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Abstract 

The minimization of maximum completion time for scheduling n jobs on m identical parallel machines is an NP-hard 
problem for which many excellent heuristic algorithms have been developed. In this paper, the problem is investigated 
under the assumption that only limited information about the jobs is available. Specifically, processing times are not 
known for the jobs; rather, the ordering of the jobs by processing time is known. 

For the cases of two and three parallel machines, algorithms which cannot be improved upon with respect to worst 
case performance ratio are developed. For the case of four parallel machines, an algorithm which is near optimal with 
respect to worst case performance ratio is developed. For arbitrary m, an algorithm which produces solutions whose 
value is at most five-thirds times the optimal value is presented. Finally, it is shown that as the number of machines gets 
arbitrarily large, the best possible ordinal algorithm has worst case performance ratio of at least 3/2. 

Kevwords: Heuristic scheduling; Parallel machine scheduling 

!. Introduction 

The problem of minimizing the maximum completion time for scheduling n jobs on m identical parallel 
machines (which is denoted by P II Cmax as in [5]), and its well-known relatives the partition problem and the 
subset-sum problem, have fascinated many researchers for several decades. Many excellent algorithms have 
been developed, and almost any (pragmatically) reasonable level of performance may be obtained in modest 
computer time using various approximation schemes. An excellent review may be found in [5]. 

The problem P 11 Cmax is defined as follows: 

Given a set J = { 1 . . . . .  n} of n jobs, where job i has non-negative processing time ai, partition the job set 
into m subsets J 1  . . . .  , J,, so as to minimize the maximum sum of processing times of the jobs in any of the 
subsets. 
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In the context of machine scheduling, subset J~ contains the jobs which are assigned for processing on 
machine j. 

In the current research, it is assumed that the values of the processing times a~ are unknown, but that the 
order of the jobs by non-increasing processing time is known, i.e., without loss of generality that 
al >t a 2 >/ . . .  >1 a n. Algorithms will be developed which depend only upon this rank order data, and the 
quality of the algorithms will be evaluated by their worst case performance ratios with respect to the actual 
(unknown) data. 

For example, suppose m = 2, J = {1, 2} and by assumption a~ ~> a2. The optimal value is al,  and this is 
achieved by the algorithm which places job i on machine i. The algorithm which places both jobs on machine 
1 has a worst case performance ratio of 2, and this occurs for the case of a~ = a2. 

More generally, algorithms which utilize only ordinal (rank) data rather than actual magnitudes will be 
called ordinal algorithms. 

Optimal ordinal algorithms exist for a number of well-known problems. The shortest processing time rule 
optimally solves the single machine and the identical parallel machine scheduling problems with minimiz- 
ation of mean completion time as the objective [2], and the greedy algorithm solves the maximum weight 
sum problem over independent sets in a matroid [4]. A polynomial asymptotically exact algorithm for the 
two machine no wait flow shop problem which uses only ordinal data has also been developed [1]. Finally, 
Liu and Sidney use an ordinal data model similar to the one used in the current work for the bin packing 
problem I-6] and for a packing problem with a target center of gravity [7]. 

Our main results (Section 2) are summarized in Table 1. 

2. General upper bound 

Let H denote the value of the heuristic solution given by any of the algorithms for some problem, and let 
OPT denote the corresponding optimal value. Thus, for any problem the measure of the quality of an 
algorithm will be given by the worst case performance ratio sup {H/OPT}, where the supremum is taken over 
all instances of the problem. Let ~i denote the sum of the processing times assigned to machine i (denoted by 

k n n Mi), let ni = the number of jobs assigned to machine i, and let Af = ~j=i aj. Finally, let b = A1 = Y~= ~ ai. 
The following lemma is trivial to prove. 

Lemma 1. Suppose  that al >~ a2 >/ "'" >/ ai, ~ = t  )tj >/ 1 and 0 ~< 2j (1 <<.j <~ i). Then  ai <~ Z~-~ 2jaj.  

Lemmas 2 and 3 establish some general properties which provide direction in the search for "good" 
algorithms for P I} Cmax. 

Table 1 

Problem Number  of Worst  case Ratio 
name machines performance ratio tight? 

P2 IJ Cm,x 2 4/3 Yes 
P3 II C .... 3 7/5 Yes 
P4II Cm.x 4 101/70 ? 

m - - I  
Pm II Cmax m 1 + - -  No  

,~ + V m/2 7 
Pm II Cmax AS m ~ inf ~> 3/2 ? 



W.-P. Liu et al. / Operations Research Letters 18 (1996) 223-232 225 

Lemma 2. Suppose that an algorithm a for  Pm It Cmax does not have the following two properties: 
(i) jobs l to m are assigned to different machines; 

(ii) jobs i and 2m + 1 - i are assigned to the same machine. 
Then the algorithm has a worst case performance ratio o f  at least 3/2. 

Proof.  First, if 1 ~< i < k ~< m and jobs  i and k are assigned to the same machine,  then a lgor i thm cr will give 
a pe r fo rmance  ratio of  at least 2 for the p rob lem given by the da ta  a~ = 1 (1 ~<j ~< m) and aj = 0 otherwise. 

Suppose  that  condi t ion (i) holds, but  not  condi t ion (ii). Either of two cases must  hold. 
Case 1: If at least three jobs  on the set { 1, . . . ,  2m} are assigned to one machine,  then a gives a per formance  

rat io of at least 3/2 for the da ta  given by a i = 1 (1 ~<j ~< 2m) and a~ = 0 otherwise ( O P T  = 2 in this case). 
Case 2: If case 1 does not  hold (nor condi t ion (ii)), then there exist a machine  h and two jobs  i and k, 

1 ~< i < k ~< 2m, such that  i + k < 2m + 1, and both  i and k are assigned to machine h. These condi t ions 
imply that  i ~< m - 1 and k < 2m. For  the p rob lem given by the da ta  

1, 1 <~j<~i, 

a j =  1/2, i +  1 ~ < j ~ < 2 m - - i ,  

0, 2 m - - i +  1 = j ,  

a lgor i thm cr gives a per formance  rat io of at least 3/2 ( O P T  = 1 in this case). [] 

Lemma 3. Suppose that an algorithm a for  Pm L] Cmax with n jobs schedules nijobs on machine i. Then the worst 
case peJ?~rmance ratio is at least maxi {ni } /F n/m ]. 

Proof.  The stated worst  case pe r fo rmance  rat io is achieved when all a~'s are equal. [ ]  

No te  that  LB = max{a~,  a,, + am+ 1, b/m} is an obvious  lower bound  for p rob lem size m. 
Next  we provide  an a lgor i thm for the m machine  case, whose worst  case per formance  ratio will be 

compu ted  in Theo rem 1, and then used in the analysis of  the two machine  case. 

Algorithm P,. 
Jobs  are assigned to machines  as follows: F o r  1 ~< i ~< Lm/2j  

{ai } u {a2m+ 1 -i+k~.,+r~m~lk >1 0}. 

F o r L m / 2 j +  1 <<,i<~m 

',ai}w{az,,+,-i+klm+r,,/2])lk >>- 0}u{a3m+,  i+k,,.+rm/z])lk >/0}. 

The  assignments  given by a lgor i thm P,. for the case of  m = 7 are i l lustrated in Fig. 1. 
Given  any machine  i, the no ta t ion  [h] denotes  the index of the hth job  to be assigned to machine  i. 

Lemma 4. ~i - ai <, xAn+l (£for each h ~> 2, [h] - [1] = [h] - i /> (h - l)(1/x), 

Proof.  Fol lows f rom L e m m a  1. [ ]  

Theorem 1. For m >~ 2, algorithm P,, gives a worst case performance ratio no greater than 1 + 
(m - 1)/(m + I-m/2]) and for  all values o f  m >1 2 there are instances o f  P,, which achieve this ratio. 
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Machine 1: 1 14 25 36 .... 

Machine 2: 2 13 24 35 .... 

Machine 3: 3 12 23 34 .... 

Machine 4: 4 11 18 22 29 33 40 .... 

Machine 5: 5 10 17 21 28 32 39 .... 

Machine 6: 6 9 16 20 27 31 38 .... 

Machine 7: 7 8 15 19 26 30 37 .... 

Fig. 1. Illustration of Algorithm P,n for m = 7. 

Proof.  The  p r o o f  of Theo rem 1 begins with the fol lowing lemma.  The  p r o o f  of the lemma,  which consists  of 
s imple a lgebra ic  man ipu la t ions ,  m a y  be found in [8]. 

L e m m a  5. The  fo l lowing  relationship holds: 

( ~ i - - a i ) ~  

2A~'+ 1 

3(m - i + 1) 

2A7+ 1 

3 ( m - i + l ) + l  

n 
2Ai + l 

3(m - i + 1) 

i f  m is even and 1 <~i < . m - 1 ,  

i f  m is odd and 1 <~ i <<. (m - 1)/2, 

i f  m is odd and (m + 1 ) / 2 +  1 ~ < i ~ < m - 1 .  

(1) 

Return ing  to the p r o o f  of  T h e o r e m  1, we cons ider  three cases. 
Case 1: m is even and 1 <<. i <~ m - l, or m is odd and (m + l) /2 + 1 ~ < i ~ < m -  1. 

~i = ai  q - ( ~ i  - -  al) <~ ai + 
2A7+ t 

3(m - i + 1) 
(by L e m m a  5) 

a i 
2A~ 2b 

+ 
3 ( m - i +  1) 3 ( m - i + l )  

2 ( 3 ( m - i + l ) )  
- 3 ( m - - - - / +  1) -2 a i - - A i l  + 

2b 

3(m - i + 1) 

3m -- 5i + 3 2b 
<~ al + 

3 ( m - - i +  1) 3 ( m - - i + l )  

3 ° - 5 / + 3  2 o  
- 3 ( m - - i + l )  a i + 3 ( m - - i + l )  

5o  5 i + 3  
3(m -- i + 1) max  ai, 
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t5m 
- 2  

LB, 

5m - 9 LB, 
[3m - 3 

m is even, 

m is odd  and  ( m +  1 ) / 2 +  1 ~ i ~ < m -  1. 

Case  2: m is odd and 1 <~ i <~ (m - 1)/2. 

:~i = ai + (~i - -  a i )  <~ ai 4 
2A7+ 1 

3 ( m - i + l ) +  1 
(by L e m m a  5) 

2A] 2b 
: a i ~ -  

3 ( m - i +  1 ) +  1 3 ( m - i +  1 ) +  1 

2 ( 3 ( m - i + l ) + l )  2b 

3 ( m - i +  1 ) +  1 2 a ~ - A ~  + 3 ( m - i +  1 ) +  1 

~< 
3m -- 5i + 4 2b 

ai n t- 
3 ( m - i +  1 ) +  1 3 ( m - i +  1 ) +  1 

3m -- 5i + 4 
ai -t- 

3 ( m - - i +  1 ) +  1 

2m (b) 
3 ( m - - i +  1 ) +  1 

~< 
3 ( m - i + l ) + l m a x  al, 

5 m -  1 
~< - - -  LB. 

3 m +  l 

Case  3: i = m (even and odd) and i = (m + 1)/2 f o r  m odd. The p roo f  for this case, avai lable in [-8], is similar 
to those of cases 1 and 2, and  is left as a reference. 

With cases 1--3 proved,  the first par t  of  the proof,  namely  that  the worst  case per formance  ratio is bounded  
from above  by 1 + (m - 1)/(m + rm/2-]), is complete.  

To  show the tightness of the 1 + (m - 1) /(m + rm/2~)  bound  for each m ~> 2, consider  a p rob lem instance 
consisting of (m - 1) jobs  of  size 1 and  (m - 1)(m + ~m/2-] ) jobs  of size 1/(m + rrn/2~). One can easily verify 
that  O P T  = 2 and that  am = 2 + 2(m - 1)/(m + rm/2~).  This gives 

~,~ (m - 1) 
- 1 +  

O P T  (m + ~m/2~) 

as claimed. 
This completes  the p roo f  of  T h e o r e m  1. [ ]  

3. Upper bound for two, three and four machines 

While the above  a lgor i thm gives us a guarantee  for all values of m, it would be desirable to improve  
upon  this bound  whenever  possible. P rocedure  C R E A T E  below takes as input  the n u m b e r  of  machines  
m and a desired worst  case pe r fo rmance  ratio r, and a t tempts  to find an ordinal  a lgor i thm which 
achieves r. 
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P r o c e d u r e  C R E A T E  

1. F o r  1 <~ i <~ m / r  

r - - 1  
Xi  - -  ~i  : O. 

m - - i '  

F o r m / r < i < ~ m - -  1 

r i r  
xi = - -  , )'i = - -  --  1. 

m m 

For  i = m 

2 ( r -  1) 
x,, ( m - l ) '  2i 0. 

2. Fo r  1 ~ < i ~ < m - - 1  

Fo r  i = m 

+1} 

l 1 °+1'1 t m = + 1  . 
Xm X m 

3. If  for each k />  1 the relat ion ~i%ll  {h e J~lh <~ k}l /> k holds then an ordinal  a lgor i thm which achieves 
r m a y  be ob ta ined  by altering J~ th rough  executing steps (a) and (b) below as required: 

(a) el iminate a j ob  f rom J~; 
(b) replace a job  h in Ji with a job  h' > h. 

Step 1 above  generates  an inequali ty which, when satisfied, guarantees  that  ~i ~< rLB. Fo r  example,  if 
1 ~< i ~< m - 1, the inequali ty is 

Ai 
O~i <~ a i q- x i - -  a i q- b - -  A 

x i  

+ m x i ( b )  (since iai <~Ail) ~<ai(1 + 2 i -  ixi)  

~<(1 + ).i - ixi + m x i ) L B  (since 1 + ).i - ixi >~ O) 

= rLB (by step 1). (2) 

Fo r  i = m, similar analysis yields a,, ~< rLB provided r ~ 1 + (m - 1)/(m + 1), a condi t ion which will be 
satisfied for all "useful" values of  r. Thus,  provided r ~< 1 + ( m -  1)/(m + 1), the inequalities in step 
1 guaran tee  that  the bound  of r is satisfied. 

In step 2, for each i ~< m a set J~ which satisfies the inequalities of  step 1 is found. Fo r  i ~< m - 1, the 
defining condi t ions in step 2 are based on the observa t ion  that  1 + L(k + 2~ - i ) /x~J  represents the m a x i m u m  
n u m b e r  of  elements  ~<k that  can be assigned to J~ so that  L e m m a  1 applied to J~ will yield (3). Fo r  i = m, the 
cor responding  expression is 

2 +  [k- (m + 1) i x =  
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Step 3 states that  if for each k the total of  these maxima is at least k, then there is a feasible ordinal 
a lgori thm which achieves r, and at least one such algori thm is easily generated from the sets given in step 2. 

Applicat ion of  Procedure  C R E A T E  yields algori thms for the two, three and four machine cases as follows: 

Two machines: Algorithm P(2) 
With m = 2 and r = 4/3, Procedure  C R E A T E  produces the part i t ion P2 (the special case of  algori thm 

P,, for m = 2), so we take P(2) = P2- 

Three machines: Al#orithm P(3) 
With m = 3 and r = 7/5, Procedure  C R E A T E  gives xl = 1/5, x 2 = X 3 = 2/5 and, at the end of step 2, 

J1 = [ 1 } u { 6  + 5i]i >~0}, 

' ~ to{5+5i l i>~O}u{7+5i l i>~O} ,  J 2  ~--- ,~2~ 

J3 -- 13, 4} w {7 + 5ili >>- 0}to{9 + 5ill >~ 0}. 

One  realization of  step 3 yields the algori thm P,, for m = 3, so we take P(3) = P3. 

Four machines: Algorithm P(4) 
With m = 4 and r = 13/9, Procedure  C R E A T E  allows us a choice in step 3, one possible result of which is 

J l  ~ 

J 2  = 

J 3  = 

J4 = 

[1}to{8 + 7i[i >~ 0}, 

{2} to{7+  14 i [ i~>0}w{l l  + 1 4 i l i ~ > 0 } u [ 1 6 +  14ili>~0~, 

~3, u '  ~ { 6 +  1 4 i l i > ~ 0 } u { 9 +  1 4 i l i > ~ 0 } w { 1 2 +  14iti>>,O}u{14+ 1 4 i l i ~ > 0 } w { 1 8 +  14i[i>~O I, 

14, 5} u { 1 0  + 14ili ~> 0}w{13 + 14ili/> 0}w{17 + 14ili >~ 0}w[19  + 14i]i >~ 0~. 

Theorem 2. Algorithms P(2), P(3), and P(4) yield worst case performance ratios of 4/3, 7/5, and 101/70 
respectively. These bounds are tiyht for m = 2 and 3. For m = 4, a lower bound on worst case performance ratio 
is 23/16 (so that the proven worst case performance ratio of 101/70 is less than 0.4% above the lower bound). 

Proof.  The stated upper  bounds  for P(2) and P(3) are guaranteed by the use of  Procedure  C R E A T E  to 
synthesize the algorithms. While C R E A T E  provides a guarantee of  13/9 for P(4), we shall prove the better 
bound  of 101/70. 

To prove the lower bounds,  we deal with each algori thm separately. 
To prove tightness for P(2), we may  without  loss of  generality assume that n = 4, and that  al is assigned to 

machine Ml.  If an algori thm assigns at least o n e  o f  a2,  a 3 or  a4 to MI,  then for al = 3, a2 = as = a4 = 1 we 
have O P T  = 3 and H >~ 4. On  the other  hand, if an algori thm assigns a2, a3 and a4 to M2, then for 
al = a 2  = a 3 = a 4 =  1 we have O P T = 2 a n d H = 3 .  

We now prove tightness for P(3). By Lemma 2, we may  assume that  jobs i and (7 - i) are assigned to 
machine i, for 1 ~ i ~ < 3 .  Choose  n =  11. Then ( i )n l  ~<2, for otherwise the data  set al = 1, 
a2 . . . . .  a l l  = ~  gives H > ~  and O P T  = 1; (ii) n2 ~<4, for otherwise the data  set al = a 2  = 1 and 
a3 . . . . .  al l  = ~ gives H ~> ~ and O P T  = 1; (iii) j ob  7 must  be assigned to Ms, for otherwise the data  set 
al = a2 = 1, a3 . . . . .  av = ½, as . . . . .  a, = 0 gives H ~> ~ and O P T  = 1; (iv) n 3 ~< 4, for otherwise the 
data  set al . . . . .  a4 = 1, as . . . . .  a7 = ½ and as . . . . .  a l l  = ¼ gives H >~ 2 + ½ + ¼(21 = ~ and 
O P T  = 2. Obviously  one of(i), (ii) and (iv) cannot  be true since n = 11. Therefore it is impossible to improve 
the ratio 7/5. 

The proof  of the lower bound  of 23/16 is conceptual ly s traightforward but somewhat  lengthy, and is left as 
a reference [8]. 
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In order  to show that the bound  will be achieved we can take the following example: 

Pl = P2 = 70, P3 . . . . .  Pll  = 14, Pt2 . . . . .  P25 = 1. [ ]  

4. L o w e r  bound 

For  m machines and n jobs, the set of  ordinal  algori thms is finite. Let T",  denote this set, and let r " ,  give 
the smallest worst  case performance ratio P,,. a m o n g  the algori thms in T".. Then sup {P"nl n >~ 1} -= 1 + e" 
gives the smallest worst  case performance ratio over all m machine problems. We show below that em ~> ½ for 
sufficiently large m. 

T h e o r e m  3. Let n >~ 2m. Then m >~ 18 implies that e m >1 1/2, i.e., the worst case performance ratio is >~ 3/2.for 
all algorithms in T",. 

Proof .  Assume that 1 +em < 3/2. By Lemma 2, we may  without  loss of  generality assume that jobs i and 
2m + 1 - i are assigned to machine i for 1 ~< i ~ m. 

For  each i, 1 <~i<.r2m/3 ~, consider the problem instance given by al . . . . .  a i =  1 and 
ai+l . . . . .  a , = ( m - i ) / ( n - i ) .  For  this problem instance, it is easy to see that O P T < I  
+ (m - i)/(n - i). In order  for 1 + e" to be an upper  bound  on the worst case performance ratio, we need 

1 + (n i  - -  1)((m -- i ) / ( n  - -  i ) )  
~ 1 + e " ,  

(1 + (m -- i)/(n -- i)) 

which is written as 

,3, n i ~ 2 + e m + e "  ~ . 

For  F 2 m / 3 7 + l < ~ i < , m  consider the problem instance given by al . . . . .  a2m+l_~= 1 and 
a2"+2-i . . . . .  a , = ( i - 1 ) / ( n - ( 2 m +  1 - i ) ) .  For  this problem instance, it is easy to see that 
O P T  < 2 + ((i + 1 ) / ( n -  (2m + 1 -  i))). In order  for 1 + e,, to be an upper bound  on the worst case 
performance ratio, we need 

2 + (n, - 2)((i -- 1)/(n - (2m + 1 - i))) 
4 1  +era,  

(2 + ((i - 1)/(n - (2m + 1 - i)))) 

which is rewritten as 

( n - - ( 2 m  + l - - i ) )  
n~ <<. 3 + e" + 2era ~ ~ ] . (4) 

By (3) and (4), and letting 0 = [-2m/3 7, 

n i ~  ~ (  era+ ( ~ (  ( n - - 2 m - - l + i ) )  2 +  em\-~-~-i_iJj+ 3+em +2e"  - . (5) n =  
i = 1  i = 1  i = 0 + 1  1 - -  1 

Dividing (5) by n and letting n approach  infinity yields 

o 1 ~ 1 m-1 1 , . - 1  1 
l ~ < e "  ~ + 2 e "  ~ - - -e"  ~ - + 2 e "  ~ -=--e"ck(m). (6) 

m - - i  i 1 t t i =  : 1  i = 0 + 1  i=m 0 i :O  
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Table 2 

m Lower bound 

2 1.3333 

3 1.4000 

4 1.4375 
5 1.3704 

6 1.4539 

7 1.4542 

8 1.4485 

9 1.4775 

10 1.4776 

11 1.4744 

12 1.4891 
13 1.4892 

14 1.4872 

15 1.4961 

16 1.4961 
17 1.4947 

18 1.5000 

To evaluate the sums in (6), let r and s be positive integers with r ~< s. Thus 

~ 1 ~+1,,2 (s_+ 1/2"] [ 
• = Jr-- 1/2 X 

Applying this inequality to (6) yields 

1 
e,,,> ( m-l/2 ) (. m ~ 1 / 2  ~---~(m)~>qS-l(m)' (7) 

In m - ~3-] -~  -- 1/2 + 2 In \ [2m/3]  - 1/2} 
Straightforward calculations show that qS-l(m) > ½ for 18 ~< m ~< 20 and ¢(m) > ½ for 21 ~< m ~< 23. The 

reader may verify that for m >~ 3, ff(rn + 3) > ¢(m). Hence, for m >~ 18, the assumption that 1 + em < 3/2 
cannot hold. [] 

Previously, we have shown that 4/3 and 7/5 are tight lower bounds on 1 + e 2 and 1 + e3 respectively, and 
that 23/16 is a lower bound on 1 + e4. For m = 5 to 17, the right-hand side of relation (7) is less than 1.5, and 
hence these right-hand-side values are lower bounds on 1 + e,, for these values of re. We may summarize our 
results in Table 2. 

5. Future directions 

We have described herein algorithms for parallel machine scheduling with ordinal data which are optimal 
with respect to worst case performance for two and three machines, near optimal for four machines, and 
whose worse case performance ratio is bounded by 1 + (m - 1)/(m + [ m / 2 ] )  for all other values of m. 
However, for m greater than 4, it is probable that algorithms with much better worst case performance than 
that of  P,~ exist. The authors would propose as an open problem to find a "'generic" algorithm which achieves 
the best possible worst case performance ratio for each m. Numerical  experiments show that the bound of 
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1 + (m - 1)/(m + rrn/2J)  given by Pm is not  achievable  t h rough  p rocedure  C R E A T E  for m/> 8. The  au thors  
believe tha t  f inding the "generic" a lgo r i t hm above  will require  some new insights. 

There  are  m a n y  o the r  schedul ing p rob l ems  where  ordinal ,  or  some weaker  var ian t  of  ordinal ,  a lgor i thms 
could  be developed,  and  we would  p ropose  tha t  inves t iga t ions  to find good  a lgor i thms  for these p rob lems  
would  be of  interest  to the schedul ing communi ty .  
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