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Abstract — Zusammenfassung

Lower Bounds for 1-, 2- and 3-Dimensional On-Line Bin Packing Algorithms. In this paper we discuss
lower bounds for the asymptotic worst case ratio of on-line algorithms for different kind of bin packing
problems. Recently, Galambos and Frenk gave a simple proof of the 1.536 ... lower bound for the
1-dimensional bin packing problem. Following their ideas, we present a general technique that can be
used to derive lower bounds for other bin packing problems as well. We apply this technique to prove
new lower bounds for the 2-dimensional (1.802...) and 3-dimensional (1.974...) bin packing problem.

AMS Subject Classifications: 90B35, 90C27
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Untere Schranken fiir. 1-, 2- und 3-dimensionale Bin-Packungsprobleme. In dieser Arbeit untersuchen
wir asymptotische untere Schranken von on-line Algorithmen fiir verschiedene Arten des Bin-
Packungsproblems. Kiirzlich haben Galambos und Frenk einen einfachen Beweis der unteren Schranke
1.536 ... fiir das eindimensionale Packungsproblem angegeben. Ausgehend von ihren Uberlegungen
prisentieren wir eine allgemeine Technik zur Herleitung unterer Schranken auch fiir andere
Packungsprobleme. Wir verwenden diese Technik, um neue untere Schranken fiir das zweidimensionale
(1,802...) und das dreidimensionale (1,974...) Packungsproblem zu beweisen.

1. Introduction

The 1-dimensional bin packing problem can be stated as follows. We are given a
list L = (a,,a,,...,a,) ofitems. An item a; has a size s(q;) that satisfies 0 < s(g;) < 1.
Further we have an infinite supply of unit-capacity bins. The objective is to pack
the items in a minimum number of bins such that the total size of the items in every
bin is less than or equal to 1.

In the 2-dimensional bin packing problem the items are rectangles with width
0 <w(a;) <1 and height 0 < h(g;) < 1 that have to be. packed in a minimum
number of unit-square bins such that
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e cach item is contained entirely within its bin with the sides of the item paraliel
to the sides of the bin,
e no two items overlap.

Moreover, the items have a fixed orientation, so that rotation is not allowed.

Finally, we have the 3-dimensional bin packing problem where the items are boxes
with width 0 < w(a;) < 1, height 0 < h(a;) < 1 and depth 0 < d(a;) < 1 that have to
be packed in a minimum number of unit-cubes under the same conditions as in its
2-dimensional variant.

Since these bin packing problems have been proved to be NP-hard (see [5]),
research has focused on finding good approximate algorithms. The number of bins
that an algorithm A uses to pack list L is denoted by A(L) and the optimum
(minimum) number of bins for list L is denoted by OPT(L). We will measure the
performance of an algorithm A by its asymptotic worst case ratio RS, which is

defined as
_ ( )
R? = limsup max OPT(L)=k; }.
k-

A special class of algorithms are the so-called on-line algorithms. An algorithm is
called an on-line algorithm if it packs the items in the order given by the list, without
knowledge of the subsequent items on the list. This lack of knowledge is such a
severe handicap that no on-line algorithm can have an asymptotic worst case ratio
close to 1. The best on-line algorithm for the 1-dimensional problem is due to Richey
[8] and yields an asymptotic worst case ratio of 1.589 ... . For higher dimensions Li
and Cheng [6] and Csirik and Van Vliet [1] gave different algorithms that both
have an asymptotic worst case ratio close to (1.691)%, where d is the dimension. On
the other hand, Liang [7] showed that no on-line algorithm for the 1-dimensional
bin packing problem can have an asymptotic worst case ratio better than 1.536... .
Galambos and Frenk [3] gave a simplified proof for this lower bound with a
technique that can easily be used to derive lower bounds for other bin packing
problems as well. It was used by Galambos [2] to derive a 1.6 lower bound for the
2-dimensional bin packing problem, and by Galambos et al. [4] to derive a lower
bound for the d-dimensional vector packing problem.

In this paper we show the basic steps of this technique and we will illustrate its
application with the proof of Galambos and Frenk for the 1-dimensional bin
packing problem. Furthermore, we will use it to derive new lower bounds for the
2- and 3-dimensional case. We will also give a conjecture on a lower bound for the
general d-dimensional bin packing problem. We will conclude with a discussion of
a linear programming technique due to Van Vliet [9] that can be used to slightly
improve on these lower bounds.
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2. The Technique

In this section we will describe a general technique to derive a lower bound for the
asymptotic worst case ratio of any on-line algorithm for the bin packing prob-
lem. Suppose there is a list L which is a concatenation of k& + 1 sublists: L =
LiL,_,...Ly. Each of these sublists contains n equal sized elements a;;, 0 <j < n,
1 < i< n, whose size does not depend on n. An on-line algorithm A4 has to pack
this concatenated list and we evaluate its performance ratio after packing each of
the sublists:

() = AL, ... L)
J OPT(Lk...Lj)'
If we let
r = max { lim rj(n)}
j n—w

then r will be less than or equal to the asymptotic worst case ratio of algorithm A.
Because we are interested in a lower bound for the asymptotic worst case ratio of
any on-line algorithm, we will give a lower bound for r that holds for every A.

We now introduce the following notations.

e #={B,,...,By, .1, denotes the packing of the concatenated list L,...L,
produced by the on-line heuristic A. A bin belonging to 4 is called a bin of type
t = (to,ty,..., 1) if it contains ¢; items of list L;, 0 < j < k. Further, the number
n(t) equals the number of bins of type t.

e The subset 4; < %, 0 < j < k, contains only those bins which were used for the
first time by the on-line heuristic 4 during the packing of list ;. Moreover, define
for every 0 < j < k the sets

T; = {t: There exists a bin of type tin %;}
and
T = {t: There exists a bin of type t in %}

{Note that if t = (¢,,...,¢,,...,t;) with t;, = 0 Vi < r and ¢, > 0 then t € 4,.) These
notations enable us to write

k
ALy...L)= Y T nl). (1)

p=jteT,

So, now we have described the behaviour of an algorithm A in a suitable way. With
this we come to the main theorem:

Theorem 1. Let w;, 0 < j < k, be some positive weights such that for every te T,

§4
.Zo wit; <p+1 @)
=

holds. Then
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nyk ow

lim (3)
now ) 5= OPT(L,... L))
is a lower bound for the asymptotic worst case ratio of any on-line algorithm A.

Proof:
From (1) we get that

k k k k
Y AL L)y=Y Y Y =Y (p+1) Y n@.
ji=0 j=0 p=jteT, p=0 teT,
Further, because every sublist L; contains nitems, we have forevery 0 < j < kthat
n= Z tn(t) = Z Y tn(y).
p=jteT,
Multiplying this equation by w;, 0 < j < k, and adding up, yields

i 2 Z jtjn(t)=i Y n(Y) 'if‘o w;t;

p=0teT,

JZO
<Y (4D T a0 =¥ AL,

teTl7
So,
A(L,...L)
_ lim L)
r=max {Ti OPT(Lk...Lj)}
Yo A(Ly... L)

> lim
NI OPT(L;c L))

Z o Wj
> lim =
now ) =0 OPT(L... L)’

Given the construction of the concatenated list L, the quality of the lower bound
depends on the gap in inequality (2) for packings produced by an algorithm that
minimizes r. For that reason, it is very important how we choose the weights w;.
However, as optimal algorihtms tend to have more than k + 1 different packings,
we can never guarantee to find weights that resuit in equality of (2) for all packings
used.

a

We did not make any assumptions about what kind of bin packing problem we are
dealing with. Hereby, this technique can be used for the 1-, 2- and 3-dimensional
bin packing problem as well as for the d-dimensional vector packing problem to
derive lower bounds for the asymptotic worst case ratio of on-line algorithms.

We summarize this technique in the following steps:

1. Construct a list L consisting of several sublists L;, that contain n identical items
each.

2. Choose appropriate weights w; such that (2) holds.

Give upper bounds for OPT(L,...L;),0 <j < k.

4. Calculate the lower bound according to (3).

W



Lower Bounds for 1-, 2- and 3-Dimensional On-Line Bin Packing Algorithms 285

Note that it is sufficient to give upper bounds for OPT(L,...L;), 0 <j < k, because
that terms appear in the denominator of (3).

3. 1-Dimensional Bin Packing

In this section we will use the same construction of the lists L; as Liang [7] to give
the much simpler proof of Galambos and Frenk [3] for the 1.536...lower bound.
Therefore we need the series m;, j > 0, which is defined by

my =1 and m; =m;_y (m.; + 1) Vj>1.

Let k be a fixed natural number. Let L =L, L, _,...L, be a concatenation of

. . . . . 1
k + 1 sublists L;, 0 < j < k, where sublist L; contains n items of size ] + ¢

<O<8< ! >
Tkt Omyyy)

In [7] it has been shown that for any partial lists L, ... L;,0 < j < k, if nis a multiple
of my, then for every 0 <j < k

OPT(L,...L) = —.

m;

. . . . j+1
Using Theorem 1 and setting the weights w;, 0 <j <k, such that w; = ,

m;

0 <j < k, the desired inequality
4
Y wt;<p+1
=
holds for every packing ¢ = (to,...,%;) € T, ([3]).

Combining everything yields the original result of Liang [7]:

Theorem 2. Every on-line algorithm for the 1-dimensional bin packing problem has
an asymptotic worst case ratio of at least -

i+l
lim 22"
k- i 1
Som;

Evaluation of this expression yields a lower bound of 1.536.....

4. 2-Dimensional Bin Packing

Let k> 1andlet L = Ly, LogLy4—1---Loo be a concatenation of 2(k + 1) sublists
L, g€{0,1},0 <j < k. Every sublists L,; contains n equal sized items, which we
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will denote by a ;. An item a,; has width w(a,;) and height h(a,;). The sizes are as
follows (0 < j < k.

1 . 1
w(a,;) = i—(]+1)8 h(alj)=mA+1+£
J
1 1
J

We take ¢ > 0 small enough to satisfy Y %_oh(a;;) <1 and w(ay,) > 3. So, ¢ <

. 1 1

min , .
((k + Dm0k + 1))

Then we can easily prove the following about the optimal packing of the partial list
Liy...L;;,ge{0,1},0<j<k
Lemma 3. If n is a multiple of 2m,, then

n
S
b) For every 0 <j < k: OPT(L,y...Ly;) < %

f)

a) OPT(Ly) <

1 1
c) ForeveryOsjsk—1:OPT(L1k...L1j)s;(E+ )
j

Proof:

Case a: It is easy to see that we can pack 2 items of L, side by side and that we
can pack my, items of L,, on top of each other. This means that 2m, items of L,

can be packed together in a bin. So, L, can be packed in % bins.
k

Case b: If we pack a,, and a,,,j < p < k, side by side and place m; pairs (a,,, do,),
J < p <k, on top of each other, the total height in a bin will be

k 1 1
= m; — = +e
" Z ( +1 ) Jpzj <mp m,, )
M 41

1 no_. . .
because of ¢ < —————. So, — bins are sufficient to pack this list.
(k + 1)my 4y m;

Case c: With a strip of size h, we will mean an area of width 1 and height h. We can

pack an item a, , together with an item a,, in a strip S, of size 1 +ej+1<

P

+ &

. . . . 1
p < k. Further, we can place two items a, ; together in a strip S, of size 1

fl
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If we pack -2% bins with each m; strips S, and m; strips S, j + 1 < p <k, and we
J

pack 2mn bins with each m;,,; strips S,, j + 1 < p <k, we get a feasible packing
i +1
1 1 .
with n<4 + > bins in total. |
2\m;  myy

With a little more effort, one can also show that the inequalities in the this lemma
hold with equality. However, this is not necessary for our technique to be applied.
The optimal packing of the whole list L is given in Fig. 1.

Lo Loo

L1 Loy

Lo Lo2
Lis Los

Figure 1. Optimal packing pattern for k = 3

On the other hand, we can also find suitable weights that lead us to the following
lemma.

Jj+1

Lemma 4. Let the weights w,;, g € {0,1}, 0 < j < k be given by w,; = . Then

we get for all 0 < p < k that

4
Y tosWo; < 2p + 1
=)

J

P
Y toWo; < 2p + 2.
Z

J

r—1
a) foreveryte To, > tyw;+
j=0

D
b) foreveryte T,, ¥ t,w; +
/=0
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Proof:

First, we will deal with the case p = 0. Since w(ay,) > 3 and h(ago) > 5 it is immedi-
ately clear that a packing t € Ty, can contain only one item of L,,. Because of
Woo = 1 it follows that the condition of Case a holds. Since h(ago) = h(ayo) > 7,
packing t € T;, can contain at most 2 items that are placed side by side. So the
weights w, o = woe = 1 satisfy the condition of Case b.

Now we can assume that p > 1. We will first introduce the notion of domination.

We say that m items a, ; dominate one item a, ;, if
W(angz) < wla

Y < h(a

91j1)

mh(angz 9111)

mw, w

9242 2 911

and at least one of these inequalities is strict. We denote this dominance by
ma, ;, > a, ;. So according to this definition we get: a,;>>ag; for all 0 <j <k
and m;a, 44, > a;; for all 0 <j < k — 1. We will now handle the Cases a and b

separately:
Case a: Welet Fo (t) = Y 223 wyjty; + 9.2 Wopto,- It suffices to prove that
max Fg,(t) <2p + 1.

te Top
Because of the dominance rules we only need to consider items of L, and L,,,,
in order to maximize F, (). Since w(a,,) + w(a,,-1)) > 1,2 packing with maximum

weight consists of a number of strips S, of size + ¢ with 1 item a,, each, and

m,

of a number of strips S, _; of size + ¢ that contain 2 items a,,_,;, each. If

1+ 1
p—1
we count the number of strips S, by ¢, and the number of strips S,_, by g,_,, we
get that max,. g, Fo,(t) is equal to

p+1 P
maxgq, + 29, ——
(4 Mp—y
under the condition that g, and g,,_, satisfy
qp qp—l < 1

m,+1 m,; +1 '
This maximization problem is solved by g, = q,_; = m,_; and has an optimal

. +1
solution of 2p + 4
m,_y

which is less than or equal to 2p + 1.

Case b: Because of the dominance rules we only have to consider items of L, ,. At
most 2 items a, , can be packed beside each other, and at most m,, items a,, can be
placed on top of each other. This means that the maximum weight in a packing is

1
=2p+2. O

+
equal to 2m,, P =
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This leads us to the following theorem.

Theorem 5. Every on-line algorithm for the 2-dimensional bin packing problem has
an asymptotic worst case ratio of at least

k ] 1
2y IF
lim =0 T .
k»ooklll""lll:l
—+ | =+ — +
jzo m; 2 [mk 1';0 (mj mj+1>

Proof:
This follows directly from Lemma 3, Lemma 4 and Theorem 1. O

Evaluation of this formula gives us a lower bound of 1.802.....

5. 3-Dimensional Bin Packing

Given k> 1, let L = Ly, Loy LyoxLooxL11xk-1)---Looo be a concatenation of
4(k + 1) sublists L,;, f, g € {0,1}, 0 <j < k, of 3-dimensional items. Each sublist
L,,; contains n items of the same size, which we will denote by a,;. An item a,,;
has width w(ay,;), height h(a,,;) and depth d(a,,;) as follows (0 < j < k).

1 , 1 . 1
W(a11j)=§_(2]+2)3 h(auj):E-(J"'l)g d(allj)=m+8
j
1 . 1 . 1
W(a01j)=§+(2]+2)8 h(aou):z—(]‘i‘ e d(ao1j)=m+8
7
1 . 1 . 1
w(ao;) = 57 %+ e h(ayo;) = 5 (J+ De d(aio;) = w1 +e&
J
1 , 1 ) 1
w(age;) = 3 +(2j + e h(age;) = 3 +(j+ e d(ago;) = ] +eé
g
We take e < “1 . This guarantees that at most 2 items can be placed side

= 2(k + Dmy gy
by side or on top of each other and also that the items a0, a4, ..., asy can be
placed behind each other for every f, g € {0, 1}. The optimal packing of L takes n
bins and is given in Fig. 2.

In the remainder we will mean with a slice of size s an area of width and height
equal to 1 and depth equal to s. So, the items a, ,;, ag1;, a10; and a,4; can be packed

together in a slice of size + e

1
+1

m;

We can prove the following upper bounds on the optimal solution of the
concatenated lists L,,,... L, ; forevery f,ge {0,1} and 0 < j < k.
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/ / |
a—

h

Lio2 Loo2 /
Li12 Lo12 /i

W

Figure 2. Optimal packing pattern for k = 2

Lemma 6. Let n be a multiple of 4m,, then

a) OPT(Ly) < o
k

2n
b) OPT(Ly Lo < —
mk

3m
) OPT(LI 1kL01kL10k)

d) For every 0 <j < k: OPT(L“k...LOOj) <2
m

J
¢) Forevery0 <j <k — 1: OPT(Ly ... Lyy,) s%(
2

m j+1

)

g) Forevery0 <j<k— 1:OPT(Lyy4...Lyg)) < ( )
m] mj+1

f) Forevery0 <j <k —1:OPT(Ly... Loy ) gg(

Proof:
We will prove this lemma by giving feasible packings that use the indicated number
of bins.
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Case a: We will pack 2 items side by side, 2 items on top of each other and m, items
of L, behind each other in a bin. Because of w(a; ;) < 3, h(a, ;) < 2 and d(a, ;) <

—, this packing will be feasible. It packs 4m, items together in a bin and since n is
my

a multiple of 4m,, we need " bins.
4m,

Case b: We can pack an item of L, and an item of L, side by side because of
wl(a; x) + w(ag) = 1. They have the same height and the same depth and by
repeating this pattern 2 times in height and m, times in depth, we get a feasible
packing. Every bin contains 2m, items of both L,;, and Ly, and because n is a

2
multiple of 2m,, we will need exactly Zn% bins.
k

Case c: We can pack 2 items of L, together with 1 item of L, and 1 item of Lq,

in a slice S¢ of size

n + &. We can also pack 2 items of L, ,, together with 2
my

items of L, in a slice Sz of size + ¢ (as in Case b). If we fill " bins each
my + 1 2my,
n

with my slices S and we fill dm,

bins with m, slices Sg, then we have a feasible packing

with " bins.
4m,

Case d: We can pack 1 item of every list L, ,, Ly;,, Lo, and Ly, together in a

1
+1+s,jspsk. If we put m; slices of every S,, j<p<k
together, then the total depth will be equal to

R e
m; gl=m, —— €
! p=J mpA+ 1 ) p=i mp mp+1

1
=1—-—m| —(tk—j+1 1
J( ol ( J )8)<

slice S, of size

1
because of ¢ < —————— This means that the packing of this bin is feasible and
2(k + Dmy 1y

n._, .
we need — bins in total.
m.
]

Case e. We consider slices §, of size

- + ¢ that contain four items of L, ;.
'

Further we have slices S, of size

+¢,j+ 1 <p<k, that contain one item
m
§4

of every list Ly, Lo1,» Lio, and Lgg,. We pack 4—"— bins with m; slices S, and m;
J
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3n

slices §,,j + 1 < p < k, and we pack bins with m,, slices S,,j + 1 <p <k
p 4 J P

Mg

. . . . . . 1 3
It is easy to verify that this gives a feasible packing. Adding up gives g(— + )
m

i M
bins.

Case f: We consider slices Sp of size

1 A
+ & that contain 2 items of L;,; and 2
m; + 1
n
2m

J

items of Ly, ;. Further we have slices S,, j + 1 < p <k, as in Case e. We pack

bins with m; slices S and m; slices S, j + 1 < p < k, and we pack bins with

n
2m; + 1
m; .,y slices S, j + 1 < p < k. This packing is feasible and the result follows.

Case g: We consider slices S¢ of size + ¢ that contain 1 item of L, ;, 1 item
m;
of Ly, ; and 2 items of L,,;. Further we have slices S,,j + 1 < p <k, asin Case e

. . n . . . .
and slices S; as in Case f. We pack I bins with m; slices S¢ an m; slices S,
m;
J

j+1<p<kwe pack%mbins with m; slices S and m; slices S,,j + 1 < p < k,and
J

we pack bins with m;,, slices S,, j + 1 < p < k. This packing is feasible, so

;41
the desired result follows. Ol

The next lemma states the results about the packings te Tp,;.

i+ 1
Lemma?7. Letw,,; = !—;;—,f,g € {0,1},0 < j < k. Then for all0 < p < kwe have
J
a) For every te Ty,

1 P

1
2
0g=0

Wyaitrai + Wooploop < 4p +1

1
f= j=o0

b) For everyte Ty,
1 4
IZO yZO

c) Foreveryte Ty,

p—1
2, Wraitses + Wioptr0p + Wooploo, < 4p + 2
£

1 1 p-1
2 Z Wrailrgi T Woiploip T Wiopliop + Wooploop < 4p + 3
f=0g¢=0 j=0

d) For everyteT,,,

1 1 P
Z Z Z ngjtfyj = 4p +4.
f=0¢g=0 j=0
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Proof:

We will first deal with the case p = 0. Since w;,, = 1, £, g € {0, 1}, we have to show
that if t € Tjo0 (resp. Tigo> T101 OF T;4o) that such a packing t can contain at most
1 (resp. 2, 3 or 4) item(s). We will leave this to the reader as an easy exercise.

From now on we will assume p > 1. We will first introduce the notion of domination.
We say that m items a,,, ; -dominate one item a, , ; if

W(afzyzjz) = W(aflﬂljl)
h(afzgzjz) < h(afxglh)
md(afzgzjz) = d(af191j1)

MWy 9.3, 2 Wrig:ds

and at least one of these inequalities is strict. We denote this dominance by
mafzgzjz>af191j1‘

An other useful tool that we will use is a 3-dimensional coordinate system. We can
think of a bin as being placed in a 3-dimensional coordinate system such that it
covers the area [0, 1] x [0, 1] x [0, 1]. We let the width of the bin correspond with
the first dimension, the height with the second dimension and the depth with the
third dimension. This coordinate system allows us to speak about planes and lines
intersecting the bin, which we will use for the proof of the Cases a, b and c.

Case a: We let Foo,(t) =) F-0 ) 5-02.520 Wryilrei + Wooploo,- 1t suffices to prove
that

max Fyq,(t) <4p + 1.

te Toop
Because ayy;>>djo5 ay4;>- Go1jy @110 Gge; for every 0<j<p-—1 and
M;ayy+1) > 44 for every 0 < j < p — 1, we only have to consider items of Ly,
and Ly, in order to maximize Fy(t).

If we intersect the bin with a plane P given by x; = ¢, 0 < ¢ < 1, we will encounter
at most 4 items. Because 4 items of L, ,,_;, can be packed together in a slice of size

———r + & we can encounter 4 items of L, ;,_;,. Whenever P intersects an item
m
p—1

of Lgo,, that will be the only item it intersects, because of w(ago,) > 3, h(ago,) > 3,
w(doop) + W(ay1p-1y) > 1 and h(ag,,) + hia;yp-1)) > 1.

When we intersect the bin with a line I given by x; = a, x, = b, 0<a, b < 1, we
count the number of items of Ly, that we intersect by ¢, and the number of items
of Ly (-1, by g,-1- Of course g, * d(agp,) + q,—1 *d(a;1,-1,) < 1 must be satisfied.
Because this must be satisfied for every line /, we can bound max,, Toop F00p(t) BY
maqu,p *+1 + 4qp_1L
§4 mp—l
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under the condition that g, and g, _; satisfy

T G oy
m,+1 m,_; +1

This maximization problem is solved by g, = q,.; = m,_; and has an optimal

p+1
m,_y
Case b: We let Fio,(t) =Y fo0.9-02.70 Wraitraj + Wooptoop + Wioptiop- It suf-
fices to prove that

solution of 4p + i which is less than or equal to 4p + 1.

max Fy,,(t) <4p + 2.

teTop
After applying some evident dominance rules, only items of L,,, and L,y
remain to maximize F,,(t). Because w(a,,) < 7 and w(a,1,-1)) < 1 we can split
the problem of maximizing the value of the items in the bin into 2 equivalent
problems: maximize the value of the items in the left (resp. right) half of the bin. We
will work with the left side of the bin, Let the half-plane H be given by x; = ¢ and
x; < . Because of the height of a,,,_,, and a,,,, H can intersect at most 2 items
of a4,y or 1item of a,,. With g, (resp. q,_,) we count the number of items a,,,
(resp. a, ¢, 1)) that we encounter on the line/ givenby x; = aandx, = 5,0 <a < %,
0 < b < 1. We can bound the value of the items in the left half of the bin by

4 p+1

max2q,_, — +4q,

p—1 my

under the condition that g, and q,,_, satisfy

qp—l qp

<1.
my;-+1 m,+1

p+1

1
This is solved by g, = q,_; = and yields a value of 2p + . Since the
m,_y Sm,y
1
right half of the bin yields the same outcome and since 2 (Zp + mp;—i-l) <4p+2
p—1

this completes the proof of this case.

Case ¢ We let Fo () = [0 202520 Wraitrei + Wooptoop + Wioptiop +
Wo1,to1,- It suffices to prove that '

max Fy,,() <4p + 3.

teTo1p
Applying the dominance rules leaves us with items of L, ), Lo1, and Ly, to
maximize Fyy,(t). When we intersect the bin with a plane P given by x3 = ¢,
0 < ¢ < 1, we may encounter 4 items a,,.,_;,. However, if P intersects at least 1
item ay,, O ag;,, then it can intersect at most 3 items (2 X a0, and 1 X aqy,,
2 X ayyp-yy and 1 X agy,, OF 2 X @y1¢,—1y and 1 x a;,,; however, only the first
possibility is relevant for maximizing Fy, ,(t)). When we intersect the bin with a line
[ given by x; = a,x, = b,0 < a, b < 1, we count the number of items of L, , and
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L,,, that we intersect by g, and the number of items of L, ,_;, by g,_;. Of course
g, *d(ag,) + q,-; *d(a,,,—,,) < 1 must be satisfied (note that d(ay;,) = d(a,,,))-
Because this must be satisfied for every line I, we can bound max,.r,, Foy,(t) by
p p+1
maxdqg,_; —— + 3
qp lrnp—_1 qp mp

under the condition that g, and g, _; satisfy

qp*l + qp < 1
my_;+1 m,+1
.. . p+1 S
This is solved by g, = q,_, = m,_,, that yields a value of 4p + 3 - —— which is
p—1

less than or equal to 4p + 3.
Cased: Welet Fii,(t) =0 00> F_oWsyits,;- We need to prove that
max Fp,,(f) <4p +4.

teTy)p
Because of the dominance rules, we only have to consider items of L, ; , in order to
maximize Fy, ,(t).

But only 4m, items of L, , can be packed together into a bin, so max,.r,,, Fy,(t)

. 1 . . .
is equal to 4mpp T 4p + 4, which verifies the last part of this lemma. O
m

14
Theorem 8. Every on-line algorithm for the 3-dimensional bin packing problem has
an asymptotic worst case ratio of at least

k 7 1
4y 1T
lim = 7 .
ko ko1 301 KL/ 1
—+ | —+ —+
J'ZO m; 2 |:mk jZO (”"j mj+1>:|

Proof:
This follows directly from Lemma 6, Lemma 7 and Theorem 1. |

Some calculation gives us a lower bound of 1.974 ... .

6. Conclusion

It seems that a possible generalization derives lower bounds for the d-dimensional
bin packing problem ford > 3.In d — 1 dimensions the items will have size of about

1, and in 1 dimension the items will be of size

i + ¢ Note that this covers
dimension 1, 2 and 3 as well. We will state our ideas without proof.

Conjecture 9. Every on-line algorithm for the d-dimensional bin packing problem has
an asymptotic worst case ratio of at least
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Kk
_ J+1

2d 1§

j=0 m;

lim ] . . O
oo &1 2<d—1>—1[1 k—1<1 1 ﬂ

e N

Z m; 2 my jZo m; M

If we let the dimension d grow to infinity, the lower bound converges to 2.181 ....
So, unlike the asymptotic worst case ratio of the best on-line algorithm this lower
bound does not grow exponentially with the dimension, but it remains under a
constant. It may be an interesting question whether it is possible to find a lower
bound that depends on d at least logarithmically, either by refining the construction
of the list or by a better proof technique. We summarized the values of the lower
bounds in Table 1.

Table 1. Lower bounds for the d-dimensional bin packing problem

d Lower bound
1 1.536 ...

2 1.802 ...

3 1.974 ...

© 2.181...(7)

As we already discussed in Section 2, the quality of the lower bound depends on
the gap in the inequality (2) for packings produced by an algorithm that minimizes
r = max;{lim, ., r;(n)}. Van Vliet [9] computes such an optimal algorithm for the
list L that we used in Section 3 for the 1-dimensional bin packing problem, by means
of a linear programming formulation. Indeed, he shows that there exists a gap in
(2) for some of the resulting packings. This linear programming formulation also
gives an improved lower bound of 1.540 ... . Given our construction of L, this is
the best possible. It seems that, at a cost of much more work, it is possible to extend
this linear programming approach to dimensions 2 and 3 as well.
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