
1 

 

The Davies Problem:  

A New Test for Random Slope in the Hierarchical Linear Model 

 

Rutger van Oest 

Department of Marketing, BI Norwegian Business School, Oslo, Norway 

 

Philip Hans Franses 

Econometric Institute, Erasmus University Rotterdam, The Netherlands 

 

Econometric Institute Report 2015-01 

 

Abstract 

Crucial inference for the hierarchical linear model concerns the null hypothesis of no random 

slope. We argue that the usually applied statistical test suffers from the so-called Davies 

problem, that is, a nuisance parameter is only identified under the alternative. We propose an 

easy-to-implement methodology that exploits this property. We provide the relevant critical 

values and demonstrate through simulations that our new methodology has better power 

properties. 
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1. Introduction 

 

The hierarchical linear model is becoming increasingly popular in social sciences and 

business studies (Lahuis and Ferguson 2007; Oakley, Iacobucci and Duhachek 2005). It links a 

dependent variable with independent variables, where the data appear at multiple nested levels, 

that is, a macro level and a micro level. Examples include literature studies and cases within 

studies in a meta analysis, individuals and tasks within individuals in conjoint analysis, 

countries and respondents within countries in cross-national surveys, and entities (such as 

companies or individuals) and time within entities in longitudinal analysis.  

The parameters in the hierarchical linear model need not be fixed but may vary at the 

macro level according to some statistical (e.g., normal) distribution. A key issue in empirical 

applications concerns whether the model’s response coefficients, i.e., slopes, are fixed or are 

characterized by variance. While a random slope complicates parameter estimation and makes 

the model less parsimonious, erroneously ignoring it would lead to incorrect inference on the 

effect of the independent variable on the dependent variable. A significant random slope also 

implies unexplained variance that may be explained by moderators and may lead to new 

hypotheses of interest. It is important to be able to identify random slopes, although current 

tests possess generally low power (LaHuis and Ferguson 2007). 

 The statistical test for random slope involves testing whether the variance of its 

statistical distribution equals zero. However, when this variance is zero (i.e., when the random 

component is effectively removed), another parameter in the model (the correlation between 

the random slope and the random intercept) is no longer identified. This disappearance of a 

nuisance parameter under the null hypothesis is usually called the Davies problem (Andrews 

and Ploberger 1994; Davies 1987; 2002). It frequently appears in statistical and econometric 

models like Hidden Markov models (Carrasco 2002), smooth transition autoregressive models 

(Hansen 1996), the geometric lag or Koyck model (Franses and Van Oest 2007), and the 

GARCH model (Andrews 2001, Beg et al. 2001). The Davies problem makes the Likelihood 

Ratio (LR) test of random slope a test with a non-standard reference distribution, that is, critical 

values are not the usual chi (bar) square based critical values. This problem has been ignored 

in the literature on hierarchical linear models (e.g., Snijders and Bosker 2012) and therefore we 

do not know whether the commonly presumed standard distribution of the LR test is far off or 

is still approximately valid. 
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 The current paper addresses this issue. First, we elaborate on the overlooked Davies 

problem and simulate the correct critical values. We do so for both the asymptotic case (i.e., 

when the number of “groups” at the macro level, i.e., N, is very large) and for more common 

cases where N is small, i.e., N = 50, 100 or 200. We show that the currently used reference 

distribution for slope variance is slightly too conservative asymptotically and the deviation 

increases when N becomes (moderately) small, the typical case in most model applications. For 

instance, the number of included studies in a meta analysis is often below 100, the number of 

respondents in a conjoint analysis is often a few hundreds at most, there are around 200 

countries in the world of which most may not be included in cross-national studies, the number 

of participating companies in a longitudinal business-to-business study or number of kids in a 

longitudinal growth study may be as low as a few tens, and so on. In such cases, it is 

recommended to use exact (rather than asymptotic) critical values to avoid relying on an overly 

conservative test. We provide these critical values and correct for bias caused by the Davies 

problem.  

Our second contribution is that we go beyond merely controlling for the Davies problem 

and exploit the presence of the unidentified correlation parameter to come up with a simple 

procedure for testing slope variance with improved power properties. The basic idea is that the 

correlation, the nuisance parameter, is not identified under the null hypothesis but conceptually 

it cannot be assumed zero if it is not zero. At the same time keeping it in the model if it is zero 

leads to unnecessarily low power. We combine the best of both worlds. First, we test for the 

data set and model at hand whether the correlation between slope and intercept can be set equal 

to zero. If not, we consider the LR test including the unidentified correlation parameter and use 

the corresponding simulated critical values. If the estimated correlation is not significantly 

different from zero, we set it equal to zero and run the LR test of slope variance without this 

correlation parameter. 

 The outline of our paper is as follows. In Section 2 we present the hierarchical linear 

model and briefly outline parameter estimation. Section 3 discusses LR based tests and elicits 

the key problematic issue for inference, which is widely overlooked in current applications of 

this model. In Section 4 we present the proper methodology for inference in the hierarchical 

linear model. We provide critical values and present the results of power simulation studies, 

highlighting that the proper method yields more power. Section 5 summarizes the results from 

our power analysis in a meta regression. Section 6 concludes this paper.  
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2. The hierarchical model 

 

The hierarchical linear model, with random intercept ��,� and explanatory variable ��,� 
with random slope coefficient ��,�, is given by1 

 

(1) 

��,� = ��,� + ��,���,� + ��,�,							��,�~��0, ���	i. i. d., 
��,� = �� + ��,�, 
��,� = �� + ��,�, 

���,���,��~� ��00� , � ��� ���������� ��� ��, 
 

where index i is at the macro level (e.g., individuals) and index t is at the micro level (e.g., time 

within individual), ���  and ���  are the variances of the intercept and the slope coefficient, 

respectively, and parameter � captures the correlation. It is common practice to keep � in the 

model (e.g., Snijders and Bosker 2012). In reduced form, (1) can be written as 

 

(2) 

��,� = �� + ����,� +  �,�,							 �,� = ��,� + ��,���,� + ��,� 
���,���,��~���00� , � ��� ���������� ��� ��,							��,�~��0, ���	i. i. d. 

 

Model parameters can be estimated by maximizing the log-likelihood function 

 

(3) 

ln # �$, ���, �� = −12	()*� ln�2+� + ln|Σ�| + -�� − ��,� − ��,���.′Σ�/�-�� − ��,� − ��,���.0
1

�2�
, 

 

                                                             
1 The basic model can be generalized by adding other explanatory variables to the regression equation and putting 
group-level variables 3�  into the random intercept and random slope. As long as ��,�  is the only explanatory 
variable with a random slope, these extensions affect the fixed part of the model but not the random part. A 
common approach in a model with multiple explanatory variables is to test for one random slope at a time (e.g., 
Snijders and Bosker 2012; Stoel et al. 2012) and this strategy fits nicely within our framework. 
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where $ ≡ ���, ��, ��, ���� contains all model parameters except the slope variance parameter 

��� and the correlation parameter �. In (3), N is the number of groups at the macro level, *� is 

the number of observations within group i, �� ≡ -��,�, … , ��,67. contains all observations ��,� 
within group i and �� ≡ -��,�, … , ��,67. is defined similarly. It follows from (2) that the elements 

�8, 9�, 8 = 1,… , *�, 9 = 1,… , *�, of covariance matrix Σ� are given by 

 

(4) 

�Σ���,� = ��� + 2��,������ + ��,�� ��� + ��, 
�Σ���,: = ��� + -��,� + ��,:.����� + ��,���,:���,						8 ≠ 9. 

 

We obtain (asymptotic) standard errors by taking the square root of the diagonal elements of 

the estimated covariance matrix of the parameter estimates, which in turn can be computed as 

minus the inverse of the Hessian of (3) evaluated at the optimal parameter values. 

 

3. The key issue 

 

Testing whether the slope variance ��� equals zero may seem a rather straightforward 

task. It has been suggested that ��� = 0 implies � = 0 (e.g., Lahuis and Ferguson 2009; Snijders 

and Bosker 2012; Stoel et al. 2006). A first conjecture is that the two restrictions can be tested 

by implementing an LR test and comparing its outcome to a chi square distribution with two 

degrees of freedom; the 5% critical value is 5.99.  

However, this approach is incorrect for two reasons: (1) variances cannot be negative 

and hence the null hypothesis ��� = 0  is located on the boundary of the parameter space, 

violating one of the regularity conditions of the LR test, and (2) the correlation parameter � for 

random intercept ��,� and random slope ��,� is not identified under the null hypothesis in which 

��,� disappears from the model, hence the Davies problem. Extant studies have dealt with the 

first issue of non-negative variance (but not with the Davies problem) by replacing the <�� 

reference distribution by a chi bar square distribution, i.e., a mixture of a <�� distribution and a 

<�� distribution, both with 50% weight (e.g., Lahuis and Ferguson 2009; Snijders and Bosker 

2012; Stoel et al. 2006; Stram and Lee 1994); the corresponding 5% critical value is 5.14. The 

intuition of this reference distribution is that under the null hypothesis the realized (unrestricted) 

variance ��� would be negative and hence take a value of zero in 50% of the cases. While the 



6 

 

first degree of freedom from the correlation parameter � (not on the boundary of the parameter 

space) is always present, the second degree of freedom from the slope variance ��� (on the 

boundary of the parameter space) is only present in 50% of the cases (Self and Liang 1987; 

Stoel et al. 2006). 

 Though the chi bar square distribution is statistically correct if one wants to test the joint 

restriction of zero slope variance,��� = 0, and zero correlation, � = 0, this null hypothesis is 

conceptually incorrect. The reason is that only the slope variance is a parameter of interest and 

the correlation is merely a nuisance. Put differently, we want to test for ��� = 0 and need to 

control for �. It is easy to see from (1) and (2) that the nuisance parameter � is not identified 

under the null hypothesis of interest, i.e., ��� = 0. 

 

4. The solution 

 

Davies (1987) proposed a general solution to the problem of dealing with an unidentified 

nuisance parameter under the null hypothesis. The idea is to construct a new test statistic by 

evaluating the original test statistic for the hypothesis of interest over the entire range of the 

unidentified parameter. In our context and for given �, the LR statistic is twice the difference 

between the log-likelihood of the full model, ln # �$, ���, ��  in (3), maximized over $ ≡
���, ��, ��, ���� and ���, and the log-likelihood under the null hypothesis ��� = 0: 

 

(5) 

ln #� �$� = −12	()*� ln�2+� + ln=Σ�,�= + -�� − ��,� − ��,���.′Σ�,�/�-�� − ��,� − ��,���.0
1

�2�
, 

with 

 

(6) 

�Σ�,���,� = ��� + ��, 
�Σ�,���,: = ���,						8 ≠ 9, 

 

maximized over $ ≡ ���, ��, ��, ����. The corresponding test statistic for given � can be 

written as 

 

(7) 
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LR��� ≡ 2 ln # -$@���, �̂�����, �. − 2 ln #� -$@�., 
 

where the “hats” denote parameter estimates and we make explicit the dependence of the 

parameter estimates in the full model on the nuisance parameter � (unidentified under the null 

hypothesis). Maximizing LR��� over the range of � results in the regular LR test statistic (e.g., 

Andrews and Ploberger 1994; Hansen 1996): 

 

(8) 

LR ≡ maxE LR���, 
 

but it no longer has a standard distribution.2  

 

Simulated critical values 

The top part of Table 1 provides our simulated critical values at the 10% and 5% levels 

for number of groups �  equal to 50, 100, 200 and 1000, where N = 1000 represents the 

asymptotic case. We use 40,000 draws, consider *� = 20 observations within each group and 

verified that the critical values did not depend on *�. The simulated asymptotic critical value of 

5.04 at the 5% level is slightly more liberal than the corresponding critical value of 5.14 from 

the chi bar square distribution. Intuitively, the latter critical value corresponds to testing ��� = 0 

and � = 0 together, i.e., it treats the correlation parameter � as a parameter of interest, adding 

a full degree of freedom. On the other hand, it should be treated as a nuisance parameter that 

disappears under the null hypothesis and contributes less than a full degree of freedom; � is not 

identified and may be non-zero under the null hypothesis. For this reason the critical values 

from the chi bar square distribution (e.g., 5.14 at the 5% level) are slightly too conservative. 

Furthermore, these critical values are conservative because they still are asymptotic. Though 

the chi bar square distribution wrongly ignores the Davies problem, it turns out to be quite 

accurate (though not perfect) if the number of groups N is large, but it is quite far off in the 

more common situation in which the number of groups is limited. This makes it harder to detect 

a random slope when it is actually present in the data.  

                                                             
2 An alternative is taking the average of LR��� over the range of �, resulting in the class of  “ave test statistics” 
(Andrews and Ploberger 1994). However, this did not result in substantially higher power while requiring a 
computationally intensive grid search over �. We did not pursue this approach. 
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For later reference, the bottom part of Table 1 contains the simulated critical values 

when imposing � = 0 in (1) and (2), i.e., when we want to test the single restriction ��� = 0  in 

the model without intercept-slope correlation. 

 

Statistical power 

We assess statistical power of the LR test with nuisance parameter by varying the slope 

standard deviation ��, the correlation � and the number of groups N in the data generating 

process. As before, we have *� = 20 observations within each group. Table 2 provides the 

corresponding percentages of rejection of the null hypothesis ��� = 0 using the appropriate 5% 

critical values in the top part of Table 1 and based on 1000 draws. Though it is not surprising 

that power increases substantially if the number of groups N is large and if the slope variance 

��� increases, it is noteworthy that power is low if the actual correlation � is close to zero. This 

power quickly increases if � increases in an absolute sense, and it does not appear to depend on 

whether the correlation becomes more positive or negative; the sign of the correlation does not 

matter. The dependence of power on the absolute size of the correlation is strongest when the 

slope variance is large, i.e., when relatively far away from the null hypothesis ��� = 0, and when 

the number of groups N is large. Taken together, our analysis suggests that keeping the 

correlation parameter � in the model when it is not strongly present in the data results in low 

power.  

So, while it has been advocated and is common practice to keep � in the model (e.g., 

Snijders and Bosker 2012, p. 76-77), we argue that statistical significance of � needs to be 

tested first to come up with the appropriate LR test for ��� = 0, i.e., either the test with or 

without the nuisance parameter � that is not identified under the null hypothesis. While the 

current approach for testing slope variance is to consider the joint (but conceptually incorrect) 

null hypothesis � = 0 and ��� = 0, i.e., simultaneous testing of both the nuisance parameter and 

the parameter of interest, our new approach is sequential: it first considers statistical 

significance of the nuisance parameter and next tests the parameter of interest conditional on 

the outcome for the nuisance parameter. This procedure acknowledges that conceptually there 

may be a parameter in the model that is not identified under the null hypothesis, but removes 

this parameter from the model if it turns out not to be present empirically. 

 

A simple test with better power properties 
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Based on the discussion above, we outline our simple procedure that requires the log-

likelihood of the model without random slope, i.e., ln #� -$@. defined by (5) and (6), the log-

likelihood ln #FG	E -$@, �̂��.  with random slope but without correlation parameter �, obtained 

from (3) and (4) after setting � = 0, and the log-likelihood of the full model, i.e., ln # -$@, �̂��, �H. 
defined by (3) and (4). As the three model specifications are nested, it is efficient to estimate 

them sequentially. Two of the models are already needed for the regular LR test, and the extra 

model (with random slope but without correlation) is nested in between. Our procedure involves 

the LR statistics from each of the three pairwise combinations. We test for the unidentified 

nuisance parameter � using a regular LR test with one degree of freedom (5% critical value = 

3.84), keep or remove � based on its statistical significance, and next apply the appropriate LR 

test for ��� = 0. In brief: 

 

1. Check whether 2 ln # -$@, �̂��, �H. − 2 ln #FG	E -$@, �̂��. > 3.84. 

2. If yes, reject ��� = 0 if 2 ln # -$@, �̂��, �H. − 2 ln #� -$@. > M�.�N,OPQQ, where M�.�N,OPQQ is 

the appropriate 5% simulated critical value from the top part of Table 1. 

3. If no, reject ��� = 0 if 2 ln #FG	E -$@, �̂��. − 2 ln #� -$@. > M�.�N,FG	E, where M�.�N,FG	E 

is the appropriate 5% simulated critical value from the bottom part of Table 1. 

 

 Table 3 shows the power of our sequential LR test and is analogous to Table 2 for the 

regular LR test. Though power is still lowest if the actual correlation � is close to zero, the 

dependence of power on the correlation parameter is much weaker than it is in Table 2. Table 

4 shows the percentage point difference in power between our sequential test and the regular 

LR test (with correct critical values from the top part of Table 1). It confirms the pattern: the 

largest improvement in power occurs when correlation � is close to zero, i.e., when increased 

power is needed most. The difference in power is quite substantial. For all reported numbers of 

groups N, it is possible to achieve improvements of 10 percentage points. For instance, if � = 0 

and �� = 0.10, power increases from 16 percent to 26 percent for N = 50 and from 43 percent 

to 56 percent for N = 200, even though the sequential LR test is hardly more complicated or 

time consuming than the regular LR test. 

 

5. Meta regression for power 
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 To extract the general patterns from our power analysis, we run a linear regression on 

all 360 elements of Tables 2 and 3, where power (divided by 100) serves as the dependent 

variable. As explanatory variables we include a 0/1 dummy variable indicating whether the 

method is our sequential approach, the number of groups N (divided by 100), the slope standard 

deviation �� , the correlation �, the squared correlation ��  to account for the suggested U-

shaped relationship between correlation and power, interaction terms for N, ��, � and ��, and 

we interact everything with the 0/1 sequential approach indicator to assess when extra power 

relative to the regular LR test is largest. The regression provides an excellent fit, with an R-

square equal to 0.873 and an adjusted R-square of 0.866. Table 5 contains the parameter 

estimates. 

 The most important result in Table 5 is that the sequential LR test provides extra 

power over the regular LR test (with appropriate simulated critical values from Table 1), and 

the effect is significant at the 1% level. Furthermore, power is higher when the number of 

groups N is large, the slope standard deviation �� is large, i.e., when we are far away from the 

null hypothesis, and when the correlation parameter is large in absolute sense. The significant 

interaction terms indicate that the positive effects of N, �� and �� on power are reinforced 

when these variables take large values at the same time; all effects but one are significant at 

1%, with the other one being significant at 5%. An important null finding is that the intercept-

slope correlation itself has no effect on power, neither as a main effect nor as an interaction 

term. The second part of the table shows that one of the 9 interaction terms involving the 

sequential approach indicator (Seq) is significant at the 10% level, while the other 8 are not 

significant. The negative coefficient for Seq × ρ2 confirms that the gain in power from our 

sequential approach is largest when ρ2 is small, i.e., when the correlation parameter is close to 

zero and power is generally lowest. 

 

6. Conclusion 

 

Crucial inference for the hierarchical linear model concerning the null hypothesis of no 

random slope is hampered by the fact that there is a parameter that is only identified under the 

alternative, the so-called Davies problem. This calls for an alternative methodology, and this is 

what we have pursued in the present paper. The method is easy to implement and tackles the 

conceptual issue that the correlation between intercept and slope should not be tested as a 

parameter of interest; it is nuisance that does not show up in the null hypothesis but instead 
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disappears. With simulations we have demonstrated that our test should be practically relevant. 

Future applications and case-specific illustrations shall show that our methodology matters.  
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Table 1: simulated critical values for different number of groups N; correlation ρ is a free 

nuisance parameter in the top part, it is assumed zero in the bottom part  

  10% level 5% level 

If ρ  is free N = 50 3.41 4.67 

 N = 100 3.52 4.80 

 N = 200 3.59 4.86 

 N = 1000 3.72 5.04 

If ρ  = 0 N = 50 1.23 2.17 

 N = 100 1.37 2.37 

 N = 200 1.41 2.44 

 N = 1000 1.59 2.65 
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Table 2: power of regular LR test for different standard deviations of the slope parameter, 

correlations and numbers of groups 

    N = 50     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 6.6 5.6 5.4 5.0 5.0 4.9 4.8 5.0 6.5 

τ1=0.04 15.7 7.6 6.2 6.3 5.9 6.1 6.7 7.4 13.1 

τ1=0.06 28.2 12.9 8.6 8.4 7.9 8.1 8.6 11.2 25.9 

τ1=0.08 44.9 20.0 12.4 10.8 10.6 11.3 12.0 17.4 43.1 

τ1=0.10 64.1 29.4 19.2 17.0 16.2 16.0 18.0 27.3 62.8 

 

    N = 100     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 10.1 7.4 6.4 6.3 6.9 6.8 7.1 8.4 11.7 

τ1=0.04 25.0 12.3 8.9 7.9 7.8 8.7 10.4 13.3 27.0 

τ1=0.06 48.0 19.4 12.9 11.5 10.5 11.7 13.8 21.6 47.0 

τ1=0.08 73.0 34.1 20.3 17.9 17.0 18.4 22.1 34.0 72.0 

τ1=0.10 88.7 49.9 33.0 28.6 26.6 29.7 33.9 48.1 88.0 

 

    N = 200     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 15.1 7.4 6.0 5.5 5.6 5.7 5.8 7.5 13.3 

τ1=0.04 46.0 18.6 9.5 7.6 6.8 7.9 9.9 15.8 42.2 

τ1=0.06 79.0 34.8 18.6 13.6 11.4 13.5 16.8 32.0 75.3 

τ1=0.08 96.1 56.7 35.0 27.3 23.3 25.5 31.0 54.5 94.7 

τ1=0.10 99.3 77.5 54.7 46.7 42.7 43.1 52.4 74.9 99.6 

 

    N = 1000     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 50.2 19.0 9.7 6.8 5.5 6.0 7.4 14.8 50.7 

τ1=0.04 98.5 55.5 25.0 16.6 11.7 12.2 23.2 56.4 97.2 

τ1=0.06 100.0 90.7 53.3 37.7 33.8 39.0 55.3 90.0 100.0 

τ1=0.08 100.0 99.5 88.2 77.3 71.6 78.1 90.0 99.5 100.0 

τ1=0.10 100.0 100.0 98.8 97.2 96.5 98.0 99.2 100.0 100.0 
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Table 3: power of sequential LR test for different standard deviations of the slope parameter, 

correlations and numbers of groups 

    N = 50     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 9.1 7.6 7.5 7.4 7.3 7.5 7.6 7.7 9.1 

τ1=0.04 16.6 10.3 9.3 9.3 9.3 9.6 9.5 10.8 15.6 

τ1=0.06 29.3 16.0 12.5 12.6 12.2 12.6 13.3 15.4 27.8 

τ1=0.08 45.7 25.1 18.8 18.5 18.3 18.3 19.1 23.1 44.6 

τ1=0.10 64.2 35.3 28.2 26.6 25.9 26.3 28.1 33.0 63.2 

 

    N = 100     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 13.3 10.4 9.0 8.7 9.2 9.4 9.8 11.0 14.5 

τ1=0.04 26.5 15.0 12.3 10.7 10.6 11.6 13.3 15.8 28.7 

τ1=0.06 48.1 23.6 18.3 16.8 16.8 18.1 19.5 25.5 47.4 

τ1=0.08 72.8 38.4 28.5 26.1 25.7 27.2 29.4 38.2 71.5 

τ1=0.10 88.7 54.2 42.6 38.6 37.8 39.5 42.4 51.5 87.9 

 

    N = 200     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 16.9 10.1 8.3 7.9 7.9 8.0 8.3 9.7 14.7 

τ1=0.04 46.7 21.5 14.3 12.8 11.9 12.4 13.6 18.3 42.4 

τ1=0.06 78.8 39.2 26.6 22.4 21.4 22.0 24.0 36.3 75.2 

τ1=0.08 95.8 59.8 42.8 37.7 34.9 36.5 40.0 57.6 94.9 

τ1=0.10 99.2 79.5 64.4 59.0 56.4 57.7 62.5 77.3 99.5 

 

    N = 1000     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 50.1 20.2 11.6 9.6 8.9 9.3 10.6 17.4 50.6 

τ1=0.04 98.5 56.0 29.8 22.8 20.0 21.5 29.4 57.5 97.2 

τ1=0.06 100.0 90.2 58.8 49.5 46.3 48.8 60.3 89.6 100.0 

τ1=0.08 100.0 99.6 89.9 85.5 84.1 86.1 92.6 99.5 100.0 

τ1=0.10 100.0 100.0 99.3 99.0 99.1 99.5 99.8 100.0 100.0 
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Table 4: difference in power between sequential LR test and regular LR test for different 

standard deviations of the slope parameter, correlations and numbers of groups 

    N = 50     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 2.5 2.0 2.1 2.4 2.3 2.6 2.8 2.7 2.6 

τ1=0.04 0.9 2.7 3.1 3.0 3.4 3.5 2.8 3.4 2.5 

τ1=0.06 1.1 3.1 3.9 4.2 4.3 4.5 4.7 4.2 1.9 

τ1=0.08 0.8 5.1 6.4 7.7 7.7 7.0 7.1 5.7 1.5 

τ1=0.10 0.1 5.9 9.0 9.6 9.7 10.3 10.1 5.7 0.4 

 

    N = 100     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 3.2 3.0 2.6 2.4 2.3 2.6 2.7 2.6 2.8 

τ1=0.04 1.5 2.7 3.4 2.8 2.8 2.9 2.9 2.5 1.7 

τ1=0.06 0.1 4.2 5.4 5.3 6.3 6.4 5.7 3.9 0.4 

τ1=0.08 −0.2 4.3 8.2 8.2 8.7 8.8 7.3 4.2 −0.5 

τ1=0.10 0.0 4.3 9.6 10.0 11.2 9.8 8.5 3.4 −0.1 

 

    N = 200     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 1.8 2.7 2.3 2.4 2.3 2.3 2.5 2.2 1.4 

τ1=0.04 0.7 2.9 4.8 5.2 5.1 4.5 3.7 2.5 0.2 

τ1=0.06 −0.2 4.4 8.0 8.8 10.0 8.5 7.2 4.3 −0.1 

τ1=0.08 −0.3 3.1 7.8 10.4 11.6 11.0 9.0 3.1 0.2 

τ1=0.10 −0.1 2.0 9.7 12.3 13.7 14.6 10.1 2.4 −0.1 

 

    N = 1000     

 ρ=−0.8 ρ=−0.4 ρ=−0.2 ρ=−0.1 ρ=0.0 ρ=+0.1 ρ=+0.2 ρ=+0.4 ρ=+0.8 

τ1=0.02 −0.1 1.2 1.9 2.8 3.4 3.3 3.2 2.6 −0.1 

τ1=0.04 0.0 0.5 4.8 6.2 8.3 9.3 6.2 1.1 0.0 

τ1=0.06 0.0 −0.5 5.5 11.8 12.5 9.8 5.0 −0.4 0.0 

τ1=0.08 0.0 0.1 1.7 8.2 12.5 8.0 2.6 0.0 0.0 

τ1=0.10 0.0 0.0 0.5 1.8 2.6 1.5 0.6 0.0 0.0 
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Table 5: meta summary for power, obtained from linear regression on Tables 2 and 3 

 Coefficient Std. error 

Intercept 0.368***  (0.006) 

Seq  (1 if sequential LR, 0 else) 0.041***  (0.012) 

N     (# groups / 100) 0.044***  (0.002) 

τ1     (slope standard deviation) 6.603***  (0.215) 

ρ      (correlation)       −0.006 (0.014) 

ρ2    (squared correlation) 0.519***  (0.025) 

N × τ1 0.586***  (0.056) 

N × ρ 0.000 (0.004) 

N × ρ2 0.016**  (0.006) 

τ1 × ρ −0.046 (0.495) 

τ1 × ρ2 3.850***  (0.869) 

Seq × N      −0.001 (0.003) 

Seq × τ1    0.392 (0.431) 

Seq × ρ  0.001 (0.028) 

Seq × ρ2  −0.085* (0.049) 

Seq × N × τ1 −0.078 (0.111) 

Seq × N × ρ 0.000 (0.007) 

Seq × N × ρ2 −0.001 (0.013) 

Seq × τ1 × ρ −0.005 (0.991) 

Seq × τ1 × ρ2 −1.519 (1.738) 

* p < .10;   

** p < .05;   

*** p < .01   

  

 


