ( x )  T ( x *  - x )  / . , / ( x *  - x )  - x ) .  (8) 

Since go(x*) = 0 and gi(x*) > O, i = 1, 2 . . . . .  m, it follows from the con- 
vexity of go and the concavity of gi, i -- 1, 2 , . . . ,  m, that 

0 = go(X*) >- go(x) + Vgo(x) r(x * - x), (9) 

0 <g~(x*) <_g~(x) + Vg~(x)r(x * - x). (10) 

Moreover, by the mean-value theorem and the harmonic convexity of go 
and - g i ,  i = 1, 2 , . . . ,  m, we obtain 

0 = go(x*) = go(x) + Vgo(X)r(x * - x) + (1/2)(x* - x) rV2go(YCo)(X* - x) 

>- go (x) + Vgo (x) r(x * -- x) + ( 1/22)(x * - x) rV2g o (x)(x* -- x), 

( l l )  
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and similarly, 

0 <gi (x*)  = gi(x) +Vgi(x) T(x*--X) +(1/2)(x*-x)rV2gi(f i ,  i ) ( x * - x )  

< gi(x) + Vgi(x) r ( x * -  x) +(1/2,~)(x*-x)rVEgi(x)(x*-x),  (12) 

where xi, i = 0, 1 . . . . .  m, is a point in the segment formed by x and x*. 
Let 

Wo:= --~go(x)r(x * -- x) -- 1, 

Wi:=Vgi(x)T(X*--x)+l, i = 1 , 2  . . . .  ,m. 

We observe from (9) and (10) that wl > O, i = O, 1, . . . ,  m. Moreover, from 
(11) and (12), we conclude that 

(x* -- x) ~ 2 g  o (x)(x* -- x) < 22Wo, (13) 

(x*-x)rVg2gg(x)(x * - x )  > -22wi,  i =  1, 2 , . . .  ,m. (14) 

We have now 

- V G ( x ) r ( x  * - x) = - V g ( x ) r ( x  * - x) = (m + l)(wo + 1) + ~ (w, - 1) 
i = 1  

= (m + l)wo + ~ wi + l, (15) 
i = l  

(x* -- x) r~2G(x)(x* -- x) = (x* -- x) TV2g(x)(x* -- x) + (Vg(x) r(x* - x)) 2. 

(16) 

Using (13) and (14), the first term on the right-hand side of Eq. (16) can 
be estimated as 

( x*  - x)  ~V2g(x)(x * - x)  = (m + l ) ( x *  - x)  ~ g o ( x ) ( x *  - x)  

- - (m + l)(wo + l) 2 -  ~ ( x * -  x ) rVZg i ( x ) ( x* -  x) + ~ (w~-- 1) 2 
i = l  i = I  

_< 2(m +/)2Wo - (m + 1)(Wo + 1) 2 + 22 ~. wi + ~ (w; - 1) / 
i = l  i = 1  

( ) <_22 ( m +  w~ + wi - 2  w ~ - l  
i = I  i = 1  

<22  (m + l)wo + w~ + (m + l)wo + w~ 
i = 1  i = l  

From (8), (15), (16), (17), we obtain the following result. 
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Theorem 3.1. If  problem (P) satisfies Assumptions 2.1-2.5, then for 
a nonoptimal point x, it holds that h > 1/(22 + 2), where h is defined by (6). 

Now, we proceed to estimate how much the logarithmic barrier function 
can be decreased by searching along the Newton direction. 

We note that a feasible steplength t > 0 can be guaranteed if the following 
holds for i = 1, 2 . . . . .  m: 

g, (x + tr = gi (x) + tVg, (x) r~ + (t2/2)~ 1~2g i (~r 

> gi (X) + t Vg,(x) r~ + (t 2/2)2~ TV2g i (X)~ > 0, 

or equivalently, 

1 + tVgt(x)r~ + ( t2 /2 )2~2gt (x )~  > 0. (18) 

In order to determine how large t can be without violating (18), we 
introduce the following notations: 

aol"= Vgo (x) r~, 

ao2,= r ~2go(x)~, 

and for i = 1, 2 . . . .  , m, 

at, ,= ~g,  (x) Tr 

a,2,= ~ ~ g t  (x)~. 
Now from (3), (4), (6), (7), it follows that 

h = - ( m  + l)aol + ~ at1, (19) 
t = l  

h - h 2 = (m + l)ao2 - ~ a,2 - (m + l)a 2, + ~ a2,. (20) 
t = l  t = l  

By introducing 

.~il,=(1/m) ~, all, (21) 
t = l  

a~,=(1/m) ~ (ail -- Al) 2, (22) 
t = l  

c ,=(m + / ) a o 2 -  ~ at2. (23) 
t = l  

Equations (19) and (20) can be rewritten as 

h = - ( m  + l)aol + m-~l, (24) 

h - h 2 = - ( m  + l)a21 + m~i 2 + ma~ + e. (25) 
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Solving Eqs. (24) and  (25) in terms o f  aol and ,,i I , we obta in  

aol = - h / l  + ~ / [ m / ( m  + l)l][h - (( l  - 1 ) / l ) h  2 - ma21 - c], (26) 

, i l  = - h / l  +__ x/[(rn + l ) /m l ] [h  - ((I - 1 ) / l ) h  2 - mtr~ - c]. (27) 

Since ao~ and ~i I are real numbers ,  we conclude tha t  

h - (( l  - 1 ) / l ) h  2 - m a ~  - c > O. (28) 

The  following two l emmas  follow immedia te ly  f rom (28). 

L e m m a  3.2. I f  1 > 1, then h < l/(1 - 1). 

L e m m a  3.3. m ~ r 2 + c  < h ( 1  - h ( l -  1)//). 

By the definitions o f - ~ l  and  ~rl [cf. (21) and  (22)], we now use the 
wel l -known inequali ty 

]ail[ ~ ].Xll ] -1- x//m - 1 o'1, 

and so together  with (27) we have the following inequalities for  
i = 1 , 2  . . . . .  m: 

la,,I <-[d,I + v/real 
< h / l  + ~/[(m + 1)/ml][h - (( l  - 1 ) / l ) h  2 - m a ~  - c] + ~/-mtr~. 

Maximiz ing  the r ight -hand side o f  the above  inequali ty in terms o f  tr I , it 
follows that ,  for  i = 1, 2 . . . . .  m, 

[ail[ <_ h / l  + x/[(m + l ) / m l  + 1][h - ((l - 1) / l )h  2 - c] 

< h/Z + x/[(m + l ) / m l  + 1][h - ((1 - l ) / l )he] .  (29) 

Let t ing 

u . .=h/ l  + x/[ (m + l ) / m l  + 1][h - ((l - 1)/ l)h2],  (30) 

Inequal i ty  (29) is now rewrit ten as 

[a,l [ < u, i = 1, 2 . . . . .  m. (31) 

Moreover ,  by  the definition o f  c [cf. (23)], using L e m m a  3.3 and noticing 
the fact that  ao2 > 0 and a,2 < 0 ( s ince  go is convex and gi is concave for  
i = 1, 2 . . . . .  m), we obta in  

a,2 > - c  > - hi1 - ((1 - 1)/ l )h] ,  i = 1, 2 . . . . .  m .  (32) 

Now,  we let 

v ,= 2 / (u  + x / u  2 + 2211 - ((l - 1) / l ) h ]h ) .  (33) 
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Observe from (30) and (33), using Theorem 3.1 and Lemma 3.2, that u and 
v are strictly bounded from zero by some positive constants. 

Furthermore, we have the following result. 

Theorem 3.2. For any x eF, if the Newton direction ~ is defined 
according to (5), then for any 0 < t < v, we have x + t~ ea r 

Proof. It is easy to see that, if 0 < t < v, then 

1 -- ut -- (t2/2)2h[1 - ((I - 1)/l)h] > 0, 

and so, 

1 + tat~ + (t2]2)2a~2 > 1 - ut - (t2/2)2h[1 - ((I - 1)/l)h] > O. 

From (18), we know that the above inequality implies x + t~ ~P. [] 

Theorem 3.2 shows that, in the I r i - Imai  algorithm, a certain search step 
along the Newton direction is allowed without violating feasibility. This pro- 
perty is essential for our analysis. Now, we will show that, by properly choosing 
the steplength within the region given by the interval (0, v), at least some fixed 
amount of reduction in the logarithmic barrier function can be obtained. 

Let an interior point x e/c, and let 0 < t < v. By the mean-value theorem, 
we have 

g (x  + tO -- g (x )  = tVg(x )  r~ + (t2/2)~ TV2g(~)r ' (34) 

where 

= x + #tr for some # ~ (0, 1). 

Notice by the convexity of go that 

go(X + #t~) >_ go(x)  + I~tVgo(x) r~, 

and by the harmonic convexity of - g ;  that 

g~ (x  + #t~) >_ g~ (x)  + #tVg~ (x)  r (  + [(#t)21212~ ZV2g ~ (x)~, 

Thus, we have 

rV2g(~)~ = (m + 

i = l  

< ( m  + 

i = l  

( :  ~g , (~))2  _ (m + t)(r Wgo(~)) 2 

m 

i =  1 , 2 , . . .  ,m. 

a~ 2 : a~2 
l)~. 1 + #taol i= 1 1 + #tail + ((#t)212)2a,2 

(I +/~t-~-/l + ~ 2 a , ~ )  2" 
(35) 
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To fur ther  estimate the r ight-hand side o f  (35), we note  the following lemma. 
First, let 

,= 1/(u + x / u  2 + 2h[1 - ((l - 1) [ l )h ] ) .  

Note  that  ~ < v. 

Lemma 3.4. I f  0 < t < 1 7 ,  then l + # t a ~ l + ( / J t ) Z 2 a J 2 > 1 / 2 ,  for  
i --- 1, 2 . . . . .  m, and 1 + ptaoz >- 1/2. 

Proof.  First, it is easy to see that,  if 0 < t < ~, then for i -- 1, 2 . . . . .  m, 

1 + #tai ,  + (( l~t)z /2)2a,e > 1 - u t  - ( t z /2 )2h[1  - ( ( l  - 1) / l )h]  > 1/2. 

Moreover ,  notice that  ]aol] _< u, and so, 

1/~ > 2u > 21ao. [. 

This implies that,  if 0 < t _ < O ,  then 1 + # t a o l  > 1/2. The lemma is 
proved.  [] 

N o w  let 0 < t < ~. Using Lemma 3.3, Lemma 3.4, and noticing (23) and 
(35), we have 

~ ZV2g(~)~ < 2(m +/)2ao2 - 22 ~, (Jail I -  2a~2) 2 
i = l  

4 m a 

<22h[1  - ( ( l -  1 ) / l ) h l  + 4  a,~ + 2 c  . (36) 

Fur thermore ,  by (21), (22), and (27), we have 

i = l  

< m { h / l  + x / ( ( m  + l ) / m l ) [ h  - (( l  - 1 ) / l ) h  2 - c - m~r~l} 2 + mcr~ 

< m { h / l  + x / ( ( m  + l ) ] m l ) [ h  - ( ( l  - 1 ) / l )hZ]}  2. (37) 

Now,  replacing (37) into (36) we obtain 

~,2g(.~)~ < 22h[1 - ((1 - 1)[l)h] 

+ 4 { ~ - m h [ l  + ~,/[(m + l )h / l ] [1  - ((1 - l ) [ l )h]  + 2c} z 

< 22h[1 - ((1 - 1) / l )h]  

+ 4(V/--mh[1 + ~,/[(m + l )h] l][1 - ( ( l  - 1)[ l)h]  

+ 2h[ 1 - ((l - 1) / l )h])  2. (38) 
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To  simplify the notat ion,  let 

r .-= 22h[ 1 - ((l - 1)/l)h] + 4 { x / ~ h / l  + ~/[(m + l)h/l][1 - ((l - 1)/l)h] 

+ 2h[1 - ((l - 1)/l)h]} z, (39) 

and we rewrite (38) as 

~ rV2g(:~)r < r. (40) 

Note  that,  if  the parameter  1 > l, then u, v, G h, r are all positive. 
By (6), (34), and (40), the following lemma is readily seen. 

Lemma 3.5. Fo r  t~(0 ,  ~5), it holds that  

g(x  + t~) - g ( x )  < - t h  + (t2/2)r. 

Now,  we let the parameter  l = m + 1. Since m > 1, by noticing Lemma  
3.2, we have 

h(1 - h(l - 1)/l) < l /(4(l  - 1)) < 1/2. 

Therefore ,  

r < 22(1/2) + 4{1 + x/[(m + l)[l](1/2) + 2 .  (1/2)} 2 _</~2 .~_ 92 + 16, 

u = h/l  + x / [ ( m  + l ) /ml  + l ] h [ 1  - ( ( I  - 1)/l)h] < 2, 

= 1/(u + x / u  2 + 2hi1 - ((1 - D/Oh]) > 1/(2 + , / 4  + 2 / 2 ) .  

Let  

L.= 1/(22 + 92 + 16)(2 + 1). 

It  is clear that  0 < t <  ~. F r o m  Lemma 3.5, it follows that  

g(x + Fr - g ( x )  < - t h  + (i2/2)r < - 1 / 2 ( 2 2  + 92 + 16)(2 + 1) 2. 

Let  

6 ,= 1/2(22 + 92 + 16)(2 + 1) 2 = (9(1/(2 + 1)4). (41) 

N o w  we are ready to present the main result o f  this paper.  First, we note  
by assumption 2.4 and the continuity o f  the constraint  funct ion gi, 
i = 1, 2 . . . .  , m, in the compact  feasible region F that  there exists some 
constant  N > 0 such that  gi(x) < N, i = 1, 2 . . . . .  m, for  all x e F .  

Theorem 3.3. Fo r  the convex programming  problem (P), suppose 
that  Assumptions 2 .1-2 .5  hold and that  x~  is the initial interior point.  
We let the parameter  l = m + 1. Then,  the I r i - I m a i  algori thm has at least 
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a globally linear convergence rate in terms of the multiplicafive barrier 
function value for solving (P); i.e., for the sequence of points {xk: k > 0} 
produced by the algorithm, it holds that 

G(x k + l) < exp(- -b)G(xk) ,  k >_0. 

Moreover, for any given p > 0, we will have go(x K) < 2 -p in at most 
K = (9((rap + m log N + g(x~ + 1) 4) steps, where g is the logarithmic 
barrier function and go is the objective function. 

Proof. For any xke/~, we see from Lemma 3.5 that, if a steplength t 
is taken to be i, then 

min {g(x k + t~ k) - g(x  k) } <_ g(x  ~ + i~ k) - g(x  k) <_ - b. 
t>_o 

This means that, for k _> 0, 

g(x k + 1) _ g(x  k) < _ b, (42) 

and so, 

G(xk+ 1) _< exp(--6)G(xk). 

This proves the first part of the theorem. 
By (42) we have for k > 0, 

g(x  k) <_ g(x  ~ - kb. 

The second part of Theorem 3.3 follows immediately from the above 
inequality, Eq. (41), and the following inequality: 

(m + l) log go(x ~) -- m log N < g(xk). [] 

Remark 3.1. In the case of linear programming or convex quadratic 
programming, where the harmonic constant 2 can be chosen to be 1, 
Theorem 3.3 implies that the Iri-Imai algorithm needs at most (9(mL) steps 
to get close enough to the optimal point (set p .-=L in this case, where L is 
the input length of the problem), assuming that the initial point x ~ satisfies 
g(x  ~ = O(mL). This gives exactly the same result as in Iri (Ref. 22). 

4. Conclusions 

The Iri and Imai algorithm seems to be a natural generalization of 
Newton's algorithm for constrained convex programming problems. Iri 
and Imai (Ref. 17) showed that, under some nondegeneracy assumptions 
and if a line search is used, the Iri-Imai algorithm actually has a locally 
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quadratic convergence rate for linear programming. There is no reason to 
assume that such a locally fast convergence rate does not hold for some 
smooth convex programming problems. Certainly, to prove locally fast 
convergence, an exact line-search procedure and some continuity of the 
Hessian matrices should be required. This remains a topic for future 
research. 

Assumption 2.1 in this paper is not essential. One needs only a lower 
bound on the optimal value. The lower bound can be updated at each step 
in such a way that h~[1/(22 +2),  1/(l-1)]; cf. Theorem 3.1 and Lemma 
3.2. The other proofs remain the same. Notice that, if a strict lower bound 
b of the optimal value is used, then the multiplicative barrier function 

Gb(X):=(go(x)-b)'~+'/(i~___ gi(x) ) 

will have a unique minimum point in F, since in this case Gb remains 
strictly convex in /~ and attains plus infinity on the boundary of F. The 
path formed by the minimum points when the lower bound goes up to 
the true optimal value resembleS~ the path studied in the path-following 
approach. 

Assumption 2.4 is not essential as well. We need only to assume that 
the set of optimal points is bounded, because if the initial point is properly 
chosen, we may add some constraints using the information about the 
upper bound of the objective value. In this way, we may exclude some part 
of the feasible region where no optimal point will be contained and at the 
same time keep the new feasible region bounded. 

In the existing literature, mainly only the path-following method in the 
interior point approach is generalized to solve convex programming (Refs. 
13-16). In Refs. 13, 15, and 16, the so-called relative Lipschitz condition 
on the objective and the constraint functions is required to prove the 
convergence. The relative Lipschitz condition is difficult to check and 
requires more continuity on the Hessian matrices. 
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