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Abstract

Suppose Xi,i = 1,2,... are i.i.d. positive random variables with d.f. F. We assume the tail d.f.
F=1-Ftobe regularly varying (F(x)/F(1) — x#,x > 0,1 — co) with 0 < B < 1. The
asymptotic behaviour of P(Sy > x) as x — oc where Sy = Z] Xi and N, X;(i>1) independent
with Z o PN = n)x" analytic at x = | is studied under an additional smoothness condition
on F. As an application we give the asymptotic behaviour of the expected population size of an
age-dependent branching process.

Keywords: Convolution; Regular variation; Subexponential distributions; Branching processes.

1. Introduction

Let F be a distribution function (d.f.) satisfying F(0+) = 0 and F(x) < 1 for
x € R. Let {py}nso denote a probability distribution on {0,1,2,..}. Consider the
d.f. G subordinate to F* with subordinator {p,}, i.e. G(x) = > < p.F*"(x), where
F*" denotes the n-fold (Stieltjes) convolution of F and F*' is the unit mass at zero.
Many authors have studied the asymptotic relation between F(x) := 1 — F(x) and
G(x) as x — 00. One of the early papers in this area is Stam’s in which the function
F is assumed to be regularly varying. In the sequel we write F & RV_y to denote
lim, ., F(tx)/F(t) =xF for x > 0.

For the class of subexponential d.f.’s it is shown by Embrechts, et al.{(1979) that
the statements F € S,G € S and G(x) ~ ENF(x)(x — oc) where N is a r.v. with
distribution { p,}.»0 are equivalent if @(x) =" p,x" is analytic in x = 1; See also
Cline (1987).

The asymptotic behaviour of the difference R(x) := G(x) — ENF(x) is obtained
in Omey and Willekens (1986) under the assumption that F has a regularly varying
density with index —(1+ ) and 0 << 1. The density condition can be weakened. In
Geluk(1992) it is shown that R(x) ~ —E(})F(x)* (x — oo) if and only if F € 52 (or
G € S?), the class of second-order subexponential distributions. For such distributions
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F is slowly varying, so their means are infinite and they are not attracted to any
stable law. This extends the Omey and Willekens result for § = 0. In the present
paper conditions are imposed ensuring F is attracted to a stable law with infinite mean
U= fooox dF(x); in particular, we assume F € RV_g,0 < B < 1. For related results
the reader is referred to Griibel (1984), Omey (1994) and Omey and Willekens (1987).

In our second result (Theorem 2.2) we obtain the asymptotic behaviour of R(x) with
a remainder term. Here the essential assumption is a second-order regular variation of
F, i.e. we assume that

) (tx) B
tl_l'rgo ( 70 x )/a(t) (L.1)

exists for x > 0, where a(t) — 0(r — oo). For a discussion of second-order regular
variation the reader is referred to de Haan and Stadtmiiller (to appear). For convenience,
we give an outline of the basic ideas in the proof of the main results (Theorems 2.1
and 2.2).

Let N denote a r.v. with distribution { p,},»0. As in Omey and Willekens (1986),
let G, (k=0,1,...) be defined as

o
Ge =Y poF™, (1.2)
n=0

where p) = p, and p{ =% . p* 7V (k =1,2,...). Then
R(x) = [Ra(x ~ »)dGa(y), (1.3)

where Ry(x) = Ff(x) —2F(x) see Omey and Willekens (1986). We use earlier results
(see Geluk, 1992, Theorems 1 and 3) in order to evaluate R; and Gz(o0) — Ga(x) in
terms of F as accurate as necessary. The asymptotic evaluation of G, in terms of F is
obtained using Lebesgue’s dominated convergence theorem (using Corollaries 2.2 and
2.4). Finally, the integral for R can be approximated by a similar integral with R, and
G, replaced by F (Lemmas 2.1 and 2.2) which is evaluated using earlier results (see
Geluk, 1994).

2. Results

Theorem 2.1. Suppose F € RV_g with 0 < B < L. Suppose for € > O there exist
constants ty,c > 0, such that

F(tx)

T 1<c(x™#5-1) for 0 <x < L,tx21. 2.1
Define G(x) = Y2, paF*"(x) and
R(x) = G(x) — EN - F(x). (2.2)

If the function @(x) =Y _""0 pux" is analytic at x = 1, then
R(x) = (cp + 0(1))E('2V)F(x)2(x — 00), (2.3)
where cy = —I(1 — B)?/T(1 — 2p).



J.L.Geluk | Stochastic Processes and their Applications 61 (1996) 147161 149

Note that a sufficient condition for (2.1) is the existence of a density f € RV_g_;;
see Geluk (1994, Corollary 1).

In the sequel we denote by H (or H;,i>1) a measure on (0,00) with m = H(0,00) <
oo. The tail of H is denoted by H(x) = H(x,o0) for x > 0. The following result is
essential in the proof of Theorem 2.1.

Lemma 2.1. Suppose for i = 1,2

Hia(x) — kHi(x) = (d; + o(1)H(x)* (x — 00) (2.4)
and

Hi(x — b) — Hi(x) = o(Hi(x)") (x — o0), (2.5)
where o > 1, k; 20,b,d; € R. Then as x — o0

Hs * Hy(x) — myH 4(x) — myH3(x)
= kiky(Hy * Hy(x) — myH (x) — mH,(x))

2
+0 ( Hi * Hy(x) — myH (x) — miH(x)) + 0 (ZE(X)“”) , (2.6)
i=1

where m; = Hy(0,00) and a A b denotes minimum (a, b).

It is somewhat surprising that the asymptotic behaviour in (2.6) does not depend on
the constants dy and d,. )

Related first-order conditions in order to have the so called max-sum equivalence
H, * Hy ~ myH,| + myH, are given in Embrechts and Goldie (1980) and generalized
by Cline (1987). The present lemma can be seen as a refinement of the Basic Lemma
2.4b in Cline’s paper.

It is well known that the class of subexponential distribution functions S for which
F*—z(x) ~ 2F(x)(x — 00) is closed under asymptotic tail equivalence (see Pakes, 1975;
Teugels, 1975). The following result is an immediate consequence of lemma 2.1 and
provides us with a closure property for the class of d.f.’s F' satisfying F_*i(x)—ZF(x) ~
cF(x)*(x — 00).

Corollary 2.1. If
H\(x —b)—H\(x) =o(H,(x)*), beR
and
Hy(x) — kH(x) = (d + o(1))H(x)* where « > 1,k>0,d € R,
then as x — oo,
H32(x) = 2myHo(x) = (kK* + o(D))(H;2(x) — 2mH (x)) + o(H1(x)*"?)

and

Hy * Hy(x) — myH (x) — mH(x) = (k + o(1))(H2(x) — 2mH (x)) + o(H (x)*"?).
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Hence, if in addition,

HP(x) = 2mH  (x) ~ cH\ ()" (x — o),
then

H32(x) — 2myHa(x) = ck*H (x)* + o(H (x)*"?) and

Hy « Hy(x) — myH (x) — mHy(x) = keH \ (x)* + o(H (x)*"?).

It is well known (see Geluk, 1994, Theorem 1) that for distribution functions F with

a regularly varying tail function F satisfying (2.1) we have F*2(x)—2F(x) ~ cF(x)* as
x — o0, where ¢ is a constant. This explains the interest for the case « = 2 in Lemma
2.1. For this case we need the following analogue of the so-called Kesten inequality
(see e.g. Athreya,1972): if F € S then for every £ > 0 there exists a finite constant
cr (independent of n) such that F*7(x)/ F(x)<cp(l +¢)* for x > O,n=1,2,...
Corollary 2.2. If

H*2(x) - 2mH(x) = (¢ + o(1))H(x)
and

H(x —b) - H(x) = o(H(x)*) (x — 00),
then as x — 0o

H*(x) — nm""H(x) = em" 2(OH(x)* + o(H(x)*). 2.7

Moreover, for £ > O there exist constants cy and xg = xo(€) such that for n=2

sup {H*"(x) — nm"'H(x)}) Hx)> <cy(m +¢)",
e (2.8)
inf {H(0) = n ' H@)Y HxP > = cu(m+2)"
In order to prove a more precise analogue of Lemma 2.1, relation (2.5) is replaced
by second-order regular variation of H together with some smoothness conditions (see
(2.10 and (2.11) below).

Lemma 2.2. Suppose there exist positive functions a; and constants cy,,®;, f; such
that

I—‘ii t %~ 1
il %) —x7B) Jat) — eyxhE , x>0ast— oo, (2.9)
Hi() o

where a;(t) — 0(t — o),a; € RV, and

0=z > 2B, —1 > -1 fori=1,2.
Suppose moreover for ¢ > 0 there exist ty,c > 0 such that

ﬁ,-(tx) _ _x_[}’
Hi(t)

—e—a

X -1
Sex P— — 4, .
cx P a;(t) (2.10)
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and

—e+2;/B

ﬁ;—_(l/tx)_ 1B: —uypx L
T | o e ) @2.11)

for tx > 1,0 < x < 1,i=1,2. If
Hi2(x) = kH{(x) + dH(x)* + (e; + o(1))ai(x)Hi{(x)? + (fi + o(1))H(x)’(2.12)
(x — ), i =1,2, then

Hy x Hy(x) — myH (x) — maH3(x)

= kiko&p, g, H1(x)H(x)
2
‘Jf‘klkZ;Tiai(x)ﬁl(x)FZ(x)

+hida&p, 2p, H1(x)H2(x)

+kad Exg, g H ) (x ) H(x)

+o <22:ai(x)22:ﬁi(x)2> +o <iﬁi(x)3)
et =1

i=1

(2.13)
(x — 00), where
S = —L(A = BOIA = fo)/T(1 = Bi — B2),
T It L L NN
- :_%P(l—ﬁl){r(f(j[;ﬁ_z;ﬁlz)_F(lr(—l/;ﬂj)ﬁz)}'

The smoothness conditions (2.10) and (2.11) are satisfied for many regularly varying
d.f. tails F € RV_g. For example, if the slowly varying function x’F(x) tends to infinity
and has a -1-varying derivative, then (2.10) and (2.11) are satisfied. Other sufficient
conditions are given in Geluk (1994, Corollary 2).

From the above result it follows that the asymptotic behaviour of H; x Hy does not
depend on the constants e¢; and f.

As in Corollary 2.2 the above lemma can be used in order to formulate the asymptotic
behaviour of H*" for n > 2. As shown in Geluk(1994, Theorem 3), for n = 2 the
function p, defined in (2.15) below satisfies pa(x) ~ 2ta(x)H(x)’(x — o0). Unless
H(x) = o(a(x))(co = oo in the result below) another term of order H(x)’ is of
importance in the asymptotic behaviour of p, for n > 2.
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Corollary 2.3. Suppose H = H; satisfies (2.9)-(2.11) with 0za > 28 — 1 >
—1l,a(t) — 0,a € RV,. Suppose lim,_.o, a(t)/H(t) = ¢y € [0,00). Define the function
pn by

ﬁ)Z n2

— TN — =TT 2
pn(x) = H*"(x) — nm H(x)+ F(l 25" (DH(x)". (2.15)
Then the asymptotic behaviour of p,(n22) as x — oo is given by
(1-py

pa(x) ~ 23 )em"*a(x)H (x)* +

m=> ”3‘”—(")}%)3 (2.16)
T(1-3p) 6 2 ’ :

where

r:—ﬁ’—m—ﬂ){
o

T(1-f+a) F(l—ﬁ)}
T(1-28+a) T(A-28)/"

Corollary 2.4. Under the assumptions of Corollary 2.3 with ¢y < oo for ¢ > 0 there
exists a constant cy depending on H and xo = xo(€), such that

| H*(x) — nm" VH(x) — &g pm" 2 (GYH(xY |/ H(x) <cu(m + &) (2.17)
Jor x > xp,n=2. In case cy = oo there exists a version of the function a such that

a similar inequality holds with H(x)? replaced by a(x)H(x)*.

Theorem 2.2. Suppose F € RV_4,0 < B < § satisfies

— .
(I—i_@—x_ﬂ>/a(t)—>cm_ﬁx 1, x>0asx—
F() o

where a(t) — 0(x — oo),a € RV, with 0za > 28— 1 > —1 and cr is a constant.
Suppose

lim a(1)/F(1) = cq € [0, 0] (2.18)

and for € > 0 there exist ty, ¢ > 0 such that

—E—

-1
<Pl 2.19
x =y a(t) (2.19)

f(tx) b
F@

and

aF~(1/1) (2.20)

e crafp
F_(jx) _ xl/ﬁl <o 71
F (/1) e —a/f
Sor tx > 1,0 < x < 1.

If the function @(x) =3 -2, p.x" is analytic at x = 1, then

r(a-p8»2- _
R = ~EQ)F g s FOP + 266 )P
a3
+EF) -5 F(x)® 4 o(a(x)F(x)?) + o(F(x)*), (2.21)

I'(l1-3p)
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where

o r(—p+a) TU-p)
T———a—l—‘(l—ﬂ){ -~ }

T(1-28+a) I -2p)

3. Applications

Consider an age-dependent branching process with lifetime distribution F. Let M (¢)
be the expected population size at time ¢ > 0 of the process with one ancestor and a
per capita mean number of offspring m < 1. It is well known that for F subexponential,
in particular for F € RV_g(0 < B < 1), we have M(1) ~ (1 — m)"'F(t) as t — oo
(see Athreya,1972; Pakes, 1975). If F € RV_g(0 < B < 1) in addition satisfies the
inequality (2.1) (as pointed out above this is the case e.g. if /' has a regularly varying
density with exponent —f — 1), then this estimate can be improved as follows.

It is well known that

M(t) = fmkF*kH(z) - im"ﬁ*_k(z); (3.1)
k=0 k=0

See e.g. Athreya (1972, Ch. 1V, 3). Application of Theorem 2.1 for each term in

(3.1) gives the more precise result

M@) = F(t)? as t — oo,

F(t)+(c,5+o(1))( p

This estimate for the mean number of offspring as t — oo can be further improved
under circumstances. In particular, under the conditions of Theorem 2.2, we have as
t— 0

( )2 F()? + (——2’—”m—)3m(z)F(t)2

m?  T(1— By
(1 —my I(1 - 3pB)

M(t)= 5 _1 F(t)+

F(t) + o(a()F(t)*) + o(F(1)*). (3.2)

For example, if the lifetime distribution is a stable distribution on (0,00) of index
B < %, then (3.2) is satisfied (with 0 < ¢y < 00,2 = —f).
In case cp = lim,_,o.a(t)/F(t) = oo it follows that for t — oo

M@= —-m)'F(t)+ (—-——)—F(t)z

+{21 +o(D)}a()F (1) (3.3)

)2
An example with this behaviour is the following: if the lifetime distribution is exp(2V')
with ¥ ~ y2 (then 8 = },a = 0,co = o0). In this case the lifetime distribution has a
log-gamma law.
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4. Proofs

Proof of Lemma 2.1. By assumption, for £ > 0 there exists a > 0 such that H;(x) <
e, Hiyo(x) — kHi(x)<(d; + €)H(x)* for x > a,i = 1,2. It follows that
Hy * Hy(x) — m3H(x)
= foxﬁ3(x - u)dH4(u)
<[ Ha(x — u)dHa(u) + ms(Ho(x — a) — Hy(x))
<k fy “Hi(x — w)dHa(u) + (dy + €) f; “Hi(x — u)*dHa(u)
+msky(Ha(x — @) — Ha(x)) + o(H2(x)")
=: kil 4+ (dy + )y + o(H (x)*) (x — 00). (4.1)
Now [; is estimated as follows:
I = [y “Hi(x — u)dHa(u) = [q Hi(x — u)dHa(u) + o(Ha(x)")
— —_— — 2 —_—
= J-HH4(x —u)dH (1) + maH ((x) — mHy(x) + 0 (ZH,(x)“)
i=1
<k fy T Hy(x — w)dH () + (d2 + €) f;* Ho(x — u)*dHy(u)
— — 2 __ -
+mgH ((x) — mH4y(x)+ 0 (ZH,‘(X)“) <h(H) « Hy(x)
=1
—myH\(x)) + (d2 +€) fy “Ha(x — u)*dH\ (u)
E— — 2 —
+myH (x) — miHa(x) + 0 (ZH:‘(X)“> (x — 00). (4.2)
=1
We estimate the last integral as follows: for x > a and ¢ > 0 arbitrary
0 < fy “(Halx — u)* — Ha(x)")dH: (u)
<ofy “Hax — uy™ (Halx — u) — Hao(x))dH, (u)
<o [{TUHy(x — u) — Hay(x))dH(u)
<ae™™! [§(Halx — u) — Ha(x))dHi(u)
= ae*" (Hy * Hy(x) — mHy(x) — myH (x) + Hi(x)H,(x)). (4.3)

Note that H,(x)H(x)<} S H(x)P?=0 (Zle _ﬁi(x)“’\z). It follows that
[ Ho(x — wydHi(u) = mHy(x)* + o(Hy * Hy(x) — mH(x) — myH,(x))
+o0 (iﬁ(x)““) : (4.4)
Since a lower inequality for /; can be proved similarly, combination with (4.2) gives
Iy = ky(Hy ¥ Hy(x) — myH (%)) + maH (x) — miHa(x) + myd2Ha(x)*

+o(Hy * Hy(x) — myH (x) — miHz(x)) + 0 (szﬁf(x)w\z) .
=
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Since H4(x) = kyHa(x) + (d2 + o(1))H,(x)* we find
I = ko(Hy * Ho(x) — maH (x)) + maH (x) — mykyHo(x)

2
+o(Hy * Hy(x) — maH (x) — miHx(x)) + o (Zﬁi(x)“M) . (4.5)

=1
Next we estimate /. As in (4.3) we have
0 <[y “(H\(x —w) — Hi(x)")dHa(u)
<o [T H (x — u) — H\(x))dHa(u)
Sae”™! [((Halx — u) = Ha(x))dH (u)
= oe"™ [T (Ha(x — u) — Hy(x))dH\ (1) + o(H 1 (x)")
<oe” ko [ (Ha(x — u) — Ha(x))dH (u) +
+(dy + &) [y “Halx — uy*dH(u)

2
—(d2 — &) [y "Ha(xy*dH ()] + o <2Hi(x)x> :

Combination with (4.4) now gives

L= g‘aﬁl(x — ) dHy(1) = myH 1(x)* + ol H) * Hy(x) — maH (x)

—mHy(x))+o0 (iﬁi(x)wz) . (4.6)

=l
Since a corresponding lower inequality for (4.1) can be proved similarly, combination

of (4.1), (4.5) and (4.6) gives an expression for Hj * Hy(x) — myH 4(x). Subtracting

maH3(x) = ma(kyH\ (x) + d1H (x)* + o(H (x)*) then gives the required result. O

Proof of Corollary 2.1 Obvious from Lemma 2.1. O

Proof of Corollary 2.2 The proof of both parts is by induction. Suppose H*"(x) —
nm"'H(x) = (a,+0(1))H(x)%. Using Corollary 2.1 we find H**+1(x) = H x H*(x) =
M H(x)+mH" (x)+nm"~ ' cH(x Y +o(H(x)?) = m"H(x)+m(nm"~ ' H(x)+a,H(x)*) -+
nm" ' cH(x)? + o(H(x)*), hence

H**1(x) — (n + DW"H(x) = (ma, + nm"~'¢)H(x)* + o(H(x)?).

1t follows that a,., = ma, + nm"~'c implying the first statement, since a; = c. The
proof of the second Statement is similar to the proof of Lemma 2 in Geluk and Pakes
(1991). (Note that i H(x — u)*mdH(u) ~ mH(x)* by Corollary 2.1.) [

Proof of Theorem 2.1 As mentioned in the introduction we have R(x) = G(x) —
ENF(x) = fg Ry(x — y)dGa(y) where Ry(x) = fg F(x — y)dF(y) — F(x) = F*2(x) —
2F(x) and Ga(x) = Yopoopi F*(x) with pi) =32 p*, pl? = p,.

Note that Ry(x) ~ cgF(x)* by Theorem 1 in Geluk (1994). Since ¢ is analytic at 1,
EN™ < oc and it is easily verified that Gu(oc) = 3.7, i = E() hence

Galx) — EYYF(x) = ‘Zopﬁf)(ﬁ(x) — nF(x). @.7)
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where Ga(x) = Ga(00) — Ga(x). In view of Corollary 2.2 we may apply Lebesgue’s
dominated convergence theorem after division by F(x)? in (4.7) to find G,(x) —
EQF(x) ~ g 22 0 PPF(x)? = cgE(Y)F(x)2. Application of Lemma 2.1 twice
gives
R(x) = [y Ra(x = »)dGa(y) = [{F2(x = p)dGo(y) — 25 F(x — )dGa(y)
= Ga(0)(F*3(x) - 2F(x)) + o(F (x)")
= EG)(F*(x) - 2F(x)) + o(F (x)?). (4.8)
Since F*2(x) — 2F(x) = (cg +o(1))F(x)? the proof is complete. [
Proof of Lemma 2.2 In the sequel we write H; for H;(x),a; = a;(x) and H; x H; =
H; x Hi(x). As in the proof of Lemma 2.1 we have H; < ¢,H 4, —kil_-l;—d,-ﬁ,-z <(e;+
E)a,-ﬁf +(fi +E)ﬁ? for x > a,i = 1,2. It follows that for x > g and £ > 0
Hy» Hy(x) — myHa(x) < [y “Hs(x — u)dHa(u) + my(Ha(x — a) — Hy)
<kiha+diia+(ey +€)Kia+ (f1+€)ig
+(msky + o(1))(Ha(x — a) — H3) (4.9)
where I;; = [y “Hix — w)dH;(w),Ji; = [y " Hix — uPdHy(w),K;; = 5 " ai(x —

u) H(x —u)*dHy(u),L;; = [} ° Hi(x — u)*dH;(u). By assumption (2.10) we have for
a > 0, x sufficiently large and i = 1,2

| Hix —a)/H; — (1 — a/x) | < 2e{(1 = a/x)™*7% — 1}ai/(e + %) = O(a;/x),
hence

Hi(x — a) = Hi< O(aHi/x) + H[(1 - a/x)™F — 1]
= O(a;Hi/x) + O(H/x) = O(Hi/x) = o(a:H; ), (4.10)

the last equality being true since H; € RV_g,,a; € RV,,, with o; — f; + 1 > 0. Using
the same arguments as for (4.2) we find

La< koloy +dads) +(e2 +€)Koy + (f2 +€)ay

— — 2
+myH, —mHq +o0 <Za,~Hi2> , (4.11)
i=1
where I, 1,J21,... are defined as above.

Application of Theorem 3 in Geluk(1994) gives
Ly =H ~H, — m2ﬁ1 + o(alﬁ?)

_ o 2 _ _
=mHy + &, g, HiHa + (1 + o(1)aH H; + o(aHy)
i=1

—— —— it 2 [ —
=mH, + fﬂ,,ﬂzHle + Z‘L‘ia,-Hle +o0 <
i=1

2 2,
@ H; ) (4.12)
— i=1

=] i=
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It is easy to see that the assumptions of Theorem 3 in Geluk (1994) are satisfied
with F = Hy/m; and 1 - G = ﬁg/m% (note that 0>a; > 26, — 1 > —1). It follows
that

2 [ — ] 2 2 —2
Ja :mle—kéﬁ,,zﬁzH]Hz—ko(ZaiZHi > . (4.13)
=l i=1

Note that we may choose a function a3(x) ~ ap(x) such that a§ﬁ§ has a regularly
varying derivative with exponent o; —2f, — 1 (see eg. Bingham et al.(1987) or Geluk
and de Haan(1987)). It follows that we may assume w.l.o.g. that azﬁg is smooth.
Hence, the function G(x) := azﬁi/az(O)m% satisfies (1.2b) in Geluk (1994) with y =
oy — 2P (see also Corollary 1 in Geluk (1994)). Application of theorem 1 in Geluk
(1994) and (4.10) gives

— 2 2 __
K = mlagHg +0 (Za;ZH,»2> . (4.14)

i=l i=]

Similarly, we find
Loy = (my + 0(1))ﬁ;~

Since a lower estimate in (4.11) is obtained similarly, combination of the above esti-
mates shows that

—— —— — 2 —
La=k(mH,+ &g g H1Hy + 3 tia;H H>)
ivv

2 22 —2 — 2 —2
+o < a,-ZHi > + do(m H, + é[jhzﬁzHle) + exmazH,
i=1 i=1

—3 — — -2 -2 —=3
+f2m1H2 + maH | — ml[szz + d2H2 +e2a2H2 -+ (fz + 0(1))H2],

hence

2
— — — — =2
La=msH\ + k&p g, H\Hy + koY tia;H Hy + do g, 25, H1H,

i=1

2 2 _, 2 _ 4
i=l i=i

i=1
In order to evaluate Jy4 we introduce the measure Hy with tail function H, =
Ho(x,00) = ﬁf. Note that
Jra — Hi(ma = Hy) + o(@:H3)
= [X(Ho(x — u) — Ho)dHa(u) + o(ay )
= [y (Hs(x = u) ~ Hy)dHo(w) + o(a:H3)
= by [X(Ha(x — u) — Hy)dHo(u) + dy [} (Ho(x — u)2 — Hy)dHo(u)
ez + o(1)) [y (ar(x — wHa(x — u)? — axHl3)dHo(u)
+(f2 + o(1)) Jy(Ha(x —u)’ — H3)dHo(u). (4.16)
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Application of Theorem 1 in Geluk (1994) now shows that the first term on the
right-hand side equals
ky(Hy x Hy — miH, — mzﬁf +17f172) =ko(opy, g, + 1 + 0(1))7‘[??2-
Since the other terms are of smaller order we have
Jia =mgH, — HH: + ko(Eapp, + 1 + o(1)H: H,
= myH — koHy Hi + ka(Eap, py + 1 +o(1)H, Hy
=myH) + (kalap, g, + o(1)H | Ha, (4.17)
Finally, we evaluate K 4 and L; 4. As in (4.14) we find fox ar(x—w)H | (x —u)?dHy(u) ~
mgall—-lf. Since Hy — knH, ~ dﬁﬁ we can apply Lemma 2.1 to find
Kia ~ mga H.. (4.18)

Note that the analogue of (2.5) is satisfied for the function a,H? since a;(x —b)H (x -
by — alﬁf = O(d/dx aiH?) = o(a?H?), the last equality being true since we may
assume d/dx a;H f to be regularly varying with exponent

a =21 — 1 < 20y — 4p,.
Similarly, it can be shown that

Lig~mgH,. (4.19)
The result of the lemma follows since (4.9), (4.10), (4.18) and (4.19) show that

o . 2 2,
HyxHy—mHy=kihg+diJig+eKia+ filia+o <EaiZHi )

i=1 i=1
23
+0 (ZH,- ) .

i=1
Substitution of (4.15), (4.17), (4.18) and (4.19) on the right-hand side, together with
the expression H; = k H +d1ﬁ:,)' +(e; + o(l))a,ﬁ? +(f) +o(1))71_? then gives the
statement of the lemma. O

Proof of Corollary 2.3. First suppose ¢g = 0. The proof is by induction. Suppose
H — nm"™VH — &5 gm" (O = (by + o(1))H". (4.20)

Then b; = 0 by Theorem 3 in Geluk(1994). Using Lemma 2.2 and the above induction
hypothesis we find

H*n+l — _]-F‘”-*—ﬁ = mﬁ*—” + mn'ﬁ + nm"f‘ éﬂ,ﬂﬁz
— il 773
+&p pm" (D Eap pH + o(H)
=(n+ Dm'H + &g gm"™ ("I HH

. I P —3
+{mby + &g plop pm" TOYH + o(H),
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hence b, = mb, + &g plap, ,;m"*z(g) from which the statement follows.
In case cg = oc a similar argument applies. In case 0 < ¢y < oo we find under the
induction hypothesis (4.21) that the sequence b, satisfics

bas1 = mby, + 2nm" 'ty + Eg plap m"E B,

b, = 2tcy from which the statement follows. [

Proof of Corollary 2.4. We only prove the upper inequality in case ¢y < oo. The
proof of the lower inequality and the case ¢y = oo are similar. Define

On(x0) = sup {H*(x) — nm" ~"H(x) ~ &g pm" (OHX) Y H(xY’, n=2

X>Xy

and 0, := 6,(0). Note that by Corollary 2.3 the quotient on the right-hand side has a
finite limit as x — 0o. The proof is by induction. For 0 < xy < x,

H** — (n+ \ym"H

= [y H(x — u)dH(u) — nm"H
< fo nm T H(x — u) + &g pm 2 ()H (x — u)?

+0,(x0)H(x — uYdH ) + [ H*(x — u)dH(u) — nm"H
<nm" "V (HE = 2mH) + Eg g "2 + 0,(x0)a + m"(H(x — xo) — H)
<™ V(&g gH" + 071 + Egpm™ > CDI + 0,(x0)s

+m"(H(x — xp) — H), (4.21)

where [y = [[H(x — uYdH(u) and I, = [ H(x — u)*dH(u). As in (4.13) and
(4.14) we find [, = mH + &425H +o(H) and I, ~ mH'. Moreover, as in (4.10) it
follows that H (x —xo)—H = O(F). Hence, for ¢ > 0 there exist constants ¢; > 0 and
Xo = xo() such that [ <mH(x 2+, H(x), [ <(m+e)H(x) and H(x—xp)—H<c\H
for x > xo. Substituting this in (4.21) then gives

Op 1 (x0) <Onm" ™" + ¢ Eg gm™ 2 (5) + (m + £)0,(x0) + c1m".
It follows that the sequence {0,(xp)} satisfies

Oni1(x0) < con’m" + (m + £)0,(x0)

< c3(m+ &) + (m+ )0,{xp)

for some constants c;,c3. The result follows by iteration. [
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Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1. We give the
proof for the case ¢y = co. The case ¢ < oo can be treated similarly. Replace (4.7)
by

Ga(x) = E(YYF(x) — E(} )ép pF(x)?

= 5 pOFT(x) — nF(x) — & pOF(x))

n=0
~ 232 PO )ta(e)F () = 2B yea()F(xY
n=0

the last asympotic equality being justified by Corollaries 2.3 and 2.4. In order to
evaluate the first integral in

R(x) = [{ F*3(x — y)dGy(y) — 2 [y F(x — p)dGa(»)

note that F*2(x) — 2F(x) — &g gF(x)* ~ 21a(x)F(x)? by Theorem 3 in Geluk (1994).
Application of Lemma 2.2 twice gives

R(x) = Go(0)F*2 + 2E(Y )¢ 4F° + 2E() Y2taF
+2E(g])€/3,ﬁfﬂ,2[ff3 + 5ﬂ,ﬁE(§/)525,ﬁF3
“2[GHO)F + EC)ep 4F + E() 2taF
N =3 =2 =3
+E(4 ) plap pF 1+ 0o(aF )+ o(F")
= EQ)es pF + 2E() yraF
+&5 pEC Yerp 4T + o(aF ) + o(F ) = E(Y g g

12EY ytaF" + o(aF>).

Note that the last equality is a consequence of the assumption ¢y = oo, 1.6
F=o(a). O
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