View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Erasmus University Digital Repository

The Davies Problem:
A New Test for Random Slopein the Hierarchical Linear M odel

Rutger van Oest

Department of Marketing, Bl Norwegian Business $th@slo, Norway

Philip Hans Franses

Econometric Institute, Erasmus University Rotterdaimee Netherlands

Econometric Institute Report 2015-01

Abstract
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1. Introduction

The hierarchical linear model is becoming increglgipopular in social sciences and
business studies (Lahuis and Ferguson 2007; Odkleybucci and Duhachek 2005). It links a
dependent variable with independent variables, e/ttex data appear at multiple nested levels,
that is, a macro level and a micro level. Examphetude literature studies and cases within
studies in a meta analysis, individuals and taskkinvindividuals in conjoint analysis,
countries and respondents within countries in emag®nal surveys, and entities (such as
companies or individuals) and time within entitiedongitudinal analysis.

The parameters in the hierarchical linear modetimest be fixed but may vary at the
macro level according to some statistical (e.grmad) distribution. A key issue in empirical
applications concerns whether the model’s respooséicients, i.e., slopes, are fixed or are
characterized by variance. While a random slopepticates parameter estimation and makes
the model less parsimonious, erroneously ignofrirvgould lead to incorrect inference on the
effect of the independent variable on the dependarable. A significant random slope also
implies unexplained variance that may be explaibgdnoderators and may lead to new
hypotheses of interest. It is important to be dblédentify random slopes, although current
tests possess generally low power (LaHuis and Berg@007).

The statistical test for random slope involvestitngs whether the variance of its
statistical distribution equals zero. However, wh@n variance is zero (i.e., when the random
component is effectively removed), another parameté¢he model (the correlation between
the random slope and the random intercept) is ngdoidentified. This disappearance of a
nuisance parameter under the null hypothesis iallyscalled the Davies problem (Andrews
and Ploberger 1994; Davies 1987; 2002). It fredyeayipears in statistical and econometric
models like Hidden Markov models (Carrasco 2002)path transition autoregressive models
(Hansen 1996), the geometric lag or Koyck modearies and Van Oest 2007), and the
GARCH model (Andrews 2001, Beg et al. 2001). Thei®s problem makes the Likelihood
Ratio (LR) test of random slope a test with a ntamdard reference distribution, that is, critical
values are not the usual chi (bar) square bastdatwalues. This problem has been ignored
in the literature on hierarchical linear modelg (eSnijders and Bosker 2012) and therefore we
do not know whether the commonly presumed standiatdbution of the LR test is far off or

is still approximately valid.



The current paper addresses this issue. Firsglamorate on the overlooked Davies
problem and simulate the correct critical value® 8¢ so for both the asymptotic case (i.e.,
when the number of “groups” at the macro level, Ng is very large) and for more common
cases wherd\ is small, i.e.N = 50, 100 or 200. We show that the currently usfedrence
distribution for slope variance is slightly too semnvative asymptotically and the deviation
increases wheN becomes (moderately) small, the typical case intmasiel applications. For
instance, the number of included studies in a rap#dysis is often below 100, the number of
respondents in a conjoint analysis is often a fewdneds at most, there are around 200
countries in the world of which most may not bduded in cross-national studies, the number
of participating companies in a longitudinal busisso-business study or number of kids in a
longitudinal growth study may be as low as a fewsteand so on. In such cases, it is
recommended to use exact (rather than asymptoiiicet values to avoid relying on an overly
conservative test. We provide these critical valaled correct for bias caused by the Davies
problem.

Our second contribution is that we go beyond merehtrolling for the Davies problem
and exploit the presence of the unidentified catreh parameter to come up with a simple
procedure for testing slope variance with improgeder properties. The basic idea is that the
correlation, the nuisance parameter, is not idedtiinder the null hypothesis but conceptually
it cannot be assumed zero if it is not zero. Atsame time keeping it in the model if it is zero
leads to unnecessarily low power. We combine thet dkboth worlds. First, we test for the
data set and model at hand whether the correlagbmeen slope and intercept can be set equal
to zero. If not, we consider the LR test includihg unidentified correlation parameter and use
the corresponding simulated critical values. If gstimated correlation is not significantly
different from zero, we set it equal to zero and tle LR test of slope variance without this
correlation parameter.

The outline of our paper is as follows. In Sect®bwe present the hierarchical linear
model and briefly outline parameter estimation.t®ac3 discusses LR based tests and elicits
the key problematic issue for inference, which idely overlooked in current applications of
this model. In Section 4 we present the proper oukilogy for inference in the hierarchical
linear model. We provide critical values and preégba results of power simulation studies,
highlighting that the proper method yields more povBection 5 summarizes the results from

our power analysis in a meta regression. Secticon@ludes this paper.



2. Thehierarchical model

The hierarchical linear model, with random intetggp and explanatory variable ,

with random slope coefficier, ;, is given by

1)
Yie = Boi+ BriXie + &ee  €,~N(0,0%)1.i.d,
Boi = Bo + Uo,i,
Bii = B+ U

] 2
(O, )

where index is at the macro level (e.g., individuals) and tis at the micro level (e.g., time
within individual), 73 andt? are the variances of the intercept and the sladficient,
respectively, and paramefercaptures the correlation. It is common practic&depp in the
model (e.g., Snijders and Bosker 2012). In reddioed, (1) can be written as

)
Yie = Bo+ BrXie +Sie, i = Ui + UiXie + &t
(9-0(O(,5, 7)) acwoodiia
Model parameters can be estimated by maximizindotidikelinood function
3)

N
InL(6,1,p) = — Z (Ti In(2m) + In|%;| + (yi — Bo; — Buixi) T (vi — Boi — ﬁ1,ixi)):

i=1

N —

1 The basic model can be generalized by adding et@anatory variables to the regression equatizhpaitting
group-level variableg; into the random intercept and random slope. Ag lasx;, is the only explanatory
variable with a random slope, these extensionsffee fixed part of the model but not the randoant.pA
common approach in a model with multiple explanatariables is to test for one random slope atree tfe.qg.,
Snijders and Bosker 2012; Stoel et al. 2012) aizdstinategy fits nicely within our framework.



whered = (B,, f1,02,13) contains all model parameters except the slopanee parameter
72 and the correlation paramegerin (3), N is the number of groups at the macro leZgls
the number of observations within group; = (yi_l, ...,yi,Tl.) contains all observations,
within groupi andx; = (xl-,l, ...,xi,Tl.) is defined similarly. It follows from (2) that tlredements

(t,s),t=1,..,T;,s =1,..,T;, of covariance matriX; are given by

4)
(E)ee = 76 + 2x11pToTy + xiz,tr% + 0%,

(Z)es =76 + (xi,t + xi,s)PToT1 + XX sTE,  C#S.

We obtain (asymptotic) standard errors by takirggdfuare root of the diagonal elements of
the estimated covariance matrix of the parametanates, which in turn can be computed as

minus the inverse of the Hessian of (3) evaluatédeaoptimal parameter values.
3. Thekey issue

Testing whether the slope variangeequals zero may seem a rather straightforward
task. It has been suggested thfat= 0 impliesp = 0 (e.g., Lahuis and Ferguson 2009; Snijders
and Bosker 2012; Stoel et al. 2006). A first conjez is that the two restrictions can be tested
by implementing an LR test and comparing its outedma chi square distribution with two
degrees of freedom; the 5% critical value is 5.99.

However, this approach is incorrect for two reas@hy variances cannot be negative
and hence the null hypothesi = 0 is located on the boundary of the parameter space,
violating one of the regularity conditions of thR test, and (2) the correlation parametdor
random intercept, ; and random slope, ; is not identified under the null hypothesis in @i
uy; disappears from the model, hence the Davies prolixtant studies have dealt with the
first issue of non-negative variance (but not ville Davies problem) by replacing tjpé
reference distribution by a chi bar square distidsy i.e., a mixture of g? distribution and a
x2 distribution, both with 50% weight (e.g., LahuisdaFerguson 2009; Snijders and Bosker
2012; Stoel et al. 2006; Stram and Lee 1994); theesponding 5% critical value is 5.14. The
intuition of this reference distribution is thatder the null hypothesis the realized (unrestricted)

variancer? would be negative and hence take a value of zeE®% of the cases. While the



first degree of freedom from the correlation partene (not on the boundary of the parameter
space) is always present, the second degree afdinedrom the slope varianaé (on the
boundary of the parameter space) is only preseB0# of the cases (Self and Liang 1987;
Stoel et al. 2006).

Though the chi bar square distribution is stai#gly correct if one wants to test the joint
restriction of zero slope variancé,= 0, and zero correlatiom, = 0, this null hypothesis is
conceptually incorrect. The reason is that onlysflope variance is a parameter of interest and
the correlation is merely a nuisance. Put diffdyerwe want to test for? = 0 and need to
control forp. It is easy to see from (1) and (2) that the mgsaparametes is not identified

under the null hypothesis of interest, i#. = 0.

4. Thesolution

Davies (1987) proposed a general solution to thblpm of dealing with an unidentified
nuisance parameter under the null hypothesis. dée is to construct a new test statistic by
evaluating the original test statistic for the hiyy@sis of interest over the entire range of the
unidentified parameter. In our context and for gipe the LR statistic is twice the difference
between the log-likelihood of the full modéhL (8,7%,p) in (3), maximized oved =

(Bo, B1, 0%, 7¢) andt?, and the log-likelihood under the null hypothesis= 0:

(%)

N =

InLy(6) = — <Ti In(2m) + In|Z;| + (yi = Boi — ﬁl,ixi)'zo,i_l(yi = PBo,i — ﬁ1,ixi)).

N
i=1
with
(6)

Coi)ee = Tg +0?,

(Zo,i)t,s = T%, t+s,

maximized ove® = (B,, 1,02, t¢). The corresponding test statistic for giyenan be

written as

()



LR(p) =21InL (8(p), 27 (p), p) — 2InL, (6,),

where the “hats” denote parameter estimates andanale explicit the dependence of the
parameter estimates in the full model on the neisgrarametey (unidentified under the null
hypothesis). Maximizin@.R(p) over the range gf results in the regular LR test statistic (e.g.,
Andrews and Ploberger 1994; Hansen 1996):

(8)
LR = m;ax LR(p),

but it no longer has a standard distribution.

Smulated critical values

The top part of Table 1 provides our simulatedaaltvalues at the 10% and 5% levels
for number of group®’ equal to 50, 100, 200 and 1000, whére= 1000 represents the
asymptotic case. We use 40,000 draws, congjder20 observations within each group and
verified that the critical values did not dependlarThe simulated asymptotic critical value of
5.04 at the 5% level is slightly more liberal tithe corresponding critical value of 5.14 from
the chi bar square distribution. Intuitively, tlatér critical value corresponds to testirfg= 0
andp = 0 together, i.e., it treats the correlation parametas a parameter of interest, adding
a full degree of freedom. On the other hand, iusthde treated as a nuisance parameter that
disappears under the null hypothesis and contishegethan a full degree of freedom;is not
identified and may beon-zero under the null hypothesis. For this reason thecativalues
from the chi bar square distribution (e.g., 5.14ha&t 5% level) are slightly too conservative.
Furthermore, these critical values are conservdia@use they still are asymptotic. Though
the chi bar square distribution wrongly ignores Devies problem, it turns out to be quite
accurate (though not perfect) if the number of geN is large, but it is quite far off in the
more common situation in which the number of grospsnited. This makes it harder to detect

a random slope when it is actually present in tita.d

2 An alternative is taking the averagel®(p) over the range qf, resulting in the class of “ave test statistics”
(Andrews and Ploberger 1994). However, this did msult in substantially higher power while requgria
computationally intensive grid search opeMWe did not pursue this approach.



For later reference, the bottom part of Table ltaios the simulated critical values
when imposing = 0 in (1) and (2), i.e., when we want to test thelgimestrictionr? = 0 in

the model without intercept-slope correlation.

Satistical power

We assess statistical power of the LR test witkanie parameter by varying the slope
standard deviation,, the correlatiorp and the number of groups in the data generating
process. As before, we haVe= 20 observations within each group. Table 2 provides t
corresponding percentages of rejection of the mgpbthesiz? = 0 using the appropriate 5%
critical values in the top part of Table 1 and loase 1000 draws. Though it is not surprising
that power increases substantially if the numbegrotipsN is large and if the slope variance
72 increases, it is noteworthy that power is lowhi tictual correlatiop is close to zero. This
power quickly increases ff increases in an absolute sense, and it does peaaf depend on
whether the correlation becomes more positive gatiee; the sign of the correlation does not
matter. The dependence of power on the absoluteo§ithe correlation is strongest when the
slope variance is large, i.e., when relativelyafany from the null hypothesig¢ = 0, and when
the number of groupsl is large. Taken together, our analysis suggesit kbeping the
correlation parameter in the model when it is not strongly present ia ttata results in low
power.

So, while it has been advocated and is commonipeattd keepp in the model (e.g.,
Snijders and Bosker 2012, p. 76-77), we argue statstical significance gf needs to be
tested first to come up with the appropriate LR fest? = 0, i.e., either the test with or
without the nuisance paramegethat is not identified under the null hypothedighile the
current approach for testing slope variance isotwsier the joint (but conceptually incorrect)
null hypothesip = 0 andz? = 0, i.e.,simultaneous testing of both the nuisance parameter and
the parameter of interest, our new approachseguential: it first considers statistical
significance of the nuisance parameter and neid the parameter of interest conditional on
the outcome for the nuisance parameter. This proeegicknowledges thaonceptually there
may be a parameter in the model that is not idedtifinder the null hypothesis, but removes

this parameter from the model if it turns out reobe presergmpirically.

A simple test with better power properties



Based on the discussion above, we outline our silppicedure that requires the log-
likelihood of the model without random slope, ile.L, (9) defined by (5) and (6), the log-
likelihoodIn Ly, , (9, f%) with random slope but without correlation paraengt obtained

from (3) and (4) after setting = 0, and the log-likelihood of the full model, i.én,L (é, flz,ﬁ)
defined by (3) and (4). As the three model spediioms are nested, it is efficient to estimate
them sequentially. Two of the models are alreadyded for the regular LR test, and the extra
model (with random slope but without correlatianpested in between. Our procedure involves
the LR statistics from each of the three pairwismbinations. We test for the unidentified
nuisance parametgrusing a regular LR test with one degree of free@®% critical value =
3.84), keep or removye based on its statistical significance, and neghyafhe appropriate LR

test forc? = 0. In brief:

1. Check whetheRInL (8,%7,5) — 2InLy,, (8,%7) > 3.84.

2. Ifyes, reject? = 0if 2InL(0,%%,p) — 2InLy (0) > g o5 run, Whereag gs run is
the appropriate 5% simulated critical value frorm tbp part of Table 1.

3. Ifno, rejectt? = 0if 2In Ly, , (6,%7) — 2InLo (8) > @g.05n0 p» WheETEZ( 0510

is the appropriate 5% simulated critical value fritra bottom part of Table 1.

Table 3 shows the power of our sequential LRdestis analogous to Table 2 for the
regular LR test. Though power is still lowest iethctual correlatiop is close to zero, the
dependence of power on the correlation parametauh weaker than it is in Table 2. Table
4 shows the percentage point difference in powéwden our sequential test and the regular
LR test (with correct critical values from the tpart of Table 1). It confirms the pattern: the
largest improvement in power occurs when correfgtidcs close to zero, i.e., when increased
power is needed most. The difference in power ilequbstantial. For all reported numbers of
groupsN, it is possible to achieve improvements of 10 eetage points. For instancepit= 0
andz; = 0.10, power increases from 16 percent to 26 percerifer50 and from 43 percent
to 56 percent foN = 200, even though the sequential LR test is rardire complicated or

time consuming than the regular LR test.

5. Metaregression for power



To extract the general patterns from our powetyaig we run a linear regression on
all 360 elements of Tables 2 and 3, where powesided by 100) serves as the dependent
variable. As explanatory variables we include a @inmy variable indicating whether the
method is our sequential approach, the numberoafzgN (divided by 100), the slope standard
deviationt;, the correlatiorp, the squared correlatigst to account for the suggested U-
shaped relationship between correlation and powetaction terms foN, 7, p andp?, and
we interact everything with the 0/1 sequential apph indicator to assess when extra power
relative to the regular LR test is largest. Theresgion provides an excellent fit, with an R-
square equal to 0.873 and an adjusted R-square866.0Table 5 contains the parameter
estimates.

The most important result in Table 5 is that thguential LR test provides extra
power over the regular LR test (with appropriateudated critical values from Table 1), and
the effect is significant at the 1% level. Furtherem power is higher when the number of
groupsN is large, the slope standard deviatigns large, i.e., when we are far away from the
null hypothesis, and when the correlation paranistirge in absolute sense. The significant
interaction terms indicate that the positive efauftN, t; andp? on power are reinforced
when these variables take large values at the saraeall effects but one are significant at
1%, with the other one being significant at 5%.ifportant null finding is that the intercept-
slope correlation itself has no effect on poweithee as a main effect nor as an interaction
term. The second part of the table shows that dtieed® interaction terms involving the
sequential approach indicator (Seq) is signifiearihe 10% level, while the other 8 are not
significant. The negative coefficient for Seg? confirms that the gain in power from our
sequential approach is largest wh#ris small, i.e., when the correlation parametetdse to

zero and power is generally lowest.

6. Conclusion

Crucial inference for the hierarchical linear modehcerning the null hypothesis of no
random slope is hampered by the fact that theseparameter that is only identified under the
alternative, the so-called Davies problem. Thitsdak an alternative methodology, and this is
what we have pursued in the present paper. Theatiésheasy to implement and tackles the
conceptual issue that the correlation betweendafrand slope should not be tested as a

parameter of interest; it is nuisance that doesshotv up in the null hypothesis but instead

10



disappears. With simulations we have demonstratcour test should be practically relevant.

Future applications and case-specific illustratisigll show that our methodology matters.

11



References

Andrews, Donald W.K. (2001), “Testing When a Parwmnas on the Boundary of the
Maintained Hypothesis'Econometrica, 69 (May), 683-734.

Andrews, Donald W. K. and Werner Ploberger (1999ptimal Tests When a Nuisance
Parameter Is Present Only Under the Alternatiizenometrica, 62 (November), 1383-1414.

Beg, A. B. M. Rabiul A., Mervyn J. Silvapulle anciramsothy Silvapulle (2001), “Tests
Against Inequality Constraints When Some Nuisareeieters Are Present Only Under the
Alternative: Test of ARCH in ARCH-M ModelsJournal of Business & Economic Statistics,

19 (April), 245-253.

Carrasco, Marine (2002), “Misspecified Structurblb@ge, Threshold, and Markov-Switching
Models”, Journal of Econometrics, 109, 239-273.

Davies, Robert B. (1987), “Hypothesis Testing WlaeNuisance Parameter Is Present Only
Under the Alternative’Biometrika, 74 (March), 33-43.

Davies, Robert B. (2002), “Hypothesis Testing WiaeNuisance Parameter Is Present Only
Under the Alternative: Linear Model Cas8ipmetrika, 89 (June), 484-489.

Franses, Philip Hans and Rutger van Oest (2007),th® Econometrics of the Geometric Lag
Model”, Economics Letters, 291-296.

Hansen, Bruce E. (1996), “Inference When a Nuis&a@meter Is Not Identified Under the
Null Hypothesis”,Econometrica, 64 (March), 413-430.

LaHuis, David M. and Matthew W. Ferguson (2009)hé&TAccuracy of Significance Tests for

Slope Variance Components in Multilevel Random @oeiht Models”, Organizational
Research Methods, 12 (July), 418-435.

12



Oakley, James L., Dawn lacobucci and Adam DuhadR€K5), “Multilevel Hierarchical
Linear Models and Marketing: This Is Not Your Ad#is OLS Model”, in Naresh K. Malhotra
(ed.),Review of Marketing Research, Vol. 2 (203-227), M.E. Sharpe.

Self, Steven G. and Kung-Yee Liang (1987), “Asyntigt®roperties of Maximum Likelihood
Estimators and Likelihood Ratio Tests Under Nord#md Conditions”,Journal of the
American Satistical Association, 82 (June), 605-610.

Snijders, Tom A. B. and Roel J. Bosker (201M)ltilevel Analysis: An Introduction to Basic
and Advanced Multilevel Modeling, second edition, Sage.

Stoel, Reinoud D., Francisca Galindo Garre, Conola® and Godfried van den Wittenboer
(2006), “On the likelihood ratio test in structurduation modeling when parameters are

subject to boundary constraint®sychological Methods, 11 (4), 439-455.

Stram, Daniel O. and Jae Won Lee (1994), “Varigdomponents Testing in the Longitudinal
Mixed Effects Model” Biometrics, 50 (December), 1171-1177.

13



Table 1: simulated critical values for differentmer of group$N; correlationpis a free

nuisance parameter in the top part, it is assurasalin the bottom part

10% level 5% level

If p isfree N=50 3.41 4.67
N =100 3.52 4.80

N =200 3.59 4.86

N = 1000 3.72 5.04

If p =0 N =50 1.23 2.17
N =100 1.37 2.37

N =200 141 2.44

N = 1000 1.59 2.65
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Table 2: power of regular LR test for differentrgtard deviations of the slope parameter,

correlations and numbers of groups

N =5C

p=—0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 6.6 5.6 5.4 5.0 5.0 4.9 4.8 5.0 6.5
1:=0.04 15.7 7.6 6.2 6.3 5.9 6.1 6.7 7.4 13.1
1:=0.06 28.2 12.¢ 8.c 8.4 7.8 8.1 8.€ 11.2 25.¢
1:=0.08 44.9 20.0 12.4 10.8 10.6 11.3 12.0 17.4 43.1
1:=0.10 64.1 29.4 19.2 17.0 16.2 16.0 18.0 27.3 62.8

N = 10C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 10.1 7.4 6.4 6.3 6.9 6.8 7.1 8.4 11.7
1:=0.04 25.C 12.: 8.C 7.S 7.8 8.7 10.4 13.c 27.C
1:=0.06 48.( 19.¢ 12.¢ 11.c 10.t 11.7 13.¢ 21.¢ 47.C
1:=0.08 73.0 34.1 20.3 17.9 17.0 18.4 22.1 34.0 72.0
1:=0.10 88.7 49.9 33.0 28.6 26.6 29.7 33.9 48.1 88.0

N = 20(C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 15.1 7.4 6.0 5.5 5.6 5.7 5.8 7.5 13.3
1:=0.04 46.C 18.¢ 9.t 7.€ 6.8 7.8 9.¢ 15.¢ 42.2
1:=0.06 79.0 34.8 18.6 13.6 11.4 13.5 16.8 32.0 75.3
1:=0.08 96.1 56.7 35.0 27.3 23.3 25.5 31.0 54.5 94.7
1:=0.10 99.3 77.5 54.7 46.7 42.7 43.1 52.4 74.9 99.6

N = 1000

p=—0.8 p=—0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 50.2 19.0 9.7 6.8 5.5 6.0 7.4 14.8 50.7
1:=0.04 98.t 55.8 25.C 16.¢ 11.7 12.2 23.2 56.4 97.2
1:=0.06 100.0 90.7 53.3 37.7 33.8 39.0 55.3 90.0 100.0
1,=0.08 100.0 99.5 88.2 77.3 71.6 78.1 90.0 99.5 100.0
1:=0.10 100.C 100.( 98.¢ 97.2 96.£ 98.C 99.z 100.C 100.(
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Table 3: power of sequential LR test for differst@ndard deviations of the slope parameter,

correlations and numbers of groups

N =5C

p=—0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 9.1 7.6 7.5 7.4 7.3 7.5 7.6 7.7 9.1
1:=0.04 16.6 10.3 9.3 9.3 9.3 9.6 9.5 10.8 15.6
1:=0.06 29.2 16.C 12.5 12.¢ 12.2 12.¢ 13.c 15.£ 27.¢
1:=0.08 45.7 25.1 18.8 18.5 18.3 18.3 19.1 23.1 44.6
1:=0.10 64.2 35.3 28.2 26.6 25.9 26.3 28.1 33.0 63.2

N = 10C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 13.3 10.4 9.0 8.7 9.2 9.4 9.8 11.0 14.5
1:=0.04 26.t 15.C 12.: 10.7 10.€ 11.¢ 13.c 15.¢ 28.1
1:=0.06 48.1 23.¢ 18.c 16.¢ 16.¢ 18.1 19.t 25.5 47 .4
1:=0.08 72.8 38.4 28.5 26.1 25.7 27.2 29.4 38.2 71.5
1:=0.10 88.7 54.2 42.6 38.6 37.8 39.5 42.4 51.5 87.9

N = 20(C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 16.9 10.1 8.3 7.9 7.9 8.0 8.3 9.7 14.7
1:=0.04 46.1 21.t 14.: 12.¢ 11.€ 12.4 13.€ 18.: 42.£
1:=0.06 78.8 39.2 26.6 22.4 21.4 22.0 24.0 36.3 75.2
1:=0.08 95.8 59.8 42.8 37.7 34.9 36.5 40.0 57.6 94.9
1:=0.10 99.2 79.5 64.4 59.0 56.4 S7.7 62.5 77.3 99.5

N = 1000

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 50.1 20.2 11.6 9.6 8.9 9.3 10.6 17.4 50.6
1:=0.04 98.t 56.( 29.¢ 22.¢ 20.C 21.t 29.4 57.% 97.2
1:=0.06 100.0 90.2 58.8 49.5 46.3 48.8 60.3 89.6 100.0
1,=0.08 100.0 99.6 89.9 85.5 84.1 86.1 92.6 99.5 100.0
1:=0.10 100.C 100.( 99.c 99.C 99.1 99.t 99.t 100.C 100.(
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Table 4: difference in power between sequentiatédt and regular LR test for different

standard deviations of the slope parameter, coiwakand numbers of groups

N =5C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 2.5 2.0 2.1 2.4 2.3 2.6 2.8 2.7 2.6
1:=0.04 0.9 2.7 3.1 3.0 3.4 3.5 2.8 3.4 2.5
1:=0.06 1.1 3.1 3.€ 4.2 4.3 4.t 4.7 4.2 1.6
1:=0.08 0.8 5.1 6.4 7.7 7.7 7.0 7.1 5.7 15
1:=0.10 0.1 5.9 9.0 9.6 9.7 10.3 10.1 5.7 0.4

N = 10C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 3.2 3.0 2.6 2.4 2.3 2.6 2.7 2.6 2.8
1:=0.04 1t 2.7 3.4 2.8 2.8 2.8 2.8 2.5 1.7
1:=0.06 0.1 4.2 5.4 5.2 6.3 6.4 5.7 3.¢ 0.4
1:=0.08 -0.2 4.3 8.2 8.2 8.7 8.8 7.3 4.2 -0.5
1:=0.10 0.0 4.3 9.6 10.0 11.2 9.8 8.5 3.4 -0.1

N = 20(C

p=-0.8 p=-0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 1.8 2.7 2.3 2.4 2.3 2.3 2.5 2.2 1.4
1:=0.04 0.7 2.€ 4.& 5.2 5.1 4.t 3.7 2.8 0.2
1:=0.06 -0.2 4.4 8.0 8.8 10.0 8.5 7.2 4.3 -0.1
1:=0.08 -0.3 3.1 7.8 10.4 11.6 11.0 9.0 3.1 0.2
1:=0.10 -0.1 2.0 9.7 12.3 13.7 14.6 10.1 2.4 -0.1

N = 1000

p=—0.8 p=—0.4 p=-0.2 p=-0.1 p=0.0 p=+0.1 p=+0.2 p=+0.4 p=+0.8

1:=0.02 -0.1 1.2 1.9 2.8 3.4 3.3 3.2 2.6 -0.1
1:=0.04 0.C 0.t 4.& 6.2 8.3 9.2 6.2 1.1 0.C
1:=0.06 0.0 -0.5 5.5 11.8 12.5 9.8 5.0 -0.4 0.0
1:=0.08 0.0 0.1 1.7 8.2 12.5 8.0 2.6 0.0 0.0
1:=0.10 0.C 0.C 0.t 1.€ 2.€ 1t 0.€ 0.C 0.C
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Table 5: meta summary for power, obtained fromdimegression on Tables 2 and 3

Coefficient Std. error
Intercept 0.368 (0.006)
Seq (1 if sequential LR, 0 else) 0.041 (0.012)
N  (# groups/100) 0.042 (0.002)
1 (slope standard deviation) 6.603™ (0.215)
p  (correlation) -0.006 (0.014)
£ (squared correlation) 0.519" (0.025)
N x 7y 0.586" (0.056)
N x o 0.000 (0.004)
N x 0.016" (0.006)
nxp -0.046 (0.495)
X P 3.850™ (0.869)
Seqgx N -0.001 (0.003)
Seqx n 0.392 (0.431)
Seqx p 0.001 (0.028)
Seqx 2 -0.085 (0.049)
SegxNx -0.078 (0.111)
Segx N x p 0.000 (0.007)
Seqx N x @? -0.001 (0.013)
Seqx 11 % p -0.005 (0.991)
Seqx 11 x P ~1.519 (1.738)
* p<.10;
** p<.05;

*k*k p < Ol
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