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Inflation, Endogenous Market Segmentation and the
Term Structure of Interest Rates

Casper G. de Vries*  Xuedong Wang'

May 18, 2015

Abstract

The term structure of interest rates does not adhere to the expectations hy-
pothesis, possibly due to a risk premium. We consider the implications of a risk
premium that arises from endogenous market segmentation driven by variable
inflation rates. In the absence of autocorrelation in inflation, the risk premium
is constant. If inflation is correlated, however, the risk premium becomes time
varying and we can rationalize the failure of the expectations hypothesis. In-

direct empirical tests of the model’s implications are provided.
JEL Classification: E43, G12

Keywords: Expectations hypothesis; Term structure; Time-Varying Risk Premia;

Segmented markets; Inflation

1 Introduction

The expectations hypothesis (EH) of the yield curve of interest rates holds that the
n-period yield is a weighted average of the m period yield, m < n, and the expected
(n—m)-period yield. Empirical work has consistently rejected this linear relationship. The
failure of the EH in term structure of the yield curve was first observed by Fama and Bliss

(1987). Many other papers have subsequently documented the same result of Famma, see
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e.g. Campbell and Shiller (1991), Hardouvelis (1994), Gerlach and Smets (1997), Bekaert
and Hodrick (2001) to name a few.
Currently, the main explanation for the rejection of EH in the term structure is the

existence of time varying risk premia.!

Due to the rather small variations in aggregate
consumption, a representative agent model with a standard utility function cannot gener-
ate large and variable risk premia. For this reason, the explanations based on such frame-
work, including the work of Backus, Gregory, and Zin (1989), Donaldson, Johnsen, and
Mehra (1990), den Haan (1995) and Bekaert, Hodrick, and Marshall (1997), encounter dif-
ficulties. The time varying risk premia have been explained by means of habit formation
in preference functions, see e.g. Brandt and Wang (2003), Wachter (2006), or by means of
the Epstein-Zin recursive recursive utility function, as in Bansal and Shaliastovich (2007),
and Rudebusch and Swanson (2012). A different avenue has been followed by Buraschi
and Jiltsov (2005), who rely on a tax wedge.

There is a smaller but growing literature that explains time varying risk premia from
endogenous market segmentation. Limited participation implies that a subset of the pop-
ulation is responsible for the adjustments in financial markets. This generates larger risk
premia than representative agent models in which everyone participates in (complete) fi-
nancial markets. In addition to the exogenous assumption that there are different types of
households, there are two effective ways to generate endogenous segmentation between
households.

One assumption is that financial markets are complete coupled with limited enforce-
ment of financial contracts.? Seppala (2004) compares the real term structure under the no
friction Lucas economy (see Lucas (1978)) and the limited risk-sharing Alvarez-Jermann
economy (Alvarez and Jermann (2001)). Seppala shows that “only the model with limited
risk-sharing can generate enough variation in the term premia to account for the rejections
of expectations hypothesis” (Seppala (2004), p1510).

The second avenue is the segmented market approach. An endogenous market seg-

mentation model was developed by Alvarez, Atkeson, and Kehoe (2002) and (2009). In Al-

ISeveral other explanations have been offered. For example, Bekaert, Hodrick, and Marshall (2001) refer to
the peso problem. Bansal and Zhou (2002) use a regime shifting model, while Sinha (2009) considers learning
behavior.

The idea of limited contract enforceability was first used by Kehoe and Levine (1993) for investigating the
behavior of asset markets. Later it was used by Alvarez and Jermann (2001) for examining the implications of
asset pricing and by Kehoe and Perri (2002) for exploring the implications of the international business cycle.



varez, Atkeson, and Kehoe (2009), the endogenously segmented market model generates
sufficient large variation of the time-varying risk premia to resolve the forward premium
puzzle of exchange rates.

Inspired by the model of Alvarez, Atkeson, and Kehoe (2009), we address the expec-
tations puzzle with an endogenously segmented market model. We solve the model with
correlated inflation and show that this is necessary for rejection of the EH. The intuition
is as follows. In the absence of autocorrelation in inflation, the risk premium is constant.
This is unimportant in the two period model of Alvarez, Atkeson, and Kehoe (2009). But
to explain the the yield curve, one needs a multiperiod model in which pricing kernels are
correlated. If inflation is correlated, however, the risk premium becomes time varying and
we can rationalize the failure of the expectations hypothesis. We also provide a test for the
model by relating the size of the bias to the amount of autocorrelation and the level of the
variance of the money supply shocks.

The remainder of the paper is organized as follows. Section 2 reviews the empirical
tests for the EH in term structure. Section 3 gives a concise description of the model.
Section 4 provides the theoretical proof that the consumption-based model can reslove the
expectations puzzle. Section 5 offers numerical backing. Section 6 presents the empirical

evidence for our results. Section 7 concludes.

2 Empirical Evidence Review

Using postwar U.S. bond yields, Campbell and Shiller (1991) show the values of 3 in

regressions like

Yttmn—m — Yt = CONSt + Pnm (Yt — Yt.m) + error

n—m

are negative and increase in absolute value with maturity » for almost any combination
of maturities between one month and ten years. The EH holds that 5 = 1. This evidence
constitutes the expectations puzzle of the term structure, first documented by Fama and
Bliss (1987) and Campbell and Shiller (1991).> In addition to nominal yields, the real yields
also reject the EH, see Bansal and Shaliastovich (2007) and Sinha (2009).

?A related rejection of the EH exists in the foreign exchange markets. This was first documented by Fama
(1984) and is usually referred to as the forward premium puzzle.



Backus, Foresi, Mozumdar, and Wu (2001) and Buraschi and Jiltsov (2005) use U.S.
data and obtain results similar to Campbell and Shiller (1991). Empirical tests conduct-
ed on interest rates outside the US, however, often show that the EH cannot be rejected
at multiple horizons.* More importantly, empirical results show that yields of long-term
maturities are more likely to violate the EH than yields of short-term maturities. Hardou-
velis (1994) tests the long-term (10-year) and short-term (three-month) bond yields in G7
countries. When the long-term yields are used, five out the seven countries give nega-
tive 8. However, for the short-term yields, all countries have a positive 3, though all of
these are lower than 1. Gerlach and Smets (1997) test the EH with 1-, 3-, 6- and 12-month
Euro-rates. Their results show that the EH cannot be rejected for 35 cases out of the total
51 cases. Longstaff (2000) tested the expectations hypothesis at the extreme short end of
the term structure using overnight, weekly, and monthly repo rates. His results show the
expectations hypothesis cannot be rejected at any maturity level.

Table 1 shows the results of our test using Euro-rates for the currencies of 17 countries.
Our results also show that the negative 3, ,,, is not universal. The empirical values of
are either smaller or larger than unity. For example, all the values of 3, ,,, for French franc
rates are larger than unity and increase in n. So the expectations hypothesis is rejected
in two directions and one would also like to be able to account for this. Moreover, the
decreasing trend of 3 in n is observed in only a few countries, such as Australia and the

U.S. While for most countries, this trend is absent.

3 The Model with Segmented Markets

The baseline model that we use is the same with that of Alvarez, Atkeson, and Kehoe
(2009). This section provides a concise description of the model.

In the economy there is an asset market and a goods market. Households can buy
and sell government bonds in the asset market. The Government injects money in the
asset market by paying the maturing bonds. This determines the money growth rate .
In each period, the shock to money growth is the only source of uncertainty in this econ-

omy. At the end of each period, each household receives the same real endowment y.

“For the empirical test of EH for other countries, see Hardouvelis (1994), Evans and Lewis (1994) Gerlach
and Smets (1997), Longstaff (2000), Dominguez and Novales (2000), Bekaert and Hodrick (2001), and Jongen,
Verschoor, and Wolff (2011) et al.



Households sell their endowment at the current price level P; to obtain money Py and
transfer money to the next period for consumption in the goods market or for buying
bonds in the asset market. Money can be transferred between the goods market and the
asset market. Households who transfer money between the two markets have to pay a
real transfer cost . Besides the traditional interpretation for such a cost as the brokerage
fee, the bid-ask spread and the transaction tax, the literature explores more motives for
this cost. Chatterjee and Corbae (1992) view the transfer cost as a cost involved in writing
enforceable private debt contracts. Reis (2006) and Alvarez, Guiso, and Lippi (2012) con-
sider the costs of acquiring, absorbing and processing information. Gust and Lopez-Salido
(2014) interpret the presence of the transfer cost as reflecting time spent on the activities
of re-optimizing and responding to new information, and the human inertia of sticking
to a predetermined plan. Thus one can consider the transfer cost as the aggregate effect
of all kinds of frictions which can be tangible or intangible. The value of ~ varies across
households with a distribution F'(y) and density f(7).

There is no storage technology available in the economy except for money, so the en-
dowment y of each period has to be consumed within the same period. The consumption
of households is subject to the cash-in-advance constraint and the transition law. In period

t, given state s,
P(s" Ny

The resource constraint is given by
[ et 4 st ] £)dy = 62)

where c(s', 7) is the consumption of a household in period ¢ and z(s', 7) is the real balance
that the household chooses to transfer between the two markets. If the value of z(st,~) is
positive, it means that money is transferred from the asset market into the goods market,
and vice versa. The indicator variable z(s',v) is equal to 0 if z(s’,v) is 0, otherwise, it is
equal to 1.

It is assumed that households hold their assets in interest-bearing bonds rather than
cash. This assumption is intuitive because bonds have tended to dominate the zero return

on cash as long as nominal interest rates are positive. With this assumption, we have that

the inflation rate m; is equal to the money growth rate ji;, i.e. 7 = py = Pf; . S0 (3.1) can



be written as

o(st ) = Mi +2(s',7)2(s",7) (3.3)

Households are divided into two types, labeled as the active and inactive households, de-
pending on whether they transfer assets between goods and financial markets or not. We
denote c4(s’,v) as the consumption of an active household for a given s'. The consump-

tion of both kinds of households adds up to

((5) = 2(s' el ) + [ (st )y, with ] © 7 OO
2(st,y) =1, if z(st,y) #0
The expression (3.4) shows the consumption for the financially inactive households is
pinned down by their real money balances y/u: as z(st,v) = 0.

Inflation reduces the consumption of the inactive households from y to y/u:. The
higher the inflation is, the lower the consumption of the inactive households will be. This
effect of inflation causes some households to choose to pay the transfer cost and transfer
some assets from the asset market into the goods market, so that they can compensate their
loss of consumption due to inflation. If transfers are costless, all households would choose
to transfer. The difference in transfer cost leads to the segmentation between households.
The cost reduces the total amount of resources available for consumption. The combina-
tion of inflation and the transfer cost forms the only distortion in the model.

With this feature and the assumption of a complete financial market, the competitive
equilibrium allocations and asset prices can be found from the solution of the planner’s
problem. Recall there is no storage technology, so the social planner’s problem reduces to

a sequence of static optimization problems as

max / Ule(s' ) f()dy (35)

subject to the constraints (3.2) and (3.4). From (3.5), we get that the planning weight for
households of type 7 is just the fraction of households of this type. The requirement for
this simple configuration is that all the households have equal Lagrange multipliers on

their period zero budget constraints.



When z(s') is fixed at 1, the first-order condition for c4 reduces to
U'(ca(s',7)) = Als") (3.6)

where A(s!) is the multiplier on the resource constraint, which is identical for all house-
holds. This result implies that all active households choose the same consumption level
ca(s',7) independent of 7. The reason that c4 is independent of + is that the transfer cost
7 is charged in a lump sum way. This does not have a distorting effect on the consump-
tion of active households. After paying their cost, active households are identical. Thus,
all active households choose the same consumption level. The result that c4 (s, ) is in-
dependent of v combined with the static nature of the problem tells us that c4(s?) only
depends on the current money growth rate 1, so that c4(s') can be denoted as c(u).
The planner’s problem thus reduces to choosing ca () and to determining the frac-
tions of active and inactive households to maximize the social welfare. Denote () as
the threshold at a given money growth rate, which separates the two types of households.
The households with v < 7(u) pay their cost and consume c4 (). Otherwise, the house-
holds choose to be inactive with the consumption level of y /.. For a given 1, the planner’s

problem is thus reduced to choosing c4(x) and 7(u) to solve

max U(ca(u))F(¥(w) +Uy/w[1 — F(3(p))] (3.7)

subject to

B (1) y B
calW)F () + /0 100+ 201 = PG 0)] = v (3.9)

The first-order condition for optimal consumption and the transaction distortion reads’

Ulca(p)) = Uly/pm) +U'(ca(p)) [(y/1) — 3(p) — ca(p)] = 0 (3.9)

The social planner’s problem is consistent with the functioning of the decentralized
economy. In this setup, the asset prices are given by the multipliers on the resource con-

straints for the planner’s problem. From (3.6) these multipliers are equal to the marginal

°See Appendix A for the derivation of (3.9).



utility of active households. Hence, the pricing kernel for nominal bonds is

U’ (calpgr)) 1

m(s',s =90 , 3.10
e ) 10
and for real discounted bonds it is
!
m*(st, sp41) = 5% (3.11)

U’ (ca(p))

Define ¢(11) as the elasticity of the marginal utility of active households to a change in the

money growth rate ;.. Thus,

dlog U (ea(p))

= a2
¢(1) 1oz (3.12)
Define n(u) as the negative derivative of this elasticity to the log of inflation, thus
d*log U" (ca(p))
= A1

The equilibrium features of the model are captured in two Theorems. ©

Theorem 1. As p increase, more households become active. In particular, 7'(1) > 0 for

pu>1and 7'(1) = 0. (Alvarez, Atkeson, and Kehoe (2009), Proposition 2, p. 863)

Theorem 2. The log of the consumption of active households c4(u) is strictly increasing
and strictly concave in log ;s around g = 1. In particular, ¢(1) > 0 and ¢/(1) < 0. (Alvarez,
Atkeson, and Kehoe (2009), Proposition 3, p. 863)

Theorem 1 says that if inflation is positive, the fraction of active households is propor-
tional to the rate of inflation. Theorem 2 implies that if inflation is low, both the elasticity

¢ and its derivative n have positive values.

4 Segmented Markets and The Expectations Puzzle

This section offers a theoretical explanation for the expectations puzzle within the
realm of segmented markets. The benchmark expectations hypothesis of the term struc-

ture of interest rates holds that “the n-period interest rate equals an average of the current

5The proofs are in Alvarez, Atkeson, and Kehoe (2009).



short-term rate and the future short-term rates expected to hold over the n-period hori-
zon” (Walsh (2010), p. 465). According to Campbell and Shiller (1991), the relationship
between a longer-term n-period interest rate R,g") and a shorter-term m-period interest

rate Rgm) can be summarized as:

k—1
R =/k)Y ER) e, k=n/m (4.1)
=0

According to this theory, the yield curve of any bond or deposit satisfies”

m n—m
Ytn = gyt,m +

EtYi+mmn—m + ¢, n>m 4.2)

where y; ; indicates the yield (or interest rate) of a j period bond (or deposit) starting at
period :.

This implies that the slope coefficient 5, ,, in bond yield or deposit interest rate re-
gressions

Yt+mmn—m — Ytn = const + Bn,m (yt,n - yt,m) + error (43)

n—m

equals 1 at all maturities n and time steps m. This follows since with const = 0,

Covlyn — Ym, (n — m)ym,nfm — NYn + MY
mVar(Yn — Ym)

Cov(yn — Ym, 0)

mVar(Yn — Ym)

Bn,m(OLs) =1+

=1+ (4.4)

However, if the time-varying risk premia are included in the interest rates, the story
changes. Consider a n-period investment in a discount bond with price P; ,. Investors
may choose to buy a n-period bond with a log return of log(1/F; ,,). Alternatively, they
can buy a m-period (m < n) bond first and after m periods, roll over and buy a (n — m)-
period bond with the proceeds from the m-period bond. The log return of the second
strategy is log[1/(P;m - Piymmn—m)]. Here P, ; is the price of a j period bond starting at
period .

The excess log return from a m-period bond at time ¢ plus a (n — m)-period bond at
t + m is the premium required by the investors for bearing the risk of the open position,

because the return on the (n —m)-period bond at ¢ +m is unknown at time ¢. The expected

7If the n-period yield is the average of the expected 1-period yields y» = E[yi,1 + - + yn,1]/n, then
NYn = MYm + (N — M)Ym,n—m and where Ym n—m is the n — m is the n — m period yield starting at time m.



excess return is

1
E —m =pr =E; 1 —log ——
tTTt+mmn—m = Pt t 10g Prm - Prvmmm 0g P
1 1 1
=log — + E;log ——— — log —
Pt,m ! iDt—l-m,n—m Pt,n
=mYtm + (10— M) EtYttmmn—m — nYtn (4.5)
and where p; is the risk premium at time ¢.
Upon rewriting (4.5), we get
m P
Etyt—l—m,n—m —Ytn = (yt,n - yt,m) + ! (46)
n—m n—m

Given n and m, we can see from (4.6) that if the risk premium p; is not a constant and
correlates with y;,, — y¢.m, then the slope coefficient 3, ,, in bond regressions (4.3) will
differ from unity. The direction of the rejection of EH depends on the correlation between
Ytn — Yt,m and p;.

With rational expectations, the population value for the slope coefficient of regression

(4.3) is given by®
COU(Etht+m,n—m7 Ytn — yt,m)

Bum =1+
o mvar(yt,n - yt,m)

(4.7)

The segmented market model in Section 3 implies a risk premium partly driven by infla-
tion. Moreover, the yields v ,, and v ., are also determined by inflation, since the pricing
kernel is a function of inflation. This implies that the covariance in (4.7) is non-zero under
the segmented market model. So this model is a promising avenue to explore for solving
the expectations puzzle.

Based on the assumption that investors act optimally, the price of nominal bonds is

given by the pricing kernel defined in (3.10). This gives

/
n 1
Py = e — 5"EtU (/CA(,Ut+ ) 7
U'(ca(pe)) Tiin

Ulca(pieym)) 1
U'(ca(pe)) Ttt+m

Py = e = §ME,

8See Appendix B.1 for the derivation of (4.7).
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and

m . Ulcalpesn)) 1
t+m 17, ’
U'(ca(fit+m)) Term,t4n

Primmn—m = 8_(n_m)yt+m’"7m ="
’

In these price expressions 7y +yn = |[i pt+i is the aggregate inflation over n periods

starting from time “¢”. The definition of 7 1, and 7y, ¢+r is similar to 7 ¢1,,. Hence

U,(CA(Mt-I—n)) 1 :|
nYin, = —nlogd — logE 4.8
Yt, g g t[ 0 (ca(ue)) Toren (4.8)
and
U/(CA(Mt—&-m)) 1 ]
mMmYs.m = —mlogd — logE
o RO [ U'(ca(i) mraem
It follows that

(’I’L - m)yter,nfm

!/

U'lcalptn)) 1
U'(ca(tbt4m)) Tim, t4n

=—(n—m)logd — log B¢,

= — (n—m)log§ — log E¢pmexp [log U’ (ca(pttsn)) — log U'(ca(ptt+m)) — 108 Teqm t4n)

A quadratic Taylor approximation to the marginal utility of active households gives

log U" (e(pe)) = log U (ca() — o + 5 “9)

where [i; = logpu; — logfi is the deviation of the log of money growth from its central
value fi. Use the quadratic approximation in equation (4.9) to simplify the n-period yield

in equation (4.8)

n
_ . . . . .
nyrn = — log Erexp |n(logd —log fi) — ¢(fuun — fie) — > furi + 577(u?+n — i3], (4.10)
=1

Note that we use that the n-period inflation is equal to the sum of the one period inflation
rates: log Ty ¢4n = Y1y fltti-

In order to solve for the values of ny: ,, my: m and Eiraiyy, n—m, we need to calibrate
the values of §, j1, ¢ and 7. More importantly, we have to assume a specific monetary policy
rule that drives the process of one period inflation rates /i;. Different monetary policy rules

lead to different rates of inflation. We now show how different inflation process /i; affect

11



the yields and the risk premium. We first consider the case that the fi; are i.i.d. N(0,0?)
random variables. Given that inflation rates are well known not to be independent but
positively correlated, we subsequently investigate the cases of an MA and AR process.
We show that the i.i.d. case for inflation cannot explain the expectations puzzle. But once
we turn to the more plausible MA and AR processes for inflation, the dependence induces
a risk premium such that g < 1.

This is the point where our analysis starts to differ from the analysis in Alvarez, Atke-
son, and Kehoe (2009), or rather where we extend their model to the case of stochastic pro-
cesses. Alvarez, Atkeson, and Kehoe (2009) do not have to consider the stochastic process
implication. For their purpose, an assumption regarding the distribution of the innovation

suffices, since they do not have to calculate a correlation over multiple periods.

4.1 Thei.i.d-Assumption for ji;;

First consider the case in which innovations are independently and identically nor-

mally distributed. Thus assume that
fit4i =€t44, with ;5 ~ N(0,0?) (4.11)
Rewriting (4.10) gives
Nyt = © —logEexp | 2t — (1+ @) (4.12)

where © = log i — log § + 25102

To determine the expectation in equation (4.12), note that this is of the form

60 b2 1 _laz2
II :/ eax+ x E@ 252 dx (4.13)

To solve this integral, write the power as follows

1 2
ax + ba?® — 5% = —c(z —m)?, (4.14)

where ¢ = (1/20%) — b and m = a/2c. From the expectation of a non-standard normal

°In the text, we only show the main lines of reasoning. The details of derivations are in Appendix B.

12



random variable, we find

- 1 a’o? (4.15)
T Vi—2b0? P\ 2= 4bo? '
so that
1 (¢ + 1)%0? . .92
n=0+-log(l—no?)— 27 _ g 41
ny, O + 5 og(1 —no?) 2(1 — 5o?) opt + o Ht (4.16)

provided that 1 — no? > 0. Note that the only stochastic part in ny; , is —¢fi; + 7.
A similar expression applies for my; ,,, so that the y; , — y; » part in the covariance of
equation (4.7) is readily found as

1 1\, 1 /1 1\.
yt,n—yt,m:—é(—>ut+n<—)u§, (4.17)

n m 2°'\n m

since both yields have identical non-stochastic parts.

The risk premium part in the covariance of (4.7) is from (4.5)

Etr$t+m,n—m :(n - m)Etyt+m,n—m + mytm — NYt,n
1 l-n 5 (¢+1)%0
=_log(1 — no?) — 2_ 4.18
Jlog(1 = no?) - 1 o7 - BT @19

which contains no random elements since these cancel from my; ,, — ny;,. Hence the
covariance in equation (4.7) is zero and i.i.d. fluctuations in inflation cannot explain the

expectations puzzle. This is summarized in the following.

Proposition 1. If inflation is an i.i.d. normally distributed random variable, the term
structure of interest rates conforms to the expectations hypothesis. As a result, the

values of the Campbell-Shiller regression coefficients are equal to unity.

4.2 The MA-assumption for /i,

Next we introduce some dependence in the inflation process. Suppose the inflation
process is MA(1)

[l = €41 + Oy, g ~ N(0,0%) iid. (4.19)

13



To explain how this changes the regression coefficient, consider the simple 2-period case

with n = 2, m = 1.10 Hence,

Cov(Eeritmmn—msYen — Yem) = Cov(ye1 + Eeyrr1,1 — 2.2, Yen — Yem) (4.20)

To determine ¥, 1, note that using the MA(1) scheme (4.19) gives

. X 1. o1
Y1 = — log Erexp [log5 —log ji — dfity1 — fut1 + §nu?+1 + ofir — 5?7#?

1,1
=log ji —logd + (¢ + 1)0e; — Sjix + sy — 1%

1
— log Erexp [(779& —¢— e+ 577€?+1 (4.21)

Using the same reasoning as we used in determining the integral II from (4.13), we get

(nbey — ¢ — 1)%02
2(1 —no?)

1o, 1
yi1 =logji —logd + (¢ + 1)0er — $jiu+ nfiy — 5n0%e; —

1
+5 log(1 — no?) (4.22)

under the same condition as before. Following the above approach one shows that

(¢ +1)202 + 0?6204
2(1 —no?)

1 1
Et[ye4+1,1] =log i —logd — ¢t + 5779251% + 577(1 —6%)o* -

1
+ 3 log(1 — no?) (4.23)
and

1. 1 1 1
Yto = log i —logd — 5(/5/% + Zn,u? + iﬁst —TvTe+ 1 log (1 —no? — 77026?2) ,  (4.24)

where y; 2 in (4.24) requires 1 —no?(1+6?) > 0. The ¢T V¢ part originates from the double
integral involving ;41 and €,42, but is constant. Hence the AvVTe part plays no role in the
covariance.
For the covariance (4.7), we only need to consider the stochastic parts from (4.22),
(4.23) and (4.24). Doing this gives the following simplified expressions:
210(¢p + 1)o2e; — 0?0022
2(1 — no?)

Eiri1,1 = + A (4.25)

“In Appendix B, we provide a complete proof for the general case of n and m.
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202022 — 2n0(p + 1)o?e,
2(1 — no?)

+A

N . o . 1 1 1
G2 = Gy =i — it — 6+ 5 ) Oz + onde] +

(4.26)

where A and A stand for the constant parts. Since ¢; and €7 are both part of E/7Z¢111
in (4.25) and g2 — 9,1 in (4.26), it follows that the covariance between the two parts is

non-zero. Therefore we get that

Cov(Eyraii11,ye2 — Y1)  Cov(ByrZir11, 912 — 1)
Var(yi2 — ye,1) Var(je2 — Ut,1)

£0.

Hence the regression coefficient 3 in (4.7) will differ from unity.

For the results of longer horizons, see the Appendix. In summary, we find, with the
assumption that fi; is a MA(1) process, the slope coefficient 3, ,,—1) in regression (4.3)
deviates from 1. For any of the cases m > 2, the slope coefficient 3, (,,,>9) is still equal to

unity, however.!! We capture this result in Proposition 2.

Proposition 2. If the inflation is an MA(1) process, the values of the Campbell-Shiller
regression coefficients are no longer equal to unity for m = 1. If m is equal or
larger than two, the values of the Campbell-Shiller regression coefficients are equal

to unity.

The intuition for this result follows from the feature of the MA(1) process. We know
that the expected excess returns E;rz; 4y, n—m, i.e. the risk premium, depends on the ex-
pected aggregate inflation over the period that starts at t + m and ends at the maturity
date t + n. If Eifity1 = 0er and Eifirry = 0,7 > 2, the expected one period ahead infla-
tion becomes E¢ i1 = it + 0y and E¢pi4; = f1, for @ > 2. So the expected one period
ahead excess return E;rx;1 ,—1 becomes time varying, because E;fi;11 # Ey iy 41, as long
as g, # e¢. The Eyraiq1,—1 and y;, — y,1 depend on the state of the starting date “t”,
and both contain the current innovation ;. From an unconditional perspective the two
terms are therefore correlated with each other, so that 5,1 # 1. However, for m > 2, the
expected inflations from period ¢ + m to t + n are constants (E;u¢1; = fi, for i > 2), hence
the expected excess return E;rx;y, n—m is a constant and independent of the starting date

t. The Eyriqm n—m is therefore not correlated with y; , — y¢ 1, and hence B m>2) = 1.

"For the derivations, see Appendix B
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In order to provide values of 3,1 under the MA(1)-inflation, we need to calibrate the
parameter values. The parameters we need are 7, ¢, # and o. Since ¢ and 7 are direct-
ly unobservable, the starting values of ¢ and 7 that we use are borrowed from Alvarez,
Atkeson, and Kehoe (2009).> Table 2 shows values of Bn,1 under different values of ¢
(from 0.1-0.9) with o equal to 0.0033 and 0.0115 respectively.!* The value of 0.0033 is the
average sample standard deviation for monthly inflation for the countries used in Section
1 from Feb 1990 to Dec 1999 and the value of 0.0115 is the average sample standard devi-
ation for yearly inflation in these countries during the same time period. One sees from
Table 2 that if the volatility is small (¢ = 0.0033), the values of 3,1 are around unity with
tiny deviations, no matter what the value of 6 is. So the expectations hypothesis holds for
a low volatility process. While an increase in money growth volatility (¢ = 0.0115) also
increases deviations of 3, 1 from unity, these deviations are still too small to match the
data. The results, however, do show deviations of (3,1 take two directions. The f3,, ; first
increases with 6 and peaks at § = 0.4 and then decreases with 6.

In summary, the assumption of an MA(1) process for inflation implies deviations of
Bn,1 that are too small in comparison with the deviations in the data. More importantly,
the MA(1)-assumption for inflation can at most account for the deviation from unity of
Bn,1. It is unable to account for the deviation of any £, ,, with m > 2.

Even though the MA(1) process is unable to match the data, the analysis provides
the theoretical intuition for deviations of 3 from unity. Continuing along these lines, one
shows that an MA(2) process can explain deviations from of /3, 1 and /3, 2. Because the
data reveal deviations at higher orders and because of the magnitude mismatch, we turn

to AR processes.

4.3 The AR(1)-assumption for /i,

Consider the case when fi; is an AR(1) process, i.e. f[i;41 = pfiu + €441. Since the
expectations hypothesis is also rejected at the real level, we check the behavior of both

nominal yields and real yields under AR(1) inflation.!* Since higher order AR process are

12 Alvarez, Atkeson, and Kehoe (2009) find the values of ¢ and 7 by solving (3.8) and (3.9) with the assump-
tion that the endowment is 1.

BWhen choosing the values for o and 7, one constraint is that no? < 1. See Appendix B.2 for an explana-
tion.

%A1l the proofs and calculations are shown in Appendix B. The parameters we need for the calculation are
o p, ¢ and 7. In the case of MA(1)-inflation, we drop the effects of ¢ and 7 for simplicity. Here, in addition
to o and p, we also discuss the effect of ¢. It is clear that 7 is also important. However, according to the
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analytically intractable, we resort to numerical procedure for analyzing these cases. But
we do provide explicit expression for the AR(1) case.

Table 3 gives the values of slope coefficients and shows how these values vary with
o, pand ¢. Panel A gives the values of slope coefficient for nominal yields and Panel B
gives the values of slope coefficient for real yields. The coefficients for both the nominal
and the real yields have similar trends.

Low money growth volatility (o = 0.0033) generates slope coefficients around 1. With
larger volatility (o = 0.0115 or 0.0180), deviations of 821 (and 33 ;) from 1 increase. At the
lower value of volatility (¢ = 0.0033), deviations of 2 1 (and 33 ;) are only upward, i.e. 82,1
(and 33 ;) > 1. These deviations increase with p and ¢. At the higher values of volatility
(o = 0.0115 or 0.0180), the deviations start to take two directions. At the lower values
of p, f21 (and 65‘71) are biased upwards. With higher values of autocorrelation p, the 32 ;
(and 33 ;) falls below unity and can even become negative. If o takes the higher values,
the effect of ¢ is ambiguous . When p < 0.4, increasing the value of the elasticity ¢ may
strengthen the deviation, however, when p > 0.5, the effect is reversed.

The relation between slope coefficients and parameters is thus quite complex. One
clear message from this table is that large deviations for § from unity occur only if the
variation of the risk premium is sizeable.

Intuitively, the greater the volatility, the higher the risk and hence the risk premium
is larger. A larger value of p means the effect of a shock persists longer, so the risk is also
greater. As a result, a higher risk premium is required. Recall that ¢ is the elasticity of
the marginal utility of active households to the change in money growth. Intuitively, the
larger the value of ¢ is, the more sensitive the active households are to a change in the
money growth rate and hence they ask for higher risk premia. This intuition becomes
clear, if we consider a specific functional form for the preference of the agents. In the case

of constant relative risk aversion preferences are U(c) = ¢!~7 /(1 — 7) and ¢ takes the form

dl
_dlog ca(p)

¢ = Tk (4.27)

Thus ¢ is proportional to the risk aversion coefficient 7. Therefore, the more the house-

holds are averse to risk, the larger the value of ¢ will be and the higher the risk premium

definition of  and ¢, i.e. n = —d¢ /O, the economic implications of n should be covered by ¢, so we drop
the discussion for n and only discuss the effects of o p, and ¢ for the value of 5.
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will be.

So the size of the risk premium is proportional to the values of o, p and ¢. Large
risk premia guarantee that the variation of risk premia is larger and hence the deviation
of 3 from unity may also be large. But this does not mean that the deviation is linearly
proportional to the size of the risk premia. Equation (4.7) tells us that the value of
depends on the covariance of the time-varying risk premia and the spread y », — y¢,m, and
the variance of y; , —¥¢m. The sign of the covariance decides the direction of the deviation,
while the ratio of the covariance and the variance decides the magnitude of the deviation.
We cannot tell exactly how the variation of the risk premia affects the direction and the
magnitude of the deviation. According to Table 3, one thing is clear that to get a negative
B, both o and p must be large enough. The 3D plots of Figure 1 and Figure 2 show how
the regression slope coefficients for the nominal and the real yields vary with the ¢ and
p- The plots clearly show that as the values of o and p increase, the values of 331 and 3 ;
tirst increase slightly and then decrease rapidly and turn negative.

The above analysis is based on the explicit analytical results for 821 (85 ;) and AR(1).
For B, in general the analytical solutions become unwieldy, but can be easily analyzed
with simulated data. In the next section, we will use numerical methods to generate the

Brn,m and B;’;m with n > 3 and m > 2 to check our intuition.

5 Numerical Analysis

In this section, we use simulated yield data to validate the analytical results for the
cases that inflation is an i.i.d. process or follows an MA(1) process. For the AR(1) pro-
cess the analytical solutions become unwieldy, but can be easily tracked numerically. By
varying the parameter values we can investigate the conditions under which the £ is con-
siderably less than one or is even negative.

Expression for the bond yields are given in (4.12), (B.6) and (B.9) and (B.21) for the
case that inflation is an i.i.d. process, a MA(1) or an AR(1) process, respectively. Based
on these yield equations, we can simulate the bond yield for any length of period and
maturity. The data is generated under the assumption that money growth follows an i.i.d
variable, MA(1) and AR(1) process respectively. For each specific process, we conducted

200 simulations and each of these simulations run for 200 time periods.
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The calibration of the parameters is as in Section 4. We choose i = 1.05, which says

that the mean of the one-period inflation rate is 5%. The scale of one period is a year.

5.1 Money growth is i.i.d. variable

Table 4 shows the average values of 5 for nominal yields over 200 simulations based
on the assumption that inflation is an i.i.d. variable. Figure 3 and Figure 4 plot the values
of 5101 and 10,2 for the 200 simulations. The results show that the average values of sim-
ulated 3 are quite close to 1. This is consistent with the theoretical results in case inflation
is an i.i.d. random variable. In that case the term structure of interest rates conforms to

the expectations hypothesis and 3 is expected to be 1.

5.2 Money growth follows a MA(1) process

Table 5 shows the average values of 5 for nominal yields over 200 simulations based
on the assumption that inflation follows a MA(1) process. Figure 5 and Figure 6 plot the
values of 31,1 and 192 for the 200 simulations.

We showed that if money growth follows a MA(1) process, the regression coefficient
Bn,1 can deviate from unity due to the time-varying risk. The magnitude of deviation
depends on the values of ¢, § and ¢. The simulation results of 3, ; are consistent with
the theoretical results. Both show a tiny but clearly discernable deviation from unity.
The MA(1) inflation cannot, however, account for large deviations of 53 ,, from unity for
given variations of the input parameters. The determinant for the time-varying risk is the
aggregate expected inflation from period ¢ + 1 to t + n. If inflation is a MA(1) process,
the expected inflation is only time varying in period ¢ + 1, since a shock dies out after
two periods. In comparison to the AR(1) case, the MA(1) case can only generate small
variations in risk. As a result, the deviation of the regression coefficients from unity is
then smaller. Theoretically, the value of any f3,, ,, with m > 2 is 1 and the average values

of the simulated §3,, » are closer to 1 than those of 3, 1.

5.3 Money growth follows an AR(1) process

In Section 4, we prove that the expectations hypothesis may not hold if inflation fol-

lows an AR(1) process. In the case of AR(1) inflation, the theoretical values of 33 ; for both
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the nominal and the real yields are close in magnitude to those in the data. We do not cal-
culate the theoretical values of 3, , and j3;, ,, with n > 3 and m > 2 due to the complexity
of the calculations. However, it is intuitive that the rejection of EH is not limited to n = 2
and m = 1 in the case of AR(1) inflation. We now simulate the nominal and the real yield-
s with the yield equations (B.21) and (B.39) and run regressions (4.3) with the simulated
yields to obtain values for the slope coefficients. In order to check the difference of slope
coefficients in the case of lower and higher risk, we use two combinations of values for o
and p, with o = 0.0080 and p = 0.6 as the lower values and o = 0.0115 and p = 0.9 as the
higher values.

Table 6 shows the average values of 3, , and 3} ,,, from 200 simulations. Panel A
shows the values of 3, and Panel B shows the values of 3}; .. The results are consistent
with the theoretical calculations. The volume of the risk may change the direction of the
rejection of the EH. When both o and p or either one of these takes the lower value, the
risk is lower and the average values of 3, ,, are larger than unity. When both ¢ and p take
on higher values, the risk is higher and the average values of 3, ,, are less than unity and
can even turn negative. The magnitude of the deviation from the expectations hypothesis
matches the magnitude observed in the data. In the case of higher risk, we observe that /3
is decreasing in maturity n.

Figure 7 and Figure 8 plot B1¢,1 and S1¢,2 for all the 200 simulations under o = 0.0115
and p = 0.9. Due to the larger variation in risk, the simulated B is more dispersed under
AR(1)-inflation. If we suppose that each single simulation represents a specific economy,
we see that the yield regression coefficients may be quite different for different economies,
even if these share the same inflation processes. Nevertheless, the average values for 3191
and f0,2 are -0.3352 and -0.2235 and most of the simulations give negative 3101 and Big2
values. The dispersion is large since the maximum and minimum values for 3101 and
Bio,2 are approximately 2 and -2. Figure 9 and Figure 10 plot 3], ; and 3], , for all the
200 simulations under o = 0.0115 and p = 0.9. The plots of 7 ; and S, , show similar
distributions for 10,1 and 19,2, but with lower mean values. The largest and least values
for B}, ; and j3j 5 are around 0.5 and -3 respectively.

Next, we compare the yield curves that we simulated with the real data. Figure 11

shows the average Euro-rate curves for 5 countries with maturities up to 60 months from
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January 1995 to December 1999.1> We see that all the yield curves slope upward with
yields increasing with maturity.

Figure 12 shows the average nominal yield curves we simulated with different values
for 0 and p. The figure also shows the yield curve based on the i.i.d.-inflation that is
used as a control to show the term structure with constant risk premium under which the
expectations hypothesis holds. Like in the real data, all the simulated yield curves have
typical upward slopes. It appears that the yield curve based on the i.i.d.-inflation shows
the largest curvature and the yield curves based on the inflation with large value of the
autoregressive coefficient (L,H and H,H) are relatively flatter. Figure 13 shows the average
real yield curves. The real yield curves show similar patterns to the nominal ones, but are
about 5% lower than the nominal yields. The reason is that we choose 5% as the mean of
annual inflation.

Combining both the analytical and numerical results, we have the following result

for AR(1)-inflation in Proposition 3.

Proposition 3. 1If inflation is an AR(1) process, the values of the Campbell-Shiller
regression coefficients can differ considerably from unity. The values can be higher
or lower than unity and can be even negative. The values depend on the autocor-

relation and volatility of inflation.

5.4 Robustness check

In Section 4, we solve a consumption-based asset pricing model and obtain the term
structure of interest rates in the case that inflation is an i.i.d. random variable, or follows
an MA(1) or an AR(1) processes. Obviously, the i.i.d. variable, MA(1) and AR(1) processes
cannot represent all types of inflation in reality. Besides the AR(1) process, the AR(4)
and the AR(12) processes are often applied to quarterly and monthly inflation. Cecchetti
and Debelle (2006) indicate “the AR coefficient is often close to one in a large number of
countries when estimated on inflation data over the past twenty years.” In order to check
whether the model has the power to explain the expectations puzzle if inflation is more
like an AR(4) or AR(12) process, we also simulate the nominal and the real yields based on

equations (4.10) and (B.38). According to the law of large numbers, the expected values in

>Only 5 of the countries from Table 4.3 have yields with maturities up to 60 months.
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equations (4.10) and (B.38) can be approximated by the average values of a large number
of random values in the brackets of equations (4.10) and (B.38). In order to ensure that the
numbers of random values are large enough, so that the averages of these random values
converge to the means of the random values, we calculate 200000 times the random values
in the brackets of equations (4.10) and (B.38) and then take the average of these values as
the approximation of the expected values.

The results are given in Table 7 and Table 8. The Tables show that the yields simulated
based on AR(4) or AR(12) inflation have negative regression coefficients for most of ma-
turities. These results indicate that the model that we use is robust to other AR processes
for inflation in accounting for the rejection of the EH. Actually, with equations (4.10) and
(B.38) and reliance on the law of large numbers, we can simulate the nominal and the real
yields based on any inflation process, not only the AR processes, but also more complicat-
ed processes. According to our analysis, these more complicated processes are promising
for generating yields with term structures that reject EH as long as they can provide large
and persistent variation in the risk premium. But the AR(1) assumption for inflation suf-
fices to explain the expectations puzzle and the simulated yield curves based on AR(1)

inflation also match the data.

6 Empirical Test

Both the theoretical and numerical results in this paper show that when either the
volatility (o) or the autoregressive coefficient for AR(1) inflation (p) or both take on small
values, the yield regression coefficients are larger than unity, while if both have large val-
ues, the yield regression coefficients are smaller than unity and may even be negative. If
this holds in the data, we should expect that when we cross sectionally regress 3 onto &
and p, the coefficients for o and p should at least not both be positive. If both coefficients
are negative, this would provide clear empirical support for the inverse relation between
B and (6, p). In this section, we conduct such regressions as an indirect test of the above
theoretically deduced relation between B on the one hand and ¢ and p on the other hand,
so as to see whether our theory matches the data in this subtle detail.

We collected monthly inflation rates for 15 countries from Feb 1990 to Dec 1999.16

18The 15 countries are the same as those listed in Table 1, with the exception of Aus and Nzl. Australia and
New Zealand were excluded because the monthly inflation rates for these two countries are unavailable.
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We fitted an AR(1) process to obtain the sample autoregression coefficient (p) for each
country.!” The time period we use for inflation is 5 years prior to the time period that we
use for the interest rates. This is done on the grounds that investors look back to determine
their expectations regarding future inflation.

Table 9 shows the values of the sample autoregression coefficient (p) and the sample
standard deviation (¢). The values of p for Belgium and Norway are very small (p <
0.1) and the probabilities for p = 0 are higher than 40%. This means that the goodness-
of-fit of the two countries is very low. We decided that is inappropriate to model the
inflation processes of Belgium and Norway as an AR(1) process, so we exclude the two
observations in the subsequent regressions.

We regress [3,, ,», onto p and ¢ cross sectionally over the different countries for given
n,m as in

Br,m = const + by mp + dpm0 + error (6.1)

The regression results are shown in Table 10. We can see that almost all the regression
coefficients are negative, except ds 3 and di2 3. Most of the regression coefficients are not
statistically significant, though, only b3 ; and d3; are statistically significant. The F-tests
nevertheless say that the R? for many regressions are not low. Taking the extremely small
sample sizes into account (only 11-13 observations), the results seem not disappointing. It
is reasonable to believe that the statistical significance would improve if we had more ob-
servations for the regressions. So we conclude that the negative coefficients demonstrate,
to some extent, the negative correlations between 3 and p and o in the data. At least, the

evidence does not go in the other direction.

7 Conclusions

We build on the endogenously segmented market model of Alvarez, Atkeson, and
Kehoe (2009) to explain the expectations puzzle by introducing autocorrelated inflation.
We formulate a consumption-based asset pricing model in which the risk premium for
both the nominal and the real yields can vary in response to expected changes in inflation.

In the theoretical part, we analyze three types of inflation, i.e. inflation is an i.i.d. random

7Obviously, AR(1) is not suitable for all inflation process, but we can not find a process which fits all
inflations equally well. However, in order to be consistent with our theoretical analysis, we only use the
AR(1) process to fit all inflations here.
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variable, or follows an MA(1) or an AR(1) process. The analytical solutions show that the
ii.d-process for inflation cannot solve the expectations puzzle because the risk premium
is constant under the i.i.d-inflation. If inflation follows an MA(1) process, the risk premia
become time varying. Due to the rather small variation in risk premia, the MA(1) process
for inflation can only generate tiny deviation of 3 from unity. Only the AR(1) process for
inflation can generate enough variation in risk premia to account for the rejection of the
expectations hypothesis. The numerical results show that the rejection of EH is robust to
the AR(4) and AR(12) processes for inflation.

Our empirical tests for the EH with the Euro-rates of 17 countries show that the re-
jection of the EH goes in two directions. For some countries, such as Australia, we get
negative regression coefficients. For other countries, such as France, the regression co-
efficients are significantly larger than unity. This phenomenon can be addressed by the
segmented market model. Both the theoretical and the numerical results show that the
regression coefficients would first increase (8 > 1) and then decrease (5 < 1) following an
increase of the risk premium.

The result that the negative regression coefficients appear only if inflation has a large
volatility and a high autoregressive coefficient imply that there exists a negative relation
between (3, o and p. To test this prediction we regressed (3, ,, for 13 countries onto the
sample standard deviations and the sample autoregressive coefficients for their inflations.
The regression coefficients for most of the f, ,, are negative. Even though most of the
coefficients are not statistically significant due to the extremely small sample size, the
results do not run counter to the predictions. According to our segmented market model,
the simulated yields curves have the typical upward sloping term structure for both the
nominal and the real yields and their magnitudes match the data. All of these results
show that the endogenously segmented market model provides a reliable framework for
exploring the underlying mechanisms that determine the character of the term structure.

The model also has its limitations. The only source for time-varying risk in this model
is inflation. Duffee (2011) and Chernov and Mueller (2012) find there may be other latent
factor(s) hidden in the yield curve besides inflation. Bansal and Shaliastovich (2012) and
Rudebusch and Wu (2008) show that both output and inflation are sources of time-vary
risk in the term structure of interest rates. To keep the analysis simple, the endogenously

segmented market model that we use adopts an endowment economy with constant peri-
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od by period income, so we do not investigate the effect of variation in output. The effect
of output on the term structure of interest rates seems feasible within this model, and is of
interest for future work. While it is not easy to reconcile all the factors in one model, this

should be a subject of future research concerning the term structure of interest rates.
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APPENDIX

A Proofs and derivations of section 2
A.1 The derivation of equation (3.9)

The Lagrangian is given by

L =U(ca(p)F (), 1) + U (y/p) [L = F(¥(1), )]

()
+ A {y —ca(pw)F(p),p) — /0 V(v wydy — (y/p) [1 — F(3(), u)}} (A1)

The relevant EO.C. are

oL , B
OL 0 Ulealn) — Uly/n) + Aw/m) — () — ea(u)] = 0 (A3)
oV (w)

Plug (A.2) into (A.3), to derive (3.9). Q.E.D.
When (3.9) is rewritten as (A.4), we can see that the marginal utility of active house-
holds is equal to the ratio of the utility difference and the consumption difference minus

the cost.

U'(ca(p)) = L (A4)

B Proofs and derivations of section 3

B.1 Derivation of the slope coefficient 3, ,,

Note

Cov(z,y) =Cov(z,y — x) + Cov(z,x)

=Cov(z,y — =)+ Var(zx)

Cov(z + z,y) = Cov(z,y) + Cov(z,y)

Cov(kz,y) = kCov(z,y)
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Cov(z,y) = Cov(y,x)

yi =Bo + Bizi +¢€
5, X (@i — ) (yi —y) _ Cov(z,y)

¥ (z; — )2 -~ Var(x)
In our case,
m
r = (yt,n - yt,m)
n—m
Y =Yt+mmn—-m — Ytn
2
m
Var(z) :mvar(%,n — Yt;m)
COU(ytﬂn,nfm — Yt ﬁ(yt,n - yt,m))
Bn,m =

m

ﬁ‘/w(yt,n - yt,m)
_COU((n — ) (Yt+mmn—m = Ytn)s M(Ytn — Yt.m))
N m2Var(Yen — Ye.m)
:Cov((n — M)Ytrmn—m — W + MYtm + MYt — Ye.m), (Y — Ytm))

m2Var(yen — Yem)
_ COU(Ethter,nfma Ytn — yt,m)

mVar(yen — Yem)

+1 QED.

B.2 Derivation of the results under the i.i.d-Assumption for /i;;

With the quadratic approximation and the definition of the pricing kernel, we have:

n—1
_ ) R 1
nyrn = —logErexp |n(logd —log i) = (& + Vfieen = D fiyi + 501 + Ot — 277#?]
=1

i 1 i ) 1
=n(logji —log d) — dju + ;i —log Erexp [— > i = (¢4 Dftgn + 2nuf+n]
=1

R . n—1
=n(log i — log d) — pjix + nuf + o? — log E;exp [—(qﬁ + Deggn + iU

2
2 2 2 5”“}

It's known that if z is normally distributed with mean zero and variance o2 and satisfies

1 — 2bo? > 0, then

21— 2b02 ) \ 1 — 2bo2

22 3
Eexp(ax+bx2):exp<1 ¢e > < ! )2
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Inour case, © = €44n,a = —(¢+1)and b = 4.
Hence, under the assumption 1 — no? >0

n (p+1)202 1
log Etexp —(¢ —+ 1)€t+7’l —+ §€t2+n:| = m — 5 log(l — 7702)

So

1 +1)%2 1
gu% + 702 7((25 ) U) + ilog(l — 7702) (B.1)

nytn =n(log it —log d) — ¢fir + 5 21— o

With a similar derivation, we get

_ m—1 (p+1)2%02 1 5
m =m(log i —1 2 ~log(1 — B.2
myem =m(log ji —log d) — ¢ji + ut t S i) T og(l—no”) (B2)

(n - m)yt+7rz,n—m
n—m—1 1
= —logEsymexp |(n—m)(logd —log i) — (¢ + 1)fis1n — Z fitmti + 277Mt+n + Qfltym — 2nﬂ%+m]
=1

n—m—1
_ . 1
=(n—m)(log i =108 8) = $jitm + 50174 — 108 Errmexp | —(&+1)firsn — Z futmei + nut+n]

1, n—m-—1, (p+1)2%* 1 2
— — — 1 1—
277:ut+m+ 2 o 2(17770_2) + 9 Og( no )

=(n —m)(log i —log ) — ¢firym +

So

Etrxt—i-m,n—m :Et[(n - m)yt+m,n—m + mytm — nyt,n]

=(n — m)EYismn—m + MYt m — MYtn

MYe,m — NYen = —(n —m)(log i — log ) +

ntn-—m—1, (¢+1)%”
2 2(1 —no?)

(n — m)Etyter,nfm =(n —m)(log i — log §) + (B.3)

1
+ 3 log(1 — no?)

1- N2 _ (¢ +1)%0°
2 21 — no?2)

1
L log(1 = no?) -

Etrxt—&—m,n—m = 9
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So If the money growth deviation fi;4; are i.i.d random variables, then E;r2¢ 1. n—m is a

constant. Hence,
Cov(Eyr@iymn—m, Ye,n — Ytm)
mVar(Yen — Yem)

=0, p=1

B.3 Derivation of the results under the MA-Assumption for i,

By the definition, n > 2, so

nyn(n > 2)

n
_ . . 1 R 1
= — log Ecexp [n(logé —10g 1) = Gfin = D fivyi + ST ip + Gt — 277#?]
=1

_ N . ) 1.
=n(log fi — log 8) — djix + ;nji; — logErexp (— > i — Gfirn + 2Wf+n>
i=1

o1
=n(log ii —logd) — Pjis + 5”#? + Oey

n—2
1
— log Eexp {—(9 + 1)) ey — 006+ 1) + Uerrn1 — (¢ + Derpn + 2W?+n}
i=1
_ N e 1 2 9
=n(log i —logd) — oz + SN + Oer + i(n —2)(0+1)°0°—

1
log Eqexp {—[9(¢ + 1)+ 1etin—1 — (¢ + 1)epyn + 577925tz+n_1 +nerin—1804n +

Let

3 —1 1 92 0
e=| "N ) ~N@O,%), and © = 02I», BB = 57

Et+n 0 1
and

—30(p+1) +1]
—3(¢+1)

the equation can be wrriten as a matrix form

nYt.n

. 1 1
=n(log i —logd) — dfu + inuf + Oey + i(n —2)(0 + 1)%0*

—log Evexp (e? B'Be + e'c + cT¢)

29

1 2
2778t+n}

(B.4)

(B.5)



1 1
=n(log i —logd) — ¢fu + §nuf + et + §(n —2)(0+1)%0? — 2V

1
+ 3 log (1 —no? — ?70202) (B.6)

where V = (271 —2BTB) .

The following is the general rule for multivariate integration we used in this paper:

it =Ag + A
nY =By + Bifit + iy Bafis

Y =By + B1Ag + B1Ae

Be+ele+ e e~ N(0,%), ¥ = o?I,

Eexp (¢'B"Be + 'c+ ')

1 1
—j{ ————exp (e"BTBe + e+ cle) exp <—5T21€> de
Rr (2m)2|X|2 2

'IE
1 7 (11 T T T
= ———exp|—¢€ | X —B'Blete ctce|de
w (2m)3 |23 2
We denote

1 1 - 1
SS = BTB =V lie V= (57 - 2B7B) " and = SVl e v =2Ve

then
— e (2= BTB)e+efe+ e
1 1
=—el (2 -B"B)e+elc+cle - iuTV_lu + §Z/TV_1U
1 1
=— —(e-v)Vvie-v)+ TVl
2 2
so
Eexp (" B"Be +e”c+ c'e)
1 1 Ty, —1 Lori—1
= —————exp [—(e—u) Vile—v)+ v 'V iv|de
f n (2m)3[32 2 2

1 1 Txr—1 :| (1 Tyr—1 >
= ———exp |—=(e—v)'V (e—v)|deexp | v 'V v
fn (2m)2 2|2 p[ 2 e P2
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= ! T ! Texp <11/TV_11/)
5|2 |51 — 2BTB|? 2
1 1
S|z [5-1 — 2BTB|2
exp (CTVTC)
I, — 21,02BTB|?

exp ('v7Te)

According to (4.19), we derive the expressions of my; ., in the cases of m = 1 and

m > 2 separately.

If m > 2, with similar derivation, we have:

mytm
_ - iy 4 Ani? Lom_ 252
=m(log i —logd) — ¢ + 51+ Oet + 2(m 2)(0+1)%0
— log Erexp (éTBTBé +eTe+ cTé)

1 1
=m(log i —logd) — pjix + 517/1? + Oct + §(m —2)(0+1)%02 — 2TV e

1

Lo (1 — 162 — 15262

+20g( no® —no’6?)
where

g _
L CN(0,R), and B = 021

(O}
Il

Et+m

If m=1, my; m = y¢,1, and
[ _ N N 1 ~2 N 1 ~92
Y11 = — log Egexp |logé — log ji — @figy1 — fleg1 + 5 M1 + pjiy — oM

R 1 1
=log i —logd + (¢ + 1)0er — pju + 5”#? - 577925?

1
(Nt — ¢ — D)er1 + —neryy

— log Esexp 5

(nbey — ¢ — 1)%0?

R 1 1
—=log i — logd + (¢ + 1)0ey — dfix + =nji? — 577025? —

2 2(1 — no?)

1
+ 5 log(1 — 1702)

(B.7)

(B.8)

(B.9)

For the same reason, we should derive the expressions of (n—m)y4m n—m in the cases

of n —m = 1and n —m > 2 separately.
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B.3.1 Results of n-m=1

Ifn—m=1,(n—m)Yttmnm = Yttm,1,

_ . N 1 . 1
Yt+m,1 = — log B¢y mexp [log 0 —log i — Qfitymi1 — fltymy1 + 577/%2+m+1 + ot — 577,“?

. . 1 1
=logfi—10g 6 + (¢ + Dlersm = Gfirm + 5 iFsm — 510°

1
— log Eipmexp [("705t+m — ¢ —1)etrmer + 5176§+m+1

_ R 1 1
=log i —logd + (¢ + 1)0erim — Pllttm + fmszrm — §n925?+m

2
(nbetym — ¢ —1)%0% 1
— ;(1 ~0?) + 3 log(1 — no?)

a. If m > 2, then

¢ —1)%02 +n20%* 1 9
,1 1 _
20 —yor) T alesll—me)

1
Et[yt+m,1] =log it —logd + 577(92 +1)o? - (

is a constant.

Moreover, for m > 2,
1
MYt m — MYt = (M —n)(log — log d) + i(m —n)(0+ 1)202 (B.10)

is a constant too.
The value of Eiratym n—m = Et[Yt4m,1] + MYtm — nys,, is the difference of two constants,

which must be a constant. Hence

COU(Etrxter,nfmu Ytm — yt,m) _
mVar(Yen — Yem)

b.If m = 1, then Yt+m,1 = Yt+1,1, and

2(1 — no?)

1 1
Et[yt+1,1] =log i —logd — pbe; + 5779253 + 577(1 - 92)02 - (

1
Ty log(1 — o)

Form =1,sincen —m =1,son = 2, and then

1 —no? —no?6? 1
— 277«925?

1
Y1 — 2o =2¢T Ve — log i + log & + ¢pfe; — = log =
) ) 2 ]_ - 770-2
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— B.11
2(1 = mno?) 1D
Eirzerin =Ee(yiri,1] + i1 — 2us,2
1 1 —no? — no?6? (nfey — ¢ — 1)%0?
Ty, T
— — 21 — log(1 —
2cVie 20g< 1= 102 21— 1o?) +log(1 —no~)
1 (¢ +1)%02 + n?6%04

L0262 — B.12

. 1 1 1 oo (e —¢—12%° 1 1
g1 =25, — 2np? - 2) e, + =06 — Ay
Y2 = Y1 =g he = i ¢+ 5 ) Vet + V"¢ + 21 — no?) ¢ ¢

1 1
+ 1 log (1 — no? — 770292) ~3 log(1 — no?) (B.13)
Dropping the constant part of E;ra¢11 1 and yr 2 — yi,1, we get

210(p + 1)o2e; — n?020%e?
2(1 — no?)

ErZi11 = (B.14)

02022 — 2n0(p + 1)o2e;
2(1 —no?)

(B.15)

. A o . 1 9 1 1 9 2 4
Y2 — Y1 :gﬂt - 177/% —|o+ ) et + 5779 € +

Cov(Esrais1,1,Ye,2 — Yi,1) _ Cov(Eraiq1,1,Ue,2 —
Var(ym - yt,l) Va?“(yt 2 — U, 1)

b) Lo p

B.3.2 Resultsofn—m > 2

If n —m > 2, then

(’I’L - m)yt+7rz,n—m
Lo
—logE¢pmexp |(n—m)(logd —log fi) — ¢fiesn — Z fitgmi + Qnut+n + Gherm = 5 m

1 1
=(n —m)(log i = 10g0) = $furm + SNiti1m + Or4m + 5(n —m —2)(0 +1)%

2
—logEipmexp (" BT Be +e'c + ce)

1 1
=(n —m)(log i = 10g0) = $furm + SNiti1m + Orpm + 5(n —m —2)(0 + 1)%

2
1
— 2TV e+ 3 log (1 —no? — 770292)
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where

Ettn—
€= e ~ N(0,%), and ¥ = ¢°I;

Et4n

a.if m > 2,

IEt [(TL - m)yter,nfm]

1 1
=(n—m)(log i —logd) + =(n —m —2)(0 + 1)%20% — 2T VT e + = log (1 — no? — no?6*
2 2
N 1
+ E; |:_¢Mt+m + 577M?+m + et m
1 1
=(n—m)(log i — logd) + i(n —m—2)(0+1)%0% —2TVvTe+ 3 log (1 —no? — no?6?)
+ Et [(9 - ¢)€t+m + 9€t+m—1 + g(E?er + 92€$+m,1 + 20€t+m€t+m—1):|
1
=(n—m)(logi —logd)+ =(n—m — 2 9+1202+ﬁ92+102
2 2

— 2V e+ % log (1 —no? — no*6?)
E[(n — m)Yt+m.n—m] is a constant.
Eirzirmn—m =E:[(n — M) Yttmn—m] + MYt,m — MYtn (B.16)
If m > 2, as (B.10) indicates, ny; , — my: m, is a constant too, so K7 %ty n—m is a constant.
Hence

Cov(Eeraismn—ms Yt — Yt.m)
mVar(Yen — Yem)

:Oa le

b. If m = 1, then my; ;, — NYrn = Ye,1 — NYt.m, and

1 1— 2 _ 202
yr1 = nyrn == (n = 1)(log i — logd) + ¢z, +2¢' Ve — - log ( ZO T >
o

1 Oy — p — 1)%20% 1
— 5779253 _ Qt(l — 770_2; —5(n=2)(0+ 1)%0? (B.17)

And Et[(n - m)yt+m,nfm] = Et[(n - 1)yt+17”*1]

1 1
Ei[(n — 1)yeg1,n-1] =(n — 1)(log i — log §) — pbe; + 5776’%% + §(n —3)(6 4 1)%*

1
+ (6% +1)0? + 5 log (1 —no? — no?6?) — 27 vTe (B.18)

N3
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We denote E;rz;41,,—1 as a approximate of E;rz; 1 ,—1, which does not contain the con-

stant terms of E;rz441 ,—1, then

210(p + 1)o2e; — 0?0022
2(1 — no?)

EirZi1m1 = (B.19)

We denote ny;,, — 9,1 as a approximate of ny; , — y;,1, which does not contain the constant

terms of ny; , — y¢.1, then

n*0%02%e? — 2n0(p + 1)oe;

N N 1. 1 1. . 1 1

NPt =Yt = (1—n)¢ut+(2n—2)wf+<n —¢— 1) 95t+§”925§+ 2(1 — 102)
(B.20)

Cov(Egraei1n—1,Ytn — ye,1)  Cov(EerZi1m—1, Utn — Jt,1)

Var(yen — yi1) B Var(ge2 — 1)

£0=B#1

B.4 Derivation of the results under the AR(1)-Assumption for /i, ;

If fi; is an AR(1) process, i.e. fii+1 = pfit + €1+1, then we have

Eifigrr = pie - Efierm = p" e and  Eyfigyn = p"fi

n
fitpn =p" fir + Z P e
i=1

n n n

-2 2n 2 j+5—2 N i—1

Risn =p~" i + E E p' Etntl—iCttnt1—j + 20" it E P Ettnt1—i
i=1 j=1 i=1

nyt,n

_ _ = 1 9 ~ 1 5
= — logEtexp [n(logé — log i) — dpfigyn — Z Aeqq + 5Mitn + ¢ — 3

i=1

_ R 1 5 o R 1 .9
=n(log i —log 6) — ¢t + ity — logEvexp | — S feqi — bhegn + 5 M4n
i=1

i

n
. 1
=n(log i — log é) + ( P+ ¢p" — ¢) B+ om (1 - pz"') -
=1

n

1 n e R noio noo
log E¢exp {577 <Z D P e i tnt1—g + 20 e S T eing1i | 2 > eiig1— i — 0D P eing1—i
i=1j=1 i=1 i=1j=1 i=1

When we rewrite the equation as a matrix form, we get

NYtn

- 7 n ~ 1 n\ A
=n(log i —log d) + (ZP +¢p d>> fut o (1= p™) jif
i=1
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— log Esexp (eTATAe +eI'D + DTe)

n_ ) 1 o
=n(log fi — log 6) + (Z P+ dp" — <z5> fu+ =0 (1—p*) a7 —2D"Q"D
=1

2
1
+ 5 log |1, — 22 AT A| (B.21)
where
5t+1 p2(n_1) e p(n_l)
1
€= : ~ N(0,%), and ¥ = %I, ATA= 37
Etdn p(”_l) - 1
and
(np™fie — @)p" ' = 2 p !
(np"fie — @)p" 2 = Y1) pi!
p=1 :
2
(np" s — ¢)p — (1 +p)
(np™fis — @) — 1
| T Lo, -1 T 1 Lo
§Z —A A:§Q z.e.Q:(Z —2A A) and D:§Q v, i.e. v = 20D

(B.22)

(n — m)Ytsmmn—m =(n —m)(log o — log ) + (Z prtop" " — <Z>> fit+m
=1

1 PO |
+ 57 (1—p™) fi2,, —2DTQTD + 5 log

L — 222@1‘ (B.23)

Clearly, it is impossible to get a general analytical solution for any number of n and m. For
simplification, we try the easiest number, i.e. n = 2 and m = 1. Substituting n = 2 and
m = 1 into (B.21) and (B.23) we get:

2y¢,2
_ N N N 1 4 . 1 .9
= — logEexp (2(logé — log fi) — ¢fity2 — fg41 — Aty2 + 5 M2 + i — 5
_ a 1 ~2 ~ ~ a 1 ~2
=2(log fi — logd) — ¢fat + 5 logErexp | —fig41 — Aty — Pl + 5 M2

=2(log i — logd) + (p+p2 + ¢p® — «75) fie + %n (1 - p4) Ay —

1 2
log E¢exp |:5n (Z
i=1

i

2 2 2

iti—2 2. i—1 j—1 i—1

> p'td St43—iCtqs—j +20 0t D p° 5t+3—i) =3 P im0 D ' e (B.24)
j=1 i=1 i=1j=1 i=1
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2 2

2 2
1 e A - -
3" E P e s e iis—j + 207 § P lensi | — § § P e

i=1 j=1 i=1 =1 j=1

2
i—1
—¢§ pz Et4+3—i
i=1

1 R N
2577 (5?+2 + P25t2+1 + 2pei 426141 + 2P3Mt5t+1 + 2P2Mt5t+2) — €441 — Et42 — PEL+1

— Qety2 — PPt

1 . N
=" (5?+2 + el + 2per42€141) + (7703Mt —¢p—p—1) e+ (7702/% —¢—1)ep4o

When we rewrite (B.24) as a matrix form, we get

2y1.2

.1 .
=2(log i —log 8) + (p* + 6p” + p = ¢) fu + 5n (1= p*) it

—log Eqymexp (zTZTZEJF D+ 1~)T€>

. 1 .
=2(log i —log0) + (p* + &p* + p = 6) fu+ 5n (1 = p*) it

1 1
—log =1
%]z

cexp (DT07D)
2

-1 - 24T A

i 1 e
=2(log fi —log 8) + (p* + ¢p* + p — &) fur + = (1 — p*) if — 2D" Q"D

2
1
+ 3 log (1 —no? — 7702p2) (B.25)
where
€= ~ N(0,Y), and ¥ = 0715, AA:§77
Et+2 p 1
and
ﬁ:% np’fie — ¢p—p—1
np*ie — ¢ — 1
le1 g7 ls-1. 5 s—1 i) ! U S PO aOn
52 —A A—§Q z.e.Q:(E —2A A) and D:§Q v, i.e.v=20D

- ) 1 1
i1 = — log Erexp [logé —log fi — Gfie1 — fie1 + 577Mt2+1 + i — §W?
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_ R ) 1.
=logpi —logd — dfu + 57)#3 — log Erexp [—(eb + 1) fie1 + §Wf+1

1
=log i —log & + (p¢ + p — @)ie + 5n(1 — p*) 17

2
R 1
— logErexp | (npfit — ¢ — 1)et+1 + 277534
_ o1 o (ppi —¢—1)%> 1
=log i —logd + (p¢ +p — ¢)jie + 5n(l - p7)i; — ( 2t(1 — 7702)) + 5 log(1 — no?)
(B.26)
Yt+1,1

_ . . 1. X .
= —logEs11exp [logd —log it — Qfir+2 — firy2 + 577M?+2 + fie1 — 277M1:2+1}

_ . 1 . 1 .
=log i —logd — dfit1 + §nuf+1 — logE¢11exp [(qﬁ + 1) g2 + 277u?+z]

_ . 1 .
=logji—logd + (po + p = &) fus1 + 501 = p)jii 11
) 1
— logE¢y1exp [(W)Mtﬂ —¢—1)eta + 2775?+2]

(npfes1 — ¢ — 1>202
2(1 —no?)

_ . 1 N
=logji—logd + (po + p — &) fus1 + 5n(1 = p*)jii 11 —

1
+ 3 log(1 — no?) (B.27)

) 1 o1
Ei(yes11) =log i —logd + (o + 6 — pd)iu + on(p” — p)iii + 5n(1 — p*)

2
2~ 2 2 2 2 4
—¢—1)c" + o 1
(P’ " _)7702) nwpot | ! log(1 - no?) (B.2S)

o ) o )
Yi1 — 242 =2DTQT D — (log i — log §) — (p* + p*¢ — po)fu — =n(p* — p*)fii

2
(npfi — ¢ — 1)%0?
2(1 —no?)

1 1
~3 log (1 — no? — 7702p2) — + 3 log(1 —no?)  (B.29)

Eirzipq,2

=E¢(yet1,1) + Y1 — 21,2

b — b — 1)202 + (no2iis — & — 12602 + n2p2at 1
_ (i — ¢ —1) (np° : ¢—1) WP log(1 — no?) + Sn(1 — p)o
2(1 — no?) 2

I |
+2DT0"D — 3 log (1 —no? — 02/)2)
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2.2 2 1 2 ) 2 1 1 . .
—_1r o"(1+p7) 77’00221;”— )(2[))+ )ﬂt—l—QDTQTD—i-aconstantterm (B.30)
—no

~2
2(1 — no?) Mt

where

DTQTD
_ [(7704 — o) p+op—npPu+1)  npot(—np?fu+¢+1)

3~
— 1
4(np*0? +no? — 1) 4(np2o? +no? — 1) ] (p+ép—np'fu+1)

_[(@® =npPat)(=np*u+ o+ 1) mpat(p+ dp —np’iu+1) (=% + 6+ 1)
4(npc? +no? —1) 4(npc? +no? —1) t
(no* = a®)(p+ ¢p — np’ i +1)* = npo* (=np*fu + ¢+ 1)(p + ¢p — np°iis + 1)
4(np*o* +no? — 1)
(@ =npPa)(=np i+ ¢+ 1)* + npot (=npPfu + ¢ + 1) (p + ¢p — np’fu + 1)
4(np*o? +no? —1)
(no* = ) (p+ ép — np*fus +1)* = 2npa* (—np*fs + ¢ + 1) (p + ¢p — np’fis + 1)
4(npc? +no? —1)
(0% = np*a*)(=np*fis + ¢ + 1)
4(np?c? +no? —1)
—n*p'a®(p* +1) o P (9+1)(p* + 1) —n*plo’ +npio?

= 02 +
4(np?0? + no? — 1)Mt 2(np?o? +no? —1) a

+ a constant term (B.31)

4 2.2 2
P L - B A A R i Al Y
Yt,2 —Yt,1 = |:2 <P 9 2> + 2(1 _7702):| Hi =+

1 1)o? ~ ey~
[2(¢p2 + 02— 20p+ ¢ — p) — W} i — DTQT D + a constant term
—no
(B.32)
where
e _20852( 2 1 22 D2 4+ 1) — n2ptot 3.2
Brarp - —mro(pm+1) ﬂ?+np0(¢+ )p~+1) —np'o” +np'o iy
4(np*o? +no? — 1) 2(np*0? +no? — 1)
+ a constant term (B.33)
We drop the constant parts for each equation and get
EirTes1,2 =iy + Pl (B.34)
G2 — G =Efi; + ki (B.35)
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where

__ [P+ p?) | wPplet(p® + 1)
N 2(1 —no?) 2(np20? +no? —1)
w_%W£WP+P+¢+U%fw%%¢+D@LHJ—ﬁf&+Wﬁﬁ

2(1 — no?) np20? +no? —1
e (ot 1 ’po’ n’plo®(p® +1)
2 2 2(1 —no?)  4(np?c? +no?—1)
2np(¢ +1)0”
K= kwﬂ+ﬁ—zw+¢—p%—() -

1—no?
np*o?(¢+ 1)(p* + 1) — n*pro + npo?
npo? +no? —1

N~ N~ N

Cov(EdZii1,1, yr,2 — Y1) =E[(afif + ie) (€47 + k)] — E(afiy + i) E(EfT + wiu)

200t Yro?
:(1 — + 2 (B.36)

26204 K202
32 2
1=p%)? 1-p

Var(jeo — 9e,1) = Var(E7 + kju) = ( (B.37)

Cov(Erais11, Y2 — Yi1) 14 Cov(ErZey11, 02 — Ue1)
Var(ye2 — ys,1) Var(gea — 1)

200t + Yro?(1 — p?)

28204 + K202(1 — p?)

foq1 =1+

B.5 Derivation of the real yield curves under the AR(1)-Assumption for /i,

We use “*” to indicate anything which is specific to the real term.
Wi n
N Lo N I
= —logEexp |n1ogd — dfivsn + 50lin + Gl — 50 (B.38)

1 1 . .
=—nlogd — pjiy + 5?7#? — log Erexp <2W§+n - ¢/}Jt+n)

. 1 n\
== nlogd +¢(p" = 1) ju+5n (1= p*") ji~

1 n n ) o A n . n .
log E;exp {277 (Z Z P e i1 + 20" Z P et | — (bz P e i

=1 j=1 i=1 i=1
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Rewriting the equation as a matrix form, we get

1
Y, =—nlogd+¢(p" —1) 1 + Y (1- ,02") 17 — log Esexp (eTATAe +e' D + D*Te)

1 1
=—nlogd+¢(p" — 1) + 37 (1-p*") i —2D*TQ"D* + 5 log |1, — 25 AT A|

(B.39)
where
Et+1 pz(n_l) e p(n_l)
1
€= : ~ N(0,%), and & = 0?1, ATA:§77
Et+n p(n—l) o 1
and
(np" e — ¢)p™
(np™fu — ¢)p" 2
D=1
2
(np"fre — @)p
(np" f1e — @)
Lo T 11, -1 T 4\~ L N i
52 _AA:§Q z.e.Q:(E —24 A) and D 259 v, i.e.v = 20D
(B.40)

Substituting n = 2 and m = 1 into (B.40) we get

2yt 9

R 1. 1
= — logErexp [2 logd — Gfir42 + 577M?+2 + Pfiy — QW?]

1 1 A

= —2logd — ¢ju + it — log Erexp (2W?+2 - ¢m+2>
o1 .

= —2logd + (¢p” = ¢) ju+ 51 (1= ") f1i -

2 2

2
+5—2 2~ i—1 i—1
P s iers—j + 2p% iy § P Etr3—i | — & E [
1 =1 i=1

1
log Esexp 577 Z

=17

(B.41)
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When we rewrite (B.41) as a matrix form, we get

2yt
1 e e p— =T
=—2logd + ¢ (p2 - 1) e+ 37 (1 — p4) 2 — log E¢+mexp (eTATAe + e’ D* 4 D* e)
1 N 1 1 T ey~
=—2logé+ ¢ (p* — 1) fi + 37 (1-p* a7 —log Sk Texp (D* QTD*>
2 | & T A2
Y1 -24TA

e 1
=—2logé+ ¢ (p* — 1) fi + %7] (1-p*a? - 2D 0T D+ + 5 log (1 —no? — no?p?)

(B.42)

* . 1 R 1 .
yi1 = — log Erexp [logd — dfir1 + 577M?+1 + Qfu — 5’)#3 ]

1 1 A
= —logd — ¢jis + 50ty — log Eyexp [2Wf+1 - <Z>ut+1]

1 ) . 1
= —logd + ¢(p — 1)fu + 5n(1 — p*)fii — log Eexp [(nput — )eri1 + SnEF

2 2
- 1 o2 (npiy — ¢)20'2 1 2
= - (1 - B e T B.4
logd +é(p = 1) + 5L — p7) ity ) +5log(l—no%)  (B43)

3
Yt+1,1

R 1 . 1 .
= —logE1exp |logd — ¢fi42 + §nu?+2 + Gfip1 — QW?H]

R 1 I R
= —logd — pju+1 + 577,Ut2+1 —log B¢ r1exp [277M?+2 - ¢Mt+2]

. 1 R R 1
=—logd+é(p = Dji1 + 5n(1 = p*)iiis; — logErprexp [(npum — O)eria + N 4o

(npfits1 — ¢)*0?

2(1 — no?)

. 1 .
=—logd+ d(p—1)jigs1 + =n(1 — Pz)ﬂgﬂ -

1
5 +3 log(1 —no?)  (B.44)

. . T Ly (npiy — ¢)*0”
Y1 — 2y;9 =2D* Q" D* 4 logd + ¢p(1 — p)fir — 5?7(1) —p )i — 21— no?)
1 1
= 5 log (1= no® —no?p?) + 5 log(1 = no?) (B.45)
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*
Eiraiy o

=Ei(yi41.1) + Y1 — 2¥io

p 2 2 25 2,24
— ¢)?0* + — ¢)%0? + 1
. (npic — ¢) (np* i _ 9)? npo +log(1 — nUQ) o1 —p2)02
2(1 — no?) 2

7 L~ 1
+ 2D*TQTD* - = log (1 —no? — 02;)2)

oL+ p ) 24 2npop(p+1) .
21— ne?) M o= no?)

i + 2D* QTD* + a constant term (B.46)

1 2 2 2
« _ox _nf o p° 1 _Po | a2
Yt,2 yt,l_[g ('0 2 2>+2(1—77 2)} ol

T e~
[ (3p% — 26p + ¢) — ”p¢ Q}ﬂt—D* OTD* + a constant term  (B.47)
—no

where

5 Iar e _ep = o [(qﬁp —np’fu)(no® —1)o®  npot(¢ — np*iu) }
2 2(np*o? +no* — 1) 2(np*c? +no* —1)
o —npi [(¢ —np’in)(0* —np*a®)  npat(p —np*in) ]
2 2(np?0? +no? —1) 2(np?0? +no? —1)
ol (PP +1) o, npPdPe(p® +1) .
=— oy + fi; + a constant term (B.48)
4(np?0? +no? —1) 2(np?o? +no? —1)

Dropping the constant parts for each equation,

BTy 10 =afi; + 9% (B.49)

Ura — Uiy =€i + K" fu (B.50)

where

o | M) n2p402(p2 +1)
B 2(1 —no?) 2(np?c? +no? —1)
" _2npa’p(p+1) | mpPce(p? +1)

2(1 —no?) + npo? +no? —1
e (Pt LY e et (e’ )
2 2 2 2(1 —no?)  4(np?c?+no?—1)
1 2np¢0 1 [ np*ap(p* +1)
- _9 _Z
) [(éf)P 0 +¢) - 7702] 2 [np%’? +no? —1
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Cov(EBerTyyy 1, Yo — Yin) =El(@ff + 0" i) (€47 + K" f1e)] — E(afif + v ) E(EA] + K fue)

200t P R*o?
-

2520—4 /€*20'2
232 + 2
1-p%)? 1-p

Var(gio — 1) = Var(Eig + £ ) = (

. Cov(Eyrayyy 1, Yra — Yi1) Cov(Eira*t11, 910 — Ui1)
Br1 =1+ m " =1+ - -
Var(yuz - yt,1) Var(js2 — Ut,1)

200t + P r* (1 — p?)
25204 + ,{*20-2(1 _ p2)

=1+
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Table 2: Theoretical Values of 3, 1 under MA(1)-Money Growth

2 ‘ /Bn,l‘ o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P21 | 1.003 1.007 1.011 1.008 0.999 0.992 0.990 0.989 0.989
0.0033 Ba1 | 1.002 1.004 1.006 1.008 1.007 1.004 1.001 0.998 0.996
' Be,1 | 1.002 1.003 1.005 1.007 1.007 1.005 1.002 1.000 0.998
Bo1 | 1.001 1.003 1.005 1.006 1.006 1.005 1.003 1.001 0.999
P21 | 1.033 1.078 1.110 1.048 0.930 0.869 0.850 0.847 0.849
0.0115 Bsq | 1.021 1.046 1.073 1.087 1.069 1.024 0.977 0944 0.924
Bs1 | 1.019 1.041 1.064 1.079 1.074 1.045 1.006 0.973 0.950
Bo1 | 1.017 1.038 1.059 1.075 1.073 1.052 1.019 0.988 0.965
Table 3: Theoretical Values of 2 1 under AR(1)-Money Growth
Panel A: Regression slope coefficients for nominal yields, 2 1
o ol P
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
10 | 1.003 1.007 1.013 1.022 1.035 1.054 1.080 1.115 1.156
0.0033 | 20 | 1.003 1.007 1.014 1.024 1.040 1.067 1.114 1.203 1.307
30 | 1.003 1.007 1.014 1.024 1.041 1.069 1.122 1.238 1.515
10 | 1.023 1.051 1.086 1.133 1.202 1.311 1512 1.838 -1.810
0.0115 |20 | 1.033 1.081 1.148 1.239 1.352 1456 1.399 0.681 -0.313
30 | 1.037 1.093 1.179 1.312 1501 1.674 1267 -0.146 -0.029
10 | 1.044 1.098 1.170 1.273 1.4l6 1472 0.104 -3.283 -1.357
0.0180 |20 | 1.085 1.195 1314 1.365 1.118 0.335 -0.448 -3.369 -1.308
30 | 1.106 1269 1.480 1524 0.720 -0.369 -0.602 -3.348 -1.278
Panel B: Regression slope coefficients for real yields, 53
o ol P
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
10 | 1.003 1.006 1.012 1.020 1.031 1.049 1.079 1.128 1.264
0.0033 | 20 | 1.003 1.007 1.013 1.022 1.037 1.061 1.104 1.188 1.409
30 | 1.003 1.007 1.013 1.023 1.038 1.065 1.113 1215 1.529
10 | 1.021 1.047 1.082 1.132 1.208 1.340 1.607 2207 -3.018
0.0115 | 20 | 1.032 1.077 1.141 1.230 1351 1497 1,576 0.889 -1.239
30 | 1.035 1.089 1.172 1.300 1489 1711 1524 -0.134 -0.711
10 | 1.041 1.095 1.173 1297 1503 1.747 0.026 -2915 -1.358
0.0180 |20 | 1.081 1.188 1.314 1.407 1264 0470 -0.621 -2.755 -1.305
30 | 1.103 1260 1.472 1578 0.899 -0.355 -0.735 -2.489 -1.272
Table 4: Average Values of Simulated § under i.i.d-Money Growth
n= 2 3 4 5 6 7 8 9 10

@171: 1.009 1.006 1.006 1.005 1.005 1.005 1.005 1.005 1.005

B2 = - 0996 0998 0998 0.998 0.998 0.998 0.998 0.998

where i = 1000, ¢ = 20, o = 0.0115, i = 1.05, § = 0.95.
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Table 5: Average Values of Simulated 3 under MA(1)-Money Growth

n= 2 3 4 5 6 7 8 9 10
Bni=]0857 0.897 0924 0.939 0949 0.955 0.960 0.963 0.966
B2 = - 1.037 1.018 1.015 1.014 1.013 1.012 1.012 1.012

where n = 1000, ¢ = 20, 0 = 0.0115, & = 1.05, 6 = 0.95,6 = 0.9.

Table 6: Average Values of Simulated £, ,, under AR(1)-Money Growth

Panel A: Regression slope coefficients for nominal yields, 3,

n
o p m
2 3 4 5 6 7 8 9 10
1| 1458 1375 1326 1294 1272 1256 1244 1235 1.228
0.6
2 - 1301 1.240 1204 1.181 1.165 1.154 1.146 1.140
0.0080
1| 1.088 1.102 1123 1.148 1175 1.204 1234 1263 1.292
0.9
2 - 1164 1.174 1.188 1.206 1226 1248 1270 1.293
1| 1565 1487 1439 1407 1385 1369 1357 1348 1.340
0.6
2 - 1444 1369 1.322 1291 1270 1255 1243 1.234
0.0115
1] 0214 0160 0.065 -0.036 -0.129 -0.207 -0.266 -0.308 -0.335
0.9
2 - 0471 0327 0.191 0.067 -0.032 -0.115 -0.178 -0.224

Panel B: Regression slope coefficients for real yields, *

n,m

n
o p m
2 3 4 5 6 7 8 9 10
1| 1440 1345 1326 1292 1259 1238 1223 1212 1.204
0.6
2 - 1261 1203 1.171 1151 1.138 1.129 1.122 1.117
0.0080
1] 1550 1.690 1.800 1.884 1948 1995 2.029 2053 2.070
0.9
2 - 1.817 1.896 1953 1993 2.020 2036 2.046 2.051
1| 1621 1531 1473 1435 1409 1389 1375 1363 1.354
0.6
2 - 1449 1367 1316 1283 1.261 1246 1.234 1.225
0.0115
1]-1.073 -1.095 -1.116 -1.132 -1.140 -1.138 -1.126 -1.103 -1.072
0.9
2 - -0.733 -0.787 -0.834 -0.872 -0.898 -0.912 -0.913 -0.903

where n = 1000, ¢ = 20, i = 1.05, § = 0.95.
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Table 7: Values of Simulated 5 under AR(4)-Money Growth

Panel A: Regression slope coefficients for nominal yields, 3,

n= 2 3 4 5 6 7 8 9 10
Bna = |-0492 -0.589 -0.188 -0.009 -0.458 -0.584 -0.419 -0.382 -0.415
P2 = - -0.368 -0.434 -0.277 -0.324 -0.445 -0.481 -0.495 -0.339
Panel B: Regression slope coefficients for real yields, 5*,, ,,,

n= 2 3 4 5 6 7 8 9 10
Bni = | 0960 -0.667 -0.208 0.103 -0.174 -0.140 -0.010 -0.003 0.072
B2 = - -1.381 -0.960 -0.182 -0.064 -0.336 -0.206 -0.019 -0.004

Parameter value: n = 1000, ¢ = 10, 0 = 0.008, &z = 1.05,6 = 0.95, p1 = 0.3, po = 0.2,

p3 =0.2,p4 =0.2.

Table 8: Values of Simulated 5 under AR(12)-Money Growth

Panel A: Regression slope coefficients for nominal yields, 3,,m

n= 2 3 4 5 6 7 8 9 10
Bni = | -0.853 -0.525 -0.091 0.043 -0.085 0.005 0.079 -0.110 -0.699
Pr,2 = - -1.287 -0.779 -0.168 -0.120 -0.182 -0.090 -0.613 -0.181
Panel B: Regression slope coefficients for real yields, 5*,, ,,,

n= 2 3 4 5 6 7 8 9 10
fni = | -0.854 -0.499 -0.156 -0.030 -0.150 -0.100 -0.054 -0.038 0.004
B2 = - -1.362 -0.793 -0.243 -0.203 -0.294 -0.178 -0.122 -0.051

Parameter value: n = 1000, ¢ = 10, 0 = 0.008, . = 1.05, § = 0.95, p1 = 0.1, po = 0.08,
p3 = 0.08, ps = 0.05, ps = 0.05 , pg = 0.05, pr = 0.05, ps = 0.05, py = 0.05 , p1o = 0.05,

p11 = 0.05, p12 = 0.05,
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Table 9: Values of Inflation Parameter

Country ‘ o p Prob. of p =0
Bel 0.0027 0.072 0.440
Can 0.0019 0.188 0.072
Fin 0.0029 0.133 0.153

Fr 0.0021 0.127 0.171
Ger 0.0031 0.141 0.130

It 0.0021 0.452 0.000
Jap 0.0042 0.209 0.024
Neth | 0.0037 0.180 0.054
Nor 0.0030 0.027 0.769
Port 0.0048 0.406 0.000
Spa 0.0032 0.101 0.276
Swe 0.0058 0.256 0.005
Swit 0.0024 0.432 0.000
UK 0.0051 0.160 0.085
us 0.0018 0.264 0.004

Table 10: Results of Regression for Eq. (6.1)

(n,m) ‘ bn.m dnm prob. of b, ,,=0 prob. of d,, ,,=0 prob. of F-stat. R?

(2,1) | -1.615 -122.269 0.112 0.161 0.143 0.322
(3,1) | -2.743 -235.523 0.035 0.037 0.028 0.512
(4,1) | -1.524 -583.460 0.762 0.211 0.428 0.191
(6,1) | -0.562 -253.776 0.894 0.499 0.777 0.061
(9,1) | -2.467 -531.937 0.657 0.292 0.553 0.137
(12,1) | -0.628 -675.853 0.924 0.319 0.562 0.134
(6,3) | -1.675  70.987 0.469 0.722 0.686 0.073
(9,3) | -2.062 -19.992 0.445 0.931 0.736 0.059
(12,3) | -0.620  19.928 0.853 0.945 0.978 0.005
(9,6) | -3.641 -69.560 0.132 0.726 0.301 0.213
(12,6) | -3.487 -22.527 0.282 0.934 0.543 0.115
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Figure 2: Comovement between 35 ; and o and p

14

=
[N]

o ¢ " ‘ %9 ’:
": *%e% MAEDE 0’“‘
+ o

o

o
0

o
o)}

Value of g

I
'S

o
)

o

50 100 150 200
Simulation

o

Figure 3: 310,1 under i.i.d-inflation (81071 = 1.005 £ 0.077)
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Figure 4: 319 2 under i.i.d-inflation (3192 = 0.998 + 0.093)
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Figure 5: 3101 under MA(1)-inflation (51071 = 0.966 + 0.102)
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Figure 6: 3192 under MA(1)-inflation (3192 = 1.012 4 0.103)
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Figure 9: 7, ; under AR(1)-inflation (3*;y; = —1.072 + 0.598)
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Figure 10: 8}, , under AR(1)-inflation (*;, = —0.903 & 0.578)
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Figure 11: Average Euro Rates
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Figure 12: Average Simulated Nominal Yields

L,L: o =0.008, p = 0.6; LH: 0 =0.008,p=0.9; H,L: ¢ =0.0115, p = 0.6;
LH: 0 =0.0115,p =0.9; iid: i.i.d-inflation with o = 0.0115
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Figure 13: Average Simulated Real Yields

L,L: o =0.008,p = 0.6; LH: 0 =0.008,p=0.9; H,L: ¢ = 0.0115, p = 0.6;
LH: 0 =0.0115,p=0.9; iid: i.i.d-inflation with o = 0.0115
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