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Abstract

Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new

contagion test in the quantile regression framework that is robust to model misspecifi-

cation. Unlike conventional correlation-based tests, the proposed quantile contagion test

allows us to investigate the stock market contagion at various quantiles, not only at the

mean. We show that the quantile contagion test can detect a contagion effect that is pos-

sibly ignored by correlation-based tests. A wide range of simulation studies show that

the proposed test is superior to the correlation-based tests in terms of size and power. We

compare our test with correlation-based tests using three real data sets: the 1994 Tequila

crisis, the 1997 Asia crisis, and the 2001 Argentina crisis. Empirical results show substan-

tial differences between two types of tests.
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1 Introduction

Financial crises occurred throughout the world in the second half of the 1990s; these in-

clude the 1994 Tequila crisis, the 1997 Asian flu, and the 2001 Argentina crisis. These crises

have stimulated many empirical studies on contagion between stock markets, among

which testing the occurrence of contagion has been of particular interest in both theoreti-

cal and empirical senses.

Various tests for financial contagion have been proposed according to various defini-

tions of contagion; see Forbes and Rigobon (2001)(pp. 44–47) for a comparative review

of these definitions. One popular definition of contagion is a significant increase in cross-

market linkages after a shock to the original country (Forbes and Rigobon, 2001). Typi-

cally, this linkage is measured by the (mean) correlation of the asset returns; early influen-

tial studies using correlation include King and Wadhwani (1990) and Lee and Kim. Forbes

and Rigobon (2002) showed that the heteroscedastic behavior of asset returns causes a

bias in the correlation-based test and suggested an adjusted correlation measure to avoid

such bias. Another definition is based on conditional probability: financial contagion

is described as the joint occurrence of the extreme values (Bae et al., 2003). Other tests

for financial contagion include the vector autoregression (VAR) approach (Faveroa and

Giavazzi (2002), Pesaran and Pick (2007)), the copula method with Markov switching pa-

rameters (Rodriguez, 2007), and the quantile-based measure of co-movement (Cappiello

et al., forthcoming). Dungey et al. (2005a) compared various tests and related them in a

pooled regression framework.

In this paper, we propose to test contagion based on “quantile correlation”. In con-

trast to the mean correlation, the quantile correlation captures the linkage of stock returns
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not only at the average (mean) level but also at different quantiles. The linkage at the

lower quantiles is of particular interest for risk-averse agents since they are more con-

cerned with whether the slump of one stock market would have an impact on another.

The lower quantile linkage is also crucial for policy makers because it may influence gov-

ernment decisions and actions in the crisis period. In addition, we show that tests based

on mean correlation may not detect the change of the linkage in some cases, and thus

they may suffer from a poor power property. Our quantile correlation test resembles the

probability-based test in that both methods attempt to model the behavior of stock returns

at lower quantiles. However, the probability-based tests only focus on the exceedences, a

small proportion of the support to the whole distribution, while regression quantiles are

obtained using the whole sample.

This paper makes three main contributions. First, we contribute to the econometric

literature by proposing two-sided and one-sided score tests for the slope coefficient of

the quantile regression in a likelihood framework and study their asymptotic properties.

The proposed score tests are robust under possible distributional misspecification and

are easy to implement since they only require estimators under the null hypothesis, espe-

cially for the one-sided test. Second, we contribute to the empirical finance literature by

providing new insight into testing financial contagion. The proposed quantile contagion

test allows us to investigate the various impacts of one country’s asset returns on those of

others at various quantile levels. As we have mentioned, standard correlation-based tests

can only indicate the linkage between two asset returns on an average level. However, the

risk-averse agents and policy makers are typically more concerned with the linkage at the

lower quantiles, and it can also be useful to consider the linkage at the upper quantiles.

By implementing our quantile contagion test, one could study whether contagion exists
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when a stock market is experiencing a slump or advance. We compare the size and power

property of our proposed tests with three forms of Forbes and Rigobon’s correlation-

based tests (FR), the most popular contagion tests, in various simulation designs. We

find that the quantile contagion test beats the FR tests in most cases, especially when the

data are skewed and leptokurtic. Finally, we conduct an empirical analysis of the conta-

gion effect in the Tequila crisis, the Asian crisis, and the Argentine crisis and compare our

tests with those of the correlation-based tests. The quantile contagion test generally pro-

duces different results and new insights. For example, we find that in most transmission

channels of the Tequila crisis and the Argentine crisis FR tests show no financial conta-

gion at mean values, while the quantile contagion test reports significant contagion effects

at lower quantiles. In contrast, FR tests report contagion in some transmission channels

in the Asian crisis, while the quantile contagion test indicates that contagion may only

happen on an average level rather than at all quantiles. We conclude that no contagion

in the mean correlation does not imply no contagion in the other quantiles. Therefore,

when investors and policy makers study the joint behavior of multiple stock returns they

should consider the different quantiles in addition to the average level.

This paper is organized as follows. The next section presents our model setup and

compares it to other models in the literature. In Section 3, we derive the symmetric test as

a preliminary of the contagion test. The contagion test procedure is performed in Section

4. We conduct Monte Carlo experiments in Section 5, and provide the empirical analysis

in Section 6. Finally, Section 7 concludes.
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2 Model Setup

To simplify the model without loss of generality, we only consider the relationship be-

tween two asset markets. Following Dungey et al. (2005a) we denote the asset returns

of country 1 over the tranquil period as x1,t and the asset returns of country 2 over the

tranquil period as x2,t. We also denote the two countries’ asset returns in the turbulent

period as y1,t and y2,t. Then the relationship between the two asset returns in each regime

follows

x2,t = α0 + α1x1,t + ηx,t, (2.1)

y2,t = β0 + β1y1,t + ηy,t, (2.2)

where α1 and β1 capture the degree of the influence of country 1’s asset returns on those

of country 2 over the tranquil and volatile periods, respectively, and ηx,t and ηy,t are cor-

responding i.i.d. innovations. This is the standard static setup in the literature (see, for

example, Dungey et al., 2005), and it assumes that the observations are serial uncorre-

lated. Later, we shall relax this assumption and incorporate the dynamic feature, at least

to some extent, by including lagged variables.

From (2.1) and (2.2), it can be easily checked that contagion is not detected if α1 = β1,

that is, if country 1’s returns have the same effect on country 2’s during non-crisis and

crisis periods. In contrast, if α1 < β1, then country 2 is tied to country 1 to a larger extent

in the volatile periods, and thus we find the occurrence of contagion. Therefore, the null

and alternative hypotheses for testing for contagion are, respectively,

H0 : α1 = β1 and HA : α1 < β1.

The test can be performed based on the sample (mean) correlation of the two asset re-
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turns in two regimes, which are denoted by ρ̂x and ρ̂y, respectively (King and Wadhwani,

1990; Forbes and Rigobon, 2002)

ρ̂x =
σ̂x,12
√

σ̂2
x,1σ̂

2
x,2

= α̂1
σ̂x,1

σ̂x,2
, ρ̂y =

σ̂y,12
√

σ̂2
y,1σ̂

2
y,2

= β̂1
σ̂y,1

σ̂y,2
,

where σ̂x,i and σ̂y,i denote the standard error of country i’s asset returns in the non-crisis

and crisis periods, respectively. Interestingly, Forbes and Rigobon (2002) showed that

the sample correlation is biased in the sense that ρy > ρx even when α1 = β1 because of

σy,1 > σx,1. To avoid a spurious test, they proposed an adjusted estimator of ρy

ν̂y =
ρ̂y

√

1+ (
σ̂2

y,1−σ̂
2
x,1

σ̂2
x,1

)(1− ρ̂2
y)

.

Thus, the null hypothesis of the test is H0 : ρ̂x = ν̂y, and it can be tested using the t statistic

FR =
ν̂y − ρ̂x
√

1
Tx
+

1
Ty

,

where Tx and Ty are the numbers of observations in the tranquil and turmoil regimes,

respectively. The asymptotic variance of the estimator ν̂y − ρ̂x is approximated by Tx +

Ty under the assumption of independence. Forbes and Rigobon (2002) proposed three

alternative forms of the FR test to improve the asymptotic approximation using Fisher’s

Z-transformation

FR1 =

1
2 ln ry −

1
2 ln rz

√

1
T2−3 +

1
T−3

, FR2 =

1
2 ln ry −

1
2 ln rx

√

1
T2−3 +

1
T1−3

, FR3 =

1
2 ln ry −

1
2 ln rz

√

1
T1−3 −

1
T−3

.

where ry := (1+ ν̂y)/(1− ν̂y), rz := (1+ ρ̂z)(1− ρ̂z), and rx := (1+ ρ̂x)(1− ρ̂x).

Note that α1 and β1 coincide with the adjusted correlations ρx and νy if we scale the

asset returns of the individual countries in (2.1) and (2.2) by their corresponding standard
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deviations of the tranquil period σx,1 and σx,2, respectively. Thus, we can test contagion

using the regression coefficients α1 and β1.

Next, we consider the following pooled regression model proposed by Dungey et al.

(2005a)

z2,t = γ0 + γ1dt + γ2z1,t + γ3z1,tdt + ηt, (2.3)

where zi,t = (xi,1, xi,2, . . . , xi,Tx , yi,1, yi,2, . . . , yi,Ty)
′, i = 1, 2, and dt is the dummy variable such

that dt = 1 for the volatile period and dt = 0 otherwise. Note that γ3 is identical to β1−α1 in

(2.1) and (2.2). Thus, the contagion test is simplified to test whether γ3 is larger than zero.

Moreover, (2.3) can generalize the contagion test by allowing multivariate countries. The

hypotheses for testing contagion in the pooled equation are

H0 : γ3 = 0 and HA : γ3 > 0.

Considering the possibility of serial dependent innovations, the above models (2.1),

(2.2), and (2.3) can be readily extended by adding lagged variables:

x2,t = α0 +

kx
∑

j=0

α1, jx1,t− j +

kx
∑

l=0

α2,lx2,t−l + ǫx,t,

y2,t = β0 +

ky
∑

j=0

β1, jy1,t− j +

ky
∑

l=0

β2,ly1,t−l + ǫy,t,

and

z2,t = γ0 +

k
∑

i=0

γ1,idt−i +

k
∑

j=0

γ2, jz1,t− j +

k
∑

q=0

γ3,qz1,t−qdt−q + ǫt, (2.4)

where ǫx,t, ǫy,t and ǫt are i.i.d innovations. The hypotheses also expand to test γ3,0 = γ3,1 =

. . . = γ3,k = 0 jointly. The main purpose of introducing the lagged variables is to emphasize

the dynamic structure in which the present asset returns are not only determined by the

present quantities of another market, but are also affected by its previous values. One can
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further extend this framework by considering autoregressive conditional heteroscedastic

(ARCH) errors. Then the estimation and testing procedure should be adjusted; see, for

example, Koenker and Zhao (1996). We leave this generalization for the future research.

3 Quantile Regression Model

Both (2.3) and (2.4) aim at describing the relationship between the stock returns based on

the conditional mean process. However, considering the fact that time series data might

exhibit different behavior across quantiles, the methods described in Section 2 cannot pro-

vide complete information on the data distribution, and they fail to capture heterogeneity

across quantiles. More specifically, the relationship between the two stock returns may

remain the same during the non-crisis and crisis periods on average but vary at some

quantiles. To model such heterogeneity, we consider the quantile version of (2.3)

Qz2,t (τ|xt) = γ0(τ) + γ1(τ)dt + γ2(τ)z1,t + γ3(τ)z1,tdt. (3.1)

where Qz2,t(τ|xt) denotes the τ-conditional quantile function of country 2’s asset returns,

τ ∈ (0, 1) is a fixed value and xt = (1, dt, z1,t, z1,tdt). By letting τ vary from 0 to 1 continu-

ously, we can trace out the conditional distribution of country 2’s asset returns given the

information on country 1’s asset returns. Model (2.3) allows the interaction between the

two countries’ asset returns to differ over quantiles, and thus the contagion test based on

quantile regression (2.3) can examine the occurrence of contagion at different quantiles.

For example, a significant γ3 at lower quantiles means that the association between the

two countries’ markets is enhanced when country 2’s market is in a decline.

More importantly, the estimated coefficient of the quantile regression (3.1) is related
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to quantile correlation, which can be considered a quantile version of the mean correla-

tion. To demonstrate this, we start with the definition of “quantile uncorrelation” recently

proposed by Komarova et al. (2012). Extending Komarova et al. (2012), quantile uncorre-

lation between two l-dimensional random vectors y and x can be defined as

M(cy, x) = 0 for all c ∈ Rl,

where

M(cy, x) := arg min
β

Eρτ
[

cy − x′β −Quant(cy − x′β)
]

and Quant(cy − x′β) := inf{u : P(cy − x′β ≥ u) ≥ τ} for a given τ. If we consider the

conditional quantile function of y in a bivariate regression model with i.i.d. errors

Qy(τ|x) = β0 + x′β1 + F−1
u (τ),

the solution to the optimization problem

{α̂(τ), β̂1(τ)} = arg min
α,β

Eρτ
(

y − α − x′β
)

estimates the population parameters (β0+F−1
u (τ), β1) for a given τ. Note that β̂1(τ) is equiv-

alent to M(cy, x) in the sense that β̂1(τ) = 0 implies M(cy, x) = 0 because of the invariance

property. Thus, we may say that the estimated coefficient of the quantile regression is an

indicator of quantile correlation (but not a direct measure).

Next, we examine how the quantile regression coefficient is related to the quantile

correlation. Komarova et al. (2012) used the L1 analogue of R2 as a measure of median

correlation. It takes a value of zero when y is median uncorrelated with x. Extending the

median correlation, we follow Koneker and Machado (1999) and measure the quantile

correlation using

quanrsq(y, x) := 1−
minβ Eρτ(y − x′β − F−1

û )

minβ Eρτ(y − F−1
ũ )

,
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where û = y − x′β and ũ = y. According to Theorem 3.3 in Komarova et al. (2012) if

β = 0 then quanrsq(y, x) = 0. Hence, the regression quantile reflects the degree of quantile

correlation even though it is a direct measure. In our case, if we find that γ3(τ) = 0 for a

given τ, namely α1(τ) = β1(τ), then we can infer that the quantile correlations of the two

countries’ stock returns are similar, and there is thus no quantile contagion.

The conditional quantile function Qz2,t (τ|xt) can be estimated by γ̂(τ) = [γ̂0, γ̂1(τ), γ̂2(τ), γ̂3(τ)]

which solves the following minimization problem

min
γ∈R4

T
∑

t=1

ρτ
[

z2,t − γ0(τ) − γ1(τ)dt − γ2(τ)z1,t − γ3(τ)z1,tdt

]

, (3.2)

where ρτ(ηt) = ηt[τ − I(ηt < 0)] and I(ηt < 0) is an indicator function (Koenker and Bassett,

1978). This is equivalent to maximizing the log-likelihood function (ML) of (2.3)

ln L(γ, τ) = T ln τ(1− τ) −
T
∑

t=1

ρτ(z2,t − γxt), (3.3)

assuming that ηt follows the asymmetric Laplace density (ALD)

f (ηt, σ, γ) =
1
σ
τ(1− τ) exp

[

−
1
σ
ρτ(z2,t − γxt)

]

,

with σ = 1 and fixed τ ∈ (0, 1).

In this likelihood framework, we can conveniently derive the score tests for quantile

regression. Moreover, the likelihood approach enables us to consider the quasi maximum

likelihood estimation (QMLE), which leads to robust estimates under distributional mis-

specification. Bera et al. (2008) showed that the quasi-maximum likelihood estimator γ̂

converges to the normal distribution as

√
T (γ̂ − γ0)

d
−→ N
(

0,V−1
2 V1V−1

2

)

where

V1 := E
[ 1
T

(∂ ln L(γ, τ)
∂γ

)

·
(∂ ln L(γ, τ)

∂γ

)′]

γ=γ0
, V2 :=

∂2E
[

1/T ln L(γ, τ)
]

∂γ∂γ′

∣

∣

∣

∣

γ=γ0

.
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The expectations in V1 and V2 are taken with the true density function.

4 Quantile Symmetric Test

We first test the coefficient of the quantile regression with the two-sided alternative hy-

pothesis, that is, H0 : γ3 = 0 against HA : γ3 , 0, and we call this the quantile symmetric

test (QS T ). We use Rao’s score test based on the likelihood function (3.3) because it is

not affected even if parameters might lie on the boundary of the maintained hypothesis.

In addition, it is computationally easier than the Wald and likelihood ratio tests in many

cases since it only requires the restricted estimator under the null hypothesis. We start

with four necessary assumptions:

A1: f (ηt, γ) is measurable in ηt for every γ in a compact set Γ and continuous in γ for

every ηt.

A2: | log f (ηt, γ)| ≤ m(ηt) for every γ where m(ηt) is integrable with respect to the true

density distribution G(ηt).

A3: J̃ := 1
T

∑[

∂ln f (ηt, γ)/∂γ
]

·
[

∂ln f (ηt, γ)/∂γ
]′

and K̃ := 1
T

∑

−∂2ln f (ηt, γ)/∂γ∂γ′ exist and

are continuous in γ and E(supγ |J̃|) < ∞, E(supγ |K̃|) < ∞.

A4: The Kullback-Leibler information criterion (KLIC),I(g, f , γ) := E(log[g(ηt)/ f (ηt, γ)]),

reaches its unique minimum γ∗ interior to the parameter space Γ.

A1 ensures the existence of QMLE and a well-defined KLIC is guaranteed by A2. Both

f (ηt, γ) and ∂ log f (ηt, γ)/∂γ are continuous and differentiable except at the points where

ηt = 0; however, they have directional derivatives in all directions at these points (Koenker
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(2005) pp. 32–33). Therefore, A3 is satisfied to allow the application of the uniform law of

large numbers to J and K.

It is well known that when the true data generating process (DGP) deviates from the

assumed distribution that we assume, the standard Rao’s score statistic RS = s(γ̃)′K(γ̃)−1s(γ̃)

is not valid because a distribution misspecification would lead to breaks in information

matrix equality, that is, J(γg) , K(γg), where

J(γg) = Eg

[∂ln f (γ)
∂γ

·
∂ln f (γ)
∂γ′

]

and K(γg) = Eg

[

−
∂2ln f (γ)
∂γ∂γ′

]

.

White (1982) suggested modifying the standard Rao’s score test with asymptotic ro-

bust variance to ensure proper size. Then, under A1–A4, the score test under misspecifi-

cation is

RS ∗ =
1
T

s′(γ̃)′K(γ̃)−1H(γ̃)[H(γ̃)′V(γ̃)H(γ̃)]−1H(γ̃)′K(γ̃)−1s′(γ̃), (4.1)

where γ̃ is the restricted estimator under the null hypothesis, H(γ̃) = ∂h(γ)/γ′ where

h(γ) denotes the restrictions, and V(γ̃) = K(γ̃)−1J(γ̃)K(γ̃)−1. The modified score test RS ∗

is asymptotically distributed as χ2
q under H0 even in presence of misspecification, where

q is the number of restrictions.

To test H0 : γ3 = 0 against HA : γ3 , 0, we partition the parameter vector γ′ as (γA, γB)′,

where γA = (γ0, γ1, γ2) is the nuisance parameters and γB = γ3 is the parameter of interest.

Under the null hypothesis, the QMLE for γ is γ̃ = (γ̃A, 0)′.

Using the likelihood function (3.3), the score vector, J(γ), and K(γ) under the null

hypothesis can be obtained consistent with the partition by

s(γ̃) =
(

0, sB(γ̃)′
)

=

(

0,
T
∑

t=1

(
1
2

sgn(ξt) + τ −
1
2

)z1,tdt

)

,

J(γ̃g) = τ(1− τ)E
∗[x′x], K(γ̃g) = E∗[g(ξ)x′x],
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where ξt = z2,t − γ̃0 − γ̃1dt − γ̃2z1,t denotes the residual in the restricted model, E∗[s] =

limt→∞
1
T

∑T
t=1 st and xt = (1, dt, zt, ztdt). The restriction h(γ) = γ3 leads to H(γ̃) = ∂h(γ)/γ′ =

(0, 0, 0, 1).

For notational simplicity, we drop the arguments and let ‘∼’denote the quantity eval-

uated at γ = γ̃; then

s(γ̃)′K−1(γ̃)H(γ̃) =
(

0′ sB(γ̃)
)

















K̃AA K̃AB

K̃BA K̃BB

































0

1

















= s̃′BK̃BB,

and the sandwich variance Ṽ in (4.1) can be computed by

Ṽ =

















K̃AA K̃AB

K̃BA K̃BB

































J̃AA J̃AB

J̃BA J̃BB

































K̃AA K̃AB

K̃BA K̃BB

















,

where the subscript represents the partition of the matrix and the superscript denotes the

corresponding element in its inverse matrix; for example

K̃ =

















K̃AA K̃AB

K̃BA K̃BB

















and K̃−1
=

















K̃AA K̃AB

K̃BA K̃BB

















.

In addition, H̃′ṼH̃ in (4.1) can be obtained in a similar fashion

H̃′Ṽ H̃ =
(

0, 1
)

















ṼAA ṼAB

ṼBA ṼBB

































0

1

















= ṼBB.

With every parameter estimated, the symmetry quantile score test is summarized by the

following proposition.

Proposition 1 Under A1–A4, the robust Rao’s score test in the quantile regression is

RS s =
1
T

s̃′BK̃BB
(

K̃ABK̃BA J̃AA + K̃ABK̃BB J̃BA + K̃BBK̃BA J̃AB + K̃BBK̃BB J̃BB

)−1

BB
K̃BB s̃B. (4.2)

It asymptotically follows χ2
q under the null hypothesis where q is the number of restrictions, and it

is invariant to the scaling transformation.
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The proof of invariance to the scaling transformation follows directly from the equivari-

ance in quantile regression (see the Appendix). The invariance property suggests a direct

test procedure for contagion simply with the usage of unscaled parameters instead of

scaled ones.

5 Quantile Contagion Test

Since contagion is defined as γ3 > 0 in (2.3), the one-sided nature of the alternative hy-

pothesis should be taken into account to obtain a more appropriate test. In this section,

we derive the quantile one-sided test (QOT ) for testing the financial contagion.

One major difference between the one-sided and two-sided tests is their asymptotic

distributions under the null hypothesis. Like the Wald and likelihood ratio tests with a

one-sided alternative, the one-sided score test no longer asymptotically follows the χ2 dis-

tribution but the mixture of χ2 distribution. One advantage of the score test over the Wald

and likelihood ratio tests is that its one-sided nature under the alternative hypothesis can

be ignored since only the restricted model needs to be estimated under the null hypothe-

sis. To ensure the limiting distribution of the efficient score test under the null hypothesis,

an additional regularity condition should be satisfied (Gourieroux et al., 1982)

A5: There exists a non-singular matrix J(γ) such that 1
√

T
s(γ) follows a normal distribu-

tion with variance J(γ).

Given the asymptotic normal distribution of score vector 1
√

T
J−1s(γ) ∼ N

(

ι, J−1(γ)
)

under

the sequence of hypotheses HT : γ3 = T−1/2ι, the one-sided score test for H0 : γ3 = 0 against

HA : γ3 > 0 can be implemented equivalently by performing a likelihood ratio test for
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H0 : ι = T 1/2γ3 = 0 against HA : ι = T 1/2γ3 > 0 since γ3 > 0 is equivalent to ι > 0 (Silvapulle

and Silvapulle, 1995). The likelihood ratio test statistic or χ̄2-statistic for ι = 0 against ι > 0

was proposed by (Kudo, 1963)

χ̄2
= T
{

X̄′Λ−1X̄ −min
µ>0,

(X̄ − µ)′Λ−1(X̄ − µ)
}

, (5.1)

where X̄ = T−1/2
Λ
−1d. Here d is the realization of ι with the asymptotic distribution

T−1/2
Λ
−1d ∼ N(ι,Λ−1) and Λ is the known non-singular variance matrix. With the equiv-

alence of the likelihood ratio test and the score test, we can perform the one-sided score

test with a similar procedure to that of the likelihood ratio test according to (5.1). Let-

ting γ = (γA, γB), the matrices M =
1
√

T
(sB − KBAK−1

AAsA) and U = KBBM evaluated at

restricted MLE γ̃ can be estimated by M̃ =
1
√

T
(s̃B − K̃BAK̃−1

AA s̃A) and Ũ = K̃BBM̃. Since

1
√

T
J(γ)−1s(γ) ∼ N

(

ι, J(γ)−1
)

, it follows that M is also normally distributed with variance

C = JBB − KBAK−1
AAJAB − (JBA − KBAK−1

AAJAA)(K−1
AA)′K′BA under the null hypothesis. Then, for a

given ι > 0 the asymptotic normality of U under HT : γ3 = T−1/2ι can be obtained by

U
d
−→ N(ι,VBB).

With the parameters readily estimated, the one-sided score test statistic in our model

is given in the following proposition

Proposition 2 Under A1–A5, the one-sided robust score test in the quantile regression can be

obtained as

RS c = Ũ′Ṽ−1
BBŨ − inf

b>0

{

(Ũ − b)′Ṽ−1
BB(Ũ − b)

}

(5.2)

which asymptotically follows the mixture chi-square under the null hypothesis.

Since V is nonsingular, symmetric, and positive definite, we can find a non-singular ma-

trix T to transform V into a unit matrix—say TVT ′ = I. By multiplying the same matrix T ,
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U converts to the uncorrelated matrix Q = TU, and therefore U′Ṽ−1
BBU reduces to a square

form Q′Q. In addition, the minimum inf b>0

{

(Ũ − b)′Ṽ−1
BB(Ũ − b)

}

can be thought of as the

distance between the point of vector Q and a cone, and thus the geometric intuition be-

hind the statistics in (5.2) is the difference between the square length of a vector Q′Q and

the distance from a point in this vector to a closed convex cone (Kudo, 1963).

The asymptotic distribution of the test statistic can be studied via the asymptotic p-

value, which can be obtained by supγA
ζ(RS c,V(γA),C ), where C denotes the set of positive

real numbers and

ζ(RS c,V(γA),C ) = Prob
(

[

U′V−1
BBU − inf

b>0

{

(U − b)′V−1
BB(U − b)

}

]

> RS c

)

.

As an extension of the work by Perlman (1969), the asymptotic p-value supγA
ζ(RS c,V(γA),C )

lies in the interval between the lower bound 0.5Prob(χ2
1 > RS c) and the upper bound

0.5
[

Prob(χ2
q−1 > RS c) + Prob(χ2

q > RS c)
]

, where q is the dimension of the restricted vec-

tor (see also Silvapulle and Silvapulle (1995)). The statistic in (5.2) follows a mixture of

chi-squared distribution as

Prob
(

χ̄2
> c
)

=

q
∑

i=0

wi,qProb
(

χ2
i > c

)

,

where wi,q, (i = 0, 1, . . . , q) are the nonnegative weights determined by the nuisance pa-

rameter γA. The weights can be calculated by

wi,q(q,V) =
∑

|α|=i

p{(Vα′)
−1}p{Vα,α′},

where the summation extends over the nonempty subsets α of {1, 2, · · · , q}, Vα is the corre-

sponding variance matrix of normal vector Ui, i ∈ α, Vα,α′ is the same under the condition

U j = 0 for j < α, and p{V} denotes the probability of the multivariate normal vector U

larger than 0 with the distribution U ∼ N(0,V) (Kudo, 1963).
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In the pooled regression model (2.3), U is a scalar for the single constraint γ3 = 0;

therefore, q = 1 in this model. The weights can be obtained by

w0,1(V) = w1,1(V) = 0.5.

Note that RS c(τ) is a function of τ and the weights are not dependent on γA. Hence, the

“supγA
” in calculating the p-value can be ignored and the p-value varies for different τ as

sup
γA

ζ(RS c(τ), A(γA),C ) = sup
γA

Prob
(

[

U′A−1
BBU − inf

b>0

{

(U − b)′A−1
BB(U − b)

}

]

> RS c(τ)
)

.

= 0.5Prob
(

χ2
1 > RS c(τ)

)

.

Further computation is required in the case of the dynamic model in (2.4). If we con-

sider the model with one lagged variable

z2,t = γ0 + γ1,0dt + γ2,0z1,t + γ3,0z1,tdt + γ1,1dt−1 + γ2,1z1,t−1 + γ3,1z1,t−1dt−1 + ǫt, (5.3)

we need to test the hypothesis H0 : γ3,0 = 0, γ3,1 = 0 with the alternative hypothesis

HA : γ3,0 > 0, γ3,1 > 0. Therefore, q = 2 in the dynamic model (5.3). In this case, the weights

can be calculated by

w0,2(V) = 0.5π−1(π − cos−1 ρ1,2),

w1,2(V) = 0.5,

w2,2(V) = 0.5π−1 cos−1 ρ1,2.

where ρi,q is given by the (i, q)th element of the correlation matrix of U:

[

diag(U)−1
]− 1

2 (U)−1
[

diag(U)−1
]− 1

2
.

Different from the weights in the static model, the weights here are functions of γA,

namely wi,q(γA), with the intermediate parameter V . Hence the p-value can be obtained
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by optimizing the probability with γA carried by the weights

sup
γA

Prob
(

[

(U)′(V)−1
BB(U) − inf

b>0

{

(U − b)′(V)−1
BB(U − b)

}

]

> RS c(τ)
)

= sup
γA

2
∑

i=0

wi,2(γA)Prob
(

χ2
i > RS c(τ)

)

where χ2
i denotes the chi-square distribution with i degrees of freedom.

6 Monte Carlo Simulation

In the simulation we mainly focus on the comparison of the proposed quantile tests and

the correlation-based FR tests. FR tests are mostly popular for testing financial contagion

because they are based on the most popular definition of contagion, are easy to imple-

ment, and have better performance in most cases. Our quantile contagion can be thought

as a quantile version of correlation-based tests, and therefore this comparison is of par-

ticular interest. More comparison between contagion tests can be found in Dungey et al.

(2005a,b).

6.1 Simulation Design

The experiment design follows the setup of Dungey et al. (2005b) in which asset returns

in non-crisis and crisis structures are determined by common factors wt together with

idiosyncratic factors ut (see also Pericoli and Sbracia (2003)). The common factors describe

the fundamental elements that determine the average level of asset returns worldwide,

while the idiosyncratic component captures the unique factor that differs from individual

markets. In our experiments, we study the interrelationship of two asset markets using
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observations during tranquil and volatile periods. Stock market contagion is defined as

transmission from country 1 to country 2. We model the non-crisis linkage as

x1,t = 4wt + 2u1,t, (6.1)

x2,t = 3wt + 4u2,t, (6.2)

where wt = ρwt−1 + uw,t, uw,t ∼ N(0, ht), ht = ω
2
x(1 − α − β + αu2

w,t−1 + βht−1), and ui,t ∼ Gx(ui,t)

for some distribution Gx(·). This setup allows for autocorrelation as well as a GARCH

structure in the common factor. The parameter ρ reflects the degree of autocorrelation

while α and β jointly control the GARCH process with time varying variance. In addition,

ωx determines the variance of the common factor, and it can shift during the tranquil and

volatile periods to generate the common factor structural break. The crisis model is an

extension of the non-crisis framework of (6.1) and (6.2) that adds country 1’s idiosyncratic

factor to the country 2’s asset return y2,t.

y1,t = 4wt + 2u1,t, (6.3)

y2,t = 3wt + 3u2,t + 2δu1,t, (6.4)

where wt = ρwt−1 + uw,t, uw,t ∼ N(0, ht), ht = ω
2
y(1 − α − β + αu2

w,t−1 + βht−1), ui,t ∼ Gy(ui,t) and

δ denotes the contagion strength. For the distribution of idiosyncratic factor Gi, i = x, y,

three distributions are considered: (i) the normal distribution, (ii) Student’s t distribution

with degree of freedom 31, and (iii) Hansen (1994)’s skewed t distribution.

In our experiment design, the two markets are relatively uncorrelated with indepen-

dent idiosyncratic factors in the tranquil period. However, during the crisis period, coun-

try 1’s idiosyncratic factor affects country 2’s asset returns, increasing the correlation be-

1We also perform the experiment under Student’s t distribution with degrees of freedom five and seven.

The results are substantially unchanged.
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tween the two countries. We consider various characteristics of the data, such as the

GARCH process, no autocorrelation data, weak autocorrelation data, strong autocorre-

lation data and data with a structural break. Two structural breaks are studied: (1) a

structural break in the world factor wt, which is generated by changing ω, and (2) a struc-

tural break in the idiosyncratic factor, which is generated by changing the variance of the

idiosyncratic factor in different periods. When G is normally distributed, ui,x ∼ N(0, κ2
x)

and ui,y ∼ N(0, κ2
y), the idiosyncratic structural break comes from the deviation between κx

and κy. When G follows Student’s t distribution, the idiosyncratic break is generated by

changing the degree of freedom. For the skewed t distribution, we use Hansen (1994)’s

generalized t distribution (see also Jondeau and Rockinger (2003))

u(m|υ, φ) =































c
(

1+ 1
υ−2

( m
1−φ

)2
)(υ+1)/2

if m < −a/b,

c
(

1+ 1
υ−2

( m
1+φ

)2
)(υ+1)/2

if m > −a/b,

(6.5)

where c ≡ Γ
[

(υ+1)/2
]

/
[
√
π(υ − 2)Γ(υ/2)

]

normalizes function u(·) as a p.d.f. with the mean

4φc(υ − 2)/(υ − 1) and variance 1 + 3φ2 − a2 (Jondeau and Rockinger, 2003). The scaling

parameter υ, interpreted as the order of moment, characterizes the height and tail of the

distribution, while φ controls the skewness of the distribution. Based on (6.5), we can

generate the break by changing either φ or υ.

Although the model (6.1)–(6.4) is a typical way of generating contagion (Dungey et al.,

2005a,b), we can show that under some specific parameterization the mean correlation

decreases as contagion strength δ increases. This can be seen in Figure 1, and a mathe-

matical derivation is given in the Appendix. In this case, correlation-based tests would

incorrectly report no contagion. Therefore, we compare our quantile contagion with FR

tests in two scenarios when correlation increases and when correlation decreases as conta-

gion strengthens. In the following, we call these "increasing correlation" and "decreasing

20



correlation" for short. The decreasing correlation scenario can be generated by choosing

a smaller variance of the idiosyncratic factor than that of the common factor.2

[Figure1, Table1]

The whole sample period T is taken by 200, 500 and 1000 with sample sizes of 100,

250, and 500 of returns in the crisis period respectively. We let δ vary in a range from 0

to 12, and each experiment is duplicated 3000 times. The parameterization in both the

increasing and decreasing correlation cases is given in Table 1.

6.2 Size Property

Tables 2 and 3 report the size of the QS T , QOT , and FR tests in the increasing and de-

creasing correlation cases. Each of the experiments are based on critical values of 5%. We

first consider the increasing correlation case. In this case, FR1 is always undersized in all

experiments, which implies that the null hypothesis of no contagion is over accepted. The

poor size property of FR1 may be due to the inappropriate assumption of independence

between the non-crisis and crisis samples in its asymptotic variance. Thus, we focus on

comparing QS T and QOT with FR2 and FR3 in the following. FR2 and FR3 are compet-

itive with QS T and QOT in the normal distribution case, but not in the Student’s t and

skewed t cases. The four test statistics exhibit good size properties in most experiments

of the normal distribution except for Experiments I and IV. We note that oversize of all

the tests in Experiment IV of common the structural break may be because an increase in

the volatility of the common factor leads to a higher degree of similarity between the two

2The GARCH experiments with decreasing correlation are implemented by generating an idiosyncratic

factor with a smaller amplitude than the common factor.
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markets even though the contagion does not occur. Under the Student’s t distribution,

FR2 yields relatively good size performance in most experiments except for Experiments

IV and V (structure break), and the size of FR3 is inflated in most cases. Compared to the

FR tests, QS T and QOT maintain better size conduction in most of the experiments. The

results under the skewed t distribution are very similar to the Student’s t case in that QS T

and QOT generally beat the FR tests. We thus conclude from the above results that QS T

and QOT perform better than all forms of FR in terms of size when the data distribution

is generated with fatter tail and skewness.

Although the size of FR2 and FR3 is comparable to QS T and QOT in the increasing

correlation case, it is heavily dominated by our quantile tests in the decreasing correlation

case, as reported in Table 3. FR1 remains severely undersized for all experiments. FR2

and FR3 have an undesirable size property in most of the experiments when we have

decreasing correlation. For example, under the normal distribution the size of FR2 is less

than 0.020 in all experiments, and FR3 has an oversized value in Experiments I, II and III.

Under the skewed t distribution, FR2 and FR3 tend to be oversized in most experiments.

In contrast, QS T and QOT report much better size properties for all experiments. For most

experiments, the best size performance of QOT occurs for τ ∈ (0.3, 0.7) except Experiment

IV and V.

[Table2, Table3]

6.3 Power Property

The finite sample power property, which reflects the efficiency of contagion detection, is

reported in Figures 2–4. Each of the experiments are based on critical values of 5%.
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We consider the increasing correlation case. The highest power property of QOT ap-

pears in the median (0.5 quantile), and the power decreases when the quantile goes to

two extremes. FR2 and FR3 show a good power property, which is consistent with the

results in Dungey et al. (2005b). Among the three forms of FR tests, FR2 exhibits the best

power property in all experiments, and FR2 even beats the quantile tests the under the

normal distribution case (Figure 2). This shows the importance of correctly specifying

that the non-crisis and crisis periods should be separated to satisfy the independence.

Comparing the power of the FR tests to that of QOT at the 0.5 quantile, we see that QOT

is superior to FR1 and FR3 but not to FR2 in the normal case. However, when we consider

the Student’s t and skewed t cases where the data are characterized by a fatter tail and

higher peak, quantile tests are shown to have better power than FR tests. Since financial

data are mostly non-normally distributed, these cases are of more practical interest. For

example, under Student’s t distribution QOT beats all FR tests in all experiments.

We next compare the tests in the decreasing correlation case. In this case the quantile

tests show particular superiority. All forms of the FR tests fail to capture the contagion

when the contagion strength δ rises (Figures 2– 4), and none of their powers are mono-

tonically increasing with δ. For example, FR1 and FR2 diminish to zero when δ exceeds

8 in Experiments I, II, III, and IV under the normal distribution (Figure 2). In contrast,

the power of QOT remains monotonically increasing, although it is less powerful than in

the increasing correlation case. Under the Student’s t distribution, the FR tests behave

differently from the normal cases (Figure 3). When δ increases from 0 to 2, the FR tests

have increasing power, but the power drops when δ exceeds 2. Similar behavior of the

FR tests is found under the skewed t distribution. However, in all cases QOT produces

monotonically increasing power as δ increases.
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[Figure2, Figure3, Figure4]

Based on the above comparison, we conclude that the proposed quantile tests (QS T

and QOT ) generally produce better size and power properties than FR tests, especially

when the data are skewed and leptokurtic. Moreover, correlation-based tests may fail to

capture contagion when it occurs not in the mean, and our quantile contagion test QOT

works well and is therefore particularly useful in this case. In this sense, QOT is more

robust than the FR tests.

7 Empirical Analysis

We evaluate our quantile contagion tests and correlation-based FR tests using three real

data sets. We reexamine whether contagion existed in the 1994 Tequila crisis, the 1997

Asian crisis, and the 2001 Argentine crisis.

Before Forbes and Rigobon (2002) the literature using correlation-based tests had gen-

erally concluded that cross-market correlation increased significantly during crises, and

that there was contagion in these crises. Forbes and Rigobon (2002) pointed out that previ-

ous correlation-based tests were upward biased and inaccurate because of heteroscedas-

ticity, and they proposed adjusted tests (FR tests) to overcome spurious contagion prob-

lems. They found that only a small proportion of transmission channels were significant

in the 1987 U.S. market crash, the 1994 Tequila crisis, and the 1997 Asian crisis. Thus they

found no strong evidence of contagion in these crises, only interdependence. However,

we argue that the results of the FR tests should be interpreted with caution since they only

indicate the relationship at an average level. We will compare the quantile contagion with
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the FR tests.

The simulation analysis has shown that among the three forms of FR tests FR2 gener-

ally possesses the best finite sample properties.3 Therefore our empirical analysis will fo-

cus on comparing FR2 and quantile contagion test QOT . The stock market returns of each

country are calculated as rolling-average two-day returns based on the aggregate stock

market index.4 All the test statistics are considered under a bivariate framework; that is,

we only consider the transmission of volatility between two countries. Before we evalu-

ate all the tests, we take the preliminary step of extracting the residual from the bivariate

VAR process for the two countries with one lag over the full sample periods to exclude

any common factor in the data. We perform our proposed tests, QOT for τ ∈ [0.05, 0.95],

and the significance level is set at 5% for all cases.

7.1 1997 Asian Crisis

In June 1997 a financial crisis broke out in Asia, causing great devastation in Asia’s finan-

cial markets. The Thai baht has experienced substantial depreciation following the Thai

government’s proposal of a floating exchange rate policy on June 2, 1997. At first, only

certain southeastern Asian countries, such as Malaysia and Indonesia, appeared to be

affected. However, after Hong Kong’s market crashed in mid-October, other Asian coun-

tries and even some Western countries appeared to be involved in this crisis. Thus, we

include the stock returns of nine countries in this analysis: Japan, South Korea, Malaysia,

Thailand, Hong Kong, the Unite States, Germany, the Unite Kingdom, and Australia. The

indices cover a span of one year and eight months from January 1, 1997 to August 31,

3FR2 and FR3 are largely similar, and FR2 beats FR3 in most cases.
4The daily returns are also adjusted for weekends and holidays
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1998 with a sample size of 436.5 Figure 5 provides time series plots of the stock return

rates of some countries in the Asian crisis, from which we note an obvious increase in

the volatility of the return rates after October 20, 1997. Accordingly, the entire sample

is divided into a tranquil period from January 1, 1997 to October 19, 1997 and a turmoil

period from October 20, 1997 to August 31, 1998.

[Figure 5]

Table 4 presents the descriptive statistics and some preliminary tests. All the series are

asymmetrically distributed: the returns of Hong Kong, South Korea, Malaysia, Japan, and

Thailand are positively skewed, while the returns of the Unite States, the Unite Kingdom,

Australia, and Germany are negatively skewed. Some series show excess kurtosis, includ-

ing Hong Kong, Malaysia, the Unite States, and Australia, indicating a higher probability

of the existence of extreme-valued returns. The non-normal characteristics are confirmed

by the Jarque–Bera test. The results of the Ljung–Box test indicate that the stock returns

of Hong Kong, South Korea, Japan, the Unite Kingdom, Germany, and Thailand exhibit

significant autocorrelations with lag = 5. The ARCH LM test shows that all the countries

except Malaysia have significant ARCH effects with lag = 5. These observations suggest

that the real data are highly non-normal, and therefore, a simulation design with excess

skewness and kurtosis, autocorrelation, and ARCH effects is of more practical interest.

[Table 4]

Tables 5 and 6 report the intercorrelation among the nine stock markets, and we can

see that the intercorrelation increases significantly in the crisis period except for between

5The data exclude the holidays and missing values
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Hong Kong and South Korea. Therefore, if we only consider intercorrelation, we would

tend to conclude the existence of contagion in the Asian crisis. However, Forbes and

Rigobon (2002) pointed out that the intercorrelation is conditional, and upward biased.

They used adjusted tests based on unconditional correlation and reached the opposite

conclusion of no contagion.

[Table 5, Table 6]

In the following, we compare our tests with FR2 and examine the contagion effect

within and outside of Asian countries.

7.1.1 Within Asia

Figure 6 shows representative transmission channels within Asia between Thailand and

Malaysia, Thailand and Hong Kong, Japan and South Korea, and Japan and Malaysia.

Channels related with Thailand are of interest because it is considered to be the origin of

the Asian crisis, and channels related with Japan are considered since it plays a crucial

role in the Asian economy. More results are available upon request. The graphs in the

upper row give the values of test statistics for τ ∈ [0.05, 0.95]. Since FR2 does not change

over τ, its curve is a straight line in the graph. The graphs in the bottom row give the

p-values of QOT . The quantile contagion test rejects the null hypothesis of no contagion

if the p-values of QOT are under the 5% line, while the correlation-based test FR2 rejects

the null hypothesis when its value is greater than 1.644, the critical value of the one-sided

t-statistic at size 5%. Since we perform all the tests in a bivariate framework, we test the

channels from country 1 to country 2 as well as those from 2 to 1.

We first investigate the channels related with Thailand. QOT reports significant im-
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pacts from Thailand to Malaysia and to Hong Kong at almost all quantiles. This is in line

with the results of the FR2 test. However, the results of the two tests differ in the reverse

transmission. FR2 shows that the contagion from Malaysia to Thailand and from Hong

Kong to Thailand is weakly significant (FR2 ≈ 1.69 and FR2 ≈ 1.80, respectively), while

QOT suggests that the reverse transmission is significant at some specific quantiles. More

precisely, QOT shows that the transmission from Malaysia to Thailand is significant at

quantiles of 0.15, 0.19, 0.2, 0.25, [0.47, 0.86], and [0.91, 0.95]; the transmission from Hong

Kong to Thailand is significant at quantiles of [0.14, 0.67], 0.69, [0.73, 0.76], and [0.84, 0.91].

These results suggest that Thailand’s stock returns are affected by the Malaysian and

Hong Kong markets when they are in a decline (at lower quantiles). We note that QOT

does not conflict with FR2 in the sense that QOT also finds contagion around the median

and mean levels in these transmission channels. However, QOT provides information on

the whole distribution, not only the mean as reported by FR2. Similar results are found

in the transmission channels between Thailand and Korea, and between Thailand and

Japan.

Next, we examine the channels related with Japan. FR2 indicates no contagion from

Japan to South Korea (FR2 ≈ 0.63). QOT confirms that this channel is indeed not sig-

nificant at most quantiles, but it is significant at quantiles from 0.50 to 0.79. This implies

that Japan’s stock returns are relatively unrelated with those of South Korea, but when the

South Korean stock market is in an advance it is significantly correlated with the Japanese

market. For the reverse channel from South Korea to Japan, QOT and FR2 both report no

significant contagion. FR2 and QOT also differ in the transmission channels between

Japan and Malaysia. FR2 reports no contagion from Japan to Malaysia (FR2 ≈ 1.36) or in

the reverse channel (FR2 ≈ 0.67). QOT suggests that contagion from Japan to Malaysia
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exists at quantiles from 0.19 to 0.94 and in the reverse channel at some lower quantiles

(< 0.22) and upper quantiles (> 0.77). The influence from Japan to Malaysia may be due

to Japan’s large investment in Malaysia, but the Malaysian stock market hardly affects

Japan except in some extreme cases.

[Figure 6]

7.1.2 From Asia to the West

The 1997 Asian crisis also affected the Unite States, Australia, and some European coun-

tries. Since Hong Kong and Japan may be the most important financial centers in Asia,

and since they have strong connections with these Western countries, we focus on the

channels related with Hong Kong, Japan, and some Western countries. We present the

results for Japan and the Unite States, Japan and Australia, Hong Kong and the Unite

States, and Hong Kong and the Unite Kingdom in Figure 7.

We first consider the channels related with Japan. FR2 reports no contagion from Japan

to the Unite States (FR2 ≈ 1.58), while QOT suggests significant contagion at some lower

quantiles, 0.07 and [0.1,0.44], and at quantiles slightly above the median, 0.65, 0.67, and

[0.77,0.81]. The reverse impact is also not significant according to FR2 (FR2 ≈ 1.55), but

QOT finds it to be prominent at some lower quantiles, 0.06, [0.08,0.22], and [0.27,0.52].

This implies that the connection between Japan and the Unite States generally increases

when either of the two markets suffers from a sharp drop in the crisis period. For chan-

nels from Japan and Australia, both FR2 and QOT find significant contagion. However,

FR2 detects no contagion in the reverse channel, and QOT finds contagion at quantiles

[0.28,0.6] and [0.72,0.79].
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Next, we study the channels between Hong Kong and the Western countries. FR2

shows no contagion from Hong Kong to the Unite States (FR2 = 0.86), while QOT finds it

to be significant at some upper quantiles from 0.69 to 0.94. Both tests suggest a significant

influence in the reverse channel. This suggests that the U.S. market is more closely related

with Hong Kong’s market when it is in an advance and that the Hong Kong’s market is

significantly affected by the U.S. market most of the times. This is evidence that Hong

Kong is an international financial center and that its market is easily influenced by some

international markets, especially large ones. For the relation between Hong Kong and the

Unite Kingdom, we find similar results. From Hong Kong to the Unite Kingdom, FR2

again reports no contagion (FR2 = 1.111), but QOT detects significant contagion at some

lower (< 0.24) and upper quantiles (> 0.56). From the Unite Kingdom to Hong Kong,

both tests find significant results. The associations between Hong Kong and Australia,

and between Hong Kong and Germany are largely similar. Contagion from Hong Kong

to these countries is detected by QOT at some quantiles but not by FR2, while the reverse

transmission is shown to be significant by both tests.

We note from the empirics that if FR2 finds significant contagion then QOT reports

significant results at most quantiles. However, when FR2 fails to detect any contagion

QOT may report significance at a few quantiles. In general, QOT can detect contagion

that FR2 ignores, especially at lower and upper quantiles, and it does not miss significant

results if FR2 also detects them.

[Figure 7]
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7.2 1994 Tequila Crisis

In December 1994, an economic crisis began in Mexico following by the sharp decline

of the Mexican peso. Subsequently, several South American countries fell into the crisis

period, and their stock indices experienced a sudden decline. We examine the contagion

effects between the Unite States, Chile, Mexico, Argentina, and Venezuela. These four

South American countries particularly suffered from this crisis, and the Unite States is

included because of its close connections with these four countries. The indices span a

period of nine months from June 1, 1994 to March 2, 1995, with 198 sample points. The

change point from the non-crisis period to the crisis period is December 12, 1994.

We also make a preliminary analysis of the characteristics of the data, and we find that

all series are skewed and leptokurtic, and therefore non-normally distributed. The Ljung–

Box and ARCH tests show that the stock returns of all South American countries are

autocorrelated with ARCH effects. The correlations between Chile and Argentina, Mexico

and Chile, Venezuela and Chile, and Argentina and Mexico increase significantly in the

crisis period. However, the correlations between Chile and the Unite States, Argentina

and the Unite States, Argentina and Venezuela, Mexico and the Unite States, Mexico and

Venezuela, the Unite States and Venezuela decrease in the crisis period. The results of this

preliminary analysis are available upon request.

Figure 8 presents the results of the two tests for the channels between the Unite States

and Mexico, Mexico and Argentina, Mexico and Chile, and Chile and Argentina. We first

examine the association between the Unite States and Mexico. FR2 reports no significant

impact in either direction of this channel (FR2 ≈ −0.80 from Mexico to the Unite States,

and FR2 ≈ 0.12 for the reverse direction). QOT is generally in line with FR2 except that it
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detects significant effects from the Unite States to Mexico only at quantiles 0.89 and 0.9.

This implies that the association between the Unite States and Mexico did not experience

significant change during the crisis. Next we examine the relation between Mexico and

Argentina. FR2 reports no contagion from Mexico to Argentina (FR2 ≈ 0.10), while QOT

detects contagion at quantiles [0.37,0.74] and [0.77,0.89]. Both FR2 and QOT find the re-

verse effect to be not significant (FR2 ≈ −0.14and QOT is not significant except at quantile

0.92). Thus, the remarkable increase in the correlation between Mexico and Argentina is

mainly due to the contagion effect from Mexico to Argentina. We next consider the re-

lation between Mexico and Chile. Both FR2 and QOT find no significant contagion from

Mexico to Chile (FR2 ≈ 0.33and QOT is significant only at quantile 0.23). However, QOT

indicates strong impacts from Chile to Mexico at lower quantiles [0.09,0.15] and upper

quantiles, [0.78,0.79], 0.87, 0.89, and 0.92. This effect is ignored by FR2. This implies that

Chile has a strong impact on the Mexican market when the latter experiences a sharp

slump or an advance. Finally we investigate the channel between Chile and Argentina.

FR2 finds no significant results in either direction. QOT indicates a significant effect from

Chile to Argentina at quantiles [0.11, 0.86] and [0.88,0.95], but not a reverse effect. Most

of the other channels are shown to be not significant by both FR2 and QOT .

[Figure 8]

Based on the above analysis, we conclude that Mexico and Chile were the two main

sources of contagion in the Tequila crisis, and they had impacts on other South American

countries to various extents. However, these effects are generally not captured by the

correlation-based test FR2. We also note that this crisis did not spread to the Unite States

to a significant degree. In contrast to the Asian crisis, we observe that the correlations be-
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tween some South America countries decreased in the Tequila crisis, leading to negative

values of the FR2 test. In this case, QOT can still capture contagion at some extreme quan-

tiles. This again shows the difference between the mean correlation and the correlation at

quantiles.

7.3 2001 Argentine Crisis

Finally we test the contagion effect in the Argentine crisis, which began in 2001. In that

crisis, some South American countries, including Brazil, Chile, Mexico, suffered from

an unfavorable balance of trade, heavy international debts, and high inflation rates. We

focus on four South America countries, Argentina, Mexico, Brazil, and Chile, that were

involved in this crisis to varying extents. The entire sample period spans from July 9,

2000 to December 3, 2001, with a sample size of 367. We choose July 9, 2001 as the change

point from the non-crisis period to crisis period because it is the date Argentina became

involved in this crisis.

The descriptive statistics show that all series are non-normal. The stock returns of all

countries have less kurtosis than the normal distribution. The Ljung–Box test indicates

that all series exhibit significant autocorrelation effects with lag = 5 except Argentina and

Brazil, and the ARCH test reports significant ARCH effects for Chile and Brazil. The

correlation studies suggest that the correlations of most channels increase significantly in

the crisis period.

Figure 9 presents the associations between Argentina and Chile, Argentina and Brazil,

Chile and Mexico, and Chile and Brazil. We first examine the channels related with Ar-

gentina. FR2 shows that these channels are not significant in either direction. QOT finds
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similar results of no contagion in most of the channels. The only exception is the asso-

ciation between Argentina and Chile. QOT reports a significant effect from Argentina to

Chile around the median and a significant reverse effect at lower quantiles, [0.06,0.2] and

[0.35,0.41]. This shows that the Argentine market had a strong impact on the Chilean mar-

ket when the latter was under a normal situation (around the median), but Chile affected

Argentina only when the latter was in a bear market (lower quantile).

We next consider the channels related with Chile. QOT finds the impact from Mex-

ico to Chile to be significant at lower quantile [0.05,0.32], while FR2 ignores this effect

(FR2 ≈ 0.17). Both tests report insignificant feedback from Chile to Mexico. Both tests

find strong contagion between Brazil and Chile in both directions. More particularly, ac-

cording to QOT the Brazilian market affects the Chilean market significantly at nearly all

quantiles, and this is confirmed by FR2 (FR2 ≈ 3.05). QOT shows that the reverse im-

pact is significant at quantiles [0.17,0.21], [0.42,0.72], and [0.9,0.95], while FR2 ≈ 2.14 also

detects contagion.

[Figure 9]

In summary, there is significant contagion between Brazil and Chile in the Argentine

crisis, which is captured by both tests. However, the contagion between Argentina and

Chile and between Mexico and Chile is captured by QOT at some quantiles, but not by

FR2. Except for these channels, there is no strong evidence for the spread of the Argentine

crisis, at least within our samples.
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Appendix

Appendix 1: Proof of the Invariance Property of the Scaling Transforma-

tion

In this appendix, we show the invariance property of the scaling transformation in quan-

tile regression. Let

ψ(τ, zT , X; γ) =
∑

t:z2,t>γxt

τ|z2,t − γxt| +
∑

t:z2,t<γxt

(1− τ)|z2,t − γxt|.

Note that the following properties are possessed by ψ(τ, zT , X; γ) (Koenker and Bassett

1978): (1) κψ(τ, zT , X; γ) = ψ(τ, κzT , X; κγ), κ ∈ [0,∞); (2) ψ(τ, zT , X; γ) = ψ(τ, zT , XA; A−1γ),

|A| , 0; and (3) ψ(τ, zT , X; γ) = ψ(τ, zT + Xβ, X; γ + β). Therefore, we have

ψ[τ,
zT

σ2,t
, XA; γst] =

1
σ2,t

ψ(τ, zT , X; γ),

and take the first order derivatives

∂

∂γ
ψ(τ,

zT

σ2,t
, XA; γst) =

1
σ2,t

∂

∂γ
ψ(τ, zT , X; γ), (7.1)
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where

A =




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


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
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




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and γst = A−1γ denotes the coefficient after the scaling transformation.

Note that the first order derivative of ψ is equivalent to the score of the log likelihood

function of the asymmetric Laplace density if we fix τ and σ. Thus (7.1) implies sst(γ) =

1
σ2,t

s(γ), where sst(γ) is the score function in the scaling transformation model. Similarly,

we have the invariant property of the information matrix and other matrices,

Jst = (
1
σ2,t

)2J and Kst =
1
σ2,t

K;

therefore Vst = V where the subscript “st” denotes the corresponding variables after the

scaling transformation.

Hence, we have

RS st =
1
T

s̃′2,stK̃
BB
st ṼBB,stK̃

BB
st s̃2,st

=
1
T

( 1
σ2,t

s̃′2
)(

σ2,tK̃
BB
)

ṼBB

(

σ2,tK̃
BB
)( 1
σ2,t

s̃2

)

= RS , (7.2)

which shows that Rao’s score statistic in the regression quantile is invariant to the scaling

transformation. The invariance property of the scaling transformation suggests a direct

test procedure for contagion simply by usage of the unscaled parameters instead of the

scaled ones.

38



Appendix 2: Derivation of Parameterization in the Monte Carlo Simula-

tion

In this appendix, the derivation of the parameterization in the Monte Carlo simulation is

provided.

Suppose the non-crisis model is the combination of the common factor wt and the

idiosyncratic factor ui,t. Then

xi,t = λiwt + φiui,t,

where λi and φi denote the loadings of the two factors. The crisis period model is

y1,t = λ1wt + φ1u1,t, and y2,t = λ2wt + φ2u2,t + δφ1u1,t, (7.3)

where δ captures the strength of the contagion effect. For convenience, we define vi,t =

λiwt + φiui,t and c1,t = φ1u1,t then the crisis model for country i can be rewritten as

y1,t = v1,t and y2,t = v2,t + δc1,t,

In this setup, we show that the correlation between the two asset returns in the crisis

period y1 and y2 is not necessarily monotonic with respect to δ as follows.

Consider the denominator and numerator in the correlation

corr(y1, y2) =
Cov(y1, y2)

√

Var(y1)Var(y2)
.

Expanding the numerator and denominator we can explicitly express the correlation as a

function of δ

corr(y1, y2) =
E(v1v2) − E(v1)E(v2) + δ[E(v1c1) − E(v1)E(c1)]

√

Var(v1)Var(v2) + δ2Var(v1)Var(c1) + 2δVar(v1)Cov(v2, c1)

=
DE(v1, v2) + δDE(v1, c1)

√
PV

, (7.4)
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where DE(v1, c1) = E(v1c1)−E(v1)E(c1), DE(v1, v2) = E(v1v2)−E(v1)E(v2) and PV = Var(v1)Var(v2)+

δ2Var(v1)Var(c1) + 2δVar(v1)Cov(v2, c1).

To study the behavior of the correlation with the increasing contagion effect δ, we take

the first order derivatives of Eq.(7.4) with respect to δ

∂corr(y1, y2)
∂δ

=

∂Cov(y1,y2)
∂δ

√
PV − Cov(y1, y2)

∂
√

PV
∂δ

√
PV

=

DE(v1, c1) − 1
2

[

DE(v1, v2) + δDE(v1, c1)
][

2δVar(v1)Var(c1) + 2Var(v1)Cov(v2, c1)
]

/PV

PV3/2

In order to determine the sign of the first order derivatives, we focus on the sign of

the numerator since the denominator is guaranteed to be positive. The numerator can be

rewritten as

DE(v1, c1)PV − 1
2

[

DE(v1, v2) + δDE(v1, c1)
][

2δVar(v1)Var(c1) + 2Var(v1)Cov(v2, c1)
]

PV
(7.5)

and its sign is determined by its numerator

Num = DE(v1, c1)Var(v1)Var(v2) − DE(v1, v2)Var(v1)Cov(v2, c1)

+ δ
[

DE(v1, c1)Var(v1)Cov(v2, c1) − DE(v1, v2)Var(v1)Var(c1)
]

Note that the sign of Num depends on the parameterization. In this sense, we study its

sign by assuming the distribution of random variables.

We consider that the data generation process is based on the normal distribution6.

Suppose that wt, u1,t and u2,t are independently distributed as

wt ∼ N(µw, σ
2
w), u1,t ∼ N(µu1, σ

2
u1

), u2,t ∼ N(µu2, σ
2
u2

),

then we can obtain the distribution of v1,t, v2,t and c1,t from the linearity of the normal

distribution as

v1,t ∼ N(λ1µw + φ1µu1, λ
2
1σ

2
w + φ

2
1σ

2
u1

), v2,t ∼ N(λ2µw + φ2µu2, λ
2
2σ

2
w + φ

2
2σ

2
u2

),

6The cases of the t distribution and skewed t distribution follow similar patterns to the normal case.
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c1,t ∼ N(φ1µu1, φ
2
1σ

2
u1

).

Furthermore, we express each term in Num with the parameter definition above as

follows

DE(v1, c1) = E(v1c1) − E(v1)E(c1) = φ
2
1σ

2
u1
,

DE(v1, v2) = E(v1v2) − E(v1)E(v2) = λ1λ2σ
2
w,

Cov(v2, c1) = 0.

The last equation holds because v2 and c1 are assumed to be independent in this model.

Therefore, Num can be written as

Num = φ2
1σ

2
u1

(λ2
1σ

2
w + φ

2
1σ

2
u1

)(λ2
2σ

2
w + φ

2
2σ

2
u2
− δλ1λ2σ

2
w). (7.6)

It can be verified that when

δ >
λ2

2σ
2
w + φ

2
2σ

2
u2

λ1λ2σ2
w

increasing δ can lead to a negative and decreasing Num and, therefore, a decreasing cor-

relation.
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Figure 1: Correlation under Different Parameterizations
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Figure 3: Power Property under the Student’s t Distribution with Sample Size 200
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Figure 4: Power Property under the Skewed t Distribution with Sample Size 200
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Figure 5: Daily percentage equity returns for some countries around the Asian Crisis. The start of the

sample period is Jan 1, 1997 (vertical axis). The end of the sample period is Aug 31, 1998. The crisis period

is from Oct 20, 1997 to Aug 31, 1998 (shaded area).
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Figure 6: Statistics and p-value in the Asian Crisis: Within Asia
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Figure 7: Statistics and p-value in the Asian Crisis: From Asia to the West
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Figure 8: Statistics and p-value in the Tequila Crisis
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Figure 9: Statistics and p-value in the Argentine Crisis
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Table 1: Parameterization in the Experiments

Normal Distribution α β ρ ωx ωy κx κy

Increasing Correlation

(I) Strong Autocorrelation 0 0 0.95 0.50 0.50 4 4

(II) Weak Autocorrelation 0 0 0.20 0.50 0.50 4 4

(III) No Autocorrelation 0 0 0 0.50 0.50 4 4

(IV) Common Factor Structural Break 0 0 0 0.50 1 4 4

(V) Idiosyncratic Factor Structural 0 0 0 0.50 0.50 4 6

(VI) GARCH 0.05 0.95 0 0.50 0.50 4 4

Decreasing Correlation

(I) Strong Autocorrelation 0 0 0.95 2 2 0.50 0.50

(II) Weak Autocorrelation 0 0 0.20 2 2 0.50 0.50

(III) No Autocorrelation 0 0 0 2 2 0.50 0.50

(IV) Common Factor Structural Break 0 0 0 2 4 0.50 0.50

(V) Idiosyncratic Factor Structural 0 0 0 2 2 0.50 1

(VI) GARCH 0.10 0.90 0 4 4 0.01 0.01

Student’s t Distribution α β ρ ωx ωy d fx d fy

Increasing Correlation

(I) Strong Autocorrelation 0 0 0.95 0.50 0.50 3 3

(II) Weak Autocorrelation 0 0 0.20 0.50 0.50 3 3

(III) No Autocorrelation 0 0 0 0.50 0.50 3 3

(IV) Common Factor Structural Break 0 0 0 0.50 1 3 3

(V) Idiosyncratic Factor Structural 0 0 0 0.50 0.50 3 2

(VI) GARCH 0.05 0.95 0 0.50 0.50 3 3

Decreasing Correlation

(I) Strong Autocorrelation 0 0 0.95 2 2 3 3

(II) Weak Autocorrelation 0 0 0.20 2 2 3 3

(III) No Autocorrelation 0 0 0 2 2 3 3

(IV) Common Factor Structural Break 0 0 0 2 4 3 3

(V) Idiosyncratic Factor Structural 0 0 0 2 2 3 2

(VI) GARCH 0.10 0.90 0 4 4 3 3

Skew t Distribution α β ρ ωx ωy φx φy

Increasing Correlation

(I) Strong Autocorrelation 0 0 0.95 0.50 0.50 -0.3 -0.3

(II) Weak Autocorrelation 0 0 0.20 0.50 0.50 -0.3 -0.3

(III) No Autocorrelation 0 0 0 0.50 0.50 -0.3 -0.3

(IV) Common Factor Structural Break 0 0 0 0.15 0.30 -0.3 -0.3

(V) Idiosyncratic Factor Structural 0 0 0 0.50 0.50 -0.3 -0.7

(VI) GARCH 0.05 0.95 0 0.50 0.50 -0.3 -0.3

Decreasing Correlation

(I) Strong Autocorrelation 0 0 0.95 2 2 -0.3 -0.3

(II) Weak Autocorrelation 0 0 0.20 2 2 -0.3 -0.3

(III) No Autocorrelation 0 0 0 2 2 -0.3 -0.3

(IV) Common Factor Structural Break 0 0 0 2 4 -0.3 -0.3

(V) Idiosyncratic Factor Structural 0 0 0 2 2 -0.3 -0.7

(VI) GARCH 0.10 0.90 0 4 4 -0.3 -0.3

Notes: The parameter υ in (6.5) equals 4 for all experiment designs in the skewed t distribution.
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Table 2: Size Property under Increasing Correlation Cases
Normal sample size 200 sample size 500 sample size 1000

Distribution I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QS T 0.0507 0.0487 0.0500 0.0530 0.0650 0.0563 0.0453 0.0460 0.0487 0.0577 0.0533 0.0513 0.0560 0.0497 0.0537 0.0660 0.0617 0.0483

QOT 0.0393 0.0497 0.0467 0.0613 0.0383 0.0407 0.0327 0.0440 0.0467 0.0987 0.0350 0.0443 0.0283 0.0477 0.0447 0.1270 0.0380 0.0450

τ = 0.30 QS T 0.0610 0.0510 0.0550 0.0653 0.0647 0.0573 0.0547 0.0513 0.0470 0.0717 0.0600 0.0547 0.0530 0.0513 0.0523 0.0807 0.0543 0.0447

QOT 0.0387 0.0510 0.0510 0.0970 0.0510 0.0520 0.0273 0.0487 0.0410 0.1253 0.0377 0.0490 0.0267 0.0513 0.0507 0.1763 0.0320 0.0467

τ = 0.50 QS T 0.0547 0.0493 0.0513 0.0597 0.0567 0.0520 0.0657 0.0460 0.0390 0.0700 0.0520 0.0530 0.0640 0.0593 0.0557 0.0837 0.0527 0.0570

QOT 0.0347 0.0427 0.0493 0.0930 0.0460 0.0517 0.0277 0.0487 0.0460 0.1237 0.0313 0.0513 0.0213 0.0530 0.0500 0.1677 0.0377 0.0543

τ = 0.70 QS T 0.0517 0.0557 0.0413 0.0640 0.0587 0.0523 0.0573 0.0457 0.0470 0.0623 0.0520 0.0467 0.0640 0.0470 0.0557 0.0857 0.0477 0.0480

QOT 0.0343 0.0523 0.0517 0.0933 0.0483 0.0547 0.0297 0.0453 0.0490 0.1120 0.0357 0.0477 0.0217 0.0450 0.0530 0.1743 0.0410 0.0507

τ = 0.90 QS T 0.0487 0.0593 0.0563 0.0633 0.0617 0.0553 0.0493 0.0480 0.0477 0.0617 0.0560 0.0560 0.0617 0.0493 0.0507 0.0733 0.0513 0.0503

QOT 0.0367 0.0587 0.0527 0.0750 0.0423 0.0547 0.0307 0.0443 0.0543 0.0913 0.0410 0.0527 0.0287 0.0483 0.0480 0.1373 0.0337 0.0510

FR1 0.0027 0.0040 0.0030 0.0043 0.0000 0.0030 0.0013 0.0047 0.0033 0.0087 0.0000 0.0010 0.0000 0.0020 0.0017 0.0140 0.0000 0.0023

FR2 0.0343 0.0470 0.0470 0.0890 0.0197 0.0520 0.0310 0.0517 0.0487 0.1333 0.0223 0.0553 0.0243 0.0433 0.0493 0.2007 0.0173 0.0480

FR3 0.0470 0.0500 0.0490 0.0673 0.0017 0.0547 0.0423 0.0520 0.0477 0.0980 0.0017 0.0567 0.0433 0.0460 0.0507 0.1443 0.0020 0.0513

Student’s t sample size 200 sample size 500 sample size 1000

Distribution I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QS T 0.0677 0.0563 0.0677 0.1117 0.1140 0.0707 0.0720 0.0567 0.0640 0.1383 0.1217 0.0600 0.0830 0.0700 0.0577 0.2400 0.1383 0.0487

QOT 0.0340 0.0447 0.0393 0.1423 0.0277 0.0360 0.0293 0.0427 0.0510 0.2650 0.0180 0.0453 0.0203 0.0653 0.0537 0.4147 0.0143 0.0360

τ = 0.30 QS T 0.0667 0.0593 0.0670 0.1317 0.1090 0.0660 0.0690 0.0527 0.0587 0.2830 0.1163 0.0667 0.0880 0.0517 0.0603 0.5447 0.1350 0.0470

QOT 0.0323 0.0463 0.0597 0.2647 0.0223 0.0520 0.0153 0.0533 0.0540 0.4957 0.0120 0.0570 0.0073 0.0553 0.0587 0.7737 0.0060 0.0437

τ = 0.50 QS T 0.0587 0.0510 0.0570 0.1523 0.0983 0.0633 0.0653 0.0460 0.0490 0.3347 0.1083 0.0580 0.0993 0.0573 0.0523 0.6397 0.1400 0.0537

QOT 0.0270 0.0483 0.0483 0.2987 0.0207 0.0603 0.0123 0.0490 0.0567 0.5590 0.0097 0.0523 0.0037 0.0600 0.0537 0.8390 0.0033 0.0457

τ = 0.70 QS T 0.0603 0.0540 0.0657 0.1563 0.1047 0.0673 0.0723 0.0530 0.0623 0.2967 0.1117 0.0590 0.0890 0.0560 0.0497 0.5627 0.1403 0.0503

QOT 0.0243 0.0477 0.0497 0.2727 0.0247 0.0570 0.0140 0.0477 0.0570 0.4987 0.0127 0.0503 0.0087 0.0590 0.0497 0.7710 0.0037 0.0520

τ = 0.90 QS T 0.0737 0.0727 0.0817 0.1107 0.1540 0.0880 0.0773 0.0703 0.0637 0.1523 0.1517 0.0640 0.0800 0.0627 0.0690 0.2547 0.1710 0.0603

QOT 0.0253 0.0450 0.0497 0.1433 0.0330 0.0420 0.0290 0.0517 0.0527 0.2533 0.0247 0.0447 0.0210 0.0600 0.0597 0.4143 0.0130 0.0483

FR1 0.0193 0.0160 0.0163 0.0497 0.0060 0.0123 0.0287 0.0183 0.0187 0.0997 0.0053 0.0037 0.0280 0.0240 0.0223 0.3980 0.0007 0.0060

FR2 0.0697 0.0620 0.0737 0.2300 0.0293 0.0647 0.0907 0.0773 0.0767 0.4540 0.0150 0.0523 0.0900 0.0820 0.0820 0.8587 0.0070 0.0503

FR3 0.1040 0.0970 0.1060 0.1140 0.0347 0.0737 0.1330 0.1160 0.1143 0.1523 0.0150 0.0627 0.1290 0.1170 0.1170 0.4407 0.0063 0.0590

Skew t sample size 200 sample size 500 sample size 1000

Distribution I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QST 0.0457 0.0507 0.0400 0.0480 0.0467 0.0507 0.0407 0.0460 0.0457 0.0527 0.0443 0.0457 0.0450 0.0473 0.0410 0.0493 0.0493 0.0527

QOT 0.0237 0.0387 0.0330 0.0433 0.0287 0.0393 0.0243 0.0403 0.0427 0.0697 0.0297 0.0427 0.0197 0.0360 0.0420 0.0983 0.0263 0.0497

τ = 0.30 QST 0.0510 0.0477 0.0477 0.0583 0.0423 0.0537 0.0590 0.0510 0.0520 0.0803 0.0467 0.0520 0.0700 0.0467 0.0490 0.1023 0.0493 0.0517

QOT 0.0223 0.0497 0.0417 0.1017 0.0293 0.0473 0.0227 0.0527 0.0553 0.1717 0.0287 0.0553 0.0067 0.0410 0.0427 0.2390 0.0210 0.0537

τ = 0.50 QST 0.0577 0.0510 0.0533 0.0853 0.0597 0.0613 0.0690 0.0553 0.0607 0.1407 0.0660 0.0607 0.0953 0.0487 0.0473 0.2270 0.0667 0.0447

QOT 0.0237 0.0480 0.0563 0.1550 0.0300 0.0507 0.0173 0.0543 0.0570 0.2573 0.0257 0.0570 0.0090 0.0537 0.0480 0.4087 0.0163 0.0517

τ = 0.70 QST 0.0720 0.0663 0.0683 0.1123 0.0727 0.0597 0.0870 0.0650 0.0607 0.1893 0.0827 0.0607 0.1377 0.0590 0.0600 0.3387 0.1027 0.0517

QOT 0.0240 0.0677 0.0660 0.1937 0.0343 0.0493 0.0197 0.0630 0.0677 0.3433 0.0253 0.0677 0.0053 0.0603 0.0587 0.5397 0.0190 0.0437

τ = 0.90 QST 0.0973 0.0943 0.0883 0.1037 0.1130 0.0717 0.1180 0.0920 0.0957 0.1193 0.1237 0.0957 0.1697 0.0927 0.0807 0.1597 0.1383 0.0503

QOT 0.0383 0.0817 0.0747 0.1300 0.0487 0.0460 0.0367 0.1027 0.1017 0.2053 0.0420 0.1017 0.0147 0.0780 0.0833 0.2757 0.0290 0.0463

FR1 0.0167 0.0213 0.0197 0.0143 0.0077 0.0093 0.0133 0.0160 0.0190 0.0243 0.0067 0.0040 0.0093 0.0143 0.0150 0.0483 0.0067 0.0033
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Table 3: Size Property under Decreasing Correlation Cases
sample size 200 sample size 500 sample size 1000

I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QS T 0.0557 0.0510 0.0447 0.0700 0.0613 0.0543 0.0557 0.0520 0.0527 0.0700 0.1370 0.0460 0.0500 0.0453 0.0527 0.0610 0.0933 0.0483

QOT 0.0413 0.0437 0.0407 0.0533 0.0153 0.0413 0.0530 0.0493 0.0500 0.0533 0.0027 0.0450 0.0450 0.0457 0.0533 0.0903 0.0117 0.0460

τ = 0.30 QS T 0.0577 0.0520 0.0487 0.0677 0.0717 0.0490 0.0590 0.0547 0.0463 0.0677 0.2123 0.0553 0.0497 0.0497 0.0470 0.0653 0.1183 0.0437

QOT 0.0520 0.0487 0.0473 0.0723 0.0130 0.0467 0.0560 0.0560 0.0467 0.0723 0.0027 0.0593 0.0533 0.0513 0.0517 0.1180 0.0047 0.0477

τ = 0.50 QS T 0.0493 0.0537 0.0467 0.0503 0.0830 0.0573 0.0527 0.0497 0.0560 0.0503 0.2140 0.0460 0.0463 0.0457 0.0470 0.0663 0.1147 0.0470

QOT 0.0543 0.0457 0.0507 0.0720 0.0117 0.0547 0.0603 0.0483 0.0443 0.0720 0.0007 0.0570 0.0513 0.0433 0.0480 0.1147 0.0053 0.0493

τ = 0.70 QS T 0.0557 0.0457 0.0553 0.0580 0.0743 0.0527 0.0507 0.0477 0.0560 0.0580 0.2080 0.0607 0.0493 0.0450 0.0487 0.0637 0.1037 0.0440

QOT 0.0507 0.0450 0.0470 0.0753 0.0123 0.0533 0.0560 0.0500 0.0470 0.0753 0.0023 0.0530 0.0450 0.0410 0.0463 0.1123 0.0043 0.0423

τ = 0.90 QS T 0.0520 0.0490 0.0583 0.0793 0.0640 0.0570 0.0587 0.0540 0.0543 0.0793 0.1313 0.0487 0.0493 0.0457 0.0547 0.0657 0.0910 0.0480

QOT 0.0463 0.0453 0.0440 0.0550 0.0133 0.0493 0.0503 0.0520 0.0490 0.0550 0.0040 0.0457 0.0550 0.0437 0.0513 0.0897 0.0087 0.0450

FR1 0.0003 0.0013 0.0007 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0003 0.0000 0.0010 0.0000 0.0000 0.0023

FR2 0.0173 0.0187 0.0140 0.0143 0.0003 0.0480 0.0123 0.0120 0.0117 0.0130 0.0000 0.0516 0.0143 0.0180 0.0167 0.0210 0.0000 0.0470

FR3 0.1230 0.0777 0.0707 0.0097 0.0023 0.0530 0.1090 0.0683 0.0667 0.0003 0.0000 0.0523 0.0897 0.0680 0.0620 0.0000 0.0000 0.0490

Student’s t sample size 200 sample size 500 sample size 1000

Distribution I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QS T 0.0970 0.0623 0.0567 0.0737 0.1113 0.0610 0.0607 0.0580 0.0580 0.0883 0.1593 0.0523 0.0640 0.0580 0.0580 0.1413 0.2080 0.0627

QOT 0.0360 0.0470 0.0490 0.0940 0.0243 0.0360 0.0513 0.0623 0.0647 0.1750 0.0107 0.0400 0.0430 0.0623 0.0647 0.2750 0.0060 0.0460

τ = 0.30 QS T 0.0973 0.0537 0.0650 0.0700 0.0680 0.0587 0.0557 0.0597 0.0567 0.1330 0.1020 0.0587 0.0523 0.0597 0.0567 0.2210 0.1443 0.0673

QOT 0.0360 0.0477 0.0460 0.1203 0.0167 0.0443 0.0400 0.0587 0.0577 0.2570 0.0083 0.0450 0.0303 0.0587 0.0577 0.4320 0.0050 0.0547

τ = 0.50 QS T 0.0933 0.0443 0.0500 0.0823 0.0663 0.0637 0.0543 0.0520 0.0590 0.1387 0.0803 0.0573 0.0480 0.0520 0.0590 0.2530 0.1207 0.0523

QOT 0.0333 0.0503 0.0503 0.1357 0.0220 0.0463 0.0393 0.0563 0.0540 0.2813 0.0080 0.0433 0.0260 0.0563 0.0540 0.4587 0.0047 0.0523

τ = 0.70 QS T 0.0923 0.0480 0.0510 0.0867 0.0697 0.0717 0.0527 0.0547 0.0523 0.1320 0.0923 0.0733 0.0573 0.0547 0.0523 0.2443 0.1333 0.0573

QOT 0.0444 0.0483 0.0480 0.1237 0.0230 0.0473 0.0400 0.0570 0.0570 0.2480 0.0113 0.0487 0.0317 0.0570 0.0570 0.4327 0.0053 0.0543

τ = 0.90 QS T 0.102 0.0650 0.0587 0.0927 0.0950 0.0827 0.0610 0.0670 0.0600 0.1030 0.1367 0.0753 0.0537 0.0670 0.0600 0.1640 0.2013 0.0733

QOT 0.0446 0.0513 0.0590 0.0867 0.0217 0.0380 0.0507 0.0600 0.0643 0.1663 0.0167 0.0450 0.0433 0.0600 0.0643 0.2877 0.0080 0.0473

FR1 0.0513 0.0513 0.0563 0.0673 0.0260 0.0087 0.0660 0.0690 0.0657 0.1047 0.0253 0.0090 0.0650 0.0737 0.0890 0.1393 0.0200 0.0067

FR2 0.1110 0.1163 0.1213 0.1670 0.0570 0.0517 0.1410 0.1613 0.1523 0.2553 0.0473 0.0567 0.1387 0.1563 0.1707 0.3497 0.0330 0.0527

FR3 0.2137 0.1767 0.1770 0.0390 0.0803 0.0640 0.2447 0.2140 0.2053 0.0143 0.0560 0.0607 0.2580 0.1973 0.2123 0.0057 0.0357 0.0590

Skew t sample size 200 sample size 500 sample size 1000

Distribution I II III IV V VI I II III IV V VI I II III IV V VI

τ = 0.10 QST 0.0487 0.0470 0.0550 0.0703 0.0467 0.0483 0.0517 0.0407 0.0533 0.0600 0.0407 0.0540 0.0540 0.0507 0.0480 0.0647 0.0460 0.0490

QOT 0.0357 0.0343 0.0420 0.0443 0.0357 0.0313 0.0413 0.0400 0.0413 0.0650 0.0390 0.0397 0.0453 0.0427 0.0453 0.0890 0.0423 0.0413

τ = 0.30 QST 0.0473 0.0540 0.0487 0.0633 0.0483 0.0617 0.0527 0.0450 0.0530 0.0693 0.0433 0.0527 0.0513 0.0527 0.0493 0.0847 0.0490 0.0440

QOT 0.0493 0.0373 0.0420 0.0830 0.0443 0.050 0.0483 0.0497 0.0437 0.1127 0.0380 0.0513 0.0493 0.0487 0.0500 0.1683 0.0380 0.0510

τ = 0.50 QST 0.0490 0.0557 0.0467 0.0637 0.0567 0.0613 0.0513 0.0477 0.0440 0.0990 0.0510 0.0470 0.0533 0.0477 0.0527 0.1187 0.0577 0.0553

QOT 0.0413 0.0477 0.0507 0.0920 0.0463 0.0543 0.0427 0.0433 0.0457 0.1640 0.0403 0.0480 0.0463 0.0483 0.0523 0.2383 0.0377 0.0527

τ = 0.70 QST 0.0563 0.0627 0.0530 0.0653 0.0507 0.0680 0.0530 0.0553 0.0540 0.1010 0.0560 0.0567 0.0603 0.0507 0.0540 0.1593 0.0557 0.0523

QOT 0.0477 0.0523 0.0553 0.0993 0.0440 0.0573 0.0440 0.0560 0.0500 0.1953 0.0303 0.0527 0.0497 0.0500 0.0543 0.2987 0.0340 0.0493

τ = 0.90 QST 0.0777 0.0617 0.0597 0.0963 0.0577 0.070 0.0557 0.0597 0.0607 0.0987 0.0540 0.0587 0.0577 0.0523 0.0610 0.1587 0.0663 0.0517

QOT 0.0480 0.0500 0.0540 0.0867 0.0350 0.0543 0.0447 0.0527 0.0533 0.1710 0.0290 0.0447 0.0520 0.0597 0.0660 0.2810 0.0187 0.0467

FR1 0.0430 0.0500 0.0433 0.0733 0.0347 0.0057 0.0500 0.0467 0.0667 0.0667 0.0340 0.0073 0.0500 0.0267 0.0600 0.0733 0.0333 0.0040
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Table 4: Descriptive Statistics of Countries in the Asia Crisis

Mean Variance Median Skewness Excess J − B 1 L jung − Box 1 ARCH 1

Kurtosis Test Box Test Test

Hong Kong -0.00142 0.000673 0 0.379216 6.056046 1511.839991∗2 26.73796242∗ 102.3380846∗

South Korea -0.00171 0.000784 0 0.137872 -0.97908 76.94547603∗ 17.35117772∗ 56.36415268∗

Malaysia -0.00324 0.000672 -0.00269 1.541682 9.571008 3063.658555∗ 9.091541876 3.9842208

Japan -0.00036 0.000138 0 0.021421 -0.08357 156.7419826∗ 11.8900159∗ 46.32324159∗

U.K. 0.000559 0.0000997 0.000517 -0.2638 -2.14174 18.94853472∗ 20.90735135∗ 33.27060309∗

U.S. 0.00036 0.00013 0.000546 -1.13983 3.963259 983.0770432∗ 1.818650886 29.16018572∗

Australia 0.0000512 0.000546 0.00092 -0.57487 2.63192 605.8060695∗ 3.054880627 117.825644∗

Germany 0.001126 0.000215 0.00225 -0.86824 0.614144 295.1270798∗ 10.40811878∗ 67.6223594∗

Thailand -0.00312 0.000588 -0.00388 0.94095 0.220109 255.3603359∗ 19.25763484∗ 65.01672425∗

Notes:

1 In the above table, the values of the Jarque–Bera test, the Ljung–Box test and the ARCH LM test are calculated with

lags = 5.

2 * indicates the rejection of the null hypothesis.
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Table 5: Correlations Among Several Countries in the Asian Crisis (Before Crisis1)

Hong Kong South Korea Malaysia Japan U.K. U.S.j Australia Germany Thailand

Hong Kong 1

South Korea 0.151735 1

Malaysia 0.273213 0.047137 1

Japan 0.308531 0.031992 0.088048 1

U.K. 0.151702 0.065907 -0.01891 0.130064 1

U.S. 0.081478 0.008263 0.001455 -0.04569 0.331209 1

Australia 0.273855 0.05636 0.137215 0.235572 0.117007 -0.01811 1

Germany 0.266234 0.024454 0.101507 0.125796 0.457624 0.242969 0.397739 1

Thailand 0.082663 0.036424 0.132881 0.016986 0.023094 -0.03897 0.103829 0.04785 1

Table 6: Correlations Among Several Countries in the Asian Crisis (During Crisis2)

Hong Kong South Korea Malaysia Japan U.K. U.S. Australia Germany Thailand

Hong Kong 1

South Korea 0.130589 1

Malaysia 0.444207 0.285872 1

Japan 0.399132 0.13909 0.296769 1

U.K. 0.489817 0.204314 0.290062 0.396905 1

U.S. 0.261643 0.169513 0.10811 0.136181 0.518994 1

Australia 0.589521 0.261065 0.36159 0.490537 0.449319 0.190915 1

Germany 0.622381 0.172951 0.291964 0.394909 0.684973 0.396108 0.568798 1

Thailand 0.442736 0.328666 0.479853 0.241142 0.278739 0.137684 0.380339 0.268605 1

1 Before crisis: from January 1, 1997 to October 19, 1997. [2] After crisis: from October 20, 1997 to August 31, 1998
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