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Heuristic procedures for a stochastic lot-sizing 
problem in make-to-order manufacturing 

N.E Del laer t  and M.T. M e l o *  

Econometric Institute, Erasmus University Rotterdam, 
Rotterdam, The Netherlands 

We consider a single item, uncapacitated stochastic lot-sizing problem motivated 
by a Dutch make-to-order company producing steel pipes. Since no finished goods 
inventory is kept, a delivery date is fixed upon arrival of each order. The objective is 
to determine the optimal size of production lots so that delivery dates are met as closely 
as possible with a limited number of set-ups. Orders that are not satisfied on time are 
backordered and a penalty cost is incurred in those cases. We formulate the problem 
as a Markov Decision Process and determine the optimal production policy by dynamic 
programming. Since this approach can only be applied to very small examples, attention 
is given to the development of three simple lot-sizing rules. The first strategy consists 
of producing the orders for a fixed number T of periods whenever the demand for the 
current period reaches a pre-specified limit x. A simple set of tests is proposed leading 
to cost improvements in situations where the best combination for the decision variables 
x and T deviates from the optimal policy. The second lot-sizing rule is based on the well- 
known Silver-Meal heuristic for the case of deterministic time-varying demand. A 
fixed cycle production strategy is also derived. Numerical examples taking into account 
different demand patterns are provided. The analysis of the results suggests that the first 
heuristic is particularly suitable for the problem under consideration. Finally, the model 
is incorporated in the operations control level of the hierarchical production planning 
system of the Dutch company and assists the management in the evaluation of the 
quality of the aggregate decisions. A consequence of this feedback mechanism is the 
modification of the aggregate plans. 

1. Introduction 

In  recent  years ,  an increasing n u m b e r  o f  c o m p a n i e s  in the manufac tu r ing  

industry  have  or iented their  product ion to the m a k e - t o - o r d e r  (MTO)  sector.  Ma t t s son  

et al. [18] repor t  the results o f  a s tudy o f  f i f ty-nine  Swedish  c o m p a n i e s  dur ing seven  

years  where  50% of  the companies  increased the degree  o f  MTO.  The  authors obse rved  

that 37% of  the compan ie s  dedicated 100% o f  the produc t ion  to the M T O  sector,  
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while in 46% the level was between 50% and 95%. Only nine companies remained 
in the make-to-stock (MTS) sector. In the United Kingdom, a survey conducted by 
Tobin et al. [26] showed that there were about 2000 small and medium sized MTO 
companies equally split between component subcontractors and producers of capital 
equipment. 

MTO companies manufacture products designed specifically to meet the needs 
of each individual customer rather than standard products supplied from stock. Hendry 
and Kingsman [11 ] establish the main differences between MTO and MTS companies. 
As stressed by these authors, in the MTO environment due to a com-petitive market 
both the delivery time and the price quoted for a particular job play a vital role in 
promoting customer satisfaction and generating future business. Failing to meet a 
promised delivery date may result in lost profit and lost market share. Kingsman et al. 
[15] present a methodology to integrate production and marketing considerations for 
quoting for orders. They acknowledge a common situation where the sales/marketing 
department quotes delivery dates and prices which maximize the chance of the 
company winning an order but disregard the ability of the production to respond to 
the promised delivery dates. Essentially, the approach proposed by Kingsman et al. 
consists of estimating the probability of winning an order. This probability is up-dated 
each time the result of a quotation to a customer in a certain category is known. 

Once the jobs are accepted, production planning takes place. In Hendry and 
Kingsman [12], a job release mechanism is described to control the shop floor through- 
put times so that delivery dates can be met without large deviations. 

Production planning models for the MTS area have received considerable 
attention in the literature. As a consequence, an extensive collection of results is 
available. We refer to Silver and Peterson [24] and Graves et al. [9] for comprehensive 
reviews of models and methods developed both for the deterministic and the stochastic 
demand situations. Unfortunately, the MTO area has received much less attention. 
Hendry and Kingsman [11] claim that well-known planning approaches for the MTS 
sector like MRP, MRP II, OPT and JIT do not address the special characteristics and 
needs of MTO systems and therefore can not be applied in practice. Concerning the 
applicability of MRP, the delivery date negotiated with the customer for an order 
determines the placement of the order in the master schedule. MRP logic then plans 
the necessary production. In the MTO sector, the master schedule is comprised of 
plans for final assembly and delivery to customers. At least two case studies were 
found in the literature where the methodology of MRP seemed to have been applied 
with a claim of success to an MTO company. Hoey et al. [13] report on the design 
of the key elements of an MRP system applied effectively to the MTO sector. They 
illustrate their approach within a low-volume company manufacturing corrugator 
equipment. In a later paper (McAreavey et al. [19]), these ideas are further developed 
and a closed loop MRP is proposed considering rough cut capacity planning. The 
authors refer to substantial reductions in work-in-progress and manufacturing lead 
times by using their techniques. 
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Other production approaches for MTO were also explored. These include an 
integer goal programming model especially designed by Markland et al. [17] for a 
US producer of tapes, and a Decision Support System (DSS) developed by Lecomte 
and Dejax [16] for the production control of an MTO manufacturer of abrasive 
products. The latter system is generated on a Knowledge Based DSS development 
tool and integrates a scheduling heuristic that provides a compromise between minimizing 
the times for changing tools and minimizing the delays in satisfying the orders. 
Another description of a DSS can also be found in Hendry [10], where an attempt 
to manage delivery and manufacturing lead times is made. 

The purpose of this paper is to model an MTO situation as simply as possible 
to enable quantitative analysis of production rules. In contrast with most of the case 
studies mentioned above, where simulation is used to evaluate the performance of 
the planning rules, we give special emphasis to the mathematical analysis. To the best 
of our knowledge, only methods based on queueing theory have been subject to a 
mathematical analysis. Graves et al. [9] provide an extensive survey on queueing 
models for production systems, while Dellaert [4] reports on an application of queueing 
theory to MTO. Our model was largely inspired by a lot-sizing problem arising in 
a Dutch MTO company producing welded steel pipes. In section 2, we describe the 
problem in detail. In order to cope with the uncertainty regarding the amount as well 
as the time of receipt of the orders, we model the problem as a Markov Decision 
Process with discrete state and time space. This is presented in section 3. In section 4, 
focus is given to an algorithm to obtain an optimal production policy. Since in most 
practical situations finding an optimal solution is computationally too complex, we 
concentrate on the design of heuristic procedures. Section 5 is devoted to the development 
of three different production strategies. In section 6, the numerical results obtained 
for some test problems are presented. For a very simple demand distribution, the 
optimal average costs are computed and compared to the average costs obtained with 
the heuristics. Further results are presented for more realistic demand distributions. 
Section 7 contains our main conclusions and directions for further research. 

2. The problem 

Wagner and Whitin [28], in a classic article, developed an efficient dynamic 
programming algorithm for solving a finite horizon, lot-sizing problem. The algorithm 
applies to the case of deterministic time-varying demand where backordering is not 
allowed. These two features of the Wagner-Whitin model are difficult to fulfill in 
many practical settings. Our main objective is, by starting with the problem addressed 
by the Wagner-Whitin algorithm, to design a model capable of capturing some of 
the elements of an MTO situation, namely, the demand uncertainty and complete 
backordering. Our study was motivated by a situation observed by a Dutch manufacturer 
of welded steel pipes. The production process consists of a preliminary treatment, the 
welding process and a follow-up treatment. The bottleneck in the production process 
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appears to be the welding process. There are several parallel welding machines, each 
with a different range of sizes. Whenever a certain type of steel pipe is produced, 
parts of the welding machine have to be rebuilt. As a result, the steel pipes are 
divided into several groups of different sizes among which the rebuilding times are 
small. To avoid too much loss of time for set-ups, the usual procedure followed by 
the company consists of producing steel pipes belonging to the same type consecutively 
on the same machine. 

The demand for the steel pipes can not be predicted with a high level of 
certainty because the company does not know if and when a customer places an 
order. Due to the demand uncertainty together with the products' high volume and 
customer-specific nature, no finished goods inventory is kept. 

In order to meet each customer's specific requirements, the company manufactures 
the steel pipes on an MTO basis and agrees upon a certain delivery date for each 
incoming order. 

Clearly, the nature of the process just described makes production planning in 
this situation very difficult. To gain some insight into the problem, some elements 
were relaxed or simply disregarded in a preliminary study. This consisted in developing 
a pilot scheme for the lot-sizing of a single type of product which is manufactured 
on a single machine without capacity limitations. Lee and Nahmias argue in [9] that 
most single-product models are able to capture the most important features of a 
problem, so that explicit inclusion of the interaction of different items is not necessary. 
In particular, if capacity restrictions are rather unimportant, then one does not need 
to consider all product types together. Moreover, if many products have to be dealt 
with simultaneously (this corresponds in our case to about 150 items of different 
shapes), a multiple-product model is often unmanageable and an optimal solution is 
impossible to derive, at least from a practical point of view. Reasons for these dif- 
ficulties are discussed by Axsater [ 1 ]. On the other hand, although capacity constraints 
are excluded from our model, capacity requirements can be reflected in the set-up 
costs, which means that the model takes into account that small lots of orders require 
relatively more capacity than large lots. Also, one can argue that applying an uncapacitated 
model and then trying to adjust the resulting production schedules may be possible 
in practice. An example of such a case is given by Van Nunen and Wessels [27]. For 
the classical single-item uncapacitated dynamic lot-sizing problem with an infinite 
time horizon, these authors developed a simple procedure for obtaining a production 
schedule using an extension of the Wagner-Whitin algorithm [28]. The application 
of their procedure to each product independently usually results in an infeasible 
solution in one or more of the production periods, since the capacity constraints are 
violated. Therefore, in a second stage a capacity adapting procedure is used. This 
consists of shifting the production of whole series of products from some period t 
to an earlier period t - k if there is capacity available in period t - k and a shortage 
in period t. Such a shift is only made if the hiring of extra capacity in period t is 
more expensive than the extra holding costs caused by the shifting. The selection of 
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a series to be shifted is based upon its costs savings per unit of capacity. In the 
situations investigated by Van Nunen and Wessels [27] at a major Dutch company, 
savings on set-up and holding costs of 20% were achieved in comparison with the 
planning procedures used by the company until then. 

Decisions concerning the production of the orders are assumed to be taken 
periodically. Most stochastic inventory models adopt this review process. Silver and 
Peterson [24] state the advantages of periodic review as giving lower reviewing costs 
and allowing a reasonable prediction of the level of the workload on the staff involved 
in issuing replenishment orders. Periodic review also makes the description of the 
state of the system much simpler and thereby the analysis. The length of the review 
period is fixed and the decisions can be made only at predetermined times corresponding 
to the end of the periods. 

Following the wishes of the management of the steel company, orders are 
divided into different categories varying from very urgent orders to orders with a 
requested delivery date of a few months. In addition, the company is engaged with 
a regular number of customers with whom long-term agreements are established 
concerning the assignment of the delivery dates on receipt of the orders. Due to these 
elements, it seems reasonable to assume that the customers are classified in N different 
groups. The mechanism of delivery date assignment consists of offering each customer 
a fixed lead time so that all customers belonging to a group i (1 < i < N) obtain a 
lead time equal to i periods when they place an order. This means that in an arbitrary 
period t, the company promises customers of group i (1 < i < N) to have their orders 
ready by the end of period t + i. Seidmann and Smith [22] and Quaddus [21], among 
others, investigated models that assign a constant delivery date to every order. The 
purpose of such models is to find an optimal lead time which can be quoted for all 
incoming orders. Clearly, due to the nature of our problem and the requirements of 
the customers, this approach does not seem appropriate in our case. 

A further assumption in our model is that the probability distribution of the 
demand for the next N periods is known, stationary and independent of the arrival 
period of the orders. This supposition stems from the long-term agreements established 
with the customers. On the other hand, it makes it possible to give a mathematical 
steady-state analysis of the problem. Furthermore, it is also assumed that the demand 
of the different groups of customers is stochastically independent. 

Every order placed by a customer consists of one unit of product. Customer 
demands that are not available at the promised delivery dates are backordered. 
Cruickshanks et al. [3] discuss a production smoothing model for an MTO company 
for which the market requires a finn delivery time since the customers do not tolerate 
late delivery due to their own fight production schedules. Cruickshanks et al. introduce 
a so-called planning window, which represents the amount by which the promised 
delivery date exceeds the production lead time for a given product. The authors also 
derive an approximate analytic model for which backordering is allowed. From a 
simulation study for normally i.i.d, and stationary demand, the authors conclude that 
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significant smoothing benefits can be achieved by using a planning window. Moreover, 
the approximate model has some predictive value with regard to the behaviour of the 
first model. 

An interesting feature of MTO with fixed lead times is that a gradually decreasing 
knowledge about the future required deliveries can be observed. This means that by 
the end of each review period t, the exact number of orders for period t + 1 is known 
but only partial information is available on the demand for the following N - 1  
periods because of the possibility of receiving more orders for those periods. 

By considering the demand distribution and the orders known at the end of a 
review period t, one of the following decisions can be made: 

(i) delay production; 

(ii) produce all known orders; 

(iii) produce a subset of the known orders. 

The selection of the first decision results in not being able to meet the demand 
for period t + 1 on schedule. Consequently, a penalty cost p > 0 is charged to each 
late order. This provides an incentive to manufacture orders on time. Selecting decisions 
(ii) or (iii) yields set-up costs and also holding costs. Like in many other traditional 
lot-sizing formulations, we assume a fixed set-up cost s which accounts for the 
preparation of the machine before the production of a lot is initiated. The parameter 
s may also comprise administrative costs, preparation costs, etc. Large set-up costs 
are usually involved in the company of our case study. Furthermore, a holding cost 
is incurred at rate h > 0 per period for each order that is finished before its delivery 
date. This cost is charged because a lot of customers find it inconvenient to have 
untimely deliveries. Usually, the holding cost per order will be considerably smaller 
than the backorder penalty cost. Our objective is to find a proper scheduling of the 
production so that the delivery dates are met as closely as possible at the expense 
of minimal average costs per review period. 

In the next section, the details of the model proposed for our problem are 
presented. 

Before concluding this section, we briefly refer to the usefulness of our model. 
Although in many complex practical situations it may not be directly applicable due 
to the simplifying assumptions, it can be seen as a starting point. We believe it can 
provide useful insights into the form of a solution for the original problem. In 
addition, the impact of the delivery dates fixed by the management can be examined 
not only in terms of costs and size of the lots, but also from the customers' perspective. 
This means that important issues affecting customer satisfaction, such as the number 
of late orders, can also be analysed. Furthermore, the model can be integrated in an 
hierarchical production planning environment. After applying to each product the 
production rules that will be discussed in section 5, the manager is apt to decide 
which product should be manufactured on which machines and use a capacity adapting 
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procedure of the type suggested by Van Nunen and Wessels [27] in order to comply 
with capacity restrictions. In the company of our case study, our model was incorporated 
in the lowest level of  the hierarchical production process and helped the management 
to assess the quality of aggregate decisions. 

3. Model formulation 

The assumptions made in our problem enable us to consider a Markov Decision 
Process (MDP) with discrete state and time space (Tijms [25]). At each decision 
point, a state is observed and an action is chosen. A state is defined as an N- 
component vector where each component represents the required deliveries for a 
certain period. The observation of an order state vector r = (rl, r2 ..... rN) at the end 
of period t gives the following information: 

number of orders of unit size to be delivered during 
period t + 1, including backorders from earlier periods 

number of orders of unit size to be delivered during 

period t + 1 

i f i =  1, 

i f 2 < i < N .  

We denote the set of  all possible states by R. 
Each state r E R is associated with a non-empty set of  actions A(r). Since the 

available capacity is unlimited and the opportunities for production occur at discrete 
points, the best strategy must involve manufacturing quantities that last for an integer 
number of periods like in the deterministic dynamic version of our lot-sizing problem 
(see Zangwill [29] and Denardo and Lee [7]). As a result, an action a specifies the 
amount of periods for which the corresponding known orders are produced, i.e. it 

a 
determines the size of a lot as being equal to Y~i= l ri. In particular, the action a = 0 
specifies that production is delayed. The action space A(r) is defined for every state 
r E R  as 

{0} if rl = 0, 

A(r)= {1 . . . . .  N} if r ip>s ,  

{0, 1 . . . . .  N} otherwise. 

Observe that if the penalty costs are larger than the set-up costs, then it is clearly 
not optimal to delay the production. 

If we have taken action a in state r, let Qa(r) denote the state at the end of 
the next period, just before the new orders are added to the order state. To illustrate 
the meaning of Qa(r), suppose four groups of customers place orders and at the end 
of period t a certain state vector r = (rt,  r2, r3, r4) is observed. If production is 
delayed, then at the end of the following period we have Qo(r) = (rl + rz, r3, r4, 0). 
Similarly, Q3(r) = (0, 0, r 4, 0). 
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Let J C N N denote the set of all possible required deliveries (Jl ,J2 .. . . .  JN) 
corresponding to the orders arriving during one period for the next N periods. Thus, 
if action a c A(r) is taken on observing state r, we enter a state z given by z = Qa(r) 
+ (Jl,J2 ..... iN). Moreover, let dij be the known probability that during an arbitrary 
period t, a total number  o f j  units of  product is ordered by customers of  group i for 
period t + i. The transition probability Pa z of moving from a state r to a state z by 
choosing action a CA(r) is therefore defined by 

{I~ N=! dij i if ( J l ,  J2 . . . . .  J,v) C J, 
a = (1) 

Pr~ 0 otherwise. 

Finally, the costs associated with action a cA( r )  are given by 

pq  if a = 0, 

qra = s + h • a - l i r / +  1 if a > 0 .  (2) 

Note that pr 1 is the cost incurred by decision (i), while the remaining costs correspond 
to decisions (ii) and (iii). 

Given the Markov Decision Process described above, our goal is to find an 
optimal production policy. The optimality criterion is to minimize the long-run average 
costs per period. In the next section, we will focus on this point. 

In Ten Kate [14], a similar model to ours is discussed. The author considers 
multiple products that are spread over a small number of families and produced on 
a single machine. Contrary to our case, the same lead time is assigned to all families. 
Moreover, both set-up times and processing times are taken into account with respect 
to the derivation of two strategies for the problem of order acceptance. 

4. The optimal production policy 

By the choice of the action space, all stationary policies have transition probability 
matrices representing recurrent aperiodic Markov chains. If the number of possible states 
is limited, i.e. if the one-period demand is bounded, the optimal production policy can 
be determined by using a policy iteration method. However, since the method of successive 
iteration as described by Odoni [20] performs faster in our situation, it will be preferred 
in this case. We are interested in finding the policy that minimizes the expected costs 
g per transition. If  %(r) is defined as the minimum total expected costs from the next 
n transitions when the current state is r and an optimal policy is followed, the iteration 
scheme takes the form described in the optimality principle by Bellman [2]: 

vn+l( r )  = rain [qra+ Z Pr~vn(Z)], r E  R , n =  0,1 . . . . .  (3) 
aeA(r) L zeR .J 

with Ph and q~ given by (1) and (2), respectively. 
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Observe that it is not necessary to consider all possible values for the first 
component r 1 of the order state vector. If for some state r E R, action a > 0 is 
optimal, then the same action will also be optimal for all states (y,  r 2, r3 ... . .  rN), with 
y > r I because rl is not involved in the holding costs. 

By applying the results of Odoni [20], it can be proved that any production 
rule achieving the minima in (3) also has minimal costs per transition. Therefore, 
starting with vo(r)= 0 for every r ~ R, the computation of (3) is repeated until a 
satisfactory degree of convergence is achieved. This provides lower and upper bounds 
on the minimal average costs g, which we denote by Ll(n) and L2(n), respectively. 
It follows that g may be estimated as [Ll(n) + L2(n)]/2. This estimate becomes nearly 
exact for large n. 

Although the above technique is commonly used for solving an MDP with an 
infinite planning horizon (see Tijms [25]), from a practical point of view its applicability 
is limited due to the extremely fast growth of storage (and time) requirements as the 
dimension of the state space increases. Computation times become prohibitively 
large even for small problems. For this reason, it is desirable to derive good heuristics, 
that is, fast lot-sizing rules with relatively low average costs per period. In the next 
section, we present three different production strategies. 

5. Heuristic procedures 

It is generally agreed that in practical settings the use of simple and intuitive 
procedures to solve lot-sizing problems is preferred to more complex algorithms. An 
example of a method that has received limited acceptance in practice is the Wagner-  
Whitin algorithm [28], although is guarantees an optimal selection of replenishment 
quantities for the uncapacitated dynamic lot-sizing problem. The main reasons for 
this lack of acceptance are the relatively complex nature of the algorithm which 
makes its understanding difficult for managers, and the considerable computational 
effort required. In addition, the non-realistic nature of the demand also accounts for 
the low receptivity of the algorithm. 

In this section, we focus on the design of three simple lot-sizing rules. By 
combining orders into production lots, we can save on set-up costs at the expense 
of some additional holding and penalty costs. The heuristics that are proposed differ 
in the way in which they combine demands into lots. 

We start by giving a detailed description of a simple strategy called the (x, T)- 
rule. This rule consists of producing the known orders for the next T periods if the 
demand for the current period is at least x units. Cost improvements are achieved 
with refinements of the rule, which are discussed in subsection 5.1.1. In subsection 
5.2, we present a production strategy based on the well-known Silver-Meal heuristic 
(Silver and Meal [23]) for the deterministic version of our problem. Finally, subsection 
5.3 deals with a fixed cycle production rule. Before giving a description of the three 
heuristic procedures, we introduce the notation that will be used. 
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Let Xt, e+i denote the number of orders that arrive during period t to be delivered 
by the end of period t +  i, with i = 1, 2 ..... N. In other words, Xt, t+i contains the 
demand placed by customers of group i (1 < i < N) during period t. In figure 1, an 
illustration of the meaning of these variables is presented. Note that all demand for 
a certain period is found in the same column. 

'1 '+ '1  ,+2 I ,+3 i i ,+N+. i i  om d no , 
I 

t [ Xt,t+l Xt't+2 Xt,t+3 "'" Xt't+N 

t + I I Xt+l't+2 Xt+l't+3 "" Xt+l't+N Xt+l't+N+l 

t + 2 I Xt+2,t+3 "'" Xt+2,t+N Xt+2"t+N+l Xt+2,t+N+2 
arrival[ 
period[ 

Figure 1. Demand for various periods. 

The expectation of the random variable Xt, t+ i is denoted by ut, t+ i and due to 
the assumption of stationary demand is determined by 

Ut,t+i = E ( X t , t + i )  = ~_~jdij  = ui. (4) 
j > 0  

If  we define bit t as the probability that during the last i periods before an 
arbitrary period t, customers order a total number of  g orders for period t, it follows 

t - 1  that biet = T{~_,n=t_ i Xnt - -  ~}.  Let Jig be the set of  all possible one-period demands 
(Jl,  J2 .....  J~v) for which the sum of the first i components equals g. Since demand is 
stationary, we obtain (observe figure 1) 

i 

biet = ~., l " I  dkjk = bit .  (5) 
Jit k = l  

Finally, eit is defined as the expected value of ri (i.e. the ith component  of  the 
state vector r) at the end of period t, if no required deliveries for period t + i have 
been produced, that is, 

eit = g = Un,t+ i = Urn = e i .  (6) 
n= n = t + i - N  rn=i 

5.1. THE (x, D-RULE 

While testing the optimal production policy for several examples, we noticed 
that in most cases the decision whether to produce or not depends only on the value 
of rl and not on the required deliveries for later periods. Moreover, for a given 
demand distribution, the number of periods for which orders are produced is nearly 
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always the same. Only in "extreme" states with a rather small probability does the 
optimal policy deviate from these results. The form of the optimal policy is explained 
by the interaction between the cost parameters and the demand pattern. Since the set- 
up costs are considerable, the production is delayed as much as possible. In most  
situations, the value of r 1 alone determines when a set-up should take place. Observe 
that in the short term the most  important orders are those that have to be delivered 
by the end of  the next period. Failing to meet them yields penalty costs and if one 
waits too long, these costs will become larger than the set-up costs. Recall that 
whenever  rl p > s, the action space starts with action a = 1, meaning that postponing 
production will certainly be too expensive. With respect to the number  of periods for 
which the known orders are manufactured, both the holding costs and the demand 
pattern play an important role. Producing the demand for more periods increases the 
holding costs, but if the known amount is large enough it will be cheaper to produce 
it now than to produce a smaller amount and take the next set-up sooner. On the other 
hand, our knowledge about the future orders decreases with the number of periods 
and so it may be better not to produce the known demand for periods that are further 
away from the current one. 

Based on the results of the tests performed, we developed a simple decision 
rule which only uses the information about the number of orders for the first period 
and the number  of backorders, i.e. the value of rl. If r I is smaller than some decision 
variable x, there is no production during the first period. Otherwise (i.e. if rl > x), 
all known orders with a residual lead time of T periods or less are produced during 
that period. Like x, T is also a decision variable. We call this production strategy the 
(x, T)-rule. Since a decision concerning the production is made at the end of every 
period, it follows that production may take place less than T periods after the previous 
one if in the meantime enough orders arrive. 

One of the main advantages of the (x, T)-rule is that the average costs per 
period can easily be determined for given values o f x  and T. In order to compute these 
costs, we consider the order state during one production cycle. Since demand is 
stationary and the (x, T)-rule is a fixed production strategy, there exist time points 
at which the stochastic process that represents the order state probabilistically restarts 
itself. From the coming analysis, it will be clear that one of these regenerative points 
takes place at the end of a period in which the required deliveries for the first T 
periods have been produced. Since the probabilities for each possible order state 
vector are the same in every regenerative point, the average costs per period are 
determined by considering the order state during the periods between two regenerative 
points, i.e. between two consecutive production periods. 

Although r = (rl, r2 ..... rN) provides all necessary information about the order 
state, it is not suitable for the analysis of situations in which the dimension of the 
state space is very large. On the other hand, in order to make a decision by following 
the (x, T)-rule, it is sufficient to know the value of  r~. For these reasons, we replace 
the order state vector r = (rl, r2 .. . . .  rN) by r 1. However, r I does not provide the 
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necessary information about the transition probabilities. The changes in the r 1 value 
depend on the time passed since the last production period. We will illustrate this by 
means of  an example. Suppose there are four groups of  customers and T = 3. At the 
end of  an arbitrary period t -  1, we observe that rl > x. As a result, all orders with 
a delivery date less than or equal to t + 2 are produced during period t. At the end 
of  period t, the value of  r I is updated with the value of the stochastic variable Xt, t+ l, 
i.e. rt <---- Xt, t+ I. If  the new value of  rl is smaller than x, production is delayed, and 
so in the following period t + 1, the value of  rl will be given by rl ~--rl + 
(Xt:+2 + Xt+l,t+2). If rl still remains smaller than x, we update its value in period t + 2 

to rl ~ rl + (Xt-l , t+3 + Xt, t+3 + Xt+l,t+3 + Xt+2,t+3) (see figure 2). 

t - 4  

t - 3  

t - 2  

t - 1  

t 

t + l  

t + 2  

t + 3  
arrival 
period 

°,° , _ 2 1 , - 1  I , i ,+11t+2 ,÷31 ,+4  I demaodperiod, 
• " Xt_4, t 

Xt-3,t-2 Xt-3,t-1 Xt-3,t Xt-3,t+l 

Xt-2, t-I  Xt-2,t X t - l , t + l  Xt-2,t+2 

Xt- l , t  Xt-l , t+l Xt-l,t+2 Xt-l.t+3 . . . . . . . . . .  , , , ,  . . . . .  , , , . . , . . . .  . . . . .  
Xr.t+l Xt,t+2 Xt,t+3 

Xt+l,t+2 X t + l , t + 3  

X t + 2 , t + 3  

Xt,t+4 

Xt+l,t+4 

Xt+2.t+4 

Xt+3,t+4 

.°° 

. . °  

Figure 2. Example with N = 4 and T = 3. The known demand at the 
end of period t -  1 to be produced during period t is presented in 
bold. We assume that the last production took place T periods ago. 

From this analysis, it can easily be seen that if  at the end of period t + 1 or 
one of the later periods the value of  rt is still smaller than x, then the value of  N 
stochastic variables has to be added to rl by the end of the next period. The probability 
that the sum of  i stochastic variables, whose value is added to rl, is equal to ~ is given 
b y  bit as defined by (5). We will show that to determine the average costs per period 
for a given pair (x, T) we only need to consider a finite recurrent Markov chain with 
states ( i , j )  ~ {1, 2 ..... T -  1} x {0, 1 ..... x} such that 

i - number of periods since the last production period, 

j - value of rl.  

The limitation on the number of possible states results from the fact that both 
the decision and the costs of that decision are the same for rl = x and rl > x. Furthermore, 
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Figure 3. The states of the Markov chain for the (x, T)-rule with T-> 2. 

both the costs of an action and the transition probabilities for the component r I are 
the same for all periods except the T -  1 first periods. In the case T = 1, the time 
component is limited to { 1 }. Figure 3 gives as illustration of this Markov chain. 
In the above Markov chain, we have the following transition probabilities: 

T{(i, x) ---> (1, k)} = bl ,  k 

P{(i, x) ---> (1, x)} = 1 - ~ _ - 1  bl,k 

P { ( i -  1, j )  --> (i, k)} = bi,k_ j 
~ x - l - j  ~. 

P{(i - 1, j )  ---> (i,x)} = 1 - Z,k=0 Ui,k 

IS/ST-I, 

2<i<T-I, 

2<i<T-I, 

0 < k < x - 1 ,  

I < i < T - 1 ,  

j < k < x - 1 ,  

O < j < x - 1 .  

It remains to analyse the transition probabilities from a state ( T - l ,  j )  to a state 
( T -  1, k), with 0 < j  < x - 1 and j  < k < x. Observe that a state ( T -  1 , j )  can be visited 
not only during period T -  1, but also in one of the later periods. In any case and 
following the discussion on the changes in the value of rl (see figure 2), from period 
T - 1  onwards, the rl value is always updated with N new stochastic variables. 
Hence, we can write 

P{(T- l,j) --h (T- l,k)} = bN,k-j j <_ k <_ x- I, 
~,x-l-j 

P { ( T - l , j ) - - - > ( T - l , x ) } = l - z . , k = 0  bN,k O<_j<_x-1.  

In order to determine the average costs per period for a given pair (x, T), the 
expected costs cij in every possible state (i, j) have to be calculated. Whenever j < x, 
there is no production and so only penalty costs p j  are incurred. In the remaining 
states (i, x), set-up costs and usually also holding costs are charged. To avoid a 
complicated state space, the holding costs are paid immediately. Their expected value 
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depends on the time passed since the last production period, that is, on the / -va lue  
of  the state (i, x). For T > 2, it holds that if we have just produced in the previous 
period, the expected number of orders for future periods will not be as high as it would 
be after T -  1 periods because some of the orders for these periods have already been 
produced (see figure 2). Thus, the expected costs in state (i, j ) ,  1 < i < T -  1 are given 
by 

p j  i f 0  < j < x, 

t, x ' T - i k e  x - , T - i - I  . c i j  = S + t~ L k = l  k + l  - h  x,  L k =  1 Kek+i+ 1 i f j  = 

with e k defined by (6). 
Let qo denote the expected amount of time spent in state (i, j )  between two 

arbitrary production periods. Note that only in the states ( T -  1, 0), ( T -  1, 1) . . . . .  
( T -  1, x -  1) can we stay longer than one period. Clearly, the sum of the expected 
amount  of time spent in all states gives the expected time between two production 

periods: r -  1 x 

T(x, T) = ~_~ ~.~ qij. (7) 
i= !  j = 0  

On the other hand, the expected costs between two production periods are determined 

by T - I  x 

C ( x ,  T )  = E E q i j c i j  • ( 8 )  
i=1 j = 0  

Hence, the average costs per period of  the production rule associated with the pair 
(x, T) are obtained by dividing (8) by (7): 

C(x, T) 
g(x, T) = T(x, T)" (9) 

Due to the special structure of the Markov chain, the values of qij can be 
determined as follows. I f  T > 3, in the first period after a production period we enter 
state (1, x) or one of the states (1 , j ) .  Hence, 

blj if 0 < j < x, 

q l j  = 1 -- x -  1 ~k=0blk  i f j = x .  

For T >  4, we move from state ( i -  I, k) to state ( i , j )  with probability b i j _  k and enter 
state (i, x) if the number  of orders was less than x in period i - 1 and at least x in 
period i. This yields for 2 < i < T - 2  

{ ~,Jk=oqi_l.kbi,j_k i f 0  < j < X, 
qo = x-I  

~,k= 0 [qi- l,k -- qik ] if j X. 
(10) 
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Observe for j = x that 

q/x = 

x - i  

Xqi-,.. 
k = 0  j = x - k  

= k~=Oqi_l, k 1 -- "= b 0 

x-1  x -1  x - k - I  

= X q i - l , l -  ~_, X qi-l,kbij. 
k=O k=O j=O 

By rearranging the terms in the above expression, we obtain 

x-1  x -1  k 

qix = ~ q i - l , k  -- X X q i - l , j b i , k - J  
k = 0  k=O j = 0  

x-1  x-1  

= X q i - l , k  -- X q i , k '  
k=O k=O 

which is exactly the formula in (10) for j = x. 
State ( T -  1, j)  can be visited during period T -  1 but also in later periods We 

can move to this state from state (T - 2, k) as well as from a state ( T -  1, k). If during 
the N previous periods no deliveries have been ordered with this specific delivery 
date, then we stay in the same state with probability bt¢0. Furthermore, there is 
exactly one production period during one cycle. This means that if there is no 
production during the first ( T -  2) periods, it will certainly take place in one of the 
later periods. Therefore, we have for T > 3 

J b ~ k = 0 q r - 2 , ,  r - l , j - ,  + ~J=oqr- l , kbN, j -k  

qT-l , j  = 1-- ~,r__-12 qix 

Observe that the first part of (11) is equivalent to 

i f 0 < j < x ,  

i f j  = x. 
(11) 

~'Jk=OqT-2'kbT-l'J-k + ~'J-lo= qT- l 'kbNd-k  , 0 < j < x. 
q T - l , j  = 1 - bNo 

For the special case of T =  1, the values of qlj are given by 

{ b N ~ + 7 ~ - = l o q l , k b M . ~ _ k  if  0 < j < X, 

ql j  = 1-buo 

1 i f j  = x, 
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while for T = 2, we have 

q l j  = l-bNo if 0 < j < X, 

1 i f j  = X. 

In order to find the pair (x, T) that yields the lowest average costs per period, 
we can use two properties derived by Dellaert [5] which allow us to limit the number 
of pairs that have to be considered. In the next result, an upper bound on the optimal 
value of x is established given a value of T. We refer to Dellaert [5] for a proof of 
this result. 

PROPERTY 5.1 

For a given value of T, the optimal value of x satisfies 

x < [ g ( p T ) l  + l, (12) 

where LzJ denotes the largest integer not larger than z E R. 

By combining this property with the fact that x > 1, we obtain an interval 
containing the optimal choice for x. 

An immediate consequence of the above property is the following result. 

COROLLARY 5.2 

Let g(y, T) be the average costs of  the (x, T)-rule for an arbitrary pair (y, T). 
Since g(x, T) < g(y, T), the optimal value x satisfies 

Moreover, for T < 2, the optimal value of x satisfies relation (12) with equality. 

Let us now introduce q/j(K) as the q/j-value associated with the (x, K)-rule and 
let p/j(K) be the probability that between two production periods the state (i, j )  is 
visited, if there is no limitation on the state space in the time-direction. For these 
probabilities p/j(K), we thus allow i > K. It is not difficult to see that p/j(K) = q/j(K) 
for i < K - 2 and 0 < j  < x. For the remaining values of i, the probabilities p/j(K) are 
easily obtained by the corresponding transition probabilities. This implies for K > 3 
and 0 < j < x - 1 that 
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qij (K) if 1 < i < K - 2, 

Pij(K) = ~ = 0  pi-I,e(K)bi,j-t if i = K - 1, (13) 

~,~=oPi_i,l(K)bN,j_e if i > K. 

For K = 2, we define plj(K) = blj and p2j(K) = ~ = 0  Plt(K)bN,j-e for every 0 < j  
< x - 1 .  

Finally, let ? r  denote the expected costs in the Kth period after the last produc- 
tion period, if the (x, K + 1)-rule is used and there was no production during that 
period. Clearly, 

x - I .  ~,i=otpKi(K + 1) 
c r  = P x-I  (14) 

~ i=o  Pri( K + 1) 

Since at the end of each review period our knowledge about the future required 
deliveries, although incomplete, only extends to the next N periods, it is obvious that 
T can not exceed N. However, in some cases it is possible to prove that the best 
choice for T lies in the interval [1, K], with K < N. The following result shows how 
such an improved upper bound K on the optimal value of  T can be obtained. 

PROPERTY 5.3 

For a given value of x, the optimal value of T is less than or equal to K if for 
K the following inequality holds: 

x - I  

(g - CK) ~ PKj (K + 1) < h K eK+l, (15) 
j=0 

where ~ is an arbitrary upper bound for the average costs g(x, T) and prj(K + 1) and 
?K are determined by (13) and (14), respectively. 

Proof 
We refer to Dellaert [5] for a proof of this result. [] 

By combining properties 5.1 and 5.3, we can design an algorithm to find the 
optimal pair (x, T). A description of such a procedure is given below. 

ALGORITHM 1 

Step 0. Set g* := s and x := IslpJ + 1. 
Step 1. Set K := 1 and determine the first K value for which (15) holds. 

Set T := K, determine g(x, T) by (9) and set g* : = g(x, T). 
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Step 2. 

Step 3. 

For the current value of T, determine the optimal x value as follows. 
Repeat x := [g*lpj + 1 and g* := g(x, T) until the value of x does not change. 
Then set x : =  x -  1 and compute g(x, T). 
Repeat this procedure until a further decrease of x yields a higher g(x, T) 
value. 
Let g* be the minimum value of g(x, T) obtained in this step. 
If the corresponding x value is different from the one at the beginning of 
this step, then go to step 3 with the new x value. Otherwise, stop. 

For the current value of x, determine the optimal T value as follows. Set 
K := T and decrease K until inequality (15) no longer holds. 
Set T equal to the minimum value of K which satisfies (15). 
Set T := T -  l and compute g(x, T). 
Repeat this procedure until a further decrease of T yields a higher g(x, T) 
value. 
Let g* be the minimum value of g(x, T) obtained in this step. 
If the corresponding T value is different from the one at the beginning of 
this step, return to step 2 with the new T value. Otherwise, stop. 

Observe that the above algorithm terminates when a further decrease of x or 
T yields higher average costs per period. Moreover, each time g(x, T) has to be 
determined, it is not necessary to compute every q/j for 1 < i < T - 1 and 0 < j  < x 
because most of  these values are not affected by decreasing one of the two components, 
x or T. The same occurs with respect to the probabilities Pij(K). Also, it is quite 
simple to obtain the q0-values from the pij-values and vice versa by relation (13). 

5.1.1. Refinement of the (x, T)-rule 

The relatively simple nature of the (x, T)-rule makes its understanding and 
application easy for practitioners. Clearly, sihce only the information about the demand 
for the first period is used, there is no guarantee that we will be following an optimal 
strategy in every period. In fact, if the orders for the next T periods do not deviate 
from their expected value, the (x, T)-rule gives a nearly optimal action for each 
period of the planning horizon. However, in cases of unexpectedly high or low 
demand, the rule may select a non-optimal action. In such situations, a simple set of  
tests in which we estimate the future costs of  various actions can be applied to give 
us an indication of  when we have to deviate from the (x, T)-rule. In this subsection, 
we concentrate on refining the heuristic by means of four tests that can lead to cost 
improvements. These tests are meant to be applied at the end of  each period on 
observing a certain sequence (rl,  r2 ..... rr). 

If  the holding costs are relatively low, we may consider producing during a 
period for which rl < x. In order to determine whether it is preferable to produce or 
not in such a situation, we need to compare the costs of  producing during the current 
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period with the costs of  only producing in the next period. Observe that this comparison 
is only meaningful in those cases for which we know that production will certainly 
take place in the following period. This corresponds to having rl + r2 > x or r I + r 2 < 
x and at least new ( x - r l -  r2) orders are placed during the current period to be 
delivered by the end of  the next period. 

Let g* denote the average costs g(x, T) per period of the optimal pair (x, T) and 
let g denote the expected costs of action a = T assuming that no part of  the demand 
for the next T periods was already produced, i.e. ~ = s + h~,T=-lliei+l . 

We can estimate the costs of  the options described above by using more 
information than that contained in rl, namely, the values of  r2 ..... r r. It follows that 

(i) Expec ted  costs o f  taking action a = T in the current period:  

T-1  

+ h ~ i(r/+ 1 - ei+l) + h max(0, x - rl - r2). 
i=1 

(ii) Expected  costs o f  taking action a = T in the next  period: 

T - I  
prl + ? + h ~ ( i -  1)(r/+l - e i + l ) -  g*. 

i=2 

Comparing (i) with (ii) yields the following test. 

TEST 1. PROCEDURE SOONER 

For a sequence (rl, r2 ..... rr) such that rl < x and T-1 h ~ i = l  (ri+ 1 - e i + i )  
< prl  - g* - h max(0, x - r I - r2), select action a = T. 

The effect of  having high holding costs can be dealt with in different ways. 
In some situations, it may be advantageous to postpone the production. If  r I > x and 
we decide not to produce during this period, we will choose that action in the 
following period. As a result, we have the same options as in the previous test and 
the corresponding expected costs are identical except for the last term in (i), which 
is excluded. Therefore, the second test is as follows. 

TEST 2. POSTPONE PRODUCTION 

For a sequence (rt,  r2 . . . . .  rr) such that r I > x and r-1  h X i = I  ( r /+l  -- ei+l ) 
> pr l  - g*, select action a = 0. 

A second way of dealing with high holding costs is to consider producing the 
known orders for less than T periods. This action may be beneficial, for instance, 
when r r is large. Hence, we have to compare actions ak = T -  k, k = 1, 2 . . . . .  T -  1, 

with action a = T. Fixing k, the estimation of  the costs involved in action ak is based 
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Figure 4. Example with N =  4 and  a = 3. Orders produced during 
period t are indicated in bold assuming that the last production took 
place a periods ago. In periods t + 1 and  t + 2, there is no production. 

demand period 
) 

on the assumption that if we produce the required deliveries for a k periods, then 
during the next a k - 1 periods there will be no production. 

Without loss of generality, we can drop the index k and analyse the consequences 
of the above assumption. If a > 2 and production takes place during some period t, 
then the required deliveries for periods t + 1,. . . ,t  + a -  1 that are ordered during 
periods t, t + 1 . . . . .  t + a - 2 will be delivered too late. As a result, penalty costs have 
to be paid for these orders. Figure 4 illustrates an example of  this situation. 

The exact penalty costs are difficult to calculate since the future demands are 
unknown. However, we can replace them by their expected value during the first a 
periods under the assumption that production only takes place during the first period 
and not in the next a -  1 periods. This yields the following penalty function p(a): 

1 p(a) = pE ~ j~=l Xji = p ~ ~ ~'~ ui-j 
k = 2  i = 2  k = 2  i = 2  j = l  

a i -1  
=p~.~(a+l-i)~_uj, a = 2 , 3  . . . . .  N. (16) 

i = 2  j = l  

F o r a = 0 a n d  a = l ,  we have 

p(a)=O, a = 0 , 1 .  (17) 

Proceeding with the derivation of  a third test to improve the performance of  
the (x, T)-rule, we next give an overestimation of the costs of action ak = T -  k with 
k f ixed  (1 < k < T - 1 ) .  
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(iii) Expected costs o f  taking action a k = T -  k in the current period and action 
a =T, T -  k periods later: 

T - I  ) T - k - !  

~ - h  ~ iei+ 1 + h  ~_~ i(ri+ 1 - e i + l ) + p ( T - k )  
i = T - k  i=1 

+ ~ + h E ( i  - 1)(rT_k+ i - eT_k+i)--  ( T -  k)g*. 
i=2 

Comparing (iii) with the expected costs of  action a = T leads to the following 
test. 

TEST 3. PRODUCE THE DEMAND FOR LESS THAN T PERIODS 

Given k (1 < k  < T - 1 )  and a sequence (rI, r2, . . . , rr)  such that r I > x  and 
+ p ( T -  T-1 • k ) - h ~ , i = r _ ~ t e i + l < ( T  k)g* + h ( T  k) r-1 -- __ ~ . i = T _ k ( r i + l  -- ei+l),  

select action ak = T -  k. 

In case the above test holds for several values of k, we choose that k for which the 
difference between the fight-hand and left-hand side terms of the inequality is maximal. 

If Test 3 indicates that we should produce the demand for less than T periods, 
then it seems reasonable to compare that decision with the possibility of delaying the 
production. Although Test 2 can not be applied in this case, we can easily derive a 
fourth condition by comparing the costs in (iii) with the costs in (ii). This leads to 
the following test 

TEST 4. POSTPONE PRODUCTION AS AN ALTERNATIVE TO PRODUCING FOR LESS THAN 

T PERIODS 

Given k (1 < k < T -  1) and a sequence (rl,  r2 ..... rr)  for which Test 3 holds, 
evaluate the following inequality: 

_ - -  h ~ ; ' T - 1  . ~ + p ( T  k ) + h ~ / r - l l ( r / + l  - e i + l )  ~i=T_kte i+l  > prl 

+(T  k 1)g* + h(T k) r-1 __ -- -- E i = T _ k ( r i + l  -- e i + l ) .  

If the inequality holds, then select action a = 0, otherwise select action 

ak= T - k .  

Having determined the optimal pair (x, T) and the corresponding average costs 
g* = g(x, T), we can use the above four tests to check at the end of each period if 
we need to deviate from the (x, T)-rule on observing a certain sequence (rl,  r2 ..... rr). 
The following algorithm indicates the order in which the tests should be applied. 
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ALGORITHM 2 

Step 0. If 

r l <  
g* + x - ~T__-I l ei+1 

p + l  

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Then production does not take place; 
GoTo step 5 

Else GoTo step 1; 

I f  r I > x Then apply Test 3; 
If  the test holds Then GoTo step 4 

Else GoTo step 2 
Else GoTo step 3; 

Apply Test 2. 
If the test holds Then delay the production 

Else produce the demand for T periods; 
GoTo step 5; 

Apply Test 1. 
If  the test holds Then produce the demand for T periods 

GoTo 

Apply 
If  the 

GoTo 

Step 5. Stop. 

Else delay the production; 
step 5; 

Test 4. 
test holds Then delay the production 

Else produce the demand for T - k  periods; 
step 5; 

For a given sequence (rl, r2 ..... rr) satisfying one of the tests described above, 
we can estimate the corresponding cost improvement by determining the probability 
of having the sequence (rl, r2 . . . . .  rr) and then multiplying by the positive difference 
between the fight-hand side term and the left-hand side term of the inequality in the 
test. Observe that the probability of having a certain sequence (r l, r 2 ..... r r) is given 
by the product of the probabilities for each component r i, with i = 1 ..... T. In the case 
of r I , we can easily use the values of qij to obtain the corresponding probability. For 
the remaining components, it is not difficult to show that 

N 

P(ri = e) = ~ ,  r I  dnjn , i = 2  . . . . .  T, (18) 
Ji,ti n=i 

~,n=iJn = el" with Ji,ei denoting the set of one-period demands ( j l ,  J2 .....  in) for which ~ " 
Furthermore, an estimation of the total savings per period can be obtained by applying 
the above algorithm to each possible combination of values for (rl, r2 ..... rr) that has 
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a probability greater than some small pre-specified constant e. Finally, adding the 
gains produced by the tests and subtracting this sum from g* yields an estimation of 
the improved average costs per period. 

5.2. THE SILVER-MEAL APPROACH 

For a lot-sizing problem with a deterministic time-varying demand, Silver and 
Meal [23] proposed a simple sequential heuristic which consists of selecting the 
action that produces the (first local) minimum of the total relevant costs per unit of 
time. These costs are obtained by dividing the expected costs of an action by the 
number of periods involved in that action. In this section, a lot-sizing rule using the 
same criterion is derived for our problem. 

Choosing action a on observing a state r E R leads to the direct costs qr ~ given 
by (2). However, also indirect costs will be involved during the first a periods if we 
assume that during the next a -  1 periods there will be no production. Clearly, this 
leads to penalty costs that are estimated by the function p(a) defined in (16) and (17). 

Hence, if state r E R is observed, the production rule consists in taking action 
a" given by 

• fqa +p(a) t a' := arg mm ] - m a ~ { l ~  : a  E A(r)~. 

We can now use a similar dynamic programming algorithm to the one presented 
in section 4 to obtain the average costs per period. The iteration scheme in this case 
takes the form 

a t 

t~n+l(r) qr + EPr~'t~n(Z), r E R,n = 0,1 . . . . .  
z ~ R  

5.3. THE CYCLIC PRODUCTION RULE 

The cyclic production rule that is described next is the equivalent of the Period 
Order Quantity lot-sizing technique proposed by Gorham [8] in which the optimal 
production schedule in the case of constant demand requires a set-up every T periods. 
We denote the production rule by lr and also assume that there is a set-up every T 
periods, unless there is no demand. In addition, whenever production takes place, the 
required deliveries for the first T periods are produced. In order to determine the 
average costs per period for this rule, we divide by T the total expected costs during 
one cycle which consist of set-up costs, holding costs for the orders that are produced 
before their delivery date and penalty costs for the orders that will be finished after 
their delivery date. Therefore, we choose the value of T E { 1, 2 ..... N} for which g~ 
is minimal, with g~ given by 

s(1 - (blvo) T) + h ~Tffll iei÷l + p(T) 

gtr = T 
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and p(T), the function defined by (16) and (17). Observe that the term (1 - (bNo) r) 
gives the probability that there is demand for at least one of the next T periods. 

In cases with relatively stable demand patterns, it is expected that a cyclic 
production rule like the one described above performs suitably. 

6. Numerical results 

In order to study the performance of the competing lot-sizing rules presented 
in the previous section, two types of experiments were conducted over a range of test 
problems. In the first group of tests, the demand pattern was fixed while the cost 
parameters changed. In the second group of tests, the demand parameters varied and 
the cost structure was held fixed. 

We will start with a very simple set of examples for which demand follows 
a binary distribution. Although such a demand pattern is not likely to be observed 
in practice, it has the advantage that for relatively small values of N, the dimension 
of the state space is not too large and so we can apply the dynamic programming 
algorithm of section 4 to obtain the optimal average costs. Consequently, each heuristic 
can be compared with the optimal production policy. Moreover, the average costs 
associated with the Silver-Meal-like strategy can also be computed directly. 

Table 1 summarizes the results obtained by assuming that the demand of each 
group i of customers follows the same binary distribution with parameter d, that is, 
dio = 1 - d and dil = d for i = 1 ..... N. As a result, the probabilities bit in (5) are easily 
determined by bil = ( ~ ) (1 - d)  i -  ! d e if 1 < ~ < i < N and bit = 0 otherwise. For each 
choice of the demand parameter d, two tests were performed where two of the cost 
parameters were held fixed while the third one changed. By proceeding in this way, 
we could examine the effect of the cost structure on the behaviour of the lot-sizing 
rules. The choice of the cost parameters was taken as follows: the penalty costs were 
always larger than the holding costs but smaller than the set-up costs. These latter 
costs were at least twice as big as the penalty costs and in some cases, the proportion 
increased to 16:1. Finally, the penalty costs were at most three times larger than the 
holding costs. The results reported in table 1 correspond to tests where the values of 
s, h and p, although set arbitrarily, followed the above criteria. They represent the 
differences in the three types of costs that are commonly observed in many practical 
situations. 

The first column in table 1 refers to the number of each test problem. The 
second column indicates the maximum lead time (N), while the third column gives 
the value of the demand parameter (d). The following three columns present the cost 
structure selected in each test, that is, the set-up costs (s), the holding costs (h) and 
the penalty costs (p). Column 7 contains the optimal average costs per period (OPT). 
In columns 8 and 9, both the optimal pair (x, T) and the corresponding average costs 
per period g(x, T) are indicated. The results of the application of the four tests 
described in subsection 5.1.1 are presented in columns 10 and 11. The cost improvement 
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Table 1 

Results with binary demand. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Test N d s h p OPT (x, T) g(x, T) A ~(x, T) SM T CYC 

1 4 0.25 8 1 3 3.7147 (2,3) 3.7326 0.0173 3.7153 3.7173 3 4.1655 

2 4 0.25 8 2 3 3.9871 (2,2) 4.0219 0.0250 3.9969 4.0723 3 4.7245 

3 4 0.50 6.5 1 3 4.5357 (2,2) 4.5392 0.0008 4.5384 4.5392 2 4.7373 
4 4 0.50 16 1 3 8.1705 (3,3) 8.1965 0.0239 8.1725 8.1793 3 8.4987 

5 4 0.75 9.75 1 3 7.0425 (3,2) 7.0451 0.0014 7.0438 7.0445 2 7.1249 
6 4 0.75 24 1 3 12.6002 (5,3) 12.6125 0.0086 12.6040 12.6054 3 12.7500 

7 5 0.50 90 5 10 42.0968 (5,3) 42.3478 0.1630 42.1849 42.7197 3 44.9991 
8 5 0.50 90 5 15 46.7550 (4,3) 47.0620 0.2215 46.8405 46.8801 3 48.3324 

9 5 0.30 140 8 15 50.9724 (4,3) 51.3558 0.1373 51.2184 51.5278 5 55.5962 
10 5 0.30 140 8 24 57.9336 (3,3) 58.0856 0.0611 58.0246 58.1479 4 62.5721 

11 6 0.40 50 1 3 16.5934 (6,4) 16.6298 0.0258 16.6040 16.7010 5 17.2000 
12 6 0.40 50 2 3 18.0522 (7,3) 18.2419 0.1061 18.1358 18.5207 5 19.6000 

obtained is denoted by A and the new estimation of the average costs is given by 
~(x, T) = g(x, T) - A. Column 12 contains the average costs produced by the Silver-  
Meal-like strategy. Finally, in columns 13 and 14, the results of the cyclic rule can 
be found, namely, the length of each cycle (T) and the corresponding average costs 
per period (CYC). 

The choice of values for N between 4 and 6 results in state spaces whose 
dimension is still within reasonable limits. However, both the computation times and 
the storage requirements increase considerably with N in the calculation of the average 
costs of the optimal policy and the Silver-Meal-like rule. On the contrary, both the 
(x, T)-rule and the cyclic production strategy require low computational effort. 

From the above table, we can observe that although in half of the examples the 
Silver-Meal-like strategy performs better than the (x, /')-rule, the refinement of the latter 
results in costs that are below those of the Silver-Meal-like strategy. In fact, the lowest 
average costs are obtained in every case by applying the four tests included in algorithm 
2 to the best pair (x, T). This produces average costs very close to the optimal average 
costs, with a variation between 0.02% and 0.48%. The cyclic production rule is clearly 
the worst strategy. This is caused by the fact that in this rule, production takes place too 
often even when rl = 0. A closer analysis of the Silver-Meal strategy showed that 
production occurs less frequently than in the optimal policy: production is delayed too 
long and when a set-up is paid, the amount produced is too large. 

The influence of the set-up costs can be observed in tests 3, 4, 5 and 6. An 
increase in s also results in an increase in the values of x and T. This is natural since 
it becomes more expensive to start the production. Therefore, we wait until a larger 
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number of orders for the next period is gathered and we manufacture the known demand 
also for more periods. In the cyclic rule, the same occurs with respect to the production 
cycle which increases from 2 to 3 periods. The effect caused by changes in the penalty 
costs is shown in tests 7, 8, 9 and 10. As one would expect, when late orders become 
more expensive, production starts earlier, but the number of periods covered by each set- 
up remains the same since penalty costs are not incurred when we manufacture. However, 
in the cyclic rule the value of T may decrease as indicated by example 10. Finally, in 
tests 1, 2, 11 and 12, the results of variations in the holding costs can be examined. An 
increase in h affects the value of T in the (x, T)-rule but does not produce any change 
in the T-value of the cyclic strategy. It seems natural that higher holding costs cause a 
decrease in the number of periods for which demand is produced since untimely deliveries 
for periods that are further away lead to larger costs. Regarding the value of x, either 
it remains unchanged like in test 2 or increases as in test 12. The amplitude of the set- 
up costs also influences the x-value in this case. Observe that in test 2, the set-up costs 
are four times larger than the holding costs, while in test 12 they are 25 times higher. 
Hence, in this last case, an increase in h also delays the next set-up. 

The following examples are constructed by assuming demand patterns that are 
closer to real situations than the cases discussed above. We have chosen the binomial 
and the geometric distributions to illustrate the behaviour of the competing production 
rules. Furthermore, the next problems belong to the second group of tests for which 
the cost structure was held fixed and the demand parameters changed. The choice of 
the costs s, h and p was arbitrary, but followed the same criteria as in the binary 
demand examples, i.e. s > p > h. The main difference occurs in the s-value, which is 
considerably larger compared to h and p. This choice is due to the demand patterns 
selected in which a higher number of orders is present. Due to the large dimension 
of the state spaces involved, the average costs of the Silver-Meal-like rule are 
obtained by means of simulation. For a fixed set of values for the parameters N, s, 
h and p, and a given demand pattern, the average costs per period for each lot-sizing 
rule are determined by considering different coefficients of variation for the demand. 
If X is a random variable denoting the amount of product ordered by the customers 
of a group during a certain period, then the quantity cv = ~ / E ( X )  can be used 
to measure the variability of the demand. By assuming the same demand distribution 
for every group of customers and trying different parameter combinations in such a 
way that the expected amount ordered per period is always the same, we can analyse 
the behaviour of the heuristics for different coefficients of variation (cv). 

Figure 5 depicts the results obtained for a set of test problems with a maximum 
lead time of N = 4 periods, set-up costs s = 75, holding costs h = 1 and penalty costs 
p = 2. The demand in every group of customers follows a binomial distribution with 
mean np such that 

j p J(1 - p ) n - j ,  i = 1 . . . . .  N, 

with j = O  ..... n, n > O  and O < p <  1. 
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Figure 5. Binomial demand with mean 4. 

We first fixed the mean number of  ordered units of  product at n p  = 4 and 

combined n ~ [5, 200] with p ~ [0.02, 0.80] in such a way that for each test problem 
and each group of customers n p  = 4. As a result, c v  lies in the interval [0.224, 0.495]. 

In figure 5, we can observe the progress of  the average costs per period in the 
cyclic production rule (g.), in the Silver-Meal-l ike strategy (gsm) and in the (x, T)- 
rule (g(x, T)). In each test problem, the latter rule gives the optimal pair (23, 2) to 
which the refinement discussed in subsection 5.1.1 is applied in order to obtain 
improved average costs denoted by g ( x ,  T). As is expected, the cyclic rule is not 
affected by the coefficient of  variation. As the relative variability of the demand 
increases, the average costs in the remainder strategies decrease gradually except for 
the Silver-Meal-l ike rule in the neighbourhood of  c v  = 0.5. Since demand is binomial, 
by (18) it can be shown that each ri with 2 < i < N also follows a binomial distribution. 
An increasing coefficient of  variation corresponds to an increase in the maximum 
number of orders that can be placed by every group of customers (i.e. the parameter 
n of  the distribution) and to a decrease in the parameter p. Consequently, the distribution 
of the components of  the order state vector become skewed to the left and the larger 
c v  is, the more pronounced is the skewness. Furthermore, the probabilities P ( r  i = £i) 

also decrease with the coefficient of variation. The combination of these elements 
- variability, skewness and smaller probabilities for the orders in r i - yields lower 
average costs per period since savings in holding costs are obtained as a result of  
fewer orders. The Silver-Meal-l ike strategy slightly deviates from this pattern, but 
its more unstable behaviour is probably due to the fact that simulation is used to 
determine the average costs. The refinement of the (x, T)-rule gives in all cases the 
best results and this becomes more evident as the relative variability of the demand 
increases. In many situations, cost savings are achieved by deviating from the pair 
(x, T) = (23, 2). This means that for some sequences (r I , r2) such that rl > 23, production 
is postponed. For other sequences with rl < 23, it proves to be cheaper to manufacture 
the orders in r I and r2 instead of delaying the production. An increase in the demand 
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Figure 6. Binomial demand with mean 10. 

variability raises the number of deviations from the pair (x, T), namely, more sequences 
satisfy the inequality in test 2. For this reason, the average costs tend to diminish. 

Enlarging the expected number of orders from 4 to 10 leads to parameter 
variations in the intervals [11,200] and [0.05, 0.91] for n and p, respectively. 
Consequently, cv  E [0.095, 0.308]. The results obtained with N = 4, s = 180, h -  2 
and p = 3 are presented in figure 6. Here, the Si lver-Meal- l ike strategy is more 
stable and performs better than the (x, T)-rule which gives the optimal pair (45, 2). 
However, the refinement of this rule yields lower costs and the cost improvement 
obtained is higher for larger values of cv. As can also be observed in figure 6, the 
variation in the costs g(x, T), ~(x, T) and gs,,, are very small, never exceeding 1.2% 
of the costs of  the cyclic rule. These variations increase with cv  due to the behaviour 
of the distributions for the number of orders which have a similar form to those of 
the first example. 

Figure 7 reports on the results of  several experiments conducted by assuming 
a geometric demand distribution. Like in the binomial case, we also fix the mean 
number of orders per period in, say, c units. Then we consider the demand of each 
group of customers to follow a geometric distribution whose domain is shifted to the 
right so that different parameter variations leading to the same expectation are possible. 
This means that for each i = 1 ..... N, we have 

d U = ( 1 - a ) a  j - k ,  j = k , k + l  . . . . .  

with 0 _ < k < c ,  a(1 - a )  -l + k = c  and 0 <  a <  1. 
Figure 7 depicts the results obtained by taking c = 8, a maximum lead time of  

N = 4 periods and the following cost structure: s = 200, h = 2 and p = 3.5. The values 
of k and tx lie in the intervals [0, 7] and [1/2, 8/9], respectively. The geometric 
distribution is characterized by a wider range of variability as compared to the 
previous examples. This is confirmed by a larger distance between the average costs 
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Figure 7. Geometric demand with mean 8. 

of the cyclic rule and the costs of the other rules. Even when demand is almost 
deterministic, this difference is already significant and with the increase of  cv, it 
almost reaches 9%. The (x, T)-rule shows a better performance than the Si lver -Meal -  
like strategy in all test problems. The best choice for the value of  x varies between 
40 and 37, while T always stays at 2. This means that not only savings in holding 
costs are obtained as a result of the increasing skewness to the left just like in the 
binomial examples, but also lower penalty costs are incurred. The savings in the penalty 
costs are reflected in the optimal x-value and are an outcome of the shifts caused by 
the parameter k. Fixing the mean demand at 8 implies that the min imum number  of  
orders that can be placed by each group of  customers (i.e. k) gradually decreases f rom 
7 to zero. Hence, it becomes more probable to have fewer orders for the first period 
and so it will be cheaper to take a set-up when r I is small. Regarding the impact of  
the refinement applied to each best (x, T) pair, it can be seen that it is also stronger 
compared to the binomial case. The higher relative variability of the demand leads to 
more deviations from the pair (x, T) and thus to larger savings. The deviations occur 
mainly in those sequences (rl, !"2) such that rl > x. Production is then delayed or, instead 
of manufacturing the demand for T = 2 periods, only the orders in r I are produced. 

From the numerical experiments conducted, it appears that the (x, T)-rule 
combined with the improvements provided by the tests of  subsection 5.1.1 gives the 
lowest average costs per period among all the heuristics. The cyclic production rule 
is clearly not suitable for situations of demand variability, as demonstrated by the 
tests. This is not surprising due to the nature of the rule. The Si lver -Meal- l ike  
strategy has in some cases lower average costs compared to the (x, T)-rule even if 
the differences are not very high. Although the refinement of  the (x, T)-rule seems 
to give the best results, the computation times depend on the number  of  different 
values for (r l , . . . ,  rr) that are considered. A way of  avoiding too large computat ion 
times is to pre-specify a smaller precision e while selecting these values. Of course, 
a decrease in the time will be obtained at the expense of a smaller cost improvement.  
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Concerning the practical problem observed in the company which motivated 
our research, it was observed for most of the product types that by choosing a proper 
unit size for the steel pipes, the demand could be modelled by a geometric distribution. 
The choice of the unit size determined the number of categories into which orders 
could fall. Clearly, if a very large scale was used, all orders would belong to the same 
category and a binary demand pattern could be applied. Although this aggregation 
would decrease the quality of the solutions, the computation time, on the other hand, 
would be reduced. 

Our model was integrated in the operations control level of the hierarchical 
production planning system used by the company. The detailed decisions produced 
by the lot-sizing rules for individual items proved to be of great assistance to the 
management, since by capturing the uncertainties in the demand they provided the 
necessary feedback to evaluate the quality of the aggregate planning decisions. 

7. Conclusions 

In this paper, we addressed a stochastic lot-sizing problem inspired by a Dutch 
manufacturer working in the make-to-order sector. The main elements of our problem 
combine highly uncertain demand with fixed delivery dates for the customer orders 
and no possibility for holding safety stocks. The modelling approach consisted of a 
Markov Decision Process, for which a dynamic programming algorithm was presented 
in order to determine the optimal policy and the corresponding long-run average 
costs. In general, this procedure requires a substantial amount of computation and 
data storage due to the large dimension of the state space. In order to obtain 
approximations of the optimal average costs, three lot-sizing rules were presented. 
The first is a simple strategy called the (x, T)-rule where the known orders for the 
next T periods are manufactured if the demand for the current period is at least x 
units. The performance of this rule can be improved by applying a simple set of tests. 
The second lot-sizing rule is a Silver-Meal-like strategy where an estimation of the 
average costs per period is obtained for the best action associated with each order 
state vector. The drawback of having to use dynamic programming to determine the 
average costs can easily be overcome in this case by means of simulation. Finally, 
the third lot-sizing strategy is a fixed cycle production rule which is more appropriate 
for situations with relatively stable demand patterns. From the numerical experiments, 
we could learn that the performance of both the (x, T)-rule and the Silver-Meal rule 
is affected by the level of variability of the demand. The improvement of the (x, T)- 
rule appears to provide the best average costs. This strategy should be particularly 
attractive to practitioners due to its simple nature and also due to the possibility of 
determining the average costs analytically. Comparisons with the optimal average 
costs for binary demand distributions suggest that approximate solutions with the 
(x, T)-rule and the Silver-Meal-like strategy are very good. However, for more 
realistic demand patterns, such comparisons are no longer possible since the optimal 
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policy is not available. In those cases, the evaluation of the quality of the lot-sizing 
rules should be made by comparison with a lower bound, preferably a good lower 
bound, on the optimal average costs. This seems to be an interesting topic for future 
research. At the present stage, capacity constraints are disregarded by our model. 
However, due to the good results obtained with the (x, T)-rule, we could try to follow 
a similar approach to the one used by Van Nunen and Wessels [27]. This would 
consist of first applying the lot-sizing rule and then incorporating the capacity 
requirements by means of a capacity adapting procedure. Another possibility would 
be to adapt directly the lot-sizing rules derived in this paper. In fact, we are presently 
investigating extensions of the three heuristics (Dellaert and Melo [6]) to situations 
with constant available capacity over the planning horizon. From the preliminary 
results obtained so far, the extension of the (x, T)-rule appears to perform rather well, 
especially in situations with tight capacity limits. However, the calculation of the 
average costs becomes more complex due to the fact that it may not always be 
possible to produce the demand for T periods completely. Finally, the combination 
of make-to-order with make-to-stock in one single model also seems worth investigating. 
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