GFP-'Walking': Artificial Construct Aberrations

Caused by Cotransfectional Homologous Recombination

Felix Bestvater Eberhard Spiess Biomedical Structure Analysis Tobias A. Knoch Jörg Langowski Biophysics of Macromolecules

German Cancer Research Center (DKFZ) Heidelberg - Germany Simultanious cotransfection of GFP-chimeras lead to a GFP conversion: All conversion possibilities were observed by cotransfecting H2A-CFP (SV40, strong expression, localized in the nucleus) and CB-YFP (CMV, weak expression, localized in the ER/Golgi). The convertants can be enriched and stable cell lines can be created.

Human

Genome Study Group

Tobias A. Knoch

Homology analysis of vectors and genomic PCR for proof of conversion: A homology analysis of H2A-CFP and CB-YFP suggests homologous recombination as cause of conversion. The final proof of conversion was obtained with a genomic PCR of the full H2A-XFP fusion gene and sequencing of the PCR. **Tobias A. Knoch**

Human

Genome Study Group

Final proof of the conversion events by analysis of the sequenced PCR of an conversion enriched cell clone: The conversion takes place in all 16 bp mutations separating CFP and YFP.

H2A-ECFP	GGGATCCACCGGTCGCCACC ATG GTGAGCAAGGGCGAGGAGCTGTTCACC			
H2A-YFP (Cl.1)	GGGATCCACCGGTCGCCACC ATG GTGAGCAAGGGCGAGGAGCTGTTCACC			
eYFP	ATG GTGAGCAAGGGCGAGGAGCTGTTCACC			
H2A-ECFP	GGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAA			
H2A-YFP (Cl.1)	GGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAA			
eYFP	GGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAA			
H2A-ECFP	GTTCAGCGTGTCCGGCGAGGGCGAGGGCGA GCCACCTACGGCAAGCTGA			
H2A-YFP (Cl.1)	GTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA			
eYFP	GTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA			
H2A-ECFP	CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC			
H2A-YFP (Cl.1)	CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC			
eYFP	CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC			
H2A-ECFP	CTCGTGACCACCCTGACCTGGGGGCGTGCAGTGCTTCAGCCGCTACCCCGA			
H2A-YFP (Cl.1)	CTCGTGACCACCtTcggCTacGGCcTGCAGTGCTTCgcCCGCTACCCCGA			
eYFP	CTCGTGACCACCtTcggCTacGGCcTGCAGTGCTTCgcCCGCTACCCCGA			
H2A-ECFP	CCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG			
H2A-YFP (Cl.1)	CCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG			
eYFP	CCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG			
H2A-ECFP	TCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC			
H2A-YFP (Cl.1)	TCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC			
eYFP	TCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC			
H2A-ECFP	GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAA			
H2A-YFP (Cl.1)	GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAA			
eYFP	GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAA			
H2A-ECFP	GGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGT			
H2A-YFP (Cl.1)	GGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGT			
eYFP	GGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGT			
H2A-ECFP	ACAACTACATCAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAAC			
H2A-YFP (Cl.1)	ACAACTACAaCAGCCACAACGTCTATATCAtgGCCGACAAGCAGAAGAAC			
eYFP	ACAACTACAaCAGCCACAACGTCTATATCAtgGCCGACAAGCAGAAGAAC			
H2A-ECFP	GGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT			
H2A-YFP (Cl.1)	GGCATCAAGGtgAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT			
eYFP	GGCATCAAGGtgAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT			
H2A-ECFP	GCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG			
H2A-YFP (Cl.1)	GCAGCTCGCCGACCACTACCAGCAGAACACCCCCCATCGGCGACGGCCCCG			
eYFP	GCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG			
H2A-ECFP	TGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAA			
H2A-YFP (Cl.1)	TGCTGCTGCCCGACAACCACTACCTGAGCtaCCAGTCCGCCCTGAGCAAA			
eYFP	TGCTGCTGCCCGACAACCACTACCTGAGCtaCCAGTCCGCCCTGAGCAAA			
H2A-ECFP	GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC			
H2A-YFP (Cl.1)	GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC			
eYFP	GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC			
H2A-ECFP	CGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG TAA			
H2A-YFP (Cl.1)	CGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG TAA			
eYFP	CGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG TAA			

Quantifiing the conversion rate:

For quantifiing the conversion rate images were taken in the phase contrast-, CFP- and YFP- channel with a Zeiss Axiovert S100 TV. The image aquisition can partly be automized with macros.

Reliable conversion rates critically depend on many a parameter!

Genome Study Group

Tobias A. Knoch

Quantifiing the conversion - Image Aquisition:

For quantifiing the conversion rate images were taken in the phase contrast-, CFP- and YFP- channel with a Zeiss Axiovert S100 TV.

Background

Cells

Quantifiing the conversion - Image Aquisition: Although the image taking can partly be automized by macros, a reliable conversion rate depends critically on the aquisition parameters as well as on the vector system !

Quantifiing the conversion - Numeration and Background Subtraction:

For later digital image processing the images have to be numbered and the background having no isotrope distribution accross the field of illumination is subtracted using again a macro.

YFP-Channel

Quantifiing the conversion - Signal Analysis:

With intensity thresholds, binary masks of each channel are created separating most H2A from CB signals. With the merged binary masks the signals in each channel are reevaluated, followed by an area separation of the H2A from the CB signal. The data can be checked in a result image.

CFP-Channel

YFP-Channel

Various conversion experiments proof the high rate of conversion: For sufficient statistics in each experiment 1000 to 3000 signals were obtained, including tests totaling to more than 50.000. In general conversion appears with different vectors, cell lines, and methods of transfection, but not in overtransfection of a stable cell line !

Tobias A. Knoch

Construct	Cells	I	Conversion [+/-] and [%]		
H2A-CFP	LCLC103H	FuGene6		-	0.0
CB-YFP	LCLC103H	FuGene6		-	0.0
H2A-CFP + CB-YFP	LCLC103H	FuGene6	simultanious	+	4.0 0.2
H2A-CFP + DsRed	LCLC103H	FuGene6	simultanious	-	0.0
H2A-CFP + pure GFP	LCLC103H	FuGene6	simultanious	+	>1.0
H2A-CFP + CB-YFP	LCLC103H	FuGene6	sep. Mix + simultanious	+	>1.0
H2A-CFP + CB-YFP	LCLC103H	FuGene6	sep. Mix + 4 h delay	- (+)	0.0 (7.3)
H2A-CFP* + CB-YFP	LCLC103H	FuGene6	overtransfec. *stable line	-	0.0
H2A-CFP + CB-YFP	LCLC103H	FuGene6	5x DNA conc	+	?
H2A-CFP + CB-YFP	LCLC103H	FuGene6	10x DNA conc	+	?
H2A-CFP + CB-YFP	LCLC103H	FuGene6	linearized	+	3.4
H2A-CFP + CB-YFP	LCLC103H	FuGene6	linearized + 96C	+++	10.3
H2A-CFP + CB-YFP	LCLC103H	Dmrie-C	simultanious	+	3.8
H2A-CFP + CB-YFP	LCLC103H	Cellfectin	simultanious	+	>1.0
H2A-CFP + CB-YFP	LCLC103H	Lipofectin	simultanious	+	2.4
H2A-CFP + CB-YFP	LCLC103H	GibcoPlus	simultanious	+	>1.0
H2A-CFP + CB-YFP	LCLC103H	Electroporation	simultanious	+	~1.0
H2A-CFP + CB-YFP	LCLC103H	Ca-Phosphat	simultanious	+	~1.0
H2A-CFP	HeLa	FuGene6		-	0.0
H2A-CFP + CB-YFP	HeLa	FuGene6	simultanious	+	?
H2A-CFP	Cos-7	FuGene6		-	0.0
H2A-CFP + CB-YFP	Cos-7	FuGene6	simultanious	+	?

Summary and Outlook

Warning

simultanious cotransfections can lead to GFP-walking

the artificial and misleading results due to conversion are usually between 2% and 8% and can reach up to ~20% in the extreem

the conversion can be reduced dramatically by succesive transfection and overtransfection of a stably transfected cell line

Application

a fast method for expressing a fusion protein with another GFP without creating a new DNA plasmid and receiving immediately a clone of a cell line

this system is a suitable tool for the investigation of homologous recombination (e.g. cancer cells with elevated recombination activity) or similar processes (an optimized system for FACS analysis is possible)

CFP-Channel

YFP-Channel

"GFP-Walking": Artificial Construct Aberrations caused by Co-Transfectional Homologous Recombination

Knoch, T. A.

Biophysics of Macromolecules Seminar, German Cancer Research Centre (DKFZ), Heidelberg, Germany, July, 2000.

Corresponding author email contact: TA.Knoch@taknoch.org

Keywords:

Genome, genomics, genome organization, genome architecture, structural sequencing, architectural sequencing, systems genomics, coevolution, holistic genetics, genome mechanics, genome function, genetics, gene regulation, replication, transcription, repair, homologous recombination, simultaneous co-transfection, cell division, mitosis, metaphase, interphase, cell nucleus, nuclear structure, nuclear organization, chromatin density distribution, nuclear morphology, chromosome territories, subchromosomal domains, chromatin loop aggregates, chromatin rosettes, chromatin loops, chromatin fibre, chromatin density, persistence length, spatial distance measurement, histones, H1.0, H2A, H2B, H3, H4, mH2A1.2, DNA sequence, complete sequenced genomes, molecular transport, obstructed diffusion, anomalous diffusion, percolation, long-range correlations, fractal analysis, scaling analysis, exact yard-stick dimension, box-counting dimension, lacunarity dimension, local nuclear diffuseness, parallel super computing, grid computing, volunteer computing, Brownian Dynamics, Monte Carlo, fluorescence in situ hybridization, confocal laser scanning microscopy, autofluorescent proteins, CFP, GFP, YFP, DsRed, fusionprotein, in vivo labelling.

Literature References

- Knoch, T. A. Dreidimensionale Organisation von Chromosomen-Domänen in Simulation und Experiment. (Three-dimensional organization of chromosome domains in simulation and experiment.) *Diploma Thesis*, Faculty for Physics and Astronomy, Ruperto-Carola University, Heidelberg, Germany, 1998, and TAK Press, Tobias A. Knoch, Mannheim, Germany, ISBN 3-00-010685-5 and ISBN 978-3-00-010685-9 (soft cover, 2rd ed.), ISBN 3-00-035857-9 and ISBN 978-3-00-0358857-0 (hard cover, 2rd ed.), ISBN 3-00-035858-7, and ISBN 978-3-00-035858-6 (DVD, 2rd ed.), 1998.
- Knoch, T. A., Münkel, C. & Langowski, J. Three-dimensional organization of chromosome territories and the human cell nucleus - about the structure of a self replicating nano fabrication site. *Foresight Institute -Article Archive*, Foresight Institute, Palo Alto, *CA*, USA, http://www.foresight.org, 1- 6, 1998.
- Knoch, T. A., Münkel, C. & Langowski, J. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Nucleus. *High Performance Scientific Supercomputing*, editor Wilfried Juling, Scientific Supercomputing Center (SSC) Karlsruhe, University of Karlsruhe (TH), 27- 29, 1999.

- Knoch, T. A., Münkel, C. & Langowski, J. Three-dimensional organization of chromosome territories in the human interphase nucleus. *High Performance Computing in Science and Engineering 1999*, editors Krause, E. & Jäger, W., High-Performance Computing Center (HLRS) Stuttgart, University of Stuttgart, Springer Berlin-Heidelberg-New York, ISBN 3-540-66504-8, 229-238, 2000.
- Bestvater, F., **Knoch, T. A.**, Langowski, J. & Spiess, E. GFP-Walking: Artificial construct conversions caused by simultaneous cotransfection. *BioTechniques* 32(4), 844-854, 2002.