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Chapter 1

Introduction

The success of many businesses lies within their ability to understand their customers. In-

sights in customer behavior as well as customer heterogeneity allow companies to improve

their business strategy. The primary goal of this dissertation is to provide companies with

tools to improve this understanding, and thus to support managerial decision making.

This chapter is organized as follows; in the next section, we expand on the reasons

behind our research. In Section 1.2, we present the scope of our research along with

the research goals. The particular research questions that we address in this dissertation

are presented in Section 1.3. Section 1.4 presents the outline of this dissertation with

a discussion of its contributions as well as a description of the research methodologies

employed.

1.1 Motivation

Companies may not readily have relevant information they need on their customers’ pur-

chase behavior. Some of the challenging questions that they constantly deal with are

whether customers will continue buying the company’s service or its products; how much,

how often and when they will buy; what their willingness to pay is for a specific part

of the service offering. The more the company knows about customer purchase behav-

ior, the better equipped it is to gain or retain customers, and to excel in its business.

Therefore, understanding customer behavior in order to predict and consequently to steer

future behavior is a never-ending challenge not only for companies, but also for academic

researchers from various backgrounds.

1
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2 Introduction

The scientific process of transforming data into insight for making better decisions,

further referred to as analytics,1 provides one of the best tools to help companies to un-

derstand customer behavior. We see analytics as the assortment of analytic modeling

techniques that enable firms to predict customer behavior; to understand customer het-

erogeneity; to develop business metrics that help to evaluate the success of marketing and

operations effectiveness; and to transform these insights into business strategies.

Analytics is becoming more prominent for companies for three main reasons. First of

all, data is growing exponentially, not only in size but also in the variety of its sources. New

technologies enable collecting more data than ever before, yet many companies are still

looking for ways to obtain value from their data. Therefore, companies adopt analytics

to exploit their growing data potential to get smarter and more innovative.

Secondly, there have been advances in quantitative modeling techniques such as recent

developments in econometric methods and also increases in computational resources, al-

lowing the estimation of large-scale Bayesian and simulation-based algorithms. All these

advances bring new opportunities, new ways to thoroughly analyze data; and thus, to

better understand customer behavior.

Third and foremost, companies start to realize that analytics can improve their busi-

ness performance not only by increasing their direct revenues but also by creating a longer

term relationship with their customers. In a survey2 of nearly 3,000 executives, managers

and analysts working across more than 30 industries and 100 countries, half of the re-

spondents said that improving information systems and adopting advanced quantitative

models are top priorities for their organizations. Another striking result is that top-

performing organizations use analytics five times more than lower performers. Overall,

this survey underpins the widespread belief that analytics can offer value to companies.

Therefore, managers increasingly adopt analytics to enhance their business performance.

Until recently analytics have mostly been associated with quantitative marketing tech-

niques. However, companies have recognized that most business functions can be im-

proved with this data-driven approach. We observe that companies have started to apply

a so-called enterprise analytics approach. For example, UPS, which is counted among the

world’s most rigorous practitioners of Operations Research and Industrial Engineering

with its sophisticated operations planning, extends its quantitative techniques to other

business functions. Today, UPS applies quantitative techniques to anticipate and influ-

ence the actions of customers. The company currently predicts customer defection by

1This definition is provided by the Institute for Operations Research, the Management Sciences and
Analytics [INFORMS].

2This survey was conducted by MIT Sloan Management Review partnered with the IBM Institute for
Business Value (LaValle et al., 2014).
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examining usage patterns and customer complaints so that they can manage their oper-

ations more effectively (Davenport, 2006). Similarly, Procter & Gamble recently created

an analytics group consisting of more than 100 analysts from different functions including

operations, supply chain, sales, consumer research and marketing (Davenport, 2006).

The holistic data-driven approach also influences various scientific disciplines such

as Operations Management [OM] and Operations Research [OR].3 For already a long

time, many researchers have pointed out that OM has drifted far away from its original

empirical source (Fisher (2007), Agatz (2009)). Therefore, re-introducing a more data-

driven approach is very valuable in the field. Revenue Management [RM], being an OR

methodology, represents a good example where a data-driven approach can increase its

effectiveness. RM aims to maximize revenue by either pricing and/or inventory allocation

decisions under constrained supply capacity conditions. It involves managing the firm’s

interface with the market; therefore, an understanding in customer behavior and customer

heterogeneity should be seen as the core of an RM system. However, current RM systems

use only a fraction of the relevant data which is made available by today’s information

technology systems (van Ryzin, 2005). Only recently we see that advanced demand meth-

ods have been introduced in RM to specify the probability of purchasing products and the

expected timing of purchases. However, applications of these advanced demand models

to different industries (such as online retail industry) are limited, and heterogeneity in

choice behavior across different customers has mostly been ignored (Cirillo and Hetrakul,

2011).

This dissertation acknowledges the necessity of empirical input into inter-disciplinary

business research. Therefore, in each chapter of the dissertation, customer transaction

data forms the basis for building models and expanding on theories. The results aim

to complement other decision-making tools, such as an RM system, by providing better

input from customer behavior and customer heterogeneity.

1.2 Scope and Research Goals

Throughout this dissertation, we examine the repeat-purchase behavior of customers in

a retail context. Aside from simulated data for model testing, we use real data from

companies operating in the retail industry. Even though most of our data comes from

online retailers, brick-and-mortar retailers which apply customer loyalty programs can

3Following these trends in both business and research, INFORMS, the largest society in the world for
professionals in the field of Operations Research and Management Science, expands into analytics which
confirms the close relationship between OR and analytics.
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also make use of our ideas and models. The companies that we obtain data from are

grocery and CD retailers. Our contributions, however, can be extended to many other

sectors, including digitalized products such as software, music and movies.

We particularly focus on the so-called non-contractual setting. Under such a setting,

there is no tying contract for customers to continue buying from the company. In other

words, customers are free to leave the company at any point in time without notifying the

company. The unobserved defection time complicates the understanding and predicting

the customer’s repeat purchase behavior.

Our research is mainly situated in the fields of probabilistic customer base analysis

modeling and two-part pricing schemes. Probabilistic customer base analysis literature

deals with the understanding and predicting the customer behavior in a repeat purchase

environment. In particular, we focus on Buy-Till-You-Defect [BTYD] modeling stream

that concentrates on the non-contractual setting. These models specify a customer’s

transaction and defection processes. Even though these advanced models provide detailed

predictions on both defection and purchase behavior on the individual level, it has been

observed that not many of them have found their way into business practice (Wübben

and Wangenheim, 2008).

Improved understanding in customer behavior should form the basis of decision-

making that guides day-to-day operations and future strategies of companies. One of the

most important decisions that a firm makes is pricing its services and products. Based

on the insights we obtain from BTYD models, we next focus on pricing strategies for

online retailers who derive their revenues from delivery fees and grocery sales. Therefore,

they need to set prices on these two complementary services and products. In order to

come up with optimal pricing strategies, we use the ideas from the two-part tariff pricing

literature. Despite the detailed theoretical predictions and demand conditions discussed

under this literature, there is a limited empirical work that checks whether these demand

conditions are met in practice (Gil and Hartmann, 2009).

Given the time and costs associated with implementing advanced models and theories

in managerial practice, the marketing executives need to be convinced by a clear demon-

stration of their contributions. The primary goal of our work is to bridge the gap between

advanced models/theories and their business applications. To realize this goal, we first

aim to broaden the scope of BTYD models and extend their uses. We believe that if mar-

keting executives are clearly shown that they can obtain predictions on additional metrics

and acquire more insights in customer behavior as well as in customer heterogeneity by

applying BTYD models, the diffusion of such models in business will accelerate. In a

similar vein, in order to bridge the gap between two-part tariff theory and its business
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practice, we target to extend its scope to a repeat-purchase environment. Moreover, we

aim to develop empirical tests of two-part tariff that can be applied to transaction data

in an online retail context.

To reach the primary goal of this dissertation, our research objectives are structured

as follows:

• To improve the understanding of customers behavior by providing a deeper insight

in the mechanics of their purchases;

• To extend the understanding in customer heterogeneity, especially in the hidden

drivers of customer’s purchase behavior;

• To better predict customer behavior;

• To propose pricing schemes that build on the customer insights.

1.3 Research Questions

This dissertation provides relevant practical and technical insights to support decision

making by developing new quantitative models. In particular, these models aim at pro-

viding insights in customer’s purchase behavior and customer heterogeneity, and guiding

optimal pricing strategies. There is a vast body of literature on quantitative modeling in

Marketing as well as in Economics and Operations Management. Even though the models

developed in this thesis can be seen as quantitative marketing models, there are strong

overlaps with Microeconomics as well as with RM literature.

To achieve the goals of this dissertation, we organize our research around four main

research questions. The first step is to get a comprehensive overview of the BTYD models.

Therefore, we analyze current practice and relevant literature on these models to answer

the following research questions.

RQ1 : Which of the state-of-the-art BTYD models perform better in predicting cus-

tomer behavior under a non-contractual setting? How do we capture the differences on

predictive results from these models?

These questions focus on providing an extensive validation and comparison study to

guide managers on model choice. Once we applied the most established BTYD models

on different data sets, we are able to identify relevant extension points for such models.

We identified two major extension points for BTYD models both of which aim at

broadening the use of these models. The first extension concerns increasing the predictive

output. These models are built upon sophisticated stochastic arrival processes on the
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individual customer level. Based on this, we can obtain another metric which was not

associated with these models before. More specifically, we ask the following research

question.

RQ2 : Can BTYD models be used to predict the timing of next purchase for individ-

uals?

The answer of this question is especially important because, to our knowledge, there

is not a specific modeling stream that addresses the purchase timing prediction problem

under a non-contractual setting. The timing predictions can directly be incorporated into

a promotion planning or an RM model.

The second extension concerns modeling customer heterogeneity in a more flexible

way. This leads us to the next research question.

RQ3 : Does a heterogeneity distribution on the customer base that accommodates

multimodality (customer segments) lead to a more extensive explanatory power as well

as a better predictive performance for BTYD models?

To this end, we build a new BTYD model which extends the use of such models by

further providing a customer segmentation. The results from this model help to transform

customer insights into marketing actions. Applying the newly proposed BTYD model on

a dataset from an online retailer, we identified customer segments with different purchase

behavior. This finding leads us to the following research question.

RQ4 : How do we link customer purchase behavior and heterogeneity insights to firms’

marketing strategies such as pricing?

The aim of this step is to prescribe the way to deal with pricing of delivery fees for

online retailers.

1.4 Overview of the Dissertation - Methodology and

Contributions

The chapters of this dissertation are self-contained and can thus be read independently.

According to the research question, different methodologies are employed in separate chap-

ters. After this introductory chapter, Chapter 2 provides an in-depth study of BTYD mod-

els with an extensive comparison and validation study among the most established models

in the field. In the same chapter, we show that with BTYD models one can also predict

the timing of purchases on the individual customer level. In Chapter 3, we present a new

BTYD model that provides additional insights on customer behavior and heterogeneity.

Chapters 2 and 3 both rely on Bayesian hierarchical approaches. The former chapter also
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utilizes stochastic modeling techniques in order to provide analytical derivations on the

newly proposed timing metric. The latter chapter expands on the BTYD models by em-

ploying a finite mixture probabilistic approach to analyze parameter heterogeneity within

and across hidden segments in the customer base. Chapter 4 builds on the customer

heterogeneity insights and presents a new model that aims to provide optimal pricing

strategies for online retailers. This chapter differs from the previous chapters in terms

of the literature stream that it fits in as well as the methodologies employed. Chapter 4

relies on microeconomic modeling techniques and non-Bayesian empirical methodologies.

It, however, is linked to the previous chapter in terms of exploiting segments that we have

identified in the customer base of an online retailer. Although each chapter concludes

with its contribution to their respective areas of research, a concluding chapter summa-

rizes the overall contributions that this dissertation makes to modeling customer behavior

and customer heterogeneity literature. In the remainder of this chapter, we introduce the

chapters in detail and summarize their contributions.

Chapter 2 addresses RQ1 and RQ2. In this chapter, we provide a new way to validate

and compare BTYD models. These models are typically used to identify active customers

in a company’s customer base and to predict the number of purchases. Surprisingly,

the literature shows that models with quite different assumptions tend to have similar

predictive performance.

We show that BTYD models can also be used to predict the timing of the next pur-

chase for each customer (RQ2 ). Such timing predictions have a clear managerial purpose.

To give an example, consider an online retailer implementing micro-marketing strategies.

The most appropriate time to contact its customers depends on their expected timing of

the next purchase. High quality timing predictions may contribute to achieving the full

potential of micro-marketing (Zhang and Krishnamurthi, 2004). Likewise, online retailers

may use purchase timing predictions to improve their operations planning. For example,

they can use these predictions as input for RM models.4 Given that even crude efforts

aiming at understanding customer demand can have a significant impact on RM applica-

tions (Bell and Chen, 2006), detailed predictions on purchase timing as well as on purchase

value have a big potential to increase the effectiveness of RM applications. Using these

predictions, the operations managers can prioritize valued customers for highly demanded

delivery time slots (Talluri and Van Ryzin, 2005). In summary, we believe that the abil-

ity to predict the timing of future transactions accelerates research in various fields such

4Online retailers are in a unique position to apply RM as they have (1) a heterogeneous customer
base (2) flexibility to tailor the product proposition to their customers, (3) limited delivery capacity at a
given time.
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as promotion calendar, pricing and capacity allocation decisions under a noncontractual

setting.

Moreover, the predictive performance on the purchase timing can be informative on

the relative quality of BTYD models (RQ1 ). For each of the established models, we

discuss the prediction of the purchase timing. Next, we compare these models across three

datasets on the predictive performance on purchase timing as well as purchase frequency.

We show that while the Pareto/NBD model (Schmittlein et al., 1987) and its Hierarchical

Bayes [HB] extension (Abe, 2009a) perform the best in predicting transaction frequency,

the PDO (Jerath et al., 2011) and HB models predict transaction timing more accurately.

Furthermore, we find that differences in a model’s predictive performance across datasets

can be explained by the correlation between behavioral parameters and the proportion

of customers without repeat purchases. Chapter 2 is joint work with Roelof Kuik and

Dennis Fok (see Korkmaz et al. (2013)).

Even though BTYD models tend to perform well in predicting transaction frequency,

amount and timing of individual customers as well as customer lifetime, they sometimes

predict extremely long lifetimes for a substantial fraction of the customer base. This

obvious lack of face validity limits the adoption of these models by practitioners. Moreover,

it highlights a flaw in these models. In Chapter 3, based on a simulation study and

an empirical analysis of different datasets, we argue that such long lifetime predictions

can result from the existence of multiple segments in the customer base. In most cases

there are at least two segments: one consisting of customers who purchase the service or

product only a few times and the other of those who are frequent purchasers. Customer

heterogeneity modeling in the current BTYD models is insufficient to account for such

segments, thereby producing unrealistic lifetime predictions.

We extend the current BTYD models by incorporating segments within the customer

base. This not only solves the extreme lifetime prediction problem, but also leads to a

more insightful description of the customer base. More specifically, we consider a mixture

of log-normals distribution to capture the heterogeneity across customers. The proposed

model allows us to relate segment membership and within segment customer heterogeneity

to observed customer characteristics. Our model, therefore, increases the descriptive

power of BTYD models to a great extent (RQ3 ). We are able to evaluate the impact

of customers’ characteristics on the membership probabilities of different segments. This

allows one to, for example, a-priori predict which customers are likely to become frequent

purchasers.

The proposed model is compared against the benchmark Pareto/NBD model and its

HB extension on simulated datasets as well as on a real dataset from a large grocery
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e-retailer in a Western European country. Our BTYD model indeed provides a useful

customer segmentation that allows managers to draw conclusions on how customers’ pur-

chase and defection behavior are associated with their shopping characteristics such as

basket size and the delivery fee paid. Chapter 3 is joint work with Dennis Fok and Roelof

Kuik (see Korkmaz et al. (2014)).

In Chapters 2 and 3, next to probabilistic modeling techniques, we mostly rely on

Bayesian hierarchical approaches as they enable us to produce not only aggregate level

estimates but also individual or unit-level parameter estimates. This is very important

as today’s marketing practices should be designed to respond to consumer differences.

Moreover, optimal decision-making requires not only point estimates of unit-level param-

eters but also a characterization of the uncertainty in these estimates (Rossi et al., 2005).

Bayesian hierarchical approaches are ideal as it is possible to produce posterior distribu-

tions for a large number of unit-level parameters. Last but not least, estimation of the

complex models in these chapters are relatively straightforward using simulation based

Bayesian methods. Chapter 3 additionally exploits finite mixture probabilistic approach

in order to provide more flexibility on heterogeneity modeling in BTYD models. Mixture

modeling approach can be very useful in defining hidden segments in the data.

In Chapter 4, we address RQ4. Building on the customer insights that we have

gained in Chapter 3, we focus on pricing of two complementary products in an online

retail setting. Online grocery retailers derive their revenue and profits from delivery fees

and grocery sales. The retailer may consider selling goods at a discount but make up for its

revenue loss with high shipping fees or vice versa. We base our optimal pricing discussion

upon the well-grounded two-part pricing literature. We adapt the theoretical framework

of Schmalensee (1981) and take repeat purchase occasions into consideration that create a

substitution effect between number of visits and consumption per visit, following Phillips

and Battalio (1983). We derive testable implications regarding changes in the price of

deliveries (access/primary good) and revenues from goods (secondary good). We take

these predictions to the data using a dataset detailing transaction information from an

online grocery retailer in a Western European country.

One of our main findings shows that there is a positive relationship in the data be-

tween the number of transactions and the average size of grocery baskets purchased. We

also observe two very different customer groups in our data with different willingness to

pay. This observation together with robust evidence that price-sensitive customers buy

larger baskets is consistent with an optimal pricing strategy that offers discounts for the

business customers and charges higher prices to the households for the primary good.



24

10 Introduction

We conclude that firms may increase profits by implementing alternative and simpler

price discrimination strategies by combining second and third-degree price discrimination

schemes. Chapter 4 is joint work with Özge Şahin and Ricard Gil.

Chapter 5 is the last chapter of this dissertation in which we summarize our findings

and give our concluding remarks.
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Chapter 2

“Counting Your Customers”: When

will they buy next?

2.1 Introduction

Many firms routinely store data on customer transactions. However, processing this

data in order to provide managerially relevant information can still be a challenge. The

customer base analysis literature provides a number of methods to use such data to

gain a good understanding of the customer’s transaction behavior. In the literature, a

distinction is made between a contractual and a noncontractual setting. The latter is

especially challenging as one does not observe the moment at which a customer leaves

the company. In this setting, it is interesting to predict the number of future purchases,

and to infer from observed behavior whether a customer has already left the company. A

wide variety of models is available for these purposes.

The online retail industry is an important example of an industry operating in a

noncontractual setting. Retailers never know which customers are active, or in other

words, which customers will continue buying from the firm. Thus, the customer database

of an online retailer is likely to contain many inactive customers. For example, in October

2005, eBAY reported 168 million registered customers but only 68 million of them were

counted as active by the company (Gupta et al., 2006). It is, therefore, very useful to

develop a method to identify active customers under a noncontractual setting.

It has been widely recognized in the literature that models that ignore defection, like

the early NBD model by Ehrenberg (1988), do not provide good predictions for this type

of industry. They generally overestimate future transaction frequencies (Schmittlein and

Peterson, 1994). Schmittlein et al. (1987) proposed one of the first models that does

11
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account for defection. Since then, there has been a strong focus on the so-called buy-till-

you-defect [BTYD] model. Several extensions of the model by Schmittlein et al. (1987)

have been introduced (Fader et al. (2005a), Abe (2009a) and Jerath et al. (2011)). Some

of these models have also been used to generate managerially relevant insights (Reinartz

and Kumar (2000), Reinartz and Kumar (2003), and Wübben and Wangenheim (2008)).

However, little attention has been paid to providing a rigorous empirical comparison of

the growing number of BTYD models. The models have mainly been compared on their

performance in predicting a customer’s number of purchases in a time interval.

In this paper, we suggest to include another measure in the comparison, namely the

timing of the purchases. The existing models mainly differ in the distribution that gov-

erns the defection process. However, differences in the shape of this distribution may not

directly lead to substantial differences in the expected number of purchases. Other mea-

sures, such as the customer being active at the end of the observation interval, directly

involve the (unobserved) time of defection. If we want to use such measures for validation,

we require additional assumptions or heuristics. The timing of the purchase is, however,

observed and critically depends on the interplay between the transaction and defection

processes. Yet, predicting the timing of the next purchase is not straightforward. We

develop methods for all state-of-the-art BTYD models. Based on these predictions, we

provide an extensive empirical validation and comparison of these models where we go

beyond the typical comparison that mainly considers only purchase frequency.

We present the in-sample and out-of-sample performance on predicting the transaction

frequency as well as the transaction timing of each customer for three datasets. The first

dataset is from an online grocer in a Western European country. The second is the well-

known CDNOW dataset which has been commonly used as a benchmark set. The third

dataset is also used by Batislam et al. (2007), and Jerath et al. (2011) and is from a

Turkish grocery retailer.

Our results show that different models can lead to different predictions on timing and

frequency. It is important to understand how the underlying behavioral assumptions of

the models lead to differences in performance. It turns out that certain data characteristics

such as the correlation between behavioral parameters favor use of certain models.

The remainder of this chapter is structured as follows. Section 2.2 gives an overview of

the existing literature on BTYD models. We discuss the main features of and differences

across the models, and present our contribution in more detail. In Section 2.3, we provide

technical details of the considered models and present new results that deal with the

timing of transactions. Section 2.4 gives a detailed description of the datasets. After
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presenting results of the empirical study in Section 2.5, general conclusions are discussed

in Section 2.6.

2.2 BTYD Models

In this section, we briefly review the main ideas underlying the BTYD models. We

also discuss the similarities and differences across the most established BTYD models.

Next, we review earlier empirical validation studies. Table 2.1 gives a summary of the

related empirical work. We omit from this table studies that employ the Pareto/NBD

model without testing its predictive performance in a holdout period (Reinartz and Kumar

(2000), Reinartz and Kumar (2003) and Wu and Chen (2000)). Finally, we discuss lifetime

estimation using these models.

2.2.1 Models in Comparison

The Pareto/Negative Binomial Distribution [Pareto/NBD] model (Schmittlein et al.,

1987) is one of the first models that considers the customer defection. This model assumes

that, while alive, customers make purchases according to a Poisson process with hetero-

geneous rates. The lifetime of a customer is modeled using an exponential distribution,

also with a heterogeneous rate. The individual-specific rates of both processes are next

treated as random effects and modeled using independent gamma distributions. This

model allows for individual-level calculations on the probability of being active and the

number of future purchases. The structure of the model leads to closed-form expressions

for such predictions given the (hyper)parameters of the heterogeneity distributions. This

feature has made this model useful for today’s personalized marketing concepts such as

direct marketing, one-to-one marketing and customer relationship management.

Three important extensions of the Pareto/NBD model have been introduced in the

literature. Fader et al. (2005a) suggested replacing the continuous time defection process

by a discrete time process. After each purchase, the customer defects with an individual-

specific probability. The resulting model is called a Beta-Geometric/Negative Binomial

Distribution [BG/NBD] model. The disadvantage of this model is that frequent purchasers

have more “opportunities” to defect. In some cases this may not correspond to reality.

To solve this problem, Jerath et al. (2011) introduced the Periodic-Death-Opportunity

[PDO] model. This model is very similar to the BG/NBD, but defection opportunities

are defined in calendar time. In other words, defection can only occur at certain time

intervals, independent of the transaction timing.
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Another extension of the Pareto/NBD model deals with the relation between the pur-

chase rate and the defection rate. In the Pareto/NBD model, and in the above-mentioned

extensions, the behavioral rates are assumed to be independent. In practice, this assump-

tion may be violated as, for example, frequent shoppers tend to have a longer lifetime.

This would imply a negative correlation between both rates. Abe (2009a) recently sug-

gested a Hierarchical Bayes extension of the Pareto/NBD model that incorporates such

correlation. In this model, the two gamma distributions are replaced by a bivariate log-

normal distribution. Next to the possibility to capture correlations, another advantage

of this model is that individual-specific covariates can be used. A disadvantage of this

extension is that for some quantities, closed-form expressions are no longer available. As

a result, the proposed model by Abe (2009a) needs Bayesian (simulation) techniques. We

will refer to this model as the HB model.

2.2.2 Model Performance

The first empirical validation study in the field, which reports the predictive performance

of a BTYD model in a holdout period, is presented by Schmittlein and Peterson (1994).

This study not only provides an extensive empirical validation of the Pareto/NBD model,

but also extends the model by adding the customer’s spending decision. A major contri-

bution of this paper is that it provides insights into the sampling properties of parameter

estimates. For instance, the authors show how the accuracy of parameter estimation de-

pends on the average observation time and on the number of customers in the sample (the

space/time trade-off). Schmittlein and Peterson (1994) also examine whether customer

characteristics can help in predicting transaction and defection behavior. In an applica-

tion in the business-to-business market, they show that some groups of customers tend to

have higher transaction rates while others have higher average dropout rates or a greater

variation in dropout rates.

Fader et al. (2005a) also include a validation study. This study compares the per-

formance of the BG/NBD and the Pareto/NBD models on a dataset from the online

CD retailer CDNOW. They show that replacing the exponential dropout process (of

Pareto/NBD) with a geometric one (BG/NBD) improves the model fit in the calibration

period. The Pareto/NBD model, however, performs slightly better than the BG/NBD

based on the quality of predictions of individual-level transactions in the forecast pe-

riod. Fader et al. (2005a) argue that the BG/NBD model is a good alternative for the

Pareto/NBD model as it has similar performance, but requires fewer resources for param-

eter estimation.
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In a third study, Batislam et al. (2007) compare the Pareto/NBD and BG/NBD models

in terms of predicting the future number of transactions and the accuracy of the probabil-

ity of being active. The comparison is based on loyalty card data from a specific store of a

large grocery chain in Turkey. The authors also present a slight variation on the BG/NBD

model. In this modified BG/NBD [MBG/NBD] model, customers may also drop out at

time zero that is directly after making their first purchase. The MBG/NBD model yields

almost identical estimates for the expected number of repeat purchases to the BG/NBD

model. The general conclusion is that both the Pareto/NBD and the MBG/NBD models

show similar performance on customer’s purchase and defection processes.

Wübben and Wangenheim (2008) compare the Pareto/NBD and the BG/NBD models

against managerial heuristics. In general, these heuristics are easy to implement, but are

less detailed in terms of their predictions. Wübben and Wangenheim (2008) focus on pre-

dicting the number of future transactions and classifying active versus inactive customers.

In terms of this classification, the managerial heuristics perform at least as well as the

models. However, the models perform better than the heuristics when predicting future

transactions numbers. In this paper, the authors identify a potentially important problem

of the BTYD models. On some datasets, the models produce extremely high probabilities

of being active. Such high probabilities correspond to extremely long (residual) lifetime

estimates.

Abe (2009a) compares his HB model to the Pareto/NBD model. He finds a similar fit

and predictive performance. The disaggregate fit measures are the Mean Squared Error

[MSE] of the predicted transaction numbers of individual customers, and the correlation

between these predictions and the corresponding realizations. With regard to predicting

future transaction numbers, the HB model performs slightly better than the Pareto/NBD

model on two of the three datasets. The covariance matrix of the heterogeneity distri-

bution is used to test the independence assumption of the Pareto/NBD. No significant

dependency is found for any of the three datasets.

Finally, Jerath et al. (2011) compare their PDO model to the Pareto/NBD and

BG/NBD models using two datasets. They pay more attention to the defection pro-

cess, and check model’s performance on the median of lifetime estimates for each model.

Note that the median lifetime is considered here, not the mean lifetime. Previous research

has shown that the former is a better descriptor of the lifetime distribution (Reinartz and

Kumar, 2000) as using the median results in less extreme lifetime predictions. At a first

glance, the Pareto/NBD and the PDO models produce similar results on the median

lifetime. However, the PDO model predicts longer lifetimes for a randomly chosen cus-

tomer than the Pareto/NBD model. The BG/NBD model’s estimates are very different
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in that it predicts extremely long lifetimes. Based on these results, the authors suggest

that the modeling of the defection process needs to be improved. Jerath et al. (2011)

also compare the models with respect to their predictions of the number of transactions.

The Pareto/NBD and the PDO models show similar predictive performance and generally

outperform the BG/NBD model.

2.2.3 Lifetime Estimation

The BTYD models are usually compared on two dimensions: transaction frequency and

lifetime related measures. Mostly, the first dimension is emphasized. An important

challenge with the second dimension is that the exact lifetime is never observed. Even

the state of a customer (active or inactive) can never be perfectly measured. There have

been many attempts to validate predictions on customer lifetime or the active/inactive

state. However, the majority of these studies acknowledge that the used indicators are

not perfect.

Schmittlein and Peterson (1994) use telephone interviews to validate customer defec-

tion predictions. Customers are called and asked about their intentions to purchase from

the company at an unspecified time in the future. However, even such a direct contact

with a customer may not lead to the ‘actual’ defection information. It is known that cus-

tomer’s intentions are imperfect predictors of future behavior (Morwitz and Schmittlein,

1992).

Batislam et al. (2007), Reinartz and Kumar (2000) and Wübben and Wangenheim

(2008) base the ‘true’ active status of a customer on observed purchase activity in a hold-

out period. The model’s predictive performance in terms of the defection process is next

evaluated on this active status. However, as acknowledged by Wübben and Wangenheim

(2008), customers who have not purchased in the holdout period may still be active and

make a purchase after that period. In this sense, such a comparison is not fair and leads

to favoring models that underestimate the lifetime. This is especially true, if the holdout

period is short and/or the purchase rate is low.

Apart from the complexity of validating lifetime predictions, the managerial relevance

of the lifetime concept has also been questioned. Reinartz and Kumar (2000) challenge

the implicitly assumed strong association between lifetime and profitability in the non-

contractual setting. Contrary to the general claim that a long customer lifetime is always

desirable, they find that revenues mainly drive the lifetime value of a customer, not the

duration of customer tenure. This argument is particularly valid in industries where cus-

tomer switching costs are small (Reinartz and Kumar, 2000). Furthermore, Jerath et al.
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(2011) show that lifetime estimations from various BTYD models can vary to a large

extent.

As aforementioned, in some cases, the BTYD models give extremely high active proba-

bilities, which correspond to the extreme lifetime estimations (Wübben and Wangenheim,

2008). Such clearly incorrect predictions could lead to a reluctance to use these models in

practice. Perhaps with this in mind, Reinartz and Kumar (2000) strongly suggest firms

not to neglect the transaction orientation of their business and to manage the short term

accordingly.

2.2.4 Our Contribution

Based on the discussion above, the only theoretically valid measure that is available to

compare the BTYD models seems to be the accuracy of the predicted (future) transaction

frequency. However, although the existing models are quite different in terms of their

specification, they produce similar predictions on this measure. In other words, this

measure is not sensitive to differences among the models. In this paper, we introduce a

new performance metric for BTYD models to overcome this problem and provide more

insight on the relative predictive performance of these models.

Our measure is based on the timing of transactions and represents an observable value.

Given the memoryless property on interarrival times of transactions in the considered

BTYD models, we can predict the timing of the first and the last transaction in a certain

period. As an in-sample metric, we propose the timing of the last in-sample transaction;

as a holdout metric, we propose the minimum of the timing of the first out-of-sample

transaction and the end of the holdout period.

In this paper, we compare the existing models’ predictions on the timing of purchases

as well as on the number of purchases. To make this possible, we derive formulas on the

timing of transactions for each of the BTYD models. The methodology to calculate these

timing predictions is also an important contribution of this paper. Besides providing a

more rigorous comparison among BTYD models, these predictions also have managerial

relevance. Predictions on the timing of the next purchase for each customer could be

important information for both marketing and operations managers.

To our knowledge, our paper is the first to bring all the following models together:

the Pareto/NBD, BG/NBD, the Hierarchical Bayes extension of the Pareto/NBD, and

the recently proposed PDO model. Next, we are the first to compare these models based

on also the timing of purchases. A challenge in this comparison study is that the models

exhibit differences in their estimation procedures. The Pareto/NBD, BG/NBD and PDO
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models have closed-form expressions on some statistics for a ‘randomly’ chosen customer,

such as the probability of being active and the expected number of future purchases.

These models also yield closed form expressions for some statistics conditional on the

observed transaction pattern of a customer. On the other hand, the HB model does not

provide an analytical expression for important quantities due to the log-normal hetero-

geneity distribution. For this model, there is no closed-form expression for any relevant

statistic not even for a randomly chosen customer. However, the complete distribution

on any statistic can be obtained for each customer using MCMC methods. In order to

overcome the difficulty of comparing the models, we bring the Pareto/NBD, BG/NBD

and PDO models to the level of the HB model. More exactly, we obtain the complete

individual-level distribution on the behavioral parameters for each model conditional on

observed behavior. This provides great flexibility when computing various individual-level

performance metrics.

2.3 Timing of Transactions with BTYD Models

In this section, we present the BTYD models in technical terms. All models provide a rep-

resentation of individual behavior by considering two arrival processes: one on purchase

and one on defection. Individuals are assumed to make transactions according to a pur-

chase process until they defect. The defection and transaction processes for individual i

depend on individual-specific parameters which we denote by θi. On the population-level,

all models specify a heterogeneity distribution for (the elements of) θi. This distribution

is parameterized by hyperparameters which are denoted by ξ. Below, we give the details

for each model, and present expressions for the last transaction timing in the calibration

period and the first transaction timing in the holdout period. The timing expressions

vary depending on the assumptions of the models. To our knowledge, these expressions

have not been presented before.

Table 2.2 gives a summary of the assumptions and the dominant estimation method

for each model. We distinguish modeling assumptions on individual behavior and on

customer heterogeneity. All models have the same assumption on the purchase process of

an individual, while active. The models do differ either in the defection process or in the

heterogeneity distribution.

Before we present the models, we briefly discuss the general ideas used for calculating

the predictions.
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Table 2.2: Model comparison with respect to the assumptions and estimation process

Pareto/NBD BG/NBD PDO HB

Purchase process Poisson Poisson Poisson Poisson
Defection process Exponential Shifted geometric Shifted geometric Exponential
Defection timing Continuous On purchase moments Fixed periods Continuous

Purchase rate distribution Gamma Gamma Gamma
Bi-variate log-normal

Defection rate distribution Gamma Beta Beta

Estimated parameters Hyperparameters Hyperparameters Hyperparameters Hyper & individual par.
Estimation procedure MLE MLE MLE MCMC

2.3.1 Conditional and Unconditional Inference

One can use the BTYD models to obtain predictions on different metrics. However,

closed-form expressions for individual-level metrics conditional on the observed data are

not always available. Below we indicate how to calculate such metrics. Suppose we want

to predict a particular metric for customer i, we denote this as metrici. There are two

options: to include or not to include the purchase history of this customer. The latter case

is mainly relevant for in-sample predictions (model calibration) and, the prediction can

be seen as a prediction for a randomly chosen customer. We label this as unconditional

inference. The former is relevant for out-of-sample predictions. These predictions are

made conditional on data of the specific customer.

For conditional inference, we need to calculate E[metrici|all data]. We rewrite this

expectation as

E[metrici|all data] =

∫
θi

E[metrici|datai, θi]π(θi|all data) dθi

=

∫
ξ

∫
θi

E[metrici|datai, θi]π(θi|datai, ξ)π(ξ|all data) dθi dξ,

(2.1)

where θi denotes the individual-level parameters for individual i and ξ denotes the hy-

perparameters associated with the whole customer base in the focal BTYD model. In

Sections 2.3.2 to 2.3.5, we provide closed-form expressions for E[metrici|datai, θi] for each

model. Calculating the integrals in (2.1) can still be very complex. However, samples from

π(θi|all data) can be obtained for all models. If the model relies on Maximum Likelihood

Estimation [MLE], π(ξ|all data) is seen as a point mass at the Maximum Likelihood esti-

mate ξ̂, and draws are obtained by sampling from π(θi|datai, ξ̂). For BG/NBD and PDO

models, closed-form expressions are available for these conditional densities and we can

apply direct sampling. For the other models, draws from the posterior are obtained using

a Metropolis-Hastings MCMC sampler (Hastings, 1970). In general, we approximate the
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integral for all models using

E[metrici|all data] ≈ 1

L

L∑
l=1

E[metrici|datai, θ
(l)
i ],

where θ
(l)
i , l = 1, . . . , L, are draws from the posterior π(θi|all data).

In the case of unconditional inference we need to calculate

E[metrici|all data−i] =

∫
θi

E[metrici|θi]π(θi|all data−i) dθi

=

∫
ξ

∫
θi

E[metrici|θi]π(θi|ξ)π(ξ|all data−i) dθi dξ

≈
∫
ξ

∫
θi

E[metrici|θi]π(θi|ξ)π(ξ|all data) dθi dξ

(2.2)

where all data−i denotes the available data ignoring the data for individual i. In the

last line, we assume that enough data is available such that the contribution of a single

individual to the conditional distribution of the hyperparameters can be ignored. In this

case we approximate the expectation by

E[metrici|all data−i] ≈
1

L

L∑
l=1

E[metrici|θ(l)
i ].

If hyperparameters are estimated using MLE, θ
(l)
i denotes a draw from π(θi|ξ̂), with ξ̂ the

Maximum Likelihood estimate. If Bayesian estimation is used, the draws are obtained by

first sampling ξ(l) from π(ξ|all data) and next sampling θ
(l)
i from π(θi|ξ(l)).

In the sections below, we present the expressions for the conditional expectation of the

timing of the last in-sample transaction and the next out-of-sample transaction together

with the sampling schemes for the behavioral parameters.

2.3.2 Pareto/NBD Model

In the Pareto/NBD model, customer i remains active for a stochastic lifetime (t∆,i) which

has an exponential distribution with rate µi. While active, this customer makes purchases

according to a Poisson process with rate λi. The purchase rate and the defection rate are

assumed to be distributed according to two independent gamma distributions across the

population. The distribution for λi has shape parameters r, and scale parameter α. The

shape and scale parameters for µi are s and β, respectively.
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The parameters of the heterogeneity distributions can be estimated by MLE. The

likelihood can be written in terms of the number of purchases (xi) and the timing of the

last purchase (tx,i) for each customer. This estimation procedure can be quite tedious from

a computational perspective as the likelihood function involves numerous evaluations of

the Gaussian hypergeometric function.

Schmittlein et al. (1987) presented some key expressions such as the probability of

being active at the end of the calibration period (Ti) and the expected number of future

transactions in a given time period for both a randomly chosen customer and a customer

with past observed data (xi, tx,i, Ti).

The Pareto/NBD model allows us to predict also the timing of the last transaction in

the calibration period and the timing of the first transaction in the holdout period. Given

the individual-level parameters λi and µi, we derive the equation on the expected timing

of the last purchase as

E[tx,i|λi, µi, Ti] =
1− e−µiTi

µi
− 1− e−(λi+µi)Ti

λi + µi
, (2.3)

see Section 2.7.1 for the associated derivations. By comparing E[tx,i|λi, µi, Ti], averaged

over the estimated distribution of λi and µi, to the observed timing of the final purchase,

we can assess the model’s fit performance.

To measure the model’s performance on out-of-sample predictions, we can use the

timing of the first purchase in the interval [Ti, T
+
i ], where T+

i marks the end of the out-

of-sample period. A complication here is that a particular customer may not make any

purchase in this interval. For example, this may happen if the customer has defected.

In turn, this makes it extremely difficult to compare the predictions to realizations. We

solve this by instead predicting the minimum of the next purchase timing and T+
i ; for

individual i this minimum is denoted by tf,i. If the customer has defected, tf,i = T+
i .

In Section 2.7.1, we show that the conditional expectation of tf,i in the Pareto/NBD

model equals

E[tf,i|xi, tx,i, Ti, λi, µi] = (1− P[t∆,i > Ti|xi, tx,i, Ti, λi, µi])T+
i

+ P[t∆,i > Ti|xi, tx,i, Ti, λi, µi] (Ti +
1− e−(λi+µi)(T

+
i −Ti)

λi + µi
), (2.4)
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where P[t∆,i > Ti|xi, tx,i, Ti, λi, µi] gives the probability that individual i is still active at

time Ti. This probability can be shown to equal

λi
λi + µie(λi+µi)(Ti−tx,i)

, (2.5)

see Schmittlein et al. (1987). Note that this probability depends on the time between the

last (in-sample) purchase and Ti. There is still a chance of defection in this period, but,

given the data, a purchase is impossible in that interval.

Sampling of the behavioral parameters for the Pareto/NBD Model

The joint posterior distribution of the behavioral parameters, θi = (λi, µi), of the Pareto/NBD

model is characterized by the likelihood function, the independent gamma priors on these

parameters, and the (ML estimates of the) hyperparameters, ξ = (α, r, β, s):

π(θi|datai, ξ) = π(λi, µi|r, α, s, β, xi, tx,i, Ti)

∝ f(xi, tx,i, Ti|λi, µi)g(λi|r, α)h(µi|s, β)

∝ λxii
λi + µi

(µie
−(λi+µi)tx,i + λie

−(λi+µi)Ti)
αr

Γ(r)
λ(r−1)e−αλ

βs

Γ(s)
µ

(s−1)
i e−βµi .

(2.6)

As mentioned before, among the models that rely on MLE, the Pareto/NBD model

is the only one that does not have a standard distribution of individual parameters,

π(θi|datai, ξ). A Metropolis-Hastings algorithm (see Hastings (1970)) can be used to

sample from this posterior density. Details of this sampling algorithm are presented in

Section 2.8.

2.3.3 BG/NBD Model

The BG/NBD model replaces the continuous defection process of the Pareto/NBD model

by a discrete process. Customers can now only drop out at the moment of a repeat trans-

action. This implies that the defection process is explicitly dependent on the purchase

process.

Jerath et al. (2011) argue that such a dependency may not be realistic, as heavy

buyers eventually get more opportunities to drop out. However, the advantage of this

model is that its parameters can be estimated more easily. The individual’s purchase

process is Poisson with intensity λi ∼ Γ(r, α) like in the Pareto/NBD model. The dropout

probability for individual i is denoted by pi and follows a beta distribution with shape
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parameters a and b. The hyperparameters of the BG/NBD model can be estimated using

MLE.

Fader et al. (2005a) present the expression for the expected number of (future) trans-

actions of each customer, conditioned upon the hyperparameters. In Section 2.7.2, we

derive the expected timing of the last in-sample transaction and the next out-of-sample

transaction. Again, we truncate the next future transaction timing to the end of the

out-of-sample period (T+
i ). The expected timing of the last in-sample transaction equals

E(tx,i|Ti, λi, pi) =
1

1− pi

(
1− e−λipiTi

λipi
− 1− e−λiTi

λi

)
, (2.7)

and the conditional expectation of the timing of the next transaction equals

E(tf,i|xi, tx,i, Ti, λi, pi) = (1− P[t∆,i > Ti|xi, tx,i, Ti, λi, µi])T+
i

+ P[t∆,i > Ti|xi, tx,i, Ti, λi, µi](Ti +
1− e−λi(T+

i −Ti)

λi
). (2.8)

For this model, the conditional probability of being active at time Ti equals

P[t∆,i > Ti|xi, tx,i, Ti, λi, µi] = 1− δtx,i>0
pie

λi(Ti−tx,i)

1− pi + pieλi(Ti−tx,i)
,

where δtx,i>0 is a 0/1 indicator, which equals 1 if consumer i made a repeat purchase.

Sampling of the behavioral parameters for the BG/NBD Model

To sample the individual rate parameters of the BG/NBD model, we again make use of

ideas from Bayesian statistics. Directly sampling from the joint conditional distribution

of λi and pi is not easy. However, we can derive the full conditional distributions of λi

and pi. We, therefore, propose to use a Gibbs sampler (Geman and Geman, 1984) which

successively draws from the conditional distribution of λi given xi, tx,i, Ti and pi, and the

conditional distribution of pi given xi, tx,i, Ti and λi. After convergence, this Markov Chain

generates draws from the joint conditional distribution. Details of the derivations of both

distributions are presented in Section 2.8.2. The conditional density of the purchase rate

λi is

π(λi|xi, tx,i, Ti, pi) =

pi
(tx,i+α)xi+r

pi
(tx,i+α)xi+r

+ 1−pi
(Ti+α)xi+r

ϕxi+r,tx,i+α(λi)+

1−pi
(Ti+α)xi+r

pi
(tx,i+α)xi+r

+ 1−pi
(Ti+α)xi+r

ϕxi+r,Ti+α(λi),

(2.9)
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where ϕx,β is the density of a gamma distribution with shape parameter x and rate

parameter β. The conditional density of the defection probability pi equals

π(pi|xi, tx,i, Ti, λi) =
a

a+ (b+ xi − 1)e−λi(Ti−tx,i)
βa+1,b+xi−1(pi)+

(b+ xi − 1)e−λi(Ti−tx,i)

a+ (b+ xi − 1)e−λ(Ti−tx,i)
βa,b+xi(pi), (2.10)

where βa,b is the density of a beta distribution with parameters a and b. As the distri-

butions are mixtures of gamma or beta distributions, respectively, sampling from these

distributions is straightforward.

2.3.4 PDO Model

The most recent BTYD model is the Periodic Death Opportunity (PDO) model. This

model is based on the BG/NBD model, but assumes that a customer may only defect after

each τ periods of time. The defection process is, therefore, no longer linked to purchase

occasions and heavy purchasers do not get more defection opportunities. Jerath et al.

(2011) show that the PDO model can be seen as a generalization of the Pareto/NBD and

the NBD model. If τ becomes very small, the PDO model approaches the Pareto/NBD

model. The PDO model collapses to the NBD model when τ exceeds the observation

period, leaving no dropout possibility for customers.

More precisely, the PDO model assumes that the interpurchase time for individual

i has an exponential distribution with parameter λi ∼ Γ(r, α). Customers may defect

with a probability of pi after each τ periods, where pi follows a beta distribution with

parameters a and b. The PDO model has four hyperparameters for the heterogeneity

distributions and the additional period length parameter τ . MLE can again be used to

estimate the hyperparameters; for more details see Jerath et al. (2011).

The introduction of the τ parameter complicates the prediction of the timing of the

last and the next transactions. Ti is likely not a multiple of τ , and we need to deal with

the delay between the last opportunity to defect before Ti and, for the computation of the

expected first future transaction, the delay between Ti and the first opportunity to defect

after Ti. A further complication is the possibility that there is no defection opportunity

during (Ti, T
+
i ]. Details of the derivations are presented in Section 2.7.3. The expected
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time of the last transaction in the in-sample period is

E(tx,i|Ti, λi, pi) =

Ni∑
n=1

pi(1−pi)n−1

(
nτ − 1− e−nλiτ

λi

)
+(1−pi)Ni

(
Ti −

1− e−λiTi
λi

)
,

(2.11)

where Ni equals the number of defection opportunities, that is, Ni = bTi/τc. The expected

time of the first purchase in the out-of-sample period (Ti, T
+
i ] is

E(tf,i|xi, tx,i, Ti, λi, pi, T+
i ) =

(1− p+
i )T+

i + p+
i

[
(Ti +

1

λ i
)e−λiTi − (T̄i +

1

λ i
)e−λiT̄i + δT+

i <(Ni+1)τT
+
i e
−λi(T+

i −Ti)

+δT+
i ≥(Ni+1)τ

(
e−λi((Ni+1)τ−Ti)piT

+
i + (1− pi)

(
(Ni + 1)τ + E(t+|λi, pi, T+

i − (Ni + 1)τ)
))]

,

(2.12)

where T̄i is the minimum of the first defection opportunity in the out-of-sample period for

customer i and T+
i , that is, T̄i = min((Ni + 1)τ, T+

i ). Furthermore, p+
i is shorthand nota-

tion for the conditional probability that individual i is active at time Ti. This probability

is given by

p+
i = P(t∆,i > Ti|xi, tx,i, Ti, λi, pi) =

(1− pi)Nie−λiTi

pie−λiτ
∑Ni

n=mx,i
((1− pi)e−λiτ )n−1 + (1− pi)Nie−λiTi

where mx,i is the first opportunity to defect after tx,i, that is, mx,i =
⌊
tx,i
τ

+ 1
⌋

and we

define
∑b

n=a(·) = 0 whenever a > b. Finally, E(t+|λi, pi, T+
i − (Ni + 1)τ) is the expected

value of the minimum of the time of the first transaction in (0, T+
i − (Ni + 1)τ) and

(T+
i − (Ni + 1)τ). The expression for this expectation is given in Equation (2.35) of the

appendix.

Sampling of the behavioral parameters for the PDO Model

To sample λi and pi, we again propose a Gibbs sampler; see Section 2.8.3 for the details.

Conditional on the data and pi, λi follows a mixture of gamma distributions, that is,

π(λi|xi, tx,i, Ti, pi) =

Ni∑
n=mx,i

w
(n)
xi,pi

Wxi,tx,i,pi

ϕxi+r,α+(n−1)τ (λi) +
w

(Ni+1)
xi,pi

Wxi,tx,i,pi

ϕxi+r,α+Ti(λi) (2.13)
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where Wxi,tx,i,pi =
∑Ni+1

n=mx,i
w

(n)
xi,pi , and

w(n)
xi,pi

=


pi

(1−pi)n−1

(α+(n−1)τ)xi+r
if 1 ≤ n ≤ Ni

(1−pi)Ni
(α+Ti)xi+r

if n = Ni + 1 .

The conditional distribution of pi is a mixture of beta distributions, that is,

π(pi|xi, tx,i, Ti, λi) =

Ni∑
n=mx,i

v
(n)
λ

Vtx,i,λi
βa+1,b+n−1(pi) +

v
(Ni+1)
λi

Vtx,i,λi
βa,b+Ni(pi) (2.14)

where Vtx,i,λi =
∑Ni+1

n=mx,i
v

(n)
λi

, and

v
(n)
λi

=


B(a+ 1, b+ n− 1)e−λ(Ti−(n−1)τ) if mx,i ≤ n ≤ Ni

B(a, b+Ni) if n = Ni + 1,

where B(·, ·) is the beta function. Note that the value Vtx,i,λi depends on the data only

through mx,i.

2.3.5 Hierarchical Bayes Extension of the Pareto/NBD Model

The models presented above do not allow the individual-level parameters to be correlated

and they do not take into account customer characteristics. In many cases, individual-

level characteristics are available and may be useful in predicting customer behavior.

Abe (2009a), therefore, proposes a Hierarchical Bayes [HB] extension of the Pareto/NBD

model in which the individual-level parameters follow a bivariate log-normal distribution.

The mean of this distribution may depend on customer characteristics.

The disadvantage of this extension is that closed-form expressions for interesting met-

rics, such as the expected number of purchases, are no longer available. Besides, MLE

can no longer be straightforwardly used to obtain parameter estimates. Abe proposes the

use of Markov chain Monte Carlo [MCMC] techniques to estimate the (hyper)parameters

and to calculate various metrics.

Abe (2009a) makes the same individual-level assumptions as in the Pareto/NBD

model, but assumes that (log λi, log µi) ∼ N(wiβ,Γ), where wi is a 1 × K vector of

individual characteristics, including an intercept. In case no covariates are available, the

distribution reduces to N(β,Γ). Γ is not restricted to a diagonal matrix and, therefore,

this model allows the individual-level parameters to be correlated.
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The joint density of the data and all parameters forms the basis for the inference. This

density is given by

π({xi, tx,i, Ti, λi, µi}Ni=1, β,Γ) =
N∏
i=1

(
π(xi, tx,i|λi, µi)π(λi, µi|β,Γ)

)
π(β,Γ) .

Here π(β,Γ) is the prior distribution of the population-level parameters β and Γ. The

standard conjugate prior is used, that is, β ∼ N(β0, Ao) and Γ follows an inverted Wishart

distribution with parameters (ν0, Γ0). As the individual-level behavioral assumptions of

the HB model are identical to the Pareto/NBD model, conditional on λi and µi, all timing

related expressions are the same. Draws for the individual-level parameters are a natural

by-product of the MCMC sampler.

Abe (2009b) proposes an extension of the HB model by adding the amount of spending.

Hereby, the individual parameter vector, θi, extends to three dimensions, including the

rate of average log-spending of customers, (log λi, log µi, log ηi). We also include this

extension in our empirical study. Consequently, we consider four different configurations

of the HB model. The first configuration (HB1) represents the HB model without any

covariates and without spending. The second configuration (HB2) incorporates only the

customer-specific covariates. The third and fourth configurations represent the HB models

with the average spending parameter, and without or with covariates, respectively.

Sampling of the hyperparameters and the behavioral parameters for the HB

Model

We use MCMC for inference on the hyperparameters and the individual parameters for

the HB models. More specifically, we use a Metropolis within Gibbs sampler. The sampler

uses the latent variables zi and tδ,i, where zi is the binary variable representing whether

customer i is active (zi = 1) or inactive (zi = 0) at the end of the calibration period; and

if already inactive, tδ,i is the defection time (see Abe (2009a)). As our sampler differs

from the one presented in Abe (2009a), we present the main steps of the sampler:

[0] Set initial value for θi, i = 1, . . . , N .

[1a] Generate zi|tx,i, xi, Ti, θi according to the being active probability given in Equa-

tion (2.5), for i = 1, . . . , N .

[1b] If zi = 0, generate tδ,i|tx,i, xi, Ti, zi, θi using an exponential distribution truncated to

(tx,i, Ti).
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[2] Generate β,Γ|{θi}Ni=1 using a standard multi-variate normal regression update (see

Rossi et al. (2005, Page 34)).

[3] Generate θi|tx,i, xi, Ti, zi, t∆,i, β,Γ with a Gaussian random-walk MH algorithm, for

i = 1, . . . , N .

The step size in the random-walk MH algorithm is set by applying an adaptive MH

method in the burn-in phase (Gilks et al., 1996).

2.4 Data

We compare the performance of the presented models on three datasets. Below, we briefly

discuss these three datasets.

The first dataset contains daily transaction data of an online grocery retailer in a

Western European country (OG hereafter). We base our analysis on a random set of 1460

customers who started buying from the company in January 2009. We ignore all Sundays

as OG does not provide delivery on that day. The available data contains the initial and

the repeat purchase information of each customer over a period of 309 days. To estimate

the model parameters, we use the transaction data of all customers over the first 154 days,

leaving a 155 day holdout period for model validation.

The second dataset is the commonly used CDNOW data. This publicly available

dataset covers the transactions data of 2357 customers who made their first transaction

in the first quarter of 1997. The data spans a period of 78 weeks from January 1997

through June 1998. We set the calibration and holdout periods to 39 weeks each.

The final dataset comes from a Turkish grocery store. This set is also used by Batislam

et al. (2007) and Jerath et al. (2011). It contains the transactions of 5479 customers who

made their first purchase between August 2011 and October 2011, covering a period of 91

weeks. To be consistent with the earlier papers, we use the first 78 weeks for calibration

and leave 13 weeks for validation purposes. Detailed descriptive statistics of all datasets

appear in Table 2.3.

The three datasets have quite different characteristics. Together they span a wide

range of purchase and activity patterns. For instance, in the first dataset, the majority of

customers are frequent customers, whereas the other two datasets include a large group

of incidental buyers. Although the first two datasets both deal with online retailers, the

industries in which these retailers operate are different, namely groceries versus CDs.

We see a clear difference in the customer’s loyalty to the firm; the average frequency

of shopping per customer is higher at the OG than at the CD retailer. The fraction of
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Table 2.3: Descriptive statistics over the three datasets

OG CDNOW Grocer

Number of customers 1460 2357 5479
Available time frame 309 days 78 weeks 91 weeks
Time split (in-sample/out-of-sample) 154/155 39/39 weeks 78/13 weeks
Available time units days weeks/days weeks
Zero repeaters in estimation period (fraction) 174 (0.12) 1,411 (0.60) 2,221 (0.41)
Zero repeaters in holdout period (fraction) 295 (0.20) 1,673 (0.70) 4,577 (0.84)
Zero repeaters in estimation and holdout periods (fraction) 135 (0.09) 1,218 (0.51) 2,179 (0.40)
Number of purchases in estimation period (all) 16,252 2,457 24,840
Number of purchases in holdout period 12,827 1,882 2,907
Average number of purchases

per customer in estimation period (stdev) 11.13 (10.76) 1.04 (2.190) 4.53 (9.17)
Average number of purchases

per customer in holdout period (stdev) 8.79 (10.78) 0.798 (2.057) 0.53 (1.72)
Average length of the observation period (T ) (stdev) 143.76 (7.39) 32.72 (3.33) 22.81 (26.87)
Average recency as a fraction of T ((T − tx)/T ) 0.27 0.79 0.67

customers without a repeat purchase (zero-repeat buyers) is also much smaller for the OG

compared to CDNOW. A customer’s final observed purchase tends to be close to the end

of the sample for the online retailer. This is reflected in the last row of Table 2.3, which

gives the average recency normalized by the average observation period.

Customer behavior at the brick-and-mortar grocer is quite different compared to that

at the online grcer. Contrary to the general claim in the literature, the customers of

the OG are more loyal to the company than those of the grocer chain. The rate of zero-

repeat buyers in the grocer’s data base is considerably higher, and the average normalized

recency is significantly lower than for the OG. In what follows, we relate the performance

of the models on three datasets to their characteristics.

2.5 Empirical Findings

We split this section in two parts. First, we discuss the parameter estimates for all

models and datasets.1 Next, we focus on the predictive performance of the models, where

we distinguish between (1) expected number of transactions; and (2) expected timing of

transactions. We especially focus on the performance of the models in predicting the

timing of the last in-sample purchase and the first out-of-sample purchase.

For the online retailer datasets (OG and CDNOW), covariate data on the average

number of shopping items per customer is available. This data is used in the HB model

configurations HB2 and HB4. As both datasets also have individual-level spending infor-

1All calculations are performed using MATLAB R2011b.
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mation, the spending extension of the HB models (HB3 and HB4) can be applied as well.

We mean-center the covariate (average number of items in the shopping basket) so that

the mean of the behavioral parameters, θi, given average covariate values will be entirely

determined by the intercept. As no covariate nor spending information is available for the

third dataset (grocer), only the HB1 model can be used. For all HB models, the MCMC

steps were repeated 256, 000 iterations, of which the last 32, 000 were used to infer the

posterior distribution of parameters. Convergence was monitored visually and checked

with the Geweke test on all datasets (Geweke et al., 1991).

2.5.1 Parameter Estimates

Maximum Likelihood-based models

First we present the parameter estimates that are based on ML estimation; namely for

the Pareto/NBD, BG/NBD, and PDO models. Using the estimates, we can gain insight

in the degree of heterogeneity in each customer base as well as in some key quantities

for a random customer. Table 2.4 reports the estimated hyperparameters for the OG.

According to the Pareto/NBD model a random customer makes 0.072 transactions per

day while active. Note that this statistic cannot be calculated directly from the data as

it intrinsically contains the condition of being active. The shape parameter (r = 0.958)

indicates a moderate level of heterogeneity in purchase rates across customers (Schmittlein

et al., 1993). For this dataset, the PDO model fits best when the period length τ is set

to about 20 days. The parameters related to the purchase process in the PDO model are

very similar to those in the Pareto/NBD model. The BG/NBD model also gives a very

similar result for the purchase rate of an average customer while active (0.071 purchases).

The relatively small shape parameter value (r = 0.897) indicates slightly more differences

in purchase rates across customers within the BG/NBD model.

Table 2.4: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Esti-

mates - OG

Pareto/NBD BG/NBD PDO (τ = 20.001)
r 0.96 r 0.90 r 0.94
α 13.35 α 12.64 α 13.13

r/α 0.072 r/α 0.071 r/α 0.071
s 0.04 a 0.03 a 0.04
β 38.24 b 3.00 b 2.18

s/β 0.001 a/(a+b) 0.010 a/(a+b) 0.018
log-likelihood -49,208 log-likelihood -49,212.3 log-likelihood -49,201.4
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The estimated average defection rate for the Pareto/NBD model is given by s/β =

0.001. As the shape parameter s is less than 1, the expected lifetime value of a random

customer from the cohort diverges to infinity. From another perspective, half of the

customers in the cohort defect after (21/s − 1)β = 383, 014, 675 days. This shows that

a short-term measure rather than these long lifetime estimations would be more useful

for a manager. The probability of a random customer defecting in the next day is only

1− e−s/β = 0.001. In other words, it is highly unlikely that such a customer will drop out

in the near future. However, the very small value of s suggests that there is a very large

dispersion in defection rates.

The estimation results for the CDNOW data are given in Table 2.5. We obtain the

same parameter estimates as Fader et al. (2005a). We find that an average customer makes

around 0.05 transactions per week, while active. The small shape parameter value indi-

cates substantial differences in purchase rates across customers. Similar to the previous

dataset, the heterogeneity on defection rates is extremely high on this dataset (s = 0.606

in the Pareto/NBD model) and the expected lifetime value of a random customer from

the cohort diverges to infinity.

Table 2.5: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Esti-

mates - CDNOW

Pareto/NBD BG/NBD PDO (τ = 3.001)
r 0.55 r 0.24 r 0.52
α 10.58 α 4.41 α 10.40

r/α 0.052 r/α 0.055 r/α 0.05
s 0.61 a 0.79 a 0.43
β 11.66 b 2.43 b 2.61

s/β 0.052 a/(a+b) 0.246 a/(a+b) 0.142
log-likelihood -9,595 log-likelihood -9,582.4 log-likelihood -9,585.6

When applying the models on the Turkish grocery dataset, we find that while active, an

average customer places approximately 0.1 orders per week; see Table 2.6. The population

is quite heterogeneous in purchase rates. The heterogeneity is even greater according to

the BG/NBD model. For an in-depth discussion on the customer lifetime, we recommend

the discussion in Jerath et al. (2011).

MCMC-based models

In order to apply the HB models we first need to set the prior distributions. In many

contexts, the prior is set diffuse enough so that it does not affect the posterior. In other
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Table 2.6: Results of the Pareto/NBD, BG/NBD and PDO Maximum Likelihood Esti-

mates - grocery retailer

Pareto/NBD BG/NBD PDO (τ = 1.001)
r 0.48 r 0.28 r 0.46
α 4.38 α 2.34 α 4.38

r/α 0.11 r/α 0.12 r/α 0.105
s 0.57 a 0.40 a 0.62
β 17.60 b 2.09 b 22.19

s/β 0.033 a/(a+b) 0.161 a/(a+b) 0.027
log-likelihood -67,925.8 log-likelihood -68,008.3 log-likelihood -67,757.3

words, the prior variance is set to a very large value. For the prior on Γ, we initially use

ν0 = J + 3 and Γ0 = ν0 I, where J represents the number of behavioral parameters of a

customer (see Rossi et al. (2005, Page 30)). This is an extremely spread prior. However,

in case limited data per individual is available, such a prior may have a strong impact

on the posterior. Indeed, looking at the likelihood function for the HB model given in

Equation (2.36), it can be seen that the likelihood for a zero-repeat buyer (xi = 0 = tx,i)

tends to 1 as µ approaches ∞ for any value of λ. Therefore, without a proper prior the

posterior does not exist. The prior needs to ensure that the posterior density for large

values for µ approaches 0 quickly enough. Very diffuse priors fail to deliver this property,

leading to (very) unstable estimates.

Among the datasets in our study, the CDNOW dataset is unique in terms of having

a very large proportion of zero-repeat buyers. In other words, the data does not provide

much information. We, therefore, need to set a relatively informative prior for this dataset.

Accordingly, we choose ν0 = J + 30 and Γ0 = ν0 I. In this way, extreme estimates are

avoided and population-level estimates are reasonable.2 Still, we have experimented with

a diffuse prior on this dataset. A detailed look at the results per individual (not reported)

reveals that there are indeed extreme values for some parameters (in a range of 5.108).

We also observe very different predictions for individuals with a history of zero-repeat

transactions, following the reasoning stated above. A further elaboration on the selection

of the prior parameters on the CDNOW dataset is given in Section 2.9.

The hyperparameters of the HB models are not directly comparable to the hyper-

parameters of the other BTYD models, not only because of the different heterogeneity

distribution (log-normal distribution versus gamma and beta distributions), but also be-

cause the multi-variate structure of the log-normal distribution allows correlation between

2With a more diffuse prior, an extremely large number of iterations is needed to obtain accurate
estimates of posterior quantities as the posterior variance will be very large.
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parameters for a single customer. Table 2.7 gives the median and the mode of the pos-

terior mean of behavioral parameters across customers in each dataset. It is interesting

to note that the location of the population distribution in the HB models seems to be

different to that for the other models. In the next section, we investigate whether this

has an impact on the models’ performance.

Table 2.7: Median and mode of the behavioral rates of HB model estimates

HB1 HB2 HB3 HB4
λ µ λ µ λ µ λ µ

OG
median 0.0474 0.0008 0.0471 0.0008 0.0479 0.0002 0.0479 0.0003
mode 0.0204 0.0003 0.0233 0.0004 0.0086 0.0001 0.0085 0.0001

CDNOW
median 0.0045 0.0129 0.0072 0.0170 0.0081 0.3834 0.0089 0.5117
mode 0.0045 0.0132 0.0073 0.0019 0.0080 0.0006 0.0083 0.0004

Grocer
median 0.0469 0.0568 - - - - - -
mode 0.0464 0.0080 - - - - - -

2.5.2 Unconditional Predictions

We follow the procedure described in Section 2.3.1 to obtain unconditional predictions.

As individuals in the customer database make their first purchases at different times,

the time span T varies across customers. Consequently, we obtain different in-sample

predictions for different values of T . We calculate the unconditional predictions for each

of the Ti values in the database and average over them. These predictions are only

based on the population-level parameters, estimated using all the data in the customer

base. Hence, they serve as good indicators of the model’s ability to fit the overall data

pattern. Table 2.8 shows some statistics on the unconditional expectations on the number

of transactions and the timing of the last transaction for each model and each dataset.

The first row shows the statistics based on the observed values for each dataset.

The mean predictions for the HB models are very different from the other model

predictions on CDNOW data.3 However, the predicted values are much closer to the

median and mode of the data. In other words, it seems that the large number of zero-

repeat buyers pulls the predictions from the HB models towards smaller values. This is

probably due to the shape of the population distribution. As can be seen in Table 2.4, the

mode for the population distributions of λi and µi are at 0. The log-normal distribution

does not allow for a mode at 0 without also pulling the mean towards 0 (or having an

extreme variance). This explains why the mean predictions for the HB models are pulled

3Note that the mean unconditional predictions move even further away with the most diffuse prior.
For example, it becomes 0.09 for the HB2 model, see Table 2.15.
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towards 0. For the other datasets, the percentage of zero-repeat buyers is not as large,

therefore this phenomenon is not observed there.

Table 2.8: Average of unconditional expectations versus observed quantities in calibra-

tion period

Number of transactions Time of last transaction
mean median mode mean median mode

O
G

True 10.132 6 0 105.421 128 0
Pareto/NBD 7.926 8.000 8.300 76.786 77.831 78.410

BG/NBD 6.593 6.647 6.970 57.841 58.571 61.670
PDO 9.789 9.884 10.360 104.217 105.574 111.540
HB1 10.573 10.694 11.150 103.157 104.419 110.650
HB2 10.707 10.826 11.320 106.048 107.289 113.780
HB3 11.231 11.341 11.290 101.139 102.482 107.830
HB4 11.139 11.256 11.360 101.662 102.942 104.270

C
D

N
O

W

True 1.042 0 0 6.864 0 0
Pareto/NBD 1.071 1.071 1.100 6.804 6.790 6.860

BG/NBD 1.058 1.057 1.000 6.913 6.889 7.760
PDO 1.079 1.078 1.150 6.915 6.900 6.540
HB1 0.227 0.227 0.220 2.884 2.862 3.090
HB2 0.245 0.244 0.230 3.020 2.997 2.590
HB3 0.232 0.231 0.220 2.900 2.880 3.410
HB4 0.235 0.235 0.220 2.953 2.926 2.690

G
ro

ce
r

True 4.534 1 0 22.805 7 0
Pareto/NBD 4.462 4.443 4.320 22.589 22.411 21.850

BG/NBD 4.240 4.222 4.150 23.951 23.731 23.000
PDO 4.424 4.403 4.290 22.841 22.667 22.110
HB1 4.839 4.816 4.700 22.485 22.313 21.910

We also provide some performance measures for the number of in-sample transactions

(x) and the time of the last in-sample transaction (tx) for each model. Table 2.9 shows the

in-sample Mean Squared Error (MSE), Mean Absolute Error (MAE) on all predictions and

Mean Error on the over- (ME+) and underpredicted (ME−) observations for all models

on the three datasets. At a first glance, all models have a similar fit when predicting x.

The PDO model performs slightly better with respect to MSE on the CDNOW and the

grocery data. The estimated hyperparameters for this model lead to a low probability of

extreme values on these datasets. On the other hand, the HB model fits the best in terms

of MSE on the OG dataset. In terms of absolute errors in the unconditional predictions

of x, the BG/NBD model has the best fit for the OG and the grocer data.

The HB models perform well on the CDNOW dataset in terms of the MAE. The high

MSE and the low MAE values for the HB models on CDNOW link back to our earlier

discussion. The high number of zero-repeat buyers in this dataset causes the predictions
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to move towards the mode of the data. Consequently, on this dataset, the mean of the

unconditional predictions of the HB models approaches the strong mode of the data.

This fact leads to a low MAE for the HB models. All models show an asymmetry in the

unconditional prediction error. If the forecast is too high, the error tends to be relatively

small.

The Pareto/NBD, BG/NBD and PDO models have a very similar performance when

predicting the last purchase time on the CDNOW dataset. The PDO and the HB are the

best performing models with respect to the unconditional predictions on this measure for

the CDNOW and the OG datasets (considering the MSE and the MAE, respectively).

On the grocer dataset, all models have a similar fit on predicting tx, except the BG/NBD

model which fits slightly worse on this metric.

Among the different configurations of HB models, we see that inclusion of covariates

generally causes a slight increase in model fit on both measures. On the other hand,

adding the spending parameter into the estimation procedure leads to a slight decrease

in model fit for the frequency and the timing of in-sample transactions on the OG data.

Table 2.9: In-sample predictive performance for unconditional predictions of the number

of transactions (x) and the time of last transaction (tx)

x tx in weeks
MSE MAE ME+ ME− MSE MAE ME+ ME−

O
G

Pareto/NBD 116.636 7.803 4.847 11.841 90.526 8.926 9.106 8.873
BG/NBD 124.992 7.725 4.096 11.516 131.352 10.809 7.560 11.573

PDO 111.038 8.123 6.367 10.880 66.809 6.774 10.523 5.071
HB1 110.832 8.302 6.923 10.666 67.110 6.852 10.598 5.205
HB2 110.910 8.335 7.009 10.647 66.822 6.664 10.672 4.803
HB3 111.485 8.473 7.371 10.513 67.495 6.986 10.430 5.505
HB4 111.323 8.442 7.292 10.559 67.337 6.949 10.466 5.427

C
D

N
O

W

Pareto/NBD 4.789 1.282 0.886 2.411 114.655 8.899 6.353 14.758
BG/NBD 4.788 1.276 0.879 2.377 114.640 8.942 6.462 14.647

PDO 4.786 1.286 0.888 2.446 114.610 8.940 6.455 14.683
HB1 5.455 1.087 0.227 2.370 130.332 7.547 2.772 16.282
HB2 5.426 1.090 0.244 2.352 129.251 7.586 2.895 16.282
HB3 5.448 1.088 0.231 2.365 130.195 7.551 2.787 16.265
HB4 5.442 1.089 0.235 2.362 129.796 7.567 2.835 16.271

G
ro

ce
r Pareto/NBD 83.958 5.454 3.554 11.381 719.044 24.024 19.359 31.472

BG/NBD 84.097 5.341 3.342 11.503 720.197 24.341 20.457 30.755
PDO 83.949 5.435 3.517 11.413 719.137 24.082 19.571 31.323
HB1 84.081 5.650 3.900 11.298 719.229 24.001 19.274 31.532
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2.5.3 Conditional Predictions

In this section, we consider individual-level predictions conditional on the individual’s

history. As discussed in Section 2.3.1, for some metrics of interest, obtaining closed-form

expression conditioned on an individual’s history and hyperparameters can be extremely

cumbersome because of the integral in Equation (2.2). We, therefore, first obtain draws

for the individual’s behavioral parameters from the posterior densities and next calculate

the expected value of the metrics of interest by averaging over these draws. For the

Pareto/NBD model, we use a Gaussian random-walk MH sampler to obtain draws of

individual parameters conditional on the hyperparameters. To satisfy convergence, we

repeat the iterations 300,000 times, of which only the last 10,000 iterations were used.4

For the BG/NBD and PDO models, we use a two-step Gibbs algorithm with 30,000

iterations, of which only the last 8,000 draws are used.

For metrics like the transaction frequency of a customer with history (xi, tx,i, Ti),

closed-form expressions for the Pareto/NBD, BG/NBD and PDO models are available

conditional on both hyperparameters and behavioral parameters. This allows us to test

our procedure based on the posterior draws on individual’s parameters. We compare

our simulation-based predictions to the results computed by the closed-form expressions

conditioned on hyperparameters given in Schmittlein et al. (1987), Fader et al. (2005a)

and Jerath et al. (2011). In all cases, the correlation between the expectations is more

than 99.995%.

We consider the number of transactions in the out-of-sample period as well as the

timing of the first out-of-sample transaction. More precisely, with the timing of the first

out-of-sample transaction, we mean the minimum of the timing of the next transaction

and the end of the out-of-sample period. We use MSE, MAE and the correlation between

predicted and observed values. As the above measures do not distinguish between over-

and underpredictions, we also provide the mean over all positive errors (ME+: overpre-

diction) and the mean over all negative errors (ME−: underprediction).

Predicting future transaction frequency

Table 2.10 summarizes the predictive performance on the number of future transactions.

The HB models perform best in terms of the MSE, MAE and correlation measures on the

grocer and the OG datasets. Taking into account that the covariate information works

well for the OG, the HB2 model performs, consequently, the best among the HB models.

For this model, the coefficient of the average number of items in the shopping basket is

4We use an extreme number of burn-in iterations, in practice convergence is achieved much earlier.
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significant at the 5% level (based on the highest posterior density [HPD] interval). Adding

the average spending worsens the out-of-sample predictions on transaction frequency.

Therefore, the HB3 and HB4 models do not perform as well.

The good predictive performance of the HB model can be explained by the relax-

ation of the independence assumption in the heterogeneity distribution. Note that the

HB and the Pareto/NBD models share the same individual-level assumptions. To further

investigate the dependence, we take a look at the estimated correlations between pur-

chase and defection rates. As emphasized by Abe (2009a), it makes most sense to look

at the estimated correlations for the no-covariate configuration of the HB models (HB1

and HB3). Table 2.11 reports the posterior mean correlations for each pair of parameters

on each dataset for the HB3 model, together with the highest posterior density regions

(Hyndman, 1996). We find a strong and significant negative correlation between purchase

and defection rates for the OG data. Accordingly, we see a remarkable improvement on

the prediction performance of the HB models on this dataset. We find a significant, but

relatively smaller, negative correlation on the grocery data. The HB1 model performs

only slightly better than the other models on this data. There is no significant correlation

between the purchase and defection rates for the CDNOW dataset, and consequently, the

Pareto/NBD model is the best predicting model with its more flexible gamma hetero-

geneity distribution.

The final two columns in Table 2.10 summarize the model’s performance with regard

to over- (ME+) and underpredictions (ME−). We find that for the Pareto/NBD model,

the magnitude of underpredictions is bigger than that of overpredictions on all datasets.

For the other models, the difference between ME+ and ME− depends on the data. The

average underprediction is always larger than the average overpredictions on the CDNOW

and grocery retailer datasets. It is exactly the other way around for the OG data, where

the customers are relatively more loyal to the company. To further elaborate on this, we

construct Table 2.12. This table presents summary statistics on the group of observations

that are under- or overpredicted. We list the size of the group, mean values of the purchase

frequency (x) and the recency (T − tx) in the calibration period, observed frequency in

the holdout period (x∗) and predictions (E[x]) for both groups. All models overpredict

the transaction frequency, x, for the majority of customers in each datasets. In general,

the overprediction occurs for those customers with a low transaction frequency and a

long recency; and vice versa for the underprediction. In other words, the BTYD models

overestimate transaction frequency for incidental buyers and underestimate it for frequent

buyers.
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Table 2.10: Model’s prediction performance on the number of transactions

Correlation MSE MAE ME+ ME−
O

G

Pareto/NBD 0.9207 21.556 3.055 2.344 3.830
BG/NBD 0.9195 20.840 2.996 3.253 2.340

PDO 0.9169 21.219 3.047 3.347 2.343
HB1 0.9243 18.807 2.806 3.008 2.363
HB2 0.9250 18.543 2.779 2.941 2.419
HB3 0.9218 20.242 2.942 3.089 2.530
HB4 0.9221 20.168 2.934 3.075 2.538

C
D

N
O

W

Pareto/NBD 0.6304 2.568 0.754 0.429 1.866
BG/NBD 0.6248 2.589 0.787 0.456 1.831

PDO 0.6214 2.709 0.903 0.696 1.737
HB1 0.6235 2.962 0.717 0.209 2.083
HB2 0.6127 2.954 0.736 0.253 2.054
HB3 0.6241 2.743 0.680 0.234 2.090
HB4 0.6223 2.740 0.678 0.236 2.095

G
ro

ce
r Pareto/NBD 0.8230 0.954 0.398 0.242 1.615

BG/NBD 0.8216 0.966 0.416 0.265 1.602
PDO 0.8189 0.983 0.460 0.317 1.591
HB1 0.8238 0.951 0.394 0.239 1.600

Note that ME+ and ME− give the average of over- and un-
derpredictions over the groups

We next study the relation between the prediction error and the number of in-sample

purchases. The plots in Figure 2.1 show the average predicted number of out-of-sample

purchases as a function of the number of in-sample purchases. Figure 2.2 gives the MAE

as a function of the number of in-sample purchases. To be able to focus on the main

differences between the model classes, we do not show the results for the HB models

including spending and/or covariates.

Table 2.11: 95% Highest Posterior Density Region and mean of correlations between

behavioral rates

ρθλθµ ρθλθη ρθηθµ
HPDR mean HPDR mean HPDR mean

OG -0.718 -0.297 -0.501* 0.694 0.770 0.732* -0.765 -0.687 -0.730*
CDNOW -0.215 0.197 -0.011 0.235 0.421 0.332* -0.729 -0.675 -0.703*
Grocer -0.259 -0.115 -0.184* - - - - - -

* Indicates that 0 is not contained in the 95% HPDR (highest posterior density region).
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Table 2.12: Statistics on the groups of over- and underpredictions of future transaction

frequency

Overpredicted observations Underpredicted observations

ME+ cus. % x (T − tx) x∗ E[x] ME− cus. % x (T − tx) x∗ E[x]

O
G

Pareto/NBD 2.344 52 6.593 8.855 3.138 5.482 3.830 48 13.984 3.705 14.934 11.104

BG/NBD 3.253 72 8.912 6.887 6.072 9.325 2.340 28 13.243 5.119 15.710 13.371
PDO 3.347 70 8.730 7.030 5.795 9.142 2.343 30 13.412 4.889 15.787 13.444

HB1 3.008 69 8.909 6.998 5.917 8.925 2.363 31 12.806 5.058 15.061 12.698

HB2 2.941 69 8.961 7.037 5.993 8.934 2.419 31 12.733 4.949 14.993 12.574
HB3 3.089 74 8.908 6.599 6.172 9.261 2.530 26 13.560 5.802 16.109 13.580

HB4 3.075 74 8.944 6.573 6.212 9.287 2.538 26 13.482 5.872 16.047 13.509

C
D

N
O

W

Pareto/NBD 0.429 77 0.851 27.303 0.170 0.598 1.866 23 1.695 20.977 2.946 1.079

BG/NBD 0.456 76 0.813 27.698 0.144 0.600 1.831 24 1.764 20.113 2.859 1.028
PDO 0.696 80 0.913 26.942 0.216 0.912 1.737 20 1.564 21.567 3.136 1.399

HB1 0.209 73 0.631 28.748 0.041 0.250 2.083 27 2.116 18.666 2.836 0.753

HB2 0.253 73 0.639 28.672 0.046 0.299 2.054 27 2.111 18.760 2.853 0.798
HB3 0.234 76 0.733 27.811 0.108 0.342 2.090 24 1.982 20.343 2.977 0.887

HB4 0.236 76 0.742 27.744 0.115 0.351 2.095 24 1.968 20.477 2.988 0.893

G
ro

ce
rPareto/NBD 0.242 89 3.516 51.082 0.145 0.387 1.615 11 12.464 17.209 3.533 1.918

BG/NBD 0.265 89 3.573 51.029 0.155 0.420 1.602 11 12.105 17.298 3.489 1.887
PDO 0.317 89 3.541 51.002 0.149 0.466 1.591 11 12.411 17.287 3.561 1.970

HB1 0.239 88 3.404 51.180 0.152 0.391 1.600 12 12.095 17.151 3.450 1.850

The PDO model tends to yield higher predictions for CDNOW data. This matches our

findings in Tables 2.10 and 2.12. On average, the HB1 model yields the lowest predicted

transaction numbers. Remarkably, this is not reflected in a poor forecasting performance

for this model. In fact, Figure 2.2a shows that the HB1 model predicts very well for all

values of the in-sample number of transactions. For the grocer dataset, all models show a

very similar prediction pattern. Only the PDO model stands out with its relatively high

predictions. Figure 2.2b shows that this leads to higher MAEs. The Pareto/NBD model

is different from the other models for the online grocer data. This model has the tendency

to underpredict transaction numbers (see also Tables 2.10 and 2.12).

The MAE tends to increase with the number of in-sample transaction numbers for

the CDNOW and grocer datasets, contrasting with what is observed for the OG data

(see Figure 2.2). The OG dataset stands out with its data center leaning toward frequent

buyers. The predictions now result from models pulling values to this center.

Predicting future transaction timing

Finally, we consider the performance on predicting future transaction timing.5 Table 2.13

presents an overview of the main results. Interestingly, the PDO model has a good per-

formance on the CDNOW and grocer datasets. This model did not perform particularly

well on predicting the number of transactions. Note that the timing of transactions is

5We thank Batislam et al. (2007) and Fader et al. (2005b) for making the out-of-sample timing data
available.
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(a) (b)

(c)

Figure 2.1: Conditional expectation of future transaction numbers on CDNOW, grocer

and OG datasets. All plots right-censor the horizontal axis for readability. For CDNOW

data, the group having ≥ 7 repeat-purchases corresponds to only 3% of the observations;

for the grocer dataset 9% of the observations are in the group ≥ 15; and for the OG 6%

are ≥ 26.
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(a)

(b)

(c)

Figure 2.2: MAE on the number of future transaction predictions on CDNOW, grocer

and OG datasets
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strongly influenced by the defection process and that the PDO model specially focuses on

this process. Jerath et al. (2011) demonstrate that the PDO model allows the defection

process to be somewhere in between the extremes implied by the Pareto/NBD model and

the no-defection NBD model. The PDO model performs the worst on the OG data. One

reason may be the long (estimated) defection period interval (τ = 20.001 days).

The HB models also perform rather well on the grocer and OG datasets. For both

datasets we found a significant correlation between the behavioral parameters. Among

the HB models, a remarkable point is the improved performance of the HB3 model when

taking into account the average spending amount on CDNOW and OG datasets. This can

be explained by the existence of the strong and significant negative correlation between

the spending and defection parameters in both datasets (see Table 2.11).

Table 2.13: Model’s prediction performance on the timing of next transaction

Correlation MSE MAE ME+ ME−

O
G

Pareto/NBD 0.7296 46.674 4.508 2.649 5.801
BG/NBD 0.7259 47.173 4.523 2.668 5.792

PDO 0.6780 50.668 5.116 3.152 7.769
HB1 0.7328 43.416 4.223 2.991 5.134
HB2 0.7254 44.374 4.296 3.068 5.210
HB3 0.7201 46.594 4.067 2.973 4.772
HB4 0.7204 46.504 4.073 2.983 4.777

C
D

N
O

W

Pareto/NBD 0.5789 125.451 7.372 17.013 4.027
BG/NBD 0.5750 125.153 8.122 17.027 5.033

PDO 0.5828 123.441 8.517 15.343 6.228
HB1 0.5486 273.555 15.660 10.062 17.051
HB2 0.5449 282.423 15.865 9.781 17.352
HB3 0.5687 270.514 15.408 9.229 16.898
HB4 0.5689 270.028 15.376 9.214 16.850

G
ro

ce
r Pareto/NBD 0.8183 7.684 1.442 4.590 1.182

BG/NBD 0.8192 7.770 1.542 4.551 1.293
PDO 0.8226 7.976 1.734 4.469 1.514
HB1 0.8190 7.602 1.426 4.639 1.171

ME+ and ME− give the average over the groups of overpre-
dictions and underpredictions

In Table 2.14, we investigate for what type of observation the purchase time is over-

or underpredicted. We present the size of the over- and underpredicted group, group-

specific characteristics in the calibration period, the average observed timing (t∗f ) in the

holdout period and the average predicted time (E[tf ]). In line with the previous results,
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Table 2.14: Statistics on the groups of over- and underpredictions of future transactions

timing

Overpredicted observations Underpredicted observations

ME+ cus. % x (T − tx) t∗f E[tf ] ME− cus. % x (T − tx) t∗f E[tf ]

O
G

Pareto/NBD 2.65 41 11.80 4.47 27.49 30.14 5.80 59 8.97 7.72 37.93 32.13

BG/NBD 2.67 41 11.79 4.49 27.51 30.18 5.79 59 8.99 7.69 37.85 32.05
PDO 3.15 57 13.71 3.38 27.39 30.54 7.77 43 5.30 10.45 42.11 34.34

HB1 2.99 43 11.69 4.61 27.60 30.59 5.13 57 8.97 7.71 38.13 32.99

HB2 3.07 43 11.62 4.57 27.60 30.67 5.21 57 9.03 7.75 38.15 32.94
HB3 2.97 39 11.73 4.86 27.59 30.56 4.77 61 9.10 7.38 37.55 32.78

HB4 2.98 39 11.75 4.85 27.58 30.56 4.78 61 9.09 7.38 37.57 32.79

C
D

N
O

W

Pareto/NBD 17.01 26 2.26 18.52 43.49 60.51 4.03 74 0.62 28.42 71.34 66.31

BG/NBD 17.03 26 2.21 18.80 43.68 60.69 5.03 74 0.64 28.32 71.28 67.25
PDO 15.34 25 2.27 18.46 43.04 58.39 6.23 75 0.63 28.36 71.25 65.03

HB1 10.06 20 2.45 17.60 39.80 49.86 17.05 80 0.69 28.10 70.22 53.17

HB2 9.78 20 2.50 17.40 39.62 49.40 17.35 80 0.69 28.12 70.17 52.82
HB3 9.23 19 2.38 18.29 39.80 49.03 16.90 81 0.72 27.88 70.05 53.15

HB4 9.21 19 2.38 18.33 39.74 48.96 16.85 81 0.72 27.85 70.01 53.16

G
ro

ce
rPareto/NBD 4.59 8 7.17 23.32 75.03 79.62 1.18 92 4.32 49.21 82.77 81.59

BG/NBD 4.55 8 7.10 23.21 75.05 79.60 1.29 92 4.32 49.22 82.77 81.48
PDO 4.47 7 7.18 22.88 74.81 79.28 1.51 93 4.32 49.18 82.77 81.26

HB1 4.64 8 7.18 23.30 75.03 79.67 1.17 91 4.18 49.23 82.76 81.59

all BTYD models underpredict the timing of the next purchase for customers who have

a low transaction frequency and high recency; and vice versa for the groups of higher

predictions.

In Figure 2.3, we show the average predictions as a function of the time of the last

in-sample transaction (tx). Note that the timing predictions are explicitly influenced by

tx (see Equations (2.4), (2.8), and (2.12)). We show the corresponding MAE values in

Figure 2.4. Figure 2.3a clearly shows that the HB1 model gives quite different predictions

compared to the other models for CDNOW; for HB1 the predictions tend to be smaller.

Based on Figure 2.4a we conclude that these predictions are too low. The MAE for the

HB1 model is the highest among all models. However, for the recent buyers (high tx

values) the differences between the models are relatively small.

For the grocer dataset, we see that all the models, except the PDO model, have

almost identical predictions and performance for the non-recent buyers (see Figures 2.3b

and 2.4b). The PDO model has lower predictions and higher MAE for those customers.

Again for recent buyers, all models have very similar predictions so that it is difficult to

distinguish between the models for this group of observations.

For the OG data, the PDO model also performs relatively poorly for non-recent buyers

(see Figures 2.3c and 2.4c). The PDO model tends to underpredict the timing of the first

transaction for customers who do not have recent transactions. On this data, the majority

of customers are frequent buyers who had recent transactions. For instance, the percentage

of customers who have tx ≤ 10 weeks is just 15% and therefore the left hand side of the
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figure does not have a big weight in the overall predictive performance of the models for

this dataset. However, for the other datasets, a large part of the dataset have low values

of tx (53% of customers have tx ≤ 10 on the grocery dataset and 73% of customers has

tx ≤ 10 on the CDNOW dataset).

2.6 Discussion

In this paper, our aim is to present a new use of the existing buy-till-you-defect [BTYD]

models. In the current literature, the main focus is on predicting the transaction fre-

quency. We argue that prediction of the future transaction timing of an individual is

also very relevant. For each of the most popular BTYD models, we develop a method to

calculate such predictions.

First of all, these timing predictions are useful to compare the quality of the existing

models on an additional metric. Next, timing predictions have a clear managerial pur-

pose. For example, consider an online retailer implementing micro-marketing strategies.

The most appropriate time to contact its customers depends on their expected timing of

the next purchase. High quality timing predictions may contribute to achieving the full

potential of micro-marketing (Zhang and Krishnamurthi, 2004).

Following the pioneering research by Gupta (1988), there is a growing literature that

examines the effectiveness of promotions on whether to buy, ’when’ to buy, and how much

to buy (see the summary of relevant literature in Gönül and Hofstede (2006)). We believe

that using the BTYD models to predict the timing of transactions provides a new means

of answering the ‘when’ question.

An operations manager may also use predictions on the timing and transaction value as

input for Revenue Management. For example, online retailers have limited delivery capac-

ity at a given time. Given the appropriate predictions, operations managers can prioritize

valued customers for highly demanded delivery time slots (Talluri and Van Ryzin, 2005).

Tereyağoğlu et al. (2012) emphasize the crucial role of having accurate timing predic-

tions to improve revenues. In summary, we believe that the ability to predict the timing

of future transactions can be helpful to accelerate research on aforementioned topics in

industries that operate in a noncontractual setting.

We present a general method and specific formulas that can be used to predict the

timing of the next purchase for four of the established BTYD models. Such formulas have

not been presented before. We use these methods to compare the predictive performance

of all models on three very different datasets. We find that the predictive performance of
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(a)

(b)

(c)

Figure 2.3: Conditional expectation of future transaction timing on CDNOW, grocer

and OG datasets
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(a)

(b)

(c)

Figure 2.4: MAE of future transaction timing predictions on CDNOW, grocer and OG

datasets
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the models varies not only with the characteristics of the data, but also with respect to

the performance metric.

Managers who aim to forecast their customers’ transaction frequency should first ex-

amine general characteristics of the customer cohort and then choose the best fitting

model. The HB models tend to perform relatively poorly in case data is weak due to

many zero-repeat buyers. On the other hand, they do have a clear advantage if there are

many repeat buyers and there are significant correlations between the behavioral param-

eters.

The PDO and HB models perform well on the timing of transaction predictions, again

conditional on some data characteristics. Our conclusions on model choice are based on

informally relating data characteristics to forecasting performance on just three datasets.

There are studies that attempt to formally quantify and validate such relations through

classification and regression trees and random forests (Schwartz et al., 2014). Such a

formal study is very welcome in this context to arrive at more general recommendations.

By comparing the predictive performance on future frequency versus timing, we found

that the BTYD models perform rather poorly on the latter. A closer focus on the defection

process may lead to better timing predictions. The ideas of Bueschken and Ma (2012)

may be helpful in this context. They provide a new perspective on possible switches

between active and inactive states, and allow for both regular and incidental buyers by

relaxing the Poisson process assumption on the arrival of transactions.

2.7 Appendix: Timing expressions

In this section, we present the derivations of the expected timing of the last transaction,

tx, in the observation period [0, T ] and the expected timing of the next event (either

the first purchase or the end of the forecast interval), tf , conditioned on an individual’s

parameters. The hyperparameters do not play a role here. In all sections of this appendix

we drop the i subscript, representing customer i, for notational simplicity. In the notation

we also do not condition on the length of the observational interval T .

2.7.1 Timing of transactions for Pareto/NBD and HB models

The derivations in this section apply to the original Pareto/NBD model and its HB

extension. The expressions are the same as both models have the same assumptions on
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individual behavior. The time of defection, t∆, has the probability function6

P(dt∆|λ, µ) = µe−µt∆ dt∆ . (2.15)

Setting tδ = min(t∆, T ), we obtain

P(dtδ|λ, µ) =


µe−µtδ dtδ if 0 ≤ tδ < T

e−µT δT (tδ) dtδ if tδ = T

0 otherwise,

(2.16)

where δw(x) is the Dirac-delta function at w evaluated at x.7 Conditioning on the unob-

served value tδ, we find the density of tx on (0, T ] as

P(dtx|tδ, λ, µ) =
(
λe−λ(tδ−tx) + δ0(tx)e

−λtδ
)

dtx, (2.17)

where we make use of the memoryless property of the Poisson process. Informally, we can

look back in time and do as if the process starts at tδ. Integrating over tδ, one obtains

P(dtx|λ, µ) =

∫
tδ∈[tx,T ]

P(dtx|tδ, λ, µ)P(dtδ|λ, µ)

=


λ µe−(λ+µ)tx+λe−(λ+µ)T

λ+µ
dtx if 0 < tx ≤ T(

µ
λ+µ

+ λe−(λ+µ)T

λ+µ

)
δ0(tx) dtx if tx = 0 .

(2.18)

Based on Equation (2.39), the expected value on the time of the last transaction is cal-

culated as follows,

E(tx|λ, µ) =

∫ ∞
0

tx P(dtx|λ, µ) =
1− e−µT

µ
− 1− e−(λ+µ)T

λ+ µ
. (2.19)

Next, we present the derivations for the predictions of the time of next event from the

end of the calibration period conditional on x and tx: E(tf |x, tx, λ, µ). Let T+ be some

future horizon T+ > T . Consider the first future transaction after T . We define tf as the

6We use a rather formal notation here as our stochastic variables have a mixed discrete/continuous
distribution. For practical purposes one can see the part before dt∆ on the right-hand side of (2.15) as
the traditional probability density function.

7More precisely, δw() is a point mass at w normalized such that for any continuous function g,∫
g(t)δw(t) dt = g(w).
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time of this occurrence or T+, whichever is first. We have

E(tf |x, tx, λ, µ) = E(tf |x, tx, z = 1, λ, µ) p+ + E(tf |x, tx, z = 0, λ, µ) (1− p+),

where z = 1 indicates that a customer is active at time T and

p+ = E(z|x, tx, λ, µ) =
λ

λ+ e(λ+µ)(T−tx)
. (2.20)

Consider an active customer; the density of the first timing, t, of a transaction on

(T,∞) is λe−(λ+µ)(t−T ) and t has a point mass at infinity of µ
λ+µ

as defection may have

been the first event to happen. Therefore, on the interval (T, T+] the density of tf given

a customer’s transaction data and that the customer is active at time T is πf (t|x, tx, z =

1, λ, µ) = λe−(λ+µ)(t−T ). The expectation is computed as,

E(tf |x, tx, λ, µ) = p+

∫ T+

T

tπf (t|x, tx, z = 1, λ, µ) dt

+ p+

(
1−

∫ T+

T

πf (t|x, tx, z = 1, λ, µ) dt

)
T+ + (1− p+)T+

= T +
µe(λ+µ)(T−tx)

λ+ µe(λ+µ)(T−tx)
(T+ − T ) +

λ

λ+ µe(λ+µ)(T−tx)

1− e−(λ+µ)(T+−T )

λ+ µ
(2.21)

2.7.2 Timing of transactions for BG/NBD model

In the BG/NBD model, the timing of defection, t∆, is also the timing of the last transac-

tion and its density is

P(dt∆|λ, p) = λpe−λpt∆ dt∆, (2.22)

see Fader et al. (2005a). It should be noted that the first purchase at time 0 is special in

that a customer cannot defect at time 0. Given that tδ = min(t∆, T ):

P(dtδ|λ, p) =


λpe−λptδ dtδ if 0 < tδ < T

e−λpT δT (tδ) dtδ if tδ = T

0 otherwise .

(2.23)
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Conditioning on the unobserved value tδ, we find the density of tx as

P(dtx|tδ, λ, p) =


δtδ(tx) dtx if tδ < T(
λ(1− p)e−λ(1−p)(T−tx) + e−λ(1−p)T δ0(tx)

)
dtx if tδ = T

0 otherwise .

(2.24)

Integrating over tδ, one obtains the probability

P(dtx|λ, p) =

∫
tδ∈[tx,T ]

P(dtx|tδ, λ, p)P(dtδ|λ, p)

=
(
λpe−λptx + (1− p)λe−λ(T−(1−p)tx) + e−λT δ0(tx)

)
dtx .

and, therefore

P(dtx|λ, p) =


λ
(
pe−λptx + (1− p)e−λT eλ(1−p)tx

)
dtx if 0 < tx ≤ T

e−λT δ0(tx) dtx if tx = 0

0 otherwise .

(2.25)

Using Equation (2.25), the expected value of the time of the last transaction in the

observation interval [0, T ] can be calculated as

E(tx|λ, p) =

∫ T

0

txλ
(
pe−λptx + (1− p)e−λT eλ(1−p)tx

)
dtx =

1

1− p

(
1− e−λpT

λp
− 1− e−λT

λ

)
.

(2.26)

For the case x, tx > 0 one easily sees, by referring to the Pareto/NBD result on p+ in

Equation (2.20) under substituting (1− p)λ for λ and λp for µ, that

p+ = P(z = 1|x, tx, λ, p) =


1−p

1−p+peλ(T−tx) if x, tx > 0

1 if x = 0 = tx .
(2.27)

The density of the first future transaction given the rates, the observed transaction data

and the customer being active at T is πf (t|x, tx, z = 1, λ, µ) = λe−λ(t−T ). Note that an

active customer will always make at least one future purchase. The expected value of the
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first future purchase timing (or T+) is

E(tf |x, tx, λ, p) = p+λ

∫ tf=T+

tf=T

tfe
−λ(tf−T ) dtf +

(
1− p+ + p+e−λ(T+−T )

)
T+

= T + (1− p+)(T+ − T ) + p+ 1− e−λ(T+−T )

λ
. (2.28)

2.7.3 Timing of transactions for PDO model

In the periodic-defection-model (PDO) (Jerath et al., 2011) the time of defection, t∆, has

a discrete distribution with support {nτ}n=1,2··· which is given as

P(t∆ = nτ |λ, p) = p(1− p)n−1, (2.29)

where τ can be treated as a known value (estimated using MLE at the customer base

level). Let tδ = min(t∆, T ) be the time after which no transactions are observed. Given

tδ the distribution of the time, tx, of the last observed transaction in [0, T ] is

P(dtx|tδ, λ, p) = I[0,tδ](tx)e
−λ(tδ−tx) (λ+ δ0(tx)) dtx, (2.30)

IA is the indicator function of the set A. Note the distribution’s point mass at 0. One

computes

P(dtx|λ, p) =

∫
tδ∈[tx,T ]

P(dtx|tδ, λ, p)P(dtδ|λ, p)

=

(
N∑

n=mx

p(1− p)n−1e−λnτ + (1− p)Ne−λT
)

(λ+ δ0(tx)) e
λtx dtx, (2.31)

where we use the notations N for bT/τc and mx as the time of the first opportunity

to defect after or at tx, expressed as a multiple of τ , that is, mx =
⌊
tx
τ

+ 1
⌋
. Using

Equation (2.31) together with the observation that in our case, it holds that

N∑
m=1

∫
{mx=m}

N∑
n=m

(
·
)

dtx =
N∑
n=1

n∑
m=1

∫
{mx=m}

(
·
)

dtx =
N∑
n=1

∫ tx=nτ

tx=0

(
·
)

dtx ,
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the expected value for the time of the last observed transaction in the interval [0, T ] is

found as8

E(tx|λ, p) =
N∑
n=1

p(1− p)n−1

(
nτ − 1− e−nλτ

λ

)
+ (1− p)N

(
T − 1− e−λT

λ

)
. (2.32)

Now let us turn to the timing of the first repeat transaction, t1, where, by convention, we

set t1 = ∞ in case there is no repeat transaction after the initial transaction at time 0.

More in particular, we study t1 capped by the observation period’s length, t+ = min(t1, T ).

Then, by analogy to Equations (2.30) and (2.31) we obtain

P(dt+|tδ, λ, p) =
(
I[0,tδ](t

+)λe−λt
+

+ e−λtδδT (t+)
)

dt+ (2.33)

and

P(dt+|λ, p) =

 N∑
n=dt+/τe

p(1− p)n−1λe−λt
+

+ (1− p)N
λe−λt

+

dt+

+

(
N∑
n=1

p(1− p)n−1e−nλτ + (1− p)Ne−λT
)
δT (t+) dt+ . (2.34)

From the density in Equation (2.34), the expected value for the timing of the first trans-

action becomes

E(t+|λ, p, T ) =
N∑
n=1

p(1− p)n−1

(
1− (nλτ + 1)e−nλτ

λ

)
+ (1− p)N

(
1− (λT + 1)e−λT

λ

)

+

(
pe−λτ

1−
(
(1− p)e−λτ

)N
1− (1− p)e−λτ

+ (1− p)Ne−λT
)
T

or

E(t+|λ, p, T ) = 1/λ

1−
bT/τc∑
n=1

p(1− p)n−1(nλτ + 1)e−nλτ − (1− p)bT/τc(λT + 1)e−λT


+

(
pe−λτ

1−
(
(1− p)e−λτ

)bT/τc
1− (1− p)e−λτ

+ (1− p)bT/τce−λT
)
T . (2.35)

8For reasons of computational efficiency, in cases where N is a large number, the summation in Equa-

tion (2.32) may be written as τ
p

(
N(1− p)(N+1) − (N + 1)(1− p)N + 1

)
− 1−(1−p)N

λ +pe−λτ

λ

((1−p)e−λτ)
N−1

(1−p)e−λτ−1
.
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This expression for the timing of the first transaction in the calibration period is reused

for calculating the timing of the first future transaction after T , see Equation (2.12).

2.8 Appendix: Estimation procedure for Pareto/NBD,

BG/NBD and PDO models

To calculate the various expectations, we also need draws from the conditional density

of the individual-level parameters. Below we discuss how to obtain such draws for the

Pareto/NBD, BG/NBD and PDO model.

For the BG/NBD and PDO models, the relevant parameters are the transaction rate,

λ, and the probability of defection, p, per defection opportunity. Below, we argue that we

can easily draw from the full conditional distributions π(λ|x, tx, p) and π(p|x, tx, λ). We

rely on Gibbs sampling to obtain draws from the joint conditional distribution π(λ, p|x, tx).
For the Pareto/NBD model, sampling from the full conditionals is not straightfor-

ward. Therefore, we need to develop a different method. We propose to use a random-

walk Metropolis-Hastings algorithm to obtain draws from the individual-level posterior

distribution.

2.8.1 The Pareto/NBD model

The likelihood function for the Pareto/NBD model is

f(x, tx|λ, µ) =
λx

λ+ µ
(µe−(λ+µ)tx + λe−(λ+µ)T ) . (2.36)

Given the likelihood function and the independent gamma priors on the defection and

purchase rates, the joint posterior distribution of the behavioral parameters can be written

as

π(λ, µ|r, α, s, β, x, tx) ∝ f(x, tx|λ, µ)g(λ|r, α)h(µ|s, β)

∝ λx

λ+ µ
(µe−(λ+µ)tx + λe−(λ+µ)T )λ(r−1)e−αλµ(s−1)e−βµ .

(2.37)

Note that we consider the hyperparameters (r, α, s, β) to be fixed. The candidate draws

in our random-walk Metropolis-Hastings sampler are generated using

λc = exp(log λ+ ελ), ελ ∼ N(0, σ2
λ)

µc = exp(log µ+ εµ), εµ ∼ N(0, σ2
µ).
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In this way we ensure that the parameters always remain positive.

The parameters are now drawn sequentially using the following two-step Gibbs sam-

pler:

1. Start sampling with initial values for λ and µ

2. Update λ

• Draw the candidate value: λc

• Compute α = min (1, π(λc, µ|r, α, s, β, x, tx)/π(λ, µ|r, α, s, β, x, tx)) .

• With probability α, set λ = λc

3. Update µ:

• Draw the candidate value: µc

• Compute α = min (1, π(λ, µc|r, α, s, β, x, tx)/π(λ, µ|r, α, s, β, x, tx)) .

• With probability α, set µ = µc

4. Repeat steps 2 and 3.

2.8.2 BG/NBD model

For the conditional posterior distribution of the transaction rate, we have π(λ|x, tx, p) ∝
π(λ, p)π(x, tx|λ, p) such that

π(λ|x, tx, p) ∝ λx+r−1 ×

pe−λ(tx+α) + (1− p)e−λ(T+α) if 0 < tx ≤ T

e−λ(T+α) if x = 0 = tx .

We, therefore, have

π(λ|x, tx, p) =

p
(tx+α)x+r

p
(tx+α)x+r + 1−p

(T+α)x+r

ϕx+r,tx+α(λ)+

1−p
(T+α)x+r

p
(tx+α)x+r + 1−p

(T+α)x+r

ϕx+r,T+α(λ), (2.38)

where ϕx,β is the density of a gamma distribution with shape parameter x and rate

parameter β.

Likewise, for the conditional posterior distribution of the defection probability, we

have
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P(dtx|λ, µ) =

∫
tδ∈[tx,T ]

P(dtx|tδ, λ, µ)P(dtδ|λ, µ)

=


λ µe−(λ+µ)tx+λe−(λ+µ)T

λ+µ
dtx if 0 < tx ≤ T(

µ
λ+µ

+ λe−(λ+µ)T

λ+µ

)
δ0(tx) dtx if tx = 0 .

(2.39)

π(p|x, tx, λ) ∝ π(λ, p)π(x, tx|λ, p)

∝

pa(1− p)b+x−2e−λtx + pa−1(1− p)b+x−1e−λT if 0 < tx ≤ T

pa−1(1− p)b−1 if x = 0 = tx

and so

π(p|x, tx, λ) =
a

a+ (b+ x− 1)e−λ(T−tx)
βa+1,b+x−1(p) +

(b+ x− 1)e−λ(T−tx)

a+ (b+ x− 1)e−λ(T−tx)
βa,b+x(p)

(2.40)

where βa,b is the density of a beta distribution with parameters a and b.

2.8.3 PDO model

For the conditional posterior distribution of the transaction rate in the PDO model, we

get

π(λ|x, tx, p) ∝ π(λ, p)π(x, tx|λ, p)

∝ p

N∑
n=mx

(1− p)n−1

(α + (n− 1)τ)x
ϕx+r,α+(n−1)τ (λ) +

(1− p)N

(α + T )x
ϕx+r,α+T (λ),

so that

π(λ|x, tx, p) =
N∑

n=mx

w
(n)
x,p

Wx,tx,p

ϕx+r,α+(n−1)τ (λ) +
w

(N+1)
x,p

Wx,tx,p

ϕx+r,α+T (λ), (2.41)

where

w(n)
x,p =


p (1−p)n−1

(α+(n−1)τ)x+r if 1 ≤ n ≤ N

(1−p)N
(α+T )x+r if n = N + 1,

and Wx,tx,p =
∑N+1

n=mx
w

(n)
x,p



71

2.9 Appendix: HB estimation with a very diffuse prior on CDNOW dataset 57

For the conditional posterior distribution of the defection probability, it holds

π(p|x, tx, λ) ∝ π(λ, p|x, tx)

∝ π(λ, p)π(x, tx|λ, p) ∝ pa
N∑

n=mx

(1− p)b+n−2e−λ(T−(n−1)τ) + pa−1(1− p)b+N−1 .

Therefore,

π(p|x, tx, λ) =
N∑

n=mx

v
(n)
λ

Vtx,λ
βa+1,b+n−1(p) +

v
(N+1)
λ

Vtx,λ
βa,b+N(p), (2.42)

is a mixture of beta distributions where

v
(n)
λ =


B(a+ 1, b+ n− 1)e−λ(T−(n−1)τ) if mx ≤ n ≤ N

B(a, b+N) if n = N + 1 .

and Vtx,λ =
∑N+1

n=mx
v

(n)
λ and B(·, ·) is the beta function. Note that the value Vtx,λ depends

on the data only through mx.

2.9 Appendix: HB estimation with a very diffuse

prior on CDNOW dataset

Table 2.15 presents the mean of unconditional expectations for the CDNOW data under a

very diffuse prior distribution. Recall that the prior parameters are chosen as ν0 = J + 3

and Γ0 = ν0 I, where J represents the number of parameters of a customer (see Rossi

et al. (2005, Page 30)).

Table 2.15: Average of unconditional expectations in calibration period - under a diffuse prior

on CDNOW data

HB1 HB2 HB3 HB4

Avg. E[x] 0.228 0.096 0.253 0.209
Avg. E[tx] 2.852 1.110 3.151 2.654

Although a very diffuse prior leads to badly estimated individual-level parameters,

this does not necessary lead to bad predictions on the future transaction number and the

timing predictions. The main reason for this is that these metrics are bounded. Figure 2.5

and Tables 2.16 to 2.19 show the forecasting performance of the HB models under this
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very diffuse prior. Hence, it is important to also look at the posterior distributions of the

individual-level parameters. As noted earlier, these are very extreme under a diffuse prior

for this dataset.

Figure 2.5: Conditional expectation of future transaction frequency and future transaction

timing on CDNOW - under a diffuse prior

Table 2.16: In-sample predictive performance for unconditional predictions of the expected

number of transactions and expected timing of last transaction - under a diffuse prior on CD-

NOW data

E[x] E[tx] -weeks-
MSE MAE ME+ ME− MSE MAE ME+ ME−

HB1 5.454 1.087 0.228 2.369 130.586 7.537 2.747 16.236
CDNOW HB2 5.689 1.061 0.096 2.501 147.785 7.081 1.094 16.653

HB3 5.414 1.092 0.253 2.344 128.279 7.626 3.024 16.172
HB4 5.486 1.083 0.208 2.388 132.239 7.481 2.556 16.357

Table 2.17: Model’s prediction performance on the number of transactions - under a diffuse

prior on CDNOW data

Correlation MSE MAE ME+ ME−
HB1 0.6245 2.606 0.758 0.413 1.858

CDNOW HB2 0.6154 2.890 0.748 0.302 1.990
HB3 0.6185 2.997 0.795 0.523 1.962
HB4 0.6173 2.744 0.680 0.247 2.094
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Table 2.18: Highest Posterior Density Region and mean of correlations between behavioral

rates - under a diffuse prior on CDNOW data

ρθλθµ ρθλθη ρθηθµ
HPDR mean HPDR mean HPDR mean

CDNOW -0.163 0.297 0.078 0.070 0.312 0.188* -0.868 -0.835 -0.853*

Table 2.19: Model’s prediction performance on the time of next transaction - under a diffuse

prior on CDNOW data

Correlation MSE MAE ME+ ME−
HB1 0.5770 126.257 7.502 17.232 -4.052
HB2 0.5538 291.028 16.054 9.423 -17.628
HB3 0.5491 142.779 6.494 5.329 -10.314
HB4 0.5665 271.112 15.367 9.053 -16.873
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Chapter 3

The Need for Market Segmentation

in Buy-Till-You-Defect Models

3.1 Introduction

In recent years, improvements in information technology have enabled firms to record a

tremendous amount of data on their customers’ transactions. Even small grocery chains

record various details associated with each transaction. Simultaneously, recent advances

in quantitative techniques, such as Bayesian estimation, bring new opportunities to thor-

oughly analyze the growing transaction data. Furthermore, companies have started to

realize that advanced marketing models can offer detailed customer insights. In a survey

of nearly 3, 000 executives, managers and analysts working across more than 30 industries

and 100 countries, half of the respondents said that improving information systems and

adopting advanced quantitative models are top priorities for their organizations (LaValle

et al., 2014). This survey underpins the widespread belief that advanced models offer

value to companies. Therefore, managers increasingly adopt these models to enhance

their business performance.

In many cases, the use of advanced information systems and marketing models aims

at better understanding the customer base and more accurate predictions of customer be-

havior. Detailed insights in customer behavior and heterogeneity are essential to develop

marketing strategies tailored to particular segments or even to specific individuals.

Segmentation and predictive modeling are two must-have tools in today’s customer

centric landscape. Even though they rely on different sets of techniques that have been

studied extensively in marketing, they both support managers to develop customized

marketing strategies for each of the target units, namely segments or individual customers.

61
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Marketers have traditionally dealt with customer heterogeneity by segmenting the market

(Bhatnagar and Ghose, 2004). Despite the fact that companies are moving toward a

marketing era where the only relevant segment is the individual customer, segmentation

still offers a lot of value for managers in having an overall understanding of their customer

base. Moreover, segmentation forms the very first step toward more advanced one-to-one

marketing strategies.

In this paper, we present a customer-level predictive model which also provides an in-

herent segmentation. This model is relevant for companies operating in a non-contractual

setting. In such a setting, customers can stop buying from the company without let-

ting the company know. For instance, the majority of online retailers operates in a

non-contractual setting. The unobserved defection of customers adds a big challenge to

predicting customer behavior. On the other hand, it needs to be taken into account, if

the company wants to generate accurate predictions of individual behavior. Needless to

say, more accurate predictions can help to improve returns on marketing actions by better

distributing the limited marketing budgets.

Our proposed model is positioned under the so-called Buy-till-you-defect [BTYD] mod-

eling stream. The common modeling approach for these models is to assume stochastic

arrival processes (with steady and heterogeneous rates) for each customer’s purchase and

defection behavior. While a customer is active (the defection has not arrived yet), her

transactions arrive according to the assumed arrival process. Usually a Poisson purchase

process is assumed as this requires only limited data on a customer’s purchase history. On

the population level, the heterogeneity over the customer base is modeled by assuming

some standard continuous probability distribution.

The current BTYD models have two common weaknesses. The first one is related to

their predictive performance. BTYD models provide detailed predictions on the individ-

ual’s purchase frequency and defection behavior. Especially the predictions on customer

defection are key contributions of BTYD models since firms can directly obtain customer

lifetime predictions using these models. As we will show in this paper, in many situations

these models generate unexpectedly long lifetime predictions for customers. This extreme

lifetime prediction problem has also been observed by Wübben and Wangenheim (2008)

in their empirical validation study. The failure of BTYD models to deliver what they

initially promised lowers the face validity of these models, making it more difficult to get

them to be used in practice. A very managerially relevant application of these predictions

is calculating the so-called Customer-Lifetime-Value [CLV]. This marketing metric has a

central importance for companies. By making good use of CLV, companies can focus on

long-term customer satisfaction rather than short-term metrics (Zhang et al., 2014).
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The extremely long lifetime predictions indicate that the models could be improved

as such predictions are obviously incorrect. From a technical perspective, these extreme

predictions may be difficult to explain as it seems to be a counter-intuitive phenomenon

for hierarchical models. One may expect that the heterogeneity distribution would shrink

outlying customers toward the center of the population. This normally results in fewer

extremes. To date, there is not a clear explanation in the literature on the reasons behind

the extreme lifetime predictions. Even though there are some models that focus solely on

the defection process (Fader et al. (2005a), Jerath et al. (2011)), the lifetime predictions

are still not reasonable enough that they can be directly used for managerial decision

making.

The second weakness that points toward a potential improvement for BTYD models

is their limited descriptive power. More specifically, they lack customer-base level in-

sights that managers can directly act upon. This weakness is at least as important as

the former one, since understanding the heterogeneity and identifying behavioral patterns

in the customer base is crucial for academic researchers and industry practitioners alike.

Researchers and marketing managers are particularly interested in understanding the re-

lationship between various details associated with a transaction and consumer’s purchase

and defection behavior. For instance, finding a link between consumers’ defection rate

and their basket size or the paid delivery fee would provide actionable insights. These

insights may lead to important managerial implications regarding customized pricing or

promotion strategies, issues that are of key interest to companies.

Following the earlier discussion, we pose the following research questions: (1) What

are the reasons behind the extreme lifetime prediction problem that limits the adoption

of BTYD models; and how can we address this problem? (2) Can a BTYD model also

provide insights on segments within the customer base; and is it possible to relate these

segments to customer characteristics?

Regarding the first research question, we conduct a detailed simulation study to inves-

tigate the reasons behind the extremely long lifetime estimates. Our explanation consists

of two parts. First, the data is not very informative on the lifetime of a specific individual.

We only observe consumer behavior during a limited time interval and we cannot observe

defection directly. Second, the customer base likely contains a number of segments. At

least two segments are expected for online retailers: customers who only purchase the

service/product a few times, and customers who become frequent buyers. This leads to

a multi-modal heterogeneity distribution, which cannot be fitted well using any of the

current BTYD models. In fact, under the uni-modal heterogeneity distributions of the

existing BTYD models, the variance is forced to be large in order to capture the one-
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time users as well as the more regular users. The fact that this inflates the customer

lifetimes of regular users is not sufficiently penalized through the fit of the model as we

only observe the customers for a limited time period. This phenomenon will also lead

to biased estimates for individual level parameters. In sum, more attention should be

paid to heterogeneity modeling for the BTYD models, especially in cases where multiple

customer segments exist.

Based on our findings, we develop a new BTYD model that overcomes the lifetime

estimation problem and yields more detailed insights in the customer base. Our model

provides an inherent segmentation that segregates customers directly on their purchase

and defection parameters. Typically, since defection is not observed, current segmenta-

tion models require other covariate data as a proxy for customer defection. In our model,

however, we provide a refined segmentation by using predicted behavioral parameters of

customers. In other words, the segment membership directly tells us something about

customer’s purchase frequency and defection. In fact, the shape of our proposed hetero-

geneity distribution over the behavioral parameters reveals the inherent customer seg-

ments. Moreover, our model has the capability of incorporating other available covariate

data. This way, one can study whether there exists a substantial statistical relationship

between a certain covariate and customer’s purchase and defection parameters. By a bet-

ter understanding of the customer base through the relationship between segments and

covariates, the company may also be able to predict the purchase or defection behavior

for a new customer based only on the covariate data from her first purchase.

Based on our model building, simulation and empirical studies, our contribution is

twofold. First, as our proposed heterogeneity distribution can accommodate multi-modal,

heavy-tailed and skewed distributions, we obtain better lifetime predictions than the ones

from the benchmark BTYD models, namely the Pareto/NBD model (Schmittlein et al.,

1987) and its hierarchical Bayes extension [HB] model (Abe, 2009a). This is especially

true for datasets where there exists inherent multimodality. Second, in line with Van Oest

and Knox (2011), Reinartz and Kumar (2000), and Schmittlein and Peterson (1994), we

show that different customer segments may exhibit different patterns concerning purchase

and defection behavior. We also show that other customer shopping characteristics can

be linked to this segmentation to gain more insight on the customer base.1 Using data

from an online retailer in a Western European country, we illustrate the added descriptive

power of the proposed model.

1This extends the results of Van Oest and Knox (2011) who show using a modified BG/NBD model
that customer complaints can be indicators of customer defection.
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We show that our model not only improves the direct usability of customer lifetime

predictions, but also substantially increases the descriptive power of BTYD models with

its segmentation scheme. In the literature, predictive models and segmentation have often

been used in conjunction with each other. Several studies showed that the accuracy of

predictions can be improved by first using certain kinds of segmentation methods (Morwitz

and Schmittlein (1992), Chen et al. (2007)), and vice versa (Hwang et al. (2004), Kim et al.

(2006)). Our model sets itself apart from these studies by proposing a unifying framework

where predictions and segmentation are executed simultaneously and dynamically in a

BTYD framework. We believe that the adoption of BTYD models will accelerate as

marketing managers obtain not only an actionable segmentation, but also meaningful

lifetime predictions for their customers.

In the next two sections we briefly review the BTYD models with a focus on our

benchmark Pareto/NBD and HB models. Then we give an initial theoretical analysis of

the extreme lifetime prediction problem. In Section 3.4, we present two variants of our

proposed Mixture Hierarchical Bayes BTYD model including estimation details. Predic-

tion results from a simulation study showing the contribution of our models are presented

in Section 3.5. Section 3.6 presents the results of our empirical study where we compare

the newly proposed models to their benchmark models. General conclusions are discussed

in Section 3.7.

3.2 BTYD Models

All BTYD models describe the transaction behavior of individuals i = 1, . . . , N over a

time period starting at the first transaction for each individual. As the time of the first

purchase of different individuals usually do not coincide, each individual is observed for

a different length of time. We measure time relative to the first purchase. Hence, for

each customer t = 0 corresponds to the time of the first purchase. We denote the total

observation time for customer i as Ti.

In BTYD models, customer i remains active for a stochastic and unobserved lifetime

which is denoted by t∆,i. The Pareto/NBD model and the HB model have the same indi-

vidual level assumptions: The customer makes purchases according to a Poisson process

with rate λi until the lifetime ends (defection occurs), and her lifetime t∆,i has an expo-

nential distribution with rate µi. The observed customer data is denoted by the vector

[xi, tx,i, Ti], where xi represents the number of repeat purchases, and tx,i represents the
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time of the last observed purchase.2 Using these distributional assumptions, we obtain3

Prob(Xi = x|λi, t∆,i, Ti) = e−λi(t∆,i∧Ti)
(λi(t∆,i ∧ Ti))x

x!
,

π(t∆,i|µi, Ti) = µie
−µit∆,i ,

(3.1)

where π(.) denotes a density function. The purchase and the defection rates are as-

sumed to be distributed according to some standard distributions across the population.

While Schmittlein et al. (1987) assume two independent gamma distributions for the

Pareto/NBD model, Abe (2009a) relaxes the independence assumption by employing a

bivariate log-normal distribution in his HB model. This allows for a correlation between

purchase and defection rates. In a situation where this correlation is non-zero, the HB

model outperforms other BTYD models in terms of forecasting performance (see Chap-

ter 2). In the HB model, it is also possible to incorporate observed customer characteris-

tics. These characteristics for individual i are collected in a (1× R) row vector Di. This

vector does not contain a constant. Using the row vector θi = [log(λi), log(µi)] the HB

model specifies

θi|β,Γ,∆ ∼ N(β +Di∆, Γ), (3.2)

where β is a (1× 2) vector of intercepts, ∆ is an (R× 2) matrix of coefficient parameters

and Γ denotes a (2× 2) variance-covariance matrix.

Both Pareto/NBD and HB models yield extreme lifetime predictions for a substan-

tial group of customers when applied on a dataset from an online grocery retailer from

a Western European country.4 Similarly, Wübben and Wangenheim (2008) obtain ex-

ceptionally long lifetime predictions from the Pareto/NBD model on a dataset from an

apparel retailer. In our e-grocer data, the HB model performs the best compared to the

other BTYD models. This is due to a strong correlation between the purchase and defec-

tion parameters in this particular dataset. In the following section where we investigate

the reasons behind these estimates, we focus on the superior HB model.

2Thanks to the memorylessness property on the inter-arrival time distribution, [xi, tx,i, Ti] summarizes
customer i’s full history without loss of information.

3The value (t∆,i ∧ Ti) is the minimum of t∆,i and Ti.
4Other established BTYD models such as BG/NBD model (Fader et al., 2005a) and PDO model

(Jerath et al., 2011) generate extreme lifetime predictions on this dataset as well.
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3.3 An initial investigation of the lifetime prediction

problem

To understand whether the extreme lifetime prediction problem stems from an inherent

characteristic of the HB model, or from a lack of fit of the model, we conduct an initial

simulation study.5 For this purpose, we generate data exactly matching the assump-

tions of the model, that is, Poisson arrivals combined with an exponential lifetime for

the individuals, and a bi-variate log-normal for the heterogeneity distribution. For now

we assume that customer characteristics are not available. The four steps of the data

generation process are as follows:

1. Fix the hyper-parameters (β and Γ) to some known values:

We choose the following values, β∗λ = log(0.08) and β∗µ = log(0.04).6 The variance-

covariance matrix is chosen to be equal to the identity matrix.

2. Draw behavioral parameters θ∗i for i = 1, . . . , N according to the heterogeneity

distribution:

Draw θ∗i ∼ π(θi|β∗,Γ∗) from the multivariate normal distribution. Here we take

N = 1, 000.

3. Draw lifetimes, t∗∆,i for i = 1, . . . , N according to the specified lifetime distribution:

Draw t∗∆,i ∼ π(t∆,i|θ∗i ) from an exponential distribution with rate parameter eθi for

customer i.

4. Draw the number of repeat transactions xi and the last purchase time tx,i, given an

observation period Ti, lifetime t∗∆,i and behavioral parameters θ∗i :

For i = 1, . . . , N , draw xi, tx,i ∼ π(xi, tx,i|t∗∆, θ∗i , Ti).7 We fix the observation period

length Ti to 154 days to match the generated data with the real data from the online

grocer.

We next apply Markov Chain Monte Carlo [MCMC] simulation to obtain estimates of

parameters from the generated data.8 In this ideal setting we do not find any evidence

5All calculations throughout the paper are performed using MATLAB R2011b.
6Note that, if no covariate data is used, or in case covariates are mean-centered, β values give the

mean of the log behavioral parameters.
7See the details of this sampling process in the 5th step of generating data for MHB model testing (for

segmented data) given in Section 3.10.
8Details on the MCMC sampler can be found in Abe (2009a) or by simplifying the sampler in Sec-

tion 3.8
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of extreme lifetimes using the HB model. Contrary to common findings on real data, all

lifetime predictions are reasonable and they tend to shrink toward the center of the data.

Figure 3.1 contrasts the predictions against the true, simulated lifetimes. In the plot on

the right hand-side we zoom in on shorter lifetimes where we observe that the HB model

can retrieve the true values of the lifetime to a large extent.

Figure 3.1: Lifetime predictions from the HB model versus true lifetimes on a generated

dataset

Based on this simulation study, we conclude that the HB model gives reasonable

lifetime predictions if it is applied to a dataset that satisfies all model assumptions. The

extreme lifetime predictions that are obtained for real data are, therefore, most likely due

to a violation of one of the model assumptions. This conclusion is the very motivation

of our paper. We believe that the HB model’s fit problem stems from the fact that the

log-normal distribution (or the gamma distribution for the Pareto/NBD model) does not

accurately capture the true population distribution. The true distribution is likely to

be multi-modal, as the population contains various types of customers. The existence of

individuals with very short lifetimes leads to a thick right-hand tail of the log defection

rate distribution; and due to the symmetry of the normal distribution we also obtain

a thick left-hand tail. For the individuals in this part of the distribution, we would

erroneously conclude that their defection rate is virtually zero (leading to infinitely long

lifetime predictions). All in all, we need to capture the multimodality in the data to avoid

drawing wrong conclusions on the customer level.
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3.4 Mixture HB BTYD Model

Based on our earlier motivation, we propose to model customer heterogeneity in a way

that allows for latent classes where each class corresponds to a different log-normal hetero-

geneity distribution. We propose two different variants of the Mixture Hierarchical-Bayes

BTYD model. In the first variant (hereafter denoted as MHB model), a-priori segment

probabilities are independent of customer covariates. In the second (denoted as MHB-C

model), we allow covariates to influence the segment probabilities. In the mixture model

literature such covariates are called concomitant variables. In principle one would be

able to obtain better predictive performance with the MHB-C model that accommodates

concomitant variables.

3.4.1 MHB Model

To allow for a multi-modal heterogeneity distribution, we replace the multivariate normal

distribution over the log purchase and log defection rates by a mixture of K multivariate

normal distributions.9 One can also view this as a distribution that allows for K segments

in the population where there are also within segment differences. The mixture of normals

approach provides a great deal of flexibility. First, it may capture a distribution with mul-

tiple modes. Next, it could capture a distribution with fat tails if one of the components is

a normal component with a large variance. The mixture of normals approach has become

quite popular in marketing due to its flexibility and the potential interpretation of each

mixture component as representing a ‘segment’. Finally, the parameters in these models

are relatively easy to estimate (Rossi et al., 2005).

More formally, we write the heterogeneity distribution as

θi = Di∆ + ηi,

ηi ∼ N(βsi ,Γsi),

si ∼ MultinomialK(p),

where si indicates the segment to which customer i belongs. For each segment (or com-

ponent) we associate a mean vector and a variance-covariance matrix, namely βk and Γk,

k = 1, . . . , K. The vector p contains the K segment probabilities where their values sum

up to 1.

9Data examination shows us that there are generally two major segments in the customer base of
grocery e-tailers, namely frequent and incidental buyers. However in the model we present here, we do
not fix the number of latent components.
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The proposed model is visualized in Figure 3.2.10 The joint distribution of the observ-

able data and all latent variables and parameters can be decomposed as

π({(xi, tx,i), t∆,i, zi, θi, si}Ni=1,∆, {βk,Γk}Kk=1, p)

=
N∏
i=1

[π((xi, tx,i)|t∆,i, zi, θi) π(t∆,i|zi, θi) π(zi|θi) π(θi|∆, βsi ,Γsi) π(si|p)]×

π(∆)π(p)
K∏
k=1

[π(βk|Γk) π(Γk)] . (3.3)

The observables are xi, tx,i and Ti. The variables zi and t∆,i relate to the unobserved

defection process. zi is a latent binary indicator denoting whether customer i is active

(zi = 1) or inactive (zi = 0) at the end of the calibration period (Ti). The latent lifetime

is given by t∆,i. The set of values (xi, tx,i), (t∆,i, zi), θi, si are distributed independently

across individuals when conditioned on (∆, p, {βk,Γk}Kk=1).

As said, Di is the observable characteristics (covariate) row vector of an individual

and does not include an intercept. We follow the advice by Rossi et al. (2005, Page 144)

to mean-center all covariates, so that the mean of θ for the average customer is entirely

determined by the mixture component means (βk). Therefore E[θi|Di = D, p, {βk}Kk=1] =∑K
k=1 pkβk.

We choose the standard conditionally conjugate priors to complete the model specifi-

cation, that is,

vec(∆) = δ ∼ N(δ̄, Ā−1
δ ),

p ∼ Dirichlet(α),

βk|Γk ∼ N(β̄,Γk ⊗ Ā−1),

Γk ∼ IW(Γ̄, ν̄).

IW denotes the Inverse Wishart distribution. A discussion on setting the values of the

prior parameters is presented in Section 3.6.

Bayesian inference

The posterior distribution for all parameters and latent variables is not available in closed

form. We use MCMC sampling for inference on the parameters and the latent variables

10Figure 3.2 helps us to easily identify the direct dependency relationships between neighboring pa-
rameters. Note that the joint distribution of the observable data and all latent variables and parameters
in Equation (3.3) holds since (xi, tx,i, Ti), t∆,i, zi are independent of p,∆, βsi ,Γsi given θi.
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Figure 3.2: MHB model that specifies customer purchase and defection behavior, to-

gether with customer heterogeneity. Constant values are enclosed by rectangles. Each

variable in the big box is of dimension N , representing each customer. Each value in

the smaller box is of dimension K, representing each latent component. The value of

the indicator variable s ∈ {1, · · · , K} picks one out of K components with βk and Γk;

k = 1, . . . , K. The covariates, D, are assumed not to include an intercept. The intercept

is modeled through βk. The dashed lines represent deterministic relations.

for the MHB model. More specifically, we use a Metropolis within Gibbs sampler (see

Hastings (1970) and Geman and Geman (1984)). The sampler uses the latent variables

zi and t∆,i. We present the main steps of the sampler below, details of the sampling

procedure are given in Section 3.8.

The MCMC sampler for the MHB model is:

[0] Set initial values for θi, i = 1, . . . , N , and repeat the following.

[1a] Generate zi|xi, tx,i, Ti, θi according to the being active probability λi
λi+µie

(λi+µi)(Ti−tx,i)

(as given in Equation (3) in Schmittlein et al. (1987)), for i = 1, . . . , N .

[1b] Generate t∆,i|xi, tx,i, Ti, zi, θi using an exponential distribution with rate (µi + λi)

truncated to (tx,i, Ti) if zi = 0; and an exponential distribution with rate µi truncated

to (Ti,∞) if zi = 1 (see Equation (3.8)).

[2a] Calculate p̃ik|θi, Di,∆, βk,Γk, pk, the conditional posterior membership probabilities

of customer i for component k using Equation (3.10) in Section 3.8.
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[2b] Generate si|p̃i, the indicator variable for the segment to which the customer i belongs

by drawing from a multinomial distribution with parameters p̃i = [p̃i1, · · · , p̃iK ].

[3] Generate βk|θ,∆, s,Γk and Γk|θ,∆, s for each latent class k using a multivariate nor-

mal regression update (see Rossi et al. (2005, Page 34)). Note that π(βk,Γk|θ,∆, {si}Ni=1)

does not depend on rates θi for those customers that do not belong to the compo-

nent k. Let θ(k) be the matrix of behavioral parameters for those customers who

belong to segment k, that is, θ(k) = {θi}i:si=k. Then

π(βk,Γk|θ,∆, {s}Ni=1) = π(βk,Γk|θ(k),∆)

∝ π(θ(k),∆, βk,Γk)

= π(θ(k) −D(k)∆|βk,Γk)π(βk|Γk) π(Γk) (3.4)

[4] Generate ∆|θ, β,Γ, s, the regression coefficients over the whole population, using a

standard multivariate regression update; ∆ ∼ π(∆|θ, β,Γ, s). For this step, the data

should be pooled from K components (see Rossi et al. (2005, Page 148)). Details

are provided in Section 3.8.

[5] Draw p conditional on {si}Ni=1. This conditional distribution is a Dirichlet, that is,

to update on the membership probabilities of the components we use p|{si}Ni=1 ∼
Dir(α1 +

∑N
i=1 I[si = 1], . . . , αK +

∑N
i=1 I[si = K]), where I[A] denotes an indicator

function which equals one if condition A is true, and zero otherwise.

[6] Generate θi|tx,i, xi, Ti, zi, t∆,i, βsi ,Γsi with a Gaussian random-walk Metropolis Hast-

ings [MH] algorithm, for i = 1, . . . , N . The step size in the random-walk MH

algorithm is set by applying an adaptive MH method in the burn-in phase (Gilks

et al., 1996).

3.4.2 MHB-C Model with Concomitant Variables

In the previous section, the prior segment probability was equal for all customers. This

implies that without purchase histories we cannot distinguish the different types of cus-

tomers. In this section we extend the MHB model using concomitant variables such that

the prior segment probabilities depend on customer characteristics.

We replace the common vector p by an individual specific vector pi. To relate these

probabilities to customer characteristics we build on the multinomial probit [MNP] model.

As is common in the MNP model we introduce latent customer specific “utilities” for each
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segment. These utilities are denoted by uik, for i = 1, . . . , N and k = 1, . . . , K, and they

may depend on the concomitant variables Ci as

uik = Ciωk + εik, (3.5)

where εik ∼ N(0, 1) and Ci contains a constant next to L concomitant variables. Fi-

nally we set ωK to a vector of zeros (with length (L + 1)) for identification (Paap and

Franses, 2000). Given the utilities, the segment to which a customer belongs is completely

determined. The customer is assigned to the segment that has the highest utility, that is,

si = argmaxkuik. (3.6)

The MHB-C model is visualized in Figure 3.3. Every relationship in Figure 3.3 is de-

fined in terms of probability distributions (solid arrows) or in a deterministic way (dashed

arrows). Note that the probabilities of belonging to a segment depend on the distribution

of the utilities. This latter distribution is a function of the MNP model’s coefficients

ω1 . . . , ωK .

The joint distribution of the data and parameters now becomes,

π({(xi, tx,i), t∆,i, zi, θi, si, ui}Ni=1,∆, {βk,Γk}Kk=1, ω)

=
N∏
i=1

[π((xi, tx,i)|t∆,i, zi, θi)π(t∆,i|zi, θi) π(zi|θi) π(θi|∆, βsi ,Γsi) I[si = argmaxkuik] π(ui|ω)]

× π(∆)π(ω)
K∏
k=1

[π(βk|Γk) π(Γk)] , (3.7)

where ui = (ui1, . . . , uiK) and ω = (ω1, . . . , ωK). Both in Equation (3.3) and Equa-

tion (3.7), the dependence of densities on prior parameters has been suppressed.

Bayesian inference

We again use a Metropolis within Gibbs sampler to obtain the posterior conditional

densities for each of the parameters. Note that to satisfy the irreducibility requirement

of the Markov chain the sampler needs to skip the deterministic relationships between

parameters. Therefore, we do not sample the segment indicators si; these are determined

through the utilities uik as in Equation (3.6).

The resulting sampler is very similar to the one for the previous model. The only

difference is in the assignment of customers to different latent components. Therefore,
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Figure 3.3: MHB-C model with concomintant variables. Constant values are enclosed

by rectangles. Each variable in the big box is of dimension N , representing each cus-

tomer. Each data structure in the smaller boxes on the right hand side of the figure is of

dimension K, representing different latent components. The matrices of the inner box are

of dimension (N ×K). The dashed line represents a deterministic relation rather than a

probabilistic one.

only the second and the third steps of the Gibbs Sampler are different in this sampler.

In these steps we update the utility values for each customer and the component-specific

probit coefficients ω. The other steps of the sampler are identical to those given under

MHB model. The MCMC sampler of the MHB-C model becomes:

[0] Set initial values for θi, i = 1, . . . , N , and repeat the following.

[1a] Generate zi|tx,i, xi, Ti, θi.

[1b] Generate t∆,i|tx,i, xi, Ti, zi, θi.

[2a] Generate ui|Ci, ω,Di,∆, θi, β,Γ, the utility row vector of customer i for the latent

segments.

[2b] Update the segment indicators si|ui that assign customers to one of the K compo-

nents according to the component that has the highest utility value.
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[3] Generate ω|u, the latent component specific coefficients using a standard multivariate

normal regression update.

[4] Generate βk|θ,∆, s,Γk and Γk|θ,∆, s for each latent class k.

[5] Generate ∆|θ, β,Γ, s using a standard multivariate update after pooling data from K

components.

[6] Generate θi|tx,i, xi, Ti, zi, t∆,i, βk,Γk with a Gaussian random-walk MH algorithm.

The details of the sampling procedures for the nodes ω and u are presented in Section 3.9.

3.5 Model Testing on Generated Data

In order to evaluate the performance of the proposed BTYD models with heterogeneous

latent classes, we start by testing them on generated datasets. We generate data based

on some known parameter values and next see whether we can retrieve those values using

the models. This also provides a test to see if our implementation of the MCMC sampler

is done properly and converges fast. This approach is especially crucial as some events

are unobservable. In our case the segment allocation and the actual lifetime are not

observable in a real-life setting. Furthermore, we assess the effects of misspecification,

that is, using HB instead of MHB model.

We present the data generation process and some statistics on the generated dataset

in Section 3.5.1. Following that, we present the prediction performance of each model

under comparison (MHB, MHB-C and HB models). In Section 3.5.3, we give a robust-

ness analysis of the proposed models by testing all models’ predictive performance on a

generated data with a unimodal heterogeneity distribution.

3.5.1 Data Generation

Considering N = 1, 000 customers and K = 2 latent components, we generate a transac-

tion dataset for T = 200 days following three major steps. Details of the data generation,

including the exact parameter values, are given in Section 3.10.

1. Allocate customers to components (s∗i |ω∗):
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Fix the component specific regression coefficient matrix to its true value ω∗; generate

true utilities such as u∗ = C ω∗+ ε, where ε ∼ N(0, 1); and assign each customer to

the component with the the highest utility.11

2. Generate customer specific behavioral parameters θ∗i |β∗si ,Γ
∗
si

:

Fix the true hyper-parameter values β∗ and Γ∗ for each of the components; generate

true behavioral parameters for each customer by sampling from a MVN distribution

such as θ∗i ∼ π(θi|β∗k ,Γ∗k).

3. Generate customer lifetime (t∗∆|θ∗) and transaction data ((x, tx)|θ∗, t∗∆, T ):

Draw t∗∆,i ∼ π(t∆,i|θ∗i ) from an exponential distribution with the rate parameter of

θ∗µ,i. Given an observation period T and lifetime t∗∆,i, generate number of transac-

tions and the time of the last purchase based on Poisson purchase arrivals.12

The data generation is in line with Section 3.3, apart from the segmentation of cus-

tomers. We generate one covariate (D) from a standard uniform distribution. As we

mean-center all covariate data, it does not affect the mean values of the (component-

specific) hyper-parameters. We also generate a concomitant variable (C). In order to

keep things simple, for the first half of the data, the concomitant variable is set to 1 and

for the other half to −1. Note that randomness is introduced on customers’ assignment

to components by the utility generation in the first step of generating data.

Table 3.1 shows some descriptive statistics on the generated data. In this dataset

we can easily distinguish the two different components, namely Segment 1 with loyal

customers and Segment 2 with customers who quickly stop buying. The final two rows

show that the concomitant variable cannot perfectly determine the segment allocation.

Table 3.1: Descriptive statistics on the generated data with two components

All customers Segment 1 Segment 2
# of customers 1000 528 472
Avg. # of transaction (x) 126.79 238.94 1.34
Std. # of transaction (x) 215.36 247.38 0.80
Avg. last purchase time (tx) 94.03 171.82 7.01
Std. last purchase time (tx) 92.62 55.12 20.87
% concomitant (1) 50 68 29
% concomitant (-1) 50 32 71

11We fix ω∗, the ((L+ 1)×K) MNP probit coefficient matrix to [ 0.1 0
0.8 0 ] where L = 1 is the number of

concomitant variables.
12See the details of sampling process x, tx|θ∗, t∗∆,i, T in the 5th step given in Section 3.10.
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3.5.2 Model Evaluation

In this section we compare the predictive performance of the three models: the HB model

proposed by Abe (2009a), the MHB model, and the MHB-C model. We run all the models

on the generated data and compare the results on both population and individual levels.

For all the hierarchical Bayes models under comparison, the MCMC simulation has run

200, 000 iterations of which the last 40, 000 (with a thinning factor of 10) have been used

for posterior inference. Markov chain convergence was monitored using trace plots of

posterior draws.

Population level comparison

The MHB and MHB-C models can directly be compared to each other as they both specify

two segments. However, the HB model cannot directly be compared with the mixture

models on the population level due to a smaller number of parameters. We report the true

values of segment specific intercept vectors (β∗k) as well as the posterior mean predictions

from the MHB, MHB-C and HB models in Table 3.2. The values in parentheses give

the posterior standard deviation for each parameter. The second and the third rows of

Table 3.2 presents the posterior means and standard deviations of the segment specific

intercepts (βk) from the MHB and MHB-C models respectively. These mean βk values

give the population level means of the behavioral parameters (θ vector) for each segment.

Based on these two rows, we conclude that both the MHB and MHB-C models perform

well in recovering the true parameter values presented in the first row. As expected, the

mean estimates for the HB model (presented in the last row of the same table) are in

between the mixture model’s segment specific estimates.

The true values of segment specific variance-covariance matrix Γ∗k, and the posterior

mean of its predictions from the MHB, MHB-C and HB models are presented in Table 3.3.

Again as the HB model accommodates only one component, there is only one variance-

covariance matrix prediction from this model. The most striking result from these tables

is the huge difference in the variance of the log defection rate across the models (see the

Γ2,2 values). This already hints at a potential cause of extreme lifetime predictions. We

will further discuss this in the next section.

Individual level comparison

We next compare the model configurations based on their individual level predictions.

We focus on the predictions of the purchase and defection rates as well as the predicted

lifetime. We measure the predictive performance using the mean absolute error [MAE]
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Table 3.2: True (segment specific) intercept vectors (βk) and their posterior means from

MHB, MHB-C and HB models on generated data. As the HB model accommodates one

mode, there is only one β prediction from this model. Note that the first element of β

is the mean of log purchase rates (θλ), and the second is the mean of log defection rates

(θµ).

β1 β2

TRUE 0 −6.908 −4.605 −2.996

MHB
−0.033 −6.906 −4.585 −2.972
(0.039) (0.169) (0.232) (0.230)

MHB-C
−0.016 −6.878 −4.687 −2.976
(0.036) (0.147) (0.192) (0.172)

HB −1.357 −4.248 - -
(0.095) (0.203)

Table 3.3: True (segment specific) variance-covariance matrices (Γk) and their posterior

mean from MHB, MHB-C and HB models on generated data. As HB model accommodates

one mode, there is only one Γ estimates from this model.

Γ1 Γ2

TRUE

(
0.640 0

0 0.640

) (
0.640 0

0 0.640

)
MHB

(
0.670 0.044
0.044 1.250

) (
0.837 0.113
0.113 0.748

)
MHB-C

(
0.677 0.028
0.028 1.190

) (
0.864 0.057
0.057 0.787

)
HB

(
2.76 −5.28
−5.28 19.04

)
-
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and the correlation between the predicted and the true values. Table 3.4 summarizes the

results.

Table 3.4: Comparison of the models on individual metrics (MAE and correlation be-

tween true values and predicted means) on generated data

HB MHB MHB-C

Purchase rate (λ)
MAE 0.086 0.045 0.044
CORR 0.996 0.997 0.997

Defection rate (µ)
MAE 108,658 0.024 0.023
CORR 0.035 0.547 0.549

Lifetime
MAE 77,381,052 902 852
CORR 0.026 0.523 0.526

Note that 99.9% of the customers are assigned to their true com-
ponents for both MHB models.

Table 3.4 shows that all models perform relatively well on predicting the purchase rate

λ. Although the MAE for the HB model is about twice as large as that for the MHB

and MHB-C models. When it comes to predicting the defection rate µ and the lifetime,

there are enormous differences between the HB and the MHB models. Both MHB and

MHB-C models predict these measures relatively well, especially considering the fact that

we cannot observe the defection. The performance of the HB model clearly demonstrates

the earlier mentioned phenomenon of extreme predictions. The predictive performance on

the lifetime is illustrated in Figure 3.4a where it is very easy to observe the extremely long

lifetime predictions for the HB model. Figure 3.4b gives a small fragment of Figure 3.4a

where the axes are limited to the 0 to 300 range. The lifetime predictions based on the

HB model hardly show a relation with the true values.

The conclusion from these experiments is quite clear. The MHB and MHB-C models

perform well on data representing multiple customer segments. Assuming a unimodal

heterogeneity distribution as is done in the HB model can lead to very poor predictive

performance on defection and lifetime. In fact the performance is so poor that we observe

very extreme lifetime predictions, and hardly any relation with the actual lifetime. This

confirms our reasoning that such extreme predictions in earlier applications of BTYD

models are due to multimodality. We will further investigate this on real data in Sec-

tion 3.6.
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(a) Scatter plot showing extreme lifetime predictions from HB model. Note the difference in scale on the axes.

(b) A small fragment of the upper scatter plot - axes limited to 300.

Figure 3.4: Scatter plots showing the difference in customer lifetime predictions between

HB and MHB models on generated data.
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3.5.3 Robustness Analysis on MHB and MHB-C Models -

Testing on unimodal data

We also study the performance of the MHB and MHB-C models relative to the HB model

in case the customer base has a unimodal heterogeneity distribution. For this purpose,

we have generated new data.13 Table 3.5 shows some statistics on this data.

Table 3.5: Descriptive statistics on the (uni-modal) generated data

# of customers 1000
Avg. # of purchases 5.613
Std. # of purchases 8.965
# of customers with no repeat purchase 367
Avg. last purchase time (tx) 26.085
Max. last purchase time (tx) 153.92
Observation time (T ) 154

Tables 3.6 and 3.7 present the posterior means of the population level parameters

from the three models together with the true parameter values. Based on these tables, we

conclude that if the proposed MHB and MHB-C models are applied to a dataset where the

heterogeneity distribution is unimodal, the estimates are not deteriorated. All customers

are simply assigned to one component, leaving the other empty. As a result the predictive

performance of the MHB models is only slightly worse than that of the HB model, see

Table 3.8. This loss in predictive performance can entirely be attributed to the fact that

MHB and MHB-C models contain more parameters.

Table 3.6: True values and posterior means of β using MHB, MHB-C and the HB

models. As the second component from MHB models becomes empty, β2 values are not

reported.

β

TRUE −2.526 −3.219

MHB (β1)
−2.420 −3.357
(0.064) (0.076)

MHB-C (β1)
−2.483 −3.293
(0.064) (0.067)

HB −1.357 −4.248
(0.106) (0.115)

13We fix βλ = log(0.08) and βµ = log(0.04). The variance covariance matrix Γ is chosen to be equal to
the identity matrix.
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Table 3.7: True values and posterior means of Γ using MHB, MHB-C and HB models.

As the second component from MHB models becomes empty, Γ2 values are not reported.

Γ

TRUE

(
1 0
0 1

)
MHB (Γ1)

(
1.040 0.052
0.052 0.991

)
MHB-C (Γ1)

(
0.996 −0.017
−0.017 0.990

)
HB

(
1.095 −0.043
−0.043 0.947

)

Table 3.8: Comparison of models on individual metrics (MAE and correlation between

true values and predicted means) on generated data

HB MHB* MHB-C**

Purchase rate (λ)
MAE 0.061 0.073 0.062
CORR 0.849 0.798 0.848

Defection rate (µ)
MAE 0.040 0.040 0.042
CORR 0.376 0.372 0.343

Lifetime
MAE 17.165 17.293 17.448
CORR 0.783 0.782 0.769

* 99.7% of the customers is assigned to Component 1.
** 100% of the customers is assigned to Component 1.
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3.6 Empirical Study

In this section, we test our MHB-C model on real-life data.14 We first present the explana-

tory contribution of the MHB-C model by revealing the segments in the customer base

as well as by showing how these segments differ from each other. Next, we compare the

predictive performance of the MHB-C model against benchmark models. In this section,

we consider both the Pareto/NBD model and the HB model. To provide a fair judgment

on the performance of the models in consideration, we focus on out-of-sample predictive

power.

The dataset we consider contains daily transaction data of an online grocery retailer

(called OG hereafter) in a Western European country. We base our analysis on a random

set of 1460 customers who started buying from the company in January 2009. We ignore

all Sundays as OG does not provide delivery on that day. The data contains the initial

and the repeat purchase information of each customer over a period of 309 days. To

estimate the model parameters, we use the transaction data of all customers over the first

154 days, leaving a 155 day holdout period for model validation. The transaction data

contains information on the number of shopping items, the Euro values of the shopping

basket and the delivery fee, the number of discounted items in the basket and also the

percentage discount rate of each basket. Table 3.9 presents some descriptive statistics.

According to this table an average customer purchases 11 times in the calibration period.

However, this number drops to 9 in the validation period mostly because of customers who

have left the company by then. On average, the first transaction of customers contains a

basket made up of 64 items of which 6 come with a discount. The average initial basket

is worth 126 Euros after discount and the delivery fee is 7 Euros.

We use the number of items in the basket together with the basket value and the

delivery fee from the initial purchase as explanatory factors in our MHB-C model. These

variables are used as covariate and as concomitant variables. We standardize the covariate

vector so that the βk vector represents the average values of the log of the purchase and

defection rate for the kth component. Moreover, we applied a log transformation on the

number of items in the initial shopping basket as this variable is highly skewed.15

There are two points that one needs to pay attention when applying the MHB model.

The first concerns the number of segments, i.e. latent components, in the customer base.

14We do not include the MHB model in this section for two reasons. First of all, this model is dominated
by the MHB-C model due to lack of ability to explain how the segments differ from each other. Second,
in order to provide a concise overview of the predictive results from the models in comparison, we include
only the MHB-C model together with the benchmark Pareto/NBD and HB models.

15Our computational experiments revealed that a highly skewed covariate might cause very unstable
estimations.
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Table 3.9: Descriptive statistics for the OG dataset

# of customers 1460
Available time frame 309 days
Time split (in-sample/out-of-sample) 154/155
Zero repeaters in estimation period (%) 174 (12%)
Zero repeaters in holdout period (%) 295 (20%)
Zero repeaters in estimation and holdout periods (%) 135 (9%)
# of purchases in estimation period (all) 16,252
# of purchases in holdout period 12,827
Avg. # purchases per customer in estimation period (std.) 11.13 (10.76)
Avg. # purchases per customer in holdout period (std.) 8.79 (10.78)
Avg. observation time T (std.) 143.76 (7.39)
Avg. recency rate ((T − tx)/T ) 0.27
Avg. # of items in the first purchase (std.) 64.34 (40.67)
Avg. # of discounted items in the first purchase (std.) 5.93 (8.14)
Avg. basket value after discount -in e- (std.) 125.73 (71.51)
Avg. discount rate of the basket (%) 4.08%
Avg. delivery fee of the first purchase -in e- (std.) 6.97 (1.37)
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To set the number of mixture components, we run the MHB-C model with different num-

bers of latent components and choose the optimum one based on the number of customers

assigned to each component (Frühwirth-Schnatter, 2006). If additional segments become

too small, we stop adding segments. We do not use likelihood-based measures as obtain-

ing the marginal likelihood is computationally very challenging, even in the basic BTYD

model. As an alternative, one may choose the number of segments based on out-of-sample

predictive performance. However, in our case we would then have to split our data in

three parts, to leave one part for a fair comparison against the alternative HB model.

Although there is a growing literature on Bayesian analysis of mixtures when the number

of components are unknown (Richardson and Green (1997), Stephens (2000), Hurn et al.

(2003), Dellaportas and Papageorgiou (2006), Nobile and Fearnside (2007)), we leave this

issue for further research.

Secondly, in order to apply the MHB model, we need to set the prior parameters. In

many Bayesian applications, the prior is chosen to be uninformative by setting a very large

variance so that the prior will not affect the posterior. However, for the MHB-C model,

setting a very diffuse prior on the Γk has a major impact on the posterior distribution of

behavioral parameters as well as on the group membership parameters. We, therefore, set

ν0 = J + 30 and Γ0 = ν0 I, where J = 2 represents the number of behavioral parameters

for an individual customer (see Rossi et al. (2005, Page 150)). We have carried out a

simulation study where we set different prior degrees of freedom. The results confirm

that setting a too diffuse prior leads to unstable estimates. Setting the prior degrees of

freedom to J + 30 seems to be informative enough to obtain stable results without the

prior influencing the posterior results too much.

To obtain posterior results, we apply our Metropolis within Gibbs sampler as presented

in Section 3.4.2. The MCMC steps are repeated for 400, 000 iterations of which the last

40, 000 were used to infer the posterior distribution of parameters. Convergence was

monitored visually and checked with the Geweke test (Geweke et al. 1991). For each of

the hyper-parameters, the Geweke convergence diagnostic concludes that the two non-

overlapping parts of the Markov chain16 are from the same posterior distribution.

For our dataset from OG, we end up with two segments, with a customer share of 41%

and 59%. When we increase the number of components to three, one of the component

covers only 4 customers, while the others contain the rest in a balanced share. Similarly

for the four-component case, the two additional components together cover only 1% of

the whole customer base. A detailed discussion of the results from MHB-C model with

16We chose the two non-overlapping parts of the Markov chain as the first 0.1 proportion of the chain
just after the burn-in iterations and the last 0.5 proportion of the chain.
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three or four segments is presented in Section 3.11. One noteworthy conclusion is that the

MHB-C model with two latent components gives better out-of-sample predictions than

the ones with three or four latent components on this dataset. In general one may also

expect to find two major segments: the frequent buyers and those who try the service

only a couple of times and quit very early.

We first investigate the differences between the two identified segments. To this end

we first allocate each individual to one of the segments based on the posterior segment

membership probabilities. Next we take a look at descriptive statistics of the resulting

two groups. Table 3.10 shows these statistics. The first component (41%) clearly contains

customers who buy more frequently (on average 19.3 times) and more recently from the

company. The difference between the end of the observation period and the last purchase

time is evidently much higher for the second component (59.93 vs. 7.30 days as ‘average

recency’ as Table 3.10 shows). Conversely, the customers in the second component ordered

only a couple of times (on average 3.75 times) and these orders took place a long time

ago. Next to the differences between segments on shopping frequency (x) and recency

(T − tx), we gain further insight on the additional variables. We see clear differences

between segments on characteristics of the first purchase, that is, the average number

of shopping items, average basket value, average delivery fee and the average number

of discounted items. It seems that the frequent buyers on average have smaller initial

shopping baskets both in value and in number of items, and pay higher amounts for the

delivery of their first purchase. We can, therefore, conclude that these customers are less

price sensitive as they do not mind to pay a high delivery fee. The lower average discount

rate on their baskets reveals the same fact as well. On the other hand, there is a major

group of customers who uses the service provided by OG to buy once in a while in bigger

quantities. These customers tend to pay less in delivery fees and they seek more discount.

On this particular dataset, we clearly see two distinct segments in the customer base

with different willingness to pay on home delivered groceries. All in all, besides providing

predictions on purchase frequency and customer lifetime like the other BTYD models

do, our proposed MHB-C model further provides an inherent segmentation where we can

distinguish segments also on additional variables. Below, we elaborate on the difference

between segments by considering the posterior results for the regression coefficients (ω)

appearing in the segment membership MNP model.

The MHB-C model allows us to make inference on the differences across the segments

based on the concomitant variables. We have included three concomitant (and covariate)

variables, namely the log number of items, basket value and delivery fee from the initial

purchases of customers. Table 3.11 shows the posterior mean and 95% highest posterior
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Table 3.10: Descriptive statistics on the two segments obtained from MHB-C model

Segment 1 Segment 2
# of customers 599 861
% of customers 41.03 58.97
Avg. observation time T 147.33 141.27
Avg. last purchase time tx 140.04 81.34
Avg. recency (T − tx) 7.30 59.93
Avg. # of purchases x 19.31 3.75
Avg. # of items in the basket 59.75 67.54
Avg. basket value (in e) 106.06 139.41
Avg. delivery fee (in e) 7.19 6.81
Avg. # of discounted items 5.03 6.56
Avg. discount rate of basket (%) 0.03 0.05
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density region (HPDR) for the coefficients ω in the MNP choice model. Based on the

highest posterior density region from the posterior draws on ω, we conclude that com-

ponents substantially differ from each other on all of the concomitant variables included.

Table 3.11 confirms the conclusions from Table 3.10 such as that Segment 1 is less likely

than Segment 2 (at the average value of the concomitant variables) through the negative

intercept (−0.435), and the customers from the first component buy in smaller amounts

and pay higher fees.

Table 3.11: Posterior mean and 95% highest posterior density region on ω

Mean ω1 HPDR
Intercept −0.435* −0.812 −0.129
Log # of items 1.002* 0.285 1.621
Basket value −0.014* −0.021 −0.007
Delivery fee 0.190* 0.067 0.346

* Indicates that 0 is not contained in the 95% HPDR.

Recall that we restrict ω2 (referring the second seg-
ment) to zeros vector. Therefore, the coefficients in
this part of the model are relative to Segment 2.

Table 3.12 and Table 3.13 present the posterior means of the segment specific means

and variances of the log purchase and log defection rates. These tables again support our

previous findings. The posterior mean on log purchase rate is higher for the first compo-

nent than that of the second component (−2.221 vs. 3.811) which says that customers

in the first component buy more frequently. The result on the log defection rate is also

intuitive as the customers in Segment 1 are more loyal and have longer lifetimes.

Table 3.12: Segment-specific posterior mean (and standard deviation) of the log purchase

and log defection rates for the two-component MHB-C model

β
MHB Component 1 −2.221 −10.419

(0.055) (0.917)

MHB Component 2 −3.811 −7.272
(0.093) (0.308)

We next consider the shape of the heterogeneity distribution. We visualize the poste-

rior distribution with the plots in Figure 3.5. These plots are created by using the segment

sizes, the mean values of βk and Γk and the “gmdistribution” function in MATLAB.

The multimodality on the heterogeneity distribution is very clear from these figures.
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Table 3.13: Posterior mean variance-covariance within segments (Γk) for the two-

component MHB-C model

Γ1 Γ2

MHB

(
0.299 0.017
0.017 1.275

) (
1.004 0.029
0.029 1.260

)

(a) Bivariate Gaussian mixture heterogeneity
distribution

(b) From θλ perspective

(c) From θµ perspective (d) Contour plot of the heterogeneity distribu-
tion

Figure 3.5: The shape of the posterior heterogeneity distribution (bivariate Gaussian

mixture distribution)
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It is also interesting to compare the heterogeneity distribution from the MHB-C model

against the one from the HB model. We, therefore, present the posterior means of the

hyper-parameters β and Γ in Table 3.14 for the HB model17 and show the shape of the

heterogeneity distribution over the whole population in Figure 3.6. As the HB model tries

to fit a unimodal distribution, we see higher variance on the heterogeneity distribution,

especially on the log defection parameter which ultimately causes extreme lifetime pre-

dictions. The heterogeneity distribution of the HB model masks the bi-modal structure

over the behavioral parameters’ distribution.

Table 3.14: Posterior mean of the intercept vector β and the variance-covariance matrix

Γ for the HB model

HB

β −3.062 −8.083
(0.036) (0.929)

Γ

(
1.016 −1.339
−1.339 6.369

)

(a) Bivariate Gaussian heterogeneity distribu-
tion

(b) From θλ perspective

(c) From θµ perspective (d) Contour plot of the heterogeneity distribu-
tion

Figure 3.6: The shape of the posterior heterogeneity distribution (bivariate Gaussian

distribution) for OG

17All the MCMC settings are the same for the HB and MHB-C models.
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Next we closely look at the correlation between the log defection and log purchase

rates within each segment.18 The HB model has been shown to outperform earlier BTYD

models in the case where there is a correlation between the log purchase and log defection

rates (see Chapter 2). Table 3.15 shows that for the HB model we obtain a significant

correlation (−0.596). This fact can also easily be observed on Figure 3.6d. For the MHB-

C model, we do not find evidence for correlation between behavioral parameters within

each segment even though one can observe such correlation on the overall customer base

(see Figure 3.5d). Apparently the correlation has now been taken up in the segment

structure.

Table 3.15: Posterior mean and 95% highest posterior density region of correlations

between log purchase and log defection rates

ρθλθµ
Mean 95% HPDR

HB −0.596* −0.789 −0.364
MHB-C Segment 1 −0.013 −0.303 0.285
MHB-C Segment 2 0.001 −0.172 0.176

* Indicates that 0 is not contained in the 95% HPDR.

Finally, we move on to the predictive performance. We also want to compare the per-

formance against the Pareto/NBD model. Pareto/NBD model parameters are estimated

differently than for the MHB-C and HB models. The hyper-parameters of this model are

estimated by Maximum Likelihood Estimation [MLE]. In order to estimate the behavioral

rates for every individual, we use a Metropolis-Hastings within Gibbs sampler as discussed

in Chapter 2. To provide a fair comparison, we do not incorporate any covariates for the

HB and MHB-C models as the Pareto/NBD model cannot accommodate such additional

information. Table 3.16 presents statistics on the out-of-sample predictions of the number

of transaction as well as lifetime predictions for the MHB-C, HB and Pareto/NBD models.

For the predicted number of transactions we can measure the predictive performance. We

use MSE, MAE and the correlation between predicted means and observed values. For

the predicted lifetime value, we cannot evaluate the performance as the actual lifetime

cannot be observed. Instead, we present the mean and median prediction in days.

Table 3.16 shows that the hierarchical Bayes models (HB and MHB-C) outperform

the standard Pareto/NBD model. This finding matches the results in earlier papers

and the fact that we found a significant correlation between behavioral parameters (see

18As emphasized by Abe (2009a), it makes most sense to look at the estimated correlations without any
covariates for the HB and MHB models. Therefore, Table 3.15 reports the posterior mean correlations
between the behavioral parameters for a model without covariates.
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Table 3.15). The HB and MHB-C models perform very similarly on the out-of sample

number of transaction predictions. However, the HB model tends to perform slightly

better in predicting the number of purchases on all three measures.

Table 3.16: Out-of-sample predictions from the Pareto/NBD, HB and MHB-C models

MODELS
# of purchases lifetime

CORR MSE MAE Mean Median
MHB-C 0.922 19.172 2.866 7.23E+3 2.15E+3

HB 0.924 18.581 2.774 8.17E+45 4.80E+3
Pareto/NBD 0.921 21.556 3.005 5.30E+130 4.11E+9

When it comes to lifetime metric, there is a clear difference among the models’ predic-

tions. The Pareto/NBD model19 and the HB model both produce extremely long mean

lifetime predictions. Whereas the mean lifetime prediction from the MHB-C model is

around 20 years. We also check the median posterior results on lifetime predictions as

they result in less extreme values. The median lifetime for the Pareto/NBD model is still

extremely long. For the HB model it is 16 years, meanwhile the results from the MHB-C

model is 7 years. Based on these results we can say that the lifetime predictions obtained

from the MHB model can be used as a customer loyalty index for managerial decision

making. This is in sharp contrast to the results from the other models.

3.7 Conclusions

The contribution of this chapter is twofold. First, we propose a new BTYD model that

addresses the extreme lifetime prediction problem of current BTYD models. If current

BTYD models are applied on datasets where the true heterogeneity distribution is multi-

modal, one is very likely to obtain extreme lifetime predictions. The main reason for

this is that the assumed heterogeneity distribution very poorly fits reality. As a result

the variance in the distribution is inflated and extreme lifetime predictions are generated.

In other words, if there are several segments in the customer base, the standard BTYD

models should not be used. We have substantiated this claim through a simulation ex-

periment as well as through a real-life application. Using a mixture of normals as the

heterogeneity distribution yields better predictive results on both lifetime and number of

19The hyper-parameter estimations of the Pareto/NBD model on defection rate are s = 0.04 and
β = 38.24 (shape and scale parameters of the gamma heterogeneity distribution). The estimated average
defection rate for the Pareto/NBD model is given by s/β = 0.001. As the shape parameter s is less than
1, analytically the expected lifetime value of a random customer from the cohort diverges to infinity.
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transactions compared to two major benchmark models, namely the Pareto/NBD model

and the HB model.

Second, our MHB-C model increases the descriptive power of BTYD models. While

the existing literature on these models has focused primarily on prediction accuracy, this

study provides detailed customer base level insights within a segmentation framework.

We endorse the claim by Cooil et al. (2008) that segmentation through latent classes is

an important method not only for predictive but also for descriptive studies.

Especially our second contribution may be very relevant in practice. If firms are able to

predict the segment to which a customer belongs, they can allocate their limited marketing

resources in a more efficient way. Based on the predicted segment membership, the

customer can be assigned a particular treatment. In other words, effective segmentation

allows a company to determine which customers they should try to serve and how to

best position their products and services for each segment. Our model also provides

information to managers on customers without prior purchase history. For instance, if

a transaction from a new customer to OG contains small basket size and if this new

customer pays relatively high delivery fee, it is more likely that she will continue buying

from OG than another new customer who orders in a bigger quantity and pays less

in delivery fee. We believe that our MHB-C model provides a solid methodology to

empirically investigate what kind of customer characteristics relate to the lifetime or

shopping frequency of customers.

As a future extension, the MHB-C model can be further developed to endogenize

the number of segments. The current version of the model does not treat the number

of latent components as a model parameter. However, there is a growing literature on

finding the number of latent components within the parameter estimation process. The

reversible jump Markov Chain Monte Carlo (RJMCMC) method may be useful here,

see Richardson and Green (1997); Stephens (2000); Nobile and Fearnside (2007) and

Dellaportas and Papageorgiou (2006). The model-specific set-up of this method, however,

requires further investigation as incorporating RJMCMC in the proposed complex model

is not straightforward. Alternatively one may build on the Dirichlet Process Prior as in

Rasmussen (1999), Ishwaran and James (2002) and McAuliffe et al. (2006).

We also advocate further testing of this model on other datasets. The lifetime esti-

mates resulting from BTYD models have not been used a lot in the past. The main reason

for this is the poor performance of those estimates. We believe that this situation has

been improved with our proposed model. We, therefore, hope to see more applications of

these models to predict customer lifetime and to calculate CLV.
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3.8 Appendix: MCMC Sampling steps for the MHB

model

1. Nodes z and t∆.

In this subsection the focus is on data and parameters of a single customer. We

suppress in our notation the conditioning on Ti which is assumed throughout the

subsection. In our MCMC sampler, we draw t∆,i and zi according to the following

π(t∆,i, zi|xi, tx,i, λi, µi, $) = π(t∆,i|zi, xi, tx,i, λi, µi)π(zi|xi, tx,i, λi, µi)

= π(t∆,i|zi, tx,i, λi, µi)π(zi|tx,i, λi, µi)

where $ signals parameters other than written explicitly. The right hand side shows

that the conditional probability does not depend on the $ parameters. t∆,i is the

defection time. However, we will derive the conditional distribution of t∆,i, zi us-

ing π(t∆,i, zi|xi, tx,i, λi, µi, $) = π(t∆,i|xi, tx,i, λi, µi)π(zi|t∆,i, xi, tx,i, λi, µi). For the

distribution of the time of defection, t∆,i, of a customer conditioned on the data

(xi, tx,i) and parameters (λi, µi) of that customer, we have

π(t∆,i|xi, tx,i, λi, µi) ∝ π(t∆,i, xi, tx,i|λi, µi) = π(xi, tx,i|t∆,i, λi, µi) π(t∆,i|λi, µi)

and

π(xi, tx,i|t∆,i, λi, µi) = π(xi|tx,i, t∆,i, λi, µi) π(tx,i|t∆,i, λi, µi) ∝ π(tx,i|t∆,i, λi, µi),

where π(xi|tx,i, t∆,i, λi, µi) is a constant as far as dependence on t∆,i is concerned. So,

π(t∆,i|xi, tx,i, λi, µi) ∝ π(tx,i|t∆,i, λi, µi) π(t∆,i|λi, µi) ∝ I[tx,i,∞)(t∆,i) e
−λi(t∆,i∧Ti) e−µit∆,i

and

π(t∆,i|xi, tx,i, λi, µi) =
I[tx,i,∞)(t∆,i) e

−λi(t∆,i∧Ti) e−µit∆,i

C(xi, tx,i, λi, µi)
(3.8)

with the constant C(xi, tx,i, λi, µi) determined as

C(xi, tx,i, λi, µi) =

∫ ∞
tx,i

e−λi(t∆,i∧Ti) e−µit∆,i dt∆,i =
e−(λi+µi)tx,i − e−(λi+µi)Ti

λi + µi
+
e−(λi+µi)Ti

µi
.

Once we have the conditional distribution of t∆,i we can easily find the (discrete)

distribution of the binary variable zi indicating whether the customer is active at

Ti (corresponding to zi = 1) or not (corresponding to zi = 0). The value of zi is
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determined as zi = I[Ti,∞)(t∆,i). Unconditional on t∆,i, we have

Prob(zi = 1|xi, tx,i, λi, µi) =

∫∞
Ti
e−λiTi e−µit∆,i dt∆,i

C(xi, txi,i, λi, µi)
=

e−(λi+µi)T

µi

e−(λi+µi)tx,i−e−(λi+µi)Ti

λi+µi
+ e−(λi+µi)Ti

µi

=
1

µi
λi+µi

(
e(λi+µi)(Ti−txi,i) − 1

)
+ 1

. (3.9)

See Abe (2009a) and Schmittlein et al. (1987) for Equation (3.9). The distribution

π(t∆,i|zi, tx,i, λi, µi) is now the distribution given in Equation (3.8) truncated to the

interval (tx,i, Ti) if zi = 0, and to the interval (Ti,∞) if zi = 1.

2. Node s.

Draw indicator variables for latent class membership, for each customer i;

si ∼ π(si|θi,∆, βsi ,Γsi , pk) ∝ π(θi −Di∆|βk,Γk) pk. This is done in two steps:

(a) Calculate the conditional membership probabilities for each customer and each

component as

p̃ik =
pk ϕ(θi −Di∆|βk,Γk)∑K
`=1 p` ϕ(θi −Di∆|β`,Γ`)

, (3.10)

where ϕ(·) is the multivariate normal density.

(b) Draw the indicator variables of customer i from the multinomial distribu-

tion with the parameters of membership probabilities to each groups: si ∼
MultinomialK(p̃i) where p̃i = [p̃i1, . . . , p̃iK ].

3. Nodes β and Γ.

Draw hyper-parameters for each latent class k; (βk,Γk) ∼ π(βk,Γk|θ,∆, s). Note

that the value of the quantity π(βk,Γk|θ,∆, s) does not depend on rates θ for those

customers that do not belong to the class indicated by s. Let θ(k) be the rates for

those customers for which the class indicator variable has value k: θ(k) = {θi}i:si=k.
Then, according to Equation (3.4) on Page 72,

π(βk,Γk|θ,∆, s) ∝ π(θ(k) −D(k)∆|βk,Γk) π(βk|Γk)π(Γk).

This comes down to the linear regression update:

(a) Node β.
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The conditionally conjugate prior for the intercept (or mean) of each class is

given as

βk|Γk ∼ N(β̄, Γ̄⊗ Ā−1)

where β̄ stands for the location parameter, and Ā stands for the shape param-

eter determining the tightness of the prior.

The posterior density for βk is sampled from a normal distribution with a mean

β̃k where β̃k = (ι′ι + Ā)−1(ι′(θ(k) −D(k)∆) + Āβ̄ and a variance of Γk ⊗ (ι′ι +

Ā)−1. ι is a vector of ones with the size of the number of customers in the kth

component.

(b) Node Γ.

The conjugate prior on the covariance structure of each latent class is

Γk ∼ IW(Γ̄, ν̄),

where Γ̄ gives the location parameter, ν̄ gives the degrees of freedom.

The posterior density for Γk is sampled from the inverse Wishart distribution

with the scale matrix of Γ̄k + ((θ(k)−D(k)∆)− ιβ̃)′((θ(k)−D(k)∆)− ιβ̃) + (β̃−
β̄)′Ā(β̃ − β̄) and the degrees of freedom ν̄ + ι′ι.

4. Node ∆.

The regression coefficient matrix (without an intercept) over the customer base has

the following conjugate prior

vec(∆) = δ ∼ N(δ̄, Ā−1
δ ) .

The posterior density for vec(∆) is again a normal distribution with mean (X ′X +

Āδ)
−1(X ′y + Āδ δ̄) and variance ((X ′X) + Āδ)

−1 where

X ′X =
∑
k

Γ−1
k ⊗D

′(k)
D(k)

X ′y = vec

(∑
k

D′
(k)

(θ(k) − ιβk)Γ′−1
k

)

Details of ∆ sampling:
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As this model does not distinguish the slope among different components, the re-

gression coefficients are drawn over the whole population; ∆ ∼ π(∆|θ, β,Γ, s). In

these expressions we consider data for all customers.

At this stage we use the mean β and variance-covariance matrix Γ of each compo-

nent, parameter values θ for each customer. Besides, we have the information on

covariates D and the prior distribution on regression coefficients δ = vec(∆) which

is given as N(δ̄, Ā−1
δ ).

We create a linear regression model that covers customer data in all segments.

In order to be able to pool data from K components, we collect the multivariate

regression models across the components. To do so, we standardize all equations.

• Customer data should be shifted by the intercept of the component that she

belongs.

• For component k, we have

θ(k) − ιβk = D(k)∆ + ε(k)

vec(θ(k) − ιβk) = vec(D(k)∆) + vec(ε(k)),

given that vec(ε(k)) ∼ N(0,Γk ⊗ I) and using the property of vec(ABC) =

(C ′ ⊗ A))vec(B), we obtain

vec(θ(k) − ιβk) = (I ⊗D(k))vec(∆) + vec(ε(k)) (3.11)

Next we standardize the error for the MVR model of each component.

(M ′
k
−1 ⊗ I)vec(θ(k) − ιβk) = (M ′

k
−1 ⊗ I)(I ⊗D(k))vec(∆) + Uk

(M ′
k
−1 ⊗ I)vec(θ(k) − ιβk) = (M ′

k
−1 ⊗D(k))vec(∆) + Uk, (3.12)

where M ′
kMk = Γk and Uk represents errors with a unit covariance structure.

• In Equation (3.12), if we write the expressions as yk = (M ′
k
−1⊗I)vec(θ(k)−ιβk),

Xk = (M ′
k
−1 ⊗ D(k)), δ = vec(∆), and then we have the regression model

yk = Xkδ + Uk. After stacking all the regression models from the mixture

components, we deal with a standard normal regression update, where errors

are independent and of unit size. The vectors yk are stacked into y and matrices

Xk are stacked into X. ∆ can therefore be sampled from a normal distribution
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with mean (X ′X + Āδ)
−1(X ′y+ Āδ δ̄) and variance ((X ′X) + Āδ)

−1. Note that

the matrices Mk are not explicitly used in this sampling process.

The moments mentioned can be calculated efficiently as follows:

X ′X =
∑
k

Γk
−1 ⊗D′(k)

D(k)

X ′y = vec

(∑
k

D′
(k)

(θ(k) − ιβk)Γ′−1
k

)

5. Node p.

Draw p ∼ π(p|s). Dirichlet update: υ ∼ Dir(ᾱ + #). Here #k = |{i|si = k}|. We

set ᾱ as 1.

6. Node θ.

Draw, for each customer i, a new value for θi ∼ π(θi|xi, tx,i, yi, zi,∆, βk,Γk, si). Note

that

π(θi|xi, tx,i, yi, zi,∆, βk,Γk, si) ∝ π(xi, tx,i, yi, zi, θi∆, βk,Γk, si)

and this is proportional to π(xi, tx,i, yi, zi|θi)π(θi|βk + Di∆,Γk). Sampling of θi

requires the Metropolis Hastings algorithm. We use a Gaussian random walk al-

gorithm for generating candidate values. The step size in the random-walk MH

algorithm is set by applying an adaptive MH method in the burn-in phase (Gilks

et al., 1996).

3.9 Appendix: MCMC Sampling steps for the MHB-

C model

1. Node ω.

The conjugate prior on the latent component-specific regression coefficients is ωk ∼
N(ω̄, Ā−1

ω ). ωk is dimension of ((L+ 1)× 1) where L is the number of concomitant

variables. It describes the effect of concomitant variables on each of the latent

classes. The draws from the posterior distribution can be obtained by a standard

regression update process on the following model.
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uik = Ci ωk + εik

where εik ∼ N(0, IK), IK is the identity matrix of dimension K. The normal regres-

sion update on the component specific regression coefficients give

(ωk|uk) ∼ N((C ′C + Āω)−1(C ′uk + Āω ω̄), (C ′C + Āω)−1),

for k = 1, . . . , K − 1.

Note that for identification, we restrict ωK = 0.

2. Node u.

In order to assign each customer to a latent component, we use latent utility variable

u. The selector function ς(u) determines which component each customer is assigned

to, that is,

ς(ui) = k, if uik > uij for all j 6= k,

where uik = Ci ωk + εik is the utility of customer i being assigned to the latent

component k. Ci is the row vector of component-invariant behavioral characteris-

tics (concomitant variables) of customer i (together with an intercept), ωk is the

component specific regression coefficients, and εik is the stochastic error term.

The probability of customer i being a member of component k is equal to

Prob(sik = 1) = Prob(uik ≥ uij, for all j in (K − 1) components)

= Prob(uij − uik ≤ 0, all j 6= k)

= Prob(εij − εik ≤ Ci (ωk − ωj), all j 6= k)

= Prob(ε̃ikj ≤ Ci ω̃kj, all j 6= k)

where ε̃ikj = εij − εik and ω̃kj = (ωk − ωj).

To allocate customer i to latent components, we need to sample from

ui ∼ π(ui| · · · , θ, β,Γ, ω, · · · ) ∝ π(θi|∆, βς(ui),Γς(ui))π(ui|Ci ω) . (3.13)
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Note that π(ui|Ci ω) in Equation (3.13) is a multivariate normal density. So, Equa-

tion (3.13) expresses that we need to sample from a multivariate normal density with

different multiplicative constants (π(θi|∆, βς(ui),Γς(ui))) in different domains. This

is difficult to efficiently accomplish due to the very high rejection frequencies. We,

therefore, use the insight from McCulloch and Rossi (1994) and specify a Gibbs sam-

pler by breaking each draw of ui into a sequence of K univariate truncated normal

draws by cycling through the ui vector (one-at-a-time sampling or one dimensional

sampling).

We need to take into account the discrete jumps that may happen through ς(u) as

this results in new parameter values on β,Γ and ω. We separately investigate each

component of Equation (3.13).

• π(θ|∆, βς(u),Γς(u)): The dependency here is interceded through ς(u). Recall

that

ς(ui) = k, if uik > uij for all j 6= k( or if sik = 1) .

Dropping the customer index i momentarily so that sk = sik and uk = uik in

the following, we have π(sk|u) = π(sk|uk, u−k), that is,

π(sk|uk, u−k) = I(sk = 1)I(uk > uo) + I(sk 6= 1)I(uk < uo)

where o = argmax{ul|l 6= k}. We, therefore, get

π(θ|∆, βς(u),Γς(u)) = I(uk > uo)π(θ|∆, βk,Γk) + I(uk < uo)π(θ|∆, βo,Γo).

• π(u|C ω): Utilities have a multivariate Normal distribution, that is,

π(u|C ω) ∝ e−1/2(u−ū)′(u−ū),

where ū = Cω.

So the conditional density of utilities can be written as
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π(uk|θ,β,Γ, u−k, ω) ∝ (I(uk > uo) |Γk|−1/2e−1/2(θ−(βk+D∆))(Γk)−1(θ−(βk+D∆))′

+ I(uk < uo) |Γo|−1/2e−1/2(θ−(βo+D∆))(Γo)−1(θ−(βo+D∆))′) e−1/2(uk−ū)2

. (3.14)

Expression (3.14) is a combination of two truncated normal densities, see Figure 3.7.

We write Ωr as the scaling factor of the truncated normal distribution on the right,

Ωr = |Γk|−1/2e−1/2(θ−(βk+D∆))(Γk)−1(θ−(βk+D∆))′

where uk < uo(max(u−k) = uo); and Ωl as the scaling factor of the other truncated

normal distribution

Ωl = |Γo|−1/2e−1/2(θ−(βo+D∆))(Γo)−1(θ−(βo+D∆))′

where uk > uo.

Then,

π(uk|θ,β,Γ, u−k, ω) ∝ (I(uk > uo)Ωr + I(uk < uo)Ωl) e
−1/2(uk−ū)2

. (3.15)

The normalization constant is easily computed. Let φ be the density function of the

standard normal distribution.Then, the final version for the sampling distribution

is

π(uk|θ,β,Γ, u−k, ω) =
ΩrI(uk > uo) + ΩlI(uk < uo)

(1− Φ(uo − ūk))Ωr + Φ(uo − ūk)Ωl

φ(uk − ūk) . (3.16)

The sampling is now done by applying the following to all utility components:

• Sample U ∼ Uniform[0, 1] to determine which truncated normal distribution

to sample from.

• If U < ΩlΦ(uo−ūk)
ΩlΦ(uo−ūk)+Ωr(1−Φ(uo−ūk))

, then truncate to the right and sample from

the left side of the truncated normal distribution. In particular, set

unew
k = Φ−1(Φ(uo − ūk)U ′) + ūk
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Figure 3.7: The sampling density for the utilities.
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where U ′ ∼ Uniform[0, 1].

• If U > Ωr(1−Φ(uo−ūk))
ΩlΦ(uo−ūk)+Ωr(1−Φ(uo−ūk))

, then truncate to the left and sample from the

right side of the truncated normal distribution. In particular, set

unew
k = Φ−1 ((1− Φ(uo − ūk))U ′ + Φ(uo − ūk)) + ūk .

3.10 Appendix: Data generation for MHB model test-

ing

Consider N = 1, 000 customers and K = 2 latent components. We generate a single

covariate data, D (N × 1), for all customers from a standard uniform distribution. We

create another customer characteristics matrix including an intercept and a concomitant

variable, C (N × L) where L = 2. In order to keep it simple, for the first half of the

population the concomitant variable is set to 1 and for the other half it is set to −1. The

transaction data of customers are generated in five steps:

1. Fix the component specific regression coefficient matrix, ω∗ (L×K) to [ 0.1 0
0.8 0 ]. Using

the concomitant matrix together with the ω∗ matrix, we generate utilities, u∗, using

the normally distributed error term.20 More specifically, we use the following utility

generation form: u∗ = C ω∗ + ε, where ε ∼ N(0, I). Note that the used parameter

values are chosen to balance the random and deterministic components of utilities.

Given the true utility values u∗, customers are assigned to each component,

s∗i = k, if u∗ik > u∗ij for all j 6= k.

Based on this procedure, we add randomness on assigning customers to their true

components. In our sample 52.8% of the customers is assigned to segment 1.

2. Fix the hyper-parameter values β∗ and Γ∗ for each of the components: We aim to

generate a customer dataset that has K = 2 distinct groups or in other words that

has a bi-modal heterogeneity distribution over the customer base. As the covariate

data, D, is standardized, the β vector represents the average values of parameters of

interest (log of purchase and defection parameters) for each component. Our main

concern is on distinguishing between the components. We, therefore, use a rather

different set of parameters for each component. We set β∗1 = [log(1), log(1/1000)]

20The proposed model employs an MNP sub-model to assign customers to latent components.



118

104 The Need for Market Segmentation in Buy-Till-You-Defect Models

and β∗2 = [log(1/100), log(1/20)]. The (2× 2) covariance matrices Γ∗k are chosen to

be equal to 0.64× I for each of the components.

3. Generate behavioral parameters θ∗i ∼ π(θi|β∗si ,Γ
∗
si

) for each of the customers: Con-

ditional on the membership to one of the two components, customer’s behavioral

parameters are generated from normal distributions independently given the asso-

ciated hyper-parameters.

4. Generate lifetime t∗∆,i for each of the customers: For i = 1, . . . , N , draw t∗∆,i ∼
π(t∆,i|θ∗i ). As the lifetime is distributed according to an exponential distribution

with the rate parameter of eθµ , this step is straightforward.

5. Generate repeat transaction frequency xi and the last transaction time in calibration

period tx,i for each of the customers: For i = 1, . . . , N , draw xi ∼ π(xi|t∗∆,i, θ∗i ).
Transaction data basically contains two elements: transaction number xi and the

time of the last transaction tx,i. Note that the time of the first order t0 and the

total observation time T are fixed (t0 = 0, T = 200) and they are common across the

customers. The sampling scheme of transaction data (xi, tx,i), given the defection

time t∆,i and the parameters θi is the following:21

Let (Vl)l=1,2,... be iid exponentially distributed with mean 1/λ. Put Ex =
∑x

l=1 Vl.

Then Ex has an Erlang-x distribution: the sum of x independent exponential dis-

tributions with average 1/λ. Write t̂∆ = min(t∆, T ) where t̂∆ is the effective time

of defection. Now, for x ≥ 1, we can compute

π(x, tx|t∆, θ) = π(Ex = tx, Vx+1 + Ex > t̂∆) = π(Ex = tx) π(Vx+1 > t̂∆ − tx|Ex = tx)

= π(Ex = tx) π(Vx+1 > t̂∆ − tx) =
λxtx−1

x

(x− 1)!
e−λtx e−λ(t̂∆−tx) =

λxtx−1
x

(x− 1)!
e−λt̂∆

Performing the integral of tx over the interval (0, t̂∆) leads to22

Prob(x, tx ≤ t|t∆, θ) =
λxtx

x!
e−λt̂∆

21We drop the i index in the following derivations for the sake of simplicity on notation.
22And in turn to

Prob(x = 0|θ) =

∫ ∞
0

e−λt̂∆µe−µt∆dt∆ =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)T .
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for t < t̂∆ and x 6= 0. Clearly, Prob(x = 0, tx ≤ t|t∆, θ) = eλt̂∆ , and for t < T

F (t) ≡ Prob(tx ≤ t|t∆, θ)

=


0 if t < 0∑∞

x=0
λxtx

x!
e−λt̂∆ if 0 ≤ t < t̂∆

1 if t ≥ t̂∆

=


0 if t < 0

e−λ(t̂∆−t) if 0 ≤ t < t̂∆

1 if t ≥ t̂∆

and for s ∈ [0, 1],

F−1(s) =

0 if s ≤ e−λt̂∆

t̂∆ + ln(s)/λ if s > e−λt̂∆

All this leads to the following sampling scheme for recency-frequency (RF) data.

(a) Draw t∆ ∼ EXP(µ).

(b) Draw U ∼ U[0, 1]. Put

tx =

0 if U ≤ e−λt̂∆

t̂∆ + ln(U)/λ if U ≥ e−λt̂∆

(c) Put

x =

0 if tx = 0

1 + POISSON(λtx) if tx > 0

3.11 Appendix: Setting the number of components

for MHB-C model

Table 3.17 shows the out-of-sample prediction accuracy of the MHB-C model for different

numbers of components. The MHB-C model with 2 components performs best in pre-

dicting the number of purchases in the validation period. As discussed earlier, our main

criterion of determining the optimum number of components is the number of members

within each group (Frühwirth-Schnatter, 2006). Based on this criterion, we decide that

the optimum number of components is 2 with a general customer share of 59% and 41%
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for the two segments. When the number of components increases to 3, one of the com-

ponent covers only 4 customers (0.2%) of the customer base while the others contain the

rest of it in a balanced share. For the 4 component case, two additional components cover

only around 1% of the customers.

We did not use the Bayesian counterparts of likelihood based model comparison meth-

ods, i.e. the marginal likelihood comparison, because of the lack of the closed-form so-

lution to the marginal likelihood. Schwarz criterion is not used either, because it is not

evident that the regularity conditions for deriving Schwarz’s criterion through asymptotic

expansions actually hold (Frühwirth-Schnatter, 2006).

Table 3.17: The out-of-sample prediction performance of the MHB-C model with dif-

ferent number of components on OG data

MHB-C Model
# of purchase # of customers (%) in each component

Correlation MSE MAE Comp1 Comp2 Comp3 Comp4
2-Component 0.9208 19.556 2.851 599 (41%) 861 (59%) - -
3-Component 0.9207 19.654 2.860 601 (41%) 855 (59%) 4 (0.2%) -
4-Component 0.9200 19.738 2.857 602 (41%) 839 (58%) 15 (1%) 4 (0.2%)

Figure 3.8 shows the heterogeneity distribution for the OG data using the MHB-C

model with 3 or 4 components. The plot given in Figure 3.8a is not different that the

MHB-C model with 2 components where there are only two peaks, i.e. the additional

component does not capture a different (heterogeneous) characteristic. However, when 4

components are forced on the MHB-C model, we observe three peaks on OG data (see

Figure 3.8b). Despite this additional peak in the 4 component model, which may capture

different characteristics of the heterogeneity distribution, this model clearly deteriorates

out-of-sample estimation results. Note that, this model performs the worst in out-of-

sample predictions. We therefore opt for the 2 component model in this paper.
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(a) Bivariate Gaussian mixture heterogeneity distribution
from MHB-C model with 3 components

(b) Bivariate Gaussian mixture heterogeneity distribution
from MHB-C model with 4 components. Note the vertical
scale.

Figure 3.8: The shape of the posterior heterogeneity distributions (bivariate Gaussian

mixture distribution) over the online retailer’s customer base when the MHB-C model is

run with 3 and 4 components.
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Chapter 4

An Empirical Investigation of

Demand for Online Services:

Evidence from Online Grocery

Shopping and Delivery Fees

4.1 Introduction

It is by now clear that the internet has drastically changed retailing and final consumer’s

purchasing behavior in the last two decades. From the firms’ perspective, online retailing

has allowed companies to price-discriminate consumers in ways that were unimaginable

before, increasing profits and consumer surplus simultaneously. From the consumers’

perspective, online retailing has allowed consumers with little spare time to purchase

goods and services without leaving the comfort of their homes avoiding unnecessary trips

or phone calls.

Clear examples of online shopping trends are the growing complexity of airline pricing

(see Klein and Loebbecke (2003), Mohammed (2005), Belobaba (2002), Robinson (2002),

Barnhart et al. (2003), Smith et al. (2001)) or the rapid increase of online retailing that

has taken place in the last few years (Lewis (2006), Laudon and Traver (2007), Baier and

Stüber (2010)). For example, in the US alone e-commerce grew 13% (while offline retail

barely grew 1%) in the first quarter of 2013, and it is expected to raise its sales up to

$370BN by 2017 with the help of tablets and smart phones.1 This rapid change is leading

firms to think strategically on how to manage their revenue sources and hence asking the

1This forecast is based on a report published by Forrester Research “US Online Retail Forecast, 2012
To 2017” by Mulpuru et al. (2013).

109
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question of what particular parts of the services and goods provided are valued the most

by their customers, and how customer heterogeneity plays a role when customers value

different goods.

Although the literature is replete with classic examples of how to price two goods

that are complements (such as admission tickets and rides in amusement parks, blades

and razors, show tickets and concessions, or video games and consoles as primary/access

goods and their secondary/complematary goods), the impact of internet on retailing has

also brought a dilemma on how to manage different revenue channels through internet

platforms. When the manufacturer of smart phones maximizes profits, she must decide

on the optimal pricing strategy of both hardware and software. Similarly, when shopping

platforms maximize profits they must decide on the price of items as well as their delivery

fees.

In this chapter, we investigate the optimal pricing strategies of the online operations of

a grocery retailer. This online retailer derives its revenues and profits from two different

sources: shipping fees and grocery sales. When maximizing revenues, the retailer may

consider whether to sell groceries at a discount and make up for its profits with high

shipping fees. Alternatively, it may offer cheap (or even free!) delivery and charge higher

prices for groceries. The optimal strategy depends on how the demand for groceries is

correlated with the demand for home delivery. The intuition is that customers’ demand

intensity for the groceries provides a meter of how much the customer is willing to pay for

the delivery service. If increases in delivery service demand is associated with decreases in

grocery demand per delivery, this would indicate a positive correlation between grocery

demand and willingness to pay for the delivery service. In case of consumers with high

willingness to pay for home delivery associated with a high demand for groceries, firms

ought to charge high prices for groceries and low delivery fees (Gil and Hartmann, 2009).

In order to provide optimal pricing strategies for online grocery retailers, we build

our theory on the well-grounded two-part tariff literature. A two-part tariff exists when

a fixed payment is made for the access good before any secondary good purchases are

allowed. Since the well-known paper from Oi (1971) where the optimal pricing policies are

presented under a two-part tariff, the literature has concentrated on different dimensions

of the two-part tariffs such as consumer heterogeneity or budget constraints (see Ng and

Weisser (1974), Littlechild (1975), Schmalensee (1981), Rosen and Rosenfield (1997)). The

profitability of two-part tariffs relative to a single uniform pricing has been steadily studied

over the years (as a recent example see Iyengar et al. (2011)). However, very little attention

has been paid on a repeat purchase setting as the literature has focused on modeling the

buyer behavior where they have been restricted to visit the firm and pay the fixed fee at
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most one time. To our knowledge, only Phillips and Battalio (1983) and Yang et al. (2005)

allow for repeat buying under a two-part tariff. While the latter investigates whether free

shipping is profitable for firms, the former focuses on the substitution effect between

visit frequencies and consumption per visit as we aim to concentrate on further. In their

paper, however, Phillips and Battalio (1983) do not consider consumer heterogeneity and

focus on a single consumer case. We expand on the theoretical framework of Schmalensee

(1981) by considering customer heterogeneity and allowing for repeat number of visits.

We make theoretical predictions on how the total number of primary good sales, the total

amount of secondary good sales and the average secondary good consumption per primary

good change in the primary and secondary good prices. This is the very essence of our

theoretical contribution.

We adapt the model to the institutional setting of an online grocery store and derive

testable implications regarding variation in the price of deliveries (access good) and the

price of groceries (secondary good). We take these predictions to the data using a unique

dataset detailing transaction information from an online grocery retailer in a Western

European country following the empirical work of Gil and Hartmann (2009).2 Our data

is the result of an extraction of all transactions between 2008 and 2009 of a random

sample of customers of this online grocery store. This firm (OG hereafter) structures its

online operations into eight different time slots in any given day from Monday to Friday,

only offering five morning slots on Saturdays, and no delivery on Sundays. The resulting

dataset has a total of 953, 107 transactions from 29, 988 customers located in 44 different

cities in this country that made purchases between January 2008 and December 2009.

We verify our theoretical predictions by replicating them on a real dataset and find

that there is a positive relationship between the demand for home delivery services and

groceries. This is basically consistent with a two-part pricing policy that will charge

high margins for delivery services and offer discounts (or not charge extra mark-ups) for

groceries. Next, we conduct an in-dept analysis on our data and find that there are two

groups of customers with very different willingness to pay and price sensitivities. We

use this fact to improve the optimal pricing strategy of OG by combining second and

third-degree price discrimination schemes, and consequently to propose a discriminating

two-part tariff.

We can summarize our empirical findings as follows. First, delivery time slots with

bigger number of transactions also have larger basket sizes per transaction. This fact is

true across time slots and cities as well as within time slots and cities. Second, higher

delivery fees are associated with fewer transactions. Third, we find that there is a positive

2Due to a data confidentiality agreement, we cannot reveal the identity of the retailer.



126

112 An Empirical Investigation of Demand for Online Services

association between delivery fees and basket sizes across time slots. This result does not

hold within time slots because price-sensitive customers increase their average basket size

in high-demand periods.

In a final attempt to reconcile the observed set of prices and optimal prices, we also

investigate the correlation between operational profits obtained through delivery services

and operational profits through the sale of groceries. Our results show that operational

profits are mainly driven by the number of transactions and average basket sizes, whereas

the number of transactions are driven by delivery fees. Using our estimates of the relation

between delivery fees, number of transactions and profit margins, we show that OG was

underpricing delivery across time slots for households and overcharging B2B customers.

We are not the first to empirically study this topic and so we build upon a number of

papers that have explored a wide variety of sectors such as cellphone pricing (Miravete and

Röller, 2004), sports pricing (Marburger (1997); and Fort (2004)), or concession pricing

(Gil and Hartmann, 2009).3 If anything, to the best of our knowledge the closest papers to

ours are Lewis et al. (2006) and Chintagunta et al. (2012) in that they also explore pricing

and consumer behavior in online grocery shopping. While the latter measures the relative

importance of transactions costs in consumer choice between online and offline grocery

shopping, the former uses an ordered probability model to study the non-linear impact

of shipping fees on size and incidence of orders. Our study differs from these in that we

extend the theory of Schmalensee (1981) and others4 to derive testable implications that

we take to the data. We not only show that correlations between delivery fees, basket

sizes and number of transactions are consistent with an optimal two-part pricing scheme,

but also estimate optimal prices that discriminate across consumer types.

Our paper also provides clear managerial implications for firms that manage a port-

folio of products with interrelated demands as well as firms that may be able to screen

customers that differ in their willingness to pay. Our results suggest that OG would ben-

efit from exploiting price discrimination between B2B and household customers because

they show significant differences in their sensitivities to delivery fees.

The chapter’s organization is as follows. In the following section, we present our the-

oretical framework departing from Schmalensee (1981) and provide testable implications.

Section 4.3 describes the data and the institutional details around online grocery shopping

in this particular Western European country. In Section 4.4, we introduce our empirical

methodology and show results. Section 4.5 presents results from “diff-in-diffs” estima-

3Examples in the popular press also covered the hotel industry (Landsburg, 2006) and the airline
industry (Saporito (2011) and Rane (2013)).

4Other representative papers on the same topic are Oi (1971) and Rosen and Rosenfield (1997).
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tion, while in Section 4.6 we discuss the managerial implications of our findings. Finally,

Section 4.7 concludes our study.

4.2 Theory

In this section, we extend the theoretical work of Schmalensee (1981) on access service

pricing to repeat purchase occasions where consumers adjust their number of visits to the

firm and the amount of secondary good purchase per visit. Then we discuss our theoretical

predictions. In our model, we assume away the income effects which can be considered

reasonable for the online grocery retail environment where the delivery fees are relatively

small compared to basket values.5 This implies that the demand of the secondary good

is independent of primary good price. In order to derive cleaner predictions, we assume

the firm offers one representative secondary good at price p.

We allow the demand of secondary goods per visit to be a function of the secondary

good price p, expected number of visits n in a given period, and the consumer’s type θ.

We assume a continuous distribution of consumer types θ with 0 ≤ θ ≤ 1. Let

S(p, n, θ) = surplus of consumer type θ for n primary goods,

q(p, n, θ) = secondary good demand of consumer type θ per primary good if n primary

goods are purchased.

The consumer surplus S(p, n, θ) increases in θ for all n ≥ 0, and decreases in p; and can

be calculated as S(p, n, θ) = n
∫∞
p
q(t, n, θ)dt.

A type θ consumer will purchase n primary goods if and only if S(p, n, θ) ≥ nx where

x is the unit price of the primary good. For each i, there exists a marginal consumer type

θi defined implicitly by6

S(p, i, θi) = ix, i = 0, 1, ..., n.

If θ ∈ [θi, θi+1), then type θ consumer makes i primary good purchases with q(p, i, θ)

secondary good purchases per primary good purchase. Notice that 0 = θ0 ≤ θ1 ≤ ... ≤
5For online grocery retailing, there is generally a lower limit of basket size in order to receive the

groceries, as we also have in our dataset. Moreover, assuming that secondary good demand is not affected
by the price of the primary good is common in discrete-choice demand literature (Gil and Hartmann,
2009).

6Note that the secondary good demand of the marginal consumer is no longer independent of the
primary good price. Therefore, no income effects assumption (meaning that changes in primary good
price do not affect the demand of the secondary good demand) is valid for the inframarginal consumer
and access prices play a role on the overall customer base of the company.
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θi ≤ ...θM ≤ θM+1 = 1 for i > 1 where M is the maximum possible number of primary

good purchases.7

The demand of secondary good per primary good purchase, q(p, n, θ), is not mono-

tonically increasing in θ due to sudden jumps in the repeat purchase frequency n. This

implies that q(p, n, θ) decreases at the switching points from one level of repeat purchase

to the next level. Within each repeat purchase frequency, q(p, n, θ) is increasing in θ.

Finally, q(p, n, θ) is decreasing in p.

If m(θ) is the density function of consumer types, total market demand for the primary

good N and and the secondary good Q are given by

N(x, p) =
M∑
i=1

i

∫ θi+1(x,p)

θi(x,p)

m(θ)dθ

Q(x, p) =
M∑
i=1

i

∫ θi+1(x,p)

θi(x,p)

q(p, i, θ)m(θ)dθ.

Differentiation of the marginal consumer θi with respect to x and p results in8

θix =
∂θi(x, p)

∂x
=

i

Sθ
> 0 where Sθ = ∂S(p, i, θi)/∂θ

θip =
∂θi(x, p)

∂p
= q(p, i, θi)θix > 0.

The demand function of the marginal consumer who makes i purchases, q(p, i, θi), is

increasing in the delivery fee x as qx(p, i, θ
i(x, p)) = qθ(p, i, θ

i)θix ≥ 0. The basket size of

the marginal consumer with respect to an increase in the prices of the secondary goods

depends on how fast the demand curve changes as a function of taste parameter θ as

well as the price p (qp(p, i, θ
i(x, p)) = qp(p, i, θ

i) + qθ(p, i, θ
i)θip). The demand q(p, i, θi)

increases in θ but decreases in p. As p increases, θi that describes the ith marginal

consumer increases; therefore, the demand of the marginal consumer, q(p, i, θi), may go

up or down as p increases.

7The reason behind taking M as a finite number is not only the technical details on avoiding that the
analytic properties of summations play a role, but also the realistic setting that has an upper limit on
the number of purchases.

8Note that we use subscript as a shorthand notation for the partial derivation, i.e. qp = ∂q/∂p.
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Now we have a look at how the total market demand for the primary and secondary

goods changes in their prices.

Np(x, p) =
∂N(x, p)

∂p
= −

M∑
i=1

1

i
m(θi)q(p, i, θi)θix

Nx(x, p) =
∂N(x, p)

∂x
= −

M∑
i=1

m(θi)θix

Qp(x, p) =
∂Q(x, p)

∂p
=

M∑
i=1

i
[ ∫ θi+1(x,p)

θi(x,p)

qp(p, i, θ)m(θ)dθ + q(p, i, θi+1)m(θi+1)θi+1
p

− q(p, i, θi)m(θi)θip

]
Qx(x, p) =

∂Q(x, p)

∂x
=

M∑
i=1

i[q(p, i, θi+1)m(θi+1)θi+1
x − q(p, i, θi)m(θi)θix]

Notice that the demand for the primary good decreases as the prices of primary and

secondary goods increase: Nx and Np are non-positive for any distribution of consumer

tastes m(θ) and any normal demand function q(p, i, θ).9 However, the direction of the

change of aggregate demand for the secondary good as prices increase is more complex. Let

us assume that θ is uniformly distributed over the population. The aggregate secondary

good demand increases with the primary good prices, Qx is non-negative, if qθ(p, i, θ
i) ≤

qθ(p, j, θ
j) for i > j and may decrease otherwise. In words, this sufficient condition on

Qx ≥ 0 indicates that, with increasing frequency of repeat purchases, the basket size of

the marginal consumer changes less in θ. Rewriting Qx as

Qx(x, p) =
M∑
i=1

[
(i− 1)q(p, i− 1, θi)− iq(p, i, θi)

]
θixm(θi)+Mq(p,M, θM+1)θM+1

x m(θM+1)

helps us to elaborate more on the condition for Qx ≥ 0. The second part of the above

equation takes value 0 as θM+1 = 1. The full expression’s sign, therefore, comes down

to the sign of (i − 1)q(p, i − 1, θi) − iq(p, i, θi) which compares the total consumption of

the marginal consumer at the purchase frequency of i to her total consumption at i − 1

repeat purchase level. Accordingly, if the marginal consumer at the repeat purchase level

i decreases her purchase frequency and her total consumption does not decrease, then

9Normal demand function (q) stands for the demand function of a normal good that satisfies the
condition of ∂q/∂I > 0 where I stands for consumer’s budget. In words, normal goods are any goods for
which demand increases when income increases, and falls when income decreases as opposed to inferior
goods’ demand.
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Qx ≥ 0. This is plausible as the price sensitive consumer spends less in the delivery fee

due to buying less frequently and she does not have to reduce her grocery purchase.

On the other hand, keeping the price of the primary good x constant, one expects that

the aggregate demand on the secondary goods decreases as p increases, in other words Qp

is non-positive.

Proposition 1 If m(θ) is uniformly distributed and qθ(p, j, θ
j) ≥ qθ(p, i, θ

i) for i > j;

then average basket size is increasing in the delivery fee.

Proposition 1 states that as the delivery fee increases the average basket size of the

population increases. This occurs if the total secondary good (groceries) demand of a

consumer who is marginal at i primary good purchase (deliveries) does not decrease in

decreasing i.

Next we study the optimal primary and secondary good prices with repeat purchase

instances. Firm’s profit function is given by

π(x, p) = (x− f)N(x, p) + (p− c)Q(x, p) (4.1)

where f and c are the costs of providing each unit of primary and secondary good respec-

tively. Differentiating (4.1) with respect to x and p, we obtain

πx = N(x, p) + (x− f)Nx(x, p) + (p− c)Qx(x, p) = 0

πp = Q(x, p) + (x− f)Np(x, p) + (p− c)Qp(x, p) = 0

Eliminating the term (x− f) and solving both equalities, we obtain

p− c = − Q(x, p)Nx(x, p)

Nx(x, p)Qp(x, p)−Np(x, p)Qx(x, p)

(Q(x, p)/N(x, .p))Nx(x, p)−Np(x, p)

(Q(x, p)/N(x, .p))Nx(x, p)

= − Q(x, p)Nx(x, p)

Nx(x, p)Qp(x, p)−Np(x, p)Qx(x, p)

∑∞
i=1

(
q(p, i, θi)− Q(x,p)

N(x,p)

)
m(θi)θ

x
i

(Q(x, p)/N(x, .p))Nx(x, p)

Proposition 2 If qθ(p, j, θ
j) ≥ qθ(p, i, θ

i) for i > j and Qp ≤ 0, at the optimum (p − c)
has the sign of

∞∑
i=1

(
Q(x, p)

N(x, p)
− q(p, i, θi)

)
m(θi)θxi .

Notice that if the number of purchases is limited to one, then Proposition 2 reduces to

Proposition 5 of Schmalensee (1981) that says (p− c) has the sign of
(
Q(x,p)
N(x,p)

− q(p, 1, θ1)
)



131

4.3 Data 117

where q(p, 1, θ1) is the consumption of marginal consumer and Q/N is the average con-

sumption. Similarly, we show here that firms should charge a premium on secondary

goods if the secondary good consumption of the average consumer is higher than that of

the marginal consumer,
∑M

i=1

(
Q(x,p)
N(x,p)

− q(p, i, θi)
)
m(θi)θix > 0. One sufficient condition

for this to hold is Q(x,p)
N(x,p)

> q(p, 1, θ1) since q(p, i, θi) is decreasing in i. Alternatively, if

the expected demand of marginal consumers (demand of marginal consumers weighted by

the type distribution) is higher than the average basket size, then the firm should offer a

discount on the secondary goods, otherwise it should charge a premium on those.

Proposition 3 If qθ(p, j, θ
j) ≥ qθ(p, i, θ

i) for i > j and Qp ≤ 0, at the optimum (x−f) ≥
0.

Table 4.1 summarizes our theoretical predictions regarding the relationship among the

delivery fee (x), grocery price p and the number of transactions, total basket size, average

basket size.

Table 4.1: Summary of Theoretical Predictions

Delivery fee (x) Unit Price (p)
Total number of transactions (N) - -
Total Basket Size (Q) +* -
Average Size of the Basket(Q/N) +* +/-
Marginal consumer demand (q(p, i, θi)) + +/-

+ indicates increasing; - indicates decreasing; +/- indicates may increase or decrease. * holds if qθ(p, j, θj) ≥ qθ(p, i, θi) for i > j.

In the following sections, we first provide information on our dataset and then validate

our theoretical predictions on this particular dataset using simple regression techniques.

4.3 Data

Our data comes from an online grocery store in a Western European country. This online

grocery store is the internet channel of the leading brick and mortar grocery chain in

the country in terms of market share, employing more than 200, 000 people. The online

retailer offers approximately 10, 000 stock keeping units [SKU], including fresh groceries

such as meat, milk, and fruit. Customers of this company choose a convenient delivery

time slot that they need to pay an additional time-specific delivery fee before they continue

with their grocery shopping. The company offers its attended home delivery service in all

major urban areas in the country; 44 different cities that vary widely in size, and roughly

65% of the country’s households can access this service.
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The transaction data that we use in this study is from 2008 and 2009. In this period,

the online store had more than 1, 920, 000 transactions from approximately 200, 000 dif-

ferent customers. We select 29, 988 customers and all of their transactions during years

2008 and 2009 to a total of 953, 107 transactions using two different criteria. First, we

randomly select 10, 000 customers that order at least once during both the first three

months of 2008 and the last three months of 2009. We choose these selection criterion so

that we are able to capture behavior from those customers that are the most loyal to the

company. Second, we randomly select 10, 000 customers among all who purchased online

in each of January, February and March of 2009 and then merge both of these datasets

avoiding customer and transaction repetition.10

Among all transactions in our data, 72% of the orders were from regular household

customers which form 81% of the sampled customer base. The remaining 28% of the

transactions comes from small businesses without professional catering service such as

child-care centers, senior centers, law firms and IT firms. As this type of business cus-

tomers have different characteristics than the regular households such as higher order

volumes and frequent orders, we create a dummy variable B2B in our data that distin-

guishes customers between businesses and households.

The online grocer delivers orders in six days of the week (Monday to Saturday) and

in eight two-hour time slots a day. Upon login, the customer reserves a two-hour delivery

slot. In order to plan the delivery routes more effectively, these slots are overlapping with

each other, such as 8 AM to 10 AM, 9 AM to 11 AM, 10 AM to 12 PM, 11 AM to 1

PM, 12 PM to 2 PM, 4 PM to 6 PM, 5 PM to 7 PM, and 6 PM to 8 PM. All time slots

are available daily, except for Saturday that is missing the three slots after 4 PM and

Sunday that does not offer service. The online retailer uses differentiated delivery fees to

steer demand. This helps to improve the capacity utilization of the delivery service by

balancing the demand across week days as well as within a day. In the same way that the

delivery fee ranges from 4.95 to 11.95 based on the popularity of the time slot, customers

display a wide range of demand intensity in their online purchase behavior. Figure 4.1

shows the distribution of transactions per customer in our sample.

Our transaction data contains information on several dimensions such as the number

of items in the shopping basket, Euro value of the basket, the number of items with price

discounted, the number of items per category such as frozen, cold, inedible types, the

10It is important to note that we append datasets sampled using two distinct criteria and drop the
repeats and end up with a total number of 953, 107 transactions. We combined these criteria to make
sure our final dataset includes a fair amount of loyal customers that had purchased from the grocer at
the beginning and the end of our sample period, as well as other customers that only purchased groceries
randomly in the middle of this period.
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Figure 4.1: Distribution of Number of Transactions per Customer
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basket’s profit, the delivery fee, and whether the customer is a business or a household.

Table 4.2 provides summary statistics for the whole dataset at the transaction level.

Table 4.2 shows that the average transaction contains a basket made up of 68 items

of which 6 come with a discount. This average basket is worth 131 Euros before discount

and 126 Euros after discount. On average, 62% of items fall under the generic definition

of Category 1 while cool products represent 34% of the basket. The remaining 6% is

divided into deep-freeze items, inedible and Category 2 type of goods (mainly crates of

beverage).

Table 4.2: Summary Statistics

Variable Obs. Mean Std. dev. Min Max

No. of items in the bundle 953107 68.43 40.82 1 1838
Value of the bundle (before discount) 953107 131.24 69.40 60 2545.65
Value of the bundle (after discount) 953107 126.43 67.46 37.25 2545.65
No. of items with a discounted price (if any) 953107 6.22 8.76 0 260
% of items with a discounted price 953107 9.95% 13.35% 0 100%
No. of items from the product group 1 953107 42.57 30.01 0 1650
No. of items from the product group 2 953107 0.60 1.55 0 80
No. of items from the cooled product group 953107 22.98 17.80 0 396
No. of items from the deep freezed product group 953107 1.82 3.20 0 213
No. of items from the inedible product group 953107 0.45 1.40 0 150
% of items from the product group 1 953107 61.55% 16.40% 0% 100%
% of items from the product group 2 953107 1.35% 5.74% 0% 100%
% of items from the Cooled product group 953107 33.53% 16.66% 0% 100%
% of items from the deep freezed product group 953107 2.73% 4.21% 0% 100%
% of items from the unedible product group 953107 0.84% 2.82% 0% 100%
Delivery fee per transaction 953107 7.26 1.41 4.95 11.95
% of discount amount of the bundle 953107 3.57% 4.89% 0% 53.86%
B2B dummy variable 953107 0.286 0.45 0 1
Marginal dummy variable 953107 0.498 0.50 0 1

Note: This table provides summary statistics of all variables used in our empirical analysis.

In our dataset we classify customers into two different categories: B2B vs. B2C, as

well as marginal and inframarginal customers. The former division comes from informa-

tion readily available in the dataset that specifies whether a customer is a business or a

regular household. The latter definition is driven by our observation that most customers

only purchase on a handful amount of time slot and day combinations. We define those

purchasing (placing orders) 11 times or less during our sample period in a given time

slot and day combination as marginal consumer and those placing orders more often as
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inframarginal consumer.11 In our empirical study, we verify that this classification helps

us to identify those who are more price sensitive compared to the others. Table 4.2 shows

that almost 29% of transactions come from B2B and that close to 50% of transactions

are from marginal consumers. Table 4.3 tabulates the interrelation between B2B and

marginal customers, and shows that businesses are more likely to be inframarginal than

households are. In other words, households are going to be more sensitive in the margin

to changes in price offerings as well as relative improvements to their outside option.

Table 4.3: Cross Tabulation of B2B Vs. Marginal Customers

Inframarginal Marginal Total

B2C 308,705 371,693 680,398

B2B 169,989 102,720 272,709

Total 478,694 474,413 953,107

Note: This table cross tabulates number of transactions for
whether the customer is a firm (B2B) or a household (B2C),
as well as marginal (shows up less than 11 times in its time
slot) or inframarginal (more than 11 times).

Table 4.4 combines Tables 4.2 and 4.3 and provides separate summary statistics for

businesses and households as well as marginal and inframarginal customers. When com-

paring B2B to B2C and marginal to inframarginal, we show that these groups of cus-

tomers are different from each other in all variables. In particular, while businesses and

inframarginal customers purchase baskets with less discounted number of items and less

percentage discount in their baskets, and pay higher delivery fees; shopping baskets of

business and marginal customers are larger in value. Hence, rather than directly associat-

ing B2B customers with the inframarginal customers, one should be careful on the higher

dimensionality in the data.

Finally, Table 4.5 breaks down the sample into the 45 time slot-day combinations for

which the customers can order their online deliveries. This table provides averages for

11We chose 11 as the dividing number because that is the median value of the number of transactions
per time slot, day, and city per customer.
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four variables that characterize the relevance of each time slot in each window. These

variables are the basket value in Euros (upper left corner), the delivery fee in Euros (upper

right corner), the number of items per basket (lower left corner), and the percentage of

transactions occurring in each time slot (lower right corner). As delivery service is not

available on Saturday afternoon and Sundays, we have no summary statistics for these

variables at those time slots.

Among other things, Table 4.5 shows that afternoon slots are more popular than

morning slots in any given day as well as the fact that slots in Monday morning are more

popular than the same time slots in any other day (except for Saturday). For the most

part, first and second morning slots account for the largest baskets in value and number

of items. Finally, this table also depicts the seemingly random12 (although not quite)

variation in delivery fees across time slots and days. Table 4.5 provides averages across

105 weeks in 2008 and 2009 and shows that delivery fees are especially higher on Monday,

Friday and Saturday morning slots as well as afternoon slots across the board.13

We also compute averages per time slot and day of the week for all other variables in

our dataset. We show in Figures 4.2 to 4.4 the empirical relation in our sample between

pairs of variables taking as observation time slot and day combination. Figures 4.2A, 4.2B

and 4.2C show no clear-cut relationship between number of transactions and delivery fees,

average basket value and delivery fee, or average basket value and number of transactions.

Only Figure 4.2B depicts slight evidence on the fact that average basket value increases

in delivery fees. Figure 4.3A shows a positive correlation between delivery fee and per-

centage profit per basket but Figures 4.3B and 4.3C find no relationship between profits

and average basket size or number of transactions. Finally, Figure 4.4 investigates the

composition of baskets and finds that larger baskets are likely to have lower shares of

deep-freeze items, group 2 items and inedible items, but higher shares of cold items.

These figures call for deeper empirical work and are useful to justify the introduction

of variables that may avoid potential spurious correlations, and control for basket and

customer heterogeneity. Once presented the data, we introduce the empirical methodology

and results in the following section.

12Even though the delivery fees takes exact values from 4.95 to 11.95 Euros, due to the fact that some
day-time slots changed fees over time, average values are not exact.

13Delivery fees did not change at all for most slots during our sample period of time. Only a few slots
changed pricing at the end of our sample in December of 2009.
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4.4 Empirical Methodology and Results

To uncover joint demand distribution of primary good and secondary good from data,

we employ an approach that is similar to Gil and Hartmann (2009). The main difference

from Gil and Hartmann (2009) is in our dataset consumers adjust their number of visits

to the firm and the amount of secondary good purchases per visit. We first present our

empirical methodology and then the results from the empirical analysis in the following

subsections.

4.4.1 Methodology

Our empirical methodology mainly consists two parts. First, we are going to reveal

the difference between marginal and inframarginal consumers’ secondary good demand.

Second, following our theoretical exploration, we are going to empirically examine the

relationship between three pairs of variables (number of transactions, basket value and

delivery fee) in our dataset following our theoretical predictions in Table 4.1.

First, we are going to explore the correlation between the average basket value and

the number of transactions. This empirical exploration is very crucial as it provides an

understanding on how the secondary good (groceries) demand and willingness to pay for

the primary good (home delivery service) are related to each other. The idea of using

the consumer’s intensity of demand for the secondary good as a meter of how much the

consumer is willing to pay for the primary good is known as metering. Consequently, we

unfold how marginal and inframarginal consumers differ in their secondary good demand.

This central comparison helps us to come up with an optimal uniform two-part pricing

policy over a heterogeneous customer base. The intuition behind this analysis is that in-

creases in primary good demand typically involve more low willingness-to-pay customers,

such that increases (decreases) in secondary good demand per buyer would indicate a

negative (positive) correlation between secondary good demand and willingness to pay

for the primary good. In order to reveal the correlation between the average basket value

and the number of transactions, we exploit here the methodology in Gil and Hartmann

(2009) and use the following regression specification,

log(Total Salestdcw) = α + β log(No Transactionstdcw) + γXtdcw + utdcw

such that Total Salestdcw are the total sales of the online grocer in time slot t, week day

d, city c and week w, No Transactions is the number of transactions, Xtdcw are variables

that control for basket composition as well as time slot and week fixed effects. We use log
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of Total Sales instead of the average basket size to avoid potential problems of mechanical

negative correlation between the average basket size and the number of transactions, and

test whether β is greater than, equal to, or less than one.

Second, we use transaction level data to investigate the relationship between basket

value and the delivery fee. For this purpose we run OLS regressions such that,

V alue Basketctrw = α + βDelivery Feectrw + γXctrw + uctrw

where the observation unit here is a transaction tr unique to a customer c and a week

w. This test links the theory on how the secondary good consumption (grocery sales)

changes in primary good price (delivery fee) to the empirical level.

Finally, we run OLS regressions to check whether increases in delivery fees deter online

grocery shopping such that,

No Transactionstdcw = α + βDelivery Feetdcw + γXtdcw + utdcw

where the dependent variable is the number of transactions that took place for our set

of consumers within a time slot, week day, city and week. According to our theoretical

predictions, we would expect to see a decrease on the number of transactions in increasing

delivery fee.

Our theory section also yields predictions on the impact of item prices on the number of

transactions, basket size and average basket size. As our data is detailed at the transaction

(basket) level, we will only be able to point out the correlation between the percentage

value of the discount and our three variables of study.

Finally, in order to have a thorough understanding on our data, we repeat all the

empirical tests on the level of business vs. household customers as well as marginal vs.

inframarginal customers, and draw comparisons on both classification. By this means we

can also explore the validity of our theoretical predictions on the positive relation between

delivery fee and the demand of the marginal consumer. Note, however, that the marginal-

inframarginal classification slightly differs between the empirical part and the theoretical

part. While the marginal consumer has been defined at each level of repeat purchase in

the theoretical part, we empirically capture the price sensitivity in consumer’s behavior

by their number of repeat purchases in our transaction data. We next proceed to show

our results.
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4.4.2 Results

First, we show results regarding the relationship between the average basket size and

the number of transactions. According to results in Table 4.6, the logarithm of sales is

positively correlated with the logarithm of the number of transactions. Although this

is not surprising, we are interested in whether the coefficient value is above one as a

coefficient larger than one means that the average basket size increases with the number

of transactions. We tested the coefficients in columns 1 to 4 as we include extra controls

as well as fixed effects and find that all are statistically significant and higher than one.

This is consistent with marginal consumers making larger purchases than inframarginal

consumers and with our pricing scenario that increases margins in the primary good or

access fees and/or lowers prices of the secondary goods.

Table 4.7 repeats the analysis taking into account the potentially different behavior of

businesses and households, as well as marginal and inframarginal consumers. Columns 1

to 6 investigate behavior of marginal consumers (relative to inframarginal consumers) and

find that marginal consumers purchase higher basket values. Even when we consider only

marginal consumers, the more marginal consumers purchase in a given week, time slot,

day and city the higher the average basket size (coefficient larger than one). Columns

7 to 12 explore behavior of business customers (relative to households) and find that

business customers purchase higher value baskets. Once we control for basket composition,

business customers seem to purchase lower value baskets. This indicates that households

and business customers purchase very different types of baskets, so that when adjusting

for composition the initial results flip. In addition to this, both B2B and households

increase their average basket value with the number of transactions which also indicates

that both groups contain marginal consumers. Results in Table 4.7 are consistent with

those of Table 4.6 in that marginal consumers have higher values for the secondary good.

In our second part of the analysis, we explore the relationship between basket value and

delivery fee. Table 4.8 exhibits a significant positive correlation between basket size and

delivery fee from columns 1 to 5. These columns exhibit time slot/day/city and customer

id fixed effects. These basically show that those slots with higher delivery fees are also

attracting the most valuable customers. Contrary to this, column 6 include customer id

fixed effects and basket heterogeneity controls but finds a negative correlation between

delivery fees and basket size. Columns 7 and 8 combine week fixed effects with other

fixed effect and provide no statistically significant result. These disappointing results

from columns 6 to 8 can possibly be explained by the fact that only a few time slots

changed delivery fees and these did so right before the Christmas season of 2009 when

sales are ready slow. Later in the paper we explore this particular event more carefully
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Table 4.6: Total Sales Value and Number of Transactions

(1) (2) (3) (4)

Dep Var: ln(sales)

ln(No. Transactions) 1.026*** 1.041*** 1.045*** 1.042***
(0.003) (0.002) (0.002) (0.002)

No. Items 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001)

Share Discounted Items 0.122*** 0.095*** 0.165***
(0.026) (0.021) (0.027)

Percentage Discount -0.391*** -0.338*** -0.460***
(0.065) (0.052) (0.072)

Share Deep Freeze Items -0.813*** -0.728*** -0.782***
(0.249) (0.246) (0.284)

Share Group 1 Items -0.938*** -0.855*** -0.775***
(0.245) (0.245) (0.281)

Share Group 2 Items -0.248 -0.132 -0.054
(0.250) (0.250) (0.285)

Share Cool Items -1.179*** -1.090*** -1.019***
(0.245) (0.245) (0.280)

Share Inedible 0.566** 0.588** 0.682**
(0.274) (0.270) (0.307)

Constant 4.763*** 5.169*** 5.054*** 4.970***
(0.007) (0.246) (0.246) (0.282)

Week FE No No No Yes
Time Slot/Day/ City FE No No Yes Yes

Observations 139,056 139,056 139,056 139,056
R squared 0.92 0.97 0.98 0.97

Note: This table presents OLS specifications that regress ln(total sales) per time slot, week
day and city on the ln(number of transactions). A coefficient larger than one implies that
the average transaction increases with the number of transactions, and it is easy to show
that all coefficients are statistically larger than 1.
Robust standard errors in parentheses clustered at the time slot, week day and city level.
*** p<0.01, ** p<0.05, * p<0.1.
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using diff-in-diff methodology. This table also shows that higher discounts are associated

with larger baskets once we include customer fixed effects.

Table 4.9 separates purchasing behavior between business and households, and marginal

and inframarginal consumers. The first set of regressions in Table 4.9 examines whether

business customers (versus households) are more or less sensitive to delivery fees. Columns

4 and 6 show striking results on the fact that basket sizes from business customers are

not sensitive to changes in delivery fees. On the other hand, results from columns 3 and 5

show mixed results about the relation between delivery fees and basket size purchases in

household customers. If anything, column 5 shows a strong positive and statistically sig-

nificant correlation between these two variables after including week and customer-specific

fixed effects. This initial results on the very different behavior of household and business

customers already encourage us to seek ways of price discriminate between groups rather

than imposing a uniform two-part tariff over the whole customer base. Clearly the minor

group of business customers in OG’s database has different behavioral characteristics that

our theoretical model does not cover.

The second half of Table 4.9 (columns 7 to 12) explores the differences in behavior

between marginal and inframarginal customers. Once again marginal customers purchase

much larger sizes at the same time that we find an overall positive correlation between

delivery fees and basket sizes. The rest of columns show no significant correlation between

delivery fees and basket size once we break the sample into marginal and inframarginal

consumers and include week and customer-specific fixed effects. Table 4.9 also shows

that household customers increase their basket sizes when item prices are more heavily

discounted.

Third and finally, we check whether higher delivery fees are associated with a lower

number of online transactions. Table 4.10 shows that there is indeed a negative relation-

ship between delivery fees and the number of online purchases but that this one only

shows up as statistically significant when including slot time/day/city and week fixed

effects. This result again could be driven by the change in delivery fee before the Christ-

mas season of 2009 and therefore grants further exploration. Note that discounted item

prices seem to have no statistically significant relation with the number of transactions

according to columns 3 and 4 once time slot fixed effects are included.

Table 4.11 examines differences in purchasing behavior between business and house-

hold customers.14 Columns 1 to 4 show no overall relationship between the number of

transactions and delivery fees. If anything, we find that business customers order less

14We do not explore differences in behavior between marginal and inframarginal consumers because we
use the number of transactions to define that classification.
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Table 4.10: Number of Transactions on Delivery Fee

(1) (2) (3) (4)

Dep Var: No. Transactions

Delivery Fee -0.254 -0.192 -0.306*** -0.349***
(0.160) (0.149) (0.115) (0.128)

No. Items -0.018*** -0.002*** -0.002***
(0.003) (0.001) (0.001)

Share Discounted Items 1.757** 0.252 0.152
(0.752) (0.183) (0.180)

Percentage Discount -3.860* -0.413 -0.212
(2.227) (0.495) (0.496)

Share Deep Freeze Items -24.236*** -19.295*** 4.994
(8.635) (3.686) (3.833)

Share Group 1 Items -15.814* -19.760*** 4.397
(8.139) (3.664) (3.814)

Share Group 2 Items -14.120* -19.685*** 4.715
(8.411) (3.673) (3.832)

Share Cool Items -17.166** -20.572*** 3.419
(8.098) (3.668) (3.816)

Share Inedible -19.715** -22.409*** 2.883
(9.021) (3.732) (3.863)

Constant 8.715*** 25.993*** 29.277*** 5.039
(1.198) (8.098) (3.793) (3.947)

Week FE No No No Yes
Time Slot/Day/ City FE No No Yes Yes

Observations 139,056 139,056 139,056 139,056
R squared 0.00 0.01 0.86 0.87

Note: This table presents OLS regressions of the number of transactions per time
slot, week day and city on the delivery fee.
Robust standard errors in parentheses clustered at the time slot, day and city level.
*** p<0.01, ** p<0.05, * p<0.1
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frequently than households (on aggregate terms) and the usual negative coefficient (al-

though not statistically significant) after controlling for time slot and week fixed effects.

Columns 5 to 12 separate the sample into business and household customers. The dif-

ference in purchasing behavior is clear as household customers purchase less often when

delivery fees are higher and business customers seem to order more frequently in time

slots with higher delivery fees. Even though this latter result is clearly the outcome of

endogeneity, it is clear that household customers are more sensitive to delivery fee prices

than business customers are.

Up to this moment, we have mainly exploited variation in delivery fees for different

time slots. As we explained above, in our sample we only have one instance when delivery

fees changed. This episode occurred in week 102 in December 2009 right before the

online grocery sales enter an expected and seasonal decrease in sales. Therefore, it is not

surprising that we observe a negative correlation between delivery fees and basket size. To

investigate this episode further, in the next section we provide the result of a diff-in-diff

estimator around this episode as robustness check.

4.5 Differences in Differences

We mainly observe one change in delivery fees during the sample period. This change

occurred in week 102 (out of 105) during the month of December of 2009. The delivery

fee increased in only 18 out of the 45 time slots allowing us to examine the impact of a

change in delivery on the number of transactions as well as the average basket size taking

as a control group those time slots that did not change delivery fee and observing how

both groups changed before and after week 102. This strategy provides a cleaner test

than the cross-sectional analysis above, but it does not come free of problems such as

the problem of customers moving to other time slots where there has been no increase

on fees. Moreover, due to the holiday season, sales in December are lower than those in

November (and earlier months). We focus on weeks around the fee change from week 99

to week 105 (the last week in our sample) and divide each weekly realization by its 2008

weekly equivalent realizations such that

V arit
V arit−52

= α0 + α1Aftert + α2Treatedi + α3Aftert ∗ Treatedi + γi + uit

where the dependent variable is the ratio of dependent variables of interest with its realiza-

tion a year before ( V arit
V arit−52

in our analysis and V ar are delivery fee, number of transactions

and basket value), Aftert is a dummy variable that takes value 1 if week is 102 or higher,
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Treatedi is a dummy variable that takes value 1 if the time slot experiences an increased

in delivery fee in week 102, and we include an interaction of these two variables as well

as a time slot fixed effect.15

Table 4.12 shows that those slots increasing their delivery fees did so by 16 percentage

points (columns 1 and 2). This increase in price was associated with a decrease of 8% in

the number of transactions and an average basket value of 13%, after controlling for time

slot, day and city. These results are somewhat puzzling in the sense that the decrease

on the number of transactions is not statistically significant and the grocery sales have

decreased. We are, however, aware of the fact that during the time period subject to

“diff-in-diffs” analysis the sales are already slow, and also the fact that “diff-in-diffs”

do not account for the migration of customers from one slot to another. Therefore, we

investigate this phenomenon more in dept by separating household and business customer

within our analysis.

Table 4.12:  Difference in Difference After Delivery Fee Increase

(1) (2) (3) (4) (5) (6)

Dep Var:

After Week 102? -0.0021*** 0.0217 0.0325 0.0680* 0.0822*
(0.0010) (0.0290) (0.0350) (0.0380) (0.0460)

Increased Fee? -0.0080*** 0.0373 0.0410
(0.0010) (0.0300) (0.0400)

After*Increased Fee? 0.1668*** 0.1621*** -0.0685 -0.0817 -0.1126** -0.1388**
(0.0020) (0.0020) (0.0440) (0.0520) (0.0570) (0.0680)

Constant 1.0093*** 1.0061*** 1.0167*** 1.0286*** 1.0852*** 1.0990***
(0.0010) (0.0001) (0.0180) (0.0100) (0.0230) (0.0130)

Time Slot, Day, City FE No Yes No Yes No Yes

Observations 6,753 6,753 6,753 6,753 6,753 6,753
R squared 0.75 0.98 0.00 0.34 0.00 0.33

Note: This table provides DiD estimates of the effect of an increase in delivery fee in certain time slots
and no change in others. The fee change occurred in week 102 and consequently dependent and
independent variables are ratios of weekly realizations between weeks 99 to 105 divided by realizations
of weeks 47 to 53 respectively.
Robust standard errors in parentheses clustered by time slot, week day and city level.
*** p<0.01, ** p<0.05, * p<0.1.

Ratio Delivery Fee Ratio Basket ValueRatio No Transactions

Table 4.13 replicates the results in Table 4.12 breaking the sample into business cus-

tomers and households. Note that slots more popular with business customers increased

delivery fees an average of 17% against 15% for those of household customers. Household

customers decreased their number of transactions by 10% which was associated with a

15Not showed here, we have also included ratios of basket value composition variables and those did
not qualitatively change the results. We lose a lot of observations since anytime a variable takes value
zero in the denominator the observation gets dropped.
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decrease in basket value of around 10%. Note that the decrease amount on the grocery

sales is a lot less than those of business customers, and not even statistically significant.

To evaluate the profitability of the increase in delivery fees, we would also need to evaluate

what percentage of these lower 10% basket value is net profit.

On the other end, the results for business customers are interesting as transactions

went down around (statistically insignificant) 13% and decreased their basket value around

30% after controlling for time slot, day and city specific fixed effects. Based on these find-

ings we can say that the firm would be losing a lot of money if the number of transactions

did not statistically change and existing customers reduced the size of their basket pur-

chases by 30% due to an increase in delivery fees of around 17%. In our data we are aware

of the fact that household customers are more flexible in their time slots that they like

to receive their groceries than the business customers. Even though a business customer

order twice more frequently than a household (on average terms), the average number

of different time slots she orders is the same with the other, and even less number of

different days. These results verify our ideas of exploiting a third-degree price discrimi-

nation scheme, namely pricing primary good differently between households and business

customers, in combination with a two-part tariff scheme. Because the loss of the marginal

consumers from the business group has severe results on the grocery sales.

Next, we empirically explore the relation between net profits, delivery fees, number

of transactions and basket value. We pursue a final empirical exercise that allows us to

speak directly about the impact of delivery fee pricing on profits. In order to do so, we

produce OLS regressions of total profit within a time slot, day, city and week on delivery

fee, number of transactions and revenue controlling for average basket characteristics as

well as time slot, day and city specific fixed effects and week fixed effects. In addition,

we reproduce the difference-in-difference methodology in the previous section taking the

ratio of profits as dependent variable.

Results in Table 4.14 show that once revenue and number of transactions are controlled

for the delivery fee has no effect on profit from sales, even though the delivery fee is

negatively associated with profits when we do not control for number of transactions or

sales. Finally, Table 4.15 shows results of the “diff-in-diffs” estimation. This table shows

that those time slots that increased prices saw a decrease in profits and that such decrease

came mostly from business customers (in absolute size).

In the next section, we provide some managerial implications regarding our findings.
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Table 4.14:  Determinants of Profit

(1) (2) (3) (4)

Dep Var: ln(profit)

ln(Delivery Fee) 0.004 -0.410***
(0.012) (0.086)

ln(No. Transactions) 0.069*** 1.046***
(0.005) (0.002)

ln(Sales) 0.938*** 0.998***
(0.005) (0.001)

No. Items 0.0006*** 0.0077*** 0.0085*** 0.0001**
(0.0001) (0.0001) (0.0001) (0.0001)

Share Discounted Items -0.008 0.137** 0.114*** -0.015
(0.015) (0.054) (0.027) (0.015)

Percentage Discount -0.347*** -0.543*** -0.649*** -0.327***
(0.039) (0.136) (0.071) (0.039)

Share Deep Freeze Items 0.369* -0.116 -0.268 0.410**
(0.188) (1.012) (0.320) (0.189)

Share Group 1 Items 0.174 -0.539 -0.502 0.217
(0.185) (1.004) (0.317) (0.185)

Share Group 2 Items -0.138 -0.189 -0.140 -0.139
(0.189) (1.009) (0.324) (0.189)

Share Cool Items 0.634*** -0.559 -0.262 0.689***
(0.185) (1.005) (0.318) (0.185)

Share Inedible -0.215 0.142 0.434 -0.258
(0.203) (1.028) (0.349) (0.203)

Constant -1.167*** 5.878*** 3.431*** -1.439***
(0.186) (1.016) (0.319) (0.185)

Time Slot, Day, City FE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes

Observations 139,054 139,054 139,054 139,054
R squared 0.99 0.75 0.97 0.99

Note: This table presents OLS regressions of total weekly profit from grocery sales on
the delivery fee, the number of transactions, and sales. All specifications contain
week and city, time slot, and day fixed effects.
Robust standard errors in parentheses, clustered at the time slot, day and city level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 4.15: Difference in Difference After Delivery Fee Increase: Effect on Profits

(1) (2) (3) (4) (5) (6)

Dep Var: Ratio Profits

After Week 102? 0.0806* 0.0983* 0.4660*** 0.5182*** 0.0032 0.0544
(0.043) (0.055) (0.121) (0.167) (0.044) (0.060)

Increased Fee? 0.0588 0.0983 -0.0153
(0.044) (0.072) (0.040)

After*Increased Fee? -0.1237* -0.1693** -0.2648* -0.3224 -0.1372** -0.1288
(0.063) (0.079) (0.147) (0.198) (0.067) (0.086)

Constant 1.1145*** 1.1365*** 1.0772*** 1.1101*** 1.0600*** 1.0341***
(0.024) (0.015) (0.041) (0.038) (0.024) (0.018)

Time Slot, Day, City FE No Yes No Yes No Yes
Sample All All B2B B2B B2C B2C

Observations 6,753 6,753 3,785 3,785 5,888 5,888
R squared 0.001 0.32 0.01 0.34 0.002 0.31

Note: This table provides DiD estimates of the effect of an increase in delivery fee in certain time slots
and no change in others. The fee change occurred in week 102 and consequently dependent and
independent variables are ratios of weekly realizations between weeks 99 to 105 divided by realizations
of weeks 47 to 53 respectively.
Robust standard errors in parentheses clustered by time slot, week day and city level.
*** p<0.01, ** p<0.05, * p<0.1.
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4.6 Managerial Implications

Our paper empirically and theoretically explores revenue management of an online grocery

store across different revenue sources, mainly delivery fees and grocery sales. This exer-

cise has very direct and concrete managerial implications as we can compare the model

predictions with the empirical results and the managerial decision of this online grocer

at face value. We are not aware of the motivations behind each one of the firm’s pricing

decisions and strategies, so we cannot make any judgments regarding their managerial

success. If anything, we can argue whether their strategies are consistent with profit

maximizing behavior at large and suggest potential means for improvement.

Our findings are consistent with a story such that the online grocer faces demand from

two very different type of customers. There is a clear difference in price sensitivity and

behavior between household and business customers. On the one hand, households tend

to increase their basket size at more expensive time slots. On the other hand, the loss

of the marginal business consumers has a huge negative impact on the grocery sales and

accordingly the profits of OG. These differences make it optimal for firms to seek ways

to price discriminate and perhaps offer lower delivery fees to business customers while

higher fees to households.

Finally, we use estimates from our difference in differences regressions to obtain the

profit-maximizing fees of this online grocery store under a third-degree price discrimi-

nation scheme. Since we observe different price sensitivity for B2B and households, we

estimate different optimal fees for these two types of customers while constraining all time

slots to charge the same prices.16 Based on our estimation on optimal delivery fees for

B2B and household customers, we find that B2B should not be charged (free delivery)

while the average fee paid by household customers should increase from 7.26 to 9.69 Eu-

ros. The reason behind this differential treatment is that even though B2B customers are

less price sensitive, their basket sizes are much larger and therefore OG would be losing

a larger amount of profits per order.17

16We obtain elasticities with the diff-in-diff estimation of Table 4.13 and 4.15 such that we recover
the equations ln(V P ) = α

′
+ β ln(N) and ln(N) = γ

′
+ θ ln(F ) where V P is variable profit, N is the

number of transactions and F is the delivery fee. Having said this, then the firm maximizes total profit
for each type of customer separately (B2B versus households) such that Π = V P (N) + N∗F subject to
N = γ + θF .

17Interestingly enough, the uniform pricing policy over different time slots is consistent with the current
practices of this company. Moreover, similar to our findings, OG provides discounts on delivery fees as
the size of the order increases.
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4.7 Conclusions

In this paper, we investigate the optimality of pricing of the online operations of a grocery

retailer. In essence, this online retailer derives its revenues and profits from two different

sources. The retailer must consider whether to sell groceries at discount and make up for

all the profits with high shipping fees or offer cheap delivery and charge higher prices for

groceries. The former or latter strategy will be optimal depending on how the demand

for groceries is correlated with the demand for online ordering and home delivery.

After presenting the theoretical foundations of our two-part pricing scheme under

a repeat buying setting, we conduct an empirical study where we test our theoretical

predictions on the data. We estimate the correlation between basket size, number of

transactions and delivery fees using detailed transaction information from an online gro-

cery retailer in a Western European country. Our first set of empirical analysis verifies our

theoretical findings and shows a positive correlation between number of transactions and

basket sizes as well as a positive association between delivery fees and basket sizes, and a

negative correlation between delivery fees and the number of transactions. Next to these

results, our empirical investigation also shows that our data has two very different types

of customers with different willingness to pay and sensitivity to delivery fees. Combining

our theoretical predictions with the empirical results, our findings suggest that a pricing

policy that will charge high margins for delivery services to households and free delivery

for the business customers would be more profitable for our focal company. Therefore,

our results suggest that online grocers should follow such pricing policies when observing

the same correlations and heterogeneity structure in their sales data.

We believe the use of two-part tariff or other more complex non-linear pricing schemes

in combination with third-degree price discrimination schemes will allow online grocers

to extract more consumer surplus. Certain extension points characterize this research.

First of all, capturing the marginal and inframarginal consumer behavior in the empirical

analysis part in a more detailed way could provide more insights for companies. This

would also help the empirical part of this study to better align with the theoretical part

that characterizes the repeat buying setting in a more stylized manner. Secondly, the the-

oretical model could be extended in a way that accommodates heterogenous primary good

prices. Although our focal company quit heterogenous prices on the delivery service, it is

still an interesting future research direction. Here is another research area where future

research in this field should concentrate its efforts and where managerial implications will

benefit the most: Rather than using readily available data that characterize consumers,

finding some third-degree price discrimination with the help of price menus such that con-
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sumers reveal their inherent type. A structural modeling approach is also very welcome in

the context of deciding upon an optimal pricing strategy under a two-part pricing scheme

with repeat purchase instances.

4.8 Appendix

Proof of Proposition 1:

The average basket size is given by Q(p,x)
N(p,x)

. Taking the derivative with respect to

the delivery fee x, we obtain Qx(x,p)N(p,x)−Nx(p,x)Q(p,x)
N(p,x)2 . Since the denominator is always

positive, we will focus on the numerator. By m(θ) uniform and qθ(p, i, θ) ≤ jqθ(p, j, θ) for

i < j, we can show that Qx(x, p) ≥ 0 as follows

Qx(x, p) =
M∑
i=1

i

[
q(p, i, θi+1)

i+ 1∫∞
p

(i+ 1)qθ(t, i+ 1, θi+1)dt
− q(p, i, θi) i∫∞

p
iqθ(t, i, θi)dt

]

=
M∑
i=1

i

[
q(p, i, θi+1)

1∫∞
p
qθ(t, i+ 1, θi+1)dt

− q(p, i, θi) 1∫∞
p
qθ(t, i, θi)dt

]

Since q(p, i, θ) is increasing in θ and qθ(p, i, θ
i) is decreasing in i, we obtain q(p,i,θi+1)∫∞

p qθ(t,i+1,θ)dt
≥

q(p,i,θi)∫∞
p qθ(t,i,θ)dt

.

Proof of Proposition 2:

p− c = − Q(x, p)Nx(x, p)

Nx(x, p)Qp(x, p)−Np(x, p)Qx(x, p)

∑∞
i=1

(
q(p,i,θi)

i
− Q(x,p)

N(x,p)

)
m(θi)θ

x
i

(Q(x, p)/N(x, .p))Nx(x, p)

The numerator of the first term together with the negative sign is non-negative. The

denominator is also non-negative due to the fact the fact that Nx ≤ 0, Qp ≤ 0, Np ≤
0, Qx ≥ 0. Therefore, at the optimal signs of (p − c) and the numerator of the second

term are opposite of each other.

Proof of Proposition 3:

Recall that

πx = N(x, p) + (x− f)Nx(x, p) + (p− c)Qx(x, p) = 0

πp = Q(x, p) + (x− f)Np(x, p) + (p− c)Qp(x, p) = 0.
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Eliminating the term (p− c) and solving both equalities, we obtain

x− f =
N(x, p)Qp(x, p)−Q(x, p)Qx(x, p)

Np(x, p)Qx(x, p)−Nx(x, p)Qp(x, p)
.

Since both the numerator and the denominator are negative by Nx ≤ 0, Qp ≤ 0, Np ≤
0, Qx ≥ 0, the fraction is positive and the result follows.
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Chapter 5

Summary and Conclusions

For over 50 years managers have been exhorted to “stay close to customers” to understand

purchase behavior. Especially today’s personalized marketing concepts such as direct

marketing, one-to-one marketing and customer relationship management emphasize the

critical importance of such an understanding for firms’ success. However, understanding

customers one by one is a difficult task not only because of the growing customer bases

with millions of registered customers, but also because of unobservable aspects of customer

behavior such as defection or price sensitivities.

In this dissertation, we use mathematical and econometric modeling to contribute to

the scientific process of understanding and predicting customer behavior. To address the

problem of making predictions on the individual level in large customer bases, we employ

a hierarchical Bayesian approach and model customer heterogeneity. To understand unob-

servable customer behavior and sensitivities, we exploit ideas from probabilistic modeling

and two-part pricing literature.

In Chapter 2, we extend the so called Buy-Till-You-Defect models to predict the tim-

ing of the purchases of every customer. Such detailed predictions help not only marketing

managers but also operations managers in their decision-making processes. To our knowl-

edge, we are the first to provide individual level purchase-timing predictions while taking

into account also the unobserved defection behavior of customers. We provide analytical

derivations on the expected timing of next purchases for each of the most established

BTYD models. We also present a methodology to compute individual predictions among

the four established BTYD models which differ in their estimation procedures.

A second contribution of Chapter 2 is a rigorous validation and comparison study of

the BTYD models. Such a validation and comparison is needed in the field due to two

main reasons. First, as BTYD models rely on different estimation methodologies, such

as MCMC simulation or MLE based techniques, they do not directly provide predictions

149
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on all of the available metrics. This makes the model comparison difficult. Therefore,

there is a lack of an extensive comparison study in the field. We deal with this problem

by presenting a methodology that allows one to compute any individual-level metric for

each of the models. To our knowledge, we are the first to bring all the following models

together: Pareto/NBD, BG/NBD, HB, and PDO models. Second, the BTYD models

are usually compared only on two metrics, namely the transaction frequency and the

customer lifetime. However, as the latter metric is not observable, the only theoretically

valid measure that is available to compare the BTYD models’ predictive performance is

the transaction frequency. Although the existing models are quite different in terms of

their specification, they produce similar predictions on this measure. In other words, this

measure is not sensitive to differences among the models. Our timing predictions using the

BTYD models helps us to overcome this problem and provide more insights on the relative

predictive performance of these models. We show that while the Pareto/NBD model and

its Hierarchical Bayes [HB] extension perform the best in predicting transaction frequency,

the PDO and HB models predict transaction timing more accurately. Furthermore, we

find that differences in a model’s predictive performance across datasets can be explained

by the correlation between behavioral parameters and the proportion of customers without

repeat purchases.

In Chapter 3, we show that managers can also obtain a customer segmentation by

applying our proposed BTYD models. Effective segmentation that takes different dimen-

sions of customer behavior into account is vital to understand customer heterogeneity.

We show that customer segments obtained within a hierarchical mixture modeling frame-

work also helps to improve individual level predictions. More specifically, we address the

extreme lifetime prediction problem that limits the adoption of current BTYD models.

We provide an explanation on why customers have extremely long lifetime predictions

on certain datasets using these models. According to this, a uni-modal heterogeneity

distribution that hides different segment structures in data also creates extreme lifetime

predictions. In sum, the new BTYD models that we propose in this chapter not only pro-

vide customer segmentation that reveals unobserved characteristics of customer behavior

such as their defection or price sensitivity, but also improve lifetime predictions on the

individual level.

Both Chapters 2 and 3 contribute to the discussion on whether BTYD models would

find their way into managerial practice by extending their output and improve their pre-

dictive performance. We acknowledge that BTYD models, compared to simple managerial

heuristics, require more time and effort to be implemented in a business setting. Therefore,

they should offer better results than managerial heuristics do in order to be commonly
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adopted by companies. We hope that the introduction of individual level timing predic-

tions and the managerial guidelines on model choice presented in Chapter 2, together with

improved customer lifetime predictions and an additional customer segmentation scheme

presented in Chapter 3 would improve the diffusion of BTYD models.

A company’s marketing actions such as promotion and pricing policies should be

aligned with the heterogeneous responses and sensitivities in the customer base. In Chap-

ter 4, we propose a discriminating two-part pricing policy based on the customer behavior

and heterogeneity insights that we have developed in Chapter 3. Chapter 4 contributes to

both theoretical and empirical foundations of the two-part pricing literature. We extend

the two-part pricing theory by considering both customer heterogeneity and repeat-buying

behavior at the same time. Moreover, we carry our theoretical predictions to its empirical

implementation. This chapter, therefore, contributes to empirical validation of two-part

pricing schemes by developing a test that can be applied to transaction data where cus-

tomers repeatedly buy two complementary products. Our conclusion is that firms may

increase their revenue and profit by implementing alternative and simpler pricing strate-

gies that combine second and third degree price discrimination schemes.
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Nederlandse Samenvatting

(Summary in Dutch)

Al meer dan 50 jaar worden managers aangespoord om dicht bij de klant te blijven om

het aankoopgedrag van klanten te begrijpen. Vooral de huidige gepersonaliseerde mar-

keting concepten zoals direct marketing, één-op-één marketing en customer relationship

management benadrukken het cruciale belang van dergelijk begrip voor het succes van het

bedrijf. Echter, één voor één klanten begrijpen is een moeilijke taak, niet alleen vanwege

de groeiende klantenbestanden met miljoenen geregistreerde klanten, maar ook omwille

van het niet-waarneembare gedrag van klanten, zoals defectie of hun prijs gevoeligheden.

In dit proefschrift gebruiken we wiskundige en econometrische modellen om bij te

dragen aan het wetenschappelijke proces van het begrijpen van klanten. Om het probleem

van het maken van voorspellingen op het individuele niveau in grote klantenbestanden

aan te pakken, gebruiken we een hiërarchische Bayesiaanse benadering en modelleren we

klant-heterogeniteit. Om het niet-waarneembare gedrag van klanten en hun gevoeligheden

te begrijpen, putten we ideeën uit probabilistische modellering en tweedelige-prijsstellings

literatuur.

In hoofdstuk 2, breiden we de zogeheten Buy-Till-You-Defect modellen uit om de

timing van de aankopen van elke klant te voorspellen. Dergelijke gedetailleerde voor-

spellingen helpen niet alleen marketing managers maar ook operationele managers in

hun besluitvorming. Voor zover wij weten, zijn wij de eerste om aankoop timing voor-

spellingen op individueel niveau aan te bieden, terzelvertijd rekening houdend met niet

geobserveerde klant-defectie. Wij leveren analytische afleidingen met betrekking tot het

verwachte tijdstip van volgende aankopen voor elk van de gevestigde BTYD modellen.

We presenteren ook een methodologie om individuele voorspellingen te berekenen voor de

vier gevestigde BTYD modellen die verschillen in hun schattingsprocedure.

Een tweede bijdrage van hoofdstuk 2 is een gedegen validatie en vergelijkende studie

van de BTYD modellen. Een dergelijke validatie en vergelijking is nodig in het vakgebied

omwille van twee belangrijke redenen. Ten eerste, omdat BTYD modellen die zich baseren
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op verschillende schattingsmethodieken, zoals MCMC simulatie of MLE gebaseerde tech-

nieken, niet rechtstreeks voorspellingen verstrekken over alle beschikbare metrieken. Dit

maakt modellen vergelijken lastig. Daarom is er een gebrek aan een uitgebreide vergeli-

jkingstudie in het vakgebied. We pakken dit probleem aan door een methodologie te

presenteren die toelaat om eender welk individu-niveau metriek te berekenen voor elk

van de modellen. Voor zover wij weten, zijn wij de eerste die alle volgende modellen

samenbrengen: Pareto/NBD, BG/NBD, HB, en PDO modellen. Ten tweede, de BTYD

modellen worden meestal alleen vergeleken op twee metrieken, namelijk de transactie fre-

quentie en de customer lifetime. Aangezien deze laatste metriek niet waarneembaar is, is

de enige geldige theoretische metriek die beschikbaar is om voorspellende prestaties van

de BTYD modellen te vergelijken, de transactie frequentie. Hoewel de bestaande mod-

ellen vrij verschillend zijn in hun specificaties, produceren zij soortgelijke voorspellingen

op deze maatstaf. Met andere woorden, deze maatstaf is niet gevoelig voor de verschillen

tussen de modellen. Onze timing voorspellingen met behulp van de BTYD modellen

stellen ons in staat dit probleem te verhelpen en zorgen voor meer inzicht in de relatieve

voorspellende prestaties van deze modellen.

In hoofdstuk 3, laten we zien dat managers ook een klantsegmentatie kunnen verkrijgen

door het toepassen van BTYD modellen. Effectieve segmentatie die rekening houdt met

verschillende dimensies in het gedrag van klanten, is van vitaal belang om de klant-

heterogeniteit te begrijpen. We laten zien dat klantsegmenten, verkregen binnen een

hirarchisch mix model raamwerk, ook helpen om voorspellingen te verbeteren op het

individuele niveau. Kortom, het model dat wij voorstellen in dit hoofdstuk, levert niet

alleen klantsegmentatie die niet waargenomen kenmerken van het gedrag van klanten

zoals hun defectie of prijsgevoeligheid blootlegt, maar verbetert ook voorspellingen op het

individuele niveau.

Een bedrijf z’n marketing acties zoals promotie en prijsbeleid moeten worden afgestemd

op de heterogene reacties en gevoeligheden in het klantenbestand. In hoofdstuk 4, stellen

we een discriminerend tweedelige prijsbeleid voor op basis van het klantengedrag en de

heterogeniteits inzichten die we hebben ontwikkeld in het vorige hoofdstuk. Hoofdstuk 4

draagt bij aan zowel theoretische als empirische grondslagen van de tweedelige prijsstelling

literatuur. We breiden de tweedelige prijsstelling theorie uit door tegelijkertijd te kijken

naar zowel de klant heterogeniteit als het herhaal-koopgedrag. Bovendien brengen we

onze theoretische voorspellingen naar hun empirische implementatie. Onze conclusie is

dat bedrijven hun inkomsten en winsten zouden kunnen verhogen door het implementeren

van alternatieve en eenvoudigere prijsstellings-strategieën die tweede- en derde-graads pri-

jsdiscriminatie schema’s combineren.
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l)BRIDGING MODELS AND BUSINESS

UNDERSTANDING HETEROGENEITY IN HIDDEN DRIVERS OF CUSTOMER PURCHASE
BEHAVIOR

Recent years have seen many advances in quantitative models in the marketing
literature. Even though these advances enable model building for a better understanding
of customer purchase behavior and customer heterogeneity such that firms develop
optimal targeting and pricing strategies, it has been observed that not many of the
advanced models have found their way into business practice. 

This thesis aims to bridge the gap between advanced models and their business
applications by systematically extending the use of models. We first focus on probabilistic
customer base analysis models that deal with understanding customer heterogeneity and
predicting customer behavior. These models specify a customer's transaction and defection
processes under a non-contractual setting. Through this study, we show that the timing of
the next purchase for each customer can be predicted using these models. We also extend
them by modeling customer heterogeneity in a more flexible and insightful way. As a
result, managers can obtain a refined segmentation. Based on the customer heterogeneity
insights, we then focus on pricing strategies for online retailers who derive their revenues
from delivery fees and sales.  In order to come up with optimal pricing strategies for
delivery fees, we use ideas from the two-part tariff literature. 

Given the time and costs associated with implementing advanced models/theories in
managerial practice, the marketing executives need to be convinced by clearly demon -
strating the contributions of such models. Our study serves as a step toward bridging
advanced models and business practice by empirically demonstrating their extended
contributions. 

The Erasmus Research Institute of Management (ERIM) is the Research School (Onder -
zoek school) in the field of management of the Erasmus University Rotterdam. The founding
participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus
School of Econo mics (ESE). ERIM was founded in 1999 and is officially accre dited by the
Royal Netherlands Academy of Arts and Sciences (KNAW). The research under taken by
ERIM is focused on the management of the firm in its environment, its intra- and interfirm
relations, and its busi ness processes in their interdependent connections. 

The objective of ERIM is to carry out first rate research in manage ment, and to offer an
ad vanced doctoral pro gramme in Research in Management. Within ERIM, over three
hundred senior researchers and PhD candidates are active in the different research pro -
grammes. From a variety of acade mic backgrounds and expertises, the ERIM commu nity is
united in striving for excellence and working at the fore front of creating new business
knowledge.
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