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ABSTRACT: Overrepresentation of the short arm of chromosome 12 is frequently detected in human 
testicular germ cell tumors of adolescents and adults (TGCT). This overrepresentation mostly results 
from the formation of an isochromosome: i(l2p). Whether the overrepresentation consistently involves 
the complete 1 ;?p arm including the centromere is still unclear. We studied five TGCT-derived cell lines 
(NT2, 2102Ep, H12.1, NCCIT, and S2), combining conventional chromosome banding, fluorescence in 
situ hybridization (FISH), and comparative genomic hybridization (CGH) to investigate the suitability of 
each of these techniques to detect aberrations involving chromosome 12. Karyotyping showed one or 
more i(l2p)s in NT2,2102Ep, H12.1, and S2. However, FISH with a centromere-specific probe (palZH8), 
a 12p “paint” and a 12pll.2-~12.1 region-specific probe yeast artificial chromosome (YAC) #5 and CGH 
could not confirm the presence of an i(l2p) in S2. Additional randomly distributed z 2p sequences were 
detected by FISH in Hl2.1, NCCIT, and S2. In most of these cases, (a part of) the centromere was 
included. All overrepresented 12p regions, except for those in S2, showed hybridization with YAC#5. 
CGH showed increased copy numbers of the complete 12~ arm in the cell lines with one or more i(l2p)s 
but no overrepresentation was noted in the cell lines without i(l2p). In metaphase spreads, the centro- 
merit block of the i(l2p)s differed in size as compared with those of normal chromosomes 12. This was 
rarely noted in interphase nuclei. A decrease in size of the centromeric block in 2102Ep and H12.1 
caused a weak FISH signal, which was dificult to detect, especially in interphase nuclei. The ratio 
between pal2H8- and YAC#5-derived signals reflected the presence or absence of one or more i(l2p)s. 
Our results indicate that double FISH with a centromere- and a 12p-specific probe can be used to detect 
12~ overrepresentation [including i(l2p)] in TGCT both in metaphase spreads and interphase nuclei. 
CGH confirmed’ the relative overrepresentation of 12~ sequences as detected by FISH and showed that 
in these cell lines the complete 12p was involved. 

INTRODUCTION 

Human testicular germ cell tumors of adolescents and 
adults (TGCT) can clinically and histologically be grouped 

into two entities; the seminomas (SE) and nonseminoma- 
tous TGCT (NS) [l, 21. All TGCT originate from a common 
precursor, carcinoma in situ (CIS) [3]. Despite a hypertrip- 
loid DNA content for CIS and SE and a hypotriploid DNA 
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content for NS [4-61, they show a striking similarity in 
chromosome constitution [i’], supporting a common patho- 
genetic origin. The only recurrent chromosome abnormal- 
ity detected both in SE and NS by conventional karyotyping 
is an isochromosome of the short arm of chromosome 12 
[i(12p)], present in ~70% of all TGCT [8]. The presence of 
an i(12p) is sufficiently specific to classify a cancer of the 
male gonad as a TGCT [9, lo]. In addition, the number of 
copies of i(l2p)s has been suggested to be a prognostic 

Cancer Genet Cytogenet 67:95-~102 (1996) 
0 Elsevier Science Inc., 1996 
655 Avenue of the Americas, New York, NY 10010 

0165-4608/96/$15.00 
SSDI 0165-4608(95)00233-2 



96 M. M. C. Mostert et al. 

parameter [ll, 121. Cytogenetically, TGCT without i(12p) 
show significantly more breakpoints in the 12~13 band as 
compared with those with i(12p) [8, 131. 

Recently, fluorescence in situ hybridization (FISH), 
which can be applied on metaphase spreads as well as on 
interphase nuclei (“interphase cytogenetics”), was intro- 
duced [14-171. This technique confirmed the genuine 
nature of the i(12p) in TGCT [18, 191 and showed that all 
i(lZp)-negative TGCT tested so far contained additional 
12~ sequences [13, 201, implying that relative overrepre- 
sentation of 12~ sequences is crucial for the development 
of a clinically manifest TGCT. FISH on interphase nuclei 
with a centromere-specific probe for chromosome 12 has 
been used to identify TGCT [ll, 211, based on a consistent 
size difference between the hybridizing centromeric region 
of the isochromosome and the normal chromosome 12 
homologues. The reliability of this method depends on the 
consistent involvement of centromeric sequences in the 
formation of i(12p). TGCT without size differences of 
the centromeric regions of the chromosomes 12 and their 
derivatives, including the “i(l2p)-negative” TGCT, will not 
be recognized by this approach. 

We used the combination of chromosome banding and 
FISH on metaphase spreads to study overrepresentation of 
centromeric and 12~ sequences in five TGCT cell lines. 
The results were compared with the findings on interphase 
nuclei. In addition, we used the comparative genomic 
hybridization (CGH) technique [22, 231 to study the pres- 
ence of 12~ overrepresentation in these cell lines. 

MATERIALS AND METHODS 

Cell Lines 
We analyzed five established TGCT-derived cell lines, 
three derived from NS (i.e., NT2 [24], 2102Ep [25], and 
Hl2.1, a gift from H.-J. Schmoll, Hannover, Germany) and 
two cell lines reported to show SE-like characteristics (i.e., 
NCCIT [26] a gift from I. Damjanov, TX, U.S.A.) and S2 (a 
gift from A. von Keitz, Marburg, Germany). The cell lines 
were cultured by conventional methods (37”C, 5% CO,) in 
culture flasks (Costar, Cambridge, England) and passaged 
every 2-4 days by trypsinization, depending of the growth 
rate of each individual cell line. 

Slide Preparation for Conventional Chromosome 
Banding and FISH 
Cell suspensions for generation of metaphase spreads of 
the five cell lines were prepared according to standard 
procedures. The mitotic cells were harvested after 2-4 h of 
Colcemid (Life Technologies, NY, U.S.A.) treatment, swol- 
len in hypotonic KC1 solution, and fixed with methanol: 
acetic acid fixative. 

For conventional karyotyping, air-dried preparations 
were banded with pancreatin (Sigma, St. Louis, MO, U.S.A.) 
as reported previously [27]. The chromosome constitution 
is described according to the International System for 
Human Cytogenetic Nomenclature [28], except that it is 
calculated on the basis of a triploid instead of a diploid 
DNA content because of the consistent peritriploid DNA 
content of TGCT [4, 71. 

The slides used for the combination of GTG-banding 
and FISH were prepared as reported previously [29], with 
some modifications. Air-dried slides were incubated over- 
night at 60°C. During the first minutes, the temperature 
was continuously raised from room temperature to the 
final temperature. Subsequently, the slides were washed 
in 2 X SSC for 1.5 h. After a single wash in 0.85% NaCl, 
the slides were digested for 1-5s at room temperature with 
0.25% trypsin (Difco, Brunschwig, Amsterdam, The Neth- 
erlands) in the same buffer. After two washes in 0.85% 
NaCl, they were stained for 3 min with Giemsa, according 
to the manufacturer’s recommendations (Brunschwig Che- 
mie, Amsterdam, The Netherlands). The slides were washed 
twice and air dried. Metaphases of interest were photo- 
graphed with an Axiophot microscope (Zeiss, Weesp, The 
Netherlands) and then destained in 70% ethanol for 15 
min at room temperature and directly used for FISH. 

Generation and Labeling of the Probes for FISH 
To obtain a suitable 12~ “paint” for FISH, i(l2p)s from the 
cell line NT2 were flow sorted, amplified, and biotin labeled 
by degenerated oligonucleotide primed (DOP)-polymerase 
chain reaction (PCR) as previously described [30]. In addi- 
tion, a yeast artificial chromosome (YAC)#5 (a gift from Dr. 
R. Gemmill, Denver, CO, U.S.A.), mapped to chromosome 
region 12p11.2-~12.1 [23] was used. This YAC, ~300 kilo- 
bases (kb) long, was purified by pulse-field gel electro- 
phoresis and amplified by DOP-PCR (38 cycles) as 
described previously [31]. Subsequently, the DNA was 
labeled with biotin-14-dUTP (GIBCO-BRL, Gaithersburg, 
MD, U.S.A.) in a second round of amplification (30 cycles) 
under the same conditions, except that the dTTP concen- 
tration was reduced to half. The centromeric region of 
chromosome 12 was visualized with probe pa12H8 [32, 
331, which was labeled by a standard nick-translation kit 
(Boehringer, Mannheim, Germany) with biotin-ll-dUTP 
(GIBCO-BRL) for the single and with digoxigenin-ll-dUTP 
(Boehringer) for the double FISH experiments. 

FISH 
The labeled probes were dissolved separately in 10 ~1 
hybridization mixture (hybmix), ZXSSC containing 50% 
formamid (Merck, Darmstadt, Germany), 10% dextran sul- 
fate (Pharmacia, Uppsala, Sweden), and 5 mg/ml herring 
sperm as carrier DNA in 2XSSC (final pH 7.0). The probe 
concentrations in the hybmix were 2 nglpl for pa12H8 
and 20 ng/kl for both the 12~ paint and YAC#5. FISH was 
performed as described, previously (141, with some minor 
modifications. After denaturation (70°C for 5 min in hyb- 
mix), the 12p paint and purified YAC#5 were preannealed 
with a 25-fold excess of COT-l DNA (Life Technologies). 
For the double FISH, the heat-denaturated (1OO’C for 3 
min) pa12H8 was added to the hybmix after preannealing 
of YAC#5. The denaturated probe mix was added to dena- 
turated slides (4 min in 70% formamid at 72”C, 2XSSC, 
pH 7.0) and hybridized for 16 h (overnight). 

The hybrids were visualized with mouse-anti-digoxige- 
nin, tetramethylrhodamine isothiocyanate (TRITC) conju- 
gated rabbit-anti-mouse and TIUTC-conjugated goat-anti- 
rabbit (all Sigma) or alternating layers of FITC-conjugated 
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avidin and biotinylated goat-anti-avidin antibodies (Vector 
Laboratories, Burlingame, CA, U.S.A.). Finally, the slides 
were mounted in antifade (p-phenylenediamine dihydro- 
chloride, 90% glycerol, pH 8.0), supplemented with 4,6- 
diamino-2-phenylindole (DAPI, Sigma) (final concentra- 
tion 1 +g/ml) for counterstaining of the chromosomes. 
Results were studied with a Zeiss Axiophot epifluores- 
cence microscope, eqmpped with appropriate filters for 
the visualization of FITC, TRITC, and DAPI fluorescence. 
Representative photographs were made conventionally or 
with a Photometrics h.igh-performance CH250iA cooled 
CCD-camera (Photometrics, Tucson, AZ, U.S.A.). The final 
figures were generated with a Macintosh Quadra 950 com- 
puter using the BDS-image FISH software package (Oncor, 
Gaithersburg, MD, U.S.A.). 

Screening and Interpretation 
The karyotypes were interpreted by an experienced cyto- 
genetic technician una.ware of the FISH results. FISH 
results were scored separately by two individuals. For 
each experiment, 25 metaphases and 100 interphase nuclei 
were counted. Signal diistributions per sample were sum- 

H12.1 

NCCIT 

s2 

marized as the mean number of spots/metaphase (MNSM) 
or interphase nucleus (MNSI), and SD was calculated. The 
differences in sizes of the fluorescent centromeric block of 
the normal and chromosome 12 derivatives, including 
i(12p), were also scored. Statistic analysis was performed 
with the unpaired Student’s t test. 

CGH 
CGH was performed on conventionally prepared slides for 
karyotyping as described previously [22, 23, 34, 351. The 
metaphases as well as control DNA for the hybridization 
were obtained from a normal male individual. For each 
hybridization, 400 ng tumor DNA was labeled with digox- 
igenin and a similar amount of control DNA was labeled 
with biotin. COT-l DNA 80 kg (Life Technologies) was 
added to reduce background signal due to repetitive 
sequences. After incubation for 2-4 days under a coverslip 
in a moist chamber, the slides were washed by procedures 
described for FISH. The hybrids were visualized with 
FITC-conjugated sheep-antidigoxigenin (Boehringer) (tumor 
specific signal), and pentamethine cyanine dye isothiocy- 
anate (CY3) conjugated avidin (Jackons, Immuno Research, 

Table 1 Mdal composite karyotypes of the testicular germ cell tumor derived cell lines studied” 

Cell line Chromosomal constitution 

NT2 58-61,add(X)(q24),der(X)t(X;l)(ql3;qll),+der(X)t(X;l)(p~~;p22),-Y, del(l)(p36), 
i(l)(plO),add[2)(q341,-4,-5,-6,add(6)(q25),der(7)t(7;17)(q22;q21),-8,add(9)(q21), 
-lO,add~lO~~pll.l),-ll,der(ll)t(ll;l5)(qll;ql5),+i(l2)(plO)x2,-l3,add(l3)(q2~], 
-14,-15,-17,-18,-19,add(20)(p13),-21,-22,-22,+6_8mar[cp9] 

2102Ep 

Clone A: 52-55,XX,-Y,der(l]t(1;7)(p32;pl5),-2,add(2)(p25),-3,add(3)(q29),-4,-5, 
-6,de~~6~~ql6l,add(7)(q21),-8,-9,-lO,add(lO)(pl5),der(l~]add(ll)(ql3)del(ll) 
~pl5~,+i~l2~~plO)x2,-13,der(13)t(13;13)(pl2;ql2),-~4,add(~4)(pll),-~~,-l5,-l6, 
-~7,der(17)t~11;17)(q11;p12),-18,add(18)(p11.~],-19,-19,-20,der(20)t(8;20) 
(q13;q13),-21,-22,+4-7mar[cp4] 

Clone B: 57-59,XX,+der(X)t(X;lO)(q25;q21),-Y,der(l)t(l;7)[p32;pl5),dup(l) 
~q11q21~,-2,add(2)(p25),-4,-5,de1(6)(q16),+add(7)(q21),-8,add[8)(p11),-9,-9, 
-10,-11,-12,i~12)(p10),+i(12)(p10),-13,-13,-14,-14,-15,add(16)(q24),-17, 
-18,-18,-19,-20, -22,+5-7mar[cp2] 

Clone C: 53-57,XX,+der(X)t(X;lO)(q25;q2l),-Y,dup(l)(qllq21),-2,-z,-3,-5,-6, 
add~8~~pll~,-9,-9,-1O,-~l,del(~2)(q22),+i(l2)[p~O)x2,-~3,-~3,-~4,-~5,-l8, 
-19,-21,-22,+2-4mar[cpZ] 

53-57,add(X)(p22.1),add(X)(p22.l),-Y,add(~)(p2~),del(~)(p2~),+del(~)(q24), 
+del(l) ~q3l~,add(3)(qll),-4,de1(4)(p15.2p15.3),-6,add(6)(pll.2),del(6)(p23),-7, 
add~7~~pl5~,de~~7)(qll.2),-8,de1(8)(p22),-9,-9,-lO,-lO,add(ll)(pll.2),der(l2) 
t~9;12~~ql2;ql2),-~3,-14,add(14)(pll),-~5,der(~5)t(~5;?;~5)[p~~~~;?;q~~),-~6,-17, 
-18,der(l9)t(7;19)(qll.2;p13.1),-20,-21,-22,-22,+der(?)t(?;~)(?;p~3],+der(?) 
t(?;lO)(?;q11.2),+4-6mar[cplO] 

54-57,X,der~X~t~X;8~~pll;pll~,-Y,-l,-l,add(2)(p25)x2,add(2)(p16),-3,-3,add(3) 
~ql~~,-4,-4,der(4)t(4;12)(p13;qll),-5,-5,-5,add(6)(qll),del(6)(q2?),-8,del(8) 
~p21~,-9,-10,-10,-10,der(11)t(5;?;11)(q13;?;p11),der(12)t(8;12)(q~3;q24)x2,i(~2) 
~p10~,-13,-14,add(14)(p11),-15,add(15)(p11),der(15)t(5;15)[q13;p12],-16,-~7, 
-18,-18,der(l9)t(l;l9)(p12;p13.2),-2O,add(2O)(q~3.3),+add(~~)(p~2),-22,-22, 
+der(?)t(?;l)(?;qZl),+der(?)t(?;3)(?;pll),+8-12mar[cp7] 

“Descriptions are based on a triploid DNA content. 
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West Grove, U.S.A.) (control signal). The results were eval- 
uated with a Zeiss Axiophot epifluorescence microscope, 
equipped with a Photometrics high-performance CH250lA 
cooled charge-coupled device (CCD)-camera (Photomet- 
rics) connected to a Macintosh Quadra 950 computer 
using the comparative genomic hybridization applications 
provided in the BDS-image FISH software package 
(Oncor). From each cell line, at least 10 metaphase spreads 
with similar imbalances on both chromatids of both chro- 
mosome 12 homologues were interpreted. The individual 
chromosomes were identified by computer images obtained 
from the DAPI-banded metaphase chromosomes. Digital 
analysis allowed representation of the results as fluores- 
cence intensity profile for each fluorochrome along the 
chromosome. The average green/red ratio was calculated; 
peaks in the green profile were interpreted as overrepre- 
sentation. Photographs were made directly from the com- 
puter screen. 

RESULTS 

Conventional chromosome banding was performed on five 
TGCT-derived cell lines. The results are shown in Table 1 
as modal composite karyotypes. Three different clones 
were detected in Hl2.1. In the context of this study, we 
focus only on chromosome 12 and related aberrations. 
NT2, 2102Ep, H12.1, and NCCIT showed at least two nor- 
mal chromosomes 12. An i(12p) was identified in NT2 (2), 
2102Ep (l), H12.1 (2) and S2 (1). No i(12p) was noted in 
NCCIT, but this cell line showed a der(l2)t(9;12)(ql2;q12). 
S2 contains two der(l2)t(8;12)(ql3;q24) and one der(4) 
t(4;12)(p18;qll), and 2102Ep showed a der(12)t(8;12)(qll; 
qll) and a de1(12)(q22). The latter anomaly was also 
present in H12.1. Conventional chromosome analysis 
indicated that three copies of the short arm of chromo- 
some 12 were present in NCCIT, 4 were present in S2, 6 
and 7 were present in Hl2.1, 6 were present in 2102Ep, 
and 7 were present in NT2. The expected copy numbers of 
centromeric regions are therefore, 3, 3, 5, 5, and 5, respec- 
tively. 

For the simultaneous detection of centromeric and l2p 
sequences, double FISH with pa12H8 and YAC#5 was per- 
formed. In this approach, pa12H8 was labeled with digox- 
igenin (detected with TRITC) and the YAC with biotin 
(detected with FITC). In addition, pa12H8 labeled with 
biotin was used in single FISH. The mean numbers of sig- 
nals per metaphase spread and interphase nucleus (and 
corresponding SD) of single and double FISH are shown in 
Table 2. The FISH patterns are shown in Fig. 1 and repre- 
sentative examples are shown in Fig. 2. The results 
obtained from NT2 and NCCIT confirmed the findings of 
karyotyping. In contrast, FISH showed that the cytogeneti- 
tally defined i(12p) in S2 contained no chromosome 12- 
derived sequences and was therefore incorrectly identified 
as such (Fig. 1A). In addition, FISH showed that der(4) 
t(4;12)(p18;qll) must be reclassified as der(12)t(4;12)(q12; 
pll.Z)(Fig. 1B). 

Despite lack of hybridization of YAC#5 with one of the 
chromosome 12 derivatives in S2, the 12~ paint recog- 
nized a small region just proximal to the centromere (Fig. 

Table 2 Summary of the single and double FISH results 
using the centromere-specific probe pa12H8 and 
YAC#5 for the 12p11.2-~12.1 subband on 
metaphases and interphase nuclei of five TGCT- 
derived cell lines 

Single FISH Double FISH Ratio YACI 
Cell line pollZH8 pcmH8 YAC palZH8 

NT2 
MNSM 5.0 (0.3) 4.7 (0.6 6.7 (0.4) 1.4 
MNSI 5.0 (1.0) 4.2 (0.7) 6.1 (0.9) 1.5 

2102Ep 
MNSM 3.9 (0.7) 4.0 (0.7) 5.8 (0.9) 1.5 
MNSI 3.3 (0.5) 2.8 (0.8) 5.3 (1.1) 1.9 

H12.1 
MNSM 4.5 (0.6) 4.1 (0.5) 5.2 (0.6) 1.3 
MNSI 3.9 (0.8) 3.4 (1.0) 4.3 (1.0) 1.3 

NCCIT 
MNSM 2.9 (0.5) 2.8 (0.7) 2.8 (0.8) 1.0 
MNSI 3.3 (0.7) 2.7 (0.7) 2.8 (0.8) 1.0 

s2 
MNSM 3.0 (0.2) 2.9 (0.3) 2.0 (0.0) 0.7 
MNSI 3.2 (0.7) 2.3 (0.7) 1.9 (0.3) 0.8 

Abbreviations: FISH, fluorescence in situ hybridization; MNSM and MNSI, 
mean number of spots per me&phase and per interphase nucleus; YAC, 
yeast artificial chromosome. 

The centromeric probe was labeled with biotin for the single and with 
digoxigenin for the double FISH. The MNSM and MNSI as well as corre- 
sponding SD (in brackets) are indicated. The ratio between the numbers of 
YAC- and pcxlZ.H8-derived signals for each cell line is shown. 

1B). In addition, in this cell line cryptic l2p sequences 
were detected in der(?)t(?;s)(?;pll) and in the cytogeneti- 
tally identified add(l8)(pll.l) in H12.1. Analysis showed 
that this latter region also contained a small p(-r12H8- 
hybridizing fragment (Fig. lC), as well as a region recog- 
nized by YAC#5 (data not shown). In contrast, no YAC#5 
hybridization was detected in the aforementioned 12p- 
derived region in S2 (data not shown). The 12~ sequences 
other than those present in normal copies of chromosome 
12 and i(l2p)s were distributed randomly throughout the 
genome, i.e., associated with (parts of) chromosomes 3, 4, 
8, 9, 18, and 19. 

No size differences between the fluorescent centromeric 
regions of the normal chromosomes 12 and its derivatives 
were detected in NCCIT and S2. In contrast, on metaphase 
spreads, both i(l2p)s in NT2 contained an enlarged centro- 
merit region (Fig. lD), whereas the i(l2p)s in 2102Ep and 
H12.1 contained a smaller hybridizing region. These size 
differences could only be identified on ~5% of the inter- 
phase nuclei whether biotinylated or digoxigenin-labeled 
po12H8 was used, as illustrated by Fig. lE, which shows 
nucleus of NT2 hybridized simultaneously with po12H8 
and YAC#5. The appearance of the different signals indi- 
cates the presence of three normal chromosomes 12 and 
two i(l2p)s. The pal2H8-hybridizing region in add(l8) 
(~11.1) of Hl2.1 already mentioned and the region present 
in der(l2)t(8;12)(qll;qll) of 2102Ep were reduced in size 
as compared with their normal homologue (not shown). 
Despite multiple attempts, the latter centromeric region 
could be detected by FISH in only 30% of the metaphase 



Short Arm of Chromosome 12 in Germ Cell Tumors 99 

Figure 1 Fluorescence in situ hybridization (FISH] results in 
chromosome 12 and derivatives (arrow) with the centromeric 
probe p(~12H8 (indicated by a block) and yeast artificial chromo- 
some (YAC)#5 (circles). 

spreads. Because of the involvement of the centromere of 
chromosome 12 in this translocation, it must be reclassi- 
fied as der(l2)t(3;12)(qll;qlO). 

In metaphase spreads of 2102Ep, NCCIT, and S2, similar 
numbers of centromeric regions were detected with the bioti- 
nylated and digoxigenin-labeled pa12H8 probe (Table 2). 
Lower copy numbers were observed in NT2 and H12.1 
when the latter was com.pared with the former (p < 0.05 
and 0.02, respectively). On interphase nuclei, this decrease 
in copy numbers was significant in all cell lines (p < 
0.001). In general, a lower number of centromeric- and 
12p-specific signals was observed on interphase nuclei as 
compared with metaphase spreads. This was mainly true 
of the centromeric region in the cell lines showing a 
reduced size of the fluorescent signal of the chromosome 
12 derivatives (2102Ep and H12.1). 

Single hybridization with po12H8 showed chromo- 
some 12-centromeric regions of more than two in all cell 
lines tested. Distinction between a normal chromosome 
12, an i(12p), or another chromosome 12 derivative could 
not be made with this approach on interphase nuclei. The 
simultaneous application of po12H8 and YAC#5 indicated 

a relative 12~ overrepresentation as compared with the 
centromeric regions in all three i(l2p)-containing cell 
lines (NT2, 2102Ep, and Hl2.1), i.e., ratio of YAC#5 to 
pa12H8 of ~1.3. The cell lines with no i(12p) (NCCIT and 
S2) had a ratio of sl.0. 

To study the value of CGH for the detection of l2p over- 
representation in TGCT in comparison to conventional 
cytogenetic and FISH analysis, CGH was used on the five 
cell lines included in this survey. The analysis was based 
on a triploid DNA content of the tumor cells, without con- 
tamination of the sample with host cells. No 12~ overrep- 
resentation was detected in the cell lines NCCIT and S2. 
This finding is in agreement with the combined results 
obtained by cytogenetic and FISH analyses, showing no 
more than three copies of the short arm of chromosome 12 
in these cell lines. The inability to detect the underrepre- 
sentation of 12~ sequences in S2, most probably due to the 
sensitivity of this method, is noteworthy. The other three 
cell lines (NT2, 2102Ep, H12.1) showed overrepresenta- 
tion of the complete short arm of chromosome 12 by CGH 
(shown for NT2 in Fig. lF), in accordance with the results 
of cytogenetic analysis combined with FISH, showing six 
or more copies of 12p per nucleus. 

DISCUSSION 

After the first report of the presence of an i(12p) in TGCT 
in 1982 [36], multiple studies of this isochromosome were 
published, dealing with the possible clinical implications 
[37] as well as different detection methods. The latter 
include conventional karyotyping, molecular and FISH 
strategies. Cytogenetically, i(12p) can be detected in most 
TGCT [7, 38, 391, supported by molecular data [39, 401. 
The FISH approach [ll] is based on the use of a cen- 
tromere specific probe for chromosome 12. This probe has 
been reported to detect a consistent size difference between 
the hybridizing region of a normal chromosome 12 and an 
i(12p). Because of a discrepancy in the literature regarding 
this phenomenon (18-20, 23, 411, as well as the occur- 
rence of TGCT without i(12p) [13, 20, 421, we studied the 
possibility of identifying 12p overrepresentation in gen- 
eral, and of i(12p) in particular, on metaphase spreads and 
interphase nuclei with a double FISH approach. In addi- 
tion, CGH was applied to investigate whether the entire 
12~ arm was overrepresented. Because cell lines, in con- 
trast to tumor samples, enable a detailed description of the 
chromosome constitution and comparison of the data 
obtained from metaphase spreads and interphase nuclei, 
five TGCT-derived cell lines were included in this study; 
three NS (NT2, 2102Ep, and Hl2.1) and two cell lines 
reported to be SE-like (NCCIT and S2). Ours is the first 
study in which the reproducibility and sensitivity of dif- 
ferent methods in detecting chromosome 12 aberrations in 
TGCTs was tested in detail. 

Conventional karyotyping in combination with FISH 
showed the presence of i(12p) in all three NS cell lines but 
not in the two with a SE-like phenotype, which is of inter- 
est because i(12p) is more frequently detected in NS as 
compared with SE; 83 versus 56% in the largest series of 
primary TGCT (102) analyzed so far [B]. The aberrant size 
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Figure 2 (A) Double fluorescence in situ hybridization (FISH) of a metaphase spread of S2 with the centromere- 
specific probe pcxlZH8 (tetramethyl-rodamine isothiocyanate TRITC; red signal) and 12~ paint (FITC, yellow sig- 
nal), and DAPI as counterstaining of the chromosomes: No 12p- or centromere-derived sequences are present on 
the cytogenetically identified i(12p) (arrow), whereas 12~ and centromere sequences are hidden in the cytogeneti- 
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of the fluorescent centromeric region of the i(12p) as com- 
pared with the normal chromosomes 12 detected in 
metaphase spreads of the cell lines was not observed con- 
sistently on interphase nuclei hybridized in the same 
experiment. Therefore, FISH with only a centromeric 
region-specific probe is not sufficient to screen for the 
presence of one or more i(l2p)s in interphase nuclei. This 
conclusion is strengthened by the fact that in two cell 
lines (2102Ep and Hl2.1) a reduced size of the hybridizing 
centromeric regions was also observed in derivatives of 
chromosome 12 other than i(12p). Therefore, the finding 
of i(12p) in pediatric germ cell tumors, as recently 
reported [ 131, must be verified. The double FISH approach 
used in this study might be informative. 

As compared with conventional karyotyping, addi- 
tional chromosome 12-derived sequences were detected 
with FISH in H12.1 and S2. All cell lines contained a rela- 
tive overrepresentation of the centromeric region and short 
arm sequences of chromosome 12 as compared with their 
modal chromosome consititution (hypotriploid). CGH 
showed overrepresentation of 12~ sequences only in the 
cell lines with more than one extra copy of the complete 
short arm of chromosome 12 [those with at least one 
i(lZp)]. The ratio of the 12p-derived signals to those 
reflecting the centromeric regions indicates the presence 
(>l.O) or absence (c1.0) of one or more i(l2p)s. This ratio 
might be useful to study tumors for the presence of the 
i(12p), using interphase cytogenetics. This is currently 
under investigation. To visualize the presence or absence 
of i(12p) on interphase nuclei, a 12p-specific probe map- 
ping closer to the centromere than YAC#5 would be more 
informative. Double FISH proved a suitable method for the 
detection of 12~ overrepresentation in general and of i(12p) 
in particular on metaphase spreads and interphase nuclei 
of TGCT-derived cell lines. Currently, we are determining 
the critical region of overrepresentation of the short arm of 
chromosome 12 in TGCT using a combination of cytoge- 
netic and FISH analysis. Elecause CGH confirmed the cyto- 
genetic findings on chromosome 12 of the cell lines 
included in this study, and because of the recent report of 
the detection of amplification of a restricted region of the 
short arm of chromosome 12 in a metastasis of a SE [23], 
as well as in primary TCCTs [43], we will also use this 
technique in the analysis of the 12~ aberrations in primary 
TGCT. This combined approach will finally result in the 
identification of the chromosome region from which the 
candidate gene or genes causing development of this can- 
cer can be isolated. 
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