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Dynamic and Hierarchical Genome Organization

10 and 13 order s of magnitude concer ning length and time scales are bridged.

Areand how are all of these organization levels connected to fullfill their obviousfunctions, e. g.

generegulation or replication, since they are optimized by evolution ?
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Simulated I nterphase Chromosome M odels

Random-Walk/Giant-L oop (RW/GL) and Multi-L oop-Subcompatment (ML S) M odel

RW/GL-Model MLS-Model

loop size\3Mbp-5Mbp

backbone /
(non DNA)

rosette size: 1-2Mbp
diameter: 400 to 800 nm
(according to interphase
ideogram bands)
Linker between rosettes consists
of DNA (126 kbp)

(in contrast to backbone)




Simulation of Single Chromosomes

The 30 nm chromatin fiber ismodeled as a polymer chain with stretching, bending, and excluded volume
interactions. Monte Carlo and Brownian Dynamic methods lead to thermodynamical equilibrium configur ations.

All modelsform chromosometerritories with big voids and different chromatin mor phologies. Experimental
territory and subcompartment diameters agree best with an ML S model with 80 to 120 kbp loops and linkers.

Metaphase starting configuration with
ideogram bands in red/green, linker in grey.
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Spatial Distances between Genetic Markers

Simulated spatial distances between random genetic marker s as function of their genetic separation leads
to best agreement in a comparison to experimentsfor an ML S model with 80 to 120 kbp loops and linkers.

The spatial distance distributions are also model characteristic and show in a set of markersas function of
their relative position to the chromatin fiber topology characteristic variation, strongly connected.

] Fibroblasts 15q11-13 PLW/A-Region, FISH, RW/GL -model:
our data

A Lymphocytes 1113 y FISH, K. Monier, Institut

@ Fibroblasts 1113 Albert Bonniot, Grenoble.

Il Fibroblasts4p16.3
FISH, Yokotaet. al., 1995.
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ML S-model (loop size 126 kbp):
linker length: 251kbp
188kbp
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62kbp
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From Fiber Topology to Nuclear M or phology

Chromosometerritoriesform in the RW/GL and the ML S model. However, only the ML S model leads
distinct subcompartments and low chromosome and subcompartment overlap. Best agreement isreached
for an ML S model with 80 to 120 kbp loops and linkersin nuclei with 8 to 10 um diameter.

The simulated nuclear mor phology reflects the chromosome fiber topology of different modelsin detail.
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: RW/GL in 12 pum nucleus
5 Mbp loops
not totally relaxed

Homologous Chromosome Pain
.3 5 7 9 11 13 15 17 19
4 6 8 10 12714 16 18

' intensity / density
1 1 1 1 I 1 1 1
0.0 0.5






Fine M or phology of Nuclel

High resolution rendering and simulated electron microscopy including territory painting reveal not only
again the model details but also that any location in the nucleusis accessible to biological molecules <15 nm
in diameter and that even the Extended I nterchromosomal Domain hypothesisis oversimplified.
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Scaling of the Chromatin Fiber Topology

The spatial-distance and exact yard-stick dimension distinguish between the ssimulated modelsin detail. The

ML S model shows a globular and fine-structured multi scaling behaviour dueto the loops froming r osettes.

This agreeswith DNA fragmentation by Carbon ion irradiation and the appearance of fine-structured multi-
scaling long-range correlations found in the sequential organization of genomes.
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Scaling of the Chromatin Morphology & Distribution

Thelocal (inverse-) mass dimension distribution distinguishs between the modelsin detail and show also a
multi-scaling behaviour with globular feature for the ML S model like the scaling of the fiber topology. With
the mass dimension as function of intensity separates very well between different nuclei in vivo.

Consequently, the chromatin mor phology is causally and quantitatively connected to the fiber topology.
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DNA Fragment Distribution after lone-Irradiation

Thelength distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin
fiber and the RW/GL and ML S models differ largely.

Experiments always agree best with the ML S model independent of theirradiation conditions.
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Diffusion of Particlesin the Nucleus

Dueto the volume and spatial relation shipsin the nucleustypical particlesreach almost any location in the
nucleus by moder ately obstructed diffusion: a 10 nm particle moves 1 to 2 um within 10 ms.

The structural influence on the obstruction degreeisrandom for Alexa 568 asfunction of the chromatin
distribution visualized by H2A CFP in vivo and measured by fluorescence correlation spectroscopy (FCS)
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Sequential Organization of Genomes

Determination of the concentration fluctuation function C(l) and itslocal slope the correlation coefficient
8(I) reveal multi-scaling long-range correlation up to 10° to 107 bp in Homo sapiens which clearly deviate
from random sequences with high significance (decreasing the nearer to the cut-off).

On large scales this might only be dueto a strong and definite three-dimensional genome or ganization.
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Fine-Structured Multi-Scaling L ong-Range
Correlations of Homo sapiens

The general behaveour is characterized by first maximum of the correlation coefficient d(l) at ~250 bp and at
1x10° to 3x10° bp, both dueto a globular block structure of genomes. Dueto their fine structurethefirst is
attributable to nucleosomal binding and the latter due to aggregation of chromatin loopsasin the ML S model.
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Conclusion

Only the ML S model leads to chromosome territories with subcompartments agreeing
qualitatively and quantitatively with experiments.

Comparison between simulated and experimental spatial distances between genetic
markersfavoursand ML S model with 80 to 120 kbp loops and linkers.

The sequential organization of genomes is characterized by fine-structured multi-scaling
long-range correlations, which are specie specific and tightly connected to the three-
dimensional organization of genomes. On large-scales again an ML S model isfavoured.
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From Sequence to Morphology

Approaching the Three-Dimensional Organization of the Human Genome

Knoch, T. A.

Institut Pasteur, Paris, France, 3rd October, 2003.

Abstract

To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics
methods. The 30 nm chromatin fiber was folded according to the Multi-Loop-Subcompartment (MLS) model, in
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL)
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of
subcompartments agree with the morphology found by expression of histone autofluorescent protein fusions and
fluorescernce in situ hybridization (FISH) experiments. Even small changes of the model parameters induced
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this
morphology, are closely related to structural changes on the chromatin level. The position of interphase
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and
comparison of experimental to simulated spatial distance measurements between genomic markers as function of
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location,
due to the chromatin occupancy <30% and a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 um
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10
nm sized particles of ~1 to 2 um takes place within 10 ms. Therefore, the diffusion of biological relevant tracers
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental
agreement.
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