
ELSEVIER Operations Research Letters 18 (1996) 223 232

Ordinal algorithms for parallel machine scheduling

W e i - P i n g L i u a' 1, Je f f rey B. S i d n e y b'*" 1, A n d r 6 v a n Vlie t c

~BelI-Northern Research, P.O. Box 3511, Station C, Ottawa, Ontario, Canada K1Y 4H7
b FaculO, of Administration, Universi~ of Ottawa, Ottawa, Ontario, Canada K1N 6N5

~Econometric Institute, Erasmus Universi O, Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, Netherlands

Received 1 February 1995; revised 1 September 1995

Abstract

The minimization of maximum completion time for scheduling n jobs on m identical parallel machines is an NP-hard
problem for which many excellent heuristic algorithms have been developed. In this paper, the problem is investigated
under the assumption that only limited information about the jobs is available. Specifically, processing times are not
known for the jobs; rather, the ordering of the jobs by processing time is known.

For the cases of two and three parallel machines, algorithms which cannot be improved upon with respect to worst
case performance ratio are developed. For the case of four parallel machines, an algorithm which is near optimal with
respect to worst case performance ratio is developed. For arbitrary m, an algorithm which produces solutions whose
value is at most five-thirds times the optimal value is presented. Finally, it is shown that as the number of machines gets
arbitrarily large, the best possible ordinal algorithm has worst case performance ratio of at least 3/2.

Kevwords: Heuristic scheduling; Parallel machine scheduling

!. Introduction

The problem of minimizing the maximum completion time for scheduling n jobs on m identical parallel
machines (which is denoted by P II Cmax as in [5]), and its well-known relatives the partition problem and the
subset-sum problem, have fascinated many researchers for several decades. Many excellent algorithms have
been developed, and almost any (pragmatically) reasonable level of performance may be obtained in modest
computer time using various approximation schemes. An excellent review may be found in [5].

The problem P 11 Cmax is defined as follows:

Given a set J = { 1 n} of n jobs, where job i has non-negative processing time ai, partition the job set
into m subsets J 1 , J,, so as to minimize the maximum sum of processing times of the jobs in any of the
subsets.

* Corresponding author.
This work was supported under Natural Sciences and Engineering Research Council (NSERC) of Canada operating grant number

A2507.

0167-6377'96/$15.00 £ 1996 Elsevier Science B.V. All rights reserved
SSDI 0 1 6 7 - 6 3 7 7 (9 5) 0 0 0 5 8 - 5

224 W.-P. Liu et al. / Operations Research Letters" 18 (1996) 223 232

In the context of machine scheduling, subset J~ contains the jobs which are assigned for processing on
machine j.

In the current research, it is assumed that the values of the processing times a~ are unknown, but that the
order of the jobs by non-increasing processing time is known, i.e., without loss of generality that
al >t a 2 >/ . . . >1 a n. Algorithms will be developed which depend only upon this rank order data, and the
quality of the algorithms will be evaluated by their worst case performance ratios with respect to the actual
(unknown) data.

For example, suppose m = 2, J = {1, 2} and by assumption a~ ~> a2. The optimal value is al, and this is
achieved by the algorithm which places job i on machine i. The algorithm which places both jobs on machine
1 has a worst case performance ratio of 2, and this occurs for the case of a~ = a2.

More generally, algorithms which utilize only ordinal (rank) data rather than actual magnitudes will be
called ordinal algorithms.

Optimal ordinal algorithms exist for a number of well-known problems. The shortest processing time rule
optimally solves the single machine and the identical parallel machine scheduling problems with minimiz-
ation of mean completion time as the objective [2], and the greedy algorithm solves the maximum weight
sum problem over independent sets in a matroid [4]. A polynomial asymptotically exact algorithm for the
two machine no wait flow shop problem which uses only ordinal data has also been developed [1]. Finally,
Liu and Sidney use an ordinal data model similar to the one used in the current work for the bin packing
problem I-6] and for a packing problem with a target center of gravity [7].

Our main results (Section 2) are summarized in Table 1.

2. General upper bound

Let H denote the value of the heuristic solution given by any of the algorithms for some problem, and let
OPT denote the corresponding optimal value. Thus, for any problem the measure of the quality of an
algorithm will be given by the worst case performance ratio sup {H/OPT}, where the supremum is taken over
all instances of the problem. Let ~i denote the sum of the processing times assigned to machine i (denoted by

k n n Mi), let ni = the number of jobs assigned to machine i, and let Af = ~j=i aj. Finally, let b = A1 = Y~= ~ ai.
The following lemma is trivial to prove.

Lemma 1. Suppose that al >~ a2 >/ "'" >/ ai, ~ = t)tj >/ 1 and 0 ~< 2j (1 <<.j <~ i). Then ai <~ Z~-~ 2jaj.

Lemmas 2 and 3 establish some general properties which provide direction in the search for "good"
algorithms for P I} Cmax.

Table 1

Problem Number of Worst case Ratio
name machines performance ratio tight?

P2 IJ Cm,x 2 4/3 Yes
P3 II C 3 7/5 Yes
P4II Cm.x 4 101/70 ?

m - - I
Pm II Cmax m 1 + - - No

,~ + V m/2 7
Pm II Cmax AS m ~ inf ~> 3/2 ?

W.-P. Liu et al. / Operations Research Letters 18 (1996) 223-232 225

Lemma 2. Suppose that an algorithm a for Pm It Cmax does not have the following two properties:
(i) jobs l to m are assigned to different machines;

(ii) jobs i and 2m + 1 - i are assigned to the same machine.
Then the algorithm has a worst case performance ratio o f at least 3/2.

Proof. First, if 1 ~< i < k ~< m and jobs i and k are assigned to the same machine, then a lgor i thm cr will give
a pe r fo rmance ratio of at least 2 for the p rob lem given by the da ta a~ = 1 (1 ~<j ~< m) and aj = 0 otherwise.

Suppose that condi t ion (i) holds, but not condi t ion (ii). Either of two cases must hold.
Case 1: If at least three jobs on the set { 1, . . . , 2m} are assigned to one machine, then a gives a per formance

rat io of at least 3/2 for the da ta given by a i = 1 (1 ~<j ~< 2m) and a~ = 0 otherwise (O P T = 2 in this case).
Case 2: If case 1 does not hold (nor condi t ion (ii)), then there exist a machine h and two jobs i and k,

1 ~< i < k ~< 2m, such that i + k < 2m + 1, and both i and k are assigned to machine h. These condi t ions
imply that i ~< m - 1 and k < 2m. For the p rob lem given by the da ta

1, 1 <~j<~i,

a j = 1/2, i + 1 ~ < j ~ < 2 m - - i ,

0, 2 m - - i + 1 = j ,

a lgor i thm cr gives a per formance rat io of at least 3/2 (O P T = 1 in this case). []

Lemma 3. Suppose that an algorithm a for Pm L] Cmax with n jobs schedules nijobs on machine i. Then the worst
case peJ?~rmance ratio is at least maxi {ni } /F n/m].

Proof. The stated worst case pe r fo rmance rat io is achieved when all a~'s are equal. []

No te that LB = max{a~, a,, + am+ 1, b/m} is an obvious lower bound for p rob lem size m.
Next we provide an a lgor i thm for the m machine case, whose worst case per formance ratio will be

compu ted in Theo rem 1, and then used in the analysis of the two machine case.

Algorithm P,.
Jobs are assigned to machines as follows: F o r 1 ~< i ~< Lm/2j

{ai } u {a2m+ 1 -i+k~.,+r~m~lk >1 0}.

F o r L m / 2 j + 1 <<,i<~m

',ai}w{az,,+,-i+klm+r,,/2])lk >>- 0}u{a3m+, i+k,,.+rm/z])lk >/0}.

The assignments given by a lgor i thm P,. for the case of m = 7 are i l lustrated in Fig. 1.
Given any machine i, the no ta t ion [h] denotes the index of the hth job to be assigned to machine i.

Lemma 4. ~i - ai <, xAn+l (£for each h ~> 2, [h] - [1] = [h] - i /> (h - l)(1/x),

Proof. Fol lows f rom L e m m a 1. []

Theorem 1. For m >~ 2, algorithm P,, gives a worst case performance ratio no greater than 1 +
(m - 1)/(m + I-m/2]) and for all values o f m >1 2 there are instances o f P,, which achieve this ratio.

2 2 6 W.-P. Liu et al. / Operations Research Letters 18 (1996) 223 232

Machine 1: 1 14 25 36

Machine 2: 2 13 24 35

Machine 3: 3 12 23 34

Machine 4: 4 11 18 22 29 33 40

Machine 5: 5 10 17 21 28 32 39

Machine 6: 6 9 16 20 27 31 38

Machine 7: 7 8 15 19 26 30 37

Fig. 1. Illustration of Algorithm P,n for m = 7.

Proof. The p r o o f of Theo rem 1 begins with the fol lowing lemma. The p r o o f of the lemma, which consists of
s imple a lgebra ic man ipu la t ions , m a y be found in [8].

L e m m a 5. The fo l lowing relationship holds:

(~ i - - a i) ~

2A~'+ 1

3(m - i + 1)

2A7+ 1

3 (m - i + l) + l

n
2Ai + l

3(m - i + 1)

i f m is even and 1 <~i < . m - 1 ,

i f m is odd and 1 <~ i <<. (m - 1)/2,

i f m is odd and (m + 1) / 2 + 1 ~ < i ~ < m - 1 .

(1)

Return ing to the p r o o f of T h e o r e m 1, we cons ider three cases.
Case 1: m is even and 1 <<. i <~ m - l, or m is odd and (m + l) /2 + 1 ~ < i ~ < m - 1.

~i = ai q - (~ i - - al) <~ ai +
2A7+ t

3(m - i + 1)
(by L e m m a 5)

a i
2A~ 2b

+
3 (m - i + 1) 3 (m - i + l)

2 (3 (m - i + l))
- 3 (m - - - - / + 1) -2 a i - - A i l +

2b

3(m - i + 1)

3m -- 5i + 3 2b
<~ al +

3 (m - - i + 1) 3 (m - - i + l)

3 ° - 5 / + 3 2 o
- 3 (m - - i + l) a i + 3 (m - - i + l)

5o 5 i + 3
3(m -- i + 1) max ai,

W.-P. Liu et al. / Operations Research Letters 18 (1996) 223-232 227

t5m
- 2

LB,

5m - 9 LB,
[3m - 3

m is even,

m is odd and (m + 1) / 2 + 1 ~ i ~ < m - 1.

Case 2: m is odd and 1 <~ i <~ (m - 1)/2.

:~i = ai + (~i - - a i) <~ ai 4
2A7+ 1

3 (m - i + l) + 1
(by L e m m a 5)

2A] 2b
: a i ~ -

3 (m - i + 1) + 1 3 (m - i + 1) + 1

2 (3 (m - i + l) + l) 2b

3 (m - i + 1) + 1 2 a ~ - A ~ + 3 (m - i + 1) + 1

~<
3m -- 5i + 4 2b

ai n t-
3 (m - i + 1) + 1 3 (m - i + 1) + 1

3m -- 5i + 4
ai -t-

3 (m - - i + 1) + 1

2m (b)
3 (m - - i + 1) + 1

~<
3 (m - i + l) + l m a x al,

5 m - 1
~< - - - LB.

3 m + l

Case 3: i = m (even and odd) and i = (m + 1)/2 f o r m odd. The p roo f for this case, avai lable in [-8], is similar
to those of cases 1 and 2, and is left as a reference.

With cases 1--3 proved, the first par t of the proof, namely that the worst case per formance ratio is bounded
from above by 1 + (m - 1)/(m + rm/2-]), is complete.

To show the tightness of the 1 + (m - 1) /(m + rm/2~) bound for each m ~> 2, consider a p rob lem instance
consisting of (m - 1) jobs of size 1 and (m - 1)(m + ~m/2-]) jobs of size 1/(m + rrn/2~). One can easily verify
that O P T = 2 and that am = 2 + 2(m - 1)/(m + rm/2~). This gives

~,~ (m - 1)
- 1 +

O P T (m + ~m/2~)

as claimed.
This completes the p roo f of T h e o r e m 1. []

3. Upper bound for two, three and four machines

While the above a lgor i thm gives us a guarantee for all values of m, it would be desirable to improve
upon this bound whenever possible. P rocedure C R E A T E below takes as input the n u m b e r of machines
m and a desired worst case pe r fo rmance ratio r, and a t tempts to find an ordinal a lgor i thm which
achieves r.

228 W.-P . L iu et al. / Operations Research Letters 18 (1996) 223 232

P r o c e d u r e C R E A T E

1. F o r 1 <~ i <~ m / r

r - - 1
Xi - - ~i : O.

m - - i '

F o r m / r < i < ~ m - - 1

r i r
xi = - - ,)'i = - - -- 1.

m m

For i = m

2 (r - 1)
x,, (m - l) ' 2i 0.

2. Fo r 1 ~ < i ~ < m - - 1

Fo r i = m

+1}

l 1 °+1'1 t m = + 1 .
Xm X m

3. If for each k /> 1 the relat ion ~i%ll {h e J~lh <~ k}l /> k holds then an ordinal a lgor i thm which achieves
r m a y be ob ta ined by altering J~ th rough executing steps (a) and (b) below as required:

(a) el iminate a j ob f rom J~;
(b) replace a job h in Ji with a job h' > h.

Step 1 above generates an inequali ty which, when satisfied, guarantees that ~i ~< rLB. Fo r example, if
1 ~< i ~< m - 1, the inequali ty is

Ai
O~i <~ a i q- x i - - a i q- b - - A

x i

+ m x i (b) (since iai <~Ail) ~<ai(1 + 2 i - ixi)

~<(1 +).i - ixi + m x i) L B (since 1 +).i - ixi >~ O)

= rLB (by step 1). (2)

Fo r i = m, similar analysis yields a,, ~< rLB provided r ~ 1 + (m - 1)/(m + 1), a condi t ion which will be
satisfied for all "useful" values of r. Thus, provided r ~< 1 + (m - 1)/(m + 1), the inequalities in step
1 guaran tee that the bound of r is satisfied.

In step 2, for each i ~< m a set J~ which satisfies the inequalities of step 1 is found. Fo r i ~< m - 1, the
defining condi t ions in step 2 are based on the observa t ion that 1 + L(k + 2~ - i) /x~J represents the m a x i m u m
n u m b e r of elements ~<k that can be assigned to J~ so that L e m m a 1 applied to J~ will yield (3). Fo r i = m, the
cor responding expression is

2 + [k- (m + 1) i x =

W.-P. Liu et al. / Operations Research Letters' 18 (1996) 223 232 229

Step 3 states that if for each k the total of these maxima is at least k, then there is a feasible ordinal
a lgori thm which achieves r, and at least one such algori thm is easily generated from the sets given in step 2.

Applicat ion of Procedure C R E A T E yields algori thms for the two, three and four machine cases as follows:

Two machines: Algorithm P(2)
With m = 2 and r = 4/3, Procedure C R E A T E produces the part i t ion P2 (the special case of algori thm

P,, for m = 2), so we take P(2) = P2-

Three machines: Al#orithm P(3)
With m = 3 and r = 7/5, Procedure C R E A T E gives xl = 1/5, x 2 = X 3 = 2/5 and, at the end of step 2,

J1 = [1 } u { 6 + 5i]i >~0},

' ~ to{5+5i l i>~O}u{7+5i l i>~O} , J 2 ~--- ,~2~

J3 -- 13, 4} w {7 + 5ili >>- 0}to{9 + 5ill >~ 0}.

One realization of step 3 yields the algori thm P,, for m = 3, so we take P(3) = P3.

Four machines: Algorithm P(4)
With m = 4 and r = 13/9, Procedure C R E A T E allows us a choice in step 3, one possible result of which is

J l ~

J 2 =

J 3 =

J4 =

[1}to{8 + 7i[i >~ 0},

{2} to{7+ 14 i [i~>0}w{l l + 1 4 i l i ~ > 0 } u [1 6 + 14ili>~0~,

~3, u ' ~ { 6 + 1 4 i l i > ~ 0 } u { 9 + 1 4 i l i > ~ 0 } w { 1 2 + 14iti>>,O}u{14+ 1 4 i l i ~ > 0 } w { 1 8 + 14i[i>~O I,

14, 5} u { 1 0 + 14ili ~> 0}w{13 + 14ili/> 0}w{17 + 14ili >~ 0}w[19 + 14i]i >~ 0~.

Theorem 2. Algorithms P(2), P(3), and P(4) yield worst case performance ratios of 4/3, 7/5, and 101/70
respectively. These bounds are tiyht for m = 2 and 3. For m = 4, a lower bound on worst case performance ratio
is 23/16 (so that the proven worst case performance ratio of 101/70 is less than 0.4% above the lower bound).

Proof. The stated upper bounds for P(2) and P(3) are guaranteed by the use of Procedure C R E A T E to
synthesize the algorithms. While C R E A T E provides a guarantee of 13/9 for P(4), we shall prove the better
bound of 101/70.

To prove the lower bounds, we deal with each algori thm separately.
To prove tightness for P(2), we may without loss of generality assume that n = 4, and that al is assigned to

machine Ml. If an algori thm assigns at least o n e o f a2, a 3 or a4 to MI, then for al = 3, a2 = as = a4 = 1 we
have O P T = 3 and H >~ 4. On the other hand, if an algori thm assigns a2, a3 and a4 to M2, then for
al = a 2 = a 3 = a 4 = 1 we have O P T = 2 a n d H = 3 .

We now prove tightness for P(3). By Lemma 2, we may assume that jobs i and (7 - i) are assigned to
machine i, for 1 ~ i ~ < 3 . Choose n = 11. Then (i)n l ~<2, for otherwise the data set al = 1,
a2 a l l = ~ gives H > ~ and O P T = 1; (ii) n2 ~<4, for otherwise the data set al = a 2 = 1 and
a3 al l = ~ gives H ~> ~ and O P T = 1; (iii) j ob 7 must be assigned to Ms, for otherwise the data set
al = a2 = 1, a3 av = ½, as a, = 0 gives H ~> ~ and O P T = 1; (iv) n 3 ~< 4, for otherwise the
data set al a4 = 1, as a7 = ½ and as a l l = ¼ gives H >~ 2 + ½ + ¼(21 = ~ and
O P T = 2. Obviously one of(i), (ii) and (iv) cannot be true since n = 11. Therefore it is impossible to improve
the ratio 7/5.

The proof of the lower bound of 23/16 is conceptual ly s traightforward but somewhat lengthy, and is left as
a reference [8].

2 3 0 W.-P. Liu et al. / Operations Research Letters 18 (1996) 223 -232

In order to show that the bound will be achieved we can take the following example:

Pl = P2 = 70, P3 Pll = 14, Pt2 P25 = 1. []

4. L o w e r bound

For m machines and n jobs, the set of ordinal algori thms is finite. Let T", denote this set, and let r " , give
the smallest worst case performance ratio P,,. a m o n g the algori thms in T".. Then sup {P"nl n >~ 1} -= 1 + e"
gives the smallest worst case performance ratio over all m machine problems. We show below that em ~> ½ for
sufficiently large m.

T h e o r e m 3. Let n >~ 2m. Then m >~ 18 implies that e m >1 1/2, i.e., the worst case performance ratio is >~ 3/2.for
all algorithms in T",.

Proof . Assume that 1 +em < 3/2. By Lemma 2, we may without loss of generality assume that jobs i and
2m + 1 - i are assigned to machine i for 1 ~< i ~ m.

For each i, 1 <~i<.r2m/3 ~, consider the problem instance given by al a i = 1 and
ai+l a , = (m - i) / (n - i) . For this problem instance, it is easy to see that O P T < I
+ (m - i)/(n - i). In order for 1 + e" to be an upper bound on the worst case performance ratio, we need

1 + (n i - - 1)((m -- i) / (n - - i))
~ 1 + e " ,

(1 + (m -- i)/(n -- i))

which is written as

,3, n i ~ 2 + e m + e " ~ .

For F 2 m / 3 7 + l < ~ i < , m consider the problem instance given by al a2m+l_~= 1 and
a2"+2-i a , = (i - 1) / (n - (2 m + 1 - i)) . For this problem instance, it is easy to see that
O P T < 2 + ((i + 1) / (n - (2m + 1 - i))). In order for 1 + e,, to be an upper bound on the worst case
performance ratio, we need

2 + (n, - 2)((i -- 1)/(n - (2m + 1 - i)))
4 1 +era,

(2 + ((i - 1)/(n - (2m + 1 - i))))

which is rewritten as

(n - - (2 m + l - - i))
n~ <<. 3 + e" + 2era ~ ~] . (4)

By (3) and (4), and letting 0 = [-2m/3 7,

n i ~ ~ (era+ (~ ((n - - 2 m - - l + i)) 2 + em\-~-~-i_iJj+ 3+em +2e" - . (5) n =
i = 1 i = 1 i = 0 + 1 1 - - 1

Dividing (5) by n and letting n approach infinity yields

o 1 ~ 1 m-1 1 , . - 1 1
l ~ < e " ~ + 2 e " ~ - - -e" ~ - + 2 e " ~ -=--e"ck(m). (6)

m - - i i 1 t t i = : 1 i = 0 + 1 i=m 0 i :O

W.-P. Liu et al. / Operations Research Letters 18 (1996) 223-232 231

Table 2

m Lower bound

2 1.3333

3 1.4000

4 1.4375
5 1.3704

6 1.4539

7 1.4542

8 1.4485

9 1.4775

10 1.4776

11 1.4744

12 1.4891
13 1.4892

14 1.4872

15 1.4961

16 1.4961
17 1.4947

18 1.5000

To evaluate the sums in (6), let r and s be positive integers with r ~< s. Thus

~ 1 ~+1,,2 (s_+ 1/2"] [
• = Jr-- 1/2 X

Applying this inequality to (6) yields

1
e,,,> (m-l/2) (. m ~ 1 / 2 ~---~(m)~>qS-l(m)' (7)

In m - ~3-] -~ -- 1/2 + 2 In \ [2m/3] - 1/2}
Straightforward calculations show that qS-l(m) > ½ for 18 ~< m ~< 20 and ¢(m) > ½ for 21 ~< m ~< 23. The

reader may verify that for m >~ 3, ff(rn + 3) > ¢(m). Hence, for m >~ 18, the assumption that 1 + em < 3/2
cannot hold. []

Previously, we have shown that 4/3 and 7/5 are tight lower bounds on 1 + e 2 and 1 + e3 respectively, and
that 23/16 is a lower bound on 1 + e4. For m = 5 to 17, the right-hand side of relation (7) is less than 1.5, and
hence these right-hand-side values are lower bounds on 1 + e,, for these values of re. We may summarize our
results in Table 2.

5. Future directions

We have described herein algorithms for parallel machine scheduling with ordinal data which are optimal
with respect to worst case performance for two and three machines, near optimal for four machines, and
whose worse case performance ratio is bounded by 1 + (m - 1)/(m + [m / 2]) for all other values of m.
However, for m greater than 4, it is probable that algorithms with much better worst case performance than
that of P,~ exist. The authors would propose as an open problem to find a "'generic" algorithm which achieves
the best possible worst case performance ratio for each m. Numerical experiments show that the bound of

232 w.-P. Liu et al. / Operations Research Letters 18 (1996) 223 232

1 + (m - 1)/(m + rrn/2J) given by Pm is not achievable t h rough p rocedure C R E A T E for m/> 8. The au thors
believe tha t f inding the "generic" a lgo r i t hm above will require some new insights.

There are m a n y o the r schedul ing p rob l ems where ordinal , or some weaker var ian t of ordinal , a lgor i thms
could be developed, and we would p ropose tha t inves t iga t ions to find good a lgor i thms for these p rob lems
would be of interest to the schedul ing communi ty .

Acknowledgements

The au tho r s wish to express their app rec i a t i on to Dr. Hans Kel leher of the Ins t i tu t ftir Statist ik,
O k o n o m e t r i e und Ope ra t i ons Research, Universit~it Graz , Austr ia .

References

[1] A. Agnetis, "No-wait flow shop scheduling with large lot size", Rap. 16.89, Dipartimento di Informatica e Sistemistica, Universita
Degli Studi di Roma "La Sapienza", Rome, Italy, 1989.

[2] W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling, Addison-Wesley, Reading, MA, 1967.
[3] R.L. Graham, "Bounds on multiprocessing timing anomalies", SIAM J. Appl. Math. 17, 416 429 (1969).
[4] E.L. LaMer, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, Toronto, 1976.
[5] E.L. LaMer, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, "Sequencing and scheduling: algorithms and complexity",

Centre for Mathematics and Computer Science Report BS-R8909, Stichting Mathematisch Centrum, Amsterdam, 1989.
[6] W.-P. Liu and J.B. Sidney, "Bin packing using semi-ordinal data", Operations Research Letters 19 (1996) to appear.
[7] W.-P. Liu and J.B. Sidney, "Ordinal algorithms for packing with target center of gravity", Order, to appear.
[8] W.-P. Liu, J.B. Sidney and A. van Vliet, "Ordinal algorithms for parallel machine scheduling", Working Paper 95-57, Faculty of

Administration, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, 1995.

