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Abstract

Batching orders and routing order pickers is a commonly studied problem in many picker-to-parts
warehouses. The impact of individual differences in picking skills on performance has received
little attention. In this paper, we show that taking into account differences in the skills of individual
pickers when assigning work has a substantial effect on total batch execution time and picker
productivity. We demonstrate this for the case of a Finnish retailer. First, using time-stamped
picking data, multilevel modeling is used to forecast batch execution times for individual pickers
by modeling individual skills of pickers. Next, these forecasts are used to minimize total batch
execution time, by assigning the right picker to the right order batch. We formulate the problem
as a joint order batching and generalized assignment model, and solve it with an Adaptive Large
Neighborhood Search algorithm. For the sample company, we are able to improve state-of-the-art
batching and routing methods by almost 10% taking skill differences among pickers into account
and minimizing the sum of total order processing time. Compared to assigning order batches to
pickers only based on individual picker productivity, savings of 6% in total time are achieved.

Keywords— Logistics, Order picking, Analytics, Combinatorial optimization, Data driven modeling

1 Introduction

Order picking is the most important, and the most expensive process in distribution centers. It is

estimated that order picking operations are responsible for 55% (Drury, 1988) to 65% (Coyle et al.,

1996) of the total cost to operate a distribution center. Advances in technology and in knowledge of

the picking process have most probably reduced the actual costs of the process, but they still form a

substantial part of a distribution center’s costs. In spite of the advent of highly mechanized warehouses,

orders are still picked manually in most warehouses, with pickers traveling the warehouse to retrieve the
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Figure 1: An order picker towing two empty bins. Image courtesy of Rocla.

items for an order (picker-to-parts processes) (De Koster et al., 2007). These manual picking processes

are increasingly supported by advanced technologies, such as pick-by-light systems, supporting mobile

terminals, and voice picking systems, which have made the order picking process more reliable and

efficient (Berger and Ludwig, 2007, Weaver et al., 2010, Baumann, 2013). These computer-assisted

picking processes generate extensive logs, including who performed which pick at which location and

at which point in time. Warehouses often pick many items (products) on a daily basis, leading to large

amounts of log data.

Data on individual order pickers, readily available in many warehouses, can be used to improve the

efficiency of the order-picking process significantly. We illustrate this for the case of a Finnish retailer

operating a single large order picking warehouse supplying all its stores and e-commerce customers.

Time-stamped picking logs are used to build models that forecast the batch execution time of individual

order pickers. Due to differences in picking skills, significant differences in performance will exist

among pickers. In the case of the retailer, we will show that 13% of the variance in batch execution time

is due to such differences. All pickers employed by the retailer have been trained, but they have different

physical and mental skills. Some are better at handling heavy masses, or better at driving the pick

trucks, or can stack items faster in a roll cage (see Figure 1). The effect of all these factors is extracted

from the data, and is used to calculate the time forecasts using a multilevel model. Cross-validation and

analysis of variance are used to verify the significance of the added factors and to show differences exist

among the pickers. Hierarchical clustering is used to find groups of pickers that have similar skills and

to illustrate the results of the regression.
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The forecasts are used to determine which orders should be combined in a pick tour (i.e., a batch)

and executed by which picker. The problem is formulated as a joint order batching and generalized

assignment (BatchGAP) model. In this model, batches are assigned to pickers with the objective to

minimize the sum of total batch execution times. Our results can be used by warehouse managers to

analyze different skills of pickers and either to dispatch the right order to the best from the available

pickers, or in the case of hiring flex workers, to consult past log data and hire those pickers matching the

current orders.

The BatchGAP problem is complex. We therefore solve it heuristically with an Adaptive Large

Neighborhood Search Algorithm (ALNS). The ALNS exploits differences in pickers using a model

that integrates routing, batching, and generalized assignment. By assigning batches and orders to those

pickers who are best qualified to execute them, overall picking productivity can be increased and batch

execution time can be reduced significantly.

The ALNS algorithm is wrapped in a simulated annealing framework. At each iteration, the

ALNS chooses a neighborhood search heuristic to improve a current solution, partly based on past

performance of each heuristic. The heuristics focus on moving orders between batches and moving

batches between pickers. ALNS-type methods have been shown to work very effectively on a wide

variety of computationally hard problems such as container scheduling (Gharehgozli et al., 2013),

vehicle routing (Ropke and Pisinger, 2006), scheduling technicians and tasks with varying skills

(Cordeau et al., 2010), and order batching and picker routing (Matusiak et al., 2014).

We test the model and algorithm for the case of a Finnish retailer and compare results with the real

execution times of the batches assigned to the pickers who actually executed them. The warehouse

uses the first-free method and assigns the first available picker to the batch to be executed next. We

also compare the results with a state-of-the-art travel-distance based order batching method: Variable

Neighborhood Search of Albareda-Sambola et al. (2009), combined with the first-free heuristic. Using

this method, improvements of almost 10% are achieved. Compared to assigning work to the fastest

pickers first (based on average picking speed), taking more detailed picking skills into account still

saves 6% of the total time. Our method is, in principle, applicable to any modern warehouse using

computer assisted picking tools storing time-stamped operational data. However, large real instances

require a trade-off between solution time and quality. This trade-off can be addressed, e.g., by choosing

a faster batching algorithm to form an initial solution.

We proceed as follows. Section 2 relates this paper to other work in the literature, particularly on

order batching, worker modeling, and worker to work assignment. In Section 3, the batch execution time

forecasting model is presented. Section 4 introduces the batching and assignment model, and Section 5

describes the routing method and ALNS algorithm. In Section 6, we report our results and we conclude

in Section 7.

2 Related Work

In this section, we present research related to our study. We distinguish three topics: research on order

batching and picker routing in picker-to-parts order picking processes, assigning jobs to pickers based

on their skills and capabilities to complete the jobs, and modeling order pickers in a warehouse context

using data logs.
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Research on optimizing picker-to-parts order-picking processes has focused on routing pickers

(Ratliff and Rosenthal, 1983, Randolph, 1993, Theys et al., 2010), combining orders into batches

to minimize travel distance and time (De Koster et al., 1999, Gademann and Van de Velde, 2005,

Albareda-Sambola et al., 2009, Henn and Wäscher, 2012, Matusiak et al., 2014), and more recently,

scheduling pickers and avoiding congestion (Hong et al., 2012). A recent overview can be found

in De Koster et al. (2007) describing different features of the models used. The combined order

batching and picker routing problem is complex and several heuristics have been proposed to solve it.

Gademann and Van de Velde (2005) use a column generation approach for batching. Routing is done

with the polynomial time optimal traveling salesman problem (TSP) algorithm presented in Ratliff and

Rosenthal (1983), which is restricted to rectangular warehouses without a middle cross-aisle and with

a single depot. The TSP algorithm by Ratliff and Rosenthal (1983) was further extended to include

multiple drop-offs in De Koster and Van der Poort (1998), and a middle cross-aisle in Roodbergen

and De Koster (2001). Albareda-Sambola et al. (2009) and Henn and Wäscher (2012) use heuristic

routing strategies (e.g., S-shape and Largest Gap) combined with Variable Neighborhood Search and

Attribute Based Hill-climber based batching algorithms, respectively. As the combinatorial space of

possible batches is explored with a search algorithm, routing has to be done for each new, previously

unrouted batch. This limits using computationally heavy, general purpose TSP algorithms, such as the

Lin-Kernighan-Helsgaun algorithm (Helsgaun, 2000, Theys et al., 2010), in conjunction with a batching

algorithm. Matusiak et al. (2014) deal with a precedence constrained routing case, where the savings

gained when batching multiple customer orders can be approximated without the need to explicitly

route all batches.

Assigning jobs to workers, based on their capabilities has been studied relatively well. We

distinguish between capability (the degree to which a person is able to carry out a certain task,

regardless of the time it takes) and skills (the speed at which such a task can be carried out). In our case,

all pickers have the capability to pick the batches, albeit at different speeds. Differences in skills may

be caused by, for example, the ability to lift heavy objects, motivation, ability to handle high volume

batches, and knowledge of the warehouse — many of which are not directly quantifiable.

Taking advantage of workers’ capabilities has been studied and modeled as a generalized assignment

problem (GAP). For extensive surveys on the subject, see Cattrysse and Van Wassenhove (1992) and

Pentico (2007). Campbell and Diaby (2002) solve a GAP for cross-trained workers with an assignment

heuristic. Each worker has a predetermined value from zero to one characterizing his/her ability to

work in a department (to do a job). Another stream of research investigates how worker speed depends

on endogenous and exogenous factors (Bendoly et al., 2006). Powell and Schultz (2004) show that

workers increase speed in the presence of a visible backlog. Doerr and Arreola-Risa (2000) investigate

how the variability of task completion times is affected by different tasks and workers. They find that

the most significant factors affecting the variability are: (1) the worker who did the work and (2) the

interaction effect between the worker and the task, while the task type in question had no significant

influence on its own. Juran and Schruben (2004) use personality and demographic data to predict task

execution times of a collaborative two-worker task. They find that including information of individual

workers has a significant impact on simulation accuracy compared to assuming no differences among

workers. Bartholdi and Eisenstein (1996) show that if workers are sequenced from slowest to fastest in

a production line and if they have the possibility of changing stations, but not of passing another worker,

4



a stable partition of work will spontaneously emerge. Items can be passed to subsequent workers. This

leads to the production rate converging to the maximum possible value. These studies reinforce the

hypothesis of picker skills playing a significant role in total batch execution time, which is further studied

in sections 3 and 5.

We have not found any studies that measure the impact of skills and exploit the differences in skills

to assign workers to jobs, i.e., where workers can do the work, but have different execution speeds,

depending on job parameters. The next section shows how we use log data to forecast batch execution

times.

3 Forecasting Expected Batch Execution Time

Most warehouse management systems (WMS) store order picking logs, which are captured at a very

detailed level by advanced picking tools. In this section, such log data are used to construct models to

forecast the batch execution time for individual pickers. Batch execution time may depend on many

factors, such as the details of the batch to be picked, but also on behavioral factors, such as intrinsic

and extrinsic motivation and ability (Larco Martinelli, 2010). However, rather than explicitly including

behavioral factors, we implicitly include these by only considering the past performance of each picker,

as this is what can be found in the WMS data. WMS data of a picked order in a batch typically include:

picker ID, roll cage IDs in which the items are picked, drop-off locations of the roll cages, time stamp

of each order line, slot address per line, item IDs, and number of units picked. Multilevel modeling

is naturally suited for distinguishing between-group, i.e., between-picker, differences. As potential

independent variables, we select the number of pick lines in a batch, total batch travel distance, total

pick item mass and volume in a batch, as well as the mean pick height level at which items are picked

during the picking tour. We use the data to extract and test the significance of the following skills on the

total time using multilevel modeling, where the pickers form the "groups":

• agility: ability to stop on and off the pick truck (stressing for the knees, see Figure 1); modeled by

the number of lines;

• driving skill; modeled by the batch travel distance;

• skill in picking heavy items (strength); modeled by the of total batch mass;

• skill in picking at low or high level; which may be influenced by picker height; modeled by the

mean pick level of a batch;

• skill in picking large volume batches; modeled by the total batch volume.

We continue by describing the dataset, the data cleaning, the regression method, and then present

the regression and finally illustrate the regression results by clustering picker models.

3.1 Warehouse and Dataset Description

Our sample warehouse is a large picker-to-parts warehouse in Finland. We obtained three months of

extensive pick data from the warehouse’s pick-by-voice system, in total nearly two million time-stamped

logs. The warehouse has three cross-aisles, 57 aisles, seven drop-off locations, unidirectional travel in
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Figure 2: Warehouse layout. The drop-off locations are marked 1-7. D stands for depot.

the aisles, and a single depot storing empty roll cages (see Figure 2 for the layout). Each customer order

contains a maximum of 50 order lines, and is picked to a single roll cage using a motorized truck that

can transport a maximum of three roll cages. Thus each batch consists of a maximum of three customer

orders.

Our data set allows us to extract original customer orders and batches, and to identify the picker who

did the work. The batch execution time depends on: (1) picker ID; (2) total number of lines; (3) total

travel distance calculated from the distance between all sequentially visited locations in a tour [m]; (4)

total mass [kg]; (5) mean pick level — where 1 is low and 2 is high; (6) total volume [m3]. Picker height

can also play a part, but these data were unavailable from the retailer.

The models are then used in an ALNS algorithm as explained in sections 4, 5, and 6 to assign orders

and batches to pickers. The whole dataset consists of 37,841 batches worked by 229 pickers during a

three-month period.

3.2 Data Cleaning

To find possible outliers, the data were preprocessed. The results are summarized in Table 1.

Three different ways of picking were found: (i) multiple orders in a batch (pick tour), (ii) individual

orders, and (iii) multiple orders with no apparent routing, and all lines with the same timestamp.

The second and third methods can occur in exceptional situations and represent non-standard ways

of working. The second occurs when picking heavy items to pallets instead of roll containers (Pallet),

and the third occurs when the warehouse manager signs off previously picked orders by a single press

of a button (Timestamp). The large majority of the batches (83%), represented by (i), is used in our

regression modeling; (ii) and (iii) were not considered because they do not represent a standard way of

working.

Some items could not be mixed with other products, e.g., because they were highly fragile. The

weight of such line items is artificially inflated to reach the threshold weight of 600 kg per order. Orders

containing such lines were discarded (Mass). In addition, batches that took too long to execute were also

discarded. This can be caused by breaks, shift changes in the picking process, or task interruptions with

other causes. Based on experience in warehouses with similar picking processes, the threshold was set

at a maximum of two hours net picking time per batch (Long time). Batches that were picked by more

than one picker were also excluded (Many pickers).

Neither the output nor the inputs were allowed to contain zero values — all such batches were

omitted from consideration (Zeros). Finally, to construct a reasonably large set of cross-validation data,

for each picker included in the model was required to have at least 75 batches of input data (80% of
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Table 1: Summary of data cleaning. The cleaning categories are in the order they are applied — thus
Speed is first and Picker out is last.
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Percentage 100% 8.6 % 8.3 % 2.3% 0.1% <0.1% <0.1% <0.1% 10.8% 65.2%

Table 2: Mean values and coefficients of variation per batch before and after data cleaning.

Time [min] Lines Travel [m] Mass [kg] Level Vol [m3]
Before clean-up

µ 28.1 45.7 568.4 204.0 1.1 1.0
CV 0.74 0.70 0.72 0.67 0.11 0.43

After clean-up
µ 27.1 45.7 571.4 203.1 1.1 1.0

CV 0.74 0.70 0.72 0.66 0.11 0.42

which are used for tuning the model) (Picker out). After the data cleaning and the requirement on the

number of data lines, 99 pickers out of 229 qualified. Table 1 shows a summary of the results of the

data cleaning. After completing the data cleaning, 24,669 batches remained to be used for modeling the

pickers.

Table 2 lists the means and coefficients of variation (CV) for the inputs and outputs. The independent

variables are: Lines (x1), Travel (x2), Mass (x3) Level (x4), and Volume (x5). We see that the data

cleaning process hardly affects the mean and cv of the explanatory variables.

3.3 Multilevel Modeling

Let w ∈ W denote the groups (the pickers) and r ∈ R are indices to the data (the batches). Furthermore,

let vector βw contain the model parameters for group w and let tr,w be the output from a model, which

forecasts total batch processing time, for some r and w. Using the notation of Bryk and Raudenbush

(1992), a linear multilevel forecasting model can be formulated as in equations (1).

tr,w = β0,w +
n∑
i=1

βi,wxi,r + κw,r (1a)

βi,w = γi + ui,w ∀i ∈ {0, ..., n}, (1b)

where xi,r is the ith element of input vector xr, κw,r is the within-group error term, and γi is the slope

effect of the dependent variable i ∈ {1, ..., n}. For group w, u0,w is the intercept error and ui,w are

slope errors ∀i ∈ {1, ..., n}. A two-level multilevel model is used to forecast each picker’s pick time

per batch. Following Bliese (2002), three important sources of variation are found: within group (σ2),

between-group variation in intercepts (τ0), and between-group variation in slopes (τ1). The models are

built using R software and its packages, multilevel and nlme.

The data is divided in two parts. For each picker, a random 80% of the batches are used for

regression, and the rest (20%) for cross-validation purposes only. As the forecasting models are directly

used to calculate estimates of batch execution times in Section 6, we want the forecasts to be as

accurate as possible. In regressing, the batches are ordered by timestamp to accommodate possible
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learning-based autocorrelations in the data. We have chosen to solely use goodness of fit criteria in

model selection as they are more generally applicable than F-tests and equally powerful (Fan and Huang,

2001). Plots of batch execution times and independent variables show that variance increases with total

batch execution time, implying the data are heteroscedastic. This appears to be largely remedied by

applying a logarithmic transform of the output data (batch execution times).

First, a level-1 model is constructed, i.e., a model with between-picker variability only in the

intercept. Second, the level-1 model is extended to level-2 by allowing between-picker variability in the

slopes.

Step 1: intercept variation. In this section, we test for for significance of between-picker variation in

the intercept. If the variation is not significant, it will not matter which picker gets a job — all pickers

will perform in a similar manner. Hence, solving any assignment problem will be pointless. However,

if there are between-picker differences, one should strive for a better assignment of work.

Independent variables are added to the model stepwise and tested whether there is significant

variation between pickers. The variability of the intercept term is examined with a level-1 Null Model

(Bryk and Raudenbush, 1992):

tr,w = e(β0,w+κw,r)E(eκw,r) (2a)

β0,w = γ0 + u0,w. (2b)

where tr,w is batch execution time of batch r for picker (group) w, γ0 is the common intercept, κw,r
the within-group error term and u0,w the between-group error term, and E(eκw,r) is the Smearing

Estimate (Duan, 1983) of picker w (i.e., the expected value of the retransformed residuals) used to

correct the model bias resulting from the non-linearity of retransforming the logarithmic dependent tr,w.

In combined form, the model is tr,w = e(γ0+u0,w+κw,r)E(eκw,r).

The Null Model has two possible sources of variance, τ0 for how much the groups’ intercept

varies from the overall intercept (γ0), and σ2 for the within-group variance. The Intraclass Correlation

Coefficient ICC(1) = τ0/(τ0 + σ2) (Bryk and Raudenbush, 1992, Kreft and De Leeuw, 1998)

equals 0.103, implying 10.3% of the total variance in the natural logarithm of time (13.1% of the

non-transformed time) is due to or related to differences between pickers. This suggests that it is

beneficial to assign the right batches to the right pickers.

Analysis of variance (ANOVA) is used to test for the significant difference in -2 log-likelihood ratios

between a model with and a model without a random error term in the intercept (Bliese, 2002). A model

with a high -2 log-likelihood is better than one with a low one, and the statistical significance of the

difference is tested. To achieve this, we compare the Null Model and a generalized least squares (GLS)

fit of a similar intercept-only model which does not contain the between-group error term. The null

hypothesis that no significant difference in the -2 log-likelihood scores exists is rejected (p < 0.0001),

so individual aspects explain up to 13.1% of the total variance in non-transformed batch execution time.

Step 2: slope variation and model selection. The level-1 multilevel model is now extended into a

level-2 model by including group level errors for slope. For n independent variables, the model can be

formulated as in equations (3) with the similar notation as in (1).
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tr,w = e(β0,w+
∑n

i=1 βi,wxi,r+κw,r)E(eκw,r) (3a)

βi,w = γi + ui,w ∀i ∈ {0, ..., n} (3b)

A model is selected using a stepwise procedure. The selection procedure is summarized in Table 3.

At each iteration, a new independent variable is added to the current model. ANOVA is used to

test whether a random effect should be added to the new model. This is done by comparing the -2

log-likelihoods of two versions of the new model: the first with only a fixed effect for the new term, the

second with both fixed and random effects. Models are selected based first on the AIC and second on

the sum of squared-error residuals (SS) of the set of batches used for cross-validation.

The procedure begins by adding the first term, number of lines (Lines) to the Null Model (see Table

3). To better fit the data to a normal distribution, we compare two models: one with log-transformed

input data (Model 1L) and one with non-transformed data (Model 1X). Comparing AIC and SS for both

models shows that Model 1L is better. A random effect cannot be excluded (p < 0.0001). Next, the

second independent variable (Travel) is added to Model 1L, resulting in models 2LX (non-transformed

variable) and 2LL (transformed variable). Both models are also tested for inclusion of random effects.

The transformed input is better in terms AIC and SS for Model 2LL than for Model 2LX; therefore

Model 2LL is chosen. The process continues by adding each of the log-transformed independent

variables and the non-transformed ones, always testing for the significance of the random effect.

The tested models are shown after Model 1L in Table 3. This results in Model 5LLLLX, which has

logarithmic inputs for all other terms apart from Volume.

The addition of interaction terms between the independent variables to Model 5LLLLX did not

significantly improve any fit or error measure, or the regression did not converge. The final model in the

notation of Bryk and Raudenbush (1992) is

f(βw,xr) =β0,w + β1,w ln(x1,r) + β2,w ln(x2,r) + β3,w ln(x3,r)

+ β4,w ln(x4,r) + β5,wx5,r + κw,r (4a)

tr,w =ef(βw,xr)E(eκw,r) (4b)

βi,w =γi + ui,w ∀i ∈ {0, ..., 5} (4c)

To test for multicollinearity, a single multiple linear regression model was built with the variables of

Model 5LLLLX and run over all data. The maximum VIF (variance inflation factor) value was 4.4 (for

ln(Lines)) suggesting that multicollinearity is not a major issue. Visual verification of the scatter plots

of the picker models’ residuals against batch time showed that heteroscedasticity does play a role, but

its effect is mitigated by the log-transformations.

Multivariate OLS (ordinary least squares) and GLS models are fitted using the all independent

variables, some log-transformed as in Model 5LLLLX, over the whole teaching data set. Between-picker

differences are not taken into account. The model coefficients in the fitted OLS and GLS models

coincide. ANOVA is used to test the null hypothesis of Model 5LLLLX not having a significantly better
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Table 4: Model betas for 5LLLLX with scaled data, effects on ln(Time).

Intercept ln(Lines) ln(Travel) ln(Mass) ln(Level) Vol
β 3.2 0.66 0.16 0.17 -0.44 -0.16
Random effect stdev 0.40 0.09 0.04 0.08 0.38 0.12

-2 log-likelihood value compared to the GLS model. The null hypothesis is rejected with p < 0.0001.

Using the multilevel regression results, it is possible to forecast the batch execution time of each

picker. The model coefficients allow the pickers to be characterized pickers in the following way:

• a picker with a low ln(Lines) represents an agile worker;

• a picker with a low ln(Travel) represents a quick driver;

• a picker with a low ln(Mass) represents a strong person;

• a picker with a low ln(Level) can easily pick items from the high level (i.e., he or she is tall);

• a picker with a low V ol represents a picker who can handle large volumes better.

The resulting elasticities and standard deviations of Model 5LLLLX and the corresponding random

effects can be found in Table 4. The betas (elasticities) show that the number of lines in a batch is the

most important factor in the model. The second row shows the between-picker standard deviation of the

model. The standard deviations of ln(Lines), ln(Travel) and ln(Mass) are quite similar. The effect

of mean picking level seems to vary the most among the picker models.

The effect of increasing any of the log-transformed inputs is proportional to the (re-transformed)

output in this model. The scaled model beta can directly be used to calculate the effect of an independent

variable on the dependent variable. For example, for the fixed effect model, a 1% increase in the

number of lines in a batch (Lines) results in an 0.66% increase in total batch execution time. For the

non-transformed independent variable, Volume, a unit increase (1m3) will reduce the batch execution

time by 0.16%. For Model 5LLLLX, the standard deviation of the residual is 0.32, which means that

if the forecasted time for a picker to pick a batch is tw,r, there is an approximate 68% chance that it

is accurate by a factor of e0.32 = 1.37, i.e., it is in the range [tw,r/1.37 1.37tw,r] (Gelman and Hill,

2007, p. 62). Variance of batch execution time thus increases proportionally to the value of time.

Table 4 shows that the batch execution time of the average picker grows with the number of order

lines, the distance traveled, and total batch mass, all of which seem reasonable: as the amount of

work, travel, or mass increases, it is natural that time increases as well. A higher pick level seems

to make picking quicker, which suggests that product to storage location allocation can be improved.

The negative coefficient for volume might result from the effect that some of the batches that contain

relatively few items of high volume that can be stacked fast.

Picker clustering To group and illustrate similarities among pickers, hierarchical clustering is

performed on the forecasting models. To show the effect each of the coefficients has on the batch

execution time, we scale them by the corresponding standard deviations of the data (log-transformed

where appropriate). Note, that the input data were not scaled before the regression as we were interested

in keeping the output in the original scale of seconds.
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Table 5: Picker clusters, cluster sizes, mean scaled coefficients and their standard deviations (in
brackets). A bolded value for a cluster means the pickers in the cluster are better in a skill than most of

the other pickers; conversely it is underlined if they are worse.

Cluster type size ln(Lines) ln(Travel) ln(Mass) ln(Level) Vol
Average, better with heavy items 34 0.56 (0.03) 0.17 (0.02) 0.13 (0.02) -0.04 (0.03) -0.08 (0.02)
Average, poorer with large items 29 0.49 (0.02) 0.19 (0.04) 0.14 (0.02) -0.06 (0.02) -0.03 (0.02)

Agile, weak 14 0.47 (0.02) 0.17 (0.03) 0.20 (0.02) -0.04 (0.03) -0.06 (0.02)
Fast, good stacker 12 0.57 (0.04) 0.13 (0.03) 0.14 (0.04) -0.07 (0.03) -0.11 (0.04)
Strong, not agile 9 0.61 (0.05) 0.20 (0.02) 0.07 (0.04) -0.03 (0.04) -0.05 (0.03)

Outlier 1 0.38 (0.00) 0.04 (0.00) 0.27 (0.00) -0.05 (0.00) -0.04 (0.00)
Overall 99 0.53 (0.06) 0.17 (0.04) 0.14 (0.04) -0.05 (0.03) -0.06 (0.04)

The clustering is performed using R software and the function hclust using the complete linkage

method, which defines the cluster distance between two picker clusters to be the maximum Euclidean

distance between their individual components. By visual inspection from a resulting dendogram, the

number of clusters is chosen to be six. Table 5 shows the mean scaled picker coefficients and the

standard deviations of each cluster and the number of pickers present in each cluster. The final row,

labeled "Overall", shows the mean scaled coefficients of all the pickers. From this, we can see that

the number of lines has the largest effect on the batch execution time. We have characterized each

cluster with an appropriate label to show how it differs from the average picker. The evaluation of

cluster differences from the mean is done by checking the interval formed by each cluster’s mean scaled

coefficients and their standard deviations against those in "Overall". Differences among pickers can

be seen, e.g., from the clusters "Agile, weak" and "Strong, not agile". The pickers in the "Agile,

weak"-cluster cannot handle high-mass batches well (high ln(Mass) coefficient), but are agile pickers

otherwise (low ln(Lines)). Conversely, pickers in the "Strong, not agile" cluster (low ln(Mass)) are

good at handling heavy batches, but are otherwise not agile pickers (high ln(Lines)).

From the example and analysis above, we can see differences in the factors between picker clusters.

The pickers have different strengths and weaknesses that become apparent when comparing to the mean

scaled picker coefficients and their standard deviations. In conclusion, we have shown that a significant

part, i.e., 13.1%, of the total batch execution time is due to differences in pickers. These differences can

be modeled using process data, and can be used to analyze the strengths and weaknesses of individual

pickers. The differences in picker skills imply it makes sense to allocate the right picker for each batch.

4 Joint Batching and Generalized Assignment Problem

As the objective of the optimization presented in this section, customer orders and batches are assigned

to those order pickers who have the best skills to execute them, thus minimizing the total batch execution

time (including pick, travel, and setup time).

Order batching for batch sizes of three or more orders has been shown to be NP-hard (Gademann and

Van de Velde, 2005). To further assign batches to pickers, the order batching model from Gademann and

Van de Velde (2005) is extended to include a generalized assignment problem, which is also NP-hard

(Fisher et al., 1986). This results in a joint batching and generalized assignment problem (BatchGAP),

which is sufficiently complex to justify the use of a heuristic.

The problem is defined as follows. Let R be the set of all possible batch combinations from the set

of orders O, each batch consisting of a maximum of N orders. The orders that are to be picked during

12



a day arrive early each morning. Let Rs ⊆ R be the set of batches present in solution s ∈ S , where S
is the set of feasible and complete solutions to the BatchGAP. Furthermore, letW be the set of modeled

pickers. The mapping of each customer order in O to a batch r ∈ R is characterized with a zero-one

vector ar of length |O|. If aor = 1, order o is included in batch r, otherwise it is not. Each batch r ∈ R
has multiple order lines that need to be picked in no particular order during a picking tour y ∈ Yr, where

Yr is the set of all possible tours for batch r.

After all the lines of an order have been picked, the order must be left at an order-specific drop-off

location in the warehouse. All pick and drop-off locations must be visited at least once. Thus a tour

is a solution to a TSP, where the drop-off locations have to be visited after the last pick in the batch

(see Figure 2). All picking tours start and end at a depot. Each batch r ∈ R has a travel distance of dr
associated with the tour-construction method used. The forecast total batch execution time, tw,r, depends

on the parameters of batch r and the forecasting model of picker w. When calculating the forecast tw,r,

a TSP corresponding to the batch r to get the travel distance dr needs to be solved. The TSP is solved

separately with a heuristic (see Section 5.1). The TSP constraints are not included in the model below,

as the model is mainly illustrative of the problem, and the additional constraints would unnecessarily

complicate it. A heuristic is used to solve the TSP as no fast optimal solution to a precedence-constrained

TSP (note that the last location of each order is fixed) exists for a warehouse with a middle cross-aisle

and unidirectional travel. The tour length of a TSP related to a particular batch is used as one of the

inputs when forecasting tw,r using equations (4). Each picker w ∈ W has a maximum working time

during a shift, Mw.

The following optimization model can be formulated for the BatchGAP:

min
∑
w∈W

∑
r∈R

tw,rXw,r (5)

subject to ∑
w∈W

Xw,r ≤ 1 ∀r ∈ R (6)∑
r∈R

tw,rXw,r ≤Mw ∀w ∈ W (7)∑
o∈O

ao,r ≤ N ∀r ∈ R (8)∑
w∈W

∑
r∈R

ao,rXw,r = 1 ∀o ∈ O (9)

Xw,r ∈ {0, 1} (10)

The goal is to find a solution s∗ such that the set of batchesRs∗ ⊆ R form a complete partitioning of

O and have a feasible assignment to the pickersW , such that the sum of costs of all pickers is minimized

and constraints (6, 7, 8 and 9) are upheld.

The objective function (5) minimizes the sum of all the pickers’ batch execution times. The binary

decision variable Xw,r is one if batch r is assigned to picker w, otherwise it is zero. Constraint (6)

enforces that each batch is picked at most once. Each picker’s maximum working time, Mw is enforced

by (7). Constraint (8) enforces that no more than N orders are contained in any one batch. Each order
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must be allocated once to any chosen batch (9) and integrality of the decision variable Xw,r is enforced

by (10). See Appendix A for a discussion of the complexity of the problems solved in this paper.

As a by-product of the optimization, the effect on picker productivity is also of interest. Let lr be

the number of order lines in batch r. Productivity Lw of a picker w ∈ W is defined as

Lw =
∑
r∈R

Xw,rlr/
∑
r∈R

Xw,rtw,r (11)

or the average number of order lines picked per unit of time worked (usually minutes). Notice that the

total work time differs from the shift length.

5 Solving the Joint Batching and Generalized Assignment Problem

5.1 Routing Heuristic

The total travel distance of a picking tour is needed to calculate total batch time. The travel distance is

assumed to be independent of the picker. The sample warehouse has multiple drop-off locations (more

than one of which can be visited during a tour) and a middle cross-aisle (see Figure 2). The drop-off

locations can only be visited after all items of an order have been collected. Each aisle can only be

traveled in a single direction, while the cross-aisles are bidirectional. Tours start and end at the depot.

The number of potential batch evaluations for the problem introduced in Section 4 is potentially very

large. For each batch evaluation, the routing problem needs to be solved. We use a computationally light

heuristic to calculate total travel distance.

In Algorithm 1, a version of the aisle-by-aisle routing heuristic (Vaughan, 1999) for warehouses with

unidirectional travel in the aisles is presented. In this version of the algorithm, aisles do not need to be

traveled completely if there are no picks past the middle aisle. Aisles span over the middle aisle, i.e., the

aisle numbering is not affected by the middle aisle. It also incorporates drop-offs before returning to the

depot. The basic idea is to take advantage of the unidirectional travel in the warehouse and the middle

cross-aisle. Once a path to pick all order lines has been formed (steps 1-4 and 6-8), the tour is optimally

completed by adding the drop-off locations with Dijkstra’s algorithm.

5.2 First-Free Assignment of Batches

In many warehouses, the current practice is to assign the next batch in the queue to a picker who is first

available to execute it. No planning or scheduling is involved. This method of assigning jobs to pickers

is henceforth called the first-free assignment method. It is assumed that first-free is used in the example

warehouse.

Before assigning batches to pickers, an initial feasible batching solution must be found. This is done

with a combination of a batching and an assignment algorithm. We use either either C&W(i) (Clarke and

Wright, 1964) or VNS (Albareda-Sambola et al., 2009) as the batching algorithm, and use free-first to

assign batches to pickers. This algorithm is used as the comparison baseline to assign batches to pickers

when no knowledge of the pickers’ productivity is available beforehand.
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Input: A batch r, order drop-off locations Lr, depot D, distance matrix B, set
of aisles Z

Output: A tour y, travel distance dr
1 Sort all orders in r according to the aisle index.
2 Make a vector vz of corresponding order lines for each relevant aisle z ∈ Z to

batch r.
3 Sort each aisle vector vz according to the travel direction of the aisle.
4 Insert all vectors from the smallest aisle index to the largest index to a path
ysmall.

5 Use Dijkstra’s algorithm to make ysmall into a tour by adding Lr and D to it.
6 Store the total path of ysmall cost in dsmall using B.
7 As in 4 but iterate from big to small aisle index and store the path in ybig.
8 Store the total path of ybig cost in dbig using B.
9 Use Dijkstra’s algorithm to make ybig into a tour by addingRr and D to it.

10 if dbig < dsmall then
11 y ← ybig
12 dr ← dbig
13 end
14 else
15 y ← ysmall
16 dr ← dsmall
17 end

Algorithm 1: Middle aisle multi-dropoff routing heuristic

5.3 Assignment of Customer Orders Based on Average Picker Productivity

Based on the data, the average picker productivity can be calculated using (11). This statistic is tracked

in many warehouses. A warehouse manager can choose to assign work to the most productive pickers.

To reflect this, and to justify the benefits of skill based assignment, the following heuristic, fastest-first,

is used to assign work to the most productive pickers first. This algorithm assumes that there are as

many pickers available as needed. When knowledge of the pickers’ average productivity is available,

this algorithm is used as the comparison baseline.

Step 1. Batch all orders based on travel distance using VNS.

Step 2. Sort all available pickers based on productivity in descending order.

Step 3. Sort all batches based on the number of order lines in descending order.

Step 4. Assign the first unassigned batch to the picker who has the highest productivity value and

ensure the picker’s maximum worktime is not exceeded. Repeat until all batches are assigned,

otherwise exit.

5.4 Adaptive Large Neighborhood Search Algorithm

After forming a feasible initial solution, Adaptive Large Neighborhood Search (ALNS) (Ropke and

Pisinger, 2006) is used to search for good local optima. Pisinger and Ropke (2010) offer guidelines for

designing ALNS algorithms, which have been mostly followed in this section. The ALNS algorithm

uses a set of neighborhood heuristicsH. For the ALNS presented in this section,H is composed of five
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different heuristics. One heuristic is selected with each iteration, with a weighted random selection

criterion called the roulette wheel method (Pisinger and Ropke, 2010). In our case, a heuristic is

composed of a destroy and repair method. The destroy method of a heuristic h ∈ H breaks down

a solution s in a predefined manner, while the repair methods try to find good alternatives to s by

constructing another feasible solution s′ ∈ N (s) based on on the repair method associated with h.

The probability of choosing heuristic h ∈ H with the roulette wheel method is

ph =
wh∑

h′∈Hwh′
, (12)

where wh ∈ R+ is the weight of heuristic h. As the algorithm runs, some heuristics will perform better

than others. Good performance of a heuristic will increase its weight and thus the probability of it getting

selected again by (12). Each of the heuristics has a score, which is updated whenever the heuristic is

selected based on the heuristic’s search success. Each score is updated every δ iterations by adding the

a performance score Ψh to it:

Ψh = Ψh +


ρ1 if the new solution is the global best.

ρ2 if the new solution is better than the current one.

ρ3 if the new solution is accepted.

(13)

An update to a heuristic’s weight wh is done by

wh = λwh + (1− λ)Ψh, (14)

where λ is the decay parameter, which controls the rate of change in the weights. At the beginning and

after an update of the scores, i.e., every δ iterations, the values Ψh are set to zero ∀h ∈ H. If a (steepest)

descent algorithm is used, updates to the scores happen only when a new global best solution is found,

i.e., Ψh can only get the value ρ1. Otherwise scores do not receive updates.

Following Ropke and Pisinger (2006), a simulated annealing-type hill climbing scheme is

implemented to complement the search. This scheme uses a geometric cooling schedule (Cohn

and Fielding, 1999). At each iteration, the temperature is updated by T ← φT , where T is the

temperature variable and φ the cooling coefficient. A vector collecting all the adjustable parameters of

the ALNS algorithm is defined as v = (ρ1, ρ2, ρ3, λ, δ, φ). The actual parameter set is given in Section

6.1.

Next, the neighborhood search heuristics are detailed. All of them maintain the feasibility of the

solution by enforcing tw,Rw ≤ Mw, where tw,Rw is the total time to pick the set of batches Rw ⊆ R
assigned to picker w and Mw is the maximum working time for picker w. Only those solutions that are

feasible according to the model in Section 4 are accepted.

1 Random destroy, random repair

Step 1. Randomly choose Q ∼ U(2, 7) batches to be destroyed from any of the pickers, resulting in

the set of Od customer orders, where |Od| ≥ Q.

Step 2. Form a setWd of pickers currently assigned to Od.
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Step 3. Randomly choose a number of orders up to the maximum batch size of N orders from Od.

Form a new batch from the chosen orders and assign it to a random worker w ∈ Wd if constraint

(7) can be upheld. Remove the chosen orders from Od..

Step 4. Repeat Step 3 until there are no orders left to assign.

Step 5. Calculate the tour costs using Algorithm 1 for the new batches and form completion time

forecasts for each new picker batch pair.

2 Savings-based destroy, random repair The aim of this heuristic is to destroy those batches that

have the least savings value (the time difference of picking each order separately minus picking them

together in a batch). Let s be a current solution to the BatchGAP and Stot ∈ R be the sum of time-savings

of all batches in s. Furthermore, let Smax ∈ R be the maximum batch savings value in s, and Sr be the

savings of batch r ∈ Rs. Then the probability of destroying a batch r is

pr = (Smax − Sr)/Stot. (15)

Step 1. Calculate the batch savings for all batches in s.

Step 2. Use the roulette wheel method from (12) with batch probabilities calculated from Equation

(15) to choose Q ∼ U(2, 7) batches to destroy from any of the pickers, resulting in M ≥ Q total

customer orders.

Step 3. Form a setWd of pickers currently assigned to the batches to be destroyed.

Step 4. Randomly choose a maximum of N orders from the destroyed batches, form a new batch and

assign it to a random worker w ∈ Wd if constraint (7) can be upheld.

Step 5. Repeat Step 4 until there are no orders left to assign.

Step 6. Get the tour costs for the new batches and form completion time estimates for each new picker

batch pair.

3 Move batches This heuristic tries to move a set of batches T ⊆ R between pickers while leaving

the order composition of the batches intact. A batch r ∈ T from picker wi ∈ W is moved to another

picker wj ∈ W − {wi}. No routing of batches is necessary, the work time estimates of the involved

pickers just need to be calculated.

4 Empty picker and greedy repair With this heuristic, all batches are moved from a single picker to

other workers. First, the picker is selected randomly from all pickers with batches. Then, each of the

selected picker’s batches is assigned to other pickers with a greedy heuristic.

5 Move all batches from a picker to another This final heuristic moves all batches from one random

picker to the picker that executes them the fastest.
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5.4.1 Acceptance of new solutions

After applying a neighborhood search heuristic to a current solution s, a new solution s′ is found. Let

s∗ be the best solution found so far. Furthermore, let f(s) be the cost of solution s. If f(s′) < f(s∗),

the solution is accepted setting s∗ = s′ and s = s′ The current score of the active heuristic is updated by

Ψh = Ψh+ρ1. Otherwise, if f(s′) < f(s), the solution is accepted as the current best one setting s = s′

and Ψh = Ψh + ρ2. A worse solution than the current one can be accepted by the simulated annealing

rule. Let Q ∼ U(0, 1) and T be the current temperature of the algorithm. If Q ≤ exp(f(s
′)−f(s)
T ), a hill

climb is performed and we set s = s′ and Ψh = Ψh + ρ3.

6 Results

In this section, first the real execution times of the current batches are compared with the forecasted

execution times. Second, solutions are computed using state-of-the-art batching algorithms and

improved upon by the ALNS algorithm detailed in Section 5.4. Results can be found in sections 6.4 and

6.5.

All algorithms were coded in C++ and run single-threaded on an Intel Xeon 3.2 GHz with 16GB of

memory.

6.1 Parameter Calibration

Following Ropke and Pisinger (2006), the calibration parameter vector is initialized to v =

(ρ1, ρ2, ρ3, λ, δ, φ) = (33, 13, 9, 0.95, 200, 0.999995) with the exception of δ, which was not used

by these authors; its value was set according to Gharehgozli et al. (2013). In order to calibrate the

parameters, two sample instances were run of three pickers with 78 orders, and 10 pickers with 360

orders. One parameter was varied at a time on a uniform interval for each parameter around the initial

value. The best performing parameters were chosen and set as v = (65, 13, 9, 0.95, 91, 0.999995, 0.25).

The starting temperature T0 is set such that the probability of an uphill climb is 0.5 if the new solution is

3% worse than the sum of batch execution times in the starting solution s0 by T0 = −0.03f(s0)/ ln 0.5.

6.2 Data Preparation

During a daily eight-hour shift in our sample warehouse, the number of available pickers can vary

between 20 and 40. Since the data do not contain due times for the batches, and only a part of all the

pickers appearing in the data can be used due to data cleaning, comparing the allocations and batches

of the real shifts and the ones reconstructed by the ALNS is not necessarily meaningful. To still allow

a comparison, virtual days are constructed by partitioning the data of 24,669 batches into 12 (about)

equally sized subsets. Each partition forms one virtual day, resulting in approximately 2056 orders (685

batches) per day. A picker qualifies for inclusion in the workforce of the virtual day if both the sum of

real execution times of the batches he or she performed and the sum of the forecast batch execution times

exceed the minimum threshold of Mmin. This is done to guarantee that each picker included carries out

sufficient work. The total execution time of all the batches executed by a picker should not exceed the

maximum threshold time Mmax. If adding a batch were to exceed this threshold, it would be discarded

for this picker.
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The used data only contain Hamiltonian Paths starting from the first pick line to the last line, leaving

out the roll container drop-offs and eventual return of the picker to the depot. Each order has its own

unique drop-off location. Figure 2 shows the different locations of these drop-offs. Dijkstra’s algorithm

is applied to find the combined minimum distance of visiting the order drop-off locations and further

traveling from the last drop-off location to the depot and from the depot to the first pick location. Using

this distance, the extra time to complete the pick tour is now calculated, assuming an average truck speed

of 1 m/s, and taken into consideration when calculating sums of batch execution times in constructing a

virtual day.

Now the real batch execution times and their forecasts for these newly created virtual days are

known. These can be used to compare the ALNS batching, routing, and assignment results with the

original solutions.

6.3 Experimental Setup

Virtual days are constructed as detailed in Section 6.2. For each virtual day, the constraint in (7) is set

to 8h. Two different instances are run by setting Mmin to 7.15h or 7.40h and Mmax to 7.75h in both

real time and forecast time. This results in 29 and 20 pickers working on the virtual days on average,

respectively. Out of the possible 99 pickers, 93 qualify for the simulations with Mmin = 7.15h and 86

for Mmin = 7.4h. The ALNS is run for 5,000,000 iterations in both cases. We focus on the results for

the 20-picker experiments as most of the 29-picker results are very similar.

Work is currently issued according to the first-free allocation. Two batching algorithms, C&W(i) and

the Variable Neighborhood Search (VNS) by Albareda-Sambola et al. (2009), are used to generate an

initial solution for the ALNS. C&W(i) provides a quick solution to the batching problem, while the VNS

method is shown to provide good results with the trade-off of exploring large parts of the solution space

(Albareda-Sambola et al., 2009, Matusiak et al., 2014). Using these initial solutions, the ALNS is used

in two ways: (1) including all neighborhood search heuristics, and (2) allowing only those heuristics

which do not break down batches (i.e., excluding heuristics 1 and 2).

In the ALNS heuristic presented in this section, a computationally light routing heuristic (see Section

5.1) is used, as it has to be invoked numerous times. In order to understand how far this routing is off a

near-optimal heuristic, it is compared with LKH (Helsgaun, 2000, Theys et al., 2010) for 10,000 random

batches constructed from customer orders from the dataset. LKH has a gap of about 0.1% with optimal

routing (Theys et al., 2010), at the expense of much longer computation times. LKH does not handle

precedence constraints, so drop-offs are left out of the tours for this comparison. On average, LKH leads

to solutions of about 11.7% shorter tours.

6.4 Time Savings and Comparison to Original Solution

In this section, the algorithmic solutions are compared to the original and initial batching allocation,

as well as to each other. The following abbreviations are used for the solutions in Figure 3. Unless

otherwise noted, batch execution times are forecast:

BF batching done with VNS and allocation using fastest-first;

CWI batching done with C&W(i) and allocation using first-free;
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Figure 3: Savings generated by different algorithms, compared to the original batching with forecast
execution times during a virtual day. 7.4h minimum time to qualify, 20 pickers. The real batch

execution times for the original batching are 1% smaller than the forecast in this case.

CWR improvement of CWI using the ALNS algorithm with no further rebatching (only heuristics 3, 4,

and 5 are used);

CWF as CWR, but with all neighborhood search heuristics used in the ALNS;

VNSI batching done with VNS and allocation using first-free;

VNSR improvement of VNSI using the ALNS algorithm with no further rebatching (only heuristics 3,

4, and 5 are used);

VNSF as VNSR, but with all neighborhood search heuristics used in the ALNS.

The comparison baseline in Figure 3 is the forecast batch execution time with real batches during a

virtual day with first-free allocation, which represents the current situation. If jobs are assigned based

on the average productivity (category BF), savings of around 6% can be achieved in both cases. The

initial solution CWI gives improvements of over 2% compared to forecast batch execution times with

real batches. The best solution is provided by the combination of VNS batching and the ALNS, i.e.,

solution VNSF. However, CWF is very close in terms of solution quality and much faster to execute.

In the 29-picker case, CWF took on average 80 minutes to solve the problem of batching and assigning

2048 orders, whereas VNSF took 120 minutes. For the 20-picker case, these times are 35 minutes and

70 minutes, respectively. A different number of pickers is present during each virtual day. Further

investigation shows that the running time of the ALNS algorithm increases linearly with the number of

pickers if the number of iterations is kept constant. In the sample warehouse, orders arrive several of

hours before the morning shift starts, so there is ample time to run the algorithm. Comparing CWR to

CWF and VNSR to VNSF, Figure 3 shows that it is beneficial to rebatch using the neighborhood search
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Figure 4: Change in average productivity by picker category. 7.4h minimum time to qualify, 20 pickers

heuristics 1 and 2 in addition to 3, 4, and 5, which just move batches between pickers, resulting in an

additional 2% savings in batch execution time.

Most importantly, Figure 3 shows that significant savings in total batch execution time can be

obtained by assigning the right batches to the right pickers. Almost 10% more time can be saved when

comparing VNSF to CWI and to VNSI. Compared to the forecast and real time for the original allocation,

between 10% and 12% can be saved. Finally, when comparing VNSF with BF, i.e., assigning based on

picker skill vs. picker productivity, savings of 6% in total batch execution time can be achieved.

6.5 Impact on Picker Productivity

Figure 4 shows the effect of the VNSF solution compared to a VNSI solution, which implies state-of-the

art batching with a first-free picker assignment. Pickers are divided into three categories based on their

productivity (lines picked per time unit worked) in the VNSI solution: the slowest 20%, the medium

60%, and the fastest 20%, with a total of 20, 53, and 20 pickers, (19, 48, and 19 in Figure 4), respectively.

As noted below, the slowest pickers receive much less work. Here productivity is calculated by the total

number of assigned lines divided by the total time to process all assigned batches, i.e., actual work time.

All categories improve productivity, while most improvements can be observed in the slow and

fast picker categories. For pickers in the slow, medium, and fast categories for the case of 29 pickers,

the initial average productivity values are 1.14, 1.43, and 1.81 lines/minute, respectively. The VNSF

solution improves productivity by 17%, 3%, and 8% on average compared to the VNSI for the same

categories. For the 20-picker case, VNSI productivities are 1.12, 1.44, and 1.83 lines/minute, which

improve by 16%, 3%, and 11% (Figure 4). The improvement in all categories is a result of a reduction

in total working time compared to the initial allocation as picker skills are taken into consideration.

Additionally, some pickers, particularly those in the slow category, are assigned less work, and in many

cases do not get to work full shifts. Since VNSI is used as a reference, this improvement in productivity

must result from better picker assignment. However, the slowest pickers receive fewer orders to be

picked, resulting in 40% to 60% fewer pick lines, as can be seen from Figure 5. The medium and fast

pickers tend to get more work in both the 29- and the 20-picker cases.
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Figure 5: Change in number of lines assigned by picker category. 7.4h minimum time to qualify, 20
pickers.

To better understand which of the pickers are included in the ALNS assignment over the entire

horizon of eight virtual days, we divide the picker categories used above into subcategories, indicated

by two characters, XY. X stands for the main categories S, M, F (Slow, Medium, Fast), based on the

productivity in the VNSI solution. Y has three categories, 0, 1, 2, indicating whether the picker: is left

out of the assignment completely, or receives less than a fifth of his or her total number of order lines

assigned in the VNSI solution, or receives more than a fifth of his or her total number of order lines

assigned in the VNSI solution, respectively.

Figure 6 shows the division of pickers over these categories compared to VNSI for the 20-picker

case. The pickers in the slow category are the most affected: in the 20-picker case, one picker is left out.

In the 29-picker per day case, two out of 15 pickers are completely left without work for all eight days.

In the medium category, five and four pickers are left out of the assignment, whereas all pickers in the

fast category are assigned to work. Apparently, it pays off to not use some of the workers at all and to

use some of the workers as little as possible.

As can be seen, the method leaves out some pickers, and assigns little work to some. This is an

opportunity for the warehouse, as much of its workforce is hired on a daily basis from a (more or less)

fixed labor pool. Based on the available daily orders, the warehouse manager can now decide better who

to hire for the day, and for how many hours.

7 Discussion

This paper introduces a method to model and solve the combined batching, routing, and picker

assignment problem, based on properties of the batches to be executed. The method consists of two

parts: first the batch execution times are estimated with multilevel analysis based on properties of

historical batches, such as total number of lines, distance between items, total mass and volume, and

pick level. Second, the integrated batching, routing, and picker assignment problem is solved using an

ALNS heuristic. The effect of total number of order lines on total batch time is characterized as general

ability of the picker, that is not explained by other physical characteristics of a batch. It explains the
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Figure 6: Picker categories after final assignment. 7.4h minimum time to qualify, an average of 20
pickers per virtual day for a total of 86 qualifying pickers in the experiment.

largest part of the variance in the data. The modeled picker skills of agility, picker strength, driving

ability, preferred pick height, and ability to handle large volumes are all shown to be significant and to

significantly impact the forecasting ability of the formed model. Picker models are clustered to illustrate

the differences in the skills of the pickers, and to show that some of the pickers have similar skill sets.

We test the method for a large retail warehouse for which we could obtain three months of complete

pick data. The multilevel modeling of the pickers shows that 13.1% of the variance in batch execution

time can be explained by differences among pickers. Subsequent application of the ALNS heuristic

shows that improvements of almost 10% in total batch execution time can be achieved compared to

state-of-the art batching with VNS, but ignoring picker skills. Compared to batching with VNS and

assignments made based on picker productivity, 6% is saved by considering picker skills.

Our method is generally applicable in picker-to-parts warehouses, independent of the layout.

However, the choice of the routing heuristic should be made according to the case. The main

requirement for applying our method is the availability of historical pick data to build the forecasting

models of the pickers. These data are gathered in most modern warehouses, by pick-by-voice,

pick-by-light, and pick-by-terminal systems. Using these data, Warehouse Management Systems can

easily be extended by including forecasted pick times in the batching and assignment of batches.

Although we tested our method in only one warehouse, we expect that savings can be achieved in

other picker-to-parts picking facilities. The magnitude of the savings will depend on several factors,

such as the number of order lines in a batch (more lines yield a higher saving opportunity), the size of

the pick force (more workers means more opportunity for savings), the product characteristics (larger

variety in sizes and volume requires more stacking skills of the workers and potentially larger saving

opportunities), and variation in the height levels at which the picking takes place. We leave this as a

topic for further research.

Our approach has some limitations. The data obtained are extensive, but they do not contain the

departure times of trucks shipping the orders. Therefore, we lack time windows for the orders, which are

to some extent included in the real batch data. This means the calculated savings slightly overestimate

the real savings as the search space for selecting the next orders to the batch shrinks. However, this only
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affects savings compared to the original batching and allocation.

Our method implies that managers should consider employee skills and capabilities during the

decision making process. Currently, worker to work assignment is primarily based on qualifications.

However, when multiple workers qualify for the job, individual differences might still be exploited.

Based on our experience in warehouses, when workers are qualified for the same work, the next job is

assigned to the first available worker. It may pay off to select the right job from the stack to be executed

by the best skilled worker. In addition, when hiring a flex workforce and past performance data are

available, the warehouse manager can use them to hire the best performing pickers given a set of orders.

Our findings suggest that impact of the right worker is almost 10% in execution time, or 6% if apriori

knowledge of picker productivity is taken into account when assigning work.

Our study opens up an avenue of further research directions. First, the results should be further

validated for various picker-to-parts warehouse types, with varying layouts, order, batch, and product

properties. However, it is difficult to obtain realistic picker profile data from companies. If data logs

are available, they are commonly huge, polluted, and prone to interpretation in order to construct valid

models. Second, our method can be extended in a straightforward fashion to include order time windows.

It would require adding some extra constraints and probably heuristics in the ALNS. It might also

be extended to include online assignment of batches to pickers, in a rolling horizon setting. Third,

although we can explain about 86% of the variance in batch execution time based on the current variables

included, we may increase forecasting accuracy by including other, e.g., behavioral, variables. Based

on previous studies (Bendoly et al., 2006, De Koster et al., 2011, De Vries et al., 2013), it is likely

that also behavioral variables may have an additional effect. These can include motivational variables

such as prevention and promotion focus, or personality traits. Fourth, the insights obtained in this study

are not limited to picker-to-parts order picking situations. They are equally applicable to part-to-picker

environments, where products are retrieved by machines and given to the right picker to execute the job.

In general, any job type that can be parameterized and of which the execution times can be accurately

forecasted based on these parameters for the different workers, qualifies for careful assignment. The

classical vehicle routing problem is an example. Parcel carriers like DHL, TNT, UPS have to make

many deliveries in different types of areas, urban as well as rural. Based on the types of deliveries,

neighborhood, number of parcels, distances, and weight, it might pay off to select the best driver to fit

the job circumstances.

A Note on Problem Complexity of the Joint Batching and Generalized
Assignment Problem

The complexity of assigning orders to batches and batches to pickers can be illustrated by the number of

combinations of a related bin-packing problem, where batches and pickers are both homogeneous. The

number of possible batch combinations of up to the maximum batch size of N can be found from

C =
N∑
i=1

(
|O|
i

)
(16)

Let |P| be the total number of batches, and let L be the number of batches a picker can complete during

a shift. Assuming |P| = |W|L, the total number of possible bin-packing combinations for |W| pickers
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is

Cassign =

|W|∑
i=1

(
|P| − iL

L

)
. (17)

A regular shift at the sample warehouse employs 30 pickers. Let one picker take half an hour to process

one batch, and work eight hours each shift, for a maximum of 16 batches/shift. If all pickers and batches

are to filled to capacity, there are 480 batches and 1440 orders (the maximum batch size is thus 3), and

the number of joint bin-packing and order combinations is

Ctotal =

(
1440

3

)
29∑
i=0

(
480− i16

16

)
, (18)

which is a very big number, approximately 10152. To ground this number somewhat, the total number

of atoms in the universe is estimated to be 1082. Optimally solving the joint problem is impractical even

for a small number of pickers.
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