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Chapter 1

Introduction and outline

Open your mind to new ideas

Abbott (1884)

An inspiring and intriguing book on dimensions is “Flatland - A Romancy of Many

Dimensions” by Edwin A. Abbott.1 In this satirical novel, Abbott describes different dimen-

sional worlds from the point of view of A. Square, who is living in the two-dimensional world

called Flatland. The Square dreams about a visit to a one-dimensional world (Lineland) in-

habited by Points. He attempts to convince them of the existence of a second dimension, but

is unable to do so. When A. Square is visited by a Sphere (from Spaceland), he cannot com-

prehend this third dimension until he sees Spaceland for himself. After the Square’s mind is

opened to new dimensions, he tries to convince the Sphere of the theoretical possibility of

the existence of a fourth (and fifth, and sixth, . . .) spatial dimension, but the Sphere returns

his student to Flatland in disgrace. The Square recognizes the identity of the ignorance of the

inhabitants of Pointland and Lineland with his own (and the Sphere’s) previous ignorance of

the existence of higher dimensions.

The link between Flatland and this thesis is the concept of dimensions. Many dimensions

exist in the world of financial markets, much more than we can comprehend as inhabitants of

our three-dimensional world. As I will outline below, many dimensions in financial markets

remain uninvestigated. The two that have the main focus in this thesis are the dimensions of

liquidity in the equities market and the term-structure dimension in the commodities market.

1Although Flatland was not ignored when it was published, it did not obtain a great success. The book was

discovered again after Albert Einstein’s general theory of relativity was published and was also mentioned in

Nature (Garnett, 1920).
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Both are not yet explored to their full extent. Besides this direct link there is another link

between the book, Flatland, and this thesis. The essential message of the book is that we

should “open our mind to new ideas”, which is very similar to the journey of a PhD student.

We should explore fields that we have not done before and we should be receptive to things

that baffle us at first thought.

The goal of this thesis is to present frameworks that shed more light on the mentioned

dimensions and to use the new findings and insights in ways that are relevant from both an

academic and practical point of view. The thesis consists of two parts. In the first part liquid-

ity is at the center stage, while in the second part we focus on the term structure dimension

in commodity futures.

1.1 Liquidity

While seemingly a simple concept, the exact meaning of liquidity is far from apparent. The

fact that liquidity is unobserved and the existence and disagreement over various definitions,

make it an elusive concept.2 As a starting point we might agree that liquidity relates to

the ability to buy and sell assets easily. Harris (2003) provides a more detailed definition,

“liquidity is the ability to trade large size quickly, at low cost, when you want to trade.”

Various dimensions of liquidity appear in this definition, namely: speed, impact, cost and

timing.3 All these different dimension are related. For example, if you want to trade a large

amount of assets you will either have a large impact on prices or it will take you more time

(and costs) when you split your trades.

Besides the existence of various definitions and dimensions of liquidity, another element

that is important in this thesis is the relation between liquidity and asset prices, more specif-

ically the existence of a liquidity effect. According to standard asset pricing theory, assets

with the same cash flow d should have the same price p. To study if and how liquidity is

priced empirically, we can compare the prices of assets with the same stream of cash flows

2O’Hara (1995) draws on an analogy with pornography: “it is hard to define, but you know it when you see

it.”
3Other dimensions often mentioned are width, depth, breadth and resiliency. Depth is related to the quan-

tities available in the order book, i.e. below (above) the current market price there is a large quantity available

for sale (to buy). Breadth is related to the number of participants and their market power. In a resilient market,

effects due to trading die out quickly.
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but different liquidity values.4 In contrast to standard asset pricing, liquidity-based asset

pricing argues that if asset 1 is less liquid than asset 2, which we notate as L1 < L2, but both

have the same cash flows d1 = d2, the price of asset 1 should be lower p1 < p2. In practice

it is difficult to find two assets with the same stream of cash flows, hence we need to control

for differences in other determinants. Furthermore, instead of looking at differences in price,

we can also look at differences in assets’ expected returns.

A major problem in estimating the effect of liquidity on asset prices or returns is how to

measure liquidity, since there is hardly a single measure that captures all of its aspects (Ami-

hud et al., 2005). Furthermore, studies of the effect of liquidity on expected stock returns use

ex-post or realized returns, whose variance around the expected return is high. Consequently,

researchers need a large amount of data to increase the power of their tests. Given that high-

frequency data is only available from the beginning of the nineties, this poses a problem.

Especially, when one wants to cover various market conditions, e.g. the entire business cy-

cle, or when one is interested in a longer term effect. Researchers need then to find substitute

measures of liquidity using lower frequency data. Examples of low-frequency liquidity mea-

sures are Roll (Roll, 1984), Zeros (Lesmond et al., 1999), Amihud ILLIQ (Amihud, 2002),

and Effective Tick (Holden, 2009). Several papers provide a comparison between low and

high-frequency liquidity measures (Lesmond et al., 1999; Lesmond, 2005; Hasbrouck, 2009;

Goyenko et al., 2009).

One of the first papers that empirically investigates the liquidity effect is Amihud and

Mendelson (1986). They find that expected asset return is an increasing function of illiq-

uidity costs. Besides this cross-sectional effect, we can also investigate the effect of liquid-

ity on returns over time. Amihud (2002), Jones (2002), and Baker and Stein (2004) show

for the U.S. market that when liquidity is expected to be low, expected returns are higher.

Bekaert, Harvey, and Lundblad (2007) find supporting evidence in emerging markets. Expla-

nations for these findings are given by Amihud and Mendelson (1986) and Vayanos (1998)

who argue that investors anticipate future transaction costs and discount assets with higher

transaction costs more. Baker and Stein (2004) relate liquidity to irrational investors who

under-react to information in order flow. These investors are restricted by short-sales con-

straints and only participate in the market when they overvalue the market relative to rational

4Different liquidity values can refer to either differences in liquidity levels or risks.
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investors. Hence when the market is more liquid, it is overvalued and expected returns are

lower.

Given the evidence for the existence of a liquidity effect, an investor could time liquid-

ity. That is, if an investor can predict when the market will be liquid or illiquid, she can

adjust her exposure before liquidity events occur. Cao, Chen, Liang, and Lo (2013) provide

evidence that many hedge fund managers behave like liquidity timers, adjusting the market

exposure of their portfolios based on equity-market liquidity. However, as discussed above,

various definitions and dimensions of liquidity exist. Existing literature gives no guidance

on empirical models and measures that an investor could use for liquidity timing. In the first

part of this thesis we take this task upon us, and provide a solution.

1.2 Commodity futures curves

Commodities constitute the only spot markets which have existed nearly throughout the his-

tory of human kind (Geman, 2005). One of the earliest reports of futures markets is the

market for tulips in The Netherlands.5 These formal futures markets developed in 1636 and

were the primary focus of trading. Thus, as a bet on the price of the bulbs on the settle-

ment date, this market was not different in function from currently operating futures markets

(Garber, 1989). Nowadays most commodities are traded in the U.S., where in the 18th and

19th centuries farmers started selling their crops at the time of planting in order to finance

the production process.

Given the theme of this thesis, I would like to focus on the various dimensions in com-

modity futures markets. As their futures markets exist for several centuries, long data series

over time are available. The properties of these time series have been and are still investigated

in academic literature, examples are the existence of trends, cycles and pricing bubbles. The

cross-sectional dimension, i.e. the comparison of different commodities, is also an area of re-

search interest. Findings are interesting for planting decisions of farmers, hedging decisions

of industrial corporations and asset allocation decisions of investors. Besides the time series

and cross-sectional dimension, futures markets have an additional dimension corresponding

to the different settlement or maturity dates on which futures contracts expire. This dimen-

5A futures contract is a contract between two parties to buy or sell an asset for a price agreed upon today

(the futures price) with delivery and payment occurring at a future point, the maturity date.
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sion is referred to as the term-structure or futures curve and is the dimension of interest in

the second part of this thesis.

Commodity futures curves, which correspond to prices of futures contracts for different

maturities, can be upward or downward sloping. A futures curve where prices are lower than

the current spot price is called to be in backwardation, while a futures curve that is upward

sloping is referred to as being in contango. An extensive literature focuses on explaining the

shapes of commodity futures. Two prevailing theories are the theory of normal backwarda-

tion and the theory of storage. Keynes (1930) original theory of normal backwardation is

based on the presumption that hedgers, commodity producers who want to secure a certain

price level for future deliveries, hold on average a short position in the futures market. Since

these market participants are willing to pay a risk premium in order to hedge their exposure

to spot price positions, the price of a futures contract will be a downward biased estimator

of future spot prices. Cootner (1960) generalized the theory by allowing hedgers to be net

long, for example if there are many commodity consumers who want to hedge. Depending

on the net position of hedgers, futures prices may carry either a positive or a negative risk

premium. The theory of storage, originally proposed by Kaldor (1939), Working (1949),

Brennan (1958), and Telser (1958), relates spot and futures contract prices to inventories and

the stream of costs and benefits from holding the physical commodity. Central to the theory

is the convenience, which is defined by Brennan and Schwartz (1985) as “the flow of ser-

vices that accrues to an owner of the physical commodity but not to the owner of a contract

for future delivery of the commodity”. When the benefits of holding the physical asset (net

convenience yields) are higher than the financing costs (interest rates), the futures curve is in

backwardation, whereas the futures curve is in contango when interest rates exceed the net

convenience yield. Note that the arguments above hold for the relation between the spot price

and all futures prices (regardless of their maturity). Hence, even when we are not interested

in the spot price, it forces a structure on the futures curve.

Despite the extensive literature on modeling the shape of commodity futures curves, none

of these papers incorporate these insights in trading strategies or commonality analysis. In

the second part of this thesis we use the curve dimension to enhance existing strategies

and extend modeling frameworks to deal with time-series, cross-sectional and term-structure

dimensions.
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1.3 Outline

We pursue the goals set forth above in three separate chapters, which are all self-contained

and can be read independently. The next chapter deals with liquidity in equity markets while

Chapters 3 and 4 focus on commodity futures curves.

Chapter 2 is based on Karstanje, Sojli, Tham, and van der Wel (2013). In this chapter, we

focus on the dimensions of liquidity in the light of market timing. We conduct a horse-race

of different liquidity proxies using dynamic asset allocation strategies to evaluate the short-

horizon predictive ability of liquidity on monthly stock returns. We assess the economic

value of the out-of-sample power of empirical models based on different liquidity measures

and find three key results: liquidity timing leads to tangible economic gains; a risk-averse

investor will pay a high performance fee to switch from a dynamic portfolio strategy based

on various liquidity measures to one that conditions on the Zeros measure (Lesmond, Ogden,

and Trzcinka, 1999); the Zeros measure outperforms other liquidity measures because of its

robustness in extreme market conditions. These findings are stable over time and robust to

controlling for existing market return predictors or considering risk-adjusted returns.

Chapter 3 is based on de Groot, Karstanje, and Zhou (2014). Here, we examine novel

momentum strategies in commodities futures markets that incorporate term-structure infor-

mation. We show that momentum strategies that invest in contracts on the futures curve

with the largest expected roll-yield or the strongest momentum earn significantly higher

risk-adjusted returns than a traditional momentum strategy, which only invests in the nearest

contracts. Moreover, when incorporating conservative transaction costs we observe that our

low-turnover momentum strategy more than doubles the net return compared to a traditional

momentum strategy.

Chapter 4 is based on Karstanje, van der Wel, and van Dijk (2015). In this chapter, we

examine the existence of common factors driving commodity futures curves. We adopt the

framework of the dynamic Nelson-Siegel model, enabling us to examine not only commonal-

ity in price levels but also futures curve shapes, as characterized by their slope and curvature.

Our empirical results based on 24 commodities over the period 1995-2012 demonstrate that

the individual commodity futures curves are driven by common components. The common-

ality is mostly sector specific, which implies that commodities are a heterogeneous asset

class. The common components in the level of the curve have become more important over
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time, coinciding with the financialization of the commodities market. The market-wide level

component, which is common to all commodities, is related to economic output variables, ex-

change rates and hedging pressure. Factors driving the shape of the futures curve are related

to inventory data (theory of storage), hedging pressure (theory of normal backwardation) and

interest rates. The use of full curve data alters findings on commonality, compared to the use

of only first-nearby contract data. The full curve commonality results give more insight in

the market dynamics and can help in the construction of commodity futures portfolios and

hedging decisions.

Overall, this thesis contributes to several strands of literature. First, we provide a frame-

work to implement liquidity timing, contributing to the liquidity measure and liquidity-return

literature. Using our framework we show that different dimensions of liquidity vary in their

ability to predict expected future returns. Besides the direct results following from our ap-

proach, the proposed framework is also an alternative way to compare various low-frequency

liquidity measures. By quantifying the “quality” of a liquidity measure in economic terms,

it allows us to compare measures of different dimensions. Second, we show the added value

of taking into account the term-structure dimension of commodity futures. We do this both

in a practical setting and a more theoretical setting. In the practical setting we focus on

an investment strategy and show that increasing the investment universe and incorporating

curve information lead to better investment results. The theoretical setting focuses on the

commonality across various commodities. Here, we propose a framework that can deal with

three dimensions (time series, cross-sectional and term-structure) at once and use this frame-

work to show that the inclusion of curve information is important. We show and explain how

the incorporation of curve information leads to different results in terms of cross commodity

comovement.





Chapter 2

Economic valuation of liquidity timing

Based on Karstanje, Sojli, Tham, and van der Wel (2013)

2.1 Introduction

There is ample evidence that liquidity, the ease with which financial assets can be bought and

sold, is important in explaining variations in asset prices. When market liquidity is expected

to be low expected returns are higher.1,2 A smart investor can potentially time the market

and adjust exposure before liquidity events occur, i.e. time liquidity. Cao, Chen, Liang, and

Lo (2013) provide evidence that many hedge fund managers behave like liquidity timers,

adjusting the market exposure of their portfolios based on equity-market liquidity. However

there is no guidance on empirical models and measures that one could use for liquidity

timing, and this paper addresses these issues.

The literature approximates the unobserved liquidity of a financial asset using various

liquidity measures. A large number of proxies for liquidity exists because liquidity has mul-

tiple aspects (e.g. width, depth, immediacy, or resiliency). Examples of liquidity proxies are

1Amihud (2002), Jones (2002), and Baker and Stein (2004) show this for the U.S. market. Bekaert, Harvey,

and Lundblad (2007) find supporting evidence in emerging markets.
2Amihud and Mendelson (1986) and Vayanos (1998) argue that investors anticipate future transaction costs

and discount assets with higher transaction costs more. Baker and Stein (2004) relate liquidity to irrational

investors who under-react to information in order flow. These investors are restricted by short-sales constraints

and only participate in the market when they overvalue the market relative to rational investors. Hence when

the market is more liquid, it is overvalued and expected returns are lower.
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spread proxies, measures of price impact, and turnover.3 However it is unclear what liquidity

measure an investor should use for liquidity timing and how it should be implemented.

In this paper we examine which proxy a liquidity timer should use. We do so, by mea-

suring the economic value of liquidity forecasts using different liquidity proxies, from the

perspective of investors who engage in short-horizon asset allocation strategies. We focus

on the economic valuation of liquidity because it is relevant from an investor’s point of view.

Moreover it allows us to compare the performance of different liquidity measures, which

might be capturing different aspects of liquidity, under the same “unit”.4

We consider the following five low-frequency liquidity measures for liquidity timing:

illiquidity ratio (ILR) (Amihud, 2002), Roll (Roll, 1984), Effective Tick (Holden, 2009;

Goyenko, Holden, and Trzcinka, 2009), Zeros (Lesmond, Ogden, and Trzcinka, 1999), and

High-Low (Corwin and Schultz, 2012). Using these liquidity measures, we form conditional

expectations about stock returns for the next period. Building on previous research (e.g.

West, Edison, and Cho, 1993), we employ mean-variance analysis as a standard measure of

portfolio performance and apply quadratic utility to examine and to compare the economic

gains of the different measures. We use the Sharpe ratio (SR) and performance fee to evaluate

the economic gains.5 In addition, we also calculate the break-even transaction cost, which is

the transaction cost that would remove any economic gain from a dynamic asset allocation

strategy.

Based on NYSE-listed stocks for the period 1947-2008, we find evidence of economic

value in liquidity timing. The Zeros measure outperforms the other measures: ILR, Roll,

Effective Tick, and High-Low. The Zeros measure achieves a Sharpe ratio of 0.51, followed

by the ILR with a Sharpe Ratio of 0.27. The SR of a buy and hold strategy over the same

period is 0.28. A risk-averse investor with quadratic utility would pay an annual fee of more

than 250 basis points to switch from the other liquidity proxies to condition on the Zeros

3For spread proxies see e.g. Roll (1984), Lesmond, Ogden, and Trzcinka (1999), Hasbrouck (2009), and

Holden (2009); for price impact measures see e.g. Amihud, Mendelson, and Lauterbach (1997), Berkman and

Eleswarapu (1998), Amihud (2002), and Pástor and Stambaugh (2003), and for turnover see Baker and Stein

(2004).
4Other articles, e.g. Goyenko, Holden, and Trzcinka (2009) and Hasbrouck (2009), compare liquidity

measures to a benchmark. Their set-up only allows to compare proxies that approximate the same aspect of

liquidity, e.g. price impact or effective spread.
5The Sharpe ratio is the most common measure of performance evaluation employed in financial markets

to assess the success or failure of active asset managers; it is calculated as the ratio of the average realized

portfolio excess returns to their variability. The performance fee measures how much a risk-averse investor is

willing to pay for switching from one strategy to another.
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liquidity measure. The alpha of the Zeros strategy is 7.01% after controlling for exposure

to the three Fama and French (1993) factors, the Carhart (1997) momentum factor, and the

Pástor and Stambaugh (2003) liquidity factor. The results are not driven by correlations with

other return predictors such as the dividend yield or the book-to-market ratio (Welch and

Goyal, 2008). Furthermore, the outperformance is not specific to a particular period and

is robust to different subsamples, weight restrictions, and target volatility and risk aversion

parameters.

We document that the Zeros measure shows positive performance under all market con-

ditions. Its returns remain very high throughout both bull and bear periods and its weights

remain quite stable. Additionally, we show that the return predictions of the Zeros strat-

egy are of good quality. We do this by restricting the weights in the asset allocation to be

nonnegative. Jagannathan and Ma (2003) show that imposing nonnegativity restrictions in

an asset allocation problem, reduces the estimation error in the return prediction parame-

ters and gives similar effects as shrinking the return predictions. However, if the quality of

the predictions is already good and cannot simply be improved by shrinkage, the strategy

performance will deteriorate when restrictions are imposed. We find that weight restrictions

lower the performance of the Zeros strategy, while they increase the performance of the other

strategies.

This paper contributes to the literature on liquidity proxies comparison. Goyenko, Holden,

and Trzcinka (2009) investigate how well low frequency liquidity measures approximate

true transaction costs for market participants, which are measured by high-frequency bench-

marks. They find that Effective Tick is the best low frequency measure for effective and

realized spread, and ILR is the best measure for price impact. However, the best proxy for

transaction costs is not necessarily the proxy that an investor should use for liquidity timing.

In contrast, this paper investigates which measure can be used to time the market. Effective

Tick shows no economic value, despite its ability to approximate high frequency transaction

costs well and the Zeros measure is the most relevant for liquidity timing.

This paper contributes also to the literature on portfolio allocation. West, Edison, and

Cho (1993) use the mean-variance and quadratic utility setting to rank exchange rate volatil-

ity models based on utility gains. Fleming, Kirby, and Ostdiek (2001) investigate volatility

timing in equity markets. Della-Corte, Sarno, and Thornton (2008) and Della-Corte, Sarno,

and Tsiakas (2009) apply the approach to short-term interest rates and predictability in the
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foreign exchange market. Thornton and Valente (2012) investigate the economic value of

long-term forward interest rate information to predict bond returns. Differently from these

papers, we evaluate the economic value of liquidity timing in equity markets.

2.2 Methodology

We examine whether liquidity timing leads to economic benefits and which liquidity proxy

should be used, following three steps. First, we form conditional expectations of returns

based on different liquidity measures. Second, we construct dynamically rebalanced mean-

variance portfolios based on these return predictions. Third, we evaluate the performance of

these strategies. In this section we focus on the methodology, while implementation details

are presented when discussing the results.

2.2.1 Forecasting liquidity and expected returns

We start by modeling liquidity in order to estimate expected liquidity in the next period. Fol-

lowing Amihud (2002), Acharya and Pedersen (2005), and Bekaert, Harvey, and Lundblad

(2007) we use autoregressive models to capture the autocorrelation in the liquidity series:

LIQk,t = φ0 +

p∑

i=1

φiLIQk,t−i + ηk,t, (2.1)

where LIQk,t is the liquidity of asset k at time t, and p is the order of the autoregressive

model. Iterating forward Equation (2.1), liquidity predictions for the next period are given

by Et [LIQk,t+1] = φ0,t +
∑p

i=1 φi,tLIQk,t−i. Adding expected liquidity in a model for

conditional expected excess returns that is solely driven by liquidity, gives:

Et [rk,t+1 − rf,t] = δ0 + δ1Et [LIQk,t+1]

= δ0,t + δ1,t

(
φ0,t +

p∑

i=1

φi,tLIQk,t−i

)

= β0,t +

p∑

i=1

βi,tLIQk,t−i, (2.2)



2.2 Methodology 13

where β0,t = δ0 + δ1φ0,t and βi,t = δ1φi. We only need estimates for the β-parameters and

do not estimate Equation (2.1), because we are interested in return predictions generated by

Equation (2.2). The coefficients β0,t and βi,t are allowed to vary over time and are estimated

using a rolling window of length L. If liquidity is beneficial for forecasting expected returns,

it can be used in a ‘liquidity timing’ strategy. We estimate the parameters in Equation (2.2)

using a window length of 10 years (L = 120 monthly observations). To minimize the ef-

fect of possible structural breaks on the results, Pesaran and Pick (2011) suggest to average

predictions generated using different rolling window lengths. We take the average of three

different predictions based on a window length of 5, 10, and 20 years (L = 60, 120, and 240

monthly observations).6

To allow for a long enough sample to cover the longest moving window of 20 years, the

first return prediction is made for January 1967. For the 10 year moving window, we estimate

the regression in Equation (2.2) using data from January 1957 to December 1966. Using the

estimated coefficients we make a forecast for next month, January 1967. Then we shift the

window one period ahead. Thus the second estimation window runs from February 1957

to January 1967, and we make a prediction for February 1967. This procedure is repeated

for all months t = Jan 1967, Feb 1967, . . . , Dec 2008 and all assets k = 1, 2, . . . , K, for

each liquidity measure. For the 5 year moving window, the first window is January 1962 to

December 1966 and for the 20 years, the first window is January 1947 to December 1966.

2.2.2 Asset allocation

Following the literature, we use mean-variance dynamic trading strategies to assess the eco-

nomic value of liquidity timing. An investor invests every month in the K risky assets and

one riskless U.S. Treasury bill (rf,t). She chooses the weights to invest in each risky asset

by constructing a dynamically re-balanced portfolio that maximizes the conditional expected

6One could alternatively use a non-linear specification to forecast returns. However, we choose to use a

linear over a non-linear specification throughout all of our analysis for two reasons. First, although a correctly

specified non-linear model may fit the conditional expectation function more closely than a linear model, a

misspecified non-linear model may perform worse. OLS provides a robust approach as the best linear estimator

for the non-linear relation. Second, Clements et al. (2004) show that the forecasting performance of non-linear

models is not particularly good compared to linear models. They conclude that the problem may be that non-

linear models are not mimicking reality any better than simpler linear approximations.
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return subject to a target conditional volatility. Her optimization problem is given by

max
wt

{
rs,t+1|t = w′

trk,t+1|t + (1− w′
t1)rf,t

}
(2.3)

s.t. (σ∗
s)

2 = w′
tΣt+1|twt,

where rs,t+1|t is the conditional expected return of strategy s, wt is the vector of weights of the

risky assets, rk,t+1|t is the vector of conditional risky asset return predictions, σ∗
s is the target

level of risk for the strategy, and Σt+1|t is the variance-covariance matrix of the risky assets.

Σt+1|t is estimated recursively as the investor updates return predictions and dynamically

balances her portfolio every month.7 The solution to this maximization problem yields the

risky asset investment weights:

wt =
σ∗
s√
Qt

Σ−1
t+1|t

(
rk,t+1|t − 1rf,t

)
,

where Qt =
(
rk,t+1|t − 1rf,t

)′
Σ−1

t+1|t
(
rk,t+1|t − 1rf,t

)
and rk,t+1|t − 1rf,t is the conditional

excess return. The weight invested in the risk free asset is 1 − w′
t1. The covariance ma-

trix is estimated by the sample covariance matrix over a 10 year rolling window, thus, the

covariance matrix is time-varying.8

2.2.3 Evaluation

We employ mean-variance analysis as a standard measure of portfolio performance to calcu-

late Sharpe ratios (SR). Assuming quadratic utility, we also measure how much a risk-averse

investor is willing to pay for switching from one liquidity measure to another. For each of

these economic evaluation metrics, we obtain one ranking of all investigated liquidity mea-

sures.

7An alternative optimization is to maximize expected utility. We use maximizing expected returns subject

to target volatility as it is the most common optimization in the literature. Maximizing expected utility leads to

the same ranking of liquidity measures as maximizing expected returns. Results are available from the authors

upon request.
8Our results are similar when we carry out the out-of-sample asset allocation problem with the covariance

matrix predicted by a multivariate GARCH(1,1) model or with the covariance matrix kept constant over time.
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Sharpe ratio

The first economic criterion we employ is the Sharpe ratio, or return-to-variability ratio,

which measures the risk-adjusted returns from a portfolio or investment strategy and is

widely used by investment banks and asset management companies to evaluate investment

and trading performance. The ex-post SR is defined as:

SR =
rs − rf

σs
,

where rs − rf is the average (annualized) excess strategy return over the risk free rate, and

σs is the (annualized) standard deviation of the investment returns. This measure is com-

monly used to evaluate performance in the context of mean-variance analysis. However,

Marquering and Verbeek (2004) and Han (2006) show that the SR can underestimate the

performance of dynamically managed portfolios. This is because the SR is calculated using

the average standard deviation of the realized returns, which overestimates the conditional

risk (standard deviation) faced by an investor at each point in time. For this reason we use

the performance fee as an additional economic criterion to quantify the economic gains from

using the liquidity models considered.

Performance fees under quadratic utility

The second economic significance evaluation metric is based on the performance fee. Specif-

ically, we calculate the maximum performance fee a risk-averse investor is willing to pay to

switch from the strategy based on liquidity measure A to an alternative strategy that is based

on liquidity measure B. This measure is based on mean-variance analysis with quadratic

utility (West, Edison, and Cho, 1993; Fleming, Kirby, and Ostdiek, 2001; Rime, Sarno, and

Sojli, 2010). Under quadratic utility, at the end of period t+1 the investor’s utility of wealth

can be represented as:

U (Wt+1) = Wt+1 −
̺

2
W 2

t+1 = Wt (1 + rs,t+1)−
̺

2
W 2

t (1 + rs,t+1)
2

,

where Wt+1 is the investor’s wealth at t + 1; rs,t+1 is the gross strategy return; and ̺ de-

termines her risk preference. To quantify the economic value of each model the degree of

relative risk aversion (RRA) of the investor is set to δ = ̺Wt

1−̺Wt
, and the same amount of
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wealth is invested every day. Under these conditions, West, Edison, and Cho (1993) show

that the average realized utility (U ) can be used to consistently estimate the expected utility

generated from a given level of initial wealth. The average utility for an investor with initial

wealth W0 = 1 is:

U =
1

T

T−1∑

t=0

(
1 + rs,t+1 −

δ

2 (1 + δ)
(1 + rs,t+1)

2

)
.

At any point in time, one set of estimates of the conditional returns is better than a second

set if investment decisions based on the first set leads to higher average realized utility,

U . Alternatively, the optimal model requires less wealth to yield a given level of U than a

suboptimal model. Following Fleming, Kirby, and Ostdiek (2001), we measure the economic

value of liquidity by equating the average utilities for selected pairs of portfolios. Suppose,

for example, that holding a portfolio constructed using the optimal weights based on liquidity

measure A yields the same average utility as holding the optimal portfolio implied by the

liquidity measure B that is subject to daily expenses Φ, expressed as a fraction of wealth

invested in the portfolio. Since the investor would be indifferent between these two strategies,

we interpret Φ as the maximum performance fee she will pay to switch from strategy A to

strategy B. In other words, this utility-based criterion measures how much a mean-variance

investor is willing to pay for conditioning on a particular liquidity measure for the purpose

of forecasting stock returns. The performance fee will depend on the investor’s degree of

risk aversion. To estimate the fee, we find the value of Φ that satisfies:

T−1∑

t=0

{
1 + rAs,t+1 −

δ

2 (1 + δ)

(
1 + rAs,t+1

)2}
=

T−1∑

t=0

{(
1 + rBs,t+1 − Φ

)
− δ

2 (1 + δ)

(
1 + rBs,t+1 − Φ

)2
}
,

where rAs,t+1 is the strategy return obtained using forecasts based on the liquidity measure A,

Φ is the maximum performance fee an investor wants to pay to switch from strategy A to

strategy B, and δ is the degree of relative risk aversion (RRA) of the investor.
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Transaction costs

In dynamic investment strategies, where the investor rebalances the portfolio every month,

transaction costs can play a significant role in determining returns and comparative utility

gains. However, traders charge transaction costs according to counter-party types and trade

size. Thus, instead of assuming a fixed cost, we compute the break-even transaction cost τ ,

which is the minimum monthly proportional cost that cancels the utility advantage of a given

strategy. A similar measure of transaction costs has been used by Han (2006), Marquering

and Verbeek (2004), and King, Sarno, and Sojli (2010). We assume that transaction costs at

time t equal a fixed proportion τ of the amount traded in asset k:

τ
K∑

k=1

Ak,t

∣∣∣∣wk,t − wk,t−1

(
1 + rk,t + rf,t−1

1 + rs,t

)∣∣∣∣ ,

where k = 1, . . . , K refers to the risky assets and Ak,t =
costsk,t
costsK,t

is a scaling factor that

expresses the break-even transaction costs τ in terms of asset K. The scaling factor takes

into account the difference in trading costs between the different assets. To quantify the

transaction cost we use the Effective Tick estimates: costsk,t = Eff. Tickk,t. The choice for

Effective Tick is based on Goyenko, Holden, and Trzcinka (2009) who find that this measure

is the best proxy for effective spread, which is an estimate of the execution cost actually

paid by the investor. Previous articles assume that the transaction costs of all assets in their

analysis is the same, i.e. Ak,t = 1. We cannot make that assumption because we focus on the

liquidity differences between assets, which implies that the transaction costs of the different

assets are unlikely to be the same.

2.3 Data

We use daily data of common stocks listed on the New York Stock Exchange (NYSE) from

1947-2008. All data are obtained from the Center for Research in Security Prices (CRSP).

We use the daily data to construct the monthly variables. Using daily data, instead of high

frequency data, enables us to investigate a longer sample period. Following the literature

(see e.g. Chordia, Roll, and Subrahmanyam, 2000; Hasbrouck, 2009; Goyenko, Holden, and

Trzcinka, 2009), we include only stocks that have sharecode 10 or 11 and do not change
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ticker symbol, CUSIP, or primary exchange over the sample period. Days with unusually

low volume due to holidays are removed. Our final sample includes 16,083,228 stock/day

observations. Table 2.A.1 in the Appendix presents the sample characteristics. The aver-

age daily price in the sample is $31 and average trading volume $10 million. The average

annualized volatility is 24% and turnover is 74%.

The dependent variable in all our regressions is monthly excess returns. All monthly

stock returns are adjusted for delisting bias following Shumway (1997).9 Excess returns rei,t

are calculated above the 1-month Treasury bill rate from Ibbotson Associates as provided on

Kenneth French’s website.10

2.3.1 Portfolio construction

We use liquidity and excess return series of size portfolios instead of individual stocks in

the regressions. The aggregation of individual stocks into portfolios is necessary to reduce

the number of assets in the asset allocation. It also deals with issues related to individual

stocks that enter and leave the sample, due to delistings and IPOs. Before aggregating the

individual stocks into portfolios, we filter the individual observations based on the level of

the stock price, the number of daily observations within the month, and the availability of

size, liquidity, and return information.11 Stock i is included in a portfolio in month t if it

satisfies the following criteria:

(1) The preceding month-end stock price is between $5 and $1,000
(
5 < pi,t−1,Di,t−1

< 1000
)
,

where pi,t−1,Di,t−1
is the stock price of stock i on day Di,t−1 in month t− 1. This rules

out returns that are affected by the minimum tick size.

(2) The preceding month-end market capitalization information (Mi,t−1) is available, which

we need for sorting.

(3) LIQi,t−1 is available and is computed using at least 15 daily observations to ensure the

quality of the measure.

9For all delistings we use the delisting returns available in CRSP. If this return is not available and the

delisting code is 500, 520, 551-574, 580, or 584, we follow Shumway (1997) and use a return of −30%.
10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html.
11The filtering criteria are in line with Amihud (2002), Pástor and Stambaugh (2003), Acharya and Pedersen

(2005), and Ben-Rephael, Kadan, and Wohl (2010).
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(4) After excluding individual monthly observations that do not satisfy conditions (1) to

(3), we winsorize each month across all remaining stocks to the top and bottom 1% of

the liquidity variables to avoid outliers.

After filtering, the sample consists of 4,348 stocks. We sort these stocks based on previous

end-of-month market capitalization in K = 10 size portfolios. The portfolio liquidity and

return series are simply the cross-sectional averages of the included individual stocks.

Directly sorting on the liquidity measure of interest is not possible because we analyze

various liquidity measures, which would lead to different rankings and different portfolio

components for each measure. If we construct different portfolios for each individual liquid-

ity measure, we will not be able to disentangle whether performance differences are due to

the composition of the portfolio or to the better predictive quality of the liquidity measure.

Furthermore, Amihud (2002) finds that the effect between liquidity and expected returns is

stronger for small firms than for large firms. By creating portfolios based on size we take

this into account in the econometric framework.

2.3.2 Liquidity variables

We consider a variety of monthly liquidity measures, which can be constructed over the

entire sample period 1947–2008 and together capture all aspects of liquidity: Roll, Effective

Tick, Zeros, High-Low, and Illiquidity Ratio (ILR).12 The first four measures proxy for the

bid-ask spread and the fifth measure is a proxy for price impact. All liquidity variables

measure illiquidity, i.e. higher estimates correspond to lower liquidity.

Roll

Roll (1984) shows that trading costs lead to a negative serial correlation in subsequent price

changes. In other words, the effective bid-ask spread is inversely related to the covariance

between subsequent price changes. The Roll measure is calculated as:

Rolli,t =




2
√
−Cov (∆pi,t,d; ∆pi,t,d−1), if Cov (∆pi,t,d; ∆pi,t,d−1) < 0,

0, if Cov (∆pi,t,d; ∆pi,t,d−1) ≥ 0.

12Some liquidity measures that we leave out are: the measures developed in Chordia, Huh, and Subrah-

manyam (2009) because they require analyst data, and the Sadka (2006) measure based on high-frequency

data.
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where ∆pi,t,d is the price change for stock i in month t on day d with d = 1, 2, . . . , Di,t and

Di,t the total number of trading days of stock i in month t.

Effective tick

Holden (2009) and Goyenko, Holden, and Trzcinka (2009) jointly develop a liquidity mea-

sure based on price clustering, which builds on the findings of Harris (1991) and Chrisie

and Schultz (1994). If one assumes that the spread size is the only cause of price clustering,

observable price clusters can be used to infer the spread. If prices are exclusively quoted on

even eight increments
(
$1
4
, $1

2
, $3

4
, $1
)

the spread must be $1
4

or larger. However when prices

are also quoted on odd eight increments
(
$1
8
, $3

8
, $5

8
, $7

8

)
the spread must be $1

8
. If the mini-

mum tick size is $1
8
, there are J = 4 possible spreads: s1 = $1

8
; s2 = $1

4
; s3 = $1

2
; s4 = $1.

The observed fraction Fj of odd $1
8
, $1

4
, $1

2
, $1 prices can be used to estimate the probability

γj of a certain spread sj . The unconstrained probability Ui,t,j of the jth spread sj for stock i

in month t is:

Ui,t,j =





2Fi,t,j if j = 1

2Fi,t,j − Fi,t,j−1 if j = 2, 3, . . . , Jt − 1

Fi,t,j − Fi,t,j−1 if j = Jt,

where Fi,t,j is the observed fraction of trades on prices corresponding to the jth spread for

stock i in month t: Fi,t,j =
Ni,t,j

∑Jt
j=1

Ni,t,j

for j = 1, 2, . . . , Jt. with Ni,t,j the number of

positive volume days in month t that correspond to the jth spread. The unconstrained prob-

abilities Ui,t,j can be below zero or above one, so we add restrictions to make sure the γi,t,j’s

are real probabilities:

γi,t,j =




min[max(Ui,t,j , 0), 1] if j = 1

min[max(Ui,t,j , 0), 1−
∑j−1

m=1 γi,t,m] if j = 2, 3, . . . , Jt.

The effective tick measure is the expected spread scaled by the average price over that month.

Eff. Ticki,t =

∑Jt
j=1 γi,t,jsi,t,j

pi,t
.
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Zeros

Lesmond, Ogden, and Trzcinka (1999) develop a liquidity measure based on the proportion

of days with zero returns. In a day with zero return, the value of trading on information

does not exceed transaction costs for an investor on that day. A less liquid asset with high

transaction costs is less often traded than a more liquid asset, and the less liquid asset has a

higher proportion of days with zero returns. Zeros is measured as:

Zerosi,t =

∑Di,t

d=1 I{ri,t,d=0}
Di,t

,

where I{ri,t,d=0} is an indicator function that takes the value 1 if the return of stock i on day

d in month t is zero.

High-low

Corwin and Schultz (2012) develop a liquidity measure based on daily high and low prices.

It is likely that the highest price on a particular day is against the ask quote while the lowest

price is against the bid quote. The high-low ratio therefore reflects both a stock’s variance

and its bid-ask spread. To disentangle the variance and the spread component, we make use

of multiple time intervals since the variance is proportional to the length of the interval, while

the spread component is not. Hence, the liquidity measure is written as a function of one-day

and two-day high-low ratios:

High-Lowi,t =
2 (expα−1)

1 + expα
,

where α =
√
2β−

√
β

3−2
√
2

−
√

γ

3−2
√
2
, β = log

(
Hi,t

Li,t

)2
+ log

(
Hi,t−1

Li,t−1

)2
, γ = log

(
Hi,t−1,t

Li,t−1,t

)2
,

Hi,t (Li,t) is the high (low) price on day t for asset i, and Hi,t−1,t (Li,t−1,t) is the high (low)

price over the two days t− 1 and t for asset i.

Illiquidity ratio

The measure developed in Amihud (2002) proxies for the price impact of a trade. Price

impact refers to the positive relation between transaction volume and price change. The

measure is defined as the ratio between the absolute daily return over dollar volume, averaged
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over the month:

ILRi,t =
1

Di,t

Di,t∑

d=1

|ri,t,d|
Vi,t,d

,

where Vi,t,d is the dollar volume of traded stocks i (in millions) on day d and Di,t is the

number of trading days in month t. To be able to compare the ILR over time, we correct it

for inflation and the increased size of financial markets. When adjusting the series we cannot

use future information that is not available to a real-time investor. We follow Acharya and

Pedersen (2005) and Pástor and Stambaugh (2003) and scale the liquidity measure by a ratio

of market capitalizations:

ILR
adj
i,t = ILRi,t

Mm,t−1

Mm,1
,

where ILRi,t is the illiquidity ratio in month t of stock i and Mm,t−1 is the market capitaliza-

tion in month t− 1 and Mm,1 is the market capitalization in January 1947. In the remainder

of this paper we drop the superscript and refer to the adjusted Amihud illiquidity ratio with

ILR.

2.3.3 Preliminary statistics

Table 2.1 presents the liquidity characteristics for the market and three size portfolios. Panel

A shows the liquidity characteristics for the market portfolio. Panels B, C, and D show the

liquidity characteristics for the size portfolios. The portfolio with small firms (Panel B) is

the least liquid and has the most variability over time. The bottom three panels (E - G) show

market liquidity over three subperiods of 20 years. The ILR measure shows that price impact

is the lowest in the post-war sub-period (1947-1967) with a value of 2.537 and has the lowest

volatility of 0.725. In contrast, Zeros shows that liquidity has increased over time.



2.3 Data 23

Table 2.1 Liquidity statistics for size portfolios

The table presents time series characteristics for monthly liquidity series. The sample period is January 1947

to December 2008. Size portfolios are formed based on previous month market capitalization (Mi,t−1). The

liquidity measures are: ILR (Amihud, 2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al.,

2009), Zeros (Lesmond et al., 1999), and High-Low (Corwin and Schultz, 2012). Panel A shows the liquidity

characteristics of the equally weighted market portfolio over the entire sample period. Panel B, C, and D show

the liquidity characteristics for size portfolio 1, 5, and 10, respectively, where portfolio 1 consists of the smallest

firms and portfolio 10 of the largest firms. Panel E, F, and G show the liquidity characteristics of the equally

weighted market portfolio for three subperiods.

ILR Eff. tick Roll Zeros High-low

Panel A: Market portfolio

Average 2.904 0.0077 0.0090 0.151 0.0065
Median 2.641 0.0082 0.0083 0.169 0.0062
Volatility 1.358 0.0031 0.0028 0.061 0.0014

Panel B: Size portfolio 1, small firms

Average 13.294 0.0147 0.0128 0.227 0.0101
Median 11.868 0.0160 0.0124 0.249 0.0101
Volatility 6.628 0.0055 0.0032 0.082 0.0023

Panel C: Size portfolio 5

Average 1.562 0.0074 0.0089 0.152 0.0063
Median 1.386 0.0079 0.0083 0.168 0.0059
Volatility 0.977 0.0031 0.0031 0.065 0.0015

Panel D: Size portfolio 10, large firms

Average 0.118 0.0034 0.0062 0.092 0.0047
Median 0.106 0.0036 0.0053 0.098 0.0044
Volatility 0.100 0.0014 0.0034 0.045 0.0017

Panel E: Market portfolio (1947–1967)

Average 2.537 0.0089 0.0085 0.183 0.0061
Median 2.388 0.0083 0.0080 0.181 0.0059
Volatility 0.725 0.0018 0.0024 0.029 0.0009

Panel F: Market portfolio (1968–1988)

Average 3.258 0.0092 0.0086 0.172 0.0067
Median 2.743 0.0090 0.0083 0.171 0.0064
Volatility 1.752 0.0018 0.0018 0.028 0.0010

Panel G: Market portfolio (1989–2008)

Average 2.916 0.0049 0.0098 0.096 0.0068
Median 2.910 0.0049 0.0086 0.080 0.0061
Volatility 1.296 0.0033 0.0038 0.074 0.0020

Figure 2.1 shows the time series of the liquidity measures. The Roll and High-Low

liquidity measures are quite stable and fluctuate around means of 0.01 and 0.006 respectively.

Both measures show low liquidity around 1975 (oil crisis), 2000 (burst of internet bubble),

and 2007-2008 (global financial crisis). The Effective Tick and Zeros measures exhibit a
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decreasing trend. There are two permanent shocks in these series that coincide with the two

minimum tick changes: on June 24, 1997, the minimum tick decreases from 1
8

to 1
16

, and

on January 29, 2001, it decreases from 1
16

to 0.01. The last measure, ILR, shows periods

of illiquidity in 1970, 1975, in the beginning of the 90’s, in 2000, and in 2008. The figure

shows that it is important to allow the relation between liquidity and conditional expected

returns to vary over time by using rolling estimation windows.
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Figure 2.1 Liquidity measures

The figure shows the liquidity measures for the market over time. The market series is computed as the cross-

sectional equally-weighted average of individual stock liquidity measures. The sample period is January 1947

to December 2008. The low-frequency liquidity measures are: ILR (Amihud, 2002), Roll (Roll, 1984), Effec-

tive Tick (Holden, 2009; Goyenko et al., 2009), and Zeros (Lesmond et al., 1999), and High-Low (Corwin and

Schultz, 2012).
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Table 2.2 shows the descriptive statistics for the market portfolio excess returns and three

size portfolios, over the entire sample and three subsamples: 1947-1967, 1968-1988, and

1989-2008. In line with Fama and French (1992), we find that small firms have both more

volatile and higher average returns compared to the returns for large firms. The different

subsamples show that returns vary considerably over time. The preliminary statistics provide

initial evidence of a possible link between liquidity and returns.

Table 2.2 Excess return statistics for size portfolios

The table presents descriptive characteristics for monthly excess returns. All reported values are annualized.

The sample period is January 1947 to December 2008 and is divided into three subperiods. Size portfolios

are formed based on previous month market capitalization (Mi,t−1). Panel A shows the characteristics of the

equally weighted market portfolio. Panel B, C, and D show the characteristics for size portfolio 1, 5, and 10,

respectively, where portfolio 1 consists of the smallest firms and portfolio 10 of the largest firms.

Entire sample 1947-1967 1968-1988 1989-2008

Panel A: Market portfolio

Average 7.50% 12.28% 4.98% 5.30%
Median 12.58% 17.17% 5.23% 10.03%
Volatility 17.06% 14.22% 20.45% 15.82%

Panel B: Size portfolio 1, small firms

Average 8.42% 13.72% 9.24% 2.32%
Median 12.29% 16.10% 12.03% 7.22%
Volatility 20.47% 17.86% 24.50% 18.21%

Panel C: Size portfolio 5

Average 7.75% 12.28% 5.14% 5.90%
Median 11.56% 17.86% 5.85% 10.14%
Volatility 18.12% 14.98% 21.56% 17.18%

Panel D: Size portfolio 10, large firms

Average 5.19% 10.24% 1.51% 3.96%
Median 10.17% 13.85% 4.01% 9.45%
Volatility 14.35% 12.18% 16.65% 13.77%

2.4 Results

We now turn to the results of our main analysis. Here, all liquidity series are modeled using

an autoregressive model of order two. The optimal number of lags is based on the Akaike

Information Criterion and the Bayesian information Criterion. In this section, all switching

fees are based on a relative risk aversion coefficient δ = 5, and the ex-ante target volatility is

set to σ∗
s = 10%. In Section 2.6 we examine the robustness of the results to these settings.
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2.4.1 Main results

Table 2.3 shows the performance of the liquidity timing strategies. We present the following

performance measures: the Sharpe ratio (SR, column 1), the relative performance expressed

in switching fees (columns 2-5), transaction costs (columns 6-7), and the excess return and

volatility (columns 8-9). Each row corresponds to the characteristics of a strategy that con-

ditions on a particular liquidity measure. The results in Panel A indicate that it is possible

to use liquidity timing to earn positive returns, and that the Zeros measure performs best.

The SR of the Zeros strategy is 0.38 and is higher than the SR of ILR (0.13), Roll (-0.04),

Effective Tick (-0.07), and High-Low (-0.16).13

The Zeros strategy performs best as indicated by the positive switching fees of all vari-

ables towards Zeros. A risk-averse investor would pay 287.3 basis points per year to switch

from the ILR strategy to a strategy that conditions on Zeros. The High-Low strategy has

the worst performance because a risk-averse investor does not want to pay a positive fee to

switch to the High-Low strategy.14 The Zeros break-even transaction costs (τ1) are 4.2 basis

points, if we assume that transaction costs are the same for all risky assets. When we incor-

porate the cost differences and express the break-even transaction costs in terms of the most

liquid asset, we find τA = 2.0 basis points. The next two columns show the excess returns

and their volatilities. The excess return of Zeros is the highest, 4.55%.

Panel B shows the strategy characteristics when the return predictions are based on the

average return prediction using three different rolling windows (5, 10, and 20 years). The

Zeros strategy has both the highest excess return (6.04%) and SR (0.51). The positive switch-

ing fees for the Zeros strategy show that a risk-averse investor always wants to pay a positive

fee to switch to condition on the Zeros measure. Compared to Panel A, the excess returns

in Panel B are higher for four of the five measures and the return volatilities remain similar.

Averaging the return predictions of different rolling windows seems to deliver better perfor-

mance, which could be related to more accurate return forecasts, in line with Pesaran and

Pick (2011).

13The differences in SR are not only economically but also statistically significant. According to the SR test

of Ledoit and Wolf (2008), the SR of the Zeros strategy is significantly higher than the other SRs, except for

the SR of the ILR strategy.
14The break-even transaction costs are not computed for the Effective Tick, Roll, and High-Low strategy

because their excess returns are negative.
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Table 2.3 Performance of dynamic asset allocation strategies

The table presents dynamic strategy results for the different liquidity measures. The dynamic asset allocation

strategies are based on a mean-variance framework where the investor maximizes the conditional expected

return subject to a target conditional volatility (σ∗
s = 10%). The return predictions of the risky assets in Panel

A are based on a 10-year rolling window and in Panel B are based on the average prediction of a 5, 10, and

20 year rolling window. The weights of the risky assets are not restricted. The sample period is January 1947

to December 2008, and the strategies start trading in January 1967. The liquidity measures are: ILR (Amihud,

2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond et al., 1999),

and High-Low (Corwin and Schultz, 2012). All numbers are annual, except for the break-even costs τ1 and τA
that are reported in basis points per trade. The switching fee is the maximum performance fee a risk-averse

investor is willing to pay to switch from one strategy to another. It is expressed in annual basis points and is

computed based on a relative risk aversion parameter of 5. τ1 shows the break-even costs under the assumption

that all assets have the same transaction costs. τA shows the break-even costs in terms of large firms, whereby

the liquidity differences between small and large firms are taken into account. If the excess return of a strategy

is negative we do not compute break-even transaction costs and report the symbol “-”.

Switching fee

SR ILR Eff. tick Roll Zeros τ1 τA Excess return Volatility

Panel A: 10 year window

ILR 0.13 1.4 0.6 1.50% 11.88%
Eff. tick −0.07 −206.2 – – −0.79% 11.41%
Roll −0.04 −192.2 13.8 – – −0.49% 11.77%
Zeros 0.38 287.3 494.1 480.0 4.2 2.0 4.55% 12.05%
High-low −0.16 −349.7 −143.7 −157.5 −637.5 – – −1.94% 11.99%

Panel B: Combination of windows

ILR 0.27 2.8 1.3 3.14% 11.54%
Eff. tick −0.13 −477.7 – – −1.54% 11.81%
Roll 0.06 −245.6 232.5 0.8 0.4 0.72% 11.69%
Zeros 0.51 264.8 742.5 510.0 5.5 2.6 6.04% 11.79%
High-low −0.09 −455.6 22.5 −210.0 −720.0 – – −1.15% 12.15%

Figure 2.2 shows the cumulative returns of all five strategies based on the 10 year rolling

window predictions. The best performing strategies are based on the ILR and the Zeros

measures. The outperformance of the Zeros strategy is not generated during a particular

period, since its returns steadily increase over the entire sample period. The ILR strategy

performs very well and tracks the Zeros strategy until 1995, but it decreases substantially

between 1995 and 1998 and never recovers. The decline in performance of the ILR strategy is

in line with Ben-Rephael, Kadan, and Wohl (2010), who argue that the profitability of trading

strategies based on volume related liquidity proxies declined over the past four decades. Both

the Roll and High-Low strategies show good performance until 1980, but they become loss-

making afterwards. Finally, the Effective Tick strategy loses money until 1990, it sharply

increases until 2001, and in the final years of the sample its performance is flat.
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A liquidity measure that is closely related to Zeros is the LM1 measure of Liu (2006).

Both measures proxy for liquidity using the number of days where there is no information,

however LM1 uses zero volume days while Zeros is based on zero return days. LM1 is

computed as the standardized turnover-adjusted number of zero daily trading volumes per

month: LM1 = [NoZV + 1/turnover
Deflator

] 21
NoTD

, with NoZV the number of zero daily volumes,

turnover the sum of daily ratios of number of traded shares to the number of shares out-

standing, Deflator a correction term, and NoTD the number of trading days. The results

in Table 2.A.2 in the Appendix show that the ranking of strategies using LM1 is the same as

using Zeros. Given the similarity between the two measures, we continue using the Zeros

measure as the main object of interest.

Figure 2.2 Cumulative returns of dynamic asset allocation strategies

The figure shows the cumulative log returns of the dynamic asset allocation strategies that use liquidity infor-

mation to predict excess returns. The low-frequency liquidity measures are: ILR (Amihud, 2002), Roll (Roll,

1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond et al., 1999), and High-Low

(Corwin and Schultz, 2012). The dynamic asset allocation strategies are based on a mean-variance framework

where the investor maximizes the conditional expected return subject to a target conditional volatility. The

return predictions of the risky assets are based on a 10-year rolling window.
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2.4.2 Control variables

This section deals with the possibility that an omitted variable, which is correlated with the

liquidity measures, is driving the results. Welch and Goyal (2008) examine the predictive

ability of several market return predictors suggested in the existing literature.15 We use only

the Welch and Goyal (2008) predictors that are publicly available for the entire sample period

(1947-2008).16 All variables are constructed for the market and not for the individual size

portfolios.

Adding the control variables to Equation (2.2), with p = 2 yields:

Et [rk,t+1 − rf,t] = β0,t + β1,tLIQk,t + β2,tLIQk,t−1 +

N∑

n=1

γn,tfn,t, (2.4)

where LIQk,t is the liquidity of asset k at time t and fn,t are the n = 1, 2, . . . , N control

variables: dividend yield, earnings price ratio, dividend payout ratio, stock variance, book-to-

market ratio, net equity expansion, term-spread, default yield spread, default return spread,

and inflation. We estimate the β- and γ-parameters in the same way as in the main analysis.

Some of the control variables, especially the dividend price ratio and dividend yield, are

highly correlated. Hence, we run separate regressions for each control variable and one

regression where we include all control variables, excluding the dividend price ratio to avoid

singularity issues.17

We test whether any of the control variables yield better predictions compared to the

model with also a liquidity term. In this set-up we first estimate a model where expected

excess returns are only driven by a constant and one of the control variables. Second, we

estimate a model where expected excess returns are driven by a constant, one of the control

variables, and a liquidity variable. We then check if the added liquidity variable increases

performance, compared to the first case.

The results are presented in Table 2.4. Columns (1) - (3) show the SR and break-even

transaction costs if the model consists of a constant and one control variables. Columns (4)

15They investigate the dividend price ratio, dividend yield, earnings price ratio, dividend payout ratio, stock

variance, cross-sectional premium, book-to-market ratio, net equity expansion, percent equity issuing, term-

spread, default yield spread, default return spread, inflation, and investment to capital ratio.
16We exclude percent equity issuing and investment to capital ratio because they are not publicly available.

All available data are from Amit Goyal’s website http://www.hec.unil.ch/agoyal/.
17We include the dividend yield because it shows the highest SR on an individual basis (see Table 2.4).

Furthermore, replacing the dividend yield by the dividend price ratio gives similar results.
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- (8) show the SR when liquidity is added to predict returns. When considering the first

10 control variables, the highest SR in column (1) of Panel A is 0.21, which is lower than

the highest SR of a strategy conditioning only on liquidity (0.38 from the Zeros strategy

in Table 3). Comparing column (7) with column (1), shows that adding the Zeros measure

always increases the SR. The only exception is when we add Zeros to a strategy consisting

of all control variables, in which case the SR only improves in Panel B. The Zeros measure

is followed by the ILR measure, which increases the SR in 6 out of 12 cases. In Panel B

the best control variable also underperforms the best liquidity strategy, the SR is 0.28 versus

0.51. The last rows of both Panel A and B show the performance of the net equity expansion

variable (ntis). In contrast to the other 10 controls, this variable performs really well with an

SR of 0.42 in both panels. According to Baker and Stein (2004) this variable is related to

liquidity. Hence, this supports our idea that liquidity has predictive ability for returns.
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Table 2.4 Performance of dynamic asset allocation strategies for single control variables

The table presents dynamic strategy results for the different control variables. Columns (1) - (3) show results

of strategies that condition on a constant and only one of the 11 control variables: dividend price ratio (d/p),

dividend yield (d/y), earnings price ratio (e/p), dividend payout ratio (d/e), stock variance (svar), book-to-

market ratio (b/m), term-spread (tms), default yield spread (dfy), default return spread (dfr), inflation (infl), and

net equity expansion (ntis). The last strategy (all) contains all control variables, except the dividend price ratio.

Columns (4) - (8) show Sharpe ratios of strategies that condition both on a constant, one control variable, and

one liquidity variable. The dynamic asset allocation strategies are based on a mean-variance framework where

the investor maximizes the conditional expected return subject to a target conditional volatility (σ∗
s = 10%).

The return predictions of the risky assets in Panel A are based on a 10-year rolling window and in Panel B are

based on the average prediction of a 5, 10, and 20 year rolling window. The weights of the risky assets are not

restricted. The sample period is January 1947 to December 2008, and the strategies start trading in January

1967. All numbers are annual, except for the break-even costs τ1 and τA that are reported in basis points per

trade. τ1 shows the break-even costs under the assumption that all assets have the same transaction costs. τA
shows the break-even costs in terms of large firms, whereby the liquidity differences between small and large

firms are taken into account.

Without liquidity With liquidity

SR τ1 τA ILR Eff. tick Roll Zeros High-low

Panel A: 10 year window

d/p 0.13 4.7 2.2 0.21 −0.12 −0.10 0.19 −0.22
d/y 0.19 7.1 3.3 0.23 −0.11 −0.06 0.21 −0.14
e/p 0.08 3.0 1.4 0.15 0.06 −0.13 0.26 −0.23
d/e 0.14 5.1 2.3 0.16 −0.05 −0.06 0.42 −0.20
svar 0.04 1.3 0.6 0.16 0.06 −0.09 0.22 −0.30
b/m 0.02 0.9 0.4 0.08 0.04 −0.13 0.25 −0.14
tms 0.21 6.9 3.2 0.11 −0.12 −0.08 0.36 −0.26
dfy 0.21 7.1 3.3 0.18 0.04 −0.00 0.26 −0.11
dfr 0.17 2.9 1.3 0.17 −0.05 −0.00 0.39 −0.12
infl 0.11 2.3 1.1 0.06 −0.03 −0.04 0.37 −0.17
ntis 0.42 14.5 6.7 0.22 −0.01 0.14 0.47 −0.02
all 0.30 4.6 2.2 0.27 −0.05 0.02 0.21 −0.25

Panel B: Combination of windows

d/p 0.19 6.7 3.1 0.20 −0.13 −0.08 0.42 −0.18
d/y 0.28 9.5 4.4 0.28 −0.05 −0.02 0.43 −0.10
e/p 0.15 5.0 2.3 0.29 0.07 −0.07 0.44 −0.21
d/e 0.09 3.6 1.7 0.33 −0.05 0.06 0.54 −0.16
svar 0.06 1.9 0.9 0.27 −0.04 0.03 0.34 −0.24
b/m 0.07 2.7 1.3 0.16 −0.04 −0.12 0.47 −0.12
tms 0.18 5.8 2.7 0.29 −0.07 0.03 0.45 −0.20
dfy 0.26 8.3 3.8 0.22 −0.03 0.06 0.44 −0.07
dfr 0.15 2.5 1.2 0.29 −0.11 0.07 0.46 −0.07
infl 0.14 3.2 1.5 0.24 −0.11 0.06 0.47 −0.10
ntis 0.42 13.6 6.2 0.40 −0.03 0.24 0.62 −0.02
all 0.25 3.6 1.7 0.21 0.10 −0.01 0.30 −0.26

To summarize, the addition of alternative return predictors shows that the results are

not driven by an omitted variable bias. When we condition only on one individual control

variable, we do not find a strategy that gets close to the best liquidity strategy in terms of SR.
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Furthermore, the Zeros liquidity measure always increases the performance of a strategy that

conditions on one control variable.

2.4.3 Cross-sectional predictors

We extend the analysis in the previous section with cross-sectional predictors, i.e. the three

Fama-French factors and the Carhart momentum factor. Fama and French (1993) and Carhart

(1997) show that these factors can explain cross-sectional return differences. The data are

from Wharton Research Database Services (WRDS).

In line with Equation (2.4), we get:

Et [rk,t+1 − rf,t] = β0,t + β1,tLIQk,t + β2,tLIQk,t−1 +

M∑

n=1

κm,thm,t,

where LIQk,t is the liquidity of asset k at time t and hm,t are the m = 1, 2, . . . ,M control

variables: excess market return, Small-minus-Big, High-minus-Low, and momentum. Table

2.5 shows the results of the strategies when conditioning on only a constant and one control

variable and when conditioning on a constant, a control variable, and a liquidity variable.

The SR of the excess market return strategy in column (1) of Panel A is 0.41, which is

higher than the SR of the Zeros strategy. When we include all four control variables in one

strategy, the SR is 0.47. All Sharpe ratios increase when we add the Zeros liquidity measure

in Column (7). In other words, the Zeros liquidity measure contains relevant information

that increases the quality of the return predictions. The cross-sectional predictors in Panel B

do not outperform the Zeros strategy in terms of SR. In addition the SR of the “all strategy”

increases when we add the Zeros liquidity measure.
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Table 2.5 Performance of dynamic asset allocation strategies for single cross-sectional control variables

The table presents dynamic strategy results for the different control variables. Columns (1) - (3) show results

of strategies that condition on a constant and only one of the 4 cross-sectional control variables: excess market

return (Mkt-Rf), Small-minus-Big (SMB), High-minus-Low (HML), and momentum (Mom). The last strategy

(all) contains all control variables. Columns (4) - (8) show Sharpe ratios of strategies that condition both on a

constant, one control variable, and one liquidity variable. The dynamic asset allocation strategies are based on

a mean-variance framework where the investor maximizes the conditional expected return subject to a target

conditional volatility (σ∗
s = 10%). The return predictions of the risky assets in Panel A are based on a 10-year

rolling window and in Panel B are based on the average prediction of a 5, 10, and 20 year rolling window.

The weights of the risky assets are not restricted. The sample period is January 1947 to December 2008, and

the strategies start trading in January 1967. All numbers are annual, except for the break-even costs τ1 and τA
that are reported in basis points per trade. τ1 shows the break-even costs under the assumption that all assets

have the same transaction costs. τA shows the break-even costs in terms of large firms, whereby the liquidity

differences between small and large firms are taken into account. If the excess return of a strategy is negative

we do not compute break-even transaction costs and report the symbol “-”.

Without liquidity With liquidity

SR τ1 τA ILR Eff. tick Roll Zeros High-low

Panel A: 10 year window

Mkt-Rf 0.41 7.4 3.4 0.32 0.20 0.04 0.57 −0.13
SMB 0.21 4.2 1.9 0.13 −0.03 −0.02 0.37 −0.22
HML 0.08 1.8 0.8 0.18 −0.12 −0.10 0.37 −0.20
Mom 0.34 6.9 3.2 0.11 −0.05 0.03 0.47 −0.14
all 0.47 6.0 2.8 0.31 0.20 0.11 0.59 −0.15

Panel B: Combination of windows

Mkt-Rf 0.38 7.1 3.2 0.36 0.12 0.16 0.72 −0.01
SMB 0.15 3.2 1.4 0.24 −0.07 0.09 0.50 −0.13
HML −0.03 – – 0.36 −0.16 0.01 0.48 −0.10
Mom 0.28 5.8 2.7 0.25 −0.07 0.13 0.55 −0.08
all 0.37 5.0 2.3 0.34 0.14 0.22 0.68 −0.03

2.4.4 Risk adjusted returns

Until now, we have compared the different liquidity measures based on excess returns. It

is possible that some of the strategies load more on risk than others, and therefore achieve

higher returns. In this section we adjust the returns of the strategies for their exposure to

the three Fama-French factors, the Carhart Momentum factor, and the Pastor and Stambaugh

liquidity factor. Then, we compare the liquidity strategies based on alpha.

The methodology to compute alphas is similar to Brennan, Chordia, and Subrahmanyam

(1998), Chordia, Subrahmanyam, and Anshuman (2001b), and Ben-Rephael, Kadan, and

Wohl (2010). In the first step we estimate the sensitivity (βi) of the strategy returns to each

risk factor:

rs,t − rf,t = αs,t +
∑

i

βi
s,tF

i
t + εs,t,
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where rs,t − rf,t is the excess return at time t of strategy s, αs,t is the risk adjusted return,

βi
s,t is the sensitivity to risk factor i, and F i

t are the risk factors. The factor loadings are

estimated over the preceding 60 months: t − 60 to t − 1. Next, we calculate the alpha as

the excess return of the strategy s in month t minus the just estimated loadings on the risk

factors multiplied with the realized returns in month t on the risk factors:

αs,t = rs,t − rf,t − β̂MKT
s,t rMKT,t − β̂SMB

s,t rSMB,t − β̂HML
s,t rHML,t − β̂UMD

s,t rUMD,t − β̂LIQ
s,t rLIQ,t. (2.5)

Table 2.6 shows the risk-adjusted results of all liquidity strategies. In both Panel A and B

the alpha of the Zeros strategy is the highest, α = 5.79% and α = 7.01% respectively. The

Zeros strategy is followed by the ILR strategy with an alpha of 1.64% in Panel A and 3.36%

in Panel B. Also both these alphas are significantly different from zero. The Effective Tick,

Roll, and High-Low strategy have alphas that are either zero or negative.

Table 2.6 Risk-adjusted results

The table presents the risk-adjusted results for the different liquidity strategies. The dynamic asset allocation

strategies are based on a mean-variance framework where the investor maximizes the conditional expected

return subject to a target conditional volatility (σ∗
s = 10%). The return predictions of the risky assets in Panel

A are based on a 10-year rolling window and in Panel B are based on the average prediction of a 5, 10, and

20 year rolling window. The weights of the risky assets are not restricted. The sample period is January 1947

to December 2008, and the strategies start trading in January 1967. The liquidity measures are: ILR (Amihud,

2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond et al., 1999),

and High-Low (Corwin and Schultz, 2012). We calculate the alpha as the excess return of the strategy minus

the estimated loadings on the risk factors multiplied with the realized returns on the risk factors, see Equation

2.5 on page 35. The sensitivity of the strategy returns to each risk factor is estimated over the preceding 60

months. The risk factors that we take into account are: the excess market return, the SMB factor, the HML

factor, the Carhart (1997) momentum factor, and the Pástor and Stambaugh (2003) traded liquidity factor. All

numbers are annualized.

Alpha Volatility t-stat

Panel A: 10 year window

ILR 1.64% 12.94% 2.65
Eff. tick −1.14% 11.80% −2.01
Roll −0.75% 12.47% −1.25
Zeros 5.79% 12.72% 9.50
High-low −3.58% 12.62% −5.92

Panel B: Combination of windows

ILR 3.36% 12.48% 5.62
Eff. tick −2.12% 12.40% −3.56
Roll 0.70% 12.43% 1.17
Zeros 7.01% 12.63% 11.59
High-low −2.98% 12.72% −4.90
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The alphas of the Zeros and ILR strategies are higher than the excess returns in Table 2.3,

which implies that these strategies do not load on these risk factors. In the end, the ranking

of the strategies remains the same: Zeros shows the best performance, followed by the ILR

strategy.

2.5 Why Zeros performs best?

In all previous analyses we find that the Zeros strategy outperforms other liquidity strategies.

In this section we examine why the liquidity timing strategy based on the Zeros measure

outperforms the strategies using other liquidity measures.

2.5.1 Performance conditional on market returns

To get a better understanding of the differences in performance between the liquidity strate-

gies, we investigate how the strategies perform in extreme market conditions. We sort the

market returns of the past 50 years and condition on particular quantiles of their empirical

distribution. Table 2.7 shows the performance of the liquidity strategies conditional on the

worst or best x% market returns. In both Panel A and B, only the Zeros strategy achieves

positive returns in all cases. This implies that even if the market is decreasing, the Zeros

strategy goes long and short in the right assets and makes a profit. In contrast, the ILR

strategy shows negative performance when the market is decreasing but shows larger profits

when the market is going up. Concluding, the Zeros measure outperforms the other liquidity

strategies because it is the only strategy that achieves positive performance in both bull and

bear markets.
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Table 2.7 Performance of liquidity strategy conditional on market returns

The table presents the monthly return performance of the dynamic asset allocation strategies conditional on

a particular quantile of the market returns empirical distribution. We obtain the market returns empirical dis-

tribution by sorting the market returns of the past 50 years. We investigate the performance of the liquidity

strategies for the months where the market returns belong to the top and bottom quantiles of their empirical

distribution. All presented numbers are monthly.

Bottom 1% Bottom 5% Bottom 10% Top 10% Top 5% Top 1%

Panel A: 10 year window

ILR −3.18% −2.22% −0.94% 0.83% 2.20% 3.27%
Eff. tick −0.54% −1.32% −0.42% 0.36% 0.35% 0.68%
Roll −3.09% −2.09% −0.08% 0.40% 0.77% 0.49%
Zeros 1.04% 0.26% 0.70% 0.54% 1.29% 2.30%
High-low −1.97% −0.29% 0.30% 0.58% 0.78% 0.57%

Panel B: Combination of windows

ILR −1.35% −0.79% −0.42% 1.00% 1.64% 2.14%
Eff. tick −0.02% −1.59% −0.72% 0.41% 0.20% −0.13%
Roll −2.67% −1.50% 0.18% 0.21% 0.63% 0.46%
Zeros 2.50% 1.22% 1.11% 0.56% 1.14% 1.76%
High-low −1.43% −0.12% 0.42% 0.47% 0.96% 1.45%

2.5.2 Quality of predicted returns

Jagannathan and Ma (2003) show that restricting the weights in an asset allocation problem

to be nonnegative, reduces the estimation error in the return prediction parameters. Hence,

nonnegativity restrictions should improve the quality of the return predictions, which will

increase the performance of the optimal portfolios. The rationale behind improved prediction

quality due to nonnegativity constraints is that it has similar effects as shrinking the return

predictions. However, if the quality of the predictions is already good and cannot simply

be improved by shrinkage, the strategy performance will deteriorate when restrictions are

imposed. Thus, by imposing the weights in the asset allocation to be nonnegative, we expect

to find that shrinkage effects improve strategy performance based on return predictions of

low quality and deteriorate strategy performance using predictions of high quality.

The results in Table 2.8 show that imposing nonnegativity constraints on the asset weights

lead to higher excess returns, lower return volatility, and higher SRs for all strategies, except

the Zeros strategy. This implies that the quality of the underlying return predictions is im-

proved for all strategies, except the Zeros strategy. Possibly, the quality of Zeros’ return

predictions was already high and shrinkage lowers the informational quality. Combining

these results with the findings in the previous section, we can say that the positions of the
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Zeros strategy are often right and the strategy is constrained when introducing short sell-

ing restrictions. Although the Zeros strategy no longer shows the best performance when

weights are restricted to be positive, it is actually a sign of its ability to long and short the

right assets in the unrestricted case.

Instead of restricting the weights of individual assets, DeMiguel, Garlappi, Nogales, and

Uppal (2009a) propose to constrain the norm of the asset-weight vector. This generalization

nests as special case the approach of Jagannathan and Ma (2003) but at the same time allows

for more flexibility. We find qualitatively similar results when we restrict the weights using

norm restrictions instead of short-sale restrictions.18

Table 2.8 Performance of dynamic asset allocation strategies with nonnegative weights

The table presents dynamic strategy results for the different liquidity measures. The dynamic asset allocation

strategies are based on a mean-variance framework where the investor maximizes the conditional expected

return subject to a target conditional volatility (σ∗
s = 10%). The return predictions of the risky assets in Panel

A are based on a 10-year rolling window and in Panel B are based on the average prediction of a 5, 10, and 20

year rolling window. The weights of the risky assets are restricted to be between 0 < w < 1. The sample period

is January 1947 to December 2008, and the strategies start trading in January 1967. The liquidity measures are:

ILR (Amihud, 2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond

et al., 1999), and High-Low (Corwin and Schultz, 2012). All numbers are annual, except for the break-even

costs τ1 and τA that are reported in basis points per trade. The switching fee is the maximum performance fee

a risk-averse investor is willing to pay to switch from one strategy to another. It is expressed in annual basis

points and is computed based on a relative risk aversion parameter of 5. τ1 shows the break-even costs under

the assumption that all assets have the same transaction costs. τA shows the break-even costs in terms of large

firms, whereby the liquidity differences between small and large firms are taken into account.

Switching fee

SR ILR Eff. tick Roll Zeros τ1 τA Excess return Volatility

Panel A: 10 year window

ILR 0.35 42.2 16.9 3.89% 11.03%
Eff. tick 0.24 −109.7 30.0 12.2 2.53% 10.54%
Roll 0.26 −92.8 17.1 29.5 12.1 2.80% 10.75%
Zeros 0.26 −91.9 18.3 1.2 33.4 14.0 2.78% 10.69%
High-low 0.27 −84.4 25.5 7.5 7.0 31.1 13.8 2.83% 10.63%

Panel B: Combination of windows

ILR 0.34 40.7 15.9 3.74% 10.87%
Eff. tick 0.24 −97.5 30.1 12.3 2.57% 10.49%
Roll 0.28 −69.4 27.7 32.0 13.0 2.95% 10.72%
Zeros 0.29 −50.6 47.3 18.8 35.6 14.6 3.14% 10.69%
High-low 0.29 −57.2 40.1 11.2 −7.5 33.1 14.1 3.06% 10.69%

18We do not present these results to conserve space, but they are available from the authors upon request.
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2.6 Robustness

2.6.1 Benchmarks

In this section we show whether the liquidity timing strategies are related to other timing

strategies, which we refer to as benchmarks. The first group of benchmarks predicts returns

by conditioning on past return information: (i) the historical average return (Prevailing mean

strategy) and (ii) the historical average return and a lagged return term (Lagged return strat-

egy). The second group of benchmarks consists of an equally weighted, a volatility timing,

and a minimum variance strategy.

Some of the benchmarks that we use are related to existing literature. The prevailing

mean model is used in Welch and Goyal (2008) and Campbell and Thompson (2008). A

simple extension to the prevailing mean model is the addition of a lagged return term. If

monthly returns are correlated over time this term would improve the quality of return pre-

dictions. Both benchmarks closely follow the methodology of the liquidity strategies, only

the expression in Equation (2.2) does not contain liquidity variables.

The benchmarks in the second group obtain weights using a different optimization prob-

lem than in Equation (2.3). The equally weighted strategy simply gives all risky assets the

same weight. Hence, this strategy is long-only and closely resembles the market portfolio.

DeMiguel, Garlappi, and Uppal (2009b) show that sample-based mean-variance models have

difficulties outperforming such a naive 1/N portfolio.

The second is a volatility timing strategy, similar to Fleming, Kirby, and Ostdiek (2001).

This strategy minimizes the portfolio variance, subject to an ex-ante target portfolio return.

To eliminate possible predictive power from the return predictions, we set these predictions

equal to a constant, i.e. the sample average return of the risky assets. This ensures that

the variation in investment weights of this strategy is fully determined by changes in the

conditional covariance matrix. Note that we introduce a look-ahead bias by using the average

return over the entire sample, which should improve the performance of this benchmark. The

last benchmark is a minimum variance strategy. Similar to the volatility timing strategy, the

asset weights depend only on the conditional covariance matrix.

Table 2.A.3 in the Appendix shows that the SR of the benchmarks is lower than the SR

of the best performing liquidity strategies in Table 2.3. The prevailing mean model has a
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low SR, which is in contrast to the findings of Welch and Goyal (2008). This difference

can possibly be explained by the differences in data. We use a shorter data sample and we

predict the returns of size portfolios, not of the market portfolio. Furthermore, we make use

of a rolling window approach whereas they use an expanding window. The addition of a

lagged return term leads to a higher SR in Panels A and B.

Panel C shows the performance of the three strategies that obtain investment weights in

a different way. The good performance of the equally weighted strategy is in line with the

findings in DeMiguel, Garlappi, and Uppal (2009b). Its SR is 0.28 and its turnover is lower

than that of the other strategies, as reflected by the high break-even transaction costs. The

results of the volatility timing strategy are worse than the liquidity timing strategies. The

last row indicates that minimizing volatility also gives lower performance, hence in the main

analysis we are really improving on the quality of the return predictions and are not timing

volatility.

2.6.2 Sensitivity analysis

The use of different performance criteria can lead to different results. To test the robustness

of the results, we compute three alternative performance measures: the modified Sharpe

ratio (Gregoriou and Gueyie, 2003; Eling and Schuhmacher, 2007), the Manipulation-proof

Performance Measure (MPPM) (Goetzmann et al., 2007), and maximum drawdown (MDD).

The modified Sharpe ratio divides the realized return by Value-at-Risk modified for skewness

and kurtosis, as compared to the variance as in the Sharpe ratio ModSRs =
rs−rf

MVARs
, where

MVARs = −[rs+σs(zα+(z2α−1)Skews

6
+(z3α−3zα)

Kurts
24

− (2z3α−5zα)
Skew2

36
)] and zα =

−1.96. Goetzmann et al. (2007) show that performance measures of active management can

be manipulated by managers. They propose a manipulation-proof measure, which accounts

for non-linear payoffs in the return-risk relation. The measure is robust to the distribution

of portfolio returns and does not require the assumption of a particular utility function to

rank portfolios, like the performance fee. The third measure, maximum drawdown, is the

maximum cumulative loss from the strategys peak wealth (cumulated return) to the following

trough: MDDs = min(X1, X2, . . . , XT ), where Xi =
∑i

j=1 rk+j, 1 ≤ i ≤ T and 1 ≤ k ≤
T . Table 2.A.4 in the Appendix shows that the Zeros measure outperforms all the other
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strategies using the alternative evaluation criteria, e.g. the Zeros maximum drawdown is

8− 16% smaller than ILR.

All previous results are based on target conditional volatility σ∗
s = 10% and Relative Risk

Aversion (RRA) δ = 5. Tables 2.A.5 and 2.A.6 in the Appendix provide some sensitivity

analysis. Table 2.A.5 in the Appendix shows the results for target conditional volatility

equal to 15% and 20%. The SRs decrease slightly but the ranking of the strategies remains

the same. The switching fees between the strategies are larger, in absolute value, because the

strategies are more volatile, which a risk-averse investor dislikes.

The sensitivity results of the RRA parameter δ are also presented in Table 2.A.6 in the

Appendix. The RRA is set to δ = 1 in Panel A and δ = 10 in Panel B. Similar RRA values

are used in Fleming, Kirby, and Ostdiek (2001) and Della-Corte, Sarno, and Tsiakas (2009).

The target conditional volatility is σ∗
s = 10% as in the main analysis.

When an investor is less risk averse, Panel A, she is willing to pay a higher switching

fee to switch to the high return Zeros strategy. For example, the switching fee from the Roll

strategy to the Zeros strategy in column (7) increases to 706.9 basis points per year from 480

in Table 2.3. When an investor is more risk averse, Panel B, she favors less volatile strategies.

The ranking based on economic value remains the same: Zeros performs the best, followed

by ILR, Roll, Effective Tick, and High-Low.

2.6.3 Bias adjustment

It is possible that market microstructure noise affects the analysis of observed returns, see

Asparouhova, Bessembinder, and Kalcheva (2010, 2012) . They argue that “Temporary

deviations of trade prices from fundamental values impart bias to estimates of mean returns

to individual securities, to differences in mean returns across (equally weighted) portfolios,

and to parameters estimated in return regressions.” To correct for this bias we can either

weigh returns by their prior gross return (return-weighted) or by their prior firm value (value-

weighted). The return-weighted approach places equal weights on all securities while the

value-weighted approach gives more weight to large firms. Since our stocks are equally

weighted within the portfolios, the natural choice is the return-weighted approach. Table

2.A.7 in the Appendix shows that the main results remain unchanged when stocks within the

portfolios are return weighted instead of equally weighted.
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2.7 Conclusion

In this paper we examine which proxy a liquidity timer should use. We build on the findings

of Amihud (2002), Jones (2002), Baker and Stein (2004), and Bekaert, Harvey, and Lundblad

(2007) who show that liquidity is predictable and that liquidity significantly predicts future

excess returns. We investigate liquidity timing by measuring the economic value of liquidity

forecasts from different liquidity proxies for investors, who engage in short-horizon asset

allocation strategies. The following five low-frequency liquidity measures are considered

in our liquidity timing analysis: illiquidity ratio (ILR) (Amihud, 2002), Roll (Roll, 1984),

Effective Tick (Holden, 2009; Goyenko, Holden, and Trzcinka, 2009), Zeros (Lesmond,

Ogden, and Trzcinka, 1999), and High-Low (Corwin and Schultz, 2012).

In line with Cao, Chen, Liang, and Lo (2013), we find that liquidity timing leads to

tangible economic gains. The best performing strategy is based on the Zeros measure of

Lesmond, Ogden, and Trzcinka (1999). Its Sharpe ratio is 0.51, over the sample period

January 1947 - December 2008. The positive switching fees indicate that a risk-inverse

investor will pay a high performance fee to switch from a strategy based on the ILR, Roll,

Effective Tick, or High-Low measure to the Zeros strategy. The performance of the liquidity

strategies is not driven by an alternative return predictor that is correlated with liquidity.

Furthermore the performance of the strategies is not related to a certain subperiod and the

ranking based on economic value is robust to different specifications and parameter settings.

The Zeros measure outperforms the other liquidity measures due to its robustness. It

achieves positive performance even when the market is going down. The performance of

the Zeros measure decreases when restricting the asset allocation weights and shrinking the

return predictions. This implies that also the most extreme weights of the Zeros strategy are

based on return predictions that are in the right direction.

Our ranking based on economic value differs from the ranking of Goyenko, Holden, and

Trzcinka (2009), which is based on statistical criteria. They find that Effective Tick is good

in measuring effective and realized spread and ILR is good in measuring price impact. We

find that Zeros is the best proxy to use for liquidity timing in contrast to Effective Tick, which

seems not relevant for predicting excess returns. This implies that low frequency measures

that are a good proxy for high frequency transaction costs do not necessarily lead to the

highest economic value in a liquidity timing strategy.
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2.A Robustness results

Table 2.A.1 CRSP sample characteristics

The table shows the daily sample characteristics. Price is the stock price in $. Volume is daily trading dollar

volume in $ millions, Market cap. is the market capitalization in $ millions, Spread is the bid-ask spread, ask

price−bid price in $, Rel. Spread is Spread/((ask + bid)/2) in %, ILR is the illiquidity ratio |return|/dollar

volume for a million shares, Volatility is the annualized daily standard deviation of returns, turnover is the

annualized ration of volume/shares outstanding.

Price Volume Market cap. Spread Rel. spread ILR Volatility Turnover

Mean 31.0 9.65 2109 0.287 0.012 0.5471 24% 74%
Median 25.5 0.25 252 0.250 0.008 0.0189 16% 30%
25th 15.9 0.04 65 0.040 0.001 0.0007 7% 12%
75th 38.9 2.40 1010 0.375 0.017 0.1902 32% 78%
St. dev. 27.6 52.91 10332 0.518 0.013 12.1633 28% 168%

Table 2.A.2 Performance of dynamic asset allocation strategy based on LM1 liquidity measure

The table presents dynamic strategies performance for the LM1 liquidity measure (Liu, 2006). The dynamic

asset allocation strategies are based on a mean-variance framework where the investor maximizes the condi-

tional expected return subject to a target conditional volatility (σ∗
s = 10%). 10Y are the return predictions of

the risky assets based on a 10-year rolling window and Comb. are based on the average prediction of a 5, 10,

and 20 year rolling window. The weights of the risky assets are not restricted. The sample period is January

1947 to December 2008, and the strategies start trading in January 1967. All numbers are annualized, except

for the break-even costs τ1 and τA that are reported in basis points per trade. The switching fee is the maximum

performance fee a risk-averse investor is willing to pay to switch from one strategy to another. It is expressed in

annual basis points and is computed based on a relative risk aversion parameter of 5. τ1 shows the break-even

costs under the assumption that all assets have the same transaction costs. τA shows the break-even costs in

terms of large firms, whereby the liquidity differences between small and large firms are taken into account.

Switching fee

SR ILR Eff. tick Roll Zeros High-Low τ1 τA Excess return Volatility

10Y 0.41 337.7 547.5 530.2 50.6 687.2 4.3 2.0 4.64% 11.17%
Comb. 0.44 177.0 655.3 422.3 −87.9 632.6 4.8 2.2 5.25% 12.07%
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Table 2.A.3 Benchmark results

The table presents the performance of the benchmark strategies. These strategies do not condition on liquidity

information to obtain investment weights. The strategies in Panel A and B condition on past return information

using either a 10 year rolling window or a combination of three rolling windows, respectively. The strategies

in Panel C solve a different optimization problem to obtain the risky asset weights. The Equally weighted

strategy gives all available stocks the same weight. Volatility timing minimizes the conditional expected port-

folio variance subject to a target conditional return (µ∗
s = 10%), i.e. min

wt

{
σ2

s,t+1|1 = w′
tΣt+1|twt

}
s.t. µ∗

s =

w′
trk,t+1|t + (1 − w′

t1)rf,t. The “return predictions”
(
rk,t+1|t

)
are set equal to their unconditional averages,

such that the weights only depend on the conditional covariance matrix. The minimum variance portfolio finds

the portfolio with the lowest possible variance, again the investment weights only depend on the conditional

covariance matrix. The weights of the risky assets are in all strategies unrestricted and all strategies start trading

in January 1967.

SR τ1 τA Excess return Volatility

Panel A: 10 year window

Prevailing mean 0.15 6.2 2.8 1.74% 11.63%
Lagged return 0.18 2.0 0.9 2.19% 12.46%

Panel B: Combination of windows

Prevailing mean 0.06 3.2 1.5 0.76% 11.97%
Lagged return 0.17 2.0 0.9 2.07% 12.49%

Panel C: Alternative optimization function

Equally weighted 0.28 454.2 207.2 5.14% 18.30%
Volatility timing 0.16 15.1 6.8 1.88% 12.05%
Minimum variance 0.15 15.8 7.5 2.37% 15.36%
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Table 2.A.4 Alternative performance measures

The table presents additional performance measures of the dynamic strategy results for the different liquidity

measures. The dynamic asset allocation strategies are based on a mean-variance framework where the investor

maximizes the conditional expected return subject to a target conditional volatility (σ∗
s = 10%). The return

predictions of the risky assets are based either on a 10-year rolling window, Panel A, or on the average predic-

tion of a 5, 10, and 20 year rolling window, Panel B. The weights of the risky assets are not restricted. The

sample period is January 1947 to December 2008, and the strategies start trading in January 1967. The liquidity

measures are: ILR (Amihud, 2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Ze-

ros (Lesmond et al., 1999), and HighLow (Corwin and Schultz, 2012). The modified Sharpe ratio (Mod. SR) of

Gregoriou and Gueyie (2003) divides the expected return by Value-at-Risk modified for skewness and kurtosis.

The Manipulation-proof Performance Measure (MPPM) shows the strategies premium return after adjusting

for risk and can be interpreted as the annualized continuously compounded excess return certainty equivalent

of the strategy (Goetzmann et al., 2007). The maximum drawdown (MDD) is the maximum cumulative loss

from the strategys peak to the following trough.

Mod. SR MPPM MDD

Panel A: 10 year window

ILR 0.08 0.08% −52.6%
Eff. tick −0.03 −2.09% −74.9%
Roll −0.02 −1.86% −66.2%
Zeros 0.27 3.00% −36.6%
High-low −0.08 −3.38% −70.8%

Panel B: Combination of windows

ILR 0.17 1.76% −36.9%
Eff. tick −0.06 −2.95% −75.9%
Roll 0.04 −0.63% −52.2%
Zeros 0.42 4.47% −28.7%
High-low −0.05 −2.63% −57.6%
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Table 2.A.5 Different target conditional volatility

The table presents dynamic strategy results for the different liquidity measures. The dynamic asset allocation

strategies are based on a mean-variance framework where the investor maximizes the conditional expected

return subject to a target conditional volatility (σ∗
s ). In Panel A σ∗

s = 15% and in Panel B σ∗
s = 20%. The

return predictions of the risky assets are based either on a 10-year rolling window or on the average prediction

of a 5, 10, and 20 year rolling window. The weights of the risky assets are not restricted. The sample period is

January 1947 to December 2008, and the strategies start trading in January 1967. The liquidity measures are:

ILR (Amihud, 2002), Roll (Roll, 1984), Effective Tick (Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond

et al., 1999), and High-Low (Corwin and Schultz, 2012). All numbers are annual, except for the break-even

costs τ1 and τA that are reported in basis points per trade. The switching fee is the maximum performance fee

a risk-averse investor is willing to pay to switch from one strategy to another. It is expressed in annual basis

points and is computed based on a relative risk aversion parameter of 5. τ1 shows the break-even costs under

the assumption that all assets have the same transaction costs. τA shows the break-even costs in terms of large

firms, whereby the liquidity differences between small and large firms are taken into account. If the excess

return of a strategy is negative we do not compute break-even transaction costs and report the symbol “-”.

Switching fee

SR ILR Eff. tick Roll Zeros τ1 τA Excess return Volatility

Panel A: Target conditional volatility σ∗
s = 15%

10 year window

ILR 0.10 1.1 0.5 1.72% 17.81%
Eff. tick −0.10 −288.3 – – −1.67% 17.12%
Roll −0.07 −283.1 5.6 – – −1.25% 17.65%
Zeros 0.35 422.8 712.5 706.9 3.9 1.9 6.32% 18.08%
High-low −0.19 −530.6 −240.9 −247.5 −953.4 – – −3.43% 17.99%

Combination of windows

ILR 0.24 2.5 1.1 4.23% 17.31%
Eff. tick −0.16 −729.4 – – −2.83% 17.71%
Roll 0.03 −374.5 353.7 0.5 0.2 0.57% 17.54%
Zeros 0.49 386.2 1114.7 759.4 5.2 2.4 8.62% 17.69%
High-low −0.12 −711.6 18.5 −335.6 −1098.0 – – −2.28% 18.23%

Panel B: Target conditional volatility σ∗
s = 20%

10 year window

ILR 0.07 0.8 0.4 1.57% 23.75%
Eff. tick −0.13 −357.0 – – −2.88% 22.82%
Roll −0.10 −371.3 −13.6 – – −2.35% 23.53%
Zeros 0.32 552.7 912.2 925.3 3.6 1.7 7.73% 24.11%
High-low −0.22 −714.4 −355.8 −342.2 −1267.5 – – −5.25% 23.99%

Combination of windows

ILR 0.22 2.2 1.0 4.97% 23.08%
Eff. tick −0.19 −988.4 – – −4.44% 23.61%
Roll 0.00 −508.8 478.6 0.2 0.1 0.07% 23.38%
Zeros 0.46 497.8 1485.9 1007.3 4.8 2.3 10.89% 23.59%
High-low −0.15 −987.9 4.7 −476.5 −1486.9 – – −3.76% 24.31%
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Table 2.A.6 Different relative risk aversion parameter

The table presents the switching fees of the dynamic strategies based on the different liquidity measures. The

dynamic asset allocation strategies are based on a mean-variance framework where the investor maximizes the

conditional expected return subject to a target conditional volatility (σ∗
s = 10%). The weights of the risky

assets are not restricted. The sample period is January 1947 through December 2008, and the strategies start

trading in January 1967. The liquidity measures are: ILR (Amihud, 2002), Roll (Roll, 1984), Effective Tick

(Holden, 2009; Goyenko et al., 2009), Zeros (Lesmond et al., 1999), and High-Low (Corwin and Schultz,

2012). The switching fee is the maximum performance fee a risk-averse investor is willing to pay to switch

from one strategy to another. It is expressed in annual basis points and requires a value for the relative risk

aversion (RRA) parameter (in the main results it is set equal to 5). In Panel A the RRA is equal to 1 and in

Panel B it is equal to 10.

Switching fee

ILR Eff. tick Roll Zeros

Panel A: RRA parameter δ = 1

10 year window

ILR

Eff. tick −227.8
Roll −197.3 30.5
Zeros 296.0 523.9 493.6
High-low −344.5 −116.6 −146.9 −640.8

Combination of windows

ILR

Eff. tick −465.1
Roll −238.0 226.9
Zeros 276.6 742.0 514.9
High-low −425.9 39.3 −187.8 −703.1

Panel B: RRA parameter δ = 10

10 year window

ILR

Eff. tick −178.6
Roll −187.5 −7.5
Zeros 275.6 455.6 463.1
High-low −358.1 −177.7 −171.6 −633.8

Combination of windows

ILR

Eff. tick −494.1
Roll −254.1 239.1
Zeros 249.4 743.0 503.9
High-low −494.1 2.3 −240.0 −743.4
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Table 2.A.7 Strategy performance based on bias adjustment

This table shows the counterpart of the main results table. The only difference is that all individual stocks

are weighted (within the 10 size portfolios) by their previous month gross return, instead of equally weighted.

This adjustment is suggested in Asparouhova, Bessembinder, and Kalcheva (2013) to deal with noisy security

prices.

Switching fee

SR ILR Eff. Tick Roll Zeros τ1 τA Excess return Volatility

Panel A: 10 year window

ILR 0.08 0.9 0.4 0.96% 11.88%
Eff. tick 0.02 −31.6 0.3 0.2 0.27% 11.08%
Roll −0.02 −113.2 −80.6 – – −0.24% 11.73%
Zeros 0.33 286.4 318.7 400.3 3.7 1.8 3.98% 12.03%
High-low −0.15 −267.2 −234.4 −150.0 −553.1 – – −1.74% 11.78%

Panel B: Combination of windows

ILR 0.23 2.3 1.1 2.66% 11.61%
Eff. tick −0.08 −348.3 – – −0.87% 11.57%
Roll 0.11 −139.9 208.4 1.2 0.6 1.28% 11.69%
Zeros 0.45 247.3 595.8 387.2 4.8 2.3 5.27% 11.69%
High-low −0.08 −371.7 −23.4 −230.6 −619.0 – – −0.98% 11.83%



Chapter 3

Exploiting commodity momentum along

the futures curves

Based on de Groot, Karstanje, and Zhou (2014)

3.1 Introduction

Several studies document a cross-sectional momentum effect in commodity futures markets.

Erb and Harvey (2006) report a return of more than 10% per annum on a portfolio that longs

commodity futures with the highest prior 12-month returns and shorts the worst-performing

commodity futures. Miffre and Rallis (2007) extend this strategy for different ranking and

holding periods up to 12 months and find profitable results for almost all definitions. Shen,

Szakmary, and Sharma (2007) also report highly significant positive returns for holding pe-

riods up to nine months. In addition, Pirrong (2005) and Asness, Moskowitz, and Pedersen

(2009) investigate momentum in multiple asset classes including commodities. What these

commodity studies have in common is that only the nearest futures contracts are used for

both the construction and implementation of momentum signals. Often futures contracts of

various maturities are available for a given commodity. By considering only the nearest fu-

tures contract, the majority of investable deferred futures is not considered. This collection

of futures could potentially offer additional information and investment opportunities.1 We

1Various theories exist that try to explain the shape of the commodities futures curve. The oldest is the

Normal Backwardation theory of Keynes (1930). Cootner (1960, 1967) generalizes the Normal Backwardation

theory into the Generalized Hedging Pressure theory, while Kaldor (1939) and Working (1948, 1949) introduce

an alternative explanation named the Theory of Storage.
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propose alternative cross-sectional momentum strategies utilizing information further along

the futures curve. We demonstrate that these strategies perform significantly better than a

traditional momentum strategy.2

We identify four reasons why the futures curve potentially offers valuable information

when exploiting a momentum strategy: contracts further along the curve could (i) exhibit

more attractive roll yields, (ii) exhibit lower volatility, (iii) expand the opportunity set of our

investable universe and (iv) lower the turnover of the portfolios. We will elaborate on these

possible advantages in more detail. First, the excess returns of commodity futures can be

decomposed in spot and roll returns, where roll return is defined as the yield that an investor

captures when the futures price converges to the spot price as the futures contract comes

closer to expiration, assuming that the spot price does not change.3 The standard approach of

investing in the nearest contracts might not be optimal in capturing roll returns. Commodity

index providers have noticed the possible adverse effects of roll returns because long-only

investments suffer from negative roll returns when the futures curve is upward sloping, i.e. is

in contango. Miffre (2012) shows that long-only indices developed to minimize the exposure

of negative roll returns have performed better than traditional long-only indices which are

rolled based on the nearest contracts. Mouakhar and Roberge (2010) investigate the added

value of maximizing the roll yield of long-only investments compared to simply buying the

nearest contract in each of ten individual commodity futures. They find that buying the

futures contract with the largest expected roll yield, as measured by the lowest price slope

between two consecutive maturities, adds a return of on average 4.8% per year on top of

buying the nearest futures contract. So far, this strand of literature has focused on enhancing

traditional (long-only) indices and on stand-alone roll-yield strategies. However, it is not

clear whether there is also added value to achieve on top of active momentum strategies.

Second, besides the possibility of finding more attractive roll yields, Samuelson (1965)

argues that the volatility of futures returns decreases when the maturity of contracts increases.

An economic argument is that most supply and demand shocks occur at the front-end of the

2A related stream of literature investigates so-called time-series as opposed to cross-sectional momentum

strategies, see e.g. Szakmary et al. (2010), Moskowitz et al. (2012) and Baltas and Kosowski (2013). The main

difference is that these time-series strategies construct commodity portfolios with possibly more long than short

positions or vice versa, which implies that part of the strategy consists of commodity market timing. In our

research, we focus on the cross-sectional pure momentum strategies without any market timing.
3This is under the assumption that the shape of the futures curve does not change. Note that it is difficult

to ex-post decompose excess returns into spot and roll returns since both the level and the shape of the curve

might have changed.
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curve. Hence the prices of these front contracts react most heavily to news, while prices

further along the curve are influenced less as there is more time to overcome the shocks. Daal

et al. (2006) investigate this maturity effect empirically using an extensive futures dataset.

They find that the effect tends to be stronger in agricultural and energy commodities than

in financial futures. A possible implication of this maturity effect is that the volatility of a

momentum strategy could be reduced by investing in futures with a longer maturity.

Third, even for the same commodity, contracts with different maturities exhibit large

differences in returns and risks. For example in our data we find for lean hogs an average

annualized return of −6.2% for the first contract, compared to 4.8% for the fifth contract.

For WTI crude oil, we see an average annualized volatility of 33.2% for the front contract,

compared to 22.2% for the tenth contract. These findings illustrate that non-front contracts

behave differently from front contracts and essentially represent different investment op-

portunities. Therefore just like including more commodities into the universe, including

non-front contracts further down the futures curves is expected to expand the opportunity set

of our investable universe, which could potentially lead to more refined choices of contracts

and better investment results.

And fourth, an interesting feature of buying contracts further along the curve is that these

can potentially be kept longer in the portfolio. Contracts bought at the front-part of the

curve soon need to be traded to avoid delivery, even though the commodity is still found to

be attractive. On the other hand, as the trading volumes of contracts further on the curve

are lower on average, the costs for trading a contract at the back-end of the curve could

potentially be higher.

To exploit these four possible benefits, we propose three alternative momentum strategies

in which we integrate term-structure information when generating and implementing mo-

mentum signals. All three strategies aim to reduce volatility by trading further on the curve

and furthermore specifically aim to capture one or more of the above mentioned possible

advantages. As a benchmark we take a cross-sectional generic momentum strategy that each

month longs the commodities with the highest past 12-month returns (winner commodities)

and shorts those with the lowest past 12-month returns (loser commodities).

The first alternative strategy that we propose aims to take advantage of the first bene-

fit by maximizing the roll yield. More precisely, for the winner commodities we buy the

most backwardated contract on the futures curve and for the loser commodities we sell the
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most contangoed contract, where we only include futures contracts that expire within 12

months. We show that implementing this roll-yield strategy on top of a traditional long-

short momentum strategy generates significantly higher risk-adjusted returns, as the Sharpe

ratio increases by more than 30% to 0.96 compared to 0.73 for the traditional front-contract

momentum strategy. The improvement is both due to lower risk and higher returns.

The second strategy that we propose expands the traditional cross-sectional momentum

strategy with curve momentum information. For each commodity, we first select the contract

on the curve with the strongest and weakest momentum. We then cross-sectionally rank

the commodities according to the selected contracts and long (short) the contracts with the

highest (lowest) momentum. Besides enlarging our investment opportunity set, we implicitly

take roll information into account as, even when a parallel shift in the term structure occurs,

differences in roll return can cause differences in momentum returns along the curve.4 We

find that incorporating curve momentum leads to significantly higher returns (Sharpe ratios)

compared to a traditional momentum strategy, namely 14.48% (0.97) versus 11.43% (0.73).

Our third strategy aims for higher roll returns and a much lower turnover compared to a

traditional momentum strategy. We examine a strategy that remains invested in a particular

contract even though it might not have the most optimal roll yield anymore. Only when

the contract is about to expire or when the commodity switches from the long to the short

portfolio (or vice versa) we again determine the most optimal contract. We observe that

applying this strategy leads to a reduction in turnover of more than 50% compared to a

traditional momentum strategy.

To ensure that the excess returns are not absorbed by transaction costs, we examine the

added value that is created when the momentum strategies are actually implemented. Al-

though transaction costs in futures markets are considerably lower compared to stocks, the

turnover of momentum strategies is relatively high, which means that the impact of costs

could still be substantial. Therefore, we incorporate two different trading cost schemes based

on estimates of Szakmary, Shen, and Sharma (2010). Additionally, we contribute to the lit-

erature on commodity trading costs by proposing a third transaction cost scheme that links

transaction costs to liquidity.5 This ensures that transaction costs are higher for less liquid

contracts, a component not covered by existing transaction cost schemes. We find that for all

4Momentum returns are based on excess futures returns, which are a combination of changes in the spot

price and the roll yield.
5We thank an anonymous referee for this useful suggestion.
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alternative momentum strategies and under all assumptions for transaction costs, alternative

momentum strategies deliver higher returns and Sharpe ratios than for the generic momen-

tum strategy. For example, using conservative trading cost estimates of approximately 22

basis points per trade, we observe that net returns increase from an insignificant 3.98% per

annum for a traditional momentum strategy up to an economically and statistically signifi-

cant 8.42% annual return for our alternative momentum strategies.

We next investigate whether the stronger returns of the alternative momentum strategies

can be attributed to implicitly loading on the commodity market factor or on the carry strat-

egy. The carry strategy takes long positions in the most backwardated (or least contangoed)

commodities and short positions in the most contangoed (or least backwardated) commodi-

ties, see e.g. Erb and Harvey (2006) and Gorton and Rouwenhorst (2006). To examine this

we regress the returns of the alternative momentum strategies on possible explanatory factor

returns. We find economically and statistically significant alphas and therefore it is unlikely

that our results are driven by implicit loadings on the market or carry factor. Fuertes et al.

(2010) examine a double-sorted strategy of momentum and carry and find that buying the

backwardated winners and shorting the contangoed losers outperforms a single momentum

or carry strategy. Our results differ from this study as our alternative momentum strategies

have added value beyond the momentum and carry factors. To further strengthen the find-

ing that our approach adds value on top of well-known factors, we show that our proposed

alternatives can also be profitably applied on top of such a double-sort strategy.

Finally, we analyze whether the additional profits of the momentum strategies that incor-

porate term-structure information are a compensation for lower liquidity. Besides imposing

liquidity-dependent trading costs, we therefore perform a series of analyses to investigate

this hypothesis in more detail. First, we examine whether the additional profits are due to

investing in the back-end of the curve, where liquidity might be lowest. More specifically,

we reduce the maximum maturity of futures contracts from 12 to 6 months and conclude

that the additional profits are not driven by investing in futures contracts at the back-end of

the curve. Second, we examine the impact of liquidity on our results more directly, by eval-

uating the momentum strategies when excluding the least liquid futures contracts from our

universe. By using two types of liquidity measures, namely dollar trading volume and the

Amihud (2002) illiquidity measure, we observe that the additional profits remain large and

significant. Third, if we use a one-day implementation lag to ensure there is enough time to
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implement the trades, both gross and net performances remain similar. And fourth, we con-

clude that integrating term-structure information in momentum strategies also has substantial

added value from 2000 onward, when more investors participated in commodity markets and

overall liquidity was the largest. Hence, we conclude that it is unlikely that the additional

profits are a compensation for lower liquidity.

The remainder of this article is organized as follows. We start in Section 3.2 by describ-

ing the data and analyzing the futures risk and return characteristics. We describe the four

momentum strategies and the methodology to estimate transaction costs in Section 3.3. In

Section 3.4 we present our main results and the portfolio return regressions. In Section 3.5

we show the results of several liquidity analyses. Section 3.6 presents our conclusion.

3.2 Data

Our investment universe consists of the constituents of the Standard & Poors Goldman Sachs

Commodity Index (S&P GSCI) over the period January 1990 to September 2011.6 We start

with 18 commodity series at the beginning of our sample; all 24 series are available from

July 1997. The sample includes six energy commodities (Brent crude oil, West Texas Inter-

mediate crude oil, gasoil, heating oil, natural gas and RBOB gasoline); seven metals (gold,

silver, aluminum, copper, lead, nickel and zinc); four softs (cocoa, coffee, cotton, and sugar);

four grains (corn, soybeans, Chicago wheat and Kansas City wheat); and three meat com-

modities (feeder cattle, lean hogs and live cattle). We follow the S&P GSCI methodology

and use data from the futures primary exchange, as the futures contracts of some of these

commodities trade on multiple exchanges.7 Furthermore, we only examine the individual

futures contracts included in the S&P GSCI.8 The number of distinct contracts a year varies

per commodity; e.g. all the energy and industrial metal commodities have 12 distinct con-

tracts a year, while cotton and sugar only have four distinct contracts. In addition to the

6Before 1990 the number of futures contracts diminishes quite rapidly.
7The Brent crude oil, gasoil, cocoa, coffee, cotton, and sugar data are from the Intercontinental Exchange

(ICE); the West Texas Intermediate crude oil, heating oil, natural gas, and RBOB gasoline data are from the

New York Mercantile Exchange (NYMEX); the gold and silver data are from the Commodity Exchange, Inc.

(COMEX); the aluminum, copper, lead, nickel, and zinc data are from the London Metals Exchange (LME);

the corn, soybeans, and Chicago wheat data are from the Chicago Board of Trade (CBOT); the Kansas wheat

data are from the Kansas Board of Trade (KBT); and the feeder cattle, lean hogs, and live cattle data are from

the Chicago Mercantile Exchange (CME).
8See Table 1 in the 2013 S&P GSCI Methodology for the selected 2013 futures contracts

(http://www.spindices.com/documents/methodologies/methodology-sp-gsci.pdf).
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above selection criteria we follow Mouakhar and Roberge (2010) and only include futures

contracts in our analyses that expire within 12 months. For all individual contracts we collect

futures prices from Bloomberg. Consistent with a large body of commodity research, such

as Bessembinder (1992), Erb and Harvey (2006) and Miffre and Rallis (2007), we assume

that the investment is made on a fully-collateralized basis.9 In this case, the total monthly

return of the investor is the change in month-end settlement prices plus the risk-free interest

rate (e.g. the U.S. T-bill rate) earned from the deposit account. In our study, we focus on the

changes in settlement prices, which we refer to as excess returns similar to Gorton, Hayashi,

and Rouwenhorst (2013).

Table 3.1 reports the annualized excess returns, volatilities, average dollar trading vol-

umes and the Amihud illiquidity measure of all commodity futures over our sample period.

When we consider Panel A, we observe a large dispersion in average returns across com-

modities. For example, for the nearest contracts we find the lowest average return of −16.2%

per annum for natural gas and the highest return of 11.8% per annum for gasoline. This indi-

cates the potential benefits of correctly predicting which commodities to invest in. Moreover,

we also find large return differences along the futures curve, although these are somewhat

smaller on average. For example, for lean hogs we observe an annualized return of −6.2%

for the first contract and 4.8% for the fifth contract. These return differences support our

idea of enhancing a traditional momentum strategy by selecting the optimal contract on the

curve. From these numbers we can also conclude that contracts along the same futures curve

are not perfectly correlated with each other. Therefore, the inclusion of non-front contracts

into the investable universe is likely to expand the opportunity set of the strategies and lead

to better results.

9The advantage of assuming a fully-cash-collateralized investment is threefold. First, the investment process

is largely simplified as there will be no leveraged positions which require extra deposit in or withdrawal from

the margin account from time to time. Second, the calculation of the real-world return is fairly straight-forward,

and no longer depends on the assumption of the initial margin. Third, the investment results are then presented

in the most conservative manner, as strategy performances based on leverage are typically inflated compared to

the base case which is fully-cash-collateralized.



56 Exploiting commodity momentum along the futures curves

Table 3.1 Summary statistics

This table presents the annualized excess returns (Panel A), volatilities (Panel B), average monthly dollar

trading volumes (Panel C) and Amihud (2002) illiquidity measures (Panel D) of the 24 commodity futures

from the nearest contract (i.e. first contract) up to the furthest contract with a maximum maturity of 12 months.

The sample period is from January 1990 to September 2011. The trading volumes are computed as number of

contracts traded multiplied by contract size multiplied by contract price and are expressed in million dollars.

The Amihud (2002) illiquidity measure is computed as the monthly average of absolute daily return divided by

the daily dollar trading volume.

Xth nearest contract

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Panel A: Return

Energy

Brent crude oil 10.0% 11.4% 11.2% 10.6% 11.5% 11.4% 11.4% 14.6% 14.4% –

WTI crude oil 5.9% 8.6% 9.7% 10.0% 10.2% 10.4% 10.2% 10.0% 9.8% 9.5%

Gasoil 8.1% 8.0% 7.7% 8.6% 9.2% 8.3% 8.6% 10.5% 9.8% 9.3%

Heating oil 5.5% 6.7% 8.3% 9.1% 9.2% 9.3% 9.5% 9.5% 9.7% 9.8%

Natural gas 16.2% 8.0% 2.9% 1.3% 1.3% 0.3% 0.1% 1.4% 3.8% 4.9%

Gasoline 11.8% 11.7% 11.8% 12.1% 11.7% 11.7% 11.1% 9.3% 9.5% 9.6%

Metals

Gold 2.9% 2.9% 2.9% 2.8% – – – – – –

Silver 4.2% 4.6% 4.8% 4.9% – – – – – –

Aluminum 2.5% 0.2% 0.4% 0.1% 0.6% 0.7% 0.9% 1.2% 1.5% 1.6%

Copper 8.1% 10.4% 10.0% 10.5% 10.8% 11.0% 11.2% 11.3% 11.4% 11.5%

Lead 8.2% 10.3% 9.7% 9.8% 9.8% 9.8% 9.6% 10.2% 10.4% 12.3%

Nickel 7.9% 10.4% 10.2% 10.9% 11.3% 11.4% 11.5% 11.7% 11.7% 11.7%

Zinc 3.5% 0.1% 0.0% 0.5% 1.0% 1.4% 1.9% 2.2% 2.6% 0.4%

Softs

Cocoa 4.2% 2.6% 2.0% 1.6% – – – – – –

Coffee 3.8% 2.7% 2.7% 2.2% – – – – – –

Cotton 3.6% 1.1% 0.4% – – – – – – –

Sugar 4.6% 5.6% 5.5% – – – – – – –

Grains

Corn 6.7% 3.8% 2.6% 1.4% – – – – – –

Soybeans 1.9% 3.2% 2.1% 2.8% – – – – – –

Chicago wheat 8.3% 4.3% 2.0% 1.5% – – – – – –

Kansas wheat 2.1% 0.7% 1.3% 1.6% – – – – – –

Meats

Feeder cattle 2.0% 3.8% 4.4% 4.4% 4.2% 3.6% – – – –

Lean hogs 6.2% 4.5% 4.3% 4.3% 4.8% – – – – –

Live cattle 0.4% 3.4% 2.1% 2.3% 2.4% – – – – –

Panel B: Volatility

Energy

Brent crude oil 31.3% 29.4% 28.5% 27.3% 24.2% 23.5% 22.8% 23.1% 22.6% –

WTI crude oil 33.2% 30.9% 29.2% 27.8% 26.5% 25.4% 24.4% 23.5% 22.8% 22.2%

Gasoil 31.9% 30.2% 28.8% 27.5% 26.6% 25.1% 24.4% 24.0% 22.5% 22.1%

Continued on next page
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Xth nearest contract

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Heating oil 32.1% 30.3% 28.9% 27.6% 26.5% 25.4% 24.5% 23.8% 23.2% 22.7%

Natural gas 51.0% 43.6% 37.4% 33.7% 31.4% 29.2% 27.3% 25.6% 24.7% 24.0%

Gasoline 34.4% 31.1% 28.8% 27.3% 26.0% 25.0% 24.4% 24.4% 24.4% 23.4%

Metals

Gold 15.5% 15.5% 15.5% 15.4% – – – – – –

Silver 28.3% 28.2% 28.0% 27.9% – – – – – –

Aluminum 20.0% 19.7% 19.4% 19.1% 18.8% 18.6% 18.3% 18.1% 17.9% 17.6%

Copper 28.2% 27.9% 27.8% 27.7% 27.4% 27.2% 27.0% 26.7% 26.5% 26.3%

Lead 31.5% 30.8% 30.5% 30.2% 29.8% 29.5% 29.4% 29.2% 29.1% 29.7%

Nickel 37.9% 37.7% 37.4% 37.0% 36.4% 35.8% 35.3% 34.8% 34.4% 34.0%

Zinc 28.5% 28.2% 27.9% 27.6% 27.3% 27.1% 26.9% 26.7% 26.5% 24.7%

Softs

Cocoa 30.1% 29.1% 28.1% 27.3% – – – – – –

Coffee 38.5% 35.8% 34.0% 32.7% – – – – – –

Cotton 26.9% 25.0% 22.7% – – – – – – –

Sugar 31.6% 28.4% 25.6% – – – – – – –

Grains

Corn 25.4% 24.5% 23.1% 21.6% – – – – – –

Soybeans 23.5% 22.8% 21.9% 20.9% – – – – – –

Chicago wheat 27.6% 26.3% 24.5% 22.3% – – – – – –

Kansas wheat 26.9% 25.8% 24.6% 22.7% – – – – – –

Meats

Feeder cattle 13.0% 12.1% 11.0% 10.5% 10.0% 9.7% – – – –

Lean hogs 23.7% 20.2% 16.9% 14.7% 13.7% – – – – –

Live cattle 12.9% 10.5% 8.9% 8.1% 8.0% – – – – –

Panel C: Trading Volume (expressed in million dollars)

Energy

Brent crude oil 1505.7 641.7 324.7 211.9 151.4 113.2 97.9 86.1 65.2 –

WTI crude oil 5091.5 1734.0 780.3 435.2 295.9 218.0 164.9 139.8 112.0 89.6

Gasoil 854.4 344.2 172.7 107.4 79.0 59.5 43.4 41.3 34.0 24.7

Heating oil 943.5 331.4 171.1 104.8 73.2 55.8 40.6 31.8 20.8 14.5

Natural gas 1038.3 436.5 250.4 163.7 124.6 99.0 79.9 68.8 54.0 43.5

Gasoline 952.4 352.6 170.2 91.3 53.5 32.7 19.4 13.1 9.2 6.3

Metals

Gold 2830.1 113.9 38.4 22.4 – – – – – –

Silver 868.7 49.3 17.2 7.2 – – – – – –

Aluminum 553.2 521.9 174.6 86.6 71.5 57.0 46.6 40.8 29.5 30.6

Copper 676.8 626.2 190.1 112.5 86.4 67.3 49.9 54.3 43.2 37.7

Lead 77.0 52.5 18.9 11.4 8.8 6.6 7.5 7.5 5.7 4.8

Nickel 143.9 133.8 40.0 16.6 13.0 8.2 7.1 5.6 5.0 4.4

Zinc 195.9 176.8 52.5 23.2 24.6 18.4 11.2 11.4 6.8 6.7

Softs

Cocoa 96.8 24.1 22.1 4.1 – – – – – –

Coffee 317.7 70.9 22.1 9.4 – – – – – –

Continued on next page
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Xth nearest contract

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Cotton 246.7 75.7 28.9 – – – – – – –

Sugar 325.2 115.6 48.9 – – – – – – –

Grains

Corn 932.8 380.9 170.3 85.8 – – – – – –

Soybeans 1667.5 361.6 158.6 80.3 – – – – – –

Chicago wheat 509.7 158.3 61.5 29.7 – – – – – –

Kansas wheat 149.4 49.5 19.5 9.3 – – – – – –

Meats

Feeder cattle 82.3 17.9 8.6 3.7 1.3 0.6 – – – –

Lean hogs 161.9 59.2 26.3 12.0 5.6 – – – – –

Live cattle 315.5 130.9 55.3 23.7 7.3 – – – – –

Panel D: Amihud illiquidity measure (expressed in basis points per one-million-dollar trade)

Energy

Brent crude oil 0.9 5.5 18.7 37.1 71.0 149.3 120.2 155.3 229.3 –

WTI crude oil 0.6 1.5 1.5 3.6 3.2 12.3 13.0 23.4 38.5 87.8

Gasoil 1.3 4.1 18.3 45.2 95.6 137.0 192.4 159.3 305.2 243.0

Heating oil 4.4 4.2 6.6 8.1 13.8 37.3 82.3 122.1 172.9 295.5

Natural gas 5.8 7.2 8.8 16.3 21.5 25.8 36.2 48.4 60.6 85.5

Gasoline 2.6 3.8 6.0 19.6 70.3 159.9 341.6 409.9 555.6 777.8

Metals

Gold 6.5 43.0 105.5 159.4 – – – – – –

Silver 6.9 105.7 378.0 629.4 – – – – – –

Aluminum 3.1 5.0 8.5 9.8 9.7 17.1 18.6 21.5 40.6 35.1

Copper 1.8 2.9 5.0 10.9 9.2 11.2 21.9 20.4 24.0 31.0

Lead 25.8 32.4 70.4 124.4 124.7 214.3 238.5 231.4 246.2 245.5

Nickel 13.8 10.5 20.1 63.2 74.1 121.9 172.3 199.5 253.3 237.5

Zinc 13.8 19.4 18.7 39.3 48.3 86.9 154.8 143.4 224.5 159.0

Softs

Cocoa 56.7 55.1 99.2 433.7 – – – – – –

Coffee 22.7 46.9 72.5 140.6 – – – – – –

Cotton 21.2 17.8 36.5 – – – – – – –

Sugar 26.3 19.4 25.6 – – – – – – –

Grains

Corn 0.3 1.1 2.6 9.0 – – – – – –

Soybeans 0.5 8.3 14.9 68.5 – – – – – –

Chicago wheat 0.8 6.7 24.6 157.8 – – – – – –

Kansas wheat 1.5 6.5 65.8 364.5 – – – – – –

Meats

Feeder cattle 1.8 6.3 15.1 39.4 113.1 238.0 – – – –

Lean hogs 1.1 3.2 8.9 28.7 95.1 – – – – –

Live cattle 0.3 0.6 1.3 4.4 19.4 – – – – –
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Besides return differences we observe large differences in volatilities from Panel B of

Table 3.1. For WTI crude oil, we see an annualized volatility of 33.2% for the front contract,

compared to 22.2% for the tenth contract. In line with Samuelson (1965) we find that in

almost all cases, volatility decreases when the time to maturity increases. Hence, strategies

that trade in more distant contracts could potentially exhibit a lower volatility.

In Panel C we present average trading volume in million dollars, computed by multiply-

ing the number of contracts traded by the contract size, and then multiplying this by the price

in dollars.10 We observe large differences in this liquidity measure among commodities. For

example, the trading volume of crude oil is much higher than that of lead. In addition we

also observe large differences along the curve, as e.g. the first contract of Brent oil has an

average trading volume of 1, 506 million dollar, while that of the ninth contract is 65 million

dollar. That more distant futures are less often traded than nearby contracts confirms that

most investors use nearby contracts to take positions.

To give more insight in liquidity differences across different contracts, we also compute

the Amihud (2002) illiquidity measure, which measures the price impact of a trade. It is

computed as the monthly average of daily absolute return divided by dollar trading volume.

We multiply the measure with one million, so that Panel D shows the return impact in basis

points of a one-million-dollar trade. The results in Panel D are in line with the trading volume

results. In general, the Amihud measure increases further along the curve, i.e. a one-million-

dollar trade has a larger impact on more distant futures prices and hence those contracts are

less liquid. Across commodities there are also large differences, e.g. a one-million-dollar

trade in the first WTI crude oil contract impacts prices by 0.6 basis points on average, while

a trade of the same size in the first cocoa contract influences prices by 56.7 basis points.

Overall, the variation of average returns and volatilities along each commodity futures

curve indicate the potential added value of integrating term-structure information into a

generic momentum strategy. However, liquidity measures indicate that more distant con-

tracts are less often traded, so there will be a trade-off between the improvement in perfor-

mance and the increase in trading costs.

10The data for the number of contracts traded are from Bloomberg. For industrial metals these data are

available from around 2005. We therefore approximate dollar volume by deflating the volume in January

2005 back in time by 9.8% per annum, which is the average annual change in dollar volume of the available

commodity futures contracts from 1990 to 2004.
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3.3 Methodology

3.3.1 Constructing momentum strategies

To investigate commodity momentum strategies that integrate term-structure information,

we construct four different types of momentum portfolios. The first portfolio is a “generic

momentum” strategy that represents the traditional momentum strategy documented by Erb

and Harvey (2006). Each month-end, we rank all commodities cross-sectionally according

to the past 12-month returns of their nearest contracts. This portfolio takes long (short)

positions in the 50% of commodities with the highest (lowest) returns, using equal weights.11

We then compute the return of this portfolio in the following month.

Our first alternative strategy is an optimal-roll momentum portfolio, where we aim to

maximize the roll yield. Compared to the generic momentum strategy, we select the same

commodities for the long and short portfolios. However, this portfolio does not necessarily

invest only in the front contracts as is the case for the generic strategy. Instead, for the 50%

of commodities with the most attractive returns, we long the contract on the curve with the

largest price slope (the most backwardated or least contangoed). The slope of contract i is

defined as
f i−1
t − f i

t

f i
t (τi − τi−1)

, (3.1)

where f i
t is the futures price of contract i at time t with time to maturity τi and f i−1

t is the fu-

tures price of the adjacent contract with time to maturity τi−1.12 For the 50% of commodities

with the least attractive returns, we short the contract on the curve with the smallest slope

(the most contangoed or least backwardated).

The second alternative strategy is an “all-contracts momentum” portfolio, where we ex-

pand a traditional cross-sectional momentum strategy with curve momentum information.

11There seems to be little consistency in the literature on the construction of commodities portfolios. Both

Erb and Harvey (2006) and Gorton and Rouwenhorst (2006) construct top and bottom 50% portfolios. Miffre

and Rallis (2007) investigate the top/bottom 20%, while Shen et al. (2007) the top/bottom 33%. Unreported

results show that the returns of more concentrated portfolios go up. However, we simultaneously observe that

the volatility of these portfolios increase even more, which results in portfolios with lower Sharpe ratios. The

number of assets in commodity portfolios becomes very small once we move to the top and bottom 20%, as

the commodity-specific risk of the portfolios increases.
12To compute the slope corresponding to an investable first contract we extrapolate the futures curve using a

piecewise cubic interpolation method, see Fritsch and Carlson (1980). The advantage of this method is that it

preserves the shape of the data and respects monotonicity. This method ensures we can also invest in the most

nearby contract.
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For this portfolio, each month we compute the 12-month return of all contracts along the

curve for all commodities.13 We then select for each commodity the contract with the high-

est 12-month return and flag it as a candidate for the long portfolio. Likewise, we also select

for each commodity the contract with the lowest 12-month return and label it as a short can-

didate. After repeating this selection process for all commodities, we next rank all contracts

indicated as candidates for the long portfolio and long the 50% of commodities with the high-

est momentum. Similarly, we rank all short candidates and short the 50% of commodities

with the lowest momentum. What is different from the generic and optimal-roll strategies is

that this portfolio might take both long and short positions in different contracts of the same

commodity, a situation which might occur when there is a large dispersion in the momentum

values of the contracts for a particular commodity.

As portfolio turnover, and therefore trading costs, is relatively high for typical momentum

strategies, we in addition examine a third alternative momentum strategy, using a “low-

turnover roll momentum” portfolio. With this portfolio we still aim for a higher return due

to better roll positions, but with a much lower turnover compared to the other momentum

strategies. Contracts bought on the front-end of the curve regularly need to be traded, as

these contracts are the closest to expiration. Even if according to the strategy a commodity

remains in the portfolio, the position in its nearest contract still needs to be replaced (i.e.

rolled forward) after a short period of time. An advantage of buying contracts further along

the curve is that these could be kept in the portfolio for much longer. Compared to the

optimal-roll momentum strategy where each month we determine the contracts with the most

optimal slope, we now remain invested in the same contract unless it is about to expire, or

the commodity changes from the long to the short portfolio (or vice versa) based on its

front-contract momentum. In that case, we take a new position in the contract with the most

optimal slope. This way, we will not always have positions in the most optimal contracts and

therefore expect a lower gross return of this strategy compared to the standard optimal-roll

momentum strategy. However, due to a lower turnover, the expected trading costs are also

13In line with generic momentum, the 12-month return of the xth contract is based on the past returns of the

xth nearby contract
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lower. The impact on net return is therefore a trade-off between the expected reduction in

gross return and the lower trading costs.14

3.3.2 Incorporating transaction costs

Although transaction costs involved with commodity futures are relatively low (see e.g.

Locke and Venkatesh, 1997) and taking short positions is not more complex than taking

long positions, momentum strategies typically exhibit high turnover. We therefore also eval-

uate the returns of the momentum strategies when incorporating realistic trading costs. We

use three different transaction cost schemes: two are based on Szakmary et al. (2010) which

are labeled as standard and conservative, while we propose a third novel scheme that incor-

porates trading cost variation along the futures curve based on liquidity differences.

The standard transaction costs scheme consists of a fixed brokerage commission of USD

10 per contract and a bid-ask spread of one tick. Szakmary et al. (2010) estimate transaction

costs (TC) as a percentage of the notional contract value in month t:

TCt = [10 + (T icksize× CM)]/(Pricet × CM), (3.2)

where the tick size is measured in dollars, CM is the contract multiplier (i.e. the number of

units of the underlying commodity deliverable per contract) and Pricet is the price of the

contract in dollars at the end of month t.15 For conservative transaction costs, which might

reflect the actual costs of large-scale trading activity, the brokerage commission is assumed

to be USD 20 per contract and the bid-ask spread three ticks instead of one:

TCt = [20 + 3× (T icksize× CM)]/(Pricet × CM), (3.3)

Compared to the standard cost estimates, the conservative estimates assume a market impact

that is three times higher for trades in the same commodity futures contract, which is in line

with the findings of Marshall et al. (2012). They conclude that a more aggressive trader

14Due to the construction of the all-contracts momentum strategy there is no low-turnover parallel for this

strategy, as the contracts with the most extreme momentum are selected before, instead of after, the cross-

sectional comparison is made.
15The tick size defines the minimum price movement of a futures contract. It varies across different com-

modities and is specified in the contract specifications of each futures contract. We retrieved all tick size and

contract multiplier data from the futures exchange websites.
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who requires immediate liquidity exhibits costs on average three times higher compared to a

more patient trader who splits the futures trades over one hour. The standard and conservative

trading cost estimates could therefore also be interpreted as the costs associated with patient

and more aggressive trading styles respectively.

Front contracts are in general more liquid, which could potentially lead to lower trading

costs than contracts on the back end of the curve. Unfortunately there is little information

available on the relationship between trading costs and the time to maturity, as the academic

literature in this area is scarce. To bridge this gap, we propose a third methodology, where

we assume a linear relation between the Amihud illiquidity measure and transaction costs.

Each month we assume for each commodity that the most liquid contract (i.e. with the

lowest Amihud estimate) trades against the standard transaction costs while the least liquid

contract with the highest Amihud estimate trades against the conservative costs. This implies

that we assume that trading illiquid contracts is around three times more expensive. For the

intermediate contracts we assume that the costs increase proportionally to the increase in the

Amihud illiquidity measure. The implication of this trading costs scheme is that trading in

contracts further on the curve involves higher trading costs.

We condition trading costs on the Amihud illiquidity measure because of two reasons.

First, Marshall et al. (2012) find that the Amihud illiquidity measure has the largest correla-

tion with high-frequency liquidity benchmarks. Second, besides a negative relation between

trading volume and transaction costs, there is in general also a positive relation between

volatility and transaction costs.16 This implies that on the one hand estimated trading costs

for more distant futures are higher due to their lower trading volumes, while on the other

hand lower due to their lower volatility. Therefore, the Amihud illiquidity measure is highly

appropriate as it incorporates both volatility, in the form of absolute returns, and trading

volume.

16In equities the positive relation between volatility and transaction costs is well established. For example.

Chordia et al. (2001a) note it is well known that individual stock volatility is cross-sectionally associated with

higher [bid-ask] spreads (Benston and Hagerman (1974). In commodities this relation between volatility and

transaction costs is documented by Marshall et al. (2012). They only investigate front contracts and establish

this relation based on time variation of volatility and transaction costs over time, and not along the futures

curve.
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3.4 Results

3.4.1 Profitability of strategies including term-structure information

In our first empirical analysis we evaluate the momentum profits of the generic momentum

strategy and the strategies incorporating term-structure information. Panel A of Table 3.2

reports the average annualized gross returns and associated t-statistics, the volatilities and

the Sharpe ratios of the generic momentum strategy and the three alternative momentum

strategies. Furthermore, for all alternative strategies we show the Ledoit and Wolf (2008)

test statistic, which evaluates whether the Sharpe ratios of the alternative strategies are sig-

nificantly different from that of the generic momentum strategy. In this test we take into

account the possibility that strategy returns can be non-normal and auto-correlated. As the

distribution of this statistic is non-standard, the reported P-values are based on bootstrap re-

samples. In addition, the table also contains the maximum drawdown, the average maturity

of the contracts deployed by each strategy and the average single-counted and one-sided an-

nual turnover. This means that an annual turnover of 100% indicates that the long and short

portfolio is completely changed once a year.
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Table 3.2 Strategies performance − 12 months maturity bound

This table shows the performance of four cross-sectional commodity momentum strategies over the sample period January 1990 to Septem-

ber 2011. Panel A reports the gross annualized performance while Panel B, C and D report the net annualized performance based on respec-

tively standard, Amihud-based and conservative trading costs. “Generic momentum” ranks commodities according to the past 12-month

returns of the nearest contracts and longs (shorts) the 50% of commodities with the highest (lowest) returns. “Optimal-roll momentum”

also ranks commodities based on front-contract momentum, but longs (shorts) the contract with the most backwardated (most contangoed)

slope. “All-contracts momentum” first selects the contract on each commodity curve with the highest (lowest) 12-month returns and then

longs (shorts) the 50% of commodities with the highest (lowest) momentum. “Low-turnover roll momentum” compared to optimal-roll

momentum, which monthly determines the contracts with the most optimal slope, remains invested in the same contract unless it is about to

expire or the commodity changes position. All portfolios are equally weighted. The Ledoit and Wolf (2008) test (LW -statistic) evaluates

whether the Sharpe ratios of the alternative strategies are significantly different from that of the generic momentum strategy. The average

maturity of the contracts in portfolio is presented in months. The turnover figures presented in this table are single-counted and one-sided.

In addition the average single-trip costs of the transactions in basis points (bps) are shown.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 11.43% 13.05% 14.48% 12.31%
t-statistic 3.33 4.36 4.44 4.03
Volatility 15.65% 13.62% 14.86% 13.91%
Sharpe ratio 0.73 0.96 0.97 0.88
LW -statistic – 2.67 3.29 2.67
p-value – 0.01 0.00 0.01
Max. drawdown −23.70% −21.21% −21.57% −21.09%
Maturity (months) 1.50 5.01 3.85 4.22
Turnover 855% 756% 880% 402%

Panel B: Net returns assuming standard transaction costs

Return 8.43% 10.19% 11.27% 10.76%
t-statistic 2.45 3.40 3.44 3.51
Volatility 15.69% 13.65% 14.91% 13.95%
Sharpe ratio 0.54 0.75 0.76 0.77
LW -statistic – 2.55 3.06 4.14
p-value – 0.01 0.00 0.00
Max. drawdown −25.30% −22.74% −22.00% −21.96%
Avg. costs (bps) 8.10 8.56 8.20 8.71

Panel C: Net returns assuming Amihud-based transaction costs

Return 8.36% 9.01% 10.34% 10.32%
t-statistic 2.43 3.00 3.15 3.37
Volatility 15.70% 13.65% 14.94% 13.96%
Sharpe ratio 0.53 0.66 0.69 0.74
LW -statistic – 1.56 2.25 3.63
p-value – 0.12 0.02 0.00
Max. drawdown −25.30% −23.33% −22.21% −22.29%
Avg. costs (bps) 8.30 12.26 10.67 11.22

Panel D: Net returns assuming conservative transaction costs

Return 3.98% 5.94% 6.52% 8.42%
t-statistic 1.15 1.98 1.98 2.74
Volatility 15.79% 13.71% 15.00% 14.01%
Sharpe ratio 0.25 0.43 0.43 0.60
LW -statistic – 2.33 2.67 6.24
p-value – 0.02 0.01 0.00
Max. drawdown −30.59% −25.75% −23.55% −23.24%
Avg. costs (bps) 20.95 22.17 21.24 22.29
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Consistent with Erb and Harvey (2006) and Miffre and Rallis (2007), we find large and

significant profits for the generic momentum strategy. More specifically, the strategy earns

a gross annual return of 11.43% and a gross Sharpe ratio of 0.73. Although the results are

strong, we observe even higher risk-adjusted returns for our alternative momentum strate-

gies. The Sharpe ratios of the alternative strategies range between 0.88 for low-turnover roll

momentum and 0.97 for all-contracts momentum, due to higher returns and lower volatil-

ities. These lower portfolio volatilities are in line with Samuelson (1965), as the average

maturities of the contracts range between 3.85 months for the all-contracts strategy and 5.01

months for the optimal-roll strategy, all above the average maturity of 1.50 months for the

generic strategy. Note that the average maturities are well below 12 months, which is the

maximum maturity of the contracts we invest in. This indicates that the strategies on average

invest more in contracts on the front part of the curve, where liquidity is likely to be highest.

The Sharpe ratios of the alternative momentum strategies are significantly different from the

generic strategy as the P-values are lower than 0.05. Moreover, the maximum drawdowns of

the alternative strategies are all smaller than that of the generic strategy.

In addition, we observe that the low-turnover roll momentum strategy lives up to its

name as it exhibits a turnover that is approximately 50% lower than the other strategies.

The turnover of 855% per annum for the generic strategy implies that a portfolio manager

needs to completely change the portfolio every 1.4 months on average. The implications

on net returns can be observed in Panel B, C, and D of Table 3.2, assuming respectively

the Szakmary et al. (2010) standard trading cost estimates, our Amihud-dependent estimates

and the conservative cost estimates. The table also presents the average single-trip costs

of the transactions in basis points. We observe that trading costs have a significant impact

on the return of momentum strategies. As the average trading costs using the standard cost

estimates are around 8 basis points per trade, we observe a deterioration in return of around

3% for the high-turnover momentum strategies. Note that this average cost is substantially

higher than the often used 3.3 basis points as reported in Locke and Venkatesh (1997) and

used by among others Fuertes et al. (2010). The net Sharpe ratios of the optimal-roll and

all-contracts momentum strategies of 0.75 and 0.76 respectively remain significantly higher

than the net Sharpe ratio of 0.54 for the generic strategy. The impact of trading costs on

the low-turnover roll strategy is much lower, resulting in only a 1.55% lower return. The
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net return and Sharpe ratio of this strategy are now higher than those of the optimal-roll

momentum strategy.

Panel C reports the net results when assuming Amihud-dependent transaction costs. In

line with our expectations we observe higher average costs for our alternative momentum

strategies, which on average trade further on the curve. The costs for the generic momentum

strategy are around 8 basis points, while those of the alternative strategies range between

10.67 and 12.26 basis points. Nevertheless, also using this trading costs scheme, we ob-

serve higher net returns and Sharpe ratios and less negative maximum drawdowns for all our

alternative momentum strategies.

The contrast in net returns among the different strategies becomes even larger once the

conservative cost estimates are taken into account, which might better reflect the actual costs

in the case of large-scale trading activity or a more aggressive trading style. In Panel D

we find that the average cost estimates are now about 22 basis points per trade. The return

of the generic strategy drops by 65%, leading to an insignificant 3.98% annualized return.

Obviously, the impact on return is also large for the two alternative high-turnover momentum

strategies. However, we still observe economically and statistically significant returns of

5.94% and 6.52% respectively for the optimal-roll and all-contracts momentum strategies,

with Sharpe ratios of 0.43. Interestingly, when assuming these relatively high trading costs

we observe the highest net returns (8.42%) and Sharpe ratio (0.60) for the low-turnover roll

momentum strategy.

We conclude that incorporating term-structure information in momentum strategies leads

to significantly higher Sharpe ratios. When facing relatively high trading costs, it might be

important to smartly reduce portfolio turnover to preserve the majority of returns.

Finally, we analyze the returns of the different momentum strategies over time. Fig-

ure 3.1A shows the cumulative returns when incorporating conservative transaction costs

of the four momentum strategies over our sample period. We observe that the generic mo-

mentum strategy obtains the lowest returns, while the highest returns are generated by our

low-turnover roll momentum strategy. We also observe a gradual increase of the difference in

returns, so that the added value of the strategies is not generated in one particular sub-sample

period. Figure 3.1B presents 5-year rolling Sharpe ratios of all momentum strategies. We ob-

serve that during most 5-year sub-periods, the alternative momentum strategies obtain higher
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Sharpe ratios than the generic momentum strategy. This confirms our previous finding that

our results are not obtained during one particular sub-period in our sample.

Figure 3.1 Strategies performance over time

These figures show the performance over time of our cross-sectional commodity momentum strategies over the

sample period January 1991 - September 2011. The performance is based on net returns assuming conservative

transaction costs. Subfigure A shows cumulative log returns and Subfigure B shows 5-year rolling Sharpe

ratios. Note that subfigure B starts in 1996 due to the 5-year rolling window.
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(b) Rolling Sharpe Ratios
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3.4.2 Portfolio return regressions

We continue our empirical analysis by investigating to what extent the profits of the mo-

mentum strategies that integrate term-structure information can be attributed to exposures
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to well-known commodity factor premiums. In particular we focus on the commodity mar-

ket factor and the carry strategy. The carry strategy is based on term-structure information

and takes long positions in the most backwardated commodities and short positions in the

most contangoed commodities, see e.g. Erb and Harvey (2006) and Gorton and Rouwenhorst

(2006). We regress the gross and net returns of the momentum strategies on a market and

carry factor:

Ri,t = α + β1Markett + β2Carryt + εi,t (3.4)

where Ri,t is the return of momentum strategy i in month t. Markett is the excess return of

the commodity market index as proxied by the S&P GSCI in month t. Carryt is the return

of a carry strategy in month t defined as an equally-weighted portfolio that longs (shorts) the

50% of commodities with the highest (lowest) annualized ratio of the nearest futures price

to the next-nearest futures price. The coefficients α, β1 and β2 are to be estimated, and εi,t

is the residual return of strategy i in month t. In addition, we perform regression analyses

where we add the generic momentum factor to analyze the added value of the alternative

momentum strategies on top of the traditional momentum strategy. All coefficient estimates,

associated t-statistics and R-squared values are presented in Table 3.3.
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Table 3.3 Portfolio return regressions

This table presents the coefficient estimates, t-statistics (between brackets) and R-squared values obtained from

regressions of the monthly gross (Panel A) and net returns using standard (Panel B), Amihud-based (Panel C)

and conservative (Panel D) transaction costs of the four cross-sectional momentum strategies on the carry,

market and momentum factors. Carry is the return of a strategy defined as an equally-weighted portfolio that

longs (shorts) the 50% of commodities with the highest (lowest) annualized ratio of nearby futures price to the

nearest futures price. Market is the excess return of the S&P GSCI market index. Momentum is the return of

the generic momentum strategy. The intercepts of the regressions are annualized and reported as alpha.

Generic Optimal roll All contracts Low-turnover roll Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Alpha 5.17% 6.97% 8.29% 6.40% 2.84% 3.61% 2.04%
(1.80) (2.85) (3.00) (2.52) (3.29) (3.82) (2.64)

Market 0.11 0.09 0.10 0.10 −0.00 0.00 0.00
(2.93) (2.71) (2.80) (2.88) (−0.08) (0.13) (0.30)

Carry 0.66 0.60 0.61 0.60 0.07 0.01 0.04
(10.82) (11.57) (10.43) (11.03) (3.35) (0.61) (1.94)

Momentum – – – – 0.80 0.90 0.84
– – – – (42.09) (43.29) (49.27)

R2 34.0% 36.6% 32.4% 34.8% 92.3% 92.2% 94.0%

Panel B: Net returns assuming standard transaction costs

Alpha 4.25% 6.08% 7.11% 6.66% 2.68% 3.26% 3.08%
(1.50) (2.51) (2.60) (2.65) (3.14) (3.49) (4.03)

Market 0.11 0.09 0.10 0.10 −0.00 0.00 0.00
(2.94) (2.72) (2.81) (2.88) (−0.09) (0.14) (0.27)

Carry 0.66 0.60 0.62 0.60 0.07 0.02 0.04
(10.90) (11.59) (10.52) (11.05) (3.22) (0.65) (1.80)

Momentum – – – – 0.80 0.90 0.84
– – – – (42.00) (43.28) (49.43)

R2 34.3% 36.7% 32.7% 34.9% 92.3% 92.2% 94.1%

Panel C: Net returns assuming Amihud-based transaction costs

Alpha 4.22% 5.02% 6.29% 6.29% 1.64% 2.46% 2.73%
(1.49) (2.07) (2.30) (2.50) (1.92) (2.63) (3.57)

Market 0.11 0.09 0.10 0.10 −0.00 0.00 0.00
(2.94) (2.73) (2.82) (2.89) (−0.08) (0.15) (0.28)

Carry 0.66 0.60 0.62 0.60 0.07 0.02 0.04
(10.91) (11.58) (10.53) (11.06) (3.18) (0.66) (1.80)

Momentum – – – – 0.80 0.91 0.84
– – – – (41.89) (43.24) (49.50)

R2 34.4% 36.7% 32.8% 34.9% 92.2% 92.2% 94.1%

Panel D: Net returns assuming conservative transaction costs

Alpha 2.85% 4.67% 5.31% 7.04% 2.39% 2.74% 4.63%
(1.01) (1.94) (1.96) (2.82) (2.82) (2.96) (6.12)

Market 0.11 0.09 0.10 0.10 −0.00 0.00 0.00
(2.96) (2.73) (2.83) (2.88) (−0.10) (0.14) (0.22)

Carry 0.67 0.60 0.62 0.59 0.07 0.02 0.03
(11.04) (11.63) (10.68) (11.10) (3.00) (0.70) (1.56)

Momentum – – – – 0.80 0.90 0.84
– – – – (41.69) (43.24) (49.36)

R2 34.9% 36.9% 33.4% 35.1% 92.2% 92.3% 94.1%

Panel A reports the results for the gross returns. For the generic momentum strategy we

observe a large and significant exposure to the carry factor and also a significant exposure to

the market factor. This leads to an annualized alpha of 5.17% with a t-statistic of 1.80 for

the generic strategy compared to the 11.43% “raw” return in Table 3.2. The high coefficient

of the carry factor is consistent with Gorton et al. (2013) who argue that momentum portfo-
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lios take positions in similar commodities to the carry-sorted portfolios. We notice that the

(untabulated) correlation between the returns of the carry and generic momentum strategy is

0.56 over our sample period, in line with these findings. When we consider the regressions

in the left part of the panel, we observe similar exposures to the market and carry factors for

the alternative momentum strategies. The alphas of all momentum strategies with integrated

term-structure information remain significant and are all larger than the alpha of generic mo-

mentum, ranging from 6.40% for the low-turnover roll momentum strategy to 8.29% for the

all-contracts momentum strategy.

We next consider the regressions including the generic momentum factor in the right

part of Panel A. For the alternative momentum strategies, we observe small and insignificant

coefficient estimates for the market factor. Not surprisingly, we find large positive coefficient

estimates for the momentum factor, which also explains the high explanatory power of the

regressions with R-squared values above 90%. Due to the positive correlation between the

carry and generic momentum factors, we now find much smaller coefficient estimates for the

carry factor. Interestingly, the alphas remain significantly different from zero, ranging from

2.04% for the low-turnover roll momentum strategy to 3.61% for the all-contracts momentum

strategy.

We next consider the results when regressing net returns using standard, Amihud-dependent

and conservative trading cost estimates in respectively Panel B, C and D of Table 3.3. We

evaluate these returns also against the net returns of the carry and momentum factors. The al-

phas of the optimal-roll and all-contracts momentum strategies become lower, but remain in

almost all cases significant and larger than the insignificant net alphas of the generic strategy.

On the contrary, the low-turnover roll momentum strategy earns for two out of three applied

trading cost schemes a higher alpha. This results in an alpha of 7.04% when incorporating

conservative trading costs and regressed against the market and carry factors, which is much

larger than the 2.85% alpha of the generic momentum strategy.

We conclude that the returns of the alternative momentum strategies are not driven by

exposures to well-known commodity factors.17 Finally, untabulated results further indicate

17In addition, we also investigate to what extent the profits of the cross-sectional momentum strategies can be

attributed to exposures to the time-series momentum factor of Moskowitz et al. (2012) and the Fung and Hsieh

(2004) seven factor model. We conclude that the additional returns of the alternative momentum strategies

cannot be explained by loading on the time-series momentum factor or on Fung and Hsiehs factors. All results

are available on request.
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that the optimal-roll and all-contracts momentum strategies are different types of strategies

as their alphas have only a modestly positive correlation of 0.35.

3.4.3 Double-sort on momentum and carry

In this section we use an alternative method to examine the added value of our alterna-

tive strategies on top of momentum and carry strategies. Fuertes et al. (2010) show that

double-sort strategies on both momentum and carry lead to superior results compared to

a generic momentum strategy. We therefore apply our alternative strategies of integrating

term-structure information on top of these double-sorts.

Our starting point is a generic double-sort strategy where we first sort 50% of the com-

modities into a winner and 50% in a loser portfolio, based on their past 12-month momen-

tum. Next, we sort 50% of the commodities within this winner portfolio in a high- and 50%

in a low-carry portfolio, where carry is defined as the front-contract slope in Formula (3.1).

Also for the loser portfolio we apply this sort on carry. We then take equally-weighted long

positions in the winner/high-carry commodities and short positions in the loser/low-carry

commodities. This set-up is comparable to the double-sort investigated by Fuertes et al.

(2010).18

The alternative strategies we propose are constructed in a similar fashion as described in

Section 3.3.1. The optimal-roll double-sort is based on the same commodities as the generic

double-sort, however does not necessarily invest only in front contracts. The long posi-

tions in the winner/high-carry portfolio are taken in the most backwardated contracts along

the curve, while the short positions in the loser/low-carry portfolio are invested in the most

contangoed contracts along the curve. The all-contracts strategy sorts on optimal 12-month

momentum candidates instead of front contract momentum values, where optimal momen-

tum candidates are determined in the same way as before for our single-sort momentum

portfolios. The 50% highest (lowest) momentum candidates end up in the winner (loser)

portfolio and within this winner (loser) portfolio we select the 50% commodities with the

highest (lowest) carry. The strategy then longs winner/high-carry commodities and shorts

loser/low-carry commodities. Our low-turnover roll alternative is a reduced turnover version

18The number of commodities in the long and short portfolio (six from 1998 onwards) is similar to Fuertes

et al. (2010), who construct two momentum and three carry portfolios, but have more commodities in their

universe.
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of the first alternative strategy, similar to the single-sort version. The results of the double-

sort strategies are presented in Table 3.4. As the number of commodities in the double-sort

portfolios is smaller, namely six in the top and six in the bottom instead of two times twelve,

we also construct a generic single-sort momentum strategy based on quartiles portfolios as

a comparison. We long the 25% most attractive commodities and short the 25% least attrac-

tive commodities. The (untabulated) annualized returns of this strategy are 13.02% with a

volatility of 24.88%. Compared to the generic portfolio in Table 3.2 we observe that a more

concentrated portfolio generates a higher return, but also exhibits higher risk, which results

in a lower Sharpe ratio (0.52 versus 0.73).



74 Exploiting commodity momentum along the futures curves

Table 3.4 Double-sort strategies performance

This table shows the performance of double-sort cross-sectional strategies on momentum and carry over the

sample period January 1990 to September 2011. We sort first on momentum and then on carry. The alternative

strategies are constructed in a similar fashion as in Table 3.2. Panel A reports the gross annualized performance

while Panel B, C and D report the net annualized performance based on respectively standard, Amihud-based

and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 16.09% 17.27% 19.85% 16.52%
t-statistic 3.43 3.99 4.33 3.78
Volatility 21.35% 19.71% 20.87% 19.90%
Sharpe ratio 0.75 0.88 0.95 0.83
LW -statistic – 1.61 5.08 1.30
p-value – 0.11 0.00 0.20
Max. drawdown −26.19% −27.28% −26.15% −27.62%
Maturity (months) 1.49 3.88 3.01 3.62
Turnover 926% 857% 933% 620%

Panel B: Net returns assuming standard transaction costs

Return 12.60% 13.82% 16.19% 13.93%
t-statistic 2.68 3.19 3.52 3.18
Volatility 21.40% 19.76% 20.93% 19.95%
Sharpe ratio 0.59 0.70 0.77 0.70
LW -statistic – 1.49 4.94 1.96
p-value – 0.14 0.00 0.05
Max. drawdown −32.56% −28.75% −27.67% −28.81%
Avg. costs (bps) 8.38 8.85 8.46 9.15

Panel C: Net returns assuming Amihud-based transaction costs

Return 12.50% 12.95% 15.59% 13.43%
t-statistic 2.66 2.98 3.39 3.07
Volatility 21.41% 19.78% 20.94% 19.96%
Sharpe ratio 0.58 0.65 0.74 0.67
LW -statistic – 0.94 4.37 1.57
p-value – 0.35 0.00 0.12
Max. drawdown −32.57% −29.06% −27.91% −29.07%
Avg. costs (bps) 8.61 11.15 9.88 10.95

Panel D: Net returns assuming conservative transaction costs

Return 7.45% 8.72% 10.79% 10.08%
t-statistic 1.58 2.00 2.34 2.29
Volatility 21.50% 19.84% 21.04% 20.04%
Sharpe ratio 0.35 0.44 0.51 0.50
LW -statistic – 1.29 4.69 2.97
p-value – 0.20 0.00 0.00
Max. drawdown −42.66% −37.37% −37.67% −34.03%
Avg. costs (bps) 21.71 22.94 21.93 23.57

We confirm the findings of Fuertes et al. (2010) as the generic double-sort achieves a

higher return (16.09%) and a lower volatility (21.35%) than the generic momentum strategy

with similar number of commodities. When we compare our three alternative strategies with
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the generic double-sort in Panel A of Table 3.4 we observe that all Sharpe ratios are higher,

both due to higher returns and lower volatilities. And also when we observe the net results

in Panel B to D, we observe that in all cases returns the Sharpe ratios for the alternative

double-sort strategies are higher than the generic double-sort strategies. These results again

confirm that our alternative strategies add value beyond momentum and carry factors.

3.5 Liquidity analyses

This section presents the results of a series of analyses to investigate whether the additional

profits of the alternative momentum strategies are a compensation for lower liquidity. In

Subsection 3.5.1 we examine the sensitivity of our results by limiting our universe to futures

contracts with a maximum maturity of six months. In Subsection 3.5.2 we analyze the impact

of excluding the most illiquid contracts. We investigate the implication of a one-day trading

lag in Subsection 3.5.3. Finally, in Subsection 3.5.4 we present the results after 2000.

3.5.1 Implementation with futures contracts up to six months maturity

We continue our empirical analyses by evaluating the alternative momentum strategies if we

reduce the maximum maturity of futures contracts to invest in from 12 months to 6 months.

All the other settings are exactly the same as with the main approach. Note that Table 3.2

indicates that the average maturities of the alternative momentum strategies are well below

12 months, as they range between 3.85 and 5.01 months. However, there could still be

regular investments in the back-end of the curve. We perform this analysis to ensure that the

additional profits of the momentum strategies that incorporate term-structure information are

not due to investing in the back-end of the curve, where liquidity might be the lowest. The

results are presented in Table 3.5.
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Table 3.5 Strategies performance − six months maturity bound

This table shows the risk and return characteristics of four cross-sectional commodity momentum strategies

over the sample period January 1990 to September 2011. The strategies are constructed in the same way as in

Table 3.2 with the difference that the strategies invest in contracts with a maturity up to six months. Panel A

reports the gross annualized performance while Panel B, C and D report the net annualized performance based

on respectively standard, Amihud-based and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 11.43% 13.38% 13.47% 12.96%
t-statistic 3.33 4.23 4.01 3.96
Volatility 15.65% 14.40% 15.28% 14.89%
Sharpe ratio 0.73 0.93 0.88 0.87
LW -statistic – 3.72 3.10 3.84
p-value – 0.00 0.00 0.00
Max. drawdown −23.70% −21.66% −21.09% −22.19%
Maturity (months) 1.50 2.94 2.18 2.40
Turnover 855% 812% 853% 528%

Panel B: Net returns assuming standard transaction costs

Return 8.43% 10.36% 10.43% 10.91%
t-statistic 2.45 3.27 3.10 3.33
Volatility 15.69% 14.41% 15.33% 14.93%
Sharpe ratio 0.54 0.72 0.68 0.73
LW -statistic – 3.47 3.03 5.35
p-value – 0.00 0.00 0.00
Max. drawdown −25.30% −22.85% −21.47% −22.98%
Avg. costs (bps) 8.10 8.44 8.07 8.76

Panel C: Net returns assuming Amihud-based transaction costs

Return 7.89% 8.28% 9.30% 9.93%
t-statistic 2.29 2.62 2.76 3.02
Volatility 15.72% 14.42% 15.36% 14.96%
Sharpe ratio 0.50 0.57 0.61 0.66
LW -statistic – 1.38 2.19 4.65
p-value – 0.17 0.03 0.00
Max. drawdown −25.45% −24.04% −22.26% −23.34%
Avg. costs (bps) 9.60 14.50 11.18 13.02

Panel D: Net returns assuming conservative transaction costs

Return 3.98% 5.87% 5.93% 7.82%
t-statistic 1.15 1.85 1.75 2.37
Volatility 15.79% 14.45% 15.42% 15.00%
Sharpe ratio 0.25 0.41 0.38 0.52
LW -statistic – 3.00 2.90 7.37
p-value – 0.00 0.00 0.00
Max. drawdown −30.59% −25.68% −24.83% −24.41%
Avg. costs (bps) 20.95 21.85 20.86 22.56

When we consider the gross returns in Panel A we observe that all three alternative mo-

mentum strategies remain able to deliver significantly higher risk-adjusted returns compared

to a generic momentum strategy. When compared to the results in Table 3.2 with a 12-month
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maturity bound, we find slightly higher returns for the optimal-roll and low-turnover roll

momentum strategies and somewhat lower returns for the all-contracts momentum strategy.

As the average maturity of the contracts reduces by 1.5 to 2 months, the portfolios volatili-

ties increase somewhat. This leads to slightly lower Sharpe ratios compared to the 12-month

maturity-bound results.

We observe significant net returns for most of the alternative strategies. And even though

the turnover of the low-turnover roll strategy increases from 402% to 528%, the strategy re-

mains statistically significant when including conservative trading costs. Thus, we conclude

that the additional profits are not driven by investing in futures contracts at the back-end of

the curve.

3.5.2 Implementation on most liquid futures contracts

To more directly examine the impact of liquidity on our results, we next evaluate the mo-

mentum strategies when excluding the least liquid futures contracts from our universe. For

this purpose we use two different types of liquidity measures, namely dollar trading volume

and the Amihud illiquidity measure.

Each month in our sample period we exclude the most illiquid futures contracts according

to a certain measure. This way we acknowledge that liquidity varies substantially across

commodities, and that for less liquid commodities, more contracts will be excluded than

for more liquid commodities. Assuming a USD 100 million long/short portfolio, we set

the dollar volume trading threshold in such a way that we currently do not trade more than

25% of the trading volume of a particular contract. As the universe currently consists of 24

commodities, we have 12 long and short positions. The value of one trade is therefore USD

8.33 (= 100/12) million, implying a dollar volume threshold of USD 33.33 (= 8.33/0.25)

million at the end of our sample period. We deflate this threshold back in time by 4.05%,

which is the average annual total return of the S&P GSCI index during our sample period. As

a result, we exclude almost 50% of the futures contracts from our universe. For the Amihud

illiquidity measure, we set the threshold at 4 basis points at the end of our sample period,

so that we also exclude about 50% of the most illiquid futures contracts from the universe.

This threshold implies we exclude commodity futures contracts for which the price impact

resulting from trading USD 1 million is more than 4 basis points. Similarly, the Amihud
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illiquidity threshold is inflated back in time by 4.05% per annum. The results of the four

momentum strategies applied to the most liquid futures contracts based on dollar trading

volume and the Amihud illiquidity measure are presented in Table 3.6 and 3.7 respectively.19

19Unreported analyses show that conclusions remain similar when different liquidity threshold values are

used for both dollar trading volume and the Amihud illiquidity measure.
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Table 3.6 Strategies performance − dollar trading volume screening

This table shows the risk and return characteristics of four cross-sectional commodity momentum strategies

over the sample period January 1990 to September 2011. The strategies are constructed in the same way as

in Table 3.2 with the difference that here we first exclude futures contracts which do not meet the minimum

requirement of the monthly average of daily dollar trading volume. This threshold is set at USD 33.33 million

at the end of our sample period and is deflated back in time by 4.05% per annum. Panel A reports the gross

annualized performance while Panel B, C and D report the net annualized performance based on respectively

standard, Amihud-based and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 11.90% 13.59% 15.55% 13.54%
t-statistic 3.42 4.26 4.54 4.14
Volatility 15.87% 14.54% 15.60% 14.89%
Sharpe ratio 0.75 0.93 1.00 0.91
LW -statistic – 2.49 3.64 3.51
p-value – 0.01 0.00 0.00
Max. drawdown −24.84% −22.46% −22.13% −22.40%
Maturity (months) 1.51 3.42 2.97 2.83
Turnover 860% 777% 838% 555%

Panel B: Net returns assuming standard transaction costs

Return 8.90% 10.67% 12.51% 11.34%
t-statistic 2.55 3.33 3.65 3.46
Volatility 15.91% 14.58% 15.63% 14.92%
Sharpe ratio 0.56 0.73 0.80 0.76
LW -statistic – 2.47 3.68 4.58
p-value – 0.01 0.00 0.00
Max. drawdown −26.79% −24.43% −22.52% −23.92%
Avg. costs (bps) 8.02 8.48 8.06 8.89

Panel C: Net returns assuming Amihud-based transaction costs

Return 8.81% 10.36% 12.24% 11.22%
t-statistic 2.52 3.23 3.57 3.42
Volatility 15.91% 14.59% 15.63% 14.93%
Sharpe ratio 0.55 0.71 0.78 0.75
LW -statistic – 2.29 3.53 4.78
p-value – 0.02 0.00 0.00
Max. drawdown −26.81% −24.65% −22.61% −24.04%
Avg. costs (bps) 8.26 9.41 8.80 9.42

Panel D: Net returns assuming conservative transaction costs

Return 4.44% 6.33% 8.00% 8.04%
t-statistic 1.26 1.97 2.32 2.44
Volatility 15.99% 14.65% 15.69% 15.00%
Sharpe ratio 0.28 0.43 0.51 0.54
LW -statistic – 2.40 3.72 6.22
p-value – 0.02 0.00 0.00
Max. drawdown −30.25% −27.36% −25.38% −26.21%
Avg. costs (bps) 20.77 21.97 20.85 22.95
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Table 3.7 Strategies performance − Amihud illiquidity measure screening

This table shows the risk and return characteristics of four cross-sectional commodity momentum strategies

over the sample period January 1990 to September 2011. The strategies are constructed in the same way as

in Table 3.2 with the difference that here we first exclude futures contracts which do not meet the maximum

threshold of the Amihud illiquidity measure. This measure is calculated as the monthly average of the absolute

daily return divided by the daily dollar trading volume. The maximum requirement is set at 4 basis points for

a one-million-dollar trade at the end of our sample period and is inflated back in time by 4.05% per annum.

Panel A reports the gross annualized performance while Panel B, C and D report the net annualized performance

based on respectively standard, Amihud-based and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 12.02% 14.47% 15.39% 14.04%
t-statistic 3.51 4.51 4.52 4.32
Volatility 15.59% 14.61% 15.51% 14.81%
Sharpe ratio 0.77 0.99 0.99 0.95
LW -statistic – 2.45 3.17 3.83
p-value – 0.01 0.00 0.00
Max. drawdown −23.72% −22.10% −22.06% −22.05%
Maturity (months) 1.51 3.41 2.94 2.87
Turnover 868% 782% 844% 560%

Panel B: Net returns assuming standard transaction costs

Return 8.98% 11.51% 12.29% 11.84%
t-statistic 2.62 3.58 3.61 3.64
Volatility 15.62% 14.63% 15.53% 14.83%
Sharpe ratio 0.57 0.79 0.79 0.80
LW -statistic – 2.38 3.16 4.89
p-value – 0.02 0.00 0.00
Max. drawdown −24.88% −23.31% −22.46% −23.25%
Avg. costs (bps) 8.05 8.48 8.17 8.79

Panel C: Net returns assuming Amihud-based transaction costs

Return 8.85% 11.19% 12.02% 11.70%
t-statistic 2.58 3.48 3.53 3.59
Volatility 15.62% 14.63% 15.53% 14.83%
Sharpe ratio 0.57 0.76 0.77 0.79
LW -statistic – 2.25 3.05 4.80
p-value – 0.03 0.00 0.00
Max. drawdown −24.92% −23.50% −22.72% −23.37%
Avg. costs (bps) 8.40 9.43 8.90 9.34

Panel D: Net returns assuming conservative transaction costs

Return 4.46% 7.11% 7.70% 8.53%
t-statistic 1.29 2.21 2.25 2.61
Volatility 15.69% 14.67% 15.57% 14.87%
Sharpe ratio 0.28 0.49 0.49 0.57
LW -statistic – 2.41 3.13 6.18
p-value – 0.02 0.00 0.00
Max. drawdown −27.41% −25.66% −26.04% −25.18%
Avg. costs (bps) 20.86 21.93 21.15 22.65
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In Panel A of Table 3.6, we observe that the screening on dollar trading volume has

a marginal impact on the gross performance of the four strategies. In all cases, we even

observe a slightly higher gross return compared to the results in Table 3.2. Volatility in-

creases as well, in line with the shorter average maturity of the invested contracts, which

leads to similar gross Sharpe ratios. Results are similar when we apply the screening based

on the Amihud illiquidity measure, as presented in Panel A of Table 3.7. As the screenings

have hardly any impact on turnover, we also observe that the alternative strategies remain

profitable after taking transaction costs into account (Panel B, C and D of Table 3.6 and

3.7). Only the turnover of the low-turnover roll momentum strategy increases from 402%

per annum to 555% and 560% when we apply a screening on dollar trading volume and

the Amihud illiquidity measure respectively. However, as the gross returns are also 1% to

2% higher for this strategy after applying a liquidity screening, the net returns and Sharpe

ratios have a similar magnitude as the results in Table 3.2. In addition, we observe that all

alternative momentum strategies significantly outperform the generic momentum strategy.

We therefore conclude that the added value of incorporating term-structure information in

momentum strategies is not due to investing in contracts with a low liquidity.

3.5.3 Results with a one-day implementation lag

We next examine the profitability of the momentum strategies assuming a one-day imple-

mentation lag. Although we use various trading costs estimates when evaluating the net

returns of the strategies, it is still possible that their profitability is largely concentrated in

the period just after rebalancing, and that the gross returns would decline significantly when

there is a delay in trading. Marshall et al. (2012) claim that the commodity futures markets

are resilient and that liquidity returns to pre-trade levels after 30-60 minutes. Therefore,

we evaluate the profitability of the momentum strategies by assuming that investors have

one full trading day to rebalance their portfolio and that by gradually implementing the new

positions, the trade impact can largely be mitigated. More specifically, we construct the

portfolios in a similar fashion as before, the difference being that we determine the long and

short positions based on data up to the day before every month-end. The results are reported

in Table 3.8.
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Table 3.8 Strategies performance − one-day implementation lag

This table shows the risk and return characteristics of four cross-sectional commodity momentum strategies

over the sample period January 1990 to September 2011. The strategies are constructed in a similar fashion as

in Table 3.2 with the difference that the long and short positions are based on data up to the day before month-

end. Panel A reports the gross annualized performance while Panel B, C and D report the net annualized

performance based on respectively standard, Amihud-based and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 11.37% 12.79% 14.57% 12.23%
t-statistic 3.21 4.13 4.38 3.90
Volatility 16.12% 14.10% 15.16% 14.29%
Sharpe ratio 0.71 0.91 0.96 0.86
LW -statistic – 2.84 3.44 2.57
p-value – 0.00 0.00 0.01
Max. drawdown −23.88% −21.36% −22.80% −20.85%
Maturity (months) 1.49 5.01 3.85 4.21
Turnover 855% 768% 883% 400%

Panel B: Net returns assuming standard transaction costs

Return 8.38% 9.91% 11.34% 10.72%
t-statistic 2.36 3.19 3.40 3.41
Volatility 16.16% 14.14% 15.21% 14.32%
Sharpe ratio 0.52 0.70 0.75 0.75
LW -statistic – 2.60 3.14 4.03
p-value – 0.01 0.00 0.00
Max. drawdown −25.27% −23.01% −25.00% −21.74%
Avg. costs (bps) 8.08 8.53 8.21 8.57

Panel C: Net returns assuming Amihud-based transaction costs

Return 8.31% 8.68% 10.42% 10.27%
t-statistic 2.34 2.79 3.11 3.27
Volatility 16.17% 14.16% 15.24% 14.33%
Sharpe ratio 0.51 0.61 0.68 0.72
LW -statistic – 1.36 2.37 3.54
p-value – 0.18 0.02 0.00
Max. drawdown −25.27% −23.64% −26.14% −21.97%
Avg. costs (bps) 8.28 12.30 10.63 11.10

Panel D: Net returns assuming conservative transaction costs

Return 3.94% 5.63% 6.57% 8.43%
t-statistic 1.11 1.80 1.96 2.67
Volatility 16.25% 14.22% 15.30% 14.38%
Sharpe ratio 0.24 0.40 0.43 0.59
LW -statistic – 2.21 2.66 6.10
p-value – 0.03 0.01 0.00
Max. drawdown −29.05% −25.46% −28.89% −23.05%
Avg. costs (bps) 20.91 22.08 21.25 21.93

When we consider the gross returns in Panel A, we observe only a slight reduction for

most of the strategies compared to the returns without an implementation lag in Table 2. We

therefore conclude that a one-day implementation has hardly any impact on our results.
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3.5.4 Results since 2000

Due to the increased popularity of commodity investing since 2000, we conclude our em-

pirical analyses by examining the momentum strategies from January 2000 to September

2011 when overall liquidity was the highest. The results are presented in Table 3.9. When

we consider Panel A we observe higher gross returns for all strategies in the most recent 11

years of our sample compared to the returns of the whole sample period in Table 3.2. Next

to that, we observe higher volatilities in the most recent sample period, in line with increased

market volatility. All in all, we observe a similar Sharpe ratio for the generic momentum

strategy and higher Sharpe ratios for the alternative momentum strategies. For example, the

Sharpe ratio of the low-turnover roll momentum strategy is 0.99 during the last 11 years of

our sample, while the ratio is 0.88 over the whole sample period.

We observe in Panel B, C and D of Table 3.9 that due to lower average costs since 2000,

the differences in net returns are even larger. For instance, when assuming conservative

transaction costs, the optimal-roll momentum strategy is able to deliver a higher net return of

around 3%. Also in the recent period, the alternative strategies obtain higher returns at lower

risk compared to the generic momentum strategy. We therefore conclude that integrating

term-structure information in momentum strategies also has added value since 2000, when

more investors participated in commodity markets and overall liquidity was the highest.
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Table 3.9 Strategies performance after 2000

This table shows the risk and return characteristics of four cross-sectional commodity momentum strategies

over the sample period January 2000 to September 2011. The strategies are constructed in the same way as in

Table 3.9. Panel A reports the gross annualized performance while Panel B, C and D report the net annualized

performance based on respectively standard, Amihud-based and conservative trading costs.

Generic Optimal roll All contracts Low-turnover roll

Panel A: Gross returns

Return 11.97% 14.71% 15.23% 14.04%
t-statistic 2.54 3.62 3.42 3.39
Volatility 16.12% 13.92% 15.27% 14.21%
Sharpe ratio 0.74 1.06 1.00 0.99
LW -statistic – 2.03 2.17 4.36
p-value – 0.05 0.03 0.00
Max. drawdown −21.39% −19.62% −21.57% −19.03%
Maturity (months) 1.46 5.03 3.93 4.14
Turnover 881% 773% 893% 404%

Panel B: Net returns assuming standard transaction costs

Return 9.58% 12.37% 12.68% 12.77%
t-statistic 2.03 3.04 2.84 3.07
Volatility 16.15% 13.94% 15.31% 14.24%
Sharpe ratio 0.59 0.89 0.83 0.90
LW -statistic – 1.98 2.03 5.48
p-value – 0.05 0.04 0.00
Max. drawdown −21.78% −20.01% −22.00% −19.19%
Avg. costs (bps) 6.17 6.75 6.33 6.98

Panel C: Net returns assuming Amihud-based transaction costs

Return 9.54% 11.38% 11.92% 12.43%
t-statistic 2.03 2.80 2.66 2.99
Volatility 16.14% 13.95% 15.34% 14.25%
Sharpe ratio 0.59 0.82 0.78 0.87
LW -statistic – 1.54 1.63 5.06
p-value – 0.13 0.11 0.00
Max. drawdown −21.78% −21.28% −22.21% −19.35%
Avg. costs (bps) 6.28 9.68 8.28 8.83

Panel D: Net returns assuming conservative transaction costs

Return 6.06% 8.89% 8.92% 10.85%
t-statistic 1.28 2.18 1.99 2.60
Volatility 16.19% 13.98% 15.38% 14.29%
Sharpe ratio 0.37 0.64 0.58 0.76
LW -statistic – 1.89 1.83 7.10
p-value – 0.06 0.07 0.00
Max. drawdown −24.63% −25.75% −23.55% −20.98%
Avg. costs (bps) 15.80 17.30 16.22 17.76
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3.6 Conclusion

This study examines novel momentum strategies in commodities futures markets that incor-

porate term-structure information. Previous studies only use the nearest futures contracts

both for the construction and implementation of momentum signals. These strategies might

therefore potentially miss out on valuable information regarding the futures curve, such as

the possibility that contracts further along the curve could exhibit more attractive roll yields

and lower volatility.

We show that alternative momentum strategies which integrate term-structure informa-

tion by selecting contracts on the curve with the largest expected roll-yield or with the

strongest momentum earn significantly higher risk-adjusted returns than a traditional mo-

mentum strategy, even when incorporating three different transaction costs schemes.

To lower transaction costs even further, we examine another alternative momentum strat-

egy aiming for higher roll returns with a much lower turnover compared to the other momen-

tum strategies. An advantage of buying contracts further along the curve is that these can

potentially be kept in the portfolio much longer. We observe that applying such a strategy

leads to a reduction of more than 50% in turnover and more than doubles the net return to

8.42% per annum compared to a traditional momentum strategy.

Our results are not due to exposure to the commodity market factor or the carry strategy.

Also, liquidity seems unlikely to explain the results as even when accounting for liquidity

differences through trading costs, reducing the maximum maturity of futures contracts from

12 to 6 months, investing in the most liquid futures contracts, allowing for a one-day imple-

mentation lag to reduce trade impact or focusing on the period since 2000, the results remain

qualitatively the same.





Chapter 4

Common factors in commodity futures

curves

Joint work with Dick van Dijk and Michel van der Wel

4.1 Introduction

Commodities have become a popular asset class among investors in recent years, as they

offer interesting diversification opportunities in the context of broader investment portfolios

as well as a useful hedge against inflation.1 While commodity characteristics vary, there are

comovements in their prices, as seen in the price boom during the period 2006-2008 and the

downturn during the second half of 2008. As commodity prices are important from an eco-

nomic, sociological, and political perspective, it is important to understand their dynamics

and their interrelations. This makes it interesting to look into the possibility to characterize

commodity price comovements.

In this paper we examine commonality among commodities in terms of factors driving

their entire futures curve, i.e. the collection of all available futures contracts of a particular

commodity. By including futures information we can examine not only comovement in the

price level of different commodities but also comovement in the shape of their curves. This

additional analysis of important futures curve characteristics such as slope and curvature

1See e.g. Gorton and Rouwenhorst (2006). Note that the usefulness to act as a hedging instrument varies

across individual commodities because of their heterogeneous nature, see Erb and Harvey (2006), Brooks and

Prokopczuk (2013), and Daskalaki, Kostakis, and Skiadopoulos (2014), among others.
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sheds light on the beliefs of market participants about commodity price fundamentals. For

example, the theory of storage states that the slope of the futures curve is related to the

level of inventories (Kaldor, 1939; Working, 1949; Fama and French, 1987). Our approach

enables us to directly link these slopes across commodities.

We investigate the 24 commodities that constitute the Goldman Sachs Commodity In-

dex (GSCI). These commodities can be split into five sectors: energy, metals, softs, grains,

and meats. As a large part of these commodities are also included in the Dow Jones-UBS

Commodity Index (DJ-UBSCI),2 and as we include at each point in time all available futures

contracts, our data covers a large part of total exchange-related commodity trading. We use

monthly futures prices for the period January 1995 to September 2012.

We use an enhanced version of the Nelson and Siegel (1987) model to extract the factors

that drive the commodity futures curves. The Nelson and Siegel (1987) model has good

ability to fit the term structure of interest rates (see also Diebold and Li, 2006). As the

statistical features of commodity futures curves resemble those of bond yields, the model

can be used to characterize commodity futures prices. Although the base model can deal

with all kinds of curve shapes we adjust it to be able to handle pronounced seasonal patterns,

which are typical for commodities.

To investigate the comovement among commodity futures curves we adopt the frame-

work of Diebold, Li, and Yue (2008) with several extensions. Diebold, Li, and Yue (2008)

introduce an additional layer in the Nelson and Siegel (1987) model consisting of unobserved

common components that underlie the extracted factors that drive the individual commodity

futures curves. We make use of two types of common components, i.e. a market-wide com-

ponent that is common to all commodities and sector components that are only common to

commodities within the same sector. The heterogeneous nature of commodities motivates

the inclusion of the sector specific components. Besides the common components there

are idiosyncratic components to allow for commodity-specific behavior. In the end we are

interested in the relative importance of the common components versus the idiosyncratic

components, which is our definition of the degree of commonality.

Our empirical results show that our enhanced version of the Nelson-Siegel model is

suited to model commodity futures curves and that there are important common components

2This index was formerly known as the Dow Jones-AIG Commodity Index (DJ-AIGCI). Together, the GSCI

and DJ-AIGCI are the two commodity indexes that have emerged as industry benchmarks (Stoll and Whaley,

2010).
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in the level, slope and curvature factors that characterize these curves. For the commodity

level factors, the percentage of explained variation by a combination of the market-wide and

sector components is on average 62%. For the slope and curvature factors, these percentages

are around 74%. In all cases the commonality is mostly driven by the sector components

(between 39% and 50%), which implies that commodities are not an homogeneous asset

class. When we investigate commonality over time, we find that common components in our

level factors have become increasingly important over our sample period. The percentage of

explained variation by common components starts at 53% in 1995 and increases to 68% in

2012. The slope and curvature factors show almost no variation in results over time.

To give a better interpretation to the unobserved components, we investigate their rela-

tion with observed economic variables. The market-wide level factor is related to hedging

pressure, equity prices and exchange rates. When the net short positions of hedgers increase,

the curves’ price levels also increase (in line with Gorton et al., 2013). A rise in in equity

prices or a weakening of the US dollar also lead to an increase in the common level factor.

These findings are in line with, among others, Vansteenkiste (2009), Byrne, Fazio, and Fiess

(2012), and Chen, Rogoff, and Rossi (2010). Regarding our market-wide slope component,

we find that it increases when the net short positions of hedgers increase. This results in a

more backwardated futures curve, which is in line with the theory of normal backwardation

(see e.g. Bessembinder, 1992).3 Furthermore, the slope of the futures curves is negatively

related to commodity inventories. This relation between the slope of the futures curve (i.e.

convenience yield) and commodity inventories is in line with the theory of storage and find-

ings of Gorton, Hayashi, and Rouwenhorst (2013) and Deaton and Laroque (1992). Thus,

using the proposed modeling framework we confirm many findings of existing literature and

get additional insights in the commonality of the entire commodity futures curves.

Some papers already use the Nelson-Siegel approach to fit individual commodity futures

curves. West (2012) uses it to obtain price estimates for OTC forward contracts beyond the

longest available maturity of exchange traded futures contracts. Hansen and Lunde (2013)

focus on forecasting and use the Nelson-Siegel framework to predict the term structure of

oil futures. An alternative approach to model the commodity futures curve is to express it in

terms of unobserved factors and derive futures prices under no-arbitrage conditions (see Gib-

son and Schwartz, 1990; Schwartz, 1997; Geman, 2005). This approach is more restrictive

3Or, e.g., Carter, Rausser, and Schmitz (1983); Chang (1985); de Roon, Nijman, and Veld (2000)
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because it requires many assumptions on the market factors and it has difficulty incorporat-

ing seasonal patterns (West, 2012). Furthermore, the model complexity makes it difficult to

jointly model multiple commodities. Cortazar, Milla, and Severino (2008), Ohana (2010)

and Casassus, Liu, and Tang (2013) propose joint models for two commodities but these

cannot easily be extended to larger dimensions.4 As both approaches extract unobserved

factors from the futures curve, it is possible that these factors are alike. For all individual

commodities, our level and slope factors are similar to their corresponding unobserved spot

price and convenience yield factors of the Schwartz (1997) three-factor model, while our

curvature factor explains part of his residuals.

There is a large existing literature on comovement of commodity prices. Some work

focuses on the drivers of comovement and the macroeconomy. Pindyck and Rotemberg

(1990) state in their excess comovement hypothesis that seemingly unrelated commodi-

ties comove more than expected, after correcting for macroeconomic influences. Other pa-

pers find weaker evidence or reject this excess comovement hypothesis after accounting for

model misspecification, conditional heteroskedasticity, and non normality (Deb, Trivedi, and

Varangis, 1996) or after incorporating inventory and harvest information (Ai, Chatrath, and

Song, 2006). We focus on quantifying the level of commonality across commodities and do

not split this commonality in a “normal” and “excess” part.

More closely related to our work is the strand of literature that documents common unob-

served factors among individual commodity prices. Vansteenkiste (2009) and Byrne, Fazio,

and Fiess (2012) use principal component techniques to extract a latent factor that drives

non-fuel commodity prices and link this factor to observed economic variables, like ex-

change rates or real interest rates. We differ by investigating the comovement of the entire

futures curve of commodity prices instead of one price series per commodity. This allows us

to investigate comovement, besides levels, in the shapes of futures curves. Furthermore, it

allows for a more accurate correction of seasonality effects.

Besides commonality in commodity prices, many papers investigate commonality in

commodity returns or their volatilities. Christoffersen, Lunde, and Olesen (2014) document

4Cortazar, Milla, and Severino (2008) propose a multi-commodity version of the Cortazar and Naranjo

(2006) model for two oil related commodities that uses common and commodity specific factors. Ohana (2010)

captures the joint evolution of correlated futures curves by incorporating both the local and global dependence

structures between slopes and levels. Casassus, Liu, and Tang (2013) jointly model the convenience yields of

two commodities using a multi-commodity feedback affine (MCFA) model to match observed futures correla-

tions.
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a clear factor structure in both returns and volatilities. The asset pricing literature focuses

on factors that can explain the cross-section of commodity futures returns. Szymanowska,

de Roon, Nijman, and van den Goorbergh (2014) show that cross-sectional variation in com-

modity futures (portfolio) returns can be attributed to a single basis factor for spot premia and

to two additional basis factors for term premia. In contrast, Daskalaki, Kostakis, and Ski-

adopoulos (2014) document that there are no macro, equity or commodity-motivated factors

that can price the cross-section of commodity futures.

The rest of this paper is organized as follows. In the next section we present the methodol-

ogy, followed by Section 4.3 where we present the data and the descriptive statistics. Section

4.44 and 4.5 discuss the empirical results, while Section 4.6 concludes.

4.2 Methodology

In this section we show how the individual commodity futures curves are decomposed into

level, slope, curvature, and seasonal factors, and how commonality in these factors across

commodities is modeled. The first subsection discusses our model. In the second subsection,

we discuss the applied estimation procedure.

4.2.1 Model

We model a collection of futures prices for N different commodities. The futures price

with maturity τ (measured in years) for commodity i at time t is denoted by fi,t(τ). Our

starting point is the dynamic version of the Nelson and Siegel (1987) model, as introduced

in Diebold and Li (2006), to describe the futures curve of each individual commodity i, for

i = 1, 2, . . . , N , as

fi,t (τ) = li,t + si,t

(
1− exp−λiτ

λiτ

)
+ ci,t

(
1− exp−λiτ

λiτ
− exp−λiτ

)
+ νi,t (τ) , (4.1)

where li,t, si,t, ci,t are interpreted as time-varying unobserved factors, the decay parameter

λi > 0 is assumed to be constant over time, and νi,t (τ) is a disturbance term, where Σν is the

covariance matrix of (νi,t (τ1) , νi,t (τ2) , . . . , νi,t (τJi))
′
. The interpretation of the unobserved

factors li,t, si,t, and ci,t is determined by their loadings. The loading on the first factor is a

constant such that li,t affects all futures prices in the same way irrespective of their maturity,
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hence the name level factor. The loading on the second factor is a decreasing function of the

futures contract maturity τ and si,t can therefore be regarded as the slope of the futures curve.

The loading on the third factor is a concave function of τ , which allows to fit humped-shaped

futures curves, and ci,t can thus be interpreted as a curvature factor.5

We make two adjustments to the base model given in (4.1). First, we enhance the model

to account for seasonality. Commodity futures curves display pronounced seasonal patterns

due to seasonal supply and demand effects, for example related to crop cycles and weather

conditions (see e.g. Milonas, 1991). We account for seasonality by including a trigonometric

function that depends on the expiry month gi (t, τ) of the contract.6 Trigonometric functions

are often used to model seasonality, see for instance Sorensen (2002). We thus enhance the

model in (4.1) with a seasonal term given by κi cos (ωgi (t, τ)− ωθi), where the parameter

κi determines the commodity-specific exposure to the seasonal, the constant ω determines

the cycle length, and the parameter θi indicates the peak of the seasonal term.

Second, for small values of λi, the loadings of the slope factor only slowly decline to-

wards zero as the maturity increases. While this helps to fit futures curves that are very

smooth, it becomes difficult to identify the level and slope factors when the term-structure

dimension is limited. By re-centering the loadings of the slope and curvature factors to zero

at the one year maturity, we make sure that the slope factor does not absorb movements of the

curve’s level. In this case, the level factor represents the price level of the one year futures

contract, while the slope and curvature factor have a similar interpretation as before. The

curve is given by

fi,t (τ) = li,t + si,t

[(
1− exp−λiτ

λiτ

)
−
(
1− exp−λi

λi

)]

+ ci,t

[(
1− exp−λiτ

λiτ
− exp−λiτ

)
−
(
1− exp−λi

λi
− exp−λi

)]

+ κi cos (ωgi (t, τ)− ωθi) + νi,t (τ) . (4.2)

5The loading for slope starts at 1 for τ → 0 and monotonically declines towards zero as the maturity τ
increases. The loading for ci,t is equal to 0 for τ → 0 and τ → ∞, and reaches a maximum value for maturity

τ∗, which depends on the value of λi.
6The mathematical expression for the expiration month is gi (t, τ) = t + τ − S

⌊
t+τ
S

⌋
, with S = 12 the

number of distinct “seasons” and the function ⌊x⌋ returns the largest integer not greater than x. Therefore,

gi (t, τ) results in the integers {0, 1, . . . , 11}. Our sample starts in January with t = 0 such that the integers

{0, 1, . . . , 11} represent the expiry months January, February, . . . , December.
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The constants we subtract from the slope and curvature loadings are commodity specific (due

to λi) but fixed over time. The constant only has an effect when λi becomes small as for large

values of λi is close to zero.

We investigate the comovement of commodity prices by linking the futures curves of

the individual commodities. This link across commodities is accomplished by decompos-

ing the level, slope, and curvature factors into latent market-wide, sector, and idiosyncratic

components. We define the factor decompositions

li,t = αL
i + βL

i Lmarket,t + γL
i Lsector,t + Li,t,

si,t = αS
i + βS

i Smarket,t + γS
i Ssector,t + Si,t, (4.3)

ci,t = αC
i + βC

i Cmarket,t + γC
i Csector,t + Ci,t,

where αX
i for X = {L, S, C} are constant terms, βX

i are loadings on the latent market-wide

component Xmarket,t, γ
X
i are loadings on sector components Xsector,t, and Xi,t are idiosyn-

cratic components. The (absolute) magnitude of the coefficients βX
i and γX

i determines the

degree of comovement across all commodities and across commodities within a specific sec-

tor, respectively.

We include sector components besides the market-wide components, because we may

expect that commodities in the same sector are more closely related than commodities across

different sectors. The three-way decomposition of the futures curve factors is reminiscent of

Kose, Otrok, and Whiteman (2003), who let business cycles in different countries depend on

global, regional, and an idiosyncratic part, but do not work in the Nelson-Siegel framework.

In contrast, Diebold, Li, and Yue (2008) use the Nelson-Siegel framework but decompose

the country yield factors only in a global and idiosyncratic component.

The market-wide, sector, and idiosyncratic components are assumed to have first-order

autoregressive dynamics




∆Ly,t

Sy,t

Cy,t


 =




φy
11 φy

12 φy
13

φy
21 φy

22 φy
23

φy
31 φy

32 φy
33







∆Ly,t−1

Sy,t−1

Cy,t−1


 +




ηLy,t

ηSy,t

ηCy,t


 , (4.4)
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where y = {market, sector, idiosyncratic}, and the disturbances ηy,t = (ηLy,t, η
S
y,t, η

C
y,t) are

normally distributed with covariance matrix Σηy . The choice for VAR(1) dynamics for the

components is in line with Diebold and Li (2006) and Diebold et al. (2008). One difference

is that we assume the level factors to be non-stationary and model them as first differences.

Duffee (2011) makes a similar assumption for yield data, while Hansen and Lunde (2013)

do the same for oil commodity futures.

To facilitate tractable estimation in our applications and to let all covariance come from

common factors, we use a restricted version of the model given by (4.2)-(4.4). That is, we do

not allow for cross-correlation of the shocks νi,t(τ) across maturities and commodities, and

for the shocks ηy,t across market-wide, sector, and idiosyncratic components. In other words,

all the covariance disturbance matrices Σν and Σηy are diagonal. Also the autoregressive

matrices in (4.4) are assumed to be diagonal.

As often with factor models, we need to make sure that our unobserved factors are

uniquely identified. Here, we have two identification issues as neither the signs nor the

scales of the market-wide and sector factors and their factor loadings are separately identi-

fied. We follow Sargent and Sims (1977) and Stock and Watson (1989) to identify the scales

by assuming that each disturbance variance is equal to a constant, i.e. Σηz(j, j) = 0.01 for

z = {market, sector} and j = 1, 2, 3.7 We identify the factor signs by restricting one of the

loadings for each of the market-wide and sector components to be positive.

4.2.2 Estimation

The model as given by (4.2)-(4.4) can be estimated either using a two-step approach (see,

e.g., Diebold et al., 2008) or a one-step approach (see, e.g., Diebold et al., 2006). In the

two-step approach one first extracts the latent factors li,t, si,t, and ci,t in (4.2) at each point

in time for each commodity and in the second step decomposes the extracted factors into

the market-wide, sector and idiosyncratic components. We use the one-step approach where

we cast the complete model in a state space representation and use the Kalman filter to

estimate all parameters as well as the latent factors and their decomposition simultaneously.

The advantage of this procedure is that it takes the estimation uncertainty in the extracted

factors into account in their decomposition. Furthermore we can use both time series and

7The value of 0.01 is in line with the estimated variance of the idiosyncratic factor’ disturbances, as will

become clear in the results section.
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cross-sectional observations to accurately estimate the parameters. To initialize the one-step

approach we can use estimation results of smaller versions of our full model, e.g. a variant

without market-wide or sector components.

The state space representation follows naturally from the model given by (4.2)-(4.4). The

measurement equation (4.A.1) is given in Appendix 4.A and based on (4.2) and (4.3). The

individual latent level li,t, slope si,t, and curvature ci,t factors do not appear in the measure-

ment equation, as we can link the observed futures prices fi,t(τ) directly to the unobserved

market-wide, sector and idiosyncratic components. The transition equations of the latent

states are given by (4.4).

Our model can be presented in stacked form if we treat the multivariate series as univari-

ate series, following Koopman and Durbin (2000). We can consider the futures prices sep-

arately since we assume that there is no cross-correlation across different commodities (all

commonality is absorbed by the factors). The univariate treatment gives us not only compu-

tational gains but also allows the number of term-structure observations Ji to be time-varying

and deal with our unbalanced panel. We collect all unknown coefficients in the parameter

vector Ψ, i.e. the commodity specific parameters in (4.2) and (4.3)
(
λi, κi, θi, α

X
i , β

X
i , γX

i

)
,

and the diagonal elements of the VAR coefficient matrices Φy, and the variance matrices

Σν and Σηy . Estimation of Ψ is based on the numerical maximization of the loglikelihood

function that is constructed via the prediction error decomposition.

4.3 Data

We study futures curves for 24 commodities. We consider the period January 1995 to

September 2012 and use all individual futures contracts that expire between January 1995

and December 2030.8 Our commodity selection is based on the composition of the S&P

Goldman Sachs Commodity Index (GSCI). The GSCI constituents can be split in five sec-

tors: energy, metals, softs, grains, and meats. An overview of the data (as obtained from

Thomson Reuters Datastream) is given in Table 4.1. All our analyses are done at the monthly

frequency, and for this we use month-end log settlement prices. All prices are standardized

8The start of the sample period is based on the availability of the metal commodities traded on LME, which

are only available from July 1993 onward.
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since the pricing grid of the commodities is quite diverse.9 To avoid liquidity issues we do

not consider price information of (i) contracts with a monthly return that equals zero, and

(ii) contracts in the expiration month. Furthermore, we filter out data errors by excluding

contracts that have abnormal returns compared to adjacent contracts. These filters lead to

exclusion of approximately 1.3% of the data.

Table 4.1 Commodity data overview

The table presents an overview of the 24 commodity futures series that are all present in the S&P Goldman

Sachs Commodity Index (GSCI). The sector classification is the same as GSCI. We consider the period January

1995 to September 2012. We show the number of cross-sectional contracts that are available in the first and

last year of our dataset. Furthermore we show the average annualized return and its volatility of both the first

maturing futures contract and the futures contract with 12 months to maturity.

# contracts 1st nearby contract 12M contract

Sector Commodity Begin End r̄ σ(r) r̄ σ(r)

Energy Brent crude oil 12 56 12.9% 32.3% 13.4% 19.3%
WTI crude oil 26 67 9.0% 32.8% 7.8% 17.1%

Gasoil 14 30 12.8% 32.8% 7.3% 20.7%
Heating oil 17 19 10.7% 34.8% 6.6% 25.2%
Natural gas 20 83 −20.6% 53.1% −1.4% 17.4%

Gasoline 10 24 18.8% 39.2% 7.6% 23.3%

Metals Gold 19 19 5.9% 16.4% 4.8% 15.9%
Silver 19 19 8.4% 30.6% 8.5% 29.8%

Aluminum 11 60 −4.9% 19.9% 7.8% 17.1%
Copper 11 60 7.5% 27.6% 20.5% 31.4%
Lead 11 29 4.7% 30.2% 10.8% 35.1%

Nickel 11 30 4.2% 36.4% 10.3% 33.7%
Zinc 11 30 −2.2% 27.6% 14.2% 29.7%

Softs Cocoa 8 10 0.6% 31.4% −4.6% 24.9%
Coffee 7 10 −5.3% 36.7% −5.6% 28.9%
Cotton 9 11 −6.9% 29.9% −2.0% 18.1%
Sugar 7 8 0.5% 38.2% 8.6% 18.6%

Grains Corn 8 14 −4.4% 29.0% 6.6% 12.6%
Soybeans 11 17 7.3% 26.6% 3.1% 17.8%

Chicago wheat 7 10 −10.2% 30.3% 4.4% 17.5%
Kansas wheat 5 9 −0.2% 29.3% 1.3% 21.5%

Meats Feeder cattle 8 8 1.5% 14.5% 4.2% 10.3%
Lean hogs 8 9 −7.2% 28.0% 7.4% 14.1%
Live cattle 7 7 0.5% 14.9% 3.8% 8.5%

Table 4.1 shows that the number of available contracts (term-structure observations)

varies per commodity. This is caused by differences in (i) the number of distinct expira-

tion months a year or (ii) the maximum time-to-maturity. Energy and industrial metal com-

9We standardize prices by setting the first nearby contract price in January 1995 of all commodities equal

to 100. All other prices are adjusted such that (time series and term structure) returns remain unchanged.
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modities have an expiring futures contract each month and also contracts with long dated

maturities. In contrast, agricultural commodities have a small number of active futures be-

cause they have only five to eight distinct expiry months a year. Furthermore, the maximum

maturity of these contracts is between one and two years, which is in line with the length

of their crop cycles and storability of these commodities. The variation in the number of

contracts and the maximum time to maturity indicate that it is important to use a commodity

specific decay parameter λi in (4.2). Besides differences in the number of available contracts

across commodities, we notice the same within commodities over time. Especially the num-

ber of contracts for energy and industrial metal commodities greatly increases over our 17

years sample. Even though our estimation methods can deal with this increase of available

contracts over time, our choice to use a fixed λ parameter limits the model flexibility. In-

stead of allowing λ to vary over time (see e.g. Koopman, Mallee, and Van der Wel, 2010),

we choose to introduce a maturity bound to exclude long-dated contracts. By limiting the

term-structure dimension variation within a commodity, we can keep using a fixed λ value.

Furthermore, these long-dated contracts are possibly less liquid and hence have more noisy

price information, which could otherwise affect our results. The introduced maturity bound

excludes on average 10% of our observations.10

The summary statistics in Table 4.1 show that there are large return differences both

across commodities and along their futures curves. The returns of the contracts range be-

tween −20.6% to 20.5% and are more extreme for the first nearby contract. The volatility of

the returns confirms this as in almost all cases the 12 month contract returns are less volatile

than the returns of the first nearby contract, also known as the Samuelson (1965) effect.

10Appendix 4.B provides additional details on the introduced maturity bound.



98 Common factors in commodity futures curves

Figure 4.1 Commodity futures curves

These figures gives insight in the data by showing the complete set of available futures prices for natural gas

and coffee. The figures show the commodity futures curves at each month in time.
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Figure 4.1 gives some insight in the data we use by showing the complete set of available

futures prices for natural gas and coffee. For both commodities we observe that the shape

of the futures curve varies substantially over time, with alternating periods of pronounced

contango and backwardation especially for natural gas.11 Both futures curves also clearly

show the large increase in the general price level during the period 2005-2008. A notable

difference between these commodities is that the futures curve of natural gas displays a

strong periodic pattern with spikes occurring for expiry months during the winter, while the

curve of coffee does not show any signs of seasonality. Finally, Figure 4.1 illustrates that

the number of available contracts varies over time. For both natural gas and coffee (and in

fact also for most other commodities), contracts with longer maturities only have become

available in the most recent years of our sample period.

4.4 Individual commodity results

Before we estimate the full market-wide state space model, we start with analyzing the indi-

vidual commodities separately. We apply our Nelson-Siegel set-up to each individual com-

modity, i.e. we leave out the market-wide and sector components in (4.3). We decide on the

exact model specification to be used for each commodity based on the parameter estimates

and the extracted factors. Furthermore, we show that our framework is suitable for modeling

commodity futures data and compare our unobserved level and slope factors with the latent

spot price and convenience yield in the Schwartz (1997) three-factor model.

4.4.1 Estimation results individual factors

In Section 4.2, we presented the model in general form, where all commodity curves are

built up from a level, slope, and curvature factor combined with a seasonal term. However,

not all commodity curves may show dynamics for which the flexibility of three factors is

needed. Furthermore, not necessarily all commodities display periodic behavior. Based on

the features of each specific commodity we decide on the number of factors to include and

whether to include the seasonal term or not.

11An upward sloping commodity futures curve is said to be in contango, while a downward sloping curve is

in backwardation.
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Table 4.2 Individual commodity state space results

The table presents the estimation results and the fit of the individual commodity state space models. We show

the final specification we use for each individual commodity, whereby 2F stands for a model with only a level

and slope factor, 3F also includes a curvature factor, and 3FS adds a seasonal correction term. The model fit is

shown in terms of R2. The estimated parameter values for the decay parameter λ, the exposureκ to the seasonal

term, and the most expensive contract expiry month θ, where θ = 0 corresponds to January. The last column

presents the volatility of errors σ(ν). Standard errors of all estimates are provided between brackets. For

models that do not contain a seasonal component, the κ and θ parameters are irrelevant, which is represented

by a horizontal dash.

Sector Commodity Model R2 λ κ θ σ(ν)

Energy Brent crude oil 3F 99.99% 1.144 (0.01) - - - - 0.65%
WTI crude oil 3F 99.99% 1.272 (0.01) - - - - 0.79%

Gasoil 3FS 99.98% 1.688 (0.04) 0.92 (0.02) 0.4 (0.00) 1.03%
Heating oil 3FS 99.97% 3.600 (0.03) 2.80 (0.01) 0.8 (0.00) 1.21%
Natural gas 3FS 99.40% 1.137 (0.02) 6.38 (0.01) 0.9 (0.00) 3.56%

Gasoline 3FS 99.94% 3.285 (0.04) 4.78 (0.01) 6.2 (0.00) 1.52%

Metals Gold 2F 99.99% 0.011 (6.36) - - - - 0.44%
Silver 2F 99.99% 0.026 (1.79) - - - - 0.54%

Aluminum 2F 99.91% 0.187 (0.04) - - - - 0.77%
Copper 2F 99.97% 0.111 (0.10) - - - - 1.13%
Lead 2F 99.99% 0.324 (0.13) - - - - 0.57%

Nickel 2F 99.98% 0.095 (0.28) - - - - 0.91%
Zinc 2F 99.97% 0.059 (0.19) - - - - 0.69%

Softs Cocoa 3F 99.97% 1.413 (0.03) - - - - 0.58%
Coffee 3F 99.98% 1.468 (0.03) - - - - 0.57%
Cotton 3FS 99.74% 3.482 (0.03) 0.91 (0.06) 5.9 (0.01) 1.21%
Sugar 3FS 99.91% 3.272 (0.04) 1.13 (0.05) 2.5 (0.01) 1.32%

Grains Corn 3FS 99.81% 2.743 (0.04) 1.80 (0.03) 5.7 (0.00) 1.56%
Soybeans 3FS 99.89% 3.350 (0.03) 1.30 (0.03) 5.7 (0.00) 1.19%

Chicago wheat 3FS 99.84% 1.496 (0.17) 1.53 (0.04) 2.0 (0.00) 1.51%
Kansas wheat 3FS 99.86% 2.461 (0.08) 1.44 (0.05) 2.2 (0.01) 1.35%

Meats Feeder cattle 3FS 99.91% 5.221 (0.07) 0.73 (0.07) 10.0 (0.01) 0.71%
Lean hogs 3FS 97.80% 4.109 (0.07) 7.78 (0.02) 6.1 (0.00) 3.09%
Live cattle 3FS 99.60% 4.487 (0.10) 2.32 (0.03) 1.9 (0.00) 1.29%
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Figure 4.2 Model fit commodity futures curves

These figures show example of the fit of our individual models. The crosses represent the observed price data

while the lines correspond to the fitted values of our models. The raw prices are first standardized and thereafter

we apply a log-transformation. The horizontal axis shows the time to maturity (τ) in years.
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(b) Gold November 2008
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(c) WTI crude oil January 2000
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(d) WTI crude oil November 2008
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(f) Natural gas November 2008
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Table 4.2 presents the final model choice and the estimated parameter values for each

of the commodities. The final model choice is given in column 3 and is based on several

criteria.12 First, we compare the results of three factor models with and without seasonal

term, to see if the exposure κ to the seasonal correction is significantly different from zero.

The 13 commodities with the label “3FS” have highly significant κ parameters, ranging

between 0.73 and 7.78. Most of these commodities have a clear crop cycle, i.e. a seasonal

supply, while others, like natural gas, have well-known seasonal demand. We include three

factors for all commodities with periodic behavior because even after the seasonal correction

their curves display a large variety of shapes. Second, we need to decide if we include a

curvature factor for the remaining 11 commodities. Based on Akaike Information Criterion

or Bayesian Information Criterion values, we should choose to include all three factors.

However, low λ values for metal commodities lead to slope and curvature loadings that are

highly correlated, which lead to identification problems. Hence, we decide to exclude the

curvature factor for the metal commodities.

The fourth column in Table 4.2 shows the in-sample fit of our models. With the exception

of lean hogs all R2 values are above 99.7%, which supports the use of the Nelson-Siegel

framework for commodity futures prices. Figure 4.2 shows representative examples of the

model fit for three of the 24 commodities. Subfigures A and B correspond to the gold futures

curve, Subfigures C and D correspond to the curve of WTI crude oil, while Subfigures E

and F correspond to natural gas data. The crosses represent the observed price data while

the lines correspond to the fitted values of our models. Note that the presented figures are

snapshots at one particular point in time. For each of these three commodities, we use a

different version of our model. The futures curves of gold are almost straight lines. Hence,

we can easily fit the prices with only a level and slope factor and we do not need a curvature

factor or a seasonal term. The futures curves of WTI crude oil do not show seasonal patterns

but do have a curved shape. In a static case, it would be possible to fit this curve with just

a level and a slope factor. However, curves change over time and a two factor model is not

flexible enough to cope with these changes. Below in Figure 4.4 and 4.5 we show that a three

factor model is more suitable. The natural gas futures curve displays a pronounced seasonal

pattern. Therefore, we use all three factors (level, slope and curvature) plus a seasonal term.

In general our fitted values are close to the real prices, with some exceptions at the short end

12Appendix 4.C provides more detailed results.
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of the curve. The inclusion of the seasonal term seems an appropriate solution to model the

periodic behavior.

The remaining columns of Table 4.2 show the parameter estimates with corresponding

standard errors. The decay parameter λ determines the shape of the slope and curvature

loadings. Large values of λ lead to quickly declining slope loadings and move the peak

of the curvature loadings to the short-end of the curve. When λ = 2, the slope loading

starts at 0.49, it declines to zero for τ = 1 (by construction), and is equal to −0.19 and

−0.33, for τ = 2 and τ = 5 years, respectively. The curvature loading peaks at 11 months

maturity. By contrast, when lambda is equal to 0.01 the slope loading starts at 0.005, it

gradually declines towards zero for τ = 1, and is equal to −0.005 and −0.020, for τ = 2

and τ = 5 years, respectively. The curvature loadings are almost a mirror image of the

slope loadings, which is why we exclude the third factor for the metal commodities. The

maximum curvature loading (when lambda is equal to 0.01) is achieved for τ = 179.33, i.e.

179 years and 4 months, which is way beyond the highest maturity that is included in our

sample. The decay parameter λ varies substantially across commodities, ranging from 0.011

for gold to 5.2 for feeder cattle. A value of 0.010 is the lowest value we allow to prevent that

the loadings of the level and slope factor become too similar. The variation in λ is both due to

differences in curve shapes and maximum contract maturity. The effect of different futures’

curves shapes on λ becomes clear when we compare results for commodities with a similar

maximum contract maturity. Gasoil and soybeans both have futures up to 2.5 years until

maturity, while their λ values differ greatly (1.688 versus 3.350, respectively). Related to the

seasonal correction term are the exposure κ and the location parameter θ. The θ estimates

imply that gasoil, heating oil and natural gas contracts are most expensive between January

and February, while most agricultural commodities are more expensive two months before

their harvest. The last column shows the volatility of the errors. The volatilities of the errors

are small, especially compared to the highly volatile observed prices.
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Figure 4.3 Individual models - extracted commodity level factors

These figures show the extracted level factors based on individual models applied to all 24 commodities. Each

subfigure shows the estimated level factors for the commodities of a specific sector.
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Figure 4.4 Individual models - extracted commodity slope factors

These figures show the extracted slope factors based on individual models applied to all 24 commodities. Each

subfigure shows the estimated slope factors for the commodities of a specific sector.
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(b) Slope - metals
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(c) Slope - softs
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Figure 4.5 Individual models - extracted commodity curvature factors

These figures show the extracted curvature factors based on individual models applied to all 24 commodities.

Each subfigure shows the estimated curvature factors for the commodities of a specific sector.
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Figures 4.3, 4.4, and 4.5 show the extracted level, slope, and curvature factors per com-

modity sector. In general, we see a similar pattern in all level factors. Until 2004 they are

relatively constant, then they increase until they peak in 2008, whereafter they again remain

constant. The level factors within the energy, metals and grains sectors seem to comove

the most. The slope factors in Figure 4.4 show some peaks and troughs. Especially for the

energy commodities we see a sharp decline in 2008 and a gradual increase thereafter. As

the Nelson-Siegel loading on the slope factor in (4.2) is a decreasing function of maturity,

a negative factor estimate signifies an upward sloping (i.e. contangoed) futures curve. This

implies that in 2008 all the backwardated energy futures curves quickly went into contango,
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and only gradually returned back to being backwardated. Last, the curvature factors in Figure

4.5 show again some degree of comovement. Note that the metal commodities are missing,

as we find that two factors are enough to capture their curve dynamics. Of the four sectors

the energy commodities have the strongest comoving curvature factors. Based on the plots

of the individual factors, there seems to be commonality across commodities. The advantage

of our framework is that we can easily accommodate this.13

4.4.2 Comparison with the Schwartz (1997) three-factor model

Existing models like in Gibson and Schwartz (1990), Schwartz (1997) and Schwartz and

Smith (2000) all begin by assuming a functional form for a set of underlying state variables.

The futures curve can be derived from these state variables under no arbitrage conditions.

Even though our framework is different, both approaches assume that commodity prices are

driven by unobserved factors. Hence it is possible that the extracted unobserved factors from

both methods are similar, e.g. through factor rotation. In this section we compare the results

of our Nelson-Siegel type model with the three-factor model described in Schwartz (1997).

Extending the model of Gibson and Schwartz (1990), Schwartz (1997) assumes that com-

modity prices are driven by three stochastic factors namely the commodity spot price, the

convenience yield and the interest rate.14 Variations on this approach are given by many sub-

sequent papers on commodity prices (see among others Schwartz and Smith, 2000; Casassus

and Collin-Dufresne, 2005). Both the log spot price and the convenience yield are assumed

to be mean reverting. Also the instantaneous interest rate is assumed to follow a mean re-

verting process as in Vasicek (1977).

Schwartz (1997) estimates a simplified version of his three factor model by assuming

that the interest rate process is independent of both commodity processes. He first estimates

the interest rate parameters and then plugs these into the model.15 The loadings on the

13As a preliminary approach we apply Principal Component Analysis (PCA) both on all commodities and on

subgroups that correspond to the commodity sectors. We find commonality across all commodities and within

subgroups. Detailed results are shown in Appendix 4.C
14Brennan (1991) defines the convenience yield as “the flow of services which accrues to the owner of a

physical inventory but not to the owner of a contract for future delivery”
15For the complete model specification we refer to page 933 in Schwartz (1997). The interest rate process

is estimated separately from the spot price and convenience yield processes, and is based on an observed 3-

month Treasury Bill series. Essentially, this simplified version contains only two unobserved states, while

still allowing for a time-varying interest rate. When estimating his model we follow the same estimation

methodology.
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unobserved log spot price and the instantaneous convenience yield show great resemblance

with the loadings on our level and slope factors.

Figure 4.6 shows the unobserved level factor of our model and the unobserved spot price

of the three-factor Schwartz (1997) model, while Figure 4.7 compares our slope factor with

the unobserved convenience yield. Both models are estimated using the same dataset. The

similarities are very clear in both figures. The level factor and the spot price both show, in

general, an increasing trend with a pronounced dip around the recent financial crisis. The

slope and convenience yield factors show more peaks and troughs, which implies upward and

downward sloping futures curves. The resemblance of all lines is confirmed by the pair-wise

correlations. The average (median) correlation is 0.67 (0.79) between the level factor and the

spot price, and 0.76 (0.86) between the slope factor and the convenience yield, respectively.

Concluding, our statistical factors level and slope are strongly related to the spot price and

convenience yield.

Although our level and slope factors show great resemblance with Schwartz’ factors, we

have an additional third factor, namely curvature. This gives us additional flexibility to better

fit the observed futures prices. In terms of R2 we increase the model fit by 5.6%.16 When we

examine the residuals of the Schwartz (1997) model, we find that for most commodities there

is a strong common factor present. These common factors have on average a correlation of

0.20 with our corresponding curvature factors.

16Additional comparison results are presented in Appendix 4.D.



Figure 4.6 Comparison level factor and spot price

These figures show the unobserved level factor of our Nelson-Siegel type models and the unobserved spot price series of the three-factor Schwartz (1997) model. The blue

line is the unobserved spot price series and the orange line is our level factor.
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Figure 4.7 Comparison slope factor and convenience yield

These figures show the unobserved slope factor of our Nelson-Siegel type model and the unobserved convenience yield series of the three-factor Schwartz (1997) model.

The blue line is the unobserved convenience yield and the orange line is our slope factor.
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4.5 Joint model for commodity curves

In this section we return to the market-wide state space model given by (4.2)-(4.4). First, we

discuss the commonality across commodities and investigate the importance of the various

components using variance decompositions. Thereafter, we investigate the unobserved fac-

tors’ dynamics and give an interpretation to the unobserved common components. We end

this section with the examination of possible variation in the degree of commonality over

time and the importance of term structure information.

4.5.1 Commonality results

When we estimate our full model, we fix the λ, κ, and θ parameters to their estimates based

on commodity specific data. This reduces the computational burden as parts of the measure-

ment equation are now constant. All other parameters are estimated using the Kalman filter

and maximum likelihood.
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Table 4.3 Joint model factor loadings

The table presents the estimated loadings on various components in our joint model. Each level, slope, and curvature factor is decomposed in a constant part α, a market-wide

part with loading β, a sector part with loading γ, and a commodity specific part. Standard errors of all estimates are provided between brackets. The commodity specific

variance estimates, σ2
νi

, are multiplied by 1,000 for readability reasons. Note that we do not include a curvature factor for the metal commodities, which is represented by a

horizontal dash.

Level Slope Curvature Variance

Commodity α β γ α β γ α β γ σ2
νi

Brent crude oil 4.59 (0.06) 0.81 (0.09) 1.79 (0.09) 0.10 (0.08) 2.99 (0.03) −0.90 (0.43) 0.06 (0.07) 0.11 (4.23) 3.88 (0.20) 0.01 (0.55)
WTI crude oil 4.58 (0.06) 0.78 (0.15) 1.79 (0.10) 0.08 (0.08) 2.92 (0.18) −0.70 (0.43) −0.02 (0.06) 0.36 (0.79) 3.26 (0.23) 0.02 (0.34)

Gasoil 4.70 (0.06) 0.78 (0.15) 1.82 (0.09) 0.03 (0.08) 2.83 (0.17) −0.10 (0.42) 0.05 (0.04) 1.32 (0.53) 1.81 (0.29) 0.06 (0.35)
Heating oil 4.69 (0.06) 0.75 (0.15) 1.78 (0.09) 0.02 (0.07) 2.44 (0.21) 1.25 (0.38) 0.07 (0.05) 1.34 (0.54) −0.54 (0.34) 0.12 (0.24)
Natural gas 4.84 (0.07) 0.46 (0.16) 0.81 (0.09) −0.06 (0.11) 1.51 (0.39) 1.43 (0.15) 0.19 (0.13) 0.83 (0.86) 0.54 (0.64) 1.15 (0.04)

Gasoline 4.57 (0.06) 0.79 (0.15) 1.79 (0.10) 0.08 (0.06) 2.10 (0.18) 0.51 (0.36) 0.05 (0.03) −0.95 (0.60) 0.12 (0.40) 0.17 (0.23)

Gold 4.66 (0.05) 0.50 (0.10) 0.40 (0.10) −6.78 (1.67) −3.09 (1.34) −2.51 (1.61) - - - - - - 0.02 (0.59)
Silver 4.71 (0.08) 1.12 (0.17) 0.90 (0.16) −2.12 (1.51) −1.60 (0.83) 1.30 (0.98) - - - - - - 0.02 (0.53)

Aluminum 4.60 (0.05) 0.49 (0.11) 1.06 (0.04) −0.15 (0.19) 0.30 (0.33) 3.26 (0.05) - - - - - - 0.03 (0.29)
Copper 4.50 (0.07) 0.78 (0.16) 1.81 (0.13) 0.60 (0.40) 0.47 (0.50) 3.77 (0.57) - - - - - - 0.09 (0.17)
Lead 4.63 (0.08) 0.60 (0.17) 1.41 (0.15) 0.05 (0.20) −0.86 (0.53) 3.08 (0.55) - - - - - - 0.02 (0.65)

Nickel 4.62 (0.09) 0.69 (0.21) 1.66 (0.19) 0.65 (0.55) 2.26 (1.18) 8.71 (1.22) - - - - - - 0.04 (0.36)
Zinc 4.65 (0.07) 0.65 (0.16) 1.67 (0.13) −0.34 (0.86) −0.34 (1.34) 13.57 (1.49) - - - - - - 0.04 (0.35)

Cocoa 4.67 (0.08) 0.78 (0.16) 0.37 (0.25) −0.20 (0.08) −0.17 (0.12) 0.17 (0.13) −0.17 (0.03) −0.17 (0.33) −0.29 (0.37) 0.02 (1.07)
Coffee 4.64 (0.08) 0.85 (0.18) 0.70 (0.21) −0.19 (0.11) −0.46 (0.25) 3.43 (0.03) −0.11 (0.06) −0.58 (0.53) 0.83 (0.56) 0.01 (1.34)
Cotton 4.42 (0.06) 1.02 (0.13) 0.54 (0.25) −0.06 (0.13) −0.10 (0.21) −0.31 (0.22) −0.10 (0.08) −0.67 (0.58) 4.29 (4.54) 0.17 (0.31)
Sugar 4.50 (0.07) 0.61 (0.15) 0.36 (0.21) 0.05 (0.07) −0.13 (0.27) 0.20 (0.27) 0.06 (0.08) −1.54 (0.64) 0.23 (0.79) 0.17 (0.37)

Corn 4.70 (0.06) 1.65 (0.11) 0.21 (0.26) −0.10 (0.08) 0.04 (0.21) 1.60 (0.07) 0.06 (0.05) −0.57 (0.72) 2.79 (0.08) 0.26 (0.24)
Soybeans 4.67 (0.06) 1.48 (0.11) 0.14 (0.12) 0.03 (0.06) 0.05 (0.16) 0.90 (0.17) 0.05 (0.05) −1.93 (0.66) 2.49 (0.56) 0.15 (0.29)

Chicago wheat 4.53 (0.06) 1.34 (0.13) 1.42 (0.10) −0.07 (0.12) 0.08 (0.27) 3.72 (0.22) 0.16 (0.05) 2.08 (0.71) 3.04 (0.52) 0.28 (0.27)
Kansas wheat 4.52 (0.06) 1.32 (0.13) 1.42 (0.10) −0.05 (0.09) 0.10 (0.21) 2.61 (0.18) −0.00 (0.05) 2.78 (0.80) 3.73 (0.58) 0.23 (0.32)

Feeder cattle 4.58 (0.03) −0.02 (0.07) 0.86 (0.03) −0.01 (0.02) −0.02 (0.11) 1.26 (0.09) 0.02 (0.02) 0.93 (0.33) 0.87 (0.17) 0.03 (0.93)
Lean hogs 4.71 (0.04) 0.43 (0.10) 0.34 (0.09) −0.04 (0.07) 0.69 (0.33) 0.86 (0.38) 0.14 (0.11) 0.55 (1.28) −1.68 (1.17) 1.09 (0.13)
Live cattle 4.48 (0.02) 0.34 (0.05) 0.61 (0.04) −0.03 (0.03) −0.06 (0.15) 1.37 (0.25) −0.03 (0.03) 1.03 (0.48) 3.91 (0.39) 0.17 (0.39)
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The commonality across commodities is expressed by their loadings on market-wide and

sector components, see also (4.3). Table 4.3 shows for each commodity level, slope, and

curvature factor the estimated constant α, the loading on the market-wide component β, and

the loading on the sector component γ. The α-parameters make sure that the idiosyncratic

components have mean zero. All α level estimates are between 4 and 5, due to our standard-

ization procedure, and are highly significant. The α estimates corresponding to slope and

curvature are almost all not significantly different from zero. Two noteworthy exceptions are

gold and cocoa. The negative α parameter for gold is in line with our expectations because

its futures curve is often in contango.

All loadings on the market-wide level component (β’s) are positive (or not significantly

different from zero), which indicates that there exists a link between the levels of different

commodity prices. The loadings on the market-wide slope component are positive for en-

ergy commodities, negative for most of the metal commodities, and close to zero for all other

commodities. The loadings on the market-wide curvature component are all very different,

ranging from -1.93 to 2.78. Most of them are not significantly different from zero. The load-

ings on the sector components give more insight in intra-sector commonality. In general,

all sector loadings have the same sign within the corresponding sector, which implies com-

monality. The few slope and curvature loadings that have opposite signs are not significant.

In line with previous results, all loadings on common components point in the direction of

commonality.

The last column of Table 4.3 shows the variance estimates of the measurement equation

errors. We assume that these variances are commodity specific but within each commodity

they are the same for all different contract maturities. We believe this assumption is appro-

priate because the factor structure can already account for volatility differences along the

term-structure dimension due to the time-to-maturity dependent factor loadings. Almost all

estimated variances are well below the variances of the factor disturbances.

4.5.2 Importance of common factors

The loading estimates indicate that there is commonality across commodities. Using variance

decompositions we investigate the importance of the common components. We decompose

the variation in commodity level, slope, and curvature factors into parts driven by the market-
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wide, sector, and idiosyncratic components. As mentioned in Kose, Otrok, and Whiteman

(2003) and Diebold, Li, and Yue (2008), the market-wide, sector, and commodity-specific

components may be correlated as they are extracted from a finite sample. Hence we orthog-

onalize the extracted components using a Cholesky decomposition to ensure that they add

up.17 Then, we can use (4.3) to write

var (∆li,t) =
(
βL
i

)2
var (∆Lmarket−wide,t) +

(
γL
i

)2
var (∆Lsector,t) + var (∆Li,t) ,

var (si,t) =
(
βS
i

)2
var (Smarket−wide,t) +

(
γS
i

)2
var (Ssector,t) + var (Si,t) , (4.5)

var (ci,t) =
(
βC
i

)2
var (Cmarket−wide,t) +

(
γC
i

)2
var (Csector,t) + var (Ci,t) .

For the level factors we decompose the variances of the first differenced series as the variance

of a non-stationary series is undefined. The fraction of, e.g., the WTI crude oil level factor

variance driven by the market-wide component is given by

(
βL
WTI

)2
var (∆Lmarket−wide,t)

var (∆lWTI,t)
.

The fractions of explained variance per component are shown in Table 4.4. The market-

wide level component explains on average 23.3% of the variance of the commodity level

factors, while the sector component explains 38.6%. However, the differences across com-

modities are large. For example, in the case of feeder cattle the market-wide component

explains close to nothing of its level variation while for corn the market-wide component

explains 72.1% of its variation. Overall, the market-wide component explains quite some

variation of the silver, softs and grains levels. The energy sector component explains around

65% of all energy commodities, except natural gas. Similar observations can be made for

the metal commodities (precious metals versus industrial metals) and the grain commodities

(wheat versus corn and soybeans).

17We put the market-wide component first, followed by the sector component, and last the idiosyncratic

component.
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Table 4.4 Variance decompositions

The table presents the percentage of explained variation of the level, slope and curvature factors by the market-

wide, sector, and idiosyncratic components. As the level factors are non-stationary, their analysis is done on

first differences.

∆Level Slope Curvature

Commodity Market Sector Idio. Market Sector Idio. Market Sector Idio.

Brent crude oil 13.5% 65.8% 20.7% 83.2% 7.5% 9.3% 0.1% 93.7% 6.2%
WTI crude oil 12.6% 66.6% 20.8% 85.1% 4.9% 10.0% 1.1% 90.4% 8.5%

Gasoil 12.3% 67.3% 20.5% 88.8% 0.1% 11.1% 28.8% 54.6% 16.6%
Heating oil 11.9% 66.9% 21.3% 69.8% 18.4% 11.7% 58.0% 9.5% 32.5%
Natural gas 11.2% 35.1% 53.7% 43.0% 38.4% 18.6% 34.5% 15.0% 50.5%

Gasoline 12.9% 66.3% 20.8% 77.8% 4.5% 17.7% 47.1% 0.8% 52.1%

Gold 17.9% 11.6% 70.5% 56.8% 37.4% 5.8% - - -

Silver 40.6% 26.7% 32.7% 50.1% 32.7% 17.2% - - -

Aluminum 10.2% 47.9% 42.0% 0.8% 90.7% 8.5% - - -

Copper 12.3% 67.1% 20.6% 1.5% 92.2% 6.3% - - -

Lead 10.6% 59.5% 29.8% 6.7% 84.4% 8.9% - - -

Nickel 11.4% 64.9% 23.7% 6.3% 92.5% 1.2% - - -

Zinc 10.0% 66.3% 23.7% 0.1% 99.4% 0.5% - - -

Cocoa 34.6% 8.0% 57.4% 2.7% 2.8% 94.4% 2.6% 7.5% 89.9%
Coffee 32.7% 22.0% 45.4% 1.6% 90.7% 7.7% 16.8% 34.2% 49.1%
Cotton 44.3% 12.6% 43.1% 1.0% 9.0% 90.0% 2.3% 92.7% 5.0%
Sugar 24.6% 8.7% 66.7% 1.5% 3.8% 94.7% 69.2% 1.6% 29.3%

Corn 72.1% 1.2% 26.7% 0.0% 71.6% 28.4% 3.6% 85.4% 11.0%
Soybeans 68.2% 0.6% 31.2% 0.1% 44.6% 55.3% 34.1% 56.8% 9.1%

Chicago wheat 37.2% 41.9% 20.9% 0.0% 93.2% 6.8% 29.7% 63.4% 6.9%
Kansas wheat 36.3% 42.7% 21.0% 0.1% 87.0% 12.9% 34.2% 61.4% 4.4%

Feeder cattle 0.0% 42.4% 57.6% 0.0% 61.2% 38.8% 32.9% 28.8% 38.3%
Lean hogs 14.3% 8.7% 76.9% 21.5% 33.4% 45.1% 7.3% 68.6% 24.1%
Live cattle 7.7% 24.6% 67.7% 0.1% 65.3% 34.6% 6.1% 88.1% 5.8%

The variance decomposition results for the slope factor are again diverse. The market-

wide, sector, and idiosyncratic components explain on average 24.9%, 48.6%, and 26.5%,

respectively, of the commodities’ slope factors. The market-wide component explains more

than 70% of the energy commodities slope variation, with the exception of natural gas. Also

the precious metals are driven by a common market component for more than 50%. All other

slope factors are mostly explained by a sector component, except for cocoa, cotton, sugar and

soybeans.

The market-wide curvature component explains on average 24.0% of the commodities’

curvature factors, although there is no clear pattern in these results. The energy sector com-

ponent is mostly tilted towards crude oils and gasoil. For the soft commodities the idiosyn-
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cratic component explain on average most of the variation, while for the grains and meats it

is the sector curvature component.

The variance decomposition results indicate that 61.9% of the level variation, 73.5% of

the slope variation and 74.2% of curvature variation is explained by common factors. In all

three cases the market-wide component explains a quarter of the variation and the remainder

is due to sector commonality.

4.5.3 Factor dynamics

Now we have established that there are common factors that drive commodities futures

curves and that these common factors explain a large part of individual commodities varia-

tions, we focus on the dynamics of these factors. Table 4.5 shows the estimates related to the

state equations in (4.4). Recall that we have assumed that both the autoregressive coefficient

matrices and the covariance matrices are diagonal. Furthermore, the market-wide, sector

and idiosyncratic level components are assumed to be non-stationary. We model their first

differences as an AR(1) process. The first three columns in Table 4.5 show the autoregres-

sive coefficients and the last three columns show the variances of the factor disturbances.

Focusing on the market-wide and sector components, all φ estimates are positive (except for

one insignificant grains sector parameter). The slope factors are more persistent than the

curvature components. The parameter estimates for the idiosyncratic factors are in line with

the corresponding common factors. Most of the level φ coefficients are not significantly dif-

ferent from zero, which implies that levels evolve as pure random walk processes. The AR

parameters of the slope factors range between 0.61 and 0.99. The only exception is heating

oil with an AR(1) parameter of −0.33. The curvature factors show similar coefficients as

those of the slope factors but are slightly less persistent.



Table 4.5 Joint model factor dynamics

The table presents the dynamics of the unobserved states by showing the parameter estimates of the state equations. The autoregressive parameters are the diagonal elements

of the Φ-matrices. All level factors are modeled in first differences due to their non-stationary behavior. The disturbance variances correspond to elements in Σηy
, which are

multiplied by 1,000 for readability reasons. Note that the disturbance variances of the market-wide and sector components are fixed for identifications purposes. Note that

we do not include a curvature factor for the metal commodities, which is represented by a horizontal dash.

Autoregressive parameters (φ) Disturbance variances

Sector Factor ∆Level Slope Curv. ∆Level Slope Curv.

Market-wide 0.11 (0.05) 0.93 (0.46) 0.78 (0.26) 1.00 - 1.00 - 1.00 -

Energy 0.12 (0.04) 0.79 (0.22) 0.88 (0.29) 1.00 - 1.00 - 1.00 -

Metals 0.12 (0.05) 0.96 (0.94) - - 1.00 - 1.00 - - -

Softs 0.45 (0.28) 0.93 (0.53) 0.87 (0.63) 1.00 - 1.00 - 1.00 -
Grains −0.12 (0.06) 0.94 (0.54) 0.88 (0.35) 1.00 - 1.00 - 1.00 -

Meats 0.05 (0.05) 0.88 (0.38) 0.72 (0.18) 1.00 - 1.00 - 1.00 -

Energy Brent crude oil −0.07 (0.09) 0.92 (0.75) 0.83 (3.20) 0.11 (1.95) 0.20 (6.64) 0.03 (66.53)
WTI crude oil 0.11 (0.07) 0.82 (0.32) 0.83 (0.23) 0.16 (1.39) 0.72 (0.97) 4.81 (0.23)

Gasoil −0.60 (0.15) 0.77 (0.20) 0.64 (0.14) 0.16 (1.46) 1.62 (0.50) 13.23 (0.19)
Heating oil −0.53 (0.16) −0.33 (0.37) 0.83 (0.24) 0.08 (2.72) 0.28 (6.88) 12.52 (0.21)
Natural gas −0.03 (0.05) 0.91 (0.40) 0.88 (0.32) 3.92 (0.22) 19.60 (0.12) 53.52 (0.11)

Gasoline 0.06 (0.06) 0.61 (0.12) 0.60 (0.11) 0.35 (0.88) 5.82 (0.21) 34.36 (0.12)

Metals Gold −0.09 (0.05) 0.98 (2.10) - - 1.73 (0.33) 299.85 (86.52) - -

Silver −0.24 (0.06) 0.99 (2.91) - - 4.96 (0.20) 133.71 (0.09) - -

Aluminum 0.01 (0.06) 0.85 (0.40) - - 0.98 (0.52) 11.67 (0.21) - -

Copper 0.09 (0.08) 0.97 (1.05) - - 1.10 (0.72) 34.54 (0.12) - -

Lead 0.04 (0.05) 0.82 (0.23) - - 3.31 (0.26) 51.64 (0.09) - -

Nickel −0.02 (0.05) 0.86 (0.32) - - 5.23 (0.20) 205.89 (0.20) - -

Zinc −0.07 (0.07) 0.91 (0.53) - - 1.67 (0.45) 200.08 (0.25) - -

Softs Cocoa −0.14 (0.06) 0.96 (0.81) 0.80 (0.21) 5.05 (0.21) 2.80 (0.28) 8.37 (0.21)
Coffee −0.14 (0.07) 0.96 (0.76) 0.82 (0.22) 5.70 (0.23) 0.03 (31.22) 20.69 (0.15)
Cotton −0.12 (0.09) 0.96 (0.81) 0.82 (0.72) 2.17 (0.48) 7.85 (0.18) 6.87 (9.71)
Sugar 0.09 (0.05) 0.88 (0.30) 0.85 (0.26) 3.77 (0.24) 13.97 (0.13) 28.52 (0.14)

Grains Corn 0.04 (0.09) 0.92 (0.47) 0.76 (0.19) 0.66 (1.26) 5.82 (0.22) 16.20 (0.21)
Soybeans −0.19 (0.08) 0.92 (0.47) 0.81 (0.32) 1.14 (0.60) 4.40 (0.23) 7.71 (0.79)

Chicago wheat −0.25 (0.68) 0.89 (4.13) 0.88 (0.53) 0.01 (88.34) 0.03 (88.67) 2.79 (1.54)
Kansas wheat 0.20 (0.09) 0.87 (0.32) 0.92 (1.63) 0.15 (2.77) 1.60 (0.61) 0.73 (12.67)

Meats Feeder cattle 0.28 (0.21) 0.81 (0.43) 0.75 (0.18) 0.04 (24.97) 0.53 (5.93) 6.37 (0.28)
Lean hogs 0.12 (0.05) 0.88 (0.32) 0.80 (0.22) 1.26 (0.47) 16.42 (0.15) 104.90 (0.13)
Live cattle 0.29 (0.16) 0.82 (0.28) 0.69 (1.63) 0.02 (29.99) 1.94 (1.08) 0.18 (89.28)
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The right-hand side of Table 4.5 shows the estimated variances of the factor disturbances.

The variances of the common factor disturbances are fixed for identification purposes. The

estimates of the idiosyncratic disturbance variance cannot be compared across commodities

or factors because the magnitude of the factor loadings is not the same. This can be seen

in Appendix 4.A Equation (4.A.1) where all idiosyncratic states are premultiplied by the

matrix A, which contains the commodity specific factor loadings. For metal commodities

the λi parameter is small, which results in close to zero loadings on the slope factor for most

maturities and hence seemingly large error variances.



4.5 Joint model for commodity curves 119

Figure 4.8 Joint model - extracted commodity level factors

These figures show the extracted level factors of our joint model estimated using all 24 commodities. Subfigure

A shows the market-wide and sector components. Subfigures B-F show the estimated idiosyncratic level factors

for the commodities of a specific sector.
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Figure 4.9 Joint model - extracted commodity slope factors

These figures show the extracted slope factors of our joint model estimated using all 24 commodities. Subfigure

A shows the market-wide and sector components. Subfigures B-F show the estimated idiosyncratic slope factors

for the commodities of a specific sector.
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Figure 4.10 Joint model - extracted commodity curvature factors

These figures show the extracted curvature factors of our joint model estimated using all 24 commodities.

Subfigure A shows the market-wide and sector components. Subfigures B-E show the estimated idiosyncratic

curvature factors for the commodities of a specific sector. Note that the metal commodities subfigure is missing

because we use a two factor model for the metal commodities.
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Figures 4.8, 4.9, and 4.10 show the unobserved level, slope, and curvature factors and

their different components. In Subfigure A of each figure we show the market-wide com-

ponent together with the five sector components. In Subfigures B-F we show the sector

components together with the corresponding idiosyncratic commodity components. The

market-wide level factor shows an increase in 2006-2007 and 2011, in line with patterns

observed in all major commodity indices. The energy and metal sectors show similar behav-

ior although the factors peak at different points in time, in line with subindices like GSCI

Energy, Precious Metals and Industrial Metals. The other subfigures show that the scale of

the idiosyncratic level factors varies across commodities but is in line with the size of the

estimated disturbance variances. The slope factors in Figure 4.9 show quite some variability.

They are both negative and positive, which indicates that the futures curves interchange be-

tween contango and backwardation. The scale of the metals’ slope factors is large compared

to the other commodities due to the λ-dependent loading correction we have introduced in

(4.2). Last, the curvature factors in Figure 4.10 show more mean-reversion compared to the

slope factors.

4.5.4 Economic interpretation of unobserved states

We have established that there are common factors in commodities futures curves and these

factors explain a substantial part of the variation in level, slope and curvature factors that

drive observed futures prices. As these common components are unobserved, it is not

straightforward which economic mechanism is underlying this. In this section we link our

unobserved common factors to observed macroeconomic variables.

Existing literature provides us with a range of variables that could be related to our level,

slope or curvature factors. The theory of normal backwardation (Keynes, 1930) argues that

commodity producers and inventory holders hedge their risk by shorting futures. To induce

risk-averse speculators into taking the opposite long positions, current futures prices are set

at a discount (i.e., are “backwardated”) to expected future spot prices at maturity. Therefore

the ratio of hedgers versus speculators could be related to the shape of the futures curve

and hence to our factors. Alternatively, the theory of storage (Kaldor, 1939; Working, 1949)

argues that convenience yield, basis, and inventories are closely related. In our set-up we
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capture the convenience yield in our slope (see Section 4.4.2) factors. Besides commodity

specific variables, we also use macroeconomic variables to interpret our factors.

We collect a large database of macroeconomic and commodity specific variables. We

consider the same set of 108 macroeconomic variables as in Stock and Watson (2012). Fol-

lowing Stock and Watson (2012) we transform the variables to ensure stationarity and assign

them to 12 categories: GDP components, industrial production, employment, unemployment

rate, housing, business inventories, wages, interest rates, money, exchange rates, stock prices,

and consumer expectations.18 For each category we apply a Principal Components Analysis

(PCA) to summarize the variables within that group and proceed with the principal compo-

nent that explains most of their variation. In this way we reduce the dimension to 12 series

that all correspond to a particular macroeconomic category. Besides the Stock and Watson

(2012) dataset, we add a “financial conditions” group to capture investor expectations and

market conditions. This category consists of the Aruoba, Diebold, and Scotti (2009) (ADS)

business conditions index, the Baker and Wurgler (2006) sentiment index (Lutzenberger,

2014), and the Baltic dry shipping index (Bakshi et al., 2011).19 Even though our finan-

cial conditions variable is based on macroeconomic series that are already included in other

categories, it is not highly correlated with these other explanatory variables. We collect com-

modity inventory and hedging pressure data following the methodology of Gorton, Hayashi,

and Rouwenhorst (2013). Last, we add volatility of the Commodity Research Bureau (CRB)

spot market price index (Pindyck, 2004) as possible candidate. The in total 209 collected

individual series result in 17 stationary variables. A complete overview of the individual

series, their sources, categories and transformations is given in Appendix 4.E.

To determine which variables are most related to which common component we use a

multivariate regression. Table 4.6 shows the variables that have a statistically significant

coefficient. Up to one third of the variation of the differenced level components can be

explained by our explanatory variables. These percentages are higher for our slope and

curvature components.

Focusing on Panel A, the results for the common market-wide components are in line

with our expectations. Changes in the level component, i.e. returns, are related to returns in

18We leave out the Prices category due to endogeneity issues.
19The ADS index is designed to track real business conditions at high frequency. Baker and Wurgler (2006)

define sentiment as investor propensity to speculate. The Baltic Dry Index is an indicator of transportation costs

for raw materials shipped by sea.
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foreign exchange and equity markets. As all commodity futures contracts we examine are

denominated in dollars, a stronger dollar leads to lower commodity prices, which is reflected

by the negative coefficient. The positive relation between equity and commodity prices is

surprising as commodities are often used for diversification purposes (see e.g. Erb and Har-

vey, 2006; Gorton and Rouwenhorst, 2006). However it is in line with more recent findings

of Singleton (2014) and Tang and Xiong (2012). The (almost significant) positive relation

with hedging pressure is in line with the theory of normal backwardation Keynes (1930) and

the results in Gorton, Hayashi, and Rouwenhorst (2013); Hamilton and Wu (2014).20

20Note that Gorton, Hayashi, and Rouwenhorst (2013) Table XI reports significant negative slope coeffi-

cients. However, they define hedging pressure as net long positions of commercials (hedgers) while we look

at, the opposite, net short positions of hedgers.
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Table 4.6 Interpretation common components

The table presents observed macroeconomic and commodity specific variables that are related to our unob-

served states. Each component is regressed on a set of 17 explanatory variables. The table presents the sta-

tistically significant coefficients with their corresponding t-stat. The macroeconomic variables are taken from

Stock and Watson (2012), while the commodity specific variables are collected as described by Gorton et al.

(2013). Full details on the data series are given in Appendix 4.E.

∆Level Slope Curvature

Variable t-stat Variable t-stat Variable t-stat

Panel A Market-wide components

R2 = 16.5% R2 = 60.1% R2 = 22.6%
Equity 3.29 Business inventories 4.43 Business inventories 2.53
Exchange rates −2.48 Employment −2.74 Hedging pressure −3.39
Hedging pressure 1.93 Financial conditions 8.29 Interest rates 3.76

Hedging pressure 10.04
Housing 8.54
Industrial production −2.78

Panel B Energy sector components

R2 = 31.0% R2 = 24.3% R2 = 31.1%
Employment −2.49 Business inventories −4.63 Business inventories 3.74
Equity 2.09 Commodity inventories −3.02 Financial conditions 4.90
Exchange rates −2.05 Financial conditions −5.10 Hedging pressure −4.75
Financial conditions 2.80 Industrial production −3.55
Hedging pressure 6.92 Interest rates 1.99
Housing 3.69 Unemployment −2.23
Interest rates 2.34

Panel C Metals sector components

R2 = 29.9% R2 = 49.1%
Employment −3.64 Business inventories 7.93
Equity 4.72 Commodity inventories −2.09
Exchange rates −3.36 Hedging pressure −7.53
Industrial production 2.40 Housing 8.41
Interest rates 2.43
Wages −2.68

Panel D Softs sector components

R2 = 36.9% R2 = 47.0% R2 = 41.7%
Employment −4.00 Employment 6.84 Business inventories 2.53
Equity 2.00 Hedging pressure 5.10 Commodity volatility −2.06
Hedging pressure 8.02 Housing −4.83 Employment 4.99
Housing 3.09 Housing −5.12

Industrial production −2.28

Panel E Grains sector components

R2 = 7.1% R2 = 56.1% R2 = 60.8%
Business inventories −2.90 Employment 4.36
Commodity volatility −2.67 Financial conditions −5.20
Employment 2.23 Hedging pressure 13.26
Financial conditions −7.82 Industrial production −2.32
Hedging pressure 10.62
Housing 3.74
Interest rates −3.20

Panel F Meats sector components

R2 = 19.0% R2 = 39.8% R2 = 10.9%
Hedging pressure 4.82 Business inventories 4.66 Hedging pressure 2.14

Employment −4.44
Hedging pressure 3.27
Housing 8.43
Wages −2.88
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Business inventories (new orders growth), housing (construction growth) and financial

conditions are all considered leading economic indicators. Their positive relation with our

market-wide slope factor implies a shift to more backwardated commodities curves when

economic future perspectives are positive.21 The same holds for hedging pressure. When it

goes up (more net short positions by hedgers), our slope component goes up, which results

in a backwardated futures curve. The relations between the market-wide slope and industrial

production growth and changes in employment are negative, hence the commodity curves

are more backwardated at times when the economy slows down. This is not in line with

our expectations, e.g. Fama and French (1988) find that when metal inventories are high,

convenience yields are lower and the curve will be in contango.

The curvature component is related to business inventories, hedging pressure and interest

rates. An increase in the curvature component leads to an increase in the price of mid-term

contracts, while the contracts with very short or very long time to maturities are less affected.

This seems to be coinciding with higher Treasury yields and lower hedging pressures.

Panels B to F show for each sector to which variables the components are linked. For the

commodity specific variables we use only data of the commodities included in the sector of

interest. In general, all level components are related to exchange rates, equity and hedging

pressure. The grains level component is an exception as it hardly explained by any of our ex-

planatory variables, shown by the R2 of 7.1%. The sector slope components relate positively

to hedging pressure, just as the market-wide slope component. Only for the metals sector the

coefficient for hedging pressure is negative, which is opposite of what we would expect. It is

also interesting to see that two sector slope components have a negative coefficient for com-

modity inventories. This is in line with the theory of storage as shown by, e.g., Gorton et al.

(2013); Geman and Nhuyen (2005). Last, the sector curvature components show similar re-

sults as the market-wide curvature component. Business inventories, hedging pressure and

yield curve variables have significant explanatory power. Furthermore, industrial production

is negatively related to most sector curvature components, while employment variables are

positively related.

Concluding, our unobserved common components relate to observed macroeconomic

and commodity specific variables. In general, changes in the level components are related to

21Recall that the loadings on our slope factors are convex, hence a positive (negative) slope factor implies a

backwardated (contangoed) futures curve.
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equity, exchange rates and hedging pressure which is in line with results of existing litera-

ture. Also the slope components show significant coefficients for hedging pressure, housing,

and commodity inventories that are in line with our expectations. Last, our curvature fac-

tor, which to the best of our knowledge has not yet been investigated in existing research,

is positively related to interest rates and business inventories and negatively to industrial

production.

4.5.5 Time variation

According to the ongoing debate on the financialization of commodities markets, the en-

trance of financial investors (around 2004-2005) has changed the commodities market dy-

namics (Cheng and Xiong, 2014). All our analyses so far are based on the full sample period

from 1995 to 2012. It would be interesting to see if the amount of commonality varies over

time during this period.

To investigate variation over time, we re-estimate the model attaching weights to the

likelihood contributions of different observations in such a way that we emphasize specific

data periods. The likelihood contribution of the observation at time Θ + k is given weight

δ|k|, for k = . . . ,−2,−1, 0, 1, 2, . . ., with 0 < δ < 1, resulting in estimates centered at

t = Θ. Repeating this for Θ = 1, 2, . . . , T yields a sequence of smoothly time-varying

parameter estimates. Although by design, this weighting will not produce any abrupt change,

it nevertheless provides information about the presence, or otherwise, of temporal variation.

We favor this approach to the use of subsamples because our data covers a limited time

period and we do not want to impose breakdates ourselves. We use δ = 0.99 to ensure that

each estimate reflects information in a sample of reasonable effective size.
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Figure 4.11 Moving window variance decompositions

These figures show the percentage of explained variation per component. Time-variation is introduced by

estimating the model using a rolling window and applying a variance decomposition analysis at each point in

time. The time-varying specification is estimated by attaching lower weights to more distant observations. The

observation at time Θ + k is given weight δ|k|, for k = . . . ,−2,−1, 0, 1, 2, . . ., with 0 < δ < 1, resulting in

estimates centered at t = Θ.
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Of particular interest is the relative importance over time of the common, market-wide

and sector components. Figure 4.11 shows results of time-varying variance decompositions,

which are at each point in time based on estimation results of the above described methodol-

ogy. Both the lines corresponding to sector and idiosyncratic explained variation are based

on averages across all sectors or commodities, respectively. Subfigure A shows that the

market-wide component becomes increasingly important over time. In 1995 this compo-

nent common to all commodities explained just 14% of total variance, while this percentage

steadily increases to 32% in 2008 after which it stays constant. Most of the increase hap-

pened at the expense of the idiosyncratic components. Subfigure B shows the results for

the slope factors. All three lines are pretty constant over time. Subfigure C shows slightly

more variation over time for the curvature components. From 2007 onward, the sector com-

ponents explain a larger part of total curvature variation, while the market-wide component

explains less variation. Still, the total amount of curvature variation explained by common

components remains quite constant over time.

Our findings show that only the level factors show an increase in commonality over time.

These findings are in line with Tang and Xiong (2012).

4.5.6 Importance curve data

In all our analysis we use term-structure information while investigating commonality. An

obvious advantage of this additional data is that it allows us to investigate commonality

in curve shapes, besides the often investigated commonality in levels. We argue that the

inclusion of more distant futures data not only gains additional insight but also affects the

common level component analysis. To quantify potential differences due to the inclusion

of term structure information, we redo some of our analysis with only first nearby contract

information. This allows us to compare the market-wide level factors that we obtained using

our full model and dataset with the market-wide level factor that we obtain from a restricted

version of our model and a limited dataset.

Our one factor model based on only first nearby contracts is obtained by restricting (4.2)-

(4.4) into

fi,t = li,t + νi,t = αL
i + βL

i Lmarket,t + γL
i Lsector,t + Li,t + νi,t, (4.6)
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where

∆Lx,t = φx∆Lx,t−1 + ηLx,t. (4.7)

We estimate this model using the same Kalman filter methodology but use only data on

first nearby contracts. Figure 4.12 shows a comparison of the extracted market-wide factors.

The results from both methodologies are in line but there are some notable differences. First,

the factor from the full model is pretty constant in the period 2004-2006 and 2009-2010,

while the factor from the one-factor model rises sharply. However, after both subperiods,

the full model factor quickly picks up and rises to the same level as the one-factor model.

The differences in behavior are also reflected by the correlation of 0.53 between the first

differenced series of both factors.

Figure 4.12 Comparison market-wide level components

Each line shows the market-wide level component of a particular model. The blue line corresponds to the full

joint model with slope and curvature factors and curve information. The orange line is a restricted version of

the full model with only level factors and first nearby contract information.
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The extracted market-wide factors are just one side of the story. It is also interesting

to investigate the other side, namely the loadings on these factors. Of most interest is the

amount of commonality, i.e. the interplay of loadings and common factors. When we redo

the variance decompositions we find that the market-wide factor explains a larger part of

the variance in the one-factor model, 30.3% versus 23.3% for the full model. However, the

seasonal commodities are less well explained compared to including the full dataset. The



4.6 Conclusion 131

market-wide component explains 15.2% of their variation in the one-factor case, while this

is 27.2% in our main results.

To see whether it is a coincidence that the seasonal commodities are better explained

by our full curve model, we correct the first nearby contract data for seasonal effects. We

do this by applying the same seasonal correction (based on our individual model estimates

from Section 4.4.1). Note that in this way we favor the one-factor model as this correction is

based on full curve data. Unreported results show that all previous reported findings hardly

change. In other words, the seasonal correction has only a small effect on the difference

between full curve and first contract results. This implies that there is a large difference

between quantifying the commodity price levels based on only the first nearby contract data

versus the levels based on the full commodities curve. Furthermore, commonality seems to

be larger when only the front contracts are used. This was not expected as front contracts are

more volatile than contracts further down the curve (see Table 4.1 and Samuelson 1965). A

possible explanation is the effect of commodity indices. These indices (or funds that track

them) are mostly invested in front contracts, which could lead to increased commonality

(Tang and Xiong, 2012).

4.6 Conclusion

We investigate comovement across commodities by examining the commonality in the price

levels and shapes of their futures curves. We use an enhanced version of the Nelson and

Siegel (1987) model and extend the framework of Diebold, Li, and Yue (2008) to extract

the factors that drive the individual commodity futures curves. Comovement across com-

modities is investigated by decomposing each individual factor in a market-wide, sector, and

idiosyncratic component.

Using a monthly dataset of 24 commodities that are part of the S&P Goldman Sachs

Commodity Index (GSCI) we show that there is comovement across commodity futures

curves, either due to a market-wide or due to a sector component. Sector components explain

close to 50% of the variation of our shape factors (slope and curvature), while a market-wide

component explains 24% of their variations. For the individual commodity level factors, the

percentage of explained variation by common (market-wide and sector) components is lower

and on average 62%. Concluding, common components explain between 62% and 74% of
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the variation of individual commodities. In all cases the commonality is mostly driven by

the sector components. For the shape related factors we find almost no variation in results

over time. In contrast to the level factors where the market-wide component explains more

variation over time. The percentage of explained variation starts at 14% in 1995 and increases

to 32% in 2012.

The unobserved common components relate to macroeconomic and commodity specific

variables in ways which are consistent with existing literature. Our level components relate

to equity markets, exchange rates and hedging pressure. The slope components are linked

to hedging pressure (theory of normal backwardation) and commodity inventories (theory

of storage). Last, the newly introduced curvature components related to the yield curve,

business inventories and industrial production.

The presented framework provides a way to include more futures data to investigate

commonality across commodities. Using this framework we show that it is important to

include the term-structure dimension in the analysis of comovement as it alters the findings

on the extent of comovement. The current findings are insightful for portfolio construction,

risk management and hedging purposes using commodity futures.
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Appendix

4.A State space representation

The state space representation follows naturally from the model given by (4.2)-(4.4). The measurement equation in (4.A.1) is a combination of

(4.2) and (4.3). Note that the individual latent level li,t, slope si,t, and curvature ci,t factors do not appear in the measurement equation, as we

can link the observed futures prices fi,t(τ) directly to the unobserved market-wide, sector and idiosyncratic components.




f1,t (τ1)

f1,t (τ2)
...

f1,t (τJ1)
...

fN,t (τJN )




= A




αL
1

αS
1

αC
1

...

αC
N




+B




Lmarket,t

Smarket,t

Cmarket,t


 + C




LEnergy,t

SEnergy,t

CEnergy,t

...

LMeats,t

SMeats,t

CMeats,t




+ A




L1,t

S1,t

C1,t

...

CN,t




+D




κ1

κ2

...

κN




+




ν1,t (τ1)

ν1,t (τ2)
...

ν1,t (τJ1)
...

νN,t (τJN )




(4.A.1)

where Ji is the number of available contracts of commodity i. As discussed in Section 4.2 Ji varies over time, yet for readability reasons we

keep writing Ji instead of Jit .
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D =




cos (ωg1 (t, τ1)− ωθ1) 0 · · · 0

cos (ωg1 (t, τ2)− ωθ1) 0 · · · 0

. . . · · · · · · · · ·
cos (ωg1 (t, τJ1)− ωθ1) 0 · · · 0

. . . · · · · · · · · ·
0 0 · · · cos (ωgN (t, τJN )− ωθN)




.

The transition equations of the latent states are given by (4.4). The market-wide, sector, and idiosyncratic components are assumed to have

first-order autoregressive dynamics. For completeness, we also present them here:




∆Ly,t

Sy,t

Cy,t


 =




φy
11 φy

12 φy
13

φy
21 φy

22 φy
23

φy
31 φy

32 φy
33







∆Ly,t−1

Sy,t−1

Cy,t−1


 +




ηLy,t

ηSy,t

ηCy,t


 , (4.A.2)

where y = {market, sector, idiosyncratic}, and the disturbances ηy,t = (ηLy,t, η
S
y,t, η

C
y,t) are normally distributed with covariance matrix Σηy .

4.B Maturity bound

We choose to introduce a maturity bound to exclude long-dated contracts. By limiting the term-structure dimension variation within a commodity,

we can keep using a fixed λ value. Furthermore, these long-dated contracts are possibly less liquid and hence have more noisy price information,
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which could otherwise affect our results. The introduced maturity bound excludes on average 10% of our observations. Figure 4.B.1 gives more

details on individual commodities. Note that the longest available maturity varies substantially over time.
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Figure 4.B.1 Maturity bounds

These figures show for each commodity the maturity bound and the longest available maturity (in years).
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4.C Additional individual commodity results

Detailed individual model results

This section provides the estimation results for all individual model specifications. Based on

these results we decide on the final model specification for every commodity. The final model

choice is based on several criteria. First, we compare the results of three factor models with

and without seasonal term, to see if the exposure κ to the seasonal correction is significantly

different from zero. There are 13 commodities in Table 4.C.1 that have highly significant κ

parameters, ranging between 0.73 and 7.78. There is a big gap between the 11 commodities

which have a t-stat below 5, and the remaining 13 commodities which have a t-stat above

400. Therefore we decide to not include a seasonal correction when κ is below 0.1. Second,

for the non-seasonal commodities, we need to decide if we include a third curvature factor

or not. Non-reported AIC or BIC values indicate that we should always choose for the

larger models. However, the λ values for some metal commodities in Table 4.C.1 are below

0.5 which leads to slope and curvature loadings that are close to opposite with a correlation

below −0.80. Therefore we decide to exclude the curvature factor for all metal commodities.

Principal component analysis on raw prices

To provide additional evidence that the Nelson and Siegel (1987) model is suited for com-

modity futures, we apply PCA to raw price data. In order to apply PCA, we need a balaced

data panel. Therefore we exclude contract data if they have missing price data for more than

10% of the time periods. Then, for this selection, we exclude months where one of the con-

tracts has missing price data. In the end we are left with a balanced sample with no missing

observations.

Figure 4.C.2 shows the loadings of the first three principal components (based on the

covariance matrix). For most commodities these loadings resemble the level, slope and

curvature factor loadings. The only exceptions are some commodities with a pronounced

seasonal pattern, namely heating oil, natural gas, gasoline, cotton and lean hogs. Due to the

Samuelson (1965) effect, results based on the correlation matrix are even more similar to

level, slope and curvature loadings.
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Table 4.C.1 All individual model results

The table presents the estimation results and the fit of the individual commodity state space models. We show the results of three different specification applied to all

individual commodities. The two factor (2F) model contains only a level and slope factor; the three factor (3F) model includes a curvature factor; and the 3FS model adds

a seasonal correction term. For each model we present the estimated parameter values for the decay parameter λ, and (if relevant) the exposure κ to the seasonal term and

the most expensive contract expiry month θ, where θ = 0 corresponds to January. The last column presents the volatility of errors σ(ν). Standard errors of all estimates are

provided between brackets.

two factor (2F) three factor (3F) three factor and seasonal (3F)

Sector Commodity λ σ(ν) R2 λ σ(ν) R2 λ κ θ σ(ν) R2

Energy Brent crude oil 0.884 (0.01) 1.28% 99.96% 1.144 (0.01) 0.65% 99.99% 1.143 (0.01) 0.04 (0.99) 1.1 (0.02) 0.65% 99.99%
WTI crude oil 1.262 (0.01) 1.49% 99.95% 1.272 (0.01) 0.79% 99.99% 1.273 (0.01) 0.03 (1.24) 0.1 (0.03) 0.79% 99.99%

Gasoil 1.644 (0.02) 1.41% 99.96% 1.991 (0.04) 1.17% 99.97% 1.688 (0.04) 0.92 (0.02) 0.4 (0.00) 1.03% 99.98%
Heating oil 1.956 (0.04) 2.40% 99.88% 3.392 (0.06) 2.17% 99.90% 3.600 (0.03) 2.80 (0.01) 0.8 (0.00) 1.21% 99.97%
Natural gas 0.822 (0.03) 6.39% 98.07% 1.171 (0.03) 5.72% 98.45% 1.137 (0.02) 6.38 (0.01) 0.9 (0.00) 3.56% 99.40%

Gasoline 2.298 (0.07) 3.59% 99.67% 4.346 (0.04) 3.11% 99.75% 3.285 (0.04) 4.78 (0.01) 6.2 (0.00) 1.52% 99.94%

Metals Gold 0.011 (6.36) 0.44% 99.99% 0.129 (0.08) 0.19% 100.00% 0.129 (0.08) 0.00 (22.65) 0.1 (0.79) 0.19% 100.00%
Silver 0.026 (1.79) 0.54% 99.99% 0.278 (0.05) 0.35% 100.00% 0.278 (0.05) 0.02 (2.08) 2.6 (0.04) 0.35% 100.00%

Aluminum 0.187 (0.04) 0.77% 99.91% 0.574 (0.01) 0.32% 99.98% 0.574 (0.01) 0.01 (2.81) 9.6 (0.03) 0.32% 99.98%
Copper 0.111 (0.10) 1.13% 99.97% 0.489 (0.01) 0.41% 100.00% 0.489 (0.01) 0.02 (1.35) 7.3 (0.02) 0.41% 100.00%
Lead 0.324 (0.13) 0.57% 99.99% 1.771 (0.02) 0.36% 100.00% 1.767 (0.02) 0.04 (0.72) 9.2 (0.02) 0.36% 100.00%

Nickel 0.095 (0.28) 0.91% 99.98% 1.250 (0.01) 0.71% 99.99% 1.250 (0.01) 0.00 (30.31) 4.5 (0.17) 0.71% 99.99%
Zinc 0.059 (0.19) 0.69% 99.97% 1.132 (0.01) 0.32% 99.99% 1.131 (0.01) 0.03 (0.79) 9.6 (0.02) 0.32% 99.99%

Softs Cocoa 0.360 (0.10) 0.74% 99.96% 1.413 (0.03) 0.58% 99.97% 1.415 (0.03) 0.08 (0.71) 8.8 (0.02) 0.58% 99.97%
Coffee 0.954 (0.03) 0.80% 99.96% 1.468 (0.03) 0.57% 99.98% 1.468 (0.03) 0.00 (56.48) 0.1 (1.61) 0.57% 99.98%
Cotton 1.484 (0.03) 1.76% 99.45% 3.566 (0.03) 1.37% 99.67% 3.482 (0.03) 0.91 (0.06) 5.9 (0.01) 1.21% 99.74%
Sugar 1.610 (0.05) 2.13% 99.76% 3.585 (0.04) 1.53% 99.88% 3.272 (0.04) 1.13 (0.05) 2.5 (0.01) 1.32% 99.91%

Grains Corn 1.603 (0.03) 2.37% 99.57% 0.696 (0.18) 2.10% 99.67% 2.743 (0.04) 1.80 (0.03) 5.7 (0.00) 1.56% 99.81%
Soybeans 1.284 (0.05) 1.82% 99.73% 3.536 (0.03) 1.46% 99.83% 3.350 (0.03) 1.30 (0.03) 5.7 (0.00) 1.19% 99.89%

Chicago wheat 1.345 (0.05) 2.09% 99.70% 1.143 (0.15) 1.86% 99.76% 1.496 (0.17) 1.53 (0.04) 2.0 (0.00) 1.51% 99.84%
Kansas wheat 1.027 (0.11) 1.94% 99.72% 3.318 (0.07) 1.64% 99.80% 2.461 (0.08) 1.44 (0.05) 2.2 (0.01) 1.35% 99.86%

Meats Feeder cattle 2.532 (0.07) 0.96% 99.83% 4.522 (0.05) 0.78% 99.89% 5.221 (0.07) 0.73 (0.07) 10.0 (0.01) 0.71% 99.91%
Lean hogs 1.701 (0.18) 6.66% 89.78% 4.022 (0.04) 5.12% 93.95% 4.109 (0.07) 7.78 (0.02) 6.1 (0.00) 3.09% 97.80%
Live cattle 3.200 (0.10) 2.19% 98.85% 4.099 (0.05) 1.77% 99.25% 4.487 (0.10) 2.32 (0.03) 1.9 (0.00) 1.29% 99.60%
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Figure 4.C.2 Principal components

These figures show for each commodity the first three principal component loadings extracted from the covariance matrix of raw prices. Contracts are included when they

have valid observations for at least 90% of the months in our sample.
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Preliminary commonality results

A preliminary check for commonality is obtained by comparing the unobserved level, slope

and curvature factors from the individual models. Using PCA, we check to what extent the

factors can be explained by the first principal component. The market-wide level component

is approximated by the first principal component when PCA is applied to all 24 extracted

level factors. For each commodity we can compute the fraction of “individual” variance that

is explained by this first principal component. We then take the average over all commodi-

ties in a particular sector. The same analysis is also applied on all slope factors and on all

curvature factors. If the first principal explains a large part of the factors variations, it is an

indication for commonality.

Panel A in Table 4.C.2 shows that there seems to be a market-wide component that drives

the level factors as the first principal component explains 78.7% of the variation in individual

level factors. Especially, the energy, metals, and grains level factors comove with the market-

wide level component, as more than 80% of their variation is explained. For the other two

commodity sectors we observe that 56.1% and 77.3% of their variation is explained by the

market-wide level component. Investigating the market-wide slope component shows that

there is less comovement on average indicated by the explained variation of 26.6%. The

decomposition in sectors shows that the market-wide slope component still explains half of

the variation in the energy slope factors, while it hardly explains variation for the softs and

grains sectors. The market-wide curvature component shows similar results as the market-

wide slope component. In general, the market-wide curvature component explains 19.9% of

the variation in the individual commodity curvature factors. For energy the percentage of

explained variation is much higher (38.2%), while for the softs sector it explains none of the

variation at all.
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Table 4.C.2 PCA commonality results

The table presents the percentage of explained variation of the extracted level, slope and curvature factors for

the first three principal components. Panel A shows how much variation is explained by the market-wide level,

slope and curvature components. In Panel B the percentages refer to the explained variation when PCA is ap-

plied to a particular sector, i.e. this variation can be due to both the market-wide and sector specific component.

The differences in percentages explained variation between Panel A and B, indicate the comovement due to the

sector specific component.

level factor slope factor curvature factor

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Panel A Market-wide component

1) all commodities 78.7% 9.8% 3.5% 26.5% 17.0% 14.9% 19.9% 16.7% 9.4%
2) energy 80.9% 16.3% 0.3% 58.6% 2.4% 22.8% 38.2% 5.9% 12.4%
3) metals 86.5% 1.4% 6.7% 23.9% 12.5% 25.8% - - -

4) softs 56.1% 22.4% 2.7% 6.5% 13.2% 1.4% 0.0% 0.0% 0.0%
5) grains 85.5% 7.0% 1.1% 1.9% 61.5% 4.0% 0.1% 1.1% 7.9%
6) meats 77.3% 3.4% 6.7% 27.9% 2.6% 6.1% 6.5% 11.5% 12.1%

Panel B Market-wide and Sector component

1) energy 93.5% 6.4% 0.0% 79.1% 11.7% 4.9% 46.0% 21.4% 12.4%
2) metals 90.3% 5.8% 1.7% 49.9% 24.4% 12.2% - - -

3) softs 77.3% 12.8% 6.9% 43.4% 26.3% 20.3% 33.6% 28.3% 24.1%
4) grains 97.8% 1.3% 0.8% 69.2% 19.3% 9.4% 60.4% 20.1% 11.0%
5) meats 90.4% 9.0% 0.6% 62.6% 26.2% 11.2% 47.6% 35.3% 17.1%

4.D Additional Schwartz comparison results

This section presents results on the differences in model fit between our Nelson-Siegel frame-

work and the Schwartz (1997) model. In Section 4.4.1 Table 4.2 we present the fit of our

individual models. In Table 4.D.1 we present these same numbers together with the R2 of

the corresponding Schwartz (1997) model. For all commodities our model has a better fit.

The minimum fit increase is 1.6%, the average increase is 5.6% and the maximum increase

is 29.2%.



4.D Additional Schwartz comparison results 143

Table 4.D.1 Model fit comparison

This table compares the differences in fit
(
R2
)

between the Schwartz (1997) model and our Nelson-Siegel type

model. The difference is computed as (R2
Nelson-Siegel −R2

Schwartz)/R
2
Nelson-Siegel.

Commodity Schwartz Nelson-Siegel diff. Commodity Schwartz Nelson-Siegel diff

Brent crude oil 97.06% 99.99% 3.0% Cocoa 93.22% 99.97% 7.2%
WTI crude oil 97.28% 99.99% 2.8% Coffee 94.76% 99.98% 5.5%
Gasoil 98.40% 99.98% 1.6% Cotton 88.66% 99.74% 12.5%
Heating oil 98.41% 99.97% 1.6% Sugar 96.51% 99.91% 3.5%
Natural gas 92.14% 99.40% 7.9%
Gasoline 97.43% 99.94% 2.6% Corn 95.72% 99.81% 4.3%

Soybeans 95.32% 99.89% 4.8%
Gold 96.73% 99.99% 3.4% Chicago wheat 95.47% 99.84% 4.6%
Silver 96.13% 99.99% 4.0% Kansas wheat 95.15% 99.86% 5.0%
Aluminum 90.29% 99.91% 10.7%
Copper 96.99% 99.97% 3.1% Feeder cattle 97.51% 99.91% 2.5%
Lead 98.05% 99.99% 2.0% Lean hogs 75.68% 97.80% 29.2%
Nickel 96.45% 99.98% 3.7% Live cattle 95.77% 99.60% 4.0%
Zinc 94.80% 99.97% 5.5%
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4.E Macroeconomic data

Table 4.E.1 lists all macroeconomic and commodity specific data series. For each series we provide their name, code, transformation, category,

source, and description. An overview of the categories is shown in Table 4.E.2 while the transformation codes are explained in Table 4.E.3.

Table 4.E.1 Data series

The table presents all macroeconomic and commodity specific data series (in line with Stock and Watson, 2012 and Gorton, Hayashi, and Rouwenhorst, 2013). For each

series we provide their name, code, transformation, category, source, and description. An overview of the categories is shown in Table 4.E.2 while the transformation codes

are explained in Table 4.E.3. The codes correspond to the database identifiers of the source.

Used abbreviations: St. Louis, Federal Reserve Economic Data (FRED); Commodity Futures Trading Commission (CFTC); Department of Energy (DOE); Intercontinental

Exchange (ICE); U.S. Department of Agriculture (USDA).
aAuthor’s website:
bWe follow the details given in Appendix B of Gorton, Hayashi, and Rouwenhorst (2013)

Name Code T Cat Source Description

Cons-Dur DNDGRG3M086SBEA 5 1 FRED Personal consumption expenditures: Nondurable goods, Price index (2009=100), SA

Cons-NonDur DPCERA3M086SBEA 5 1 FRED Real personal consumption expenditures, Quantity index (2009=100), SA

Cons-Serv DSERRG3M086SBEA 5 1 FRED Personal consumption expenditures: Services, Price index (2009=100), SA

Exports USEXNGS.B 5 1 Datastream Real exports

Imports USIMNGS.B 5 1 Datastream Real imports

IP: cons dble IPDCONGD 5 2 FRED Industrial Production: Durable Consumer Goods Index (2007=100), SA

IP: cons nondble IPNCONGD 5 2 FRED Industrial Production: Nondurable Consumer Goods Index (2007=100), SA

IP: bus eqpt IPBUSEQ 5 2 FRED Industrial Production: Business Equipment Index (2007=100), SA

IP: dble mats IPDMAT 5 2 FRED Industrial Production: Durable Materials Index (2007=100), SA

IP: nondble mats IPNMAT 5 2 FRED Industrial Production: nondurable Materials Index (2007=100), SA

IP: mfg IPMANSICS 5 2 FRED Industrial Production: Manufacturing (SIC) Index (2007=100), SA

IP: fuels IPUTIL 5 2 FRED Industrial Production: Electric and Gas Utilities Index (2007=100), SA

NAPM prodn NAPMPI 1 2 FRED ISM Manufacturing: Production Index, SA

Capacity Util TCU 1 2 FRED Capacity Utilization: Total Industry % of Capacity, SA

Continued on next page
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Name Code T Cat Source Description

Emp: mining CES1021000001 5 3 FRED All Employees: Mining and Logging: Mining, Thous. of Persons, SA

Emp: const USCONS 5 3 FRED All Employees: Construction, Thous. of Persons, SA

Emp: dble gds DMANEMP 5 3 FRED All Employees: Durable goods, Thous. of Persons, SA

Emp: nondbles NDMANEMP 5 3 FRED All Employees: Nondurable goods, Thous. of Persons, SA

Emp: services SRVPRD 5 3 FRED All Employees: Service-Providing Industries, Thous. of Persons, SA

Emp: TTU USTPU 5 3 FRED All Employees: Trade, Transportation & Utilities, Thous. of Persons, SA

Emp: wholesale USWTRADE 5 3 FRED All Employees: Wholesale Trade, Thous. of Persons, SA

Emp: retail USTRADE 5 3 FRED All Employees: Retail Trade, Thous. of Persons, SA

Emp: FIRE USFIRE 5 3 FRED All Employees: Financial Activities, Thous. of Persons, SA

Emp: Govt USGOVT 5 3 FRED All Employees: Government, Thous. of Persons, SA

Emp. Hours AWHI 5 3 FRED Aggr. Wkly Hours: Prod. and Nonsuperv. Employ.: Total Private Industries (2002=100), SA

Avg hrs CES0600000007 1 3 FRED Avg. Wkly Hours of Prod. and Nonsuperv. Employ.: Goods-Producing Hours, SA

Overtime: mfg AWOTMAN 2 3 FRED Avg. Wkly Overtime Hours of Prod. and Nonsuperv. Employees: Manufacturing Hours, SA

U: all UNRATE 2 4 FRED Unemployment rate: all workers, 16 years and over, Percentage, SA

U: mean duration UEMPMEAN 2 4 FRED Average (Mean) Duration of Unemployment, Weeks, SA

U: < 5 wks UEMPLT5 5 4 FRED Number of Civilians Unemployed - Less Than 5 Weeks, Thous. of Persons, SA

U: 5-14 wks UEMP5TO14 5 4 FRED Number of Civilians Unemployed for 5 to 14 Weeks, Thous. of Persons, SA

U: 15+ wks UEMP15OV 5 4 FRED Number of Civilians Unemployed for 15 Weeks and Over, Thous. of Persons, SA

U: 15-26 wks UEMP15T26 5 4 FRED Number of Civilians Unemployed for 15 to 26 Weeks, Thous. of Persons, SA

U: 27+ wks UEMP27OV 5 4 FRED Number of Civilians Unemployed for 27 Weeks and Over, Thous. of Persons, SA

HStarts: NE HOUSTNE 4 5 FRED Housing Starts in Northeast Census Region, Thous. of Units, SAAR

HStarts: MW HOUSTMW 4 5 FRED Housing Starts in Midwest Census Region, Thous. of Units, SAAR

HStarts: S HOUSTS 4 5 FRED Housing Starts in South Census Region, Thous. of Units, SAAR

HStarts: W HOUSTW 4 5 FRED Housing Starts in West Census Region, Thous. of Units, SAAR

PMI NAPM 1 6 FRED ISM Manufacturing: PMI Composite Index, SA

NAPM new orders NAPMNOI 1 6 FRED ISM Manufacturing: New Orders Index, SA

NAPM vendor del NAPMSDI 1 6 FRED ISM Manufacturing: Supplier Deliveries Index, SA

Continued on next page
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Name Code T Cat Source Description

NAPM Invent NAPMII 1 6 FRED ISM Manufacturing: Inventories Index, NSA

Orders (ConsGoods) ACOGNO 5 6 FRED Manufacturers New Orders for Cons. Goods Indus., Mil. of $, SA

Orders (NDCapGoods) ANDENO 5 6 FRED Manufacturers New Orders for Capital Goods: Nondef. Capital Goods Indus., Mil. of $, SA

CPI-core CPIULFSL 6 7 FRED Consumer Price Index for All Urban Cons.: All Items Less Food, Index (1982-84=100), SA

PCED PCEPI 6 7 FRED Personal Consumption Expenditures, Price Index (2009=100), SA

AHE: const CES2000000008 5 8 FRED Avg. Hourly Earnings of Prod. and Nonsuperv. Employees: Construction, $ per Hour, SA

AHE: mfg CES3000000008 5 8 FRED Avg. Hourly Earnings of Prod. and Nonsuperv. Employees: Manufacturing, $ per Hour, SA

FedFunds FEDFUNDS 2 9 FRED Effective Federal Funds Rate, % per annum, NSA

3mo T-bill TB3MS 2 9 FRED 3-Month Treasury Bill: Secondary Market Rate, % per annum, NSA

3mo T-bill TB6MS 2 9 FRED 6-Month Treasury Bill: Secondary Market Rate, % per annum, NSA

M1 M1SL 6 10 FRED M1 Money Stock, Bil. of $, SA

M2 M2SL 6 10 FRED M2 Money Stock, Bil. of $, SA

MB AMBSL 6 10 FRED St. Louis Adjusted Monetary Base, Bil. of $, SA

Reserves tot. TOTRESNS 6 10 FRED Total Reserves of Depository Institutions, Bil. of $, NSA

BUSLOANS BUSLOANS 6 10 FRED Commercial and Industrial Loans, All Commercial Banks, Bil. of $, SA

Cons credit NONREVSL 6 10 FRED Total Nonrevolving Credit Owned and Securitized, Outstanding, Bil. of $, SA

Ex rate: avg TWEXMMTH 5 11 FRED Trade Weighted U.S. Dollar Index: Major Currencies, Index (Mar 1973=100), NSA

Ex rate: Switz EXSZUS 5 11 FRED Switzerland / U.S. Foreign Exchange Rate Swiss Francs to 1 U.S., $, NSA

Ex rate: Japan EXJPUS 5 11 FRED Japan / U.S. Foreign Exchange Rate Japanese Yen to 1 U.S., $, NSA

Ex rate: UK EXUSUK 5 11 FRED U.S. / U.K. Foreign Exchange Rate U.S. $ to 1 British Pound, £, NSA

Ex rate: Canada EXCAUS 5 11 FRED Canada / U.S. Foreign Exchange Rate Canadian $ to 1 U.S., $, NSA

S&P 500 SP500 5 12 FRED S&P 500, Index, NSA

DJIA USSHRPRCF 5 12 Datastream Dow Jones Industrial Average

Consumer expect UMCSENT 2 13 FRED University of Michigan: Consumer Sentiment, Index (1966Q1=100), NSA

ADS ADS 1 14 FRB of Phil. Aruoba Diebold Scotti financial conditions index

Continued on next page
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Name Code T Cat Source Description

Sentiment Sentiment 1 14 Author’s websitea Baker Wurgler paper

Baltic Dry index BALTICF 1 14 Datastream Dry bulk shipping price

Comm. vol. CRBSPOT 1 15 Datastream Volatility of Commodity Research Bureau (CRB) spot market price index

HP WTI hedging WTI 1 16A CFTC Hedging pressure computed from Commitment of Traders Reports

HP gasoline hedging GL 1 16A CFTC Hedging pressure computed from Commitment of Traders Reports

HP heating oil hedging HO 1 16A CFTC Hedging pressure computed from Commitment of Traders Reports

HP natural gas hedging NG 1 16A CFTC Hedging pressure computed from Commitment of Traders Reports

HP copper hedging CP 1 16B CFTC Hedging pressure computed from Commitment of Traders Reports

HP cocoa hedging CC 1 16C CFTC Hedging pressure computed from Commitment of Traders Reports

HP coffee hedging CF 1 16C CFTC Hedging pressure computed from Commitment of Traders Reports

HP sugar hedging SG 1 16C CFTC Hedging pressure computed from Commitment of Traders Reports

HP cotton hedging CT 1 16C CFTC Hedging pressure computed from Commitment of Traders Reports

HP soybeans hedging S 1 16D CFTC Hedging pressure computed from Commitment of Traders Reports

HP wheat hedging W 1 16D CFTC Hedging pressure computed from Commitment of Traders Reports

HP corn hedging C 1 16D CFTC Hedging pressure computed from Commitment of Traders Reports

HP feeder cattle hedging FC 1 16E CFTC Hedging pressure computed from Commitment of Traders Reports

HP live cattle hedging LC 1 16E CFTC Hedging pressure computed from Commitment of Traders Reports

HP lean hogs hedging LH 1 16E CFTC Hedging pressure computed from Commitment of Traders Reports

inventory crude oil inventory WTI 5 17A DOE U.S. ending stocks excluding SPR of crude oil, thousands of barrelsb

inventory gasoline inventory GL 5 17A DOE U.S. motor gasoline ending stocks, thousands of barrelsb

inventory heating oil inventory HO 5 17A DOE U.S. total stocks of distillate fuel oilb

inventory natural gas inventory NG 5 17A DOE U.S. total natural gas in underground storage (working gas), millions of cubic feetb

inventory gold COMXGOLD Index 5 17B Bloomberg Comex warehouse stocksb

inventory silver COMXSILV Index 5 17B Bloomberg Comex warehouse stocksb

inventory copper LSCA Index 5 17B Bloomberg LME warehouse stocksb

inventory aluminum LSAH Index 5 17B Bloomberg LME warehouse stocksb

inventory lead LSPB Index 5 17B Bloomberg LME warehouse stocksb

Continued on next page
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inventory nickel LSNI Index 5 17B Bloomberg LME warehouse stocksb

inventory zinc LSZS Index 5 17B Bloomberg LME warehouse stocksb

inventory cocoa inventory CC 5 17C ICE ICE wareh. stocks (ports of New York, Delaware River, Hampton Roads, Albany, Baltimore)b

inventory coffee inventory CF 5 17C ICE ICE wareh. stocks (ports of New York, New Orleans, Houston, Miami, Antwerp, Hamburg, Barcelona)b

inventory cotton inventory CT 5 17C ICE Hist. Certif. Stock Report (ports of Dallas, Galveston, Greenville, Houston, Memphis, New Orleans)b

inventory sugar inventory SG 5 17C USDA U.S. sugar stocks held by primary distributorsb

inventory corn inventory C 5 17D USDA Stocks of Grain at Selected Terminals and Elevator Sites, thousands of bushelsb

inventory soybeans inventory S 5 17D USDA Stocks of Grain at Selected Terminals and Elevator Sites, Thousands of Bushelsb

inventory wheat inventory W 5 17D USDA Stocks of Grain at Selected Terminals and Elevator Sites, Thousands of Bushelsb

inventory feeder cattle inventory FC 5 17E USDA United States Cattle Placed on Feed in 7 Statesb

inventory live cattle inventory LC 5 17E USDA Frozen beef stocks in cold storage in the U.S.b

inventory lean hogs inventory LH 5 17E USDA Frozen pork stocks in cold storage in the U.S.b
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Table 4.E.2 Data categories

The table presents the data category codes (following Stock and Watson, 2012).

Category code Category name

1 GDP components

2 Industrial production

3 Employment

4 Unemployment rate

5 Housing

6 Business inventories

7 Prices
8 Wages

9 Interest rates

10 Money

11 Exchange rates

12 Stock prices

13 Consumer expectations

14 Financial conditions

15 Commodity volatility
16 Hedging pressure

17 Commodity inventories

Table 4.E.3 Data transformations

The table presents the data transformation codes (following Stock and Watson, 2012). Zt denotes the raw series

and Xt the transformed series used to compute the principal components.

Transformation code Xt

1 Zt

2 Zt − Zt−1

3 (Zt − Zt−1)− (Zt−1 − Zt−2)
4 ln (Zt)
5 ln (Zt/Zt−1)
6 ln (Zt/Zt−1)− ln (Zt−1/Zt−2)





Nederlandse samenvatting

(Summary in Dutch)

Sta open voor nieuwe ideeen

Abbott (1884)

Een inspirerend en intrigerend boek over dimensies is “Flatland - A Romancy of Many

Dimensions” van Edwin A. Abbott.22 In deze satirische roman beschrijft Abbott werelden

met verschillende dimensies vanuit het oogpunt van Een Vierkant. E. (Een) Vierkant leeft

in de twee-dimensionele wereld genaamd Flatland. E. Vierkant bezoekt in een droom de

één-dimensionale wereld (Lineland) bewoond door Punten. Hij probeert hun tevergeefs te

overtuigen van het bestaan van een tweede dimensie. Wanneer E. Vierkant wordt bezocht

door een Bol (afkomstig uit Spaceland), kan hij niet bevatten dat een derde dimensie bestaat

totdat hij Spaceland zelf bezoekt. Nu E. Vierkant openstaat voor nieuwe dimensies, probeert

hij de Bol te overtuigen van de theoretische kans dat er een vierde (en vijfde, zesde, . . .)

dimensie bestaat. Hij roept de woede van de Bol over zich af en wordt terug gebracht naar

zijn twee-dimensionale wereld. E. Vierkant herkent de ontkenning (van de Bol en Punten)

van het bestaan van hogere dimensies omdat hijzelf in eerste instantie ook niet te overtuigen

was.

De link tussen Flatland en dit proefschrift is het concept van dimensies. De financiële

wereld bestaat uit veel meer dimensies dan wij ons voor kunnen stellen als bewoners van onze

drie-dimensionale wereld. De twee die in dit proefschrift centraal staan zijn de dimensies

van liquiditeit en de termijnstructuur dimensie in de grondstoffen markt. Beiden zijn nog

niet volledig onderzocht. Naast de directe link is er ook een andere link tussen het boek,

22Hoewel Flatland niet genegeerd werd op het moment van publicatie, was het geen groot succes. Het boek

werd opnieuw ontdekt nadat Albert Einsteins relativiteitstheorie werd gepubliceerd en het werd genoemd in

Nature (Garnett, 1920).
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Flatland, en dit proefschrift. De onderliggende boodschap van het boek is dat we “open

moeten staan voor nieuwe ideeën”, wat vergelijkbaar is met het PhD-traject. We moeten

nieuwe gebieden en toepassingen onderzoeken en we moeten ontvankelijk zijn voor zaken

die we ons in eerste instantie niet kunnen voorstellen.

Het doel van dit proefschrift is om raamwerken te presenteren die een beter beeld geven

van de eerder genoemde dimensies. De nieuwe resultaten en inzichten die hieruit volgen zijn

relevant voor investeerders en academici. Dit proefschrift bestaat uit twee delen. In het eerste

deel staat liquiditeit centraal terwijl het tweede deel de focus legt op de termijnstructuur in

grondstofmarkten.

Hoofdstuk 2 is gebaseerd op Karstanje, Sojli, Tham en van der Wel (2013). In dit hoofd-

stuk focussen we op de dimensies van liquiditeit voor het gebruik van markt timing, het op

het juiste moment in- of uit de markt stappen. We vergelijken de prestaties van dynamische

asset allocatie strategieën, die allen gedreven worden door de korte termijn voorspelkracht

van maandelijkse aandelen rendementen door één van de liquiditeitsmaatstaven. We vin-

den drie hoofdresultaten: markt timing op basis van liquiditeit leidt tot tastbare economische

winsten; een risico-averse investeerder is bereid om een hogere vergoeding te betalen om

te wisselen naar de Zeros liquiditeitsmaatstaf (Lesmond, Ogden en Trzcinka, 1999); de Ze-

ros liquiditeitsmaatstaf presteert beter dan de andere maatstaven door zijn robuustheid tegen

extreme financiële situaties. Deze bevindingen zijn onafhankelijk van de bekeken tijdsperi-

ode en zijn robuust tegen het controleren voor bestaande marktrendement voorspellers of het

gebruik van voor risico gecorrigeerde rendementen.

Hoofdstuk 3 is gebaseerd op de Groot, Karstanje en Zhou (2014). We onderzoeken

nieuwe “momentum” strategieën in grondstof termijncontracten (zogenaamde futures), waar-

bij informatie van de termijnstructuur wordt meegenomen. De termijnstructuur, of grondstof

curve, is de verzameling van termijncontracten met verschillende looptijden maar dezelfde

onderliggende grondstof. We laten zien dat momentum strategieën die investeren in contrac-

ten op de curve waar de verwachte “rol-rendement” het grootst is of waar momentum het

best heeft gepresteerd, significant hogere rendementen behalen dan een standaard momen-

tum strategie. De standaard strategie handelt enkel in de eerst aflopende termijncontracten.

Wanneer we conservatieve transactiekosten meenemen in onze analyse, observeren we dat

onze lage-“turnover” momentum strategie het netto rendement meer dan verdubbelt ten op-

zichte van een traditionele momentum strategie.
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Hoofdstuk 4 is gebaseerd op Karstanje, van der Wel en van Dijk (2014). In dit hoofdstuk

onderzoeken we de samenhang tussen de drijvende factoren achter grondstof curven. We

gebruiken het raamwerk van het dynamische Nelson-Siegel (1987) model waardoor we zo-

wel de samenhang in prijsniveaus als in termijnstructuur vormen (gekarakteriseerd door hun

helling en kromming) kunnen onderzoeken. Onze empirische resultaten, gebaseerd op data

van 24 grondstoffen over de periode 1995-2012, laten zien dat individuele grondstof cur-

ven worden gedreven door gemeenschappelijke componenten. Het gemeenschappelijk deel

is vooral sector specifiek, wat impliceert dat grondstoffen een heterogene asset klasse zijn.

Het gemeenschappelijk deel van het niveau van de curve is groter geworden over de tijd.

Deze toename valt tegelijkertijd met de financialisering van de grondstofmarkt. De markt-

brede niveau component, die alle grondstoffen beı̈nvloedt, is gerelateerd aan economische

output variabelen, wisselkoersen en hedging pressure (het relatieve verschil tussen het aan-

tal speculanten en producenten). De drijvende factoren achter de vorm van de curve zijn

gerelateerd aan grondstofvoorraden (theory of storage), hedging pressure (theory of normal

backwardation) en de rentetermijnstructuur. Het gebruik van volledige curve data verandert

de resultaten met betrekking tot de onderlinge grondstof samenhang, vergeleken met het ge-

bruik van data van enkel eerst aflopende termijncontracten. De resultaten geven meer inzicht

in de dynamiek van de grondstofmarkten en kunnen helpen bij de constructie van grondstof

investeringsportfolios en hedging beslissingen.
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