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Abstract

Moraxella catarrhalis is one of the three most common causative bacterial pathogens of otitis media, however no effective
vaccine against M. catarrhalis has been developed so far. To identify M. catarrhalis vaccine candidate antigens, we used
carefully selected sera from children with otitis media and healthy individuals to screen small-fragment genomic libraries
that are expressed to display frame-selected peptides on a bacterial cell surface. This ANTIGENome technology led to the
identification of 214 antigens, 23 of which were selected by in vitro or in vivo studies for additional characterization. Eight of
the 23 candidates were tested in a Moraxella mouse pulmonary clearance model, and 3 of these antigens induced
significantly faster bacterial clearance compared to adjuvant or to the previously characterized antigen OmpCD. The most
significant protection data were obtained with the antigen MCR_1416 (Msp22), which was further investigated for its
biological function by in vitro studies suggesting that Msp22 is a heme binding protein. This study comprises one of the
most exhaustive studies to identify potential vaccine candidate antigens against the bacterial pathogen M. catarrhalis.
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Introduction

Moraxella catarrhalis is a gram-negative aerobic diplococcus and

an exclusive human respiratory pathogen that for a long time used

to be considered a purely human commensal [1]. However, M.

catarrhalis is the third most frequent bacterial pathogen causing

otitis media disease in children (after Streptococcus pneumoniae and

non-typeable Haemophilus influenzae (NTHI)), and is a major cause

of exacerbations in adults with chronic obstructive pulmonary

disease (COPD) [2]. Further, between 50–85% of all children

experience at least one acute otitis media (AOM) episode before

3 years of age [3,4], and the disease is associated with high costs.

In addition, chronic and frequent recurrent AOM can lead to

delayed speech development and language learning, due to

hearing impairment. Moreover, complications including mastoid-

itis, and in rare cases even meningitis, may develop as a result of

such middle ear infections [5,6].

Since otitis media (OM) is a polymicrobial disease, an effective

vaccine will have to protect against the 3 main bacterial causative

agents of OM, including M. catarrhalis, and several vaccine related

studies have already been performed to identify potential single

vaccine candidates. These include various outer membrane

proteins (OMPs) and lipooligosaccharide [7,8]. Others have used

a genome-wide data mining approach to identify novel antigens

[9]. Of the putative antigens so far identified, the ubiquitous

surface proteins A (UspA1, UspA2, and UspA2H) [10,11],

involved in adherence [12] and serum resistance [13], have been

shown to provide some protection in animal models using active

vaccination or passive immunization strategies. Other potential

candidates include the IgD-binding protein Hag/MID, a human

epithelial cell adhesin and B cell mitogen, [14], and it has been

reported that a monoclonal antibody specific for the outer

membrane protein CopB, an iron-regulated protein involved in

iron uptake from transferrin and lactoferrin, enhanced pulmonary

clearance of M. catarrhalis in a mouse model [15]. Finally, the porin

OmpCD, an adhesin, was reported to enhance pulmonary

clearance upon immunization [16], and at the time that this

research project began, appeared to be the most appropriate
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potential vaccine candidate to act as a positive control in in vivo

immunization experiments.

The ANTIGENome technology offers another approach in the

search for vaccine candidates and has been successfully applied to

identify novel protective antigens from several other bacterial

pathogens [17,18,19]. The technology generates many thousands of

potential peptide antigen candidates that are then screened using

magnetic-activated cell sorting (MACS) methods against well

characterized human sera to identify novel protein vaccine

candidates.

We have applied this technology and selected 214 protein

candidates, among them the previously described protective

proteins, UspA, Hag, CopB and OmpCD. Further validation by

in vitro assays and finally in a murine model of Moraxella pulmonary

clearance identified three proteins from M. catarrhalis as novel

protective vaccine candidates. The functional characterization of

one of these candidates, the surface protein Msp22, in Moraxella

showed that it possesses heme-dependent peroxidase activity.

Materials and Methods

Ethical statement
All human serum samples used for these studies were collected

according to the general national ethical guidelines and upon

consent from individual subjects. Sera from healthy individuals

were collected for this and similar studies by Intercell with written

consent given by each individual specifically for this study.

Collection of sera at the Erasmus University Medical Center

(Rotterdam) was approved specifically for this study by the medical

ethical Committee of the Erasmus MC (MEC-2-12-176) with

patient consent given (or informed consent by parents or guardians

in case of children). Human sera were also collected at the

Semmelweis University as approved specifically for this study by

the ethical committee of Semmelweis University. All animal

experiments were approved by Stockholm’s Norra djurförsökse-

tiska nämnd and were conducted in agreement with the European

Communities Council Directive 86/609/EEC and the Swedish

animal protection legislation. Mice were scored and sacrificed

according to the obtained ethical permission.

Bacterial strains and growth conditions
M. catarrhalis strain RH4 was originally isolated from the blood

of an infected patient [20] and strain BBH18 was from the sputum

of a COPD patient during an exacerbation [21]. Both strains were

obtained from Arne Forsgren and Kristian Riesbeck (Malmö

University Hospital, Sweden). Bacteria were grown in brain heart

infusion (BHI) broth at 37uC with shaking (180 rpm) or on

Columbia agar supplemented with 5% sheep blood (Biomérieux,

Austria) or horse blood at 37uC.

Additional M. catarrhalis strains and clinical isolates (strains from

various clinical samples (ear, sinus, nasal cavity and middle ear

punctuate samples) were obtained from the Pediatric department

at Semmelweis University (Budapest, Hungary), Erasmus Univer-

sity Medical Center (Rotterdam, The Netherlands) or were

commercially acquired from GR Micro (London, UK). The

following strains (Origin and IDs listed) from GR Micro isolated

from patients with acute otitis media were used for the gene

conservation studies: Australia (1090122, 1090127, 1091216),

Belgium (1510233), Brazil (1041218, 3041116, 3041117), Canada

(1022133, 1023257, 2022135), France (1502130, 3502122,

3502129), Germany (3517132, 3518116, 3519121, 3522120),

Hungary (3650122, 3650134), Italy (1530120, 2530126,

3530121), Japan (2084130, 2085119, 3079119), Portugal

(2560117), South Africa (3681122), South Korea (1070122,

1071124, 2070120), Spain (2554135, 3552130, 3553117), Sweden

(3590123, 3590127, 3590135), Taiwan (3696117, 3696119,

3696126), Turkey (2660116, 2660119, 2660122), United States

(1001118, 1001207, 1009124, 1009125).

E. coli cells were grown in LB broth at 37uC with shaking or on

LB plates containing appropriate antibiotics (kanamycin and/or

ampicillin).

For human sera adsorption, E. coli (DH5a transformed with

pHIE11/pMAL9.1 [22]) cells were grown to exponential phase

and induced with 0.1 mM IPTG. The bacteria were harvested

after one hour and washed three times with ice cold 2x PBS. Prior

to addition to serum samples, the pellet was re-suspended in PBS

(100 mL per 100 mL culture).

Selection of human sera for library screening
A comprehensive collection of serum samples was obtained

from the Department of Pediatrics, Semmelweis University

(Budapest), the Erasmus University Medical Center (Rotterdam),

and from Intercell AG (Vienna, Austria). In addition to the sera

from otitis media patients, sera from healthy individuals or from

patients in other disease groups (asthmatic patients, allergy) were

also included in the studies, serving as relevant controls. All sera

were aliquoted and stored at 280uC prior to use.

For the preparation of serum pools, all human sera were

analyzed by ELISA and Western blot with M. catarrhalis cell

lysates. The sera containing high titer of antibodies and showing a

diversity of bands in the Western blot were selected to create

serum pools of 5 individual sera per pool.

ELISA on bacterial cell lysates and recombinant proteins
M. catarrhalis cells were grown in liquid medium at 37uC, 5%

CO2 until a late log phase was reached. Cells were harvested by

centrifugation (1,000 g, 10 min, 4uC) and washed twice with PBS.

Bacteria were re-suspended in PBS containing protease inhibitors

and then lysed on ice by sonication (2 min, pulse 5, 100% power)

and the supernatant was collected by centrifugation. ELISA plates

(96F Cert, Maxisorb Nunc-Immuno plate, 439454, Denmark)

were coated with either bacterial lysates or recombinant proteins

and human serum samples were tested at 3-fold dilutions from

1:50 to 1:36,450. Highly specific Horse Radish Peroxidase (HRP)-

conjugated goat anti-human IgG (Southern Biotech, 2040-05,

USA) was used for signal detection.

Peptide ELISA
N-terminally biotin-labeled peptides were coated onto strepta-

vidin ELISA plates (Nunc, Denmark) at 5 mg/mL (in a 100 mL

volume) and incubated overnight at 4uC. Sera were tested in

duplicate at a 1:1000 dilution. Horse Radish Peroxidase (HRP)-

conjugated anti-human IgG antibodies (Southern Biotech) were

used according to the manufacturer’s recommendation (1:1000

dilution). ABTS was used as a substrate for HRP and the

absorbance read at 405 nm.

Preparation of IgGs from human serum pools
Prior to library screening, human serum pools were adsorbed

against E. coli (DH5a transformed with pHIE11/pMAL9.1]) cells

in order to reduce background. The cell suspension was added to

the serum pools (150 mL cell suspension per 800 mL serum) and

rotated overnight at 4uC. The next day, the mixture was

centrifuged and the supernatants were transferred into a clean

tube. The whole procedure was carried out three times for each

single serum pool.

Protective Moraxella catarrhalis Antigens

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64422



The E. coli adsorbed human sera were heat-inactivated at 56uC
for 45 min and centrifuged to remove precipitated proteins. The

supernatant was filtered using a 0.22 mm syringe filter (Costar,

USA) and IgGs were purified and biotinylated with the reagents

provided by Pierce Biotechnology (USA), as previously described

[17], and subsequently used for library screening.

Construction of bacterial surface display libraries
Bacterial surface display libraries were generated as previously

described [17,22]. Briefly, genomic DNA from M. catarrhalis

BBH18 was fragmented by DNase I digest (LamB library, DNase

Shotgun Cleavage Kit (Novagen, USA)) or sonication (FhuA

library, Sonopuls Ultrasonic Homogenizer HD2200 (Bandelin,

Germany)). Blunt-ended DNA fragments of 50–200 bp or 150–

600 bp were ligated with the SmaI digested frame-selection vector

pMAL4.31. pMAL4.31 containing 50–150 bp or 150–600 bp

DNA fragments from M. catarrhalis was transformed into DH10B

electrocompetent E. coli cells (Invitrogen, USA). Plasmid DNA was

isolated from the pool of transformed clones, and the DNA inserts

cloned into the platform vectors pMAL9.1 (FhuA, 150–600 bp)

and pHIE14 (LamB, 50–150 bp) for surface display.

MACS screening
MACS (magnetic-activated cell sorting) screening using bacte-

rial surface display libraries was performed as described previously

[17,22].

Cloning, expression and purification of recombinant M.
catarrhalis proteins in E. coli

For recombinant expression of M. catarrhalis antigens, the PCR

amplified gene or gene fragments to be expressed were cloned into

pET28b+, a vector containing a kanamycin resistance cassette as

well as a T7-RNA polymerase promoter. All proteins were

expressed with N- or C-terminal His-tags without possible signal

peptides. Protein expression was analyzed in small scale (2 mL)

cultures, and protein solubility was determined based on

centrifugation of lysed bacterial cultures and analysis of soluble

(supernatant) and insoluble (pellet) fractions. Western blot with

anti-His-tag antibodies was performed to confirm the expression of

the recombinant protein. Proteins were purified from 2 L E. coli

BL21(DE3) cultures carrying the pET28b+ vector encoding the

antigens. Soluble proteins were purified using an IMAC column

according to standard methods, insoluble proteins were purified by

washing the inclusion bodies, solubilizing them in a buffer

containing 6 M Guanidine hydrochloride (GuHCl), and subse-

quently applying them to an IMAC column. Bound proteins were

eluted with 250 mM imidazole in denaturing buffer. Proteins were

refolded by dilution with a buffer without GuHCl but containing

L-Arginine (0.5 M) as an inhibitor of protein aggregation. After

renaturation, proteins were dialyzed against 50 mM Tris-HCl,

150 mM NaCl buffer at pH 8.0 and decreasing concentration of

L-Arginine (100 mM final). Alternatively, inclusion bodies were

solubilized with 8 M urea and purified under denaturing

conditions in the presence of 0.2% N-lauroylsarcosine. Proteins

were then dialyzed against PBS, 0.2% N-lauroylsarcosine.

Preparation of whole cell membranes from M. catarrhalis
Cells from a 1.5 L culture were harvested (4,500 rpm, 4uC,

60 min) and washed with PBS. The pellet was re-suspended in

100 mM Na2CO3 and sonicated on ice for 2 min (50%). After

centrifugation (12,000 rpm, 4uC, 10 min) to remove cell debris,

the supernatant was ultracentrifuged (40,000 rpm, 4uC, 90 min)

and the pellet was washed with PBS (40,000 rpm, 4uC, 90 min).

Finally, the pellet was re-suspended in 500 mL PBS.

Preparation of outer membrane vesicles from M.
catarrhalis

Cells from a 1.5 L culture (without or with 2 mM Desferal) were

harvested (4,500 rpm, 4uC, 60 min) and washed with PBS. The

cells were re-suspended in 50 mL EDTA buffer (0.05 M

Na2HPO4, 0.15 M NaCl, 0.01 M EDTA, pH 7.4) and incubated

at 56uC for 30 min at 75 rpm agitation with glass beads (1.7–

2 mm). The culture was centrifuged (3,500 rpm, room tempera-

ture, 15 min) twice, and the supernatant containing the membrane

vesicles was ultracentrifuged (40,000 rpm, 4uC, 90 min). The

pellet was washed with PBS (40,000 rpm, 4uC, 60 min) and re-

suspended in 500 mL PBS.

Generation of mouse immune serum against M.
catarrhalis recombinant protein Msp22

Msp22 with a His-tag at the C-terminus and expressed without

lipidation in E. coli was purified using IMAC columns and utilized

for the generation of Msp22-specific immune serum in mice.

Female NMRI mice 6–8 weeks of age were bled by tail vein

puncture to generate pre-immune sera, and were immunized three

times intraperitoneally with 50 mg recombinant antigen per

immunization, using Complete Freunds Adjuvant (CFA) or

Incomplete Freunds Adjuvant (IFA) as adjuvant. Terminal bleeds

were collected via the orbital sinus. Sera were heat-inactivated at

56uC for 30 minutes.

Immunization and challenge of mice
Five to seven-week-old female C57/BL6 mice were kept under

specific pathogen-free conditions in a standardized 12 hours light/

dark cycle and received commercial food and water ad libitum.

Before immunization on Day 0, 10 mL of blood was withdrawn

from each mouse to prepare pre-immune serum samples. On days

0, 21 and 42, intranasal immunization of groups of 10 mice as

controls with PBS or Intercell’s proprietary adjuvant IC31H [23]

and with the respective adjuvanted proteins was performed as

follows: 17.5 mL protein solution was mixed with 2.5 mL IC31H
(2000 nmol/mL KLK: 80 nmol/mL ODN1a), incubated for

30 minutes at room temperature and used to immunize mice

within one hour of preparation. Adjuvant control mice received

17.5 mL 50 mM Tris/HCl pH 8.0 mixed with 2.5 mL IC31H.

Immune sera were obtained on Day 63 (3 weeks after the last

boost) and frozen at 220uC for storage.

Twenty-one days after the last boost, mice were infected

intranasally with 40 mL (20 mL per nostril) live M. catarrhalis strain

RH4, equaling approximately 56106 CFU. For mouse inocula-

tion, M. catarrhalis RH4 was grown in BHI broth to an OD620 of

0.4. Bacteria were pelleted and re-suspended in PBS. Mice were

held in a head-up vertical position during the inoculation and kept

in that position for at least 10 seconds after the inoculation.

Euthanasia, tissue collection and bacterial culture
Mice were euthanized at 6 hours post-infection. Both lungs

were removed, placed in 1 mL PBS plus protease inhibitor

(Roche, Germany), homogenized using cell strainers (100 mm,

Becton Dickinson and Company, USA) and used for serial plating

to quantify viable bacteria.

For the evaluation of bacterial clearance due to immunization

with recombinant proteins, several independent experiments were

performed and the CFU in the lungs of the mice were normalized

to an infectious dose of approximately 56106 CFU bacteria (actual

Protective Moraxella catarrhalis Antigens
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dose varied between 3.86 to 5.96106 CFU) and analyzed with

non-parametric Kruskal-Wallis tests and Dunns post-testing.

Preparation of M. catarrhalis lysates
M. catarrhalis RH4 or BBH18 lysates were prepared from

cultures grown in BHI broth. The cells were harvested, washed

and re-suspended in PBS, then sonicated on ice using 2630 sec-

ond bursts. The protein concentration was measured using BCA

protein assay reagent (Pierce Biotechnology).

Generation of the msp22 gene deletion mutant
The M. catarrhalis gene deletion mutant msp22D was generated

by amplifying a ,500 bp region up- and downstream of the

msp22 gene from genomic DNA using the following oligonucle-

otide primers: 8666–59-TGATATTCGCTGAGATGTGA-39;

8667–59-CCACTAGTTCTAGAGCGGCAGTGTGGTTCTT-

GCCATAAG-39; 8668–59-GCGTCAATTCGAGGGGTATC-

TAAAACATGCAGCAGCTAAG-39; 8669–59-GATGGCAT-

CATACCAATCTT-39. The flanking regions of the gene were

ligated by overlap-extension PCR with a spectinomycin resis-

tance cassette that was derived from the vector pR412T7 [24].

M. catarrhalis cells were rendered competent by washing with PBS

containing 0.15% bovine gelatin. Transformation was achieved

by adding the DNA fragments to the competent cell cultures, and

subsequent plating on spectinomycin-containing blood agar

plates (100 mg/mL). The numbers of CFUs were counted after

overnight incubation at 37uC. Msp22 gene-specific PCRs,

sequencing and Southern blot analysis were performed to

confirm the presence of the gene deletion.

Msp22 cloning for complementation, expression and
purification in M. catarrhalis BBH18 using
complementation plasmid pEMCJH04-KAN

The complete msp22 gene and a region of approximately 200 bp

upstream of the gene was amplified using genomic DNA as

template and primers 8825 and 8826, and cloned into

pEMCJH04-KAN [25] resulting in pEMCJH04-KAN-Msp22.

Mini prep DNA of pEMCJH04-KAN-Msp22 and primers 8825

and 8860 (primer containing 6xHis-tag) were used for PCR

amplification (see listing below). The resulting fragment was

BamHI/PstI digested and ligated with BamHI/PstI digested

pEMCJH04-KAN (RpEMCJH04-KAN-Msp22-HIS). Transfor-

mation of the ligation into competent M. catarrhalis wild type and

gene deletion mutant msp22D cells was performed as described

above. Transformed cells were plated on blood agar containing

50 mg/mL kanamycin. Clones were analyzed by colony PCR

using the following primers: 8825–59-ATATATGGATCCCA-

TAACATAAATTGCCGTTGTCTTGG-39; 8826–59-ATATA-

TCTGCAGCTATTTTTTCTTATAAGCCTTATGGC-39; 8835–

59-ACTTTTGCTGAGTTGAAGGA-39, 8836–59-ACAAAATG-

TTGTAGCGGTCT-39; 8860–59-AAAACTGCAGCTAGTGGT-

GGTGGTGGTGGTGTTTTTTCTTATAAGC-39.

Purification of Msp22 from M. catarrhalis
M. catarrhalis wild type (negative control) and M. catarrhalis cells

containing pEMCJH04-KAN-Msp22-HIS were plated on blood

agar plates containing 0 or 50 mg/mL kanamycin. Fifteen mL of

BHI medium was inoculated with several colonies from the plate

and bacteria were grown for 5 hrs (37uC, 180 rpm). The culture

was transferred to 150 ml BHI medium and grown overnight. The

following day, the cultures were diluted in 1.5 L BHI medium and

grown at 37uC, 180 rpm for 5 hrs (wt, negative control) or

overnight (M. catarrhalis containing pEMCJH04-KAN-Msp22-

HIS). The cells were harvested by centrifugation and frozen at

220uC until use.

The pellet was thawed and re-suspended in lysis buffer (50 mM

Tris/HCl pH 8.0, 500 mM NaCl, 0.1% Triton X-100) containing

protease inhibitors. Sonication on ice was performed 762 min

(5610% cycle, 100% power), and soluble and insoluble fractions

were separated by centrifugation. Small scale Western blot analysis

of crude lysate, soluble and insoluble fractions was performed to

determine the solubility of the protein. The protein in the soluble

fraction was purified using an IMAC affinity column. The protein

bound to the column was washed with Tris/NaCl buffer (50 mM

Tris/HCl pH 8.0, 500 mM NaCl, 0.5 mM DTT) containing

0.1% Triton X-100 (wash 0), buffer only (wash 1), 20 mM

imidazole (wash 2) and 40 mM imidazole (wash 3) and then eluted

in 50 mM Tris/HCl pH 8.0, 150 mM NaCl, 250 mM imidazole.

Luminol based heme staining
For heme staining, the protocol by Feissner et al. [26] was used.

Briefly, SDS-PAGE was performed using non-reducing loading

buffer and samples were not heat treated prior to loading. Proteins

were subsequently blotted onto a nitrocellulose membrane,

washed with PBS and incubated with the substrate luminol

(SuperSignal West Femto Maximum Sensitivity Substrate Trial

Kit, Pierce Biotechnology). Luminol/Enhancer solution and

Stable Peroxidase Buffer were mixed at a 1:1 ratio and added to

the membrane, followed by exposure of the membrane to light-

sensitive film, allowing the detection of proteins with heme-

dependent peroxidase activity.

Results

Human sera for antigen identification recognize M.
catarrhalis proteins

Antigen identification using human sera relies on the assump-

tion that candidate antigens have induced seroconversion or an

immune response in patients recovering from infection or in

healthy individuals upon encounter with the pathogen without

developing disease. For identification of M. catarrhalis vaccine

candidate antigens, 414 sera from patients (children 1–10 years of

age) with otitis media were collected over a three year period. This

serum collection included 147 serum pairs taken from the same

individual during acute and convalescent disease phase (294

samples) and 120 single serum samples taken either from the acute

or convalescent phase from different patients. Human sera were

further collected from children suffering from respiratory allergies

or asthma (2–18 years) and healthy adults (18–40 years) having no

recent history of middle ear disease or M. catarrhalis infection. The

sera containing high titer of antibodies as measured by ELISA and

showing a diversity of bands in the Western blot using whole

Moraxella cell lysate were selected to create four different serum

pools for antigen selection by bacterial surface display (Table 1). In

general, good antibody levels against Moraxella lysates were

detected in the majority of sera, but we could not observe

significant differences in IgG levels between samples obtained from

patients in acute and convalescent phase. The sera for pooling

were therefore selected mainly based on ELISA titer and Western

blotting. Sera from both, healthy individuals and patients, had

higher ELISA titers than the sera from patients with recurrent

AOM, while the latter showed a more homogeneous banding

pattern in Western blot as compared to the individual sera

included in the other pools. Serum pool PMc36 contained sera

from young patients (2–18 years) with respiratory allergies, PMc37

serum pool was derived from children with asthma (5–17 years),

PMc39 serum pool included sera from the patients with recurrent
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otitis media and the serum source for IC20 serum pool were

healthy individuals.

Selection of 23 M. catarrhalis vaccine candidate antigens
by the ANTIGENome technology

In order to apply the ANTIGENome technology for the

identification of novel M. catarrhalis vaccine candidates, genomic

libraries were generated consisting of E. coli cells displaying

random peptides of M. catarrhalis via the FhuA and LamB

platforms on the bacterial cell surface. Approximately 600 clones

of each library were sequenced in order to determine the quality of

the libraries and to calculate the average insert sizes. Average

insert sizes of 39 bp (LamB/1), 87 bp (LamB/2) and 199 bp

(FhuA) covering the entire M. catarrhalis BBH18 genome 33 times

(LamB/1), 56 times (LamB/2) and 38 times (FhuA), were

represented by a total number of 1.66106 (LamB/1), 1.26106

(LamB/2) and 3.66105 (FhuA) E. coli clones, respectively. The first

LamB library contained DNA inserts of an average size of 39 bp,

therefore a second LamB library was generated with a larger

average insert size.

Screening of the three genomic libraries was performed using

IgGs purified from the four serum pools, resulting in 13 individual

bacterial surface display screens (3 LamB screen with the LamB/1

library, 4 LamB screens with the LamB/2 library, and 6 FhuA

screens) to identify novel vaccine antigens. Approximately 800

clones per screen were sequenced and the results matched to

annotated ORFs using BLAST searching (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). A problem that occurred in the initial screens

was the frequent selection of the Hag/MID, UspA1/UspA2H

antigens. Therefore, serum pools IC20 and PMc39 were

additionally adsorbed against 3 UspA2H and 4 (IC20 IgG pool)

or 6 (P39 IgG pool) Hag/MID library clones that covered the

immunodominant regions of these proteins. The selection of 6

Hag/MID library clones for adsorption resulted in a strong

reduction of Hag/MID clones in the screen using P39 serum pool,

and a relative increase in the selection of the remaining antigens.

In total, 214 candidates were selected by the ANTIGENome

approach and positively confirmed by Western blot analysis using

the human IgG pools that were initially used for library screening.

The most frequently selected antigens in all screens included the

previously published antigens Hag/MID (493 hits [27]), the

UspA1 and UspA2H proteins (131 hits [10]) as well as LbpB (39

hits [28,29]) and CopB (35 hits [30,31]). However, a number of

less well characterized proteins, such as a TonB dependent

receptor (MCR_0076, 13 hits), an outer membrane protein

(MCR_1742, 24 hits), a carboxypeptidase (MCR_1010, 48 hits),

and MhuA (MCR_0739, 15 hits) were frequently detected in

addition to these well characterized antigens. Certain antigens

were preferably selected when screening the FhuA library. These

candidates included among others: Hag/MID (FhuA: 349 hits vs.

LamB: 144 hits); UspA2H (FhuA: 81 hits vs. LamB: 4 hits); UspA1

(FhuA: 39 hits vs. LamB: 7 hits); and the aconitate hydratase

(FhuA: 42 hits vs. LamB: 1 hit). In contrast, McmA was found 29

times in LamB screens, but was only selected once using the FhuA

library. Many other antigens were identified equally frequent in

both screens. These results confirm that the ANTIGENome

technology is a very valuable and comprehensive approach for the

identification of novel antigens as potential vaccine candidates.

Moreover, the utilization of two different surface display libraries,

expressing smaller (LamB) and larger (FhuA) peptides, may also –

besides mainly linear epitopes – allow for the selection of

conformational epitopes.

Following initial antigen identification, several in vitro and in vivo

analyses were performed to further reduce the number of selected

vaccine candidates. Initially, all 214 candidates were tested for

their gene distribution among 47 M. catarrhalis isolates. Based on

this PCR analysis, 196 antigens were present in at least 43 of 47

Moraxella strains, whereas only 18 candidates were present in less

than 90% of all isolates tested.

In order to evaluate the immunogenicity of individual antigens

in humans, an ELISA using synthetic peptides corresponding to

the epitope bearing regions of the antigenic proteins identified by

the genomic screens was performed using the individual sera from

the four human serum pools. The peptides were designed based on

bioinformatic analysis of the selected clones encoding immuno-

genic epitopes and synthesized with an N-terminal biotin-tag. In

case of longer antigenic fragments (more than 26 amino acid

residues), overlapping peptides were generated. The 402 peptides

were selected from 110 antigens according to their frequency of

being selected by the antigen screens as well as their annotation

(e.g. predicted to be surface located, antigenic or secreted

peptides/proteins). The 50 most reactive peptides are listed in

Tables 2 and 3. Several of the most reactive peptides corresponded

to antigens frequently found in the screens, such as PcnB/

MCR_1836, GroES/MCR_1494, PrfC/MCR_1681, GidA/

MCR_1350, RpoC/MCR_0258, AcnB/MCR_0394 and

McmA/MCR_1652.

A final selection of 23 promising antigens for recombinant

protein production and further in vivo evaluation was made based

on the number of screen hits, data obtained from the serological

studies, and the bioinformatic and gene distribution analyses (see

Table 4). All 23 candidates were present in at least 44 of the 47

tested Moraxella isolates and the majority of the antigens were

predicted to be localized in the outer membrane. In addition,

proteomic studies with M. catarrhalis membrane fractions were

performed to support antigen selection (data not shown). As shown

in Table 4, four candidates (OppA, M16-like peptidase, MhuA

and MsrAB) were found in all membrane preparations, whole

Table 1. Human sera selected for antigen identification by peptide library screening.

Serum pool Individual sera Source Purpose

P39 P4060.2, P4070.2, P4072.2, P4101.2, P4115.2 Patients with otitis media; age: 1-10 years Antigen selection

IC20 IC58B, IC84B, IC85B, IC86B, IC89B Healthy individuals; age: 18–40 years Antigen selection

P36 P3792, P3801, P3819, P3832, P3861 Patients with respiratory allergies; age: 2–18 years Control; other condition

P37 P3918, P3923, P3941, P3943, P3965 Patients with asthma; age: 5–17 years Control; other condition

Pool P39 consisted of individual sera collected from OM patients during the convalescent disease phase. Pool IC20 contained sera from healthy individuals. The
additional 2 pools were used as controls for otitis media-unrelated antigen reactivity: Pool P37 (patients with asthma, age: 5–17 years). Pool P36 (patients with
respiratory allergies, 8 months– 18 years of age).
doi:10.1371/journal.pone.0064422.t001
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Table 2. ELISA data for the 50 most reactive M. catarrhalis peptides – Average ELISA titers for groups of sera.

Peptide Annotation
Average
(OM)

Average
(Asthma)

Average
(Healthy)

Average
(All)

MCR_1292-02 phosphatidylethanolamine Kdo2-lipid A phosphoethanolamine transferase 553 486 507 518

MCR_0412-03 hypothetical protein 413 396 412 407

MCR_1728-03 Ppx/GppA phosphatase 445 410 294 387

MCR_1387-01 ribonuclease PH 428 474 219 377

MCR_1836-07 poly(A) polymerase 479 358 260 373

MCR_0169-04 excinuclease ABC subunit A 511 394 154 363

MCR_1494-02 chaperonin protein Cpn10 431 390 239 359

MCR_0081-02 prolyl endopeptidase 348 377 317 347

MCR_1728-05 Ppx/GppA phosphatase 347 351 276 326

MCR_1596-01 phospholipid/glycerol acyltransferase 333 265 332 311

MCR_1690-04 extracellular solute-binding protein family 3 280 401 241 306

MCR_0036-01 glutamate-cysteine ligase 334 353 211 302

MCR_0604-04 Fe-S protein assembly chaperone HscA 316 291 244 286

MCR_1619-10 ribonuclease E 303 347 178 277

MCR_1200-01 2-isopropylmalate synthase 370 244 173 269

MCR_0036-03 glutamate-cysteine ligase 233 240 338 268

MCR_1283-01 glycine dehydrogenase 340 287 153 265

MCR_0092-01 3-ketoacyl-CoA thiolase FadA 301 260 211 260

MCR_1683-02 DNA polymerase I 304 298 140 251

MCR_1681-01 peptide chain release factor 3 280 231 216 245

MCR_1596-02 phospholipid/glycerol acyltransferase 230 271 230 243

MCR_1487-01 ubiquinone biosynthesis hydroxylase 268 283 158 238

MCR_0131-02 nitric oxide reductase NorB 250 251 144 217

MCR_1320-02 cbb3-type cytochrome c oxidase subunit CcoP 243 273 111 211

MCR_0321-03 lysophospholipase-like protein 217 201 181 201

MCR_0604-02 Fe-S protein assembly chaperone HscA 271 165 152 201

MCR_0131-04 nitric oxide reductase NorB 263 247 69 197

MCR_0996-04 hypothetical protein 248 225 107 197

MCR_0934-05 polyphosphate kinase 2 257 204 108 194

MCR_1003-02 LysM domain protein 169 300 114 193

MCR_1735-02 M48 family zinc metallopeptidase 213 231 129 192

MCR_1295-02 leucyl-tRNA synthetase 222 208 119 186

MCR_0439-03 penicillin-binding protein 1A 194 200 154 184

MCR_0078-01 hypothetical protein 193 211 136 180

MCR_0169-03 excinuclease ABC subunit A 240 226 58 179

MCR_1672-02 pepSY-associated membrane protein 149 229 163 178

MCR_0692-03 hypothetical protein 216 213 96 177

MCR_0092-02 3-ketoacyl-CoA thiolase FadA 276 153 78 176

MCR_0258-01 DNA-directed RNA polymerase subunit beta’ 170 156 194 173

MCR_0321-04 lysophospholipase-like protein 191 180 132 169

MCR_0791-02 nicotinate-nucleotide diphosphorylase 184 205 113 168

MCR_0625-01 penicillin-binding protein 1B 210 177 106 167

MCR_0394-04 aconitase 200 93 201 167

MCR_0136-02 conserved hypothetical protein 178 191 129 166

MCR_1690-01 extracellular solute-binding protein family 3 153 207 136 164

MCR_1652-02 peptidase M16 inactive domain protein McmA 183 206 92 162

MCR_1350-06 tRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA 221 178 63 158

MCR_0405-01 tetratricopeptide repeat family protein 145 202 129 158

MCR_1295-01 leucyl-tRNA synthetase 184 134 129 151
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membrane, outer membrane vesicles and outer membrane vesicles

isolated from cultures grown in iron-depleted medium (as a variety

of virulence factors are induced by low iron levels). Three

candidates (hypothetical proteins MCR_0063, MCR_0691,

MCR_0692) were found in the whole membrane and in outer

membrane vesicles, and seven further candidates were detected in

one of the three membrane preparations.

Three candidate vaccine antigens demonstrated
protection in vivo

Of the 23 candidates selected by the ANTIGENome technol-

ogy, we evaluated 8 well conserved (see Table 5) and readily

recombinant expressed antigens that had shown some promise in a

preliminary mouse study in more detail for their potential to elicit

protective immune response in vivo (Figure 1). The rate of M.

catarrhalis clearance from mouse lungs in response to immunization

with recombinant antigens was assessed using a mouse pulmonary

clearance model (Figure 2). Mice were immunized intranasally 3

times at 3 week intervals and challenged intranasally with 40 mL of

approximately 56106 live M. catarrhalis RH4 (actual CFU varied

between 3.86106 to 5.96106) 3 weeks after the last boost.

Bacterial CFU were determined in lungs 6 hours post infection

and systemic antibody titers after vaccination of mice were

determined by ELISA (Figure 2).

Groups of mice immunized with recombinant proteins

MCR_1416, MCR_1303, MCR_0076-1, MCR_1010,

MCR_0196, MCR_1003-1, MCR_0996 and MCR_0686 ex-

pressed in E. coli showed a greater or comparable clearance of

bacteria from lungs compared to the positive control protein

OmpCD (Figure 2A, B). The effect was statistically significant for

MCR_1416 with one log reduction in bacterial recovery

compared to mice immunized with adjuvant alone (IC31H)

(p,0.01) (Figure 2A). Further, there was also a significant

reduction in bacterial load for MCR_1303 (p,0.05) and

MCR_0076-1 (p,0.05) compared to IC31H alone, when sterile

lung cultures were removed from the analysis (Figure 2B). The

exclusion of sterile cultures was considered reasonable, based on

the observation that negative (sterile) lung cultures appeared

randomly between 0 to 3 in the 6 PBS groups, the number of

sterile lung cultures in the immunized mice occurred with the

same frequency as in the PBS groups (between 0 and 4).

Therefore, the sterile lung cultures were more likely to represent

a technical artifact (infection failure), rather than elimination of

bacteria. While significant protection was observed for

MCR_1416, MCR_1303 and MCR_0076-1, protection was

lower for the other candidates despite strong antibody responses

as measured by IgG ELISA (Figure 2C). In contrast, the IgG

response was very low for MCR_0076-1 and MCR_1010, while

the level of protection was higher than for the positive control

protein OmpCD. This observation indicated that factors other

than antibody responses may contribute to protection against M.

catarrhalis.

Systemic human antibody responses against the selected
antigens are not induced upon infection

In order to evaluate the human immune response for the 8

selected recombinant antigens upon natural infection, additional

serological studies were performed with ELISA and Luminex

xMAPH technology, using a collection of 164 individual sera from

children with otitis media collected during the acute and

convalescent disease phase. Sera from healthy individuals were

tested in parallel in order to compare antigen specific responses

between healthy adults and children with otitis media. We

detected antibodies against all eight antigens in the 20 paired

acute/convalescent serum samples from children with otitis media,

however IgG end titers were relatively low (,2000) and no

significant antigen specific seroconversion (defined as $2 fold

increase in the convalescent IgG titer) was detected in any of the

donors (data not shown). We also examined the median antibody

titers between healthy donors and otitis media patients, however

no statistically significant difference was seen (data not shown).

Moreover, we detected a decrease in median systemic IgG titers

against the antigen MCR_1303 in convalescent sera compared to

acute sera (data not shown). These results are in agreement with

the peptide ELISA data, as no increase in antibody titer was

detected for these antigens in sera from otitis media patients

during an OM episode when the paired serum samples were

collected.

MCR_1416 exhibits heme-dependent peroxidase activity
The recombinant antigen showing the highest protection in the

pulmonary clearance model was further studied for its biological

function. MCR_1416 has previously been identified as Moraxella

surface protein 22 (Msp22) [9] and shows homology to

cytochrome c, it containing one CXXCH motif (residues 142 to

146). C-type cytochromes are characterized by covalent attach-

ment of heme to the protein via two thioether bonds formed

between the heme vinyl groups and the cysteine sulfurs in a

CXXCH peptide motif [32]. Since Msp22 also contains this motif,

we set out to determine whether it binds heme and exhibits heme-

dependent peroxidase activity. Heme staining was performed

according to the method of Feissner et al. [26] using luminol as

substrate for the heme-dependent peroxidase activity.

In order to try to ensure that native lipidated Msp22 protein was

recovered possessing its correct native conformational folding,

Msp22 with its native signal sequence and a C-terminal His-tag

was expressed in M. catarrhalis (i.e. its native host), using the

complementation vector pEMCJH04-KAN. We complemented

the wild type strain with the plasmid expressed Msp22 in order to

increase the yield of purification from M. catarrhalis. Subsequently,

Table 2. Cont.

Peptide Annotation
Average
(OM)

Average
(Asthma)

Average
(Healthy)

Average
(All)

MCR_0405-03 tetratricopeptide repeat family protein 184 139 123 151

The peptides are named by the ORF followed by a number indicating the individual peptide for the respective ORF. Individual sera were obtained from asthma patients
and healthy individuals and convalescent sera patients with otitis media (OM). Listed are the 50 peptides with highest average ELISA units of the 402 peptides analyzed.
ELISA units were calculated as 1,0006[(A405 wells with serum) – (A405 wells with secondary antibody alone)]. The serum ELISA units were additionally corrected for the
background reactivity of sera with streptavidin, by subtracting the values obtained with streptavidin coated wells in the absence of peptide from the values obtained in
the wells containing bound peptides.
doi:10.1371/journal.pone.0064422.t002
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Table 3. ELISA data for the 50 most reactive M. catarrhalis peptides – ELISA titers for individual sera.

OM Asthma Healthy individuals

Peptide
P406
0.2

P407
0.2

P407
2.2

P410
1.2

P411
5.2

P412
0.2

P39
18

P39
23

P39
41

P39
43

P39
65

IC5
8B

IC8
5B

IC8
6B

IC8
9B

IC5
4A

Aver
age

MCR_1292-
02

677 388 370 789 566 526 706 696 8 626 396 629 504 155 403 846 518

MCR_0412-
03

602 68 226 778 411 390 420 416 423 505 216 339 518 0 446 755 407

MCR_1728-
03

612 352 197 753 393 365 391 428 424 381 427 253 311 0 356 552 387

MCR_1387-
01

506 397 172 672 448 373 404 383 1008 392 185 192 139 0 64 700 377

MCR_1836-
07

569 624 433 484 349 414 252 500 393 399 244 247 386 0 233 435 373

MCR_0169-
04

472 1008 159 574 408 444 336 635 355 531 111 152 134 64 64 357 363

MCR_1494-
02

462 408 196 705 407 409 376 428 658 321 169 189 232 0 136 640 359

MCR_0081-
02

522 83 199 623 398 261 464 471 456 478 18 277 420 0 271 617 347

MCR_1728-
05

520 58 180 668 364 294 428 426 391 399 109 195 416 0 208 560 326

MCR_1596-
01

236 306 117 619 311 408 258 366 257 253 191 318 217 0 721 402 311

MCR_1690-
04

139 248 120 663 210 299 300 350 417 692 247 102 524 65 57 455 306

MCR_0036-
01

353 215 117 631 334 354 372 346 506 305 237 201 204 0 122 530 302

MCR_0604-
04

334 398 303 354 178 331 442 459 292 260 0 203 121 0 562 335 286

MCR_1619-
10

396 0 83 671 330 336 450 357 458 209 259 198 94 0 80 516 277

MCR_1200-
01

398 784 103 502 237 194 341 273 297 230 78 141 104 0 165 455 269

MCR_0036-
03

277 106 275 114 147 477 429 92 253 150 277 214 386 0 715 375 268

MCR_1283-
01

346 338 115 602 355 286 397 353 312 258 115 97 88 0 131 450 265

MCR_0092-
01

187 822 76 273 182 264 132 475 102 379 212 253 201 93 253 255 260

MCR_1683-
02

458 9 121 517 454 264 257 266 604 281 83 102 269 0 48 283 251

MCR_1681-
01

284 725 109 205 153 205 167 388 124 291 183 161 706 0 95 119 245

MCR_1596-
02

180 271 98 363 153 313 199 208 214 394 338 727 140 0 96 188 243

MCR_1487-
01

158 132 84 567 318 351 412 470 0 243 288 86 115 0 78 512 238

MCR_0131-
02

173 468 141 300 211 207 211 327 181 208 327 168 129 115 103 204 217

MCR_1320-
02

158 112 60 538 308 284 288 354 255 194 274 46 86 0 55 367 211

MCR_0321-
03

214 126 0 471 238 255 257 222 26 210 292 247 89 27 157 383 201

MCR_0604-
02

186 346 161 370 261 301 191 162 155 224 94 122 123 0 245 272 201

MCR_0131-
04

31 945 79 77 85 361 93 580 25 272 265 78 73 0 86 106 197

MCR_0996-
04

352 260 11 521 154 192 277 284 350 173 39 55 54 80 0 345 197
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Msp22 was obtained from the soluble fraction and purified on an

IMAC column. Western blot analyses of the column eluate (using

extracts from M. catarrhalis with or without pEMCJH04-KAN-

Msp22-HIS) and immune sera against recombinant MCR_1416

and anti-penta-His antibody revealed successful purification of

His-tagged Msp22 (Figure 3). These experiments also showed that

the Msp22 protein as produced by wild type M. catarrhalis is

recognized by antibodies induced in mice by the recombinant E.

coli protein.

For heme detection experiments, samples were prepared using a

non-reducing sample buffer and were not heated prior to SDS-

PAGE, which was performed under denaturing conditions.

Bacterial lysates of the wild type, the msp22 gene deletion mutant

and the complemented strains all served as additional heme

controls. Positive signals were obtained for hemoglobin, purified

Msp22 and the cell lysates expressing Msp22, indicating the

presence of heme-dependent peroxidase activity. No signal was

detected for the negative control protein BSA (Figure 4). The

Table 3. Cont.

OM Asthma Healthy individuals

Peptide
P406
0.2

P407
0.2

P407
2.2

P410
1.2

P411
5.2

P412
0.2

P39
18

P39
23

P39
41

P39
43

P39
65

IC5
8B

IC8
5B

IC8
6B

IC8
9B

IC5
4A

Aver
age

MCR_0934-
05

232 376 48 449 182 256 254 301 258 193 15 42 68 0 29 400 194

MCR_1003-
02

124 233 0 432 40 182 727 216 199 242 118 73 76 0 143 280 193

MCR_1735-
02

122 202 35 474 215 229 238 298 207 167 244 74 88 0 84 399 192

MCR_1295-
02

223 65 35 593 228 189 282 295 210 254 0 69 67 0 58 400 186

MCR_0439-
03

95 312 103 299 180 173 144 159 242 173 284 374 132 0 70 196 184

MCR_0078-
01

177 0 132 462 177 207 319 284 252 198 0 73 97 0 0 508 180

MCR_0169-
03

176 576 59 359 74 193 404 259 100 322 45 30 10 0 17 233 179

MCR_1672-
02

247 290 78 168 100 10 240 101 410 112 282 123 99 143 60 390 178

MCR_0692-
03

348 229 56 341 163 158 205 266 256 148 189 95 70 0 48 265 177

MCR_0092-
02

325 313 226 97 427 265 103 67 201 89 307 117 73 0 69 131 176

MCR_0258-
01

157 143 34 468 102 114 193 240 132 216 0 52 0 0 666 253 173

MCR_0321-
04

199 119 0 341 191 296 252 192 19 202 235 168 66 0 94 332 169

MCR_0791-
02

285 61 80 308 216 152 218 214 153 233 206 39 159 0 78 287 168

MCR_0625-
01

202 139 53 476 204 187 226 272 200 188 0 35 46 0 46 405 167

MCR_0394-
04

297 513 76 44 202 65 78 51 98 81 159 490 2 0 305 208 167

MCR_0136-
02

83 154 58 368 200 202 237 278 170 166 103 150 65 0 70 359 166

MCR_1690-
01

162 136 91 306 112 108 205 165 350 152 164 172 157 0 56 294 164

MCR_1652-
02

109 119 4 474 159 234 297 278 241 158 57 57 11 0 13 380 162

MCR_1350-
06

245 317 143 307 165 147 193 242 145 126 185 1 10 0 0 306 158

MCR_0405-
01

128 202 45 237 150 106 179 229 239 116 249 43 42 292 35 232 158

MCR_1295-
01

158 167 71 224 216 265 164 122 109 169 104 131 117 0 70 329 151

MCR_0405-
03

534 106 46 232 154 29 214 129 118 101 132 168 154 0 70 225 151

For legend see Table 2.
doi:10.1371/journal.pone.0064422.t003
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absence of the respective protein band at 17 kDa in the msp22

gene deletion mutant, the presence of a strong signal in the

complemented strain, and a weak signal in the wild type strain

suggested that the 17 kDa hemoprotein was indeed Msp22.

Discussion

Over the last three decades, M. catarrhalis has become

recognized as an important pathogen of the human respiratory

tract [33,34,35,36,37,38,39]. However, even though M. catarrhalis

is the third most frequent bacterial pathogen to be associated with

otitis media and is a major cause of exacerbations of COPD in

adults, none of the currently available bacterial vaccines developed

to prevent these diseases include M. catarrhalis antigens [8].

Therefore, the aim of this study was to comprehensively identify

potential vaccine targets of M. catarrhalis by applying the

ANTIGENome technology that had previously been developed

by Intercell AG (Vienna, Austria), and which had been previously

successfully used for vaccine discovery for several other bacterial

pathogens [17,18,40]. Genomic libraries displaying multiple

epitopes of all potential antigens of isolate BBH18 were screened

using human IgG pools from patients as well as healthy

individuals, anticipating identification of antigens expressed during

infection in vivo. The most frequently selected antigens in the

screens were Hag/MID and UspA1, which are vaccine candidate

antigens previously identified in other studies. Hag/MID has been

described as an adhesin, a hemagglutinin, and a stimulator of B

cells [41,42], whilst UspA1 functions as an adhesin and a

transporter [43,44]. Further, immunization with UspA1 has been

shown to induce bactericidal antibodies in mice and humans [11].

In fact, the detection of these well-known candidate antigens shows

the value of the ANTIGENome technology in identifying potential

vaccine candidates, also including potentially novel vaccine

candidates. Indeed, using this technology, allowed the identifica-

tion of 214 antigenic M. catarrhalis proteins, with 23 of these

candidates being further evaluated in a murine M. catarrhalis

pulmonary clearance model.

The fact that M. catarrhalis is a strictly human pathogen, which

does not induce active infection in animals, means that there is

currently no clinically relevant model for M. catarrhalis vaccination

studies available, especially for studies that adequately mimic otitis

media infection in humans. For this reason, the mouse pulmonary

clearance model is the most frequently used animal model to test

the ability of antigens to generate a protective immune response

against M. catarrhalis [45]. However, it is known that mice do not

develop pneumonia and are able to clear the M. catarrhalis bacteria

relatively quickly in this model (within 6–24 hours), and in this

study, M. catarrhalis clearance occurred within 24 hrs post-

infection. It is precisely for this reason that the clearance of M.

catarrhalis from the respiratory tract was measured at 6 to 9 hrs

post-infection when using this animal model, rather than

Table 4. M. catarrhalis antigens selected by the ANTIGENome technology.

ID Annotation aa GD Hits 1 2 3 4 5

MCR_0063 hypothetical protein 232 47/47 8 + + PP (9.84) 2

MCR_0076* TonB-dependent receptor 913 44/47 13 OM (9.52) 2

MCR_0136 hypothetical protein 278 47/47 2 PP (9.84) +

MCR_0186 outer membrane lipoprotein LolB 190 46/47 6 + ? (2) 2

MCR_0196* MltB; lytic murein transglycosylase 473 47/47 12 + IM (9.97) +

MCR_0439 Pbp1A; penicillin-binding protein 1A 786 47/47 5 IM (9.82) +

MCR_0560 hypothetical protein 355 44/47 5 IM (10) 2

MCR_0681 putative lytic transglycosylase 303 45/47 7 ? (5.02) +

MCR_0686* peptide methionine sulfoxide reductase MsrA/MsrB 558 47/47 3 + + + CP (9.26) +

MCR_0691 hypothetical protein 105 46/47 4 + + ? (2.5) +

MCR_0692 hypothetical protein 503 45/47 7 + + ? (2.5) +

MCR_0739 hemoglobin utilization protein MhuA 954 46/47 15 + + + OM (10) +

MCR_0918 M16-like peptidase 470 46/47 5 + + + ? (2) +

MCR_0996* hypothetical protein 146 47/47 3 + PP (9.84) +

MCR_1003* LysM domain protein 819 47/47 9 + OM (9.49) +

MCR_1010* DacC; D-alanyl-D-alanine carboxypeptidase 386 47/47 48 PP (9.76) 2

MCR_1228 D15 surface antigen family protein 907 47/47 4 + OM (9.52) 2

MCR_1303* OppA; oligopeptide ABC transport system substrate binding
protein

679 47/47 6 + + + ? (5.02) +

MCR_1357 Cyt1; cytochrome c1 family protein 241 47/47 22 ? (2.5) 2

MCR_1416* cytochrome c class II Msp22 152 47/47 2 PP (9.44) +

MCR_1690 extracellular solute-binding protein family 3 262 44/47 6 + PP (10) +

MCR_1742 outer membrane protein 111 46/47 24 ? (2.5) +

MCR_1761 OlpA; OPA-like protein A 235 47/47 7 + OM (10) 2

aa, amino acids; GD, gene distribution; 1, Proteins detected in the whole membrane preparation; 2, Proteins detected in outer membrane vesicles (iron-rich conditions);
3, Proteins detected in outer membrane vesicles (iron-depleted conditions); 4, Bioinformatic analysis, predicted localization using PSORTb3.0.3 (score), OM = outer
membrane, PP = periplasmic, IM = inner membrane, CP = cytoplasmic, ? = unknown; 5, Peptide ELISA (+; at least one peptide with an average ELISA unit $100);
*selected for in vivo studies.
doi:10.1371/journal.pone.0064422.t004
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measuring total bacterial clearance at 24 hrs (by which time non-

vaccination related factors could have influenced the clearance of

the M. catarrhalis bacteria) [46]. Based on our preliminary studies

with heat killed bacteria and the OmpCD antigen, the optimal end

point for M. catarrhalis strain RH4 in our model was 6 hrs post-

infection. This model was found to be reproducible, as we detected

similar clearance rates for the tested antigens in up to 6

independent experiments. Nevertheless, it should be noted that

the clearance rate of bacteria from the lungs of vaccinated mice (a

measure of the efficacy of vaccination) was based on an actual

increase in clearance rate compared to the normal clearance rate

observed in unvaccinated control mice. In our study, this meant

that the maximum clearance rate we observed using this model lay

in the range of 0.5 to 1.0 log10 when compared to negative

controls. However, our results are in agreement with similar

studies that have previously been performed using putative M.

catarrhalis vaccine antigen candidates [47,48,49].

Using our comprehensive screening technology, we eventually

selected 8 out of the 23 proteins that possessed the potential to

become vaccine candidates for testing in a mouse pulmonary

clearance model. Three of these protein antigens showed

beneficial effects on bacterial clearance from mouse lungs after

mucosal immunization: 1) MCR_1416 (Msp22), a candidate also

previously identified by Ruckdeschel and colleagues [9,49]; 2)

MCR_1303 (OppA), an oligopeptide permease A [50] and 3)

MCR_0076, the ‘‘plug’’ domain of a TonB-dependent receptor.

The fact that similar results and clearance rates were obtained

independently by other investigators for Msp22 [49] and OppA

[50] using different experimental set-ups, indicates that these

proteins are indeed promising vaccine candidates. MCR_0076,

Figure 1. Structural features of 8 potential M. catarrhalis vaccine candidates. MCR_0076, TonB-dependent receptor; MCR_0196, MltB; lytic
murein transglycosylase; MCR_0686, peptide methionine sulfoxide reductase MsrA/MsrB; MCR_0996, hypothetical protein; MCR_1003, LysM domain
protein; MCR_1010, D-alanyl-D-alanine carboxypeptidase; MCR_1303, oligopeptide ABC transport system substrate binding protein; MCR_1416,
cytochrome c class II, Msp22. SP, signal peptide; LP, signal peptide for lipidation; Plug, an independent folding subunit blocking the pore until the
channel is bound by a ligand; PGBD1, peptidoglycan binding-like; MsrA, methionine sulfoxide reductase A; SelR, seleno protein R; LysM, lysine motif;
SBP bac 5, bacterial extracellular solute-binding protein family 5. Light grey bars represent the recombinant protein (fragments). Thin black bars
delineate epitope containing regions covered by clones selected by the ANTIGENome technology with human IgGs.
doi:10.1371/journal.pone.0064422.g001
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the plug domain of TonB-dependent receptor, is situated within

the beta-barrel structure and appears to be more conserved than

the barrel. This plug domain is an independent folding subunit

blocking the pore until the channel is bound by a ligand and

causes the structural and functional differences between these

transporters and porins [51,52,53]. TonB-dependent receptors

have previously been reported to be potential vaccine antigens and

important virulence factors [54,55,56] and should thus be taken

into consideration and analyzed in more detail for M. catarrhalis.

The oppA gene (MCR_1303) encodes an oligopeptide permease

that belongs to the ABC transport system. These types of

transporters have been shown to play a role in virulence, to be

immunogenic and to be potential vaccine candidates [57]. The

Msp22 antigen (MCR_1416) induced the most significant in vivo

protection and was analyzed in vitro in more detail in order to

explore its function. Due to its homology to cytochrome c and the

presence of a CXXCH motif, known to be involved in heme

binding, we tested whether this antigen was indeed a heme binding

protein. Our heme staining experiment (Figure 4) demonstrated

that heme had indeed been covalently attached to the highly

soluble Msp22 protein, indicating that Msp22 may exert its

function via heme binding.

The heme group of type c cytochromes accepts electrons from

the bc1 complex and transfers them to the cytochrome oxidase

complex. Among other functions, cytochrome c has heme-

dependent peroxidase activity and plays a role in initiation of

apoptosis in more complex organisms [58,59,60,61]. Based on its

homology to cytochrome c and its heme binding, Msp22 may also

function in the electron transfer via its heme-dependent peroxidase

activity. Besides its important role for cytochrome function, heme

is also the most abundant source of iron in the human body [62].

Not surprisingly, due to very limited free iron availability in the

human host, many pathogens have evolved mechanisms to utilize

heme containing proteins as iron sources. Recently, two M.

catarrhalis proteins have been shown to acquire iron from hemin

and heme complexes [63,64]. Therefore, Msp22 could also be

involved in iron acquisition from heme and heme-containing

compounds. Interestingly, it was recently suggested that Msp22

has a potential role in divalent ion transport [50]. An investigation

into the mechanism of heme binding and the contribution of the

CXXCH motif was recently performed for two putative

cytochrome c peroxidases of Campylobacter jejuni [26,65]. While

these proteins exhibited heme binding, site-directed mutations

within the CXXCH motif resulted in unstable proteins excluding

Figure 2. Pulmonary clearance of M. catarrhalis RH4 after intranasal challenge following intranasal immunization with 8 selected
antigens. Pulmonary clearance 6 hours after intranasal challenge with ,56106 CFU M. catarrhalis, in mice immunized with purified, IC31H

adjuvanted recombinant proteins, IC31H adjuvant without proteins in PBS, or PBS without adjuvant. The mean values of the combined, normalized
results from 2 to 6 independent experiments are shown. Error bars represent the standard error of the mean. (A) Bacterial CFU recovered from all
experiments; (B) bacterial CFU recovered from experiments after exclusion of sterile lung cultures. Black bars: negative and positive controls (data
from 6 experiments), grey bars: data from 2 to 3 independent experiments in which different antigens were tested. (C) ELISA measuring IgG levels to
the respective recombinant proteins in serum from mice immunized intranasally with purified recombinant proteins as noted below the x-axis. For
the controls (IC31H alone or PBS), IgG levels were determined using a mix of all recombinant proteins. Endpoint titers were expressed as the last
dilution that gave an absorbance of at least 0.1 at 405 nm. Median values with the interquartile range from 2 to 6 independent experiments using 10
sera (10 mice per group) per experiment are shown. **, statistically highly significant (P,0.01), *, statistically significant (P,0.05).
doi:10.1371/journal.pone.0064422.g002

Table 5. Properties of aligned polypeptide sequences for 8 potential M. catarrhalis vaccine candidates.

ORF aa Start-Stop Length No. of non-synonymous/deleted aa No. of isolates

MCR_0076 21–160 140 10 62

MCR_0196 36–485 450 32 63

MCR_0686 28–558 531 28 64

MCR_0996 27–148 122 21 64

MCR_1003 30–375 346 7# 64

MCR_1010 27–386 360 21 64

MCR_1303 24–679 656 31 64

MCR_1416 21–152 132 6 64

Sequences were aligned using the Bionumerics algorithm (Bionumerics v 6.0 software, Applied Maths) and default settings. Length, length in translated amino acids. #,
a single insertion event of 12 amino acids was also observed in a single isolate for this vaccine candidate.
doi:10.1371/journal.pone.0064422.t005
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them from further analysis [65]. Whether this holds true also for

M. catarrhalis Msp22 remains to be elucidated.

As targets for protective immune responses need to be accessible

on the bacterial surface and knowing that Msp22 has been

annotated as a putative surface protein, we attempted to confirm

the cell surface location of Msp22. However, using flow cytometry

of both wild type and Msp22 overexpressing strains and polyclonal

anti-Msp22 mouse sera, we could not detect this protein on the

bacterial surface. This suggests that the protein is not surface

exposed under the in vitro growth conditions tested in these studies.

In order to elicit a protective immune response, one may speculate

that Msp22 may become transiently exposed to the host’s immune

system during infection. Unlike Msp22, OppA is accessible on the

bacterial surface in vitro [50] as confirmed by our studies (data not

shown), and antibody mediated neutralization of bacteria is

therefore likely to be an important protective immune mechanism

complementing native immune defenses against this antigen.

Interestingly, in agreement with the data obtained by other

researchers in this field [50], we could not detect significant

differences in the antibody titers against the 8 tested antigens in; 1)

sera from children with otitis media in the acute compared to the

convalescent disease phase, or 2) in sera from children compared

to sera from healthy individuals. The natural systemic IgG

response observed in humans has therefore not provided any

further validation of our selected eight antigens, but the selection

as a vaccine candidate was rather based on the pulmonary

clearance model. Furthermore, although UspA1, UspA2 and

Hag/MID antigen specific antibodies were frequently found in

both children and healthy individuals [66,67], there is no clear

evidence that natural immune responses raised against other

putative vaccine candidates contribute to protection. The question

whether naturally induced antibodies against any M. catarrhalis

antigens play a role in protection against otitis media has been

previously raised [50], and our observations confirm that further

investigations into the immune mechanisms operating during M.

catarrhalis infection induced by this pathogen will be required. In

addition, naturally occurring antibodies may exhibit different

epitope specificity and avidity, compared to vaccine induced

antibodies. But more importantly, systemic IgG levels do not

adequately reflect mucosal immune responses. Thus, if mucosal

immunity is more critical for protection against M. catarrhalis,

serological studies based on serum samples collected from otitis

media patients may be of limited value. Such a discrepancy

between mucosal and systemic serological immune responses was

Figure 3. Detection of recombinant MCR_1416 (Msp22)
expressed and purified from M. catarrhalis. Equal volumes of
eluates obtained from IMAC columns from extracts of M. catarrhalis
complemented with His-tagged MCR_1416 (eluate A) or wild type strain
(not complemented, negative control) were separated by SDS-PAGE
and immunoblotted using immune serum against recombinant Msp22
(left panel) and antibody against the His-tag (right panel).
doi:10.1371/journal.pone.0064422.g003

Figure 4. Msp22 shows heme-dependent peroxidase activity. The specificity of the heme stain for Msp22 is demonstrated by staining of
lysates from the wild type, and gene deletion mutant strains as well as the BBH18 strain transformed with pEMCJH04-KAN-Msp22. Hemoglobin
(positive control), BSA (negative control). wt, wild type M. catarrhalis BBH18; wt c*, wild type M. catarrhalis BBH18 transformed with pEMCJH04-KAN-
Msp22; msp22D, msp22 gene deletion mutant; msp22D c* msp22 gene deletion mutant transformed with pEMCJH04-KAN-Msp22. The position of
Msp22 is marked with an arrow.
doi:10.1371/journal.pone.0064422.g004
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previously detected in otitis media patients against M. catarrhalis

outer membrane antigens [68]. In addition, the role of T cells for

protection and B cell activity stimulation remains to be elucidated.

Most recent studies suggested that M. catarrhalis is able to modulate

mucosal epithelial responses and B cell adaptive immunity in such

a way as to hinder the generation of antibodies with a correct

function and epitope specificity [69,70]. If this indeed turns out to

be the case, vaccination with M. catarrhalis would be an extremely

valuable approach in preventing infection by this pathogen. In

terms of antigen validation, the detection of a natural immune

response against the selected antigens indicated that they were

expressed in vivo upon infection of the human host.

In conclusion, comprehensive screening using the ANTIGE-

Nome technology has led to the identification of 214 antigenic

proteins, with 3 of these being shown to provide protection against

M. catarrhalis colonization in a mouse pulmonary model. The

results confirm that further evaluation of these proteins as vaccine

candidates in additional functional studies and in clinically

relevant Moraxella otitis media models is warranted.
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