
Computing 52, 281-297 (1994) C O [ ~ i ' ~  

�9 Springer-Verlag 1994 
Printed in Austria 

Lower Bounds for 1-, 2- and 3-Dimens ional  On-Line Bin 
Packing  Algorithms 

G. Galambos*, Szeged, and A. van Vliet t, Rotterdam 

Received December 27, 1993 

Abstract - -  Zusammenfassung 

Lower Bounds for 1-, 2- and 3-Dimensional On-Line Bin Packing Algorithms. In this paper we discuss 
lower bounds for the asymptotic worst case ratio of on-line algorithms for different kind of bin packing 
problems. Recently, Galambos and Frenk gave a simple proof of the 1.536 ... lower bound for the 
1-dimensional bin packing problem. Following their ideas, we present a general technique that can be 
used to derive lower bounds for other bin packing problems as well. We apply this technique to prove 
new lower bounds for the 2-dimensional (1.802...) and 3-dimensional (1.974...) bin packing problem. 

AMS Subject Classifications: 90B35, 90C27 
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Untere Schranken fiir 1-, 2- und 3-dimensionale Bin-Packungsprobleme. In dieser Arbeit untersuchen 
wir asymptotische untere Schranken yon on-line Algorithmen f/ir verschiedene Arten des Bin- 
Packungsproblems. Kiirzlich haben Galambos und Frenk einen einfachen Beweis der unteren Schranke 
1.536 ... fiir das eindimensionale Packungsproblem angegeben. Ausgehend yon ihren Oberlegungen 
pr/isentieren wir eine allgemeine Technik zur Herleitung unterer Schranken auch fiir andere 
Packungsprobleme. Wit verwenden diese Technik, um neue untere Schranken fiir das zweidimensionale 
(1,802...) und das dreidimensionale (1,974...) Packungsproblem zu beweisen. 

1. Introduction 

The 1-dimensional bin packing problem can be stated as follows. We are given a 
list L = (al,  az . . . . .  a,)  of items. An item az has a size s(a~) that satisfies 0 < s(a~) < 1. 
Further we have an infinite supply of unit-capacity bins. The objective is to pack 
the items in a minimum number of bins such that the total size of the items in every 
bin is less than or equal to 1. 

In the 2-dimensional bin packing problem the items are rectangles with width 
0 < w(ai) _< 1 and height 0 < h(ai) < 1 that have to b e  packed in a minimum 
number of unit-square bins such that 
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�9 each item is contained entirely within its bin with the sides of the item parallel 
to the sides of the bin, 

�9 no two items overlap. 

Moreover, the items have a fixed orientation, so that rotation is not allowed. 

Finally, we have the 3-dimensional bin packing problem where the items are boxes 
with width 0 < w(al) _< 1, height 0 < h(ai) < 1 and depth 0 < d(a,) < 1 that have to 
be packed in a minimum number of unit-cubes under the same conditions as in its 
2-dimensional variant. 

Since these bin packing problems have been proved to be NP-hard (see [5]), 
research has focused on finding good approximate algorithms. The number of bins 
that an algorithm A uses to pack list L is denoted by A(L) and the optimum 
(minimum) number of bins for list L is denoted by OPT(L). We will measure the 
performance of an algorithm A by its asymptotic worst case ratio R2, which is 
defined as 

. ,  lims:p(max{ ? 
A special class of algorithms are the so-called on-line algorithms. An algorithm is 
called an on-line algorithm if it packs the items in the order given by the list, without 
knowledge of the subsequent items on the list. This lack of knowledge is such a 
severe handicap that no on-line algorithm can have an asymptotic worst case ratio 
close to 1. The best on-line algorithm for the 1-dimensional problem is due to Richey 
[8] and yields an asymptotic worst case ratio of 1.589 . . . .  For higher dimensions Li 
and Cheng [6] and Csirik and Van Vliet [1] gave different algorithms that both 
have an asymptotic worst case ratio close to (1.691) d, where d is the dimension. On 
the other hand, Liang [7] showed that no on-line algorithm for the 1-dimensional 
bin packing problem can have an asymptotic worst case ratio better than 1.536 . . . .  
Galambos and Frenk [3] gave a simplified proof for this lower bound with a 
technique that can easily be used to derive lower bounds for other bin packing 
problems as well. It was used by Galambos [2] to derive a 1.6 lower bound for the 
2-dimensional bin packing problem, and by Galambos et al. [4] to derive a lower 
bound for the d-dimensional vector packing problem. 

In this paper we show the basic steps of this technique and we will illustrate its 
application with the proof of Galambos and Frenk for the 1-dimensional bin 
packing problem. Furthermore, we will use it to derive new lower bounds for the 
2- and 3-dimensional case. We will also give a conjecture on a lower bound for the 
general d-dimensional bin packing problem. We will conclude with a discussion of 
a linear programming technique due to Van Vliet [9] that can be used to slightly 
improve on these lower bounds. 
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2. The T e c h n i q u e  

In this section we will describe a general technique to derive a lower bound for the 
asymptotic worst case ratio of any on-line algorithm for the bin packing prob- 
lem. Suppose there is a list L which is a concatenation of k + 1 sublists: L = 
LkLk_ ~ .... L o. Each of these sublists contains n equal sized elements aji, 0 < j  < n, 
1 < i _< n, whose size does not depend on n. An on-line algorithm A has to pack 
this concatenated list and we evaluate its performance ratio after packing each of 
the sublists: 

If we let 

A ( L , . . .  Lj) 
rj(n) = O P T ( L k . . .  Lj)" 

r = m a x f l i m r j ( n ) } j  k ,~o  

then r will be less than or equal to the asymptotic worst case ratio of algorithm A. 
Because we are interested in a lower bound for the asymptotic worst case ratio of 
any on-line algorithm, we will give a lower bound for r that holds for every A. 

We now introduce the following notations. 

�9 ~ = {B 1 . . . . .  BAtLk...Lo) } denotes the packing of the concatenated list L k . . . L  o 
produced by the on-line heuristic A. A bin belonging to ~ is called a bin of type 
t = (to, t l  . . . . .  tk) if it contains tj items of list Lj, 0 _<j _< k. Further, the number 
n(t) equals the number of bins of type t. 

�9 The subset ~j  _~ ~ ,  0 _< j _< k, contains only those bins which were used for the 
first time by the on-line heuristic A during the packing of list Lj. Moreover, define 
for every 0 < j _< k the sets 

Tj = {t: There exists a bin of type t in Nj} 

and 

T = {t: There exists a bin of type t in N} 

(Note that if t = ( t~ , . . . ,  t r , . . . ,  tk) with t i = 0 Vi < r and tr > 0 then t e N,.) These 
notations enable us to write 

k 
A ( L k . . . L j ) =  ~ ~ n(t). (1) 

p= j  t~ Tp 

So, now we have described the behaviour of an algorithm A in a suitable way. With 
this we come to the main theorem: 

T h e o r e m  1. Let  wj, 0 <_ j <_ k, be some positive weights such that for  every t e Tp 

p 

w / j < p  + 1 (2) 
j=0 

holds. Then 
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k " Z i : o  wi 
lim Zk=o OPT(Lk.. .  Li) n-~oo 

is a lower bound for the asymptotic worst case ratio of any on-line algorithm A. 

Proof." 
From (1) we get that 

k k k k 

E A(Lk ' "L i )=  E E Z n ( t ) :  Z (P + 1) Z n(t). 
j = O  j = O  p=j  t ~ T  v p=O t ~ T p  

Further, because every sublist Lj contains n items, we have for every 0 < j < k that 
k 

n =  ~ tin(t ) =  E Y', tin(t). 
t ~ T  p=j  t~Tp 

Multiplying this equation by w~, 0 <__ j _< k, and adding up, yields 
k k k k p 

n E wj= Z E E witin(t)= E E n(t) E wflj 
j = O  j = O  p=j  t eTp  p=O t ~ T  v j = O  

k k 

_ • ( p +  1) Z n(t)= ~, A(Lk...Lj). 
p=O t~Tp j = O  

So, 

(3) 

r = m a x  t l i m  A(Lk'"LJ) 
j ~,-~o~ OPT(Lk...Lj)J 

~,~=o A(Lk...Lj) 
_> ,~lim 2jkm~_0 ~ ) p ~ k  ~ ~. L j ) _  

k n  j=o wj [] 
> lim k 
- Zi=o ovr(Lk. . .  L i) 

Given the construction of the concatenated list L, the quality of the lower bound 
depends on the gap in inequality (2) for packings produced by an algorithm that 
minimizes r. For that reason, it is very important how we choose the weights wj. 
However, as optimal algorihtms tend to have more than k + 1 different packings, 
we can never guarantee to find weights that result in equality of (2) for all packings 
used. 

We did not make any assumptions about what kind of bin packing problem we are 
dealing with. Hereby, this technique can be used for the 1-, 2- and 3-dimensional 
bin packing problem as well as for the d-dimensional vector packing problem to 
derive lower bounds for the asymptotic worst case ratio of on-line algorithms. 

We summarize this technique in the following steps: 

1. Construct a list L consisting of several sublists L j, that contain n identical items 
each. 

2. Choose appropriate weights w i such that (2) holds. 
3. Give upper bounds for OPT(Lk... Lj), 0 < j <_ k. 
4. Calculate the lower bound according to (3). 
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Note that it is sufficient to give upper bounds for OPT(Lk. . .  Lj), 0 < j < k, because 
that terms appear in the denominator of (3). 

3. 1-Dimensional Bin Packing 

In this section we will use the same construction of the lists Lj as Liang [-7] to give 
the much simpler proofofGalambos  and Frenk [3] for the 1.536... lower bound. 

Therefore we need the series m s, j > 0, which is defined by 

mo = 1 and m s = mj-1 (mj+l + 1) Vj > 1. 

Let k be a fixed natural number. Let L = LkLk_I . . .L  o be a concatenation of 
1 

k + 1 sublists Lj, 0 < j < k, where sublist Lj contains n items of size + e 
m j + l  ( ' )  

0 < ~ _< (k + f)m~+l 

In [7] it has been shown that for any partial lists Lk... Lj, 0 <_ j <_ k, if n is a multiple 
of rag, then for every 0 < j  _< k 

n 
OPT(Lk.. .  Lj) - 

m s" 

j + l  
Using Theorem 1 and setting the weights wj, 0 _ j  _< k, such that w~-  

ms 
0 _< j _< k, the desired inequality 

P 

F~ w/j<_p+ 1 
j=o 

holds for every packing t = (t o . . . .  , tk) ~ Tp ([3]). 

Combining everything yields the original result of Liang [7]: 

Theorem 2. Every on-line algorithm for the 1-dimensional bin packing problem has 
an asymptotic worst case ratio of at least 

~ j + l  

lira j=o m i 
k~o ~ 1 

j=o m s 

Evaluation of this expression yields a lower bound of 1.536 . . . .  

4. 2-Dimensional Bin Packing 

Let k _> 1 and let L = LlkLokLl(k_l)... Loo be a concatenation of 2(k + 1) sublists 
Loj, g ~ {0, 1}, 0 _ j _< k. Every sublists Loj contains n equal sized items, which we 
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will denote by agj. An item agj has width w(aoj ) and height h(agj). The sizes are as 
follows (0 < j < k): 

1 1 
w(alj)  = ~ -- ( j  + 1)5 h(alj) - m j + l  + e 

1 1 
w(aoj) = ~ + ( j  + 1)5 h(aoj) - m j + l  + e 

k We take e > 0 small enough to satisfy ~j=o h(alj) -< 1 and w(alk) > �89 So, e < 

min (k + 1)mk+l'6(k + 1 ' 

Then we can easily prove the following about the optimal packing of the partial list 
Llg . . .Lo j ,  9 s  {0,1},0_<j _< k. 

Lemma 3. I f  n is a multiple o f  2m k, then 

n 

a) OPT(Llk) < 2m k 

n 
b) For every 0 < j < k: OPT(Llk. . .Loj)  < - -  

mj 

c) F o r e v e r y O < _ j < _ k -  I : O P T ( L l k . . . L l j ) < _  ~ + @ 1  

Proof: 

Case a: It is easy to see that we can pack 2 items of Llk  side by side and that we 
can pack mk items of Llk on top of each other. This means that 2m k items of Ltk  

n 
can be packed together in a bin. So, Llk can be packed in ~ bins�9 

Case b: If we pack alp and aop,j <- p <- k, side by side and place m i pairs (alp, aop), 
j _< p _< k, on top of each other, the total height in a bin will be 

~ ( m @ l + l )  ~ ( 1  - - + ~ 1  ) mj + ~ = mj mp rap+ 1 
p =j  P =j 

m (  1 - ( k - j  + 1)e)___ 1, 
= 1 - j mk+t 

1 
because of e < . So, n bins are sufficient to pack this list. 

- -  (k  + 1)mk+ 1 mj 

Case c: With a strip of size h, we will mean an area of width 1 and height h. We can 
1 

pack an item alp together with an item aop in a strip Sp of size - -  + e,j + 1 < 
mp+ 1 

1 
p < k. Further, we can place two items alj together in a strip SA of size + e. 

- -  m j + l  
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If we pack ~mj bins with each mj strips SA and mj strips Sp, j + 1 <_ p <_ k, and we 

n 
pack - -  bins with each mj+l strips Sp, j + 1 < p < k, we get a feasible packing 

2mj+l 

with - -  + - - -  bins in total. []  
2 \mj mj+l] 

With a little more effort, one can also show that the inequalities in the this lemma 
hold with equality. However, this is not necessary for our technique to be applied. 
The optimal packing of the whole list L is given in Fig. 1. 

Llo Loo 

Ll l  Lol 

L12 Lo2 

�9 I ' I R  

\ L13 ~ Lo3 

Figure 1. Optimal packing pattern for k = 3 

On the other hand, we can also find suitable weights that lead us to the following 
lemma. 

j + l  
Lemma 4. Let the weights wgj, g ~ {0, 1 }, 0 < j <_ k be given by wgj - . Then 

mj 
we get for all 0 < p <_ k that 

p - 1  p 

a) for every t ~ Top ~ tljWlj + E tojWoj <-~ 2p + 1 
j = o  j = o  

p p 

b) for every t ~ Tip E tljWlj -'}- Z tojWoj ~ 2p + 2. 
j = O  j = 0  
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Proof: 
First, we witl deal with the case p = 0. Since w(aoo ) > �89 and h(aoo ) > �89 it is immedi- 
ately clear that a packing t e Too can contain only one item of Loo. Because of 
Woo = 1 it follows that the condition of Case a holds. Since h(aoo) = h(alo) > �89 a 
packing t e 7"1o can contain at most 2 items that are placed side by side. So the 
weights Wlo = Woo = 1 satisfy the condition of Case b. 

Now we can assume that p > 1. We will first introduce the notion of domination. 
We say that m items ao2j2 dominate one item aoljl if 

w(a.2j2) <_ w(%~,) 

mh(ao2j2) <_ h(ao~) 

mwo2J2 ~ WOlj1 

and at least one of these inequalities is strict. We denote this dominance by 
mag~j 2 >- ao,~. So according to this definition we get: alj  >- aoj for all 0 < j  < k 
and m~al~j+l) >" alj for all 0 < j  _< k - 1. We will now handle the Cases a and b 
separately: 

p-1 Case a: We let Fop(t ) = ~ j=o  wljt l j  + ~P=o Woptop. It  suffices to prove that 

max Fop(t) < 2p + 1. 
t ~ Top 

Because of the dominance rules we only need to consider items of Lop and Ll~p_l) 
in order to maximize Fop(t ), Since w(aop ) + w(al(p_l)) > 1, a packing with maximum 

1 
weight consists of a number of strips Sp of size + e with 1 item aop each, and 

rap-}- 1 
1 

of a number  of strips Sp-1 of size + e that contain 2 items al~p_l) each. If 
rap_ 1 q- 1 

we count the number of strips Sp by qp and the number of strips Sp_l by qp-1, we 
get that maxt~ ro~ Fop(t) is equal to 

p + l  p 
max C l p - -  + - mp 2qp 1 rap-1 

under the condition that qp and qp-1 satisfy 

qp + qp-1 "< 1. 
mp + 1 mp_ 1 + 1 

This maximization problem is solved by qp = qp-1 = rap-1 and has an optimal 
p + l  

solution of 2p + - -  which is less than or equal to 2p + 1. 
rap_ 1 q- 1 

Case b: Because of the dominance rules we only have to consider items of Lip. At 
most 2 items alp can be packed beside each other, and at most mp items alp can be 
placed on top of each other. This means that the maximum weight in a packing is 

p + l  
equal to 2mp - 2p + 2. [] 

mp 
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This leads us to the following theorem. 

Theorem 5. Every on-line algorithm for the 2-dimensional bin packing problem has 
an asymptotic worst case ratio of at least 

2 ~ J  + 1  

lim j=o mj 

j=om  j=o 

Proof." 
This follows directly from Lemma 3, Lemma 4 and Theorem 1. [] 

Evaluation of this formula gives us a lower bound of 1.802 . . . .  

5. 3-Dimensional  Bin Packing 

Given k > 1, let L = L 1 1 k L o l k L 1 o k L o o k L l l ( k _ l ) . . . L o o  o be a concatenation of 
4(k + 1) sublists L:oj, f ,  g ~ {0, 1}, 0 < j  < k, of 3-dimensional items. Each sublist 
L:o ~ contains n items of the same size, which we will denot e by a:o j. An item a:o J 
has width w(a:oj), height h(a:oj) and depth d(a:oj) as follows (0 _< j _< k): 

1 1 1 
w ( a l l j )  = ~ - -  (2j + 2)e h(allj)  = ~ - ( j  + 1)e d(alii)  - mi+l-- + e 

1 1 1 
w(aolj) = ~ + (2j + 2)e h(aolj) = ~ -  ( j  + 1)e d(aolj) - m j + l  + e 

1 1 
w(aloj) = ~ - (2j + 1)e h(alo~) = ~ + (j  + 1)~ d(aloj) - + e 

m j + l  

1 1 
W(aooj) = ~ + (2j + 1)e h(aooi) = ~ + ( j  + 1)e d(aooj) - - -  + e 

m j + l  

1 
We take e < . This guarantees that at most 2 items can be placed side 

2(k + 1)rag+ 1 
by side or on top of each other and also that the items a:oo, a:o~, . . . ,  a:o * can be 
placed behind each other for every f ,  g ~ {0, 1}. The optimal packing of L takes n 
bins and is given in Fig. 2. 

In the remainder we will mean with a slice of size s an area of width and height 
equal to 1 and depth equal to s. So, the items al~j, aoa J, a~o ~ and aoo j can be packed 

l 
together in a slice of size + e. 

m j + l  

We can prove the following upper bounds on the optimal solution of the 
concatenated lists L11k... Lygj for every f ,  g ~ {0, 1} and 0 _<j < k. 
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Figure 2. Optimal packing pattern for k = 2 

h 

Lemma 6. Let n be a multiple of 4ink, then 

n 
a) OPT(LIlk) _< 4m~' 

2n 
b) OPT(LilkLolk) _< 4m-~.' 

3m 
c) OPT(LllkLolkLlok) _< 4m~' 

n 
d) For every 0 <_j <_ k: OPT(Llik...Looj) _< -- ,  

mj 

e) ForeveryO<_j<_k-  l :OPT(Ll lk . . .L t is )<_~ + - -  

f) 

g) 

3; 
mj+l/ 

L < n / 2  2 \ 
For everyO <_j <_ k -  l: OPT(Llk. . .  o i j ) _ ~ + m ~ + , ) ,  

L < h i 3  ! \ 
For every 0 <_ j <_ k 1: OPT(Liik... ioj) - ~ j j  + mJ+l ). 

Proof." 
We will prove this lemma by giving feasible packings that use the indicated number 
of bins. 
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Case a: We will pack 2 items side by side, 2 items on top of each other and m k items 
o f L  k behind each other in a bin. Because ofw(aalk) < �89 h(allk) < �89 and d(allk) < 
1 

- - ,  this packing will be feasible. It  packs 4ink items together in a bin and since n is 
mk 

n 
a multiple of 4mk, we need ~ bins. 

Case b: We can pack an item of L11k and an item ofLo~ k side by side because of 
w(a~k) + W(ao~k) ----- 1. They have the same height and the same depth and by 
repeating this pattern 2 times in height and mk times in depth, we get a feasible 
packing�9 Every bin contains 2m k items of both L~I k and Lol k and because n is a 

2n bins. multiple of 2m k, we will need exactly 4m k 

Case c: We can pack 2 items o fL lo  k together with 1 item of Llxg and 1 item of Lot k 
1 

in a slice S c of size + e. We can also pack 2 items of L~Ik together with 2 
rag+ 1 

items of Lo~k in a slice S 8 of size 1 n m k +  1 + e (as in Case b). If we fill - -  bins each 
2rag 

n 
with mk slices S c and we fill - -  bins with m k slices SB, then we have a feasible packing 

4rag 
3n 

with ~ bins. 

Case d: We can pack 1 item of every list Lllp,  Lolp, Llo p and Loo p together in a 
1 

slice Sp of size - -  + e, j _ p _< k. If we put mj slices of every Sp, j _< p _< k 
m p +  1 

together, then the total depth will be equal to 

mj e = m j  q-e 
p=j p=j mp mp+l 

1 
because of e < 

- 2(k + 1)mk+ 1 

we need n bins in total. 
mj 

= 1 -  j ~ k + l - - ( k - - j + l ) e  < 1  

�9 This means that the packing of this bin is feasible and 

Case e: We consider slices SA of size 
1 

mj+ l 
+ e that contain four items of L l l  j. 

i 
Further we have slices Sp of size mp + 1  + e, j + 1 _ < p _ < k, that contain one item 

n 
of every list Lllp,  Lolp, L~op and Loop. We pack ~ bins with mj slices S~ and mj 
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31/ 
slices Sp, j + 1 <_ p <_ k, and we pack 4~U~.,, bins with mj+~ slices Sp, j + I <_ p <_ k. 

It is easy to verify that this gives a feasible packing. Adding up gives + m.~l 

bins. 

1 
Case f:  We consider slices Sn of size + e that contain 2 items of L 1 lj and 2 

r n j + l  
r/ 

items of Lolj. Further we have slices Sp, j + 1 <_ p <_ k, as in Case e. We pack 2m i 

n 
bins with mj slices S B and rnj slices S v, j + 1 <_ p <_ k, and we pack ~ bins with 

rnj+l slices Sp, j + 1 <_ p <_ k. This packing is feasible and the result follows. 

Case g: We consider slices S c of s ize  1 + e that contain 1 item of L1 ~j, 1 item 
r n j + l  

of Lox j and 2 items of L~oj. Further we have slices S v, j + 1 < p < k, as in Case e 
T/ 

and slices S B as in Case f.  We pack ~ bins with mj slices Sc an mj slices Sp, 

n , . 
j + 1 _ p _< k, we pack ~ -  bins with mj slices SB and mj slices Sp,j + 1 < p <_ k, and 

,+rnj 
~/ 

we pack - -  bins with mj+~ slices Sp, j + 1 <_ p < k. This packing is feasible, so 
4rni+l 

the desired result follows. [] 

The next lemma states the results about the packings t ~ Tyoj. 

Lemma 7. Let  w f o j - 

a) For every t ~ Too p 

b) For every t e Txo p 

j + 1 , f , g  ~ {0, 1},0 <_j <_ k. Then fora l lO <~ p <_ k w e h a v e  
mj 

1 1 p - 1  

E E wfg j tya j+Woo, toop<<-4p+l  
f = o  o=o j = o  

1 ~ p-1 
E E WfoJtfoJ -k- WlOptlO p q- WOOptO0 p ~ 4p + 2 

f = O  o=0 j = 0  

c) For every t ~ To1 p 

1 1 p-1 

E E E  
f = o  g=o  j = o  

d) For every t e Tl l  v 

Wfojtfg j q- WolptOl p q- WlOvtlo p + WooptOO p ~ 4p + 3 

1 1 p 

Z Z WyojtloJ < 4p + 4, 
f = O  g=O j=O 
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Proof: 
We will first deal with the case p = 0. Since W:go = 1,f,  9 ~ {0, 1}, we have to show 
that i f t  ~ T0oo (resp. Tloo, Tlo~ or Tllo) that such a packing t can contain at most 
1 (resp. 2, 3 or 4) item(s). We will leave this to the reader as an easy exercise. 

From now on we will assume p >_ 1. We will first introduce the notion of domination. 
We say that m items a:2o2j2 dominate one item a:~o~j~ if 

w(a:2o~j~) <_ w(aj.~o,j ,) 

md(a:~o~j2) < d(ac,g~j~) 

mWfzg2j z ~ wflg~j l 

and at least one of these inequalities is strict. We denote this dominance by 

m a f  2ozjz ~- ctf ,ol j , .  

An other useful tool that we will use is a 3-dimensional coordinate system. We can 
think of a bin as being placed in a 3-dimensional coordinate system such that it 
covers the area [0, 1] x [0, 1] x [0, 1]. We let the width of the bin correspond with 
the first dimension, the height with the second dimension and the depth with the 
third dimension. This coordinate system allows us to speak about  planes and lines 
intersecting the bin, which we will use for the proof  of the Cases a, b and c. 

1 1 - Case a: We let Fooe(t) = Z : = 0  ~o=o ~f=~ wlojt:oj + Wooetooe �9 It suffices to prove 
that 

max Foop(t) _< 4p + 1. 
t e Toop 

Because a l a j ~ a l o j ,  a lu)>-aol j ,  aal j~-aooj  for every O < _ j < _ p - - 1  and 
mja11(i+l) ~>- a11 j for every 0 _<j __ p - 1, we only have to consider items of Loo e 
and Lll(p-a) in order to maximize Fooe(t). 

If  we intersect the bin with a plane P given by x 3 = e, 0 _ c _< 1, we will encounter 
at most 4 items. Because 4 items of LI  x(e-a) can be packed together in a slice of size 

1 
me_ a + 1 + e, we can encounter 4 items of L 1 ice-a). Whenever P intersects an item 

of Loop, that will be the only item it intersects, because of w(aoop) > �89 h(aoop) > �89 
w(aoop) + w(a11(p-1)) > 1 and h(aoop) + h(ala~e-1)) > 1. 

When we intersect the bin with a line l given by xl  = a, x 2 = b, 0 < a, b < 1, we 
count the number  of items of Loo p that we intersect by qp and the number  of items 
o f L t  1(p-1) by qp-1. Of course qp * d(aooe) + qe-~ * d(a~ 1(e-1)) < 1 must be satisfied. 
Because this must be satisfied for every line 1, we can bound maxt~ roo, Foov(t) by 

p + l  p 
max q e - -  + 4 q p - 1 -  

me me - 1 
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under, the condition that qv and qv-1 satisfy 

qv + qv-1 < 1. 
m v + 1 my_ 1 + 1 

This maximization problem is solved by qv = qv-1 = rap-1 and has an optimal 
p + l  

solution of 4p + which is less than or equal to 4p + 1. 
mp-1 + 1 

Case b: We let F~op(t)= V1 V1 Vp-1 / , f = 0  / ~ g = 0  / ~ j = 0  Wfgjtfgj %- WOOptOOp %- WlOptlOp. It suf- 
fices to prove that 

max Flop(t ) _< 4p + 2. 
t~ To v 

After applying some evident dominance rules, only items of Llop and LI~(v_I~ 
remain to maximize Flop(t). Because w(alop) < �89 and w(allr < �89 we can split 
the problem of maximizing the value of the items in the bin into 2 equivalent 
problems: maximize the value of the items in the left (resp. right) half of the bin. We 
will work with the left side of the bin. Let the half-plane H be given by x3 = c and 
xl < �89 Because of the height of a11~p_~ and a~o~, H can intersect at most 2 items 
of a 1 l(p-1) or 1 item of a l or- With qp (resp. qv-1) we count the number of items a~ op 
(resp. a~ l(v-~)) that we encounter on the line I given by xl = a and x 2 = b, 0 _< a _< �89 
0 < b _< 1. We can bound the value of the items in the left half of the bin by 

p p + l  
max 2qp_ 1 - -  + q v - -  

rap_ 1 mp 

under the condition that qv and qv-1 satisfy 

qv-1 + qv < 1. 
rap_ 1 + 1 mp + 1 

1' p + l  
This is solved by qp = qv-1 = and yields a value of 2p + Since the 

rap_ 1 mp_ 1%- 1" 

half of the bin yields the same outcome and since 2 (2p  + P + 1 ~ < 4p + 2 right \ rap_ 1%" l J  -- 
this completes the proof  of this case. 

Case c: We let Folv(t ) = V1 V1 Vp-1 Z~f=O Z~a=o /_~j=o Wfgjtfgj %" WOOptOO p %" WlOptlO p %" 
WolptO1 p. It suffices to prove that 

max Folp(t) < 4p + 3. 
t~ TOl r, 

Applying the dominance rules leaves us with items of Lll(p_l)  , Lol  p and Llop to 
maximize Folv(t). When we intersect the bin with a plane P given by x 3 = c, 
0 < c < 1, we may encounter 4 items all(p_1). However, if P intersects at least 1 
item atop or aolv, then it can intersect at most 3 items (2 • a~o p and 1 x aolv, 
2 • a~l(v-l~ and 1 • aolp, or 2 • a~r and 1 • alop; however, only the first 
possibility is relevant for maximizing Folp(t)). When we intersect the bin with a line 
I given by x~ = a, x 2 = b, 0 < a, b < 1, we count the number of items o fLo l  p and 
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Llo  p that we intersect by qv and the number of items of Lilly_l) by qp-1. Of course 
qp * d(aolp) + qp-1 * d(al l~v-1)) < 1 must be satisfied (note that d(aolp) = d(alop) ). 
Because this must be satisfied for every line l, we can bound maxt~ ro~, Folp(t) by 

p p + l  
m a x  4qp_ 1 - -  -}- 3 q v - -  

my-1 mp 

under the condition that qp and %-1 satisfy 

q p l  + qp < 1. 
my_ 1 + 1 mp + 1 

p + l  
This is solved by qv = qv-1 = mp 1, that yields a value of4p + 3 which is 

my_ 1 + l 
less than or equal to 4p + 3. 

I 1 p Case d: We let F 1 ~v(t) = Y'.z=o Y',o :o Y'4=o wlajtzaj. We need to prove that 

max F11v(t ) < 4p + 4. 
t ~ T l l p  

Because of the dominance rules, we only have to consider items of L~ 1. in order to 
maximize F~ iv(t). 

But only 4rap items of L1 iv can be packed together into a bin, so maxt~ rl ip F1 lp(t) 
p + l  

is equal to 4rap - 4p + 4, which verifies the last part  of this lemma. [] 
mp 

Theorem 8. Every on-line algorithm for the 3-dimensional bin packin9 problem has 
an asymptotic worst case ratio of at least 

4 ~  j + l  

lim j=o mj 

Proof." 
This follows directly from Lemma 6, Lemma 7 and Theorem 1. [] 

Some calculation gives us a lower bound of 1.974 . . . .  

6. Conc lus ion  

It seems that a possible generalization derives lower bounds for the d-dimensional 
bin packing problem for d > 3. In d - 1 dimensions the items will have size of about  

1 
�89 and in 1 dimension the items will be of size - -  + e. Note that this covers 

m j + l  
dimension 1, 2 and 3 as well. We will state our ideas without proof. 

Conjeeture 9. Every on-line algorithm for the d-dimensional bin packing problem has 
an asymptotic worst case ratio of at least 
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2e_ 1 ~ j + l  

lim s=~ ms . [ ]  

k-~o~ ~ 1j.=om s + 2 ( a - 1 ) - 1 1 1 2  ~ + S  = o ~ l ( m ~ s + L ) l  

If we let the dimension d grow to infinity, the lower bound  converges to 2.181 . . . .  
So, unlike the asympto t ic  worst  case ratio of the best on-line a lgor i thm this lower 
bound  does not  grow exponential ly with the dimension, but  it remains under  a 
constant.  I t  m a y  be an interesting question whether  it is possible to find a lower 
bound  that  depends on d at least logarithmically,  either by refining the construct ion 
of the list or by a bet ter  p roof  technique. We summar ized  the values of the lower 
bounds  in Table  1. 

Table 1. Lower bounds forthe d-dimensional bin packing problem 

d Lowerbound 

1 1.536... 
2 1.802... 
3 1.974... 

oo 2.181...(?) 

As we already discussed in Section 2, the quality of  the lower bound  depends on 
the gap in the inequali ty (2) for packings produced  by an a lgor i thm that  minimizes 
r = maxs{lim,~ ~ rs(n)}. Van Vliet [-9] computes  such an opt imal  a lgor i thm for the 
list L that  we used in Section 3 for the 1-dimensional bin packing problem,  by means  
of a linear p r o g r a m m i n g  formulat ion.  Indeed,  he shows that  there exists a gap in 
(2) for some of the resulting packings. This linear p r o g r a m m i n g  formula t ion  also 
gives an improved  lower bound  of 1.540 . . . .  Given our  const ruct ion of L, this is 
the best possible. It  seems that, at  a cost of  much  more  work,  it is possible to extend 
this linear p r o g r a m m i n g  approach  to dimensions 2 and 3 as well. 
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