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Graphical assessment of internal and
external calibration of logistic regression
models by using loess smoothers
Peter C. Austina,b,c,d*† and Ewout W. Steyerberge

Predicting the probability of the occurrence of a binary outcome or condition is important in biomedical
research. While assessing discrimination is an essential issue in developing and validating binary prediction
models, less attention has been paid to methods for assessing model calibration. Calibration refers to the degree
of agreement between observed and predicted probabilities and is often assessed by testing for lack-of-fit. The
objective of our study was to examine the ability of graphical methods to assess the calibration of logistic regres-
sion models. We examined lack of internal calibration, which was related to misspecification of the logistic
regression model, and external calibration, which was related to an overfit model or to shrinkage of the linear
predictor. We conducted an extensive set of Monte Carlo simulations with a locally weighted least squares regres-
sion smoother (i.e., the loess algorithm) to examine the ability of graphical methods to assess model calibration.
We found that loess-based methods were able to provide evidence of moderate departures from linearity and
indicate omission of a moderately strong interaction. Misspecification of the link function was harder to detect.
Visual patterns were clearer with higher sample sizes, higher incidence of the outcome, or higher discrimina-
tion. Loess-based methods were also able to identify the lack of calibration in external validation samples when
an overfit regression model had been used. In conclusion, loess-based smoothing methods are adequate tools to
graphically assess calibration and merit wider application. © 2013 The Authors. Statistics in Medicine published
by John Wiley & Sons, Ltd.
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1. Introduction

Predicting the occurrence of a binary outcome is important in medicine and clinical epidemiology, in
health services research, and in population health research. Common binary outcomes include perioper-
ative death versus perioperative survival, presence of disease versus absence of disease, and occurrence
versus absence of complications following surgery. Applied health researchers are frequently inter-
ested in developing models or algorithms to predict the occurrence of a binary outcome. While logistic
regression is the most commonly-used statistical method in the biomedical literature for predicting the
probability of the occurrence of a binary outcome, other methods that can be used include regression trees
or tree-based ensemble methods such as bagged regression trees, random forests, or boosted regression
trees [1–5].

An important component to the development and validation of predictive models is the assessment
of their predictive accuracy. There are two primary aspects to this assessment: assessment of discrimi-
nation and assessment of calibration [6–8]. Discrimination refers to how well the model discriminates
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between those who did and did not experience the event or outcome of interest. Discrimination is often
evaluated using the c-statistic (equivalent to the area under the receiver operating characteristic curve –
often abbreviated as AUC).

Calibration refers to the degree of agreement between observed and predictive probabilities, and is
often assessed by testing for lack-of-fit [9, 10]. It is important to distinguish between two different types
of calibration: internal and external calibration. Internal calibration refers to agreement between observed
and predicted probabilities in the sample in which the model was developed. Lack of internal calibration
is related to issues of lack of model fit and misspecification of the fitted logistic regression model. Exter-
nal calibration refers to agreement between observed and predicted probabilities in samples external to
the sample in which the model was developed. Lack of external calibration can be related to the original
model being overfit in the sample in which it was derived, which occurs especially with relatively small
sample sizes [7].

We conducted an extensive set of Monte Carlo simulations to assess the performance of a locally
weighted least squares regression smoother (i.e., the loess algorithm) for assessing both internal and
external calibration. For the assessment of internal calibration, we examined the ability to graphically
detect model misspecification in the following scenarios: (i) the omission of a nonlinear term from the
fitted model; (ii) the omission of an interaction between a binary covariate and a continuous predictor
variable; (iii) misspecification of the link function by using the logistic link function. As secondary
objectives, we examined the influence of the following factors on graphical assessments of calibration:
(i) the c-statistic of the underlying logistic regression model; (ii) the incidence of the binary outcome; and
(iii) the sample size. For assessment of external calibration, we examined the ability of graphical meth-
ods to detect the lack of calibration due to use of a regression model that had been overfit in the derivation
sample. Finally, we compared the performance of loess-based methods of assessing calibration with a
method based on comparing observed versus predicted probabilities across the ten deciles of risk [9,10].

2. Calibration

2.1. Statistical tests for calibration or goodness-of-fit

Several statistical tests have been proposed to assess model calibration or goodness-of-fit. Hosmer and
Lemeshow proposed a goodness-of-fit test on the basis of dividing the sample into strata on the basis of
the predicted probability of the outcome [9, 10]. In practice, subjects are often divided into ten, approxi-
mately equally-sized, groups on the basis of the deciles of risk. A chi-squared test is then used to compare
the observed versus predicted probability of the outcome across the strata. While the Hosmer–Lemeshow
test is based on grouping subjects on the basis of the predicted probability of the outcome, Tsiatis pro-
posed a test on the basis of grouping subjects on the basis of the predictor variables [11]. Le Cessie
and van Houwelingen proposed tests of goodness-of-fit on the basis of smoothed residuals [12], while
Royston proposed tests to detect nonlinearity that used partial sums of residuals [13]. Stukel proposed a
generalized logistic model that permits testing of the adequacy of a fitted logistic regression model [14].

While the tests described previously allow one to formally test the goodness-of-fit of the fitted logistic
regression model, other authors have proposed methods to qualitatively assess model calibration. Cox
proposed a recalibration framework, in which the observed outcome is compared with the linear pre-
dictor [15]. An intercept and slope are then estimated, which are related to calibration-in-the-large and
the calibration slope [8]. The former compares the mean predicted probability of the occurrence of the
outcome with the mean outcome, while the latter, when used for internal validation, reflects the amount
of shrinkage that is necessary to make the model well calibrated for predicting outside the derivation
sample [8]. A two-degree of freedom test can be performed to test for miscalibration [16]. Harrell and
Lee extended Cox’s recalibration framework to allow one to derive indices denoting the lack of cali-
bration, discrimination, and overall quality of prediction [17, 18]. Similarly, Dalton recently extended
Cox’s recalibration framework to provide for a flexible recalibration of binary prediction models [19].
Furthermore, the use of this method permits the derivation of a relative measure of miscalibration for
comparing two competing prediction models.

2.2. Graphical assessment of calibration

Copas proposed that regression smoothing methods be used to produce calibration plots in which
the relationship between observed and predicted probabilities of the outcome is described graphically
[20, 21]. This method has since been advocated by different sets of authors [6, 8, 22]. To implement this
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approach, the occurrence of the binary outcome is regressed on the predicted probability of the outcome
obtained from the fitted logistic regression model. A common approach is to use a locally weighted scat-
ter plot smoother, such as a locally weighted least squares regression smoother (i.e., the loess algorithm)
[8, 18, 23]. Plotting the smoothed regression line allows one to examine calibration across the range of
predicted values and to determine if there are segments of the range in which the model is poorly cal-
ibrated. Harrell et al. complemented this calibration plot with a graphical comparison of the observed
versus predicted probabilities of the occurrence of the outcome across different strata of risk [6], while
95% confidence intervals can also be added [7]. Deviations of points from a diagonal line with unit slope
indicate lack of calibration. When the distribution of predicted probabilities is also given, stratified by
outcome, the plot also visualizes discrimination aspects [6–8].

Hosmer et al. compared the statistical power of different test-based methods for assessing internal
calibration and goodness-of-fit of logistic regression models [24]. Many of the tests had poor statistical
power to detect the omission of a binary covariate and its interaction with a continuous predictor vari-
able. Similarly, power was often suboptimal to detect the omission of a quadratic term from a logistic
regression model. While much attention has been focused on the performance of different statistical tests
for assessing model calibration, there is a paucity of research on the performance of graphical methods
for assessing calibration.

3. Design of Monte Carlo simulations

We used an extensive set of Monte Carlo simulations to examine the ability of graphical methods based
on locally weighted least squares to assess internal and external calibration of logistic regression mod-
els. Three distinct sets of simulations were conducted. First, when the model was correctly specified,
we examined the effect of the c-statistic of the logistic regression model and the effect of the incidence
of the outcome on graphical assessment of internal calibration. Second, we examined the examined the
ability of graphical methods to detect the lack of internal calibration when the regression model had been
misspecified. Third, we examined the ability to detect the lack of external calibration due to estimation
of an overfit regression model.

Regression smoothing was carried out using the loess function in the R statistical programming
language [25]. A key parameter is the span parameter, which denotes the width of the window around
each subject such that all subjects within that window are used to fit the weighted least squares regres-
sion line used to obtain a prediction for a given subject [23]. In the appendix available as supplemental
online material, we have provided a brief comparison of the loess function and the lowess function in R.
We also provide a brief examination of the effect of the choice of the span parameter on the assessment
of internal calibration. We found that the default value of the span parameter in R (0.75) performed well
for assessing calibration and this value was used in all subsequent simulations.

3.1. Effect of c-statistic and incidence of the outcome on the assessment of calibration

The first set of Monte Carlo simulations was designed to examine the effect of the c-statistic of the
logistic regression model, and the incidence of the outcome on the graphical assessment of internal
calibration. We assumed that the fitted logistic regression model had been correctly specified.

3.1.1. Effect of c-statistic. For each subject in the simulated dataset, a binary outcome was simulated
from a Bernoulli distribution with subject-specific parameter pi , where logit.pi / D ˛0 C ˛1xi , and
xi � N.0; 1/. We simulated 50 datasets, each consisting of N subjects. Within each of the simulated
datasets we fit a correctly specified logistic regression. For each subject, we determined the predicted
probability of the occurrence of the binary outcome by using the fitted logistic regression model. The
loess function in R was then used to regress the observed binary outcome on the predicted probability of
the outcome. Each of the fitted loess models were then plotted to examine the relationship between the
probability of the occurrence of the outcome and the predicted probability of the outcome.

The values of ’0 and ’1 in the data-generating process described previously were chosen so that the
outcome would occur for approximately 10% of the subjects and so that logistic regression model would
have approximately the desired c-statistic [26]. We used a full factorial design in which we allowed the
following two factors to vary. We considered three values of the c-statistic: 0.70, 0.80, and 0.90. We
considered three values of the sample size: 500, 1000, and 10,000.
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3.1.2. Effect of the incidence of the outcome. We used simulations similar to those described previously
to examine the effect of the incidence of the occurrence of the outcome on graphical assessment of cali-
bration. The values of ’0 and ’1 in the data-generating process described previously were chosen so that
the outcome would occur for approximately the desired proportion of subjects and so that the c-statistic
of the logistic regression model would be approximately 0.80 [26]. We used a full factorial design in
which we allowed the following two factors to vary. We considered three values for the percentage of
subjects who would experience the event: 1%, 10%, and 50%. We considered three values of the sample
size: 500, 1000, and 10,000.

3.2. Assessing internal calibration

In the second set of simulations, we examined the performance of loess-based methods to graphically
detect the lack of internal calibration. In particular, we examined the ability of these methods to detect
model misspecification in the derivation sample. To do so, we examined scenarios and data-generating
processes identical to those examined by Hosmer et al. in a study that compared different goodness-of-fit
tests for logistic regression models [24]. The following types of model misspecification were exam-
ined: (i) omission of a quadratic term from the fitted logistic regression; (ii) omission of an interaction
term from the fitted logistic regression; and (iii) the misspecification of the link function of the logistic
regression model.

3.2.1. Misspecified regression model: omission of a quadratic term. For each subject in the simulated
dataset, a binary outcome was simulated from a Bernoulli distribution with subject-specific parameter
pi , where logit.pi / D ˛0 C ˛1xi C ˛2x2i , and xi � U.�3; 3/. As in Hosmer et al., we considered five
different scenarios, defined by different values of the three regression coefficients. The lack of linearity
in the log-odds function increased progressively across the five scenarios. The degree of nonlinearity
in each scenario is described in the top-left panel in Figure 3. Using this data-generating process, we
simulated 500 datasets, each consisting of N subjects.

In each of the simulated datasets we fit a misspecified logistic regression model: we regressed the
occurrence of the binary outcome on a linear term for the continuous predictor variable and omitted
the quadratic term. We used the loess function in R to regress the occurrence of the binary outcome on
the predicted probability of the occurrence of the binary outcome derived from the misspecified logistic
regression model. We then averaged the estimated loess models across the 500 simulated datasets, as
well as determining the 2.5th and 97.5th percentiles of the expected probability of the outcome across
the range of predicted values. We conducted these simulations in three different settings defined by the
sample size: 500, 1000, and 10000.

We compared the performance of the loess-based method for assessing calibration with that of another
commonly-used graphical method for assessing calibration. In each of the 500 simulated datasets, we
divided subjects into ten, approximately equally-sized groups, according to the deciles of the predicted
probability of the occurrence of the outcome as derived from the fitted logistic regression model. Within
each of the ten strata of risk, we determined the mean predicted probability of the occurrence of the
outcome and the observed probability of the occurrence of outcome.

3.2.2. Misspecified regression model: omission of an interaction. By using methods identical to those
described by Hosmer et al., we simulated datasets in which the log-odds of the occurrence of the outcome
was related to a continuous variable, a binary variable, and an interaction between these two variables.
As in their study, x � U.�3; 3/, and d � Be.0:5/ (with the binary covariate d being independent of
the continuous covariate x). The log-odds of the occurrence of the outcome was determined from the
following logistic model: logit.pi / D ˛0 C ˛1xi C ˛2d C ˛3xd . We considered four scenarios [24],
which allowed for progressively more interaction. The magnitude of the interaction in each scenario is
described graphically in the top-left panel of Figures 5 and 6. For each of the four scenarios, we sim-
ulated 500 datasets, each consisting of N subjects. In each simulated dataset, we fit two misspecified
logistic regression models. First, we regressed the occurrence of the binary outcome on only the contin-
uous predictor variable (i.e., both the binary covariate and its interaction with the continuous covariate
were omitted – this was the case examined by Hosmer et al. [24]). Second, we regressed the occurrence
of the binary outcome on both the continuous and binary predictor variables but omitted the interaction
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between the two (this case was not examined by Hosmer et al., but we examined it for the sake of com-
pleteness). The simulations and analyses then proceeded as described previously. We conducted these
simulations in three different settings defined by the sample size (N ): 500, 1000, and 10000.

3.2.3. Misspecified regression model: misspecification of the link function. We used methods identical
to those described by Hosmer et al. [24], which in turn were based on Stukel’s generalized logistic model
[14], to examine the ability to detect misspecification of the link function. We simulated a single continu-
ous predictor variable: x � U.�3; 3/, and used the function �.x/D 0:8x as the linear predictor variable.
We considered five scenarios. The first two were scenarios in which the generalized logistic function
had almost the same shape as the probit model and the complimentary log-log model. The remaining
three settings were selected so that the generalized logistic function had both tails longer than the logistic
model, both tails shorter than the logistic model, or an asymmetric model with one tail longer and one
tail shorter than the logistic model. The simulations proceeded as described in the previous subsections.

3.3. Assessing external calibration

We conducted two different sets of Monte Carlo simulations to examine the ability of graphical methods
to detect the lack of external calibration. The first examined settings in which the true linear predictor in
the validation or external sample was shrunken compared with the linear predictor estimated using the
internal or derivation sample. The second examined settings in which an overspecified regression model
was developed in the derivation sample and then applied to the external validation sample. Both simula-
tions used data-generating processes that were based on the Enhanced Feedback For Effective Cardiac
Treatment-Heart Failure (EFFECT-HF) mortality risk model [27]. This model uses 11 variables to pre-
dict the risk of death within 1 year of hospitalization for patients admitted to hospital with a diagnosis of
heart failure: age, heart rate, respiratory rate, urea level, low sodium, low hemoglobin, history of stroke
or transient ischemic attack, dementia, chronic obstructive pulmonary disease, cirrhosis, and cancer.

3.3.1. Shrunken linear predictor. We used data on 8634 patients hospitalized with heart failure from
the EFFECT study and regressed the occurrence of death within 1 year of hospitalization on the 11 vari-
ables listed previously by using a logistic regression model [28]. For each patient we estimated the linear
predictor from the fitted logistic regression model. The mean and variance of the linear predictor in the
EFFECT sample were �0:84 and 0.88, respectively.

We simulated derivation and validation samples of size N . For each subject we randomly generated a
linear predictor: œi � N.� D �0:84; ¢2 D 0:88/. In doing so, we simulated data in which the distribu-
tion of the linear predictor was similar to that observed in heart failure patients in the EFFECT sample.
In the derivation sample, the subject-specific probability of the outcome was pi D

exp.�i /
1Cexp.�i /

. However,

in the validation or external sample, the subject-specific probability of the outcome was pi D
exp.k�i /
1Cexp.k�i /

.
Thus, in the external validation sample, the effect of the linear predictor was shrunk by a factor of k. For
each subject in the derivation and validation sample, a binary outcome was randomly generated from a
Bernoulli distribution with parameter pi .

In the derivation sample, a logistic regression model was used to regress the binary outcome on the
simulated linear predictor œ. The estimated logistic regression model was then applied to the external
validation sample to obtain a predicted probability of the occurrence of the outcome for each subject in
the external validation sample. The simulations then proceeded as described previously with 500 iter-
ations. Two factors were allowed to vary in a full factorial design: sample size (N D 500, 1000, and
10000) and the shrinkage factor (k D 0:6, 0.7, 0.8, 0.9, and 1.0). The last shrinkage factor (k D 1)
denotes no shrinkage and serves as a control.

3.3.2. Over-fit model developed in derivation sample. We used the EFFECT-HF mortality prediction
model to simulate data in which we examined the ability to detect external lack of calibration due to
overfitting a regression model in the derivation sample. In the EFFECT sample, 2839 (33%) subjects
died within 1 year of hospital admission. We standardized the four continuous predictor variables in the
EFFECT-HF model (age, heart rate, respiratory rate, and urea level) so that each had mean zero and unit
variance. We then determined the prevalence of each of the seven binary variables in the EFFECT-HF
model (prevalences: 0.21, 0.17, 0.08, 0.17, 0.01, 0.12, and 0.13). We regressed the occurrence of death
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within 1 year on the four standardized continuous predictor variables and the seven binary predictor
variables in the EFFECT sample of patients hospitalized with heart failure.

We simulated data for both a derivation sample and an external validation sample. In each sam-
ple, we simulated four continuous predictor variables and seven binary predictor variables for each of
N subjects. The four continuous predictor variables were sampled from independent standard normal
distributions, while the seven binary predictor variables were sampled from independent Bernoulli dis-
tributions with parameters equal to the prevalences described in the previous paragraph. By using the
regression coefficients estimated in the previous paragraph, a linear predictor and subject-specific prob-
ability of the outcome was determined for each subject in each of the derivation and validation samples.
Note that the linear predictor was defined identically in the derivation and validation samples. We then
fit a logistic regression model in the derivation sample in which the outcome was regressed on the 11
simulated predictor variables. The estimated logistic regression model was then applied to subjects in the
external validation sample to obtain a predicted probability of the occurrence of the outcome. Internal
and external calibration was assessed in the derivation and validation samples, respectively, by using
previously described methods. In each simulated derivation sample, we determined the number of sub-
jects who experienced the outcome along with the number of events per variable (EPV). The fitted loess
curves and the number of events per variable were averaged over 500 iterations of the Monte Carlo sim-
ulations. We allowed the size of the simulated datasets to take on the following values: 200, 300, 500,
750, 1000, 2000, 5000, and 10,000.

4. Results – Monte Carlo simulations

4.1. Effect of c-statistic and incidence of the outcome on the assessment of calibration

The effect of the c-statistic of the underlying logistic regression model on the performance of the loess-
based assessment of calibration is described in Figure 1. In each panel, we have plotted the estimated
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Figure 1. Effect of area under the receiver operating characteristic curve (AUC) and sample size on assessment
of calibration.
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loess model fit to each of the 50 simulated datasets. We have superimposed a diagonal line of slope
1 – this line depicts perfect calibration. Furthermore, on each panel we have also superimposed a red
line depicting the empirical cumulative distribution function describing the distribution of the predicted
probability of the occurrence of the outcome in one of the 50 simulated datasets (we elected to use
the empirical cumulative distribution function because, similar to the observed vs. predicted plots, it is
restricted to the unit square. Other methods such as nonparametric density estimates would not result in
figures that were restricted to the unit square, thus necessitating a change in scale of the plots that could
make details harder to discern).

For a given sample size, the degree of variation between the fitted loess curves decreased as the
c-statistic increased. Similarly, for a given c-statistic, the degree of variation decreased within increas-
ing sample size. The fitted loess lines displayed very good calibration and negligible variability within
the range of predicted probability in which the majority of subjects lay. As the c-statistic of the logistic
regression model used in the data-generating process increased, there was an increase in the width of the
range of predicted probability in which the majority of subjects lay. Within a given scenario, there was
modest to substantial variation across the fitted loess curves in the extreme upper tail of the distribution
of the predicted probability of the occurrence of the outcome. However, this between-curve variation
decreased as the c-statistic increased. It also decreased with increasing sample size. Thus, a key finding
is that with higher discrimination, we can better assess calibration.

The effect of the incidence of the outcome on the performance of the loess-based assessment of cal-
ibration is described in Figure 2. As in the prior set of simulations, the fitted loess lines displayed very
good calibration and negligible variability within the range of predicted probability in which the major-
ity of the subjects lay when the incidence of the outcome was either 0.1 or 0.5. When the incidence of
the outcome was 0.01 and the sample size was small to moderate (500 or 1000), it was relatively diffi-
cult to assess calibration. As the incidence of the outcome approached 0.5, there was an increase in the
width of the range of predicted probabilities in which the majority of subjects lay. Furthermore, across
scenarios, the degree of variation in the fitted loess curves in the extreme upper tail of the distribution
of the predicted probability of the occurrence of the outcome decreased as the incidence of the outcome
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Figure 2. Effect of outcome prevalence and sample size on the assessment of calibration.
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Figure 3. Quadratic relationship.

approached 0.50. Furthermore, this variation in the extreme upper tail of the distribution of the predicted
probability of the occurrence of the outcome decreased with increasing sample size.

4.2. Assessing internal calibration or model misspecification

The ability of loess-based graphical assessment of calibration to detect the omission of a quadratic term
from the fitted logistic regression model is described in Figure 3. The top-left panel describes the rela-
tionship between the continuous predictor variable and the log-odds of the outcome in the five scenarios.
While the degree of nonlinearity increased across the five scenarios, the first scenario displayed almost
no nonlinearity.

In the first scenario, with the least departure from linearity, the loess curves were not able to identify
that the fitted model had been misspecified. However, in the remaining four scenarios, in which there
was greater departure from linearity, the loess curves indicated the lack of internal calibration, providing
evidence that the regression model had been misspecified. The loess curves displayed increasing non-
linearity as the true regression model exhibited increasing nonlinearity. In the presence of moderate to
strong nonlinearity, the loess curves were, on average, able to detect model misspecification regardless
of the size of the simulated datasets.

The results for the comparing observed versus predicted probability of the occurrence of the outcome
across the ten deciles of risk are reported in Figure 4. In this figure, we report, for each risk stratum,
the mean observed probability of the outcome across the 500 simulated datasets along with the mean
of the mean predicted probability of the outcome. We also report estimated 95% confidence ellipses
for these two means. In comparing Figures 3 and 4, one observes that the mean observed and mean
predicted probabilities across the 500 simulated datasets produces the same qualitative interpretation as
the mean loess-curves in Figure 3. However, the use of the ten strata of risk resulted in estimates that
display greater variability than is evident in the loess-based method (i.e., the 95% confidence ellipsoids
are wider than the 95% confidence intervals around the loess curves).
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Figure 4. Quadratic relationship.

For each of the five scenarios, we determined the mean c-statistic of the correctly specified logistic
regression model and the c-statistic of the incorrectly specified model across the 500 datasets of size
10,000. The pairs of c-statistics were (0.901, 0.901), (0.881, 0.881), (0.871, 0.865), (0.864, 0.835), and
(0.868, 0.775) across the five scenarios. In the first two scenarios, there was no change in c-statistic due
to fitting a misspecified regression model, while the decrease was 0.093 in the fifth scenario.

The ability of loess functions to detect the omission of both a binary covariate and its interaction with
a continuous covariate from the fitted logistic regression model is described in Figure 5. The top-left
panel describes the degree of interaction in each of the four scenarios. The lowest of the five straight
lines describes the linear relationship between the continuous predictor variable and the log-odds of the
outcome amongst subjects with d D 0. The upper four lines describe this relationship amongst sub-
jects with d D 1 in the four different scenarios. In all of the four scenarios examined, on average, the
loess curves did not provide any evidence of the lack of internal calibration, regardless of the size of the
simulated datasets.

The ability of loess functions to detect the omission of the interaction between a binary covariate and a
continuous covariate from the fitted logistic regression model is described in Figure 6. When the degree
of interaction was strong, the loess curves provided modest graphical evidence of the lack of internal cal-
ibration. However, when the magnitude of the interaction was weak or moderate, then the loess curves
were not, on average, able to provide evidence of model misspecification.

The results for the comparing observed versus predicted probability of the occurrence of the outcome
across the ten deciles of risk are reported in Figures 7 and 8. As with the omission of a quadratic term,
the use of the ten strata of risk resulted in estimates that displayed greater variability than was evident in
the loess-based method.

For each of the four scenarios, we determined the mean c-statistic of the three different regression
models across the 500 datasets of size 10,000. The triplets of c-statistics were (0.601, 0.599, 0.590),
(0.667, 0.665, 0.628), (0.729, 0.727, 0.661), and (0.802, 0.800, 0.691) across the five scenarios (where
each triplet consists of the c-statistic of the correctly specified model, the c-statistic of the model with
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Figure 5. Interaction relationship: omitted binary variable and interaction term.
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Figure 6. Interaction relationship: omitted interaction term.
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Figure 7. Interaction relationship: omitted binary variable and interaction term.
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Figure 8. Interaction relationship: omitted interaction term.
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Figure 9. Different link functions.

the interaction omitted, and the c-statistic of the model with both the interaction and the binary covariate
omitted). Omitting the interaction between the continuous and binary covariate resulted in a negligi-
ble change in the c-statistic. Omitting both the interaction and the binary covariate resulted in a greater
change in the c-statistic, and the change in c-statistic increased across the four scenarios.

The ability of loess functions to detect misspecification of the link function is described in Figure 9.
When the generalized logistic function had almost the same shape as the probit distribution or had longer
tails than the logistic distribution, then the loess curves did not provide graphical evidence of the lack of
internal calibration or of misspecification of the logistic regression model. When the generalized logistic
function has approximately the same shape as the complimentary log-log function or had shorter tails
than the logistic distribution, then the loess curves provided very modest graphical evidence of the lack
of internal calibration. When the generalized logistic function was asymmetric with long and short tails,
then there was moderately strong evidence of the lack of internal calibration.

The results for the comparing observed versus predicted probabilities of the occurrence of the out-
come across the ten deciles of risk are reported in Figure 10. As with the omission of a quadratic term or
the omission of an interaction, the use of the ten strata of risk resulted in estimates that display greater
variability than was evident in the loess-based method.

Misspecification of the link function would not result in a change in the model c-statistic because each
link function is a monotone transformation of the probability of the outcome. Thus, the rank ordering of
predicted probabilities would not change.

4.3. Assessing external calibration

Graphical analyses of lack of external calibration due to a shrunken linear predictor in the external val-
idation sample are described in Figure 11. When the degree of shrinkage was large (k D 0:6 or 0.7),
loess-based methods were well able to detect lack of calibration in the external validation sample. How-
ever, when the degree of shrinkage was small (k D 0:9), it was very difficult to detect lack of external
calibration graphically.

The ability of loess-based methods to detect lack of external calibration due to an over-fit model is
described in the right panel of Figure 12. The left panel of this figure serves as a negative control: it
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Figure 10. Different link functions.
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Figure 11. Shrunken linear predictor in validation sample.
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Figure 12. Calibration of overfit prediction model in derivation/validation samples.

examines the lack of internal calibration in the derivation sample in which the regression model was
initially estimated. In the left panel, we observe that even when the number of EPV was very low, there
was very little graphical evidence of lack of internal calibration. Any graphical evidence of lack of cali-
bration was only apparent in the upper range of predicted probability and for a very low number of EPV.
In stark contrast to this, there was strong evidence of lack of external calibration, even when the number
of EPV was high. Even when the number of EPV was 13, there was still strong graphical evidence of
the lack of external calibration.

5. Discussion

The assessment of the calibration of a model or algorithm for estimating the probability of the occurrence
of a binary outcome is a key step in the validation of prediction models. Different authors have suggested
that calibration be assessed using smoothed regression models to examine the relationship between the
observed probability of the occurrence of the outcome and the predicted probability of the outcome. We
conducted an extensive set of Monte Carlo simulations to examine the ability of a locally weighted least
squares regression smoother to assess both internal and external calibration. We summarize our findings
in the following two paragraphs and then place our findings in the context of the existing literature.

One set of findings relates to the ability of loess-based methods to detect model misspecification (lack
of internal calibration). If we miss moderate to strong nonlinearity for a continuous predictor variable,
we can graphically detect the lack of calibration. Similarly, if the fitted regression model omitted an
interaction between a continuous predictor variable and a binary predictor variable, and the magnitude
of the interaction was moderate to strong, then the loess-based methods were able to provide moderate
evidence of model mis-specification. But even if the true link function was asymmetric with long-short
tails, then these graphical methods were able to provide only modest evidence of the lack of calibration
when a logistic link function was used in the fitted model. A second set of findings relates to the ability of
loess-based graphical methods to detect poor calibration due to overfitting (lack of external calibration).
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The ability to detect lack of external calibration due to a shrunken linear predictor was good when the
degree of shrinkage was high, but it diminished as the degree of shrinkage decreased.

Secondary analyses also provided useful information for interpreting graphical calibration curves in
specific settings. As expected, we observed that the utility of these curves tended to increase with increas-
ing sample size, as there was decreased variability in the fitted curves. But even with small sample sizes,
the loess algorithm behaved well, with smooth calibration curves. Furthermore, as the c-statistic of the
underlying logistic regression model increased, the proportion of subjects who were in the extreme upper
tail of the distribution of predicted probability increased. Consequently, there was diminished variability
in the fitted loess curves. As a result, internal calibration could be more accurately assessed. Thus, a
key finding is the relationship between discrimination and calibration: higher discrimination enables a
better assessment of calibration. Finally, as the incidence of the outcome approached 0.50, the range of
predicted probability increased. This resulted in decreased variability in the fitted loess curves, allowing
for a better assessment of internal calibration. Synthesizing these two observations, would suggest that
loess-based methods will perform better in settings in which the outcome has an incidence that is closer
to 0.5 and in which the discrimination of the underlying model is good to excellent, rather than in settings
in which the outcome is rare (or extremely common) and the discrimination of the underlying model is
relatively poor.

Several studies have examined the statistical power of different tests of calibration or goodness-of-fit
for the logistic regression model. One of the most extensive of these was by Hosmer et al. [24]. Several of
our simulations considered scenarios identical to those described in their paper, so that our results could
be compared directly with their results. They demonstrated that the statistical power to detect the omis-
sion of a binary covariate and its interaction with a continuous covariate was very low when the sample
size was 500 (power less than 12% across all five scenarios and across nine different goodness-of-fit
tests). Our findings in this instance were similar: the use of graphical methods of assessing calibration
did not provide evidence of lack of calibration. Thus, both formal statistical testing and graphical assess-
ment had limited ability to detect the omission of a binary covariate and its interaction. However, when
considering the regression model in which only the interaction term was omitted, we found that if the
magnitude of the interaction was moderate to strong, then loess-based methods were able to provide
modest to strong evidence of lack of calibration. When examining departures from nonlinearity, Hosmer
et al. found that, in the two scenarios with the strongest nonlinearity, power was uniformly very high to
detect lack of fit when the sample size was 500. Similarly, we found that loess-based methods were able
to provide evidence of lack of calibration and that the strength of the graphical evidence increased with
increasing nonlinearity.

We conducted a limited examination of the practice of dividing subjects into strata of risk accord-
ing to the deciles of the predicted probability of the occurrence of the outcome. The observed versus
mean predicted probability of the outcome was then compared within each stratum. While, on average,
this method performed similarly to the loess-based methods, the variability in observed versus mean
predicted probabilities was greater than the observed variability in the fitted loess curves.

In examining graphical methods for calibration, we have made a distinction between assessment of
calibration in the dataset in which the model was developed (internal calibration) and assessment of
calibration in external validation datasets (i.e., samples other than that in which the regression model
was developed). When developing prediction models, the focus is frequently on the latter. When the
developed regression model will be applied to new patients or populations other than the one in which
it was developed, model developers indeed should strive for a model in which predictions are well cali-
brated in these external populations. Thus, a focus on external calibration takes precedence over internal
calibration when the aim is to predict for new subjects outside the specific derivation sample.

However, if the model is being developed primarily for the purpose of understanding patterns of pre-
dictor effects within a specific sample, then a focus on internal calibration is warranted. Also, internal
calibration can be of central importance to hospital profiling, in which observed mortality is compared
with the expected mortality at each hospital within a jurisdiction or health care network. Iezzoni sug-
gested that if the purpose of the regression model is to compare expected mortality at a given hospital (as
derived from the fitted regression model) to observed mortality at that hospital, then the assessment of
calibration should supersede that of the assessment of discrimination [29]. Indeed, recent work empha-
sizes that the c-statistic is irrelevant in judging the quality of an adjustment model for hospital report
cards, regardless of whether one is using a conventional logistic regression model to compare observed
to expected mortality or whether one adds hospital-specific random effects to the conventional logistic
regression model [30].
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The assessment of model fit in the derivation sample can directly be determined using standard tests
during model derivation [22]. For instance, to test the assumption that a continuous variable is linearly
related to the log-odds of the outcome one could use a likelihood ratio test to compare a regression model
that assumed a linear effect of the given predictor variable with a regression model that used restricted
cubic splines functions to model the given relationship [31]. Similarly, statistical hypothesis testing can
be used to test whether an interaction is statistically significant and warrants retention in the final model.
Our findings indicate that graphical methods for assessing model calibration in the derivation sample
may serve a complementary adjuvant role for these purposes. One might consider that the use of graph-
ical methods for assessing internal calibration has the advantage in that it may free the analyst from
conducting multiple statistical tests to assess the presence of interactions. Especially in a setting with
a large number of predictor variables, standard hypothesis testing raises the risk of including spurious
interactions in the model. Instead, graphical assessment of calibration provides a global assessment of
the adequacy of the fitted model in the sample in which it was derived, similar to using overall tests of
interaction [8]. Graphical assessment allows one to focus on developing a model that predicts accurately,
despite possibly have minor errors in specification.

There are limitations to the use of graphical methods to assess calibration. In particular, the interpre-
tation of the deviations from the line of identity is, to an extent, subjective. Different analysts or readers
may apply different criteria as to what constitutes meaningful lack of calibration. In contrast, test-based
approaches to detect model fit appear to offer greater objectivity to assessing calibration. However, it
should be noted that the application of methods such as the Hosmer–Lemeshow test requires decisions
about the number of risk strata into which the sample is divided. Furthermore, the Hosmer–Lemeshow
test is directly influenced by sample size. Statistically significant lack-of-fit will often be detected in
large datasets [32]. This can make it difficult to compare the calibration of different models in datasets
of different size. Recently, Paul, Pennell and Lemeshow developed recommendations for the number of
groups into which to divide the sample so that the power of the Hosmer-Lemeshow test could be stan-
dardized across datasets of different sizes [32]. In addition, they made the following recommendation
‘For samples larger than n D 25; 000, we do not recommend the use of the Hosmer-Lemeshow test’
(page 75). The graphical methods that we have examined do not suffer from these limitations of test-
based methods. In particular, graphical methods should perform very well in large samples, the exact
setting in which the use of the Hosmer–Lemeshow test has been discouraged.

Our findings also provide insight into a debate about the relative merits of discrimination and cal-
ibration. Diamond argued that a prediction model cannot be both perfectly calibrated and perfectly
discriminatory [33]. Furthermore, he suggested that a ‘model that maximizes discrimination does so
at the expense of reliability (calibration)’ (page 88). It should be stressed that his derivations were based
on the, rather artificial, assumption that the probability of the occurrence of the outcome was uniformly
distributed in the population. Our simulations show that this claim is not generalizable to other settings.
In examining some of the panels in Figure 1, one observes than the regression model can have excellent
discrimination (c-statistic of 0.90) and the fitted model can also have excellent calibration. Indeed, this
is a very desirable property of a prediction model: for the model to discriminate well between those
with and without the condition or outcome and for there to be good agreement between predicted and
observed probabilities.

In summary, we found that loess-based methods perform well for assessing the calibration of logistic
regression models. Their ability to graphically assess internal calibration and detect model misspeci-
fication was comparable to that of formal test-based approaches for assessing model fit. Furthermore,
loess-based methods should be used for detecting the lack of external calibration due to the use of an
overfit regression model.

Appendix A

Comparison of the loess and lowess functions in R and the effect of the span parameter on assessment
of internal calibration.

A.1. Introduction

In the simulations examining the performance of loess-based methods for assessing calibration, we used
the loess function in the R statistical programming language [25]. The key parameter in this function is
the span parameter, which denotes the width of the window around each subject such that all subjects
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within that window are used to fit the weighted least squares regression line used to obtain a prediction
for a given subject [23]. In R, the lowess function implements an older implementation of the loess
algorithm. The purposes of the limited set of analyses reported in this appendix were twofold: (i) to
compare the performance of the loess function with that of the lowess function for assessing internal
calibration; and (ii) to compare the impact of different choices of the span parameter on assessment of
internal calibration.

A.2. Methods

We conducted a set of Monte Carlo simulations similar to those described in Section 3.1.1 of the paper
(examining the effect of the c-statistic of the logistic regression model on the ability to assess calibra-
tion). We designed the data-generating process so that the outcome would occur for approximately 10%
of subjects and so that the c-statistic of the logistic regression model would be approximately 0.80. We
used a full factorial design in which we allowed two factors to vary. We considered three values of the
span parameter: 0.25, 0.50, and 0.75 (the default in R). We considered three values of the sample size:
500, 1000, and 10,000. We thus considered nine different scenarios. The analyses that were conducted
were identical to those described in Section 3.1.1 (with the exception that the span parameter of the
regression smoother was allowed to vary from the default in R).

The following R code was used: loess(Y � P; span D k) and lowess(Y � P; f D k; iter D 0), where
k denotes the value of the span parameter (k D 0:25, 0.50, and 0.75). The parameter denoted by iter in
the lowess function is described as the number of ‘robustifying’ iterations. As noted by Harrell et al., it
is important that the value of this parameter be set to 0 [6].

A.3. Results

The effect of selecting different values for the span parameter of the loess function in R on the assess-
ment of model calibration is described in Figure A.1 of the online Appendix. There are nine panels,
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Figure A.1. Effect of span parameter and sample size on the assessment of calibration (loess function).

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 517–535

533



P. C. AUSTIN AND E. W. STEYERBERG

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 500 & Span = 0.25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 500 & Span = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 500 & Span = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 1000 & Span = 0.25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 1000 & Span = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 1000 & Span = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 10000 & Span = 0.25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f o

ut
co

m
e

N = 10000 & Span = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability of outcome
O

bs
er

ve
d 

pr
ob

ab
ili

ty
 o

f o
ut

co
m

e

N = 10000 & Span = 0.75

Figure A.2. Effect of span parameter and sample size on the assessment of calibration (lowess function)

one for each combination of the value of the span parameter and the sample size of the simulated
dataset. Results using a given sample size are reported in the same row of the figure. In each panel,
we have plotted the estimated loess model fit to each of the 50 simulated datasets. On each panel, we
have superimposed a diagonal line of slope one – this line depicts perfect calibration.

For a given value of the span parameter, variation between the fitted loess curves decreased as the
sample size increased. When the sample size was large (N D 10; 000), there was very little variation
between the fitted loess curves within the range of predicted probability in which the majority of sub-
jects lay. However, there was moderate variation between fitted curves in the extreme upper tail of the
distribution of predicted probability of the occurrence of the outcome. For a given sample size, variation
between fitted loess curves decreased as the degree of smoothing increased (i.e., as the span parameter
increased). However, the degree of decrease in variation diminished as the sample size increased. When
the span parameter was set to the R default (0.75), there was relatively little variation between the fitted
loess curves within the range of predicted probability in which the majority of the subjects lay. Because
of the good performance of the default value in R (0.75), this value was used in all of simulations in the
main body of the research body.

Similar results for the lowess function were observed (Figure A.2). In comparing Figures A.1 and A.2,
one notes that the use of the lowess function resulted in modestly less variation in the smoothed
regression curves in the upper tail of distribution of predicted probability.
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