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Abstract

The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage
effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)
such that the estimated matrix is positive definite. Using this approach we can disentangle the
estimates of the integrated co-volatility matrix and jump variations from the quadratic covariation
matrix. Empirical results for three stocks traded on the New York Stock Exchange indicate that
the co-jumps of two assets have a significant impact on future co-volatility, but that the impact
is negligible for forecasting weekly and monthly horizons.

Keywords: Co-Volatility; Forecasting; Jump; Leverage Effects; Realized Covariance; Threshold
Estimation.
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1 Introduction

Discontinuities, or jumps, in financial asset price movements are supported by recent empirical

evidence in Bates (2000), Andersen et al. (2002), Pan (2002), Chernov et al. (2003), Eraker et

al. (2003) and Eraker (2004), among others. There has also been growing interest in examin-

ing the effects of jumps on forecasting volatilities, accompanied by theoretical developments on

nonparametric estimation of daily volatility via intraday data of financial asset prices.

Barndorff-Nielsen and Shephard (2004a) disentangled the jump components using the differ-

ences in the realized measures of quadratic and bipower variations. Huang and Tauchen (2005)

and Andersen et al. (2007) report empirical evidence in support of non-trivial contributions to

the daily price variation produced by jump components. Andersen et al. (2007) also developed

volatility forecasting models using the jump components, and Corsi et al. (2010) made important

contributions using threshold bipower variation. Bollerslev et al. (2009) used logarithmic jumps,

and examined the effects of jumps by accommodating leverage effects. The empirical results of

these papers indicate that jumps have a positive and mostly significant impact on future volatility

(see also the useful survey of Aı̈t-Sahalia and Jacod (2012)).

The purpose of the paper is to extend the contributions of Andersen et al. (2007) and Corsi

et al. (2010) using realized co-volatility measures. There are several estimators of integrated

co-volatilities, including Barndorff-Nielsen and Shephard (2004b), Hayashi and Yoshida (2005),

Barndorff-Nielsen et al. (2011), Zhang (2011), Boudt et al. (2011, 2012), Hautsch et al. (2012),

and Boudt and Zhang (2013), among others. The conditions for nonparametric estimation of

co-movements via intraday data are: (i) robustness to jumps; (ii) robustness to microstructure

noise caused by, for example, the bid-ask bounce; (iii) ability to handle asynchronicity of the times

at which transactions are recorded; and (iv) the estimated covariance matrix is positive definite.

Of the above contributions, three papers satisfy three of the four conditions. The estimator

of Barndorff-Nielsen et al. (2011) satisfies conditions (i), (ii) and (iv), Boudt et al. (2012)

accommodate conditions (i), (iii), and (iv), while Boudt and Zhang (2013) incorporate conditions

(i)-(iii). In this paper, we modify the estimator of Boudt and Zhang (2013) to incorporate condition

(iv). Using the difference between the estimators of quadratic covariation and integrated co-

volatility, we obtain the estimator of jump variations. Based on the new estimator, we examine

the impact of jumps and leverage on forecasting co-volatility.
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The remainder of the paper is organized as follows. Section 2 explains the approach to dis-

entangling jump variations and integrated co-volatilities from the realized quadratic co-variation.

Section 3 provides an empirical example for three stocks traded on the New York Stock Exchange,

and shows that the ‘co-jumps’ and ‘co-leverage’ of any two assets have a significant impact on

future co-volatility. Finally, Section 4 gives some concluding remarks.

2 Theoretical Framework

2.1 Model Specification

Let p∗(s) denote a q-dimensional latent log-price vector at time s, and W (s) and Q(s) denote

q-vectors of independent Brownian motions and counting processes, respectively. Let K(s) be

the q × q process controlling the magnitude and transmission of jumps, such that K(s)dQ(s) is

the contribution of the jump process to the price diffusion. Under the assumption of a Brownian

semimartingale with finite-activity jumps (BSMFAJ), p∗(s) follows:

dp∗(s) = μ(s)ds + σ(s)dW (s) + K(s)dQ(s), 0 ≤ s ≤ T (1)

where μ(s) is a q-dimensional vector of continuous and locally-bounded variation processes, and

σ(s) is the q × q matrix, such that Σ(s) = σ(s)σ′(s) is positive definite.

Assume that the observable log-price process is the sum of the latent log-price process in

equation (1) and the microstructure noise process. For q = 2, define the log-price process as

p(s) = (Xs, Ys). Consider non-synchronized trading times of the two assets, and let T and Θ be

the set of transaction times of X and Y , respectively. Denote the counting process governing the

number of observations traded in assets X and Y up to time t as nt and mt, respectively. By

definition, the trades in X and Y occur at times T = {τ1, τ2, . . . , τnT
} and Θ = {θ1, θ2, . . . , θmT

}.

For convenience, the opening and closing times are set as τ1 = θ1 = 0 and τnT
= θmT

= T ,

respectively.

The observable log-price process is given by:

Xτi = X∗
τi

+ εX
τi

and Yθj
= Y ∗

θj
+ εY

θj
, (2)

where εX ∼ iid(0, σ2
εX), εY ∼ iid(0, σ2

εY ), and (εX , εY ) are independent of (X,Y ).

Define the quadratic covariation (QCov) of the log-price process over [0, T ] as:

QCov = plim
Δ→∞

�T/Δ�∑
i=1

[p(iΔ) − p((i − 1)Δ)] [p(iΔ) − p((i − 1)Δ)]′ . (3)
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Then we obtain

QCov =
∫ T

0
Σ(s)ds +

∑
0<s≤T

K(s)K ′(s). (4)

The first term on the right-hand side of (4) is the integrated co-volatility (ICov) matrix over [0, T ],

while the second term is the matrix of jump variability. We are interested in disentangling these

two components from the estimates of QCov for the purpose of forecasting QCov.

We explain below the robust estimation of the integrated co-volatility matrix suggested by

Boudt and Zhang (2013), under jumps and microstructure noise for the bivariate process in (2).

First, we consider the q-variate case which consists of the estimators of integrated volatility and

co-volatility, obtained using the approach of Boudt and Zhang (2013). Denote the estimators of

QCov, ICov and jump component at day t as Ω̂t, Ĉt and Ĵt, respectively, where Ĵt = Ω̂t − Ĉt. By

the definitions in (1)-(4), the estimators should be positive (semi-) definite. One approach is to

regularize the estimated covariance matrix by thresholding.

Bickel and Levina (2008a, b) and Tao et al. (2011) showed consistency of the regularized

estimator, assuming a sparsity structure. Define the thresholding operator for a q × q matrix A

as:

Th(A) = [aij1(|aij | ≥ h)], (5)

which can be regarded as A thresholded at h. Define the Frobenius norm by ||A||2F = tr(AA′).

For the selection of h, we follow Bickel and Levina (2008b). In order to obtain Ã = Th(Â), we

minimize the distance by the Frobenius norm ||Th(Â)−Â||2F , with the restriction that Ã is positive

semi-definite. Using this approach, we obtain C̃t = Th(Ĉt) and J̃t = Th(Ĵt), which are consistent

and positive semi-definite. Note that Ω̂t is generally positive definite, as it can be obtained by the

sample analogue of QCov.

2.2 Jump-Robust TSRV Estimator for Integrated Volatility

Boudt and Zhang (2013) suggested a jump-robust estimator based on the two time scale realized

volatility (TSRV) estimator of Zhang et al. (2005). Let n be the total number of returns within

[0, T ], with the price process observed at the time points 0 = t1 < t2 < · · · < tn+1 = T . The

standard realized volatility calculated on the whole data set is given as:

[X,X](all)
T =

n∑
i=1

(Xti+1 − Xti)
2.
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We will shortly review the TSRV estimator in order to explain the jump robust estimator of Boudt

and Zhang (2013).

The TSRV estimator is based on partitioning the whole sample into K subsamples. Let G

denote the full grid G = {t0, . . . , tn+1}, consider the subgrid G(k), which starts with tk−1, and

select every Kth sample point after that, until T . Thus,

G(k) = {tk−1, tk−1+K , tk−1+2K , . . . , tk−1+nkK}, for k = 1, . . . ,K,

where nk is the integer making tk−1+nkK the last element in G(k), such that

G =
K⋃

k=1

G(k), with G(k)
⋂

G(l) = ∅ when k �= l.

The realized volatility for the subsampled observations is denoted by:

[X,X](k)
T =

∑
tj ,tj+K∈G(k)

(Xtj+K
− Xtj )

2.

The averaged realized volatility is defined by

[X,X](avg,K)
T =

1
K

K∑
k=1

[X,X](k)
T .

The TSRV estimator of Zhang et al. (2005) is defined as the difference between the averaged

realized volatility computed over K steps apart subsampled observations and the adjusted realized

volatility computed using all the observations.

The TSRV estimator modified by Aı̈t-Sahalia et al. (2011) is given as:

TSRV =
(

1 − n̄K

n̄J

)−1(
[X,X](avg,K)

T − n̄K

n̄J
[X,X](avg,J)

T

)
, (6)

where K > J , n̄K =
∑K

k=1 nk = (n−K +1)/K, and [X,X](avg,J)
T and n̄J are defined analogously.

If j = 1, the above estimator reduces to the original estimator of Zhang et al. (2005). The

estimate of the noise variance is given by:

σ̂2
εX =

1
2n̄J

(
[X,X](avg,J)

T − TSRV
)

, (7)

which will be used later in this subsection.
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Boudt and Zhang (2013) suggested a jump-robust TSRV (RTSRV) estimator as a mixture of

the TSRV estimator in (6), and the truncated realized volatility estimators of Macini and Renó

(2011) and Boudt et al. (2011). Define the indicator function as:

IK
X (i;u) =

⎧⎨
⎩ 1, if

(Xti+K
−Xti )

2

�� ti+K
ti

σ2
t dt+σ2

εX

� ≤ u,

0, otherwise.
(8)

Note that
∫ ti+K
ti

σ2
t dt+ σ2

εX is the variance of Xti+K
−Xti . Thus, the truncated realized volatility

based on K-step apart returns and the average realized volatility are given by:

{X,X}(k)
T =

c∗unk

∑
{tj ,tj+K∈G(k)}(Xtj+K

− Xtj )
2IK

X (i;u)∑
{tj ,tj+K∈G(k)} IK

X (i;u)
,

{X,X}(avg,K)
T =

1
K

K∑
k=1

{X,X}(k)
T ,

respectively, where the factor c∗u = Fχ2
1
(u)/Fχ2

3
(u) is a constant to adjust for the bias due to the

thresholding, and Fχ2
v

is the chi-squared distribution function with v degrees of freedom, with

{X,X}(avg,J)
T defined analogously. Boudt and Zhang (2013) uses u = 9, which corresponds to

truncating returns that are greater than three standard deviations from the mean of the normal

distribution.

Boudt and Zhang (2013) defined the RTSRV estimator as the difference between the truncated

realized volatility on K-step and J-step apart returns, that is:

RTSRV =
(

1 − n̄K

n̄J

)−1(
{X,X}(avg,K)

T − n̄K

n̄J
{X,X}(avg,J)

T

)
. (9)

As in practice we need to estimate the variance of Xti+K
−Xti in order to calculate the indicator

function, we follow the approach of Boudt and Zhang (2013). Equation (7) is used to estimate

the variance of the noise, while the estimation of
∫ ti+K

ti
σ2

sds uses the approximation:

∫ ti+K

ti

σ2
sds ≈ ti+K − ti

T

̂∫ T

ti

σ2
sds,

which is valid if the intraday volatility is highly persistent. For the estimation of
∫ T
ti

σ2
sds, Boudt

and Zhang (2013) used an iterative approach. They used the medRV estimator of Andersen et

al. (2012) to obtain the initial value for the computation of the RTSRV estimate in equation (9),

then iterated the new RTSRV estimate to compute the threshold until no large returns require

further truncation.

5



For the choice of K and J , Aı̈t-Sahalia et al. (2011) recommended a choice corresponding to

K to 5 minute and J to 1 minute for the TSRV estimator. The simulation results of Boudt and

Zhang (2013) suggest that the RTSRV estimator generally yields smaller relative bias and RMSE

than the bipower variation of Barndorff-Nielsen and Shepard (2004a), the medRV estimator of

Andersen et al. (2012), and the threshold bipower variation of Corsi et al. (2010), under the

existence of jumps and microstructure noise.

2.3 Jump-Robust TSCV Estimator for Integrated Co-Volatility

Boudt and Zhang (2013) also developed a jump-robust estimator using the two time scale realized

co-volatility (TSRC) estimator of Zhang (2011), extending the idea of RTSRV. We start from the

non-synchronicity in trading times of the two assets, and let T and Θ be the set of transaction

times of X and Y , respectively. Denote the counting process governing the number of observations

traded in assets X and Y up to time t as nt and mt, respectively. By definition, the trades in

X and Y occur at the times T = {τ1, τ2, . . . , τnT
} and Θ = {θ1, θ2, . . . , θmT

}, respectively. We

specify the opening and closing time as τ1 = θ1 = 0 and τnT
= θmT

= T , for convenience.

The refresh time method selects the so-called refresh times at which all assets have traded at

least once since the last refresh time point. Let N = nT +mT +2. After the opening time, ν1 = τ1 =

θ1, the subsequent refresh time is defined as the first time when both stocks have traded, namely

νj+1 = max(τnνj +1, θmνj +1). The whole refresh time sample grid is V = {ν1, ν2, . . . , νMN+1},

where MN is the number of paired returns. Under the previous tick approach, the sampling

points of assets X and Y are defined as ti = max{τ ∈ T : τ ≤ νi} and si = max{θ ∈ Θ : θ ≤ νi},

respectively.

Based on the refresh time grid, the previous tick estimator for co-volatility is defined by:

[X,Y ]T =
MN∑
i=1

(Xti+1 − Xti)(Ysi+1 − Xsi).

As before, define the subgrid V(k) for V, then the estimator for the subsampled observations is

given by:

[X,Y ](k)
T =

∑
νj ,νj+K∈V(k)

τ

(Xtj+K
− Xtj )(Ysj+K

− Ysj),

where the relations among tj , sj and τj are defined as before. Then we obtain the averaged
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realized co-volatility estimator as:

[X,Y ](avg,K)
T =

1
K

K∑
k=1

[X,Y ](k)
T .

In order to remove the possible dependence between microstructure noise on X and Y , Zhang

(2011) developed the TSRC estimator as:

TSCV = cN

(
[X,Y ](avg,K)

T − n̄K

n̄J
[X,Y ](avg,J)

T

)
, (10)

where n̄K = (MN − K + 1)/K, n̄J = (MN − J + 1)/K and cN = MN/((K − J)n̄K).

Boudt and Zhang (2013) suggested a jump-robust TSRC (RTSRC) estimator using the indi-

cator functions IK
X (i;u) and IK

Y (i;u) defined in (8), based on the TSRC estimator in (10). The

truncated realized co-volatility on K-step apart returns and the average realized co-volatility are

given by:

{X,Y }(k)
T =

cink

∑
{vj ,vj+K∈V(k)}(Xtj+K

− Xtj )(Ysj+K
− Ysj)I

K
X (i;u)IK

Y (i;u)∑
{vj ,vj+K∈V(k)} IK

X (i;u)IK
Y (i;u)

,

{X,Y }(avg,K)
T =

1
K

K∑
k=1

{X,Y }(k)
T ,

where ci is the correction factor, which is specified as ci = 1.042 in Boudt and Zhang (2013), and

{X,Y }(avg,J)
T is defined analogously. Boudt and Zhang (2013) defined the RTSCV estimator as

the difference between the truncated realized co-volatility on K-step and J-step apart returns,

namely:

RTSRC = cN

(
{X,Y }(avg,K)

T − n̄K

n̄J
{X,Y }(avg,J)

T

)
. (11)

Using estimation techniques for RTSRV (9) and RTSRC (11), we can construct the robust

estimator of the q×q integrated co-volatility matrix at day t, Ĉt, under jumps and microstrucutre

noise. We can also obtain the estimator of QCov, which we denote as Ω̂t, by using [X,X]all
T and

[X,Y ]T , which leads to the jump estimator Ĵt = Ω̂t− Ĉt. Applying the threshold operator defined

by (5), we obtain the final estimates as C̃t = Th(Ĉt) and J̃t = Th(Ĵt).

3 Empirical Analysis

We examine the effects on jumps and leverage on forecasting co-volatility, using the estimates of

the QCov, ICov and jump variation, for three stocks traded on the New York Stock Exchange,
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namely Alcoa Inc. (AA), American Express (AXP), and Bank of America (BAC). Based on the

vector of returns for the q = 3 stocks computed for a 1-minute interval of trading day at t between

9:30 am and 4:00 pm. We calculated the daily values of Ω̂t, C̃t and J̃t, as explained in the previous

section, and also calculated the corresponding open-close returns for the three assets. The sample

period starts at August 31, 2006, and ends on October 26, 2012, giving 1500 observations.

The sample is divided into two periods. The first 500 observations cover the period until

September 12, 2008, while the latter period starts from the bankruptcy of Lehman Brothers, that

is, September 15, 2008, giving 1000 observations, which are used for evaluating the out-of-sample

forecasts.

Table 1 presents the descriptive statistics of the returns, rt, and estimated QCov, Ω̂t. The em-

pirical distribution of the returns is heavily skewed to the left and is highly leptokurtic. Regarding

volatility and co-volatility, they are skewed to the right, with evidence of heavy-tails in all the

series. It should be noted that extremely large values for the volatilities are observed during the

Global Financial Crisis (GFC). Figure 1 shows significant jump variability, indicating that jump

variabilities are high in the period of turbulence caused by the GFC.

In order to examine the impact of jumps and leverage for forecasting volatility and co-volatility,

we use three kinds of heterogeneous autoregression (HAR) type models for forecasting (i, j)-

element of Ω̂t−h:t (h = 1, 5, 22), as follows:

Ω̂ij,t = β0 + βdΩ̂ij,t−1 + βwΩ̂ij,t−5:t−1 + βmΩ̂ij,t−22:t−1 + uij,t (12)

Ω̂ij,t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + uij,t (13)

Ω̂ij,t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + βar
−
i,t−1r

−
j,t−1 + uij,t, (14)

where r−i,t = ri,tI(ri,t < 0), which is the negative part of the return of the i-th asset. In the second

model, we use the previous values of the estimated continuous sample path component variation,

C̃t, rather than those of estimated quadratic variation, Ω̂t, following the volatility forecasting

models of Andersen et al. (2007) and Corsi et al. (2010). We exclude weekly and monthly effects

of the jump component, J̃t, in order to evaluate the impact of a single jump on future volatility

and co-volatility. Note that C̃t and J̃t are positive (semi-) definite by the thresholding in (5). In

addition to jump variability, the third model includes the asymmetric effect, as in the specification

of the asymmetric BEKK model of Kroner and Ng (1998). For i �= j, βar
−
i,t−1r

−
j,t−1 represents

the ‘co-leverage’ effect which is caused by simultaneous negative returns of two assets. We refer
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to equations (12), (13) and (14) as the HAR, HAR-TCJ and HAR-TCJA models, respectively.

Although the estimate of βj and βa are expected to be positive and significant for the volatility

equation (i = j), their signs are not determined for the co-volatility equation (i �= j).

We estimate each model using the first 500 observations, and obtain a forecast, Ω̂f
501 We re-

estimate each model fixing the sample size at 500, and obtain new forecasts based on updated

parameter estimates. For evaluating the forecasting performance of the different models, we report

the R2 of the Mincer-Zarnowitz (MZ) regression, namely

Ω̂ij,t = α0 + α1Ω̂
f
ij,t + error , t = 501, . . . , 1500.

We also use the heteroskedasticity-adjusted root mean square error suggested in Bollerslev and

Ghysels (1996), namely:

HRMSE =

√√√√ 1
1000

1500∑
t=501

(
Ω̂ij,t − Ω̂f

ij,t

Ω̂ij,t

)2

.

For the latter, we examine equal forecast accuracy using the Diebold and Mariano (1995) test

at the 5% significance level, and use the heteroskedasticity and autocorrelation consistent (HAC)

covariance matrix estimator, with bandwidth 25.

Table 2 shows the estimates of the daily regressions for the first 500 observations. The estimates

of the jump parameter, βj, are positive and significant, except for the co-volatility of AA and AXP.

The results for volatilities support the empirical analysis of Andersen et al. (2007) and Corsi et al.

(2010). The estimates of the coefficient of the asymmetric effect, βa, are positive and significant

for all cases, supporting that the negative relationship between return and future volatility. The

results also imply that a pair of negative returns of two assets increase future co-volatility. The

HAR-TCJA model gives the highest R̄2 in all cases. Table 3 presents R2 of the MZ regressions

and HRMSE for the daily regressions. The HAR-TCJA is the best model for forecasting volatility,

while there are no significant differences for three models of the co-volatility equation. There is

no obvious pastern for the difference between the results conditional on a previous jump and no

jump.

Table 4 reports the estimates of the weekly regressions. The estimates of the jump parameter,

βj , and the parameter of the asymmetric effect, βa, are positive and significant. Unlike the daily

regressions, the HAR model gives the highest R̄2 values in all six cases. Table 5 gives the R2 values

of the MZ regressions, and HRMSE for the out-of-sample forecasts for the weekly regressions.
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Table 5 indicates that the values of R2 are higher than those for the daily regressions in Table 3.

Of the six cases, the HAR model is the best in three cases, while there are insignificant differences

in the models for the remaining three cases. We may improve the forecasts by incorporating

weekly and monthly effects of jumps and leverages.

Table 6 shows the in-sample estimates of the monthly regressions, while Table 7 reports the

results of the corresponding out-of-sample forecasts. Tables 6 and 7 indicate that the results for

the monthly regressions are similar to those of the weekly regressions.

The empirical results for the volatility models support the findings of Andersen et al. (2007)

and Corsi et al. (2010). Regarding the co-volatility, the impacts of co-jumps of two assets are

generally positive and significant for the daily, weekly, and monthly regressions. Although the

HAR-TCJ model performs better than the HAR model for the daily regressions, the three models

produce broadly similar results for the weekly and monthly regressions. The asymmetric effects

are generally positive and significant for both volatility and co-volatility equations, supporting

the empirical results in the literature. We can improve the HAR-TCJ and HAR-TCJA models,

by accommodating weekly and monthly averages of jumps and leverage effects.

4 Concluding Remarks

The paper examined the impacts of co-jumps of two assets on forecasting co-volatility. We sug-

gested disentangling the estimates of the integrated co-volatility matrix and jump variations so

that they are positive (semi-) definite for coherence of the estimator. The empirical results for

three stocks traded on the New York Stock Exchange showed that the co-jumps of any two assets

have a significant impact on future co-volatility, but that the impact are minor in forecasting

weekly and monthly horizons. The results also show that the impacts of the co-leverage effects

caused by negative returns of two assets are significant, but the impact decreases for forecasting

longer horizons.

The empirical evidence will be useful for improving forecasting models of the co-volatility

matrix, as in Asai and McAleer (2014), who extended the work of Chiriac and Voev (2011) in

order to accommodate factor specification, long memory and leverage effects.
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Figure 1: Significant Jump Variability
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Note: Figure 1 shows the elements of the estimated jump variability, J̃t.
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Table 1: Descriptive Statistics of Returns, Volatilities and Co-Volatilities

Stock Mean Std.Dev. Skew. Kurt. Jump
Return
AA −0.1774 2.5654 −0.7776 8.5702 0.7427
AXP 0.0901 2.4974 0.2361 8.5106 0.6567
BAC −0.2423 3.6214 −0.2525 13.054 0.7493
Volatility
AA 8.7539 18.631 11.889 205.76 0.7427
AXP 7.1665 16.169 9.2182 142.78 0.6567
BAC 12.868 35.086 9.3138 132.06 0.7493
Co-Volatility
(AA,AXP) 2.6239 5.7089 7.2000 85.797 0.1927
(AA,BAC) 1.8688 5.7782 6.1792 61.365 0.1567
(AXP,BAC) 2.4725 7.0694 5.1704 38.815 0.1653
Note: The sample period is from August 31, 2006 to October 26, 2012.
‘Jump’ denotes the percentage of occurrence of significant jumps.
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Table 2: In-sample Estimates for Daily Regressions

HAR Ω̂ij,t = β0 + βdΩ̂ij,t−1 + βwΩ̂ij,t−5:t−1 + βmΩ̂ij,t−22:t−1 + uij,t

HAR-TCJ Ω̂ij,t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βjJ̃ij,t−1 + uij,t

HAR-TCJA Ω̂ij,t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βjJ̃ij,t−1 + βar−i,t−1r
−
j,t−1 + uij,t

Model β0 βd βw βm βj βa R2 R̄2

Volatility: AA
HAR 1.6711 0.4550 0.1287 0.1038 0.6323 0.6300

(0.0409) (0.0056) (0.0092) (0.0061)
HAR-TCJ 1.5831 0.3690 0.3930 −0.0284 0.4319 0.6408 0.6378

(0.0345) (0.0099) (0.0117) (0.0065) (0.0076)
HAR-TCJA 1.5658 0.3211 0.4144 −0.0312 0.4323 0.0626 0.6436 0.6399†

(0.0345) (0.0109) (0.0119) (0.0065) (0.0077) (0.0023)
Volatility: AXP

HAR 0.6567 0.4664 0.3543 0.0596 0.7723 0.7708
(0.0175) (0.0066) (0.0083) (0.0048)

HAR-TCJ 0.7728 0.4417 0.4375 0.0586 0.3739 0.7760 0.7741
(0.0172) (0.0085) (0.0107) (0.0057) (0.0090)

HAR-TCJA 0.7092 0.4436 0.3964 0.0573 0.3539 0.1293 0.7840 0.7817†

(0.0170) (0.0082) (0.0101) (0.0055) (0.0095) (0.0047)
Volatility: BAC

HAR 0.7184 0.2631 0.6070 0.0072 0.6810 0.6790
(0.0215) (0.0084) (0.0157) (0.0077)

HAR-TCJ 1.1223 0.3888 0.4806 −0.0009 0.1494 0.6908 0.6882
(0.0232) (0.0116) (0.0144) (0.0067) (0.0059)

HAR-TCJA 0.9580 0.4396 0.2622 0.0464 0.1674 0.2937 0.7621 0.7596†

(0.0199) (0.0089) (0.0099) (0.0048) (0.0052) (0.0037)
Co-Volatility: AA-AXP

HAR 0.1846 0.4377 0.4079 0.0110 0.7214 0.7196
(0.0042) (0.0087) (0.0085) (0.0056)

HAR-TCJ 0.2329 0.4086 0.2683 0.1688 −0.1193 0.7125 0.7101
(0.0049) (0.0087) (0.0081) (0.0056) (0.0164)

HAR-TCJA 0.2067 0.3954 0.2637 0.1596 −0.1399 0.0464 0.7223 0.7193†

(0.0046) (0.0086) (0.0078) (0.0055) (0.0167) (0.0019)
Co-Volatility: AA-BAC

HAR 0.2118 0.3567 0.2866 0.1571 0.5211 0.5181
(0.0049) (0.0130) (0.0107) (0.0078)

HAR-TCJ 0.2046 0.5782 0.0791 0.3153 0.0335 0.5781 0.5746
(0.0042) (0.0106) (0.0115) (0.0084) (0.0037)

HAR-TCJA 0.1716 0.5607 0.0703 0.3095 0.0340 0.0544 0.5933 0.5890†

(0.0040) (0.0107) (0.0110) (0.0082) (0.0034) (0.0010)
Co-Volatility: AXP-BAC

HAR 0.2377 0.5196 0.2261 0.1139 0.6544 0.6522
(0.0088) (0.0139) (0.0092) (0.0052)

HAR-TCJ 0.0994 0.6011 0.2081 0.2506 0.3104 0.6940 0.6914
(0.0075) (0.0096) (0.0098) (0.0070) (0.0177)

HAR-TCJA 0.0122 0.5693 0.1691 0.1904 0.5108 0.2180 0.7464 0.7437†

(0.0067) (0.0088) (0.0097) (0.0066) (0.0190) (0.0059)
Note: Standard errors are given in parentheses. ‘†’ denotes the model which has the highest R̄2 value of the
three models.
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Table 3: Out-of-Sample Forecast Evaluation for Daily Regressions

Model R2 HRMSE J-R2 J-HRMSE C-R2 C-HRMSE
Volatility: AA (783 Times Jump)

HAR 0.3845 0.7304 0.3024 0.7613 0.7910† 0.6061
HAR-TCJ 0.4892 0.6264a 0.3390 0.6034a 0.7637 0.7032

HAR-TCJA 0.5619† 0.5958a 0.3992† 0.5597a 0.7589 0.7112
Volatility: AXP (624 Times Jump)

HAR 0.4958 1.0348 0.4552 1.1014 0.5755 0.9137
HAR-TCJ 0.5300 0.8302a 0.4721 0.8209a 0.6208† 0.8455

HAR-TCJA 0.5462† 0.7929a 0.4997† 0.7678a 0.6205 0.8328
Volatility: BAC (782 Times Jump)

HAR 0.5176 1.0610 0.5762 1.0914 0.5991 0.9440
HAR-TCJ 0.5662 0.6276a 0.6185† 0.6081a 0.5389 0.6933

HAR-TCJA 0.5843† 0.5894a 0.5981 0.5713a 0.6180† 0.6503
Co-Volatility: AA-AXP (214 Times Co-Jump)

HAR 0.5803 12.755 0.8817† 2.8878 0.5665 14.308
HAR-TCJ 0.6571 12.699 0.8634 3.1959 0.6508 14.226

HAR-TCJA 0.7230† 8.7809 0.6753 3.0606 0.7358† 9.7748
Co-Volatility: AA-BAC (158 Times Co-Jump)

HAR 0.6393 22.900 0.6792 8.5198 0.6369 24.681
HAR-TCJ 0.6599 30.464 0.6308 9.0068 0.6622 32.969

HAR-TCJA 0.6952† 38.760 0.7551† 5.9313 0.6970† 42.162
Co-Volatility: AXP-BAC (162 Times Co-Jump)

HAR 0.7184† 28.174 0.7590† 11.860 0.7158† 30.333
HAR-TCJ 0.7069 44.981 0.7408 16.458 0.7016 48.601

HAR-TCJA 0.7023 39.962 0.7253 14.918 0.7037 43.159
Note: The table reports Mincer-Zarnowitz R2 and heteroskedasticity-adjusted root
mean squared error (HRMSE). J-R2 and J-HRMSE are R2 and HRMSE conditionally
on having a jump at time t−1, respectively, while C-R2 and C-HRMSE are conditional
on no jump at time t − 1. ‘†’ denotes the model which has the highest R2 value of the
three models. For the Diebold-Mariano test of equal forecast accuracy, ‘a’, ‘b’ and ‘c’
denote significant improvements in forecasting performance with respect to the HAR,
HAR-TCJ and HAR-TCJA models, respectively.
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Table 4: In-sample Estimates for Weekly Regressions

HAR Ω̂ij,t−5:t = β0 + βdΩ̂ij,t−1 + βwΩ̂ij,t−5:t−1 + βmΩ̂ij,t−22:t−1 + uij,t

HAR-TCJ Ω̂ij,t−5:t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + uij,t

HAR-TCJA Ω̂ij,t−5:t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + βar−i,t−1r
−
j,t−1 + uij,t

Model β0 βd βw βm βj βa R2 R̄2

Volatility: AA
HAR 0.3697 0.1609 0.7982 −0.0280 0.9643 0.9640†

(0.0101) (0.0024) (0.0044) (0.0023)
HAR-TCJ 0.9201 0.1122 0.9451 −0.1670 0.3723 0.9208 0.9201

(0.0152) (0.0039) (0.0060) (0.0055) (0.0048)
HAR-TCJA 0.9194 0.1103 0.9460 −0.1671 0.3723 0.0025 0.9208 0.9200

(0.0153) (0.0041) (0.0060) (0.0054) (0.0048) (0.0009)
Volatility: AXP

HAR 0.1517 0.1768 0.8207 −0.0258 0.9822 0.9821†

(0.0041) (0.0022) (0.0028) (0.0013)
HAR-TCJ 0.3806 0.1388 0.8585 0.0187 0.3967 0.9633 0.9630

(0.0081) (0.0028) (0.0056) (0.0026) (0.0049)
HAR-TCJA 0.3664 0.1392 0.8493 0.0184 0.3923 0.0288 0.9637 0.9634

(0.0080) (0.0028) (0.0057) (0.0026) (0.0049) (0.0014)
Volatility: BAC

HAR 0.1706 0.1270 0.8772 −0.0341 0.9749 0.9747†

(0.0056) (0.0022) (0.0037) (0.0018)
HAR-TCJ 0.6308 0.1436 0.8056 −0.0182 0.3145 0.9493 0.9488

(0.0116) (0.0032) (0.0055) (0.0029) (0.0037)
HAR-TCJA 0.5892 0.1564 0.7503 −0.0063 0.3191 0.0743 0.9550 0.9545

(0.0108) (0.0029) (0.0052) (0.0025) (0.0043) (0.0012)
Co-Volatility: AA-AXP

HAR 0.0413 0.1796 0.8257 −0.0375 0.9799 0.9798†

(0.0010) (0.0020) (0.0025) (0.0014)
HAR-TCJ 0.1034 0.1411 0.6620 0.1393 0.1835 0.9396 0.9391

(0.0023) (0.0039) (0.0042) (0.0027) (0.0061)
HAR-TCJA 0.0905 0.1347 0.6596 0.1346 0.1780 0.0229 0.9425 0.9419

(0.0021) (0.0038) (0.0040) (0.0028) (0.0063) (0.0007)
Co-Volatility: AA-BAC

HAR 0.0488 0.1384 0.8252 −0.0094 0.9529 0.9526†

(0.0012) (0.0034) (0.0039) (0.0022)
HAR-TCJ 0.1335 0.1276 0.7195 0.1893 0.2074 0.8905 0.8895

(0.0025) (0.0048) (0.0061) (0.0043) (0.0012)
HAR-TCJA 0.1166 0.1186 0.7151 0.1864 0.2077 0.0278 0.8963 0.8952

(0.0024) (0.0048) (0.0059) (0.0042) (0.0011) (0.0007)
Co-Volatility: AXP-BAC

HAR 0.0536 0.1844 0.8035 −0.0197 0.9700 0.9699†

(0.0021) (0.0030) (0.0029) (0.0016)
HAR-TCJ −0.0416 0.1689 0.7961 0.1859 0.3853 0.9492 0.9488

(0.0038) (0.0042) (0.0091) (0.0039) (0.0095)
HAR-TCJA −0.0678 0.1593 0.7843 0.1677 0.4457 0.0656 0.9553 0.9549

(0.0036) (0.0040) (0.0091) (0.0037) (0.0089) (0.0016)
Note: Standard errors are given in parentheses. ‘†’ denotes the model which has the highest R̄2 value of the
three models.
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Table 5: Out-of-Sample Forecast Evaluation for Weekly Regressions

Model MZ R2 HRMSE J-R2 J-HRMSE C-R2 C-HRMSE
Volatility: AA (783 Times Jump)

HAR 0.9228 0.1564b,c 0.9294 0.1555b,c 0.9281 0.1595b,c

HAR-TCJ 0.9293 0.2015 0.9315† 0.1930 0.9278 0.2296
HAR-TCJA 0.9316† 0.2010 0.9289 0.1915 0.9374† 0.2322
Volatility: AXP (624 Times Jump)

HAR 0.9432† 0.2413 0.9469† 0.2032 0.9375† 0.2940
HAR-TCJ 0.9367 0.2134 0.9400 0.1968 0.9323 0.2384

HAR-TCJA 0.9344 0.2199 0.9379 0.2002 0.9293 0.2492
Volatility: BAC (782 Times Jump)

HAR 0.9370† 0.2234b,c 0.9490† 0.2251b,c 0.8952† 0.2171b,c

HAR-TCJ 0.9302 0.2903 0.9398 0.2916 0.8801 0.2853
HAR-TCJA 0.9300 0.3014 0.9367 0.3040 0.8951 0.2916
Co-Volatility: AA-AXP (214 Times Co-Jump)

HAR 0.9612 0.2104b,c 0.9817† 0.2090b,c 0.9594 0.2108b,c

HAR-TCJ 0.9643 0.3024 0.9728 0.2950 0.9638 0.3044
HAR-TCJA 0.9674† 0.3007 0.9708 0.2869 0.9671† 0.3044
Co-Volatility: AA-BAC (158 Times Co-Jump)

HAR 0.9720† 1593.4 0.9649† 5.0064 0.9731† 1736.5
HAR-TCJ 0.9598 7538.7 0.9470 15.413 0.9613 8215.6

HAR-TCJA 0.9625 6705.9 0.9492 14.383 0.9641 7308.0
Co-Volatility: AXP-BAC (162 Times Co-Jump)

HAR 0.9798† 26.029 0.9839† 9.1612 0.9795† 28.148
HAR-TCJ 0.9559 67.683 0.9678 19.456 0.9534 73.440

HAR-TCJA 0.9543 65.253 0.9607 18.689 0.9532 70.807
Note: The table reports Mincer-Zarnowitz R2 and heteroskedasticity-adjusted root
mean squared error (HRMSE). J-R2 and J-HRMSE are R2 and HRMSE conditionally
on having a jump at time t−1, respectively, while C-R2 and C-HRMSE are conditional
on no jump at time t − 1. ‘†’ denotes the model which has the highest R2 value of the
three models. For the Diebold-Mariano test of equal forecast accuracy, ‘a’, ‘b’ and ‘c’
denote significant improvements in forecasting performance with respect to the HAR,
HAR-TCJ and HAR-TCJA models, respectively.
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Table 6: In-sample Estimates for Monthly Regressions

HAR Ω̂ij,t−22:t = β0 + βdΩ̂ij,t−1 + βwΩ̂ij,t−5:t−1 + βmΩ̂ij,t−22:t−1 + uij,t

HAR-TCJ Ω̂ij,t−22:t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + uij,t

HAR-TCJA Ω̂ij,t−22:t = β0 + βdC̃ij,t−1 + βwC̃ij,t−5:t−1 + βmC̃ij,t−22:t−1 + βj J̃ij,t−1 + βar−i,t−1r
−
j,t−1 + uij,t

Model β0 βd βw βm βj βa R2 R̄2

Volatility: AA
HAR 0.0127 0.0189 0.0271 0.9522 0.9971 0.9971†

(0.0023) (0.0003) (0.0007) (0.0007)
HAR-TCJ 0.9934 −0.0040 0.0593 0.8911 0.0884 0.9664 0.9661

(0.0141) (0.0015) (0.0029) (0.0029) (0.0012)
HAR-TCJA 0.9950 0.0005 0.0573 0.8914 0.0883 −0.0058 0.9665 0.9661

(0.0150) (0.0014) (0.0029) (0.0030) (0.0012) (0.0003)
Volatility: AXP

HAR −0.0036 0.0167 0.0440 0.9417 0.9985 0.9985†

(0.0011) (0.0003) (0.0006) (0.0006)
HAR-TCJ 0.3965 0.0082 0.0310 1.0466 0.0733 0.9889 0.9888

(0.0071) (0.0010) (0.0021) (0.0026) (0.0010)
HAR-TCJA 0.3956 0.0082 0.0305 1.0466 0.0731 0.0018 0.9889 0.9888

(0.0071) (0.0010) (0.0021) (0.0026) (0.0010) (0.0003)
Volatility: BAC

HAR −0.0045 0.0065 0.0624 0.9341 0.9980 0.9980†

(0.0015) (0.0004) (0.0009) (0.0008)
HAR-TCJ 0.5599 0.0101 0.0878 0.8924 0.0550 0.9884 0.9883

(0.0077) (0.0009) (0.0019) (0.0017) (0.0005)
HAR-TCJA 0.5497 0.0133 0.0742 0.8953 0.0562 0.0183 0.9888 0.9887

(0.0076) (0.0009) (0.0018) (0.0017) (0.0006) (0.0003)
Co-Volatility: AA-AXP

HAR −0.0016 0.0156 0.0483 0.9385 0.9981 0.9981†

(0.0002) (0.0004) (0.0006) (0.0007)
HAR-TCJ 0.0629 0.0202 0.0141 0.9419 0.0353 0.9833 0.9831

(0.0015) (0.0012) (0.0023) (0.0023) (0.0022)
HAR-TCJA 0.0598 0.0187 0.0135 0.9408 0.0340 0.0054 0.9835 0.9833

(0.0014) (0.0012) (0.0023) (0.0023) (0.0022) (0.0002)
Co-Volatility: AA-BAC

HAR −0.0002 0.0115 0.0384 0.9502 0.9961 0.9961†

(0.0004) (0.0008) (0.0008) (0.0007)
HAR-TCJ 0.2034 0.0012 −0.0790 1.0513 0.0413 0.9486 0.9481

(0.0033) (0.0018) (0.0036) (0.0037) (0.0005)
HAR-TCJA 0.1992 −0.0010 −0.0801 1.0506 0.0414 0.0069 0.9490 0.9485

(0.0033) (0.0018) (0.0036) (0.0037) (0.0005) (0.0004)
Co-Volatility: AXP-BAC

HAR −0.0037 0.0203 0.0355 0.9462 0.9973 0.9973†

(0.0005) (0.0006) (0.0007) (0.0007)
HAR-TCJ 0.0064 0.0144 −0.0502 1.1736 0.0516 0.9797 0.9796

(0.0028) (0.0012) (0.0032) (0.0050) (0.0033)
HAR-TCJA 0.0006 0.0122 −0.0529 1.1695 0.0651 0.0147 0.9801 0.9799

(0.0027) (0.0013) (0.0031) (0.0050) (0.0032) (0.0005)
Note: Standard errors are given in parentheses. ‘†’ denotes the model which has the highest R̄2 value of the
three models.
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Table 7: Out-of-Sample Forecast Evaluation for Monthly Regressions

Model MZ R2 HRMSE J-R2 J-HRMSE C-R2 C-HRMSE
Volatility: AA (783 Times Jump)

HAR 0.9948† 0.0439b,c 0.9933† 0.0437b,c 0.9976† 0.0446b,c

HAR-TCJ 0.9852 0.1496 0.9855 0.1516 0.9848 0.1421
HAR-TCJA 0.9854 0.1495 0.9848 0.1516 0.9866 0.1417
Volatility: AXP (624 Times Jump)

HAR 0.9964† 0.0526b,c 0.9958† 0.0519b,c 0.9975† 0.0538b,c

HAR-TCJ 0.9892 0.1180 0.9875 0.1165 0.9922 0.1205
HAR-TCJA 0.9889 0.1192 0.9873 0.1174 0.9918 0.1221
Volatility: BAC (782 Times Jump)

HAR 0.9958† 0.0494b,c 0.9975† 0.0453b,c 0.9861† 0.0619b,c

HAR-TCJ 0.9850 0.1747 0.9877 0.1729 0.9726 0.1809
HAR-TCJA 0.9849 0.1749 0.9874 0.1734 0.9735 0.1800
Co-Volatility: AA-AXP (214 Times Co-Jump)

HAR 0.9976† 0.0490b,c 0.9994† 0.0398b,c 0.9974† 0.0512b,c

HAR-TCJ 0.9964 0.1514 0.9967 0.1667 0.9964 0.1469
HAR-TCJA 0.9965 0.1511 0.9965 0.1665 0.9965 0.1466
Co-Volatility: AA-BAC (158 Times Co-Jump)

HAR 0.9976† 8.6145 0.9972† 1.1431 0.9977† 9.3749
HAR-TCJ 0.9930 86.071 0.9946 13.894 0.9928 93.606

HAR-TCJA 0.9932 83.126 0.9945 13.515 0.9931 90.401
Co-Volatility: AXP-BAC (162 Times Co-Jump)

HAR 0.9982† 12.108 0.9984† 2.2816 0.9981† 13.189
HAR-TCJ 0.9910 187.73 0.9895 12.910 0.9914 204.99

HAR-TCJA 0.9909 187.37 0.9895 12.839 0.9912 204.60
Note: The table reports Mincer-Zarnowitz R2 and heteroskedasticity-adjusted root
mean squared error (HRMSE). J-R2 and J-HRMSE are R2 and HRMSE conditionally
on having a jump at time t−1, respectively, while C-R2 and C-HRMSE are conditional
on no jump at time t − 1. ‘†’ denotes the model which has the highest R2 value of the
three models. For the Diebold-Mariano test of equal forecast accuracy, ‘a’, ‘b’ and ‘c’
denote significant improvements in forecasting performance with respect to the HAR,
HAR-TCJ and HAR-TCJA models, respectively.
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