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AN EQUILIBRIUM-CORRECTION MODEL

FOR DYNAMIC NETWORK DATA

David Dekker{

Philip Hans Franses

Erasmus University Rotterdam

David Krackhardt

Carnegie Mellon University

We propose a two-stage MRQAP to analyze dynamic network data within the

framework of an equilibrium-correction (EC) model. Extensive simulation

results indicate practical relevance of our method and its improvement over

standard OLS. In addition, empirical illustration shows that the EC-model

yields interpretable parameters, in contrast to an unrestricted dynamic model.

Keywords: Network Analysis, Dynamics, Quadratic Assignment Procedure,

Cognitive Social Structure

1. INTRODUCTION

In network analysis interest in longitudinal investigations increases (see for
example Burt, 2000; Doreian & Stokman, 1996; Feld, 1997). Current
models for these analyses are often based on Markov Chain methods (see
Leenders, 1996, for overview). Although these models have proven to be
useful (Snijders, 2001; van de Bunt, 1999), they do have some potential
limitations. One such limitation is that these models do not make a dis-
tinction between ‘‘change’’ effects and ‘‘level’’ effects of explanatory vari-
ables. As we believe that this distinction is useful in network studies, we
propose a model that explicitly incorporates ‘‘change’’ and ‘‘level’’ effects.

The model specification we propose to use is the equilibrium-correction
model (EC-model), which is often used in time-series econometrics (see
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Greene, 2000). This model describes effects on temporal changes in a
dependent variable, which can for example be relationship strength. An
advantage of the EC-model is that it explicitly specifies effects of changes
in explanatory variables over time (short-term effects) and effects of a
variable that describes an equilibrium relation (long-term effects). Espe-
cially, as we will show later, when we consider cognitive variables such as
those based on perceived networks the distinction between short-term and
long term effects may be relevant.

In the dependent variable the EC-model mirrors models like a long-
itudinal p*-model (Robins & Pattison, 2001) and the actor-oriented
SIENA-model (Snijders, 2001), which address the probability of rela-
tionship change. However, a difference is that the actor-oriented
approach is defined in continuous time, while the EC-model we
propose is defined in discrete time. Furthermore, we use an adjusted
‘‘multiple regression quadratic assignment procedure’’ (MRQAP) approach
for statistical inference. This a non-parametric approach in contrast to
SIENA, which is based on an explicit probabilistic network evolution
model.

As is well known, inference on network data based on ordinary least
squares (OLS) or non-linear least squares (NLS) can lead to spurious
results. Autocorrelation (serial as well as structural) may lead to under-
estimation of standard errors, which makes correct inference based on
these estimates impossible (see Johnston & DiNardo, 1996). Although the
equilibrium-correction model handles serial autocorrelation, when it is
considered for network data it seems wise to rely on a MRQAP approach
for parameter testing (Hubert & Schultz, 1976; Krackhardt, 1988).
MRQAP, which builds on the bivariate QAP work of Hubert (1987; Hubert
& Schhultz, 1976), is a non-parametric method and therefore makes no a-
priori distributional assumptions.

We should emphasize that the MRQAP approach that we use here
tests the null hypothesis that all independent variables have a zero
coefficient (Krackhardt, 1987b, 1988). In contrast, the actor-oriented
approach tests the effect of a single independent variable, controlling
for the effects of the other independent variables. Thus, although
we use OLS in the estimation of the multiple-regression coefficients,
the statistical inference we use is different from what is most com-
monly used.

The outline of the paper is as follows. In section 2 we first briefly discuss
the equilibrium-correction model and the MRQAP approach. In Section 3
we report on the extensive simulations to check if the model works in
practice. In section 4 we discuss an empirical illustration. In the final
section we present our conclusions.
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2. QAP-ING AN EQUILIBRIUM-CORRECTION MODEL

In econometric time series analysis the equilibrium-correction model is
often used due to some nice features of this model. Most important, the
model handles serial autocorrelation (which occurs when observations are
dependent over time), while it also gives interpretable parameters. In the
following we first discuss the advantages of the EC-model. Second, we
discuss the MRQAP approach, which is practically relevant as network data
are prone to structural autocorrelation because of the inherent row and=or
column dependency between observed relations (Lincoln, 1984).

2.1 An Equilibrium-Correction Model

There are several ways to deal with serial autocorrelation in network data.
Serial autocorrelation implies that the error terms (eij;t) are correlated over
time, for example like eij,t¼ reij,t�1þnt, with 0< r< 1, and where nt might
be distributed as N(0, s2

v). In such data there is a correlation between
observations in subsequent periods. In this exemplary case we can say that
the data have a first-order dynamic structure. A general model to handle
first-order dynamics is the so-called autoregressive distributed lag model,
ADL(1,1) model, which is given by

yij;t ¼ b0 þ ryij;t�1 þ b1xij;t þ b2xij;t�1 þ eij;t: ð1Þ

In this model it is assumed that yij,t depends on its own past, and also on
current and past explanatory variables xij,t. Of course, (1) can be extended
to include more than one explanatory variable, in which case xij,t denotes a
vector.

A potential drawback of (1) is that it may not always be easy to interpret
the estimated parameters. For example, there is the possibility that b1 and
b2 get opposite signs. One way to facilitate parameter interpretation
amounts to rewrite (1) into the equilibrium-correction model, that is

yij;t � yij;t�1 ¼ g0 þ g1ðxij;t � xij;t�1Þ þ g2ðyij;t�1 � g3xij;t�1Þ þ eij;t: ð2Þ

It is easy to see that the parameters in (2) are uniquely related with those
in (1) by

g0 ¼ b0; g1 ¼ b1; g2 ¼ ðr� 1Þ; and g3 ¼ �ðb1 þ b2Þ=ðr� 1Þ: ð3Þ

The EC specification enables a sensible interpretation of the para-
meters. In the EC-model, g1 can be interpreted as the short term effect of x
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on y as it captures the effect of changes in x on those in y. Furthermore, g3

can be interpreted as indicating the long-term equilibrium relation
between y and x, while g2 measures the speed of adjustment of y to that
long-term equilibrium.

For time series data, OLS (or NLS) yields consistent estimates of g1, g2,
g3 (Greene, 2000, p.1187120). However, for network data, with potential
structural autocorrelation it may not. To solve this issue, Krackhardt
(1988) proposed a method for parameter inference that is robust against
structural autocorrelation. This method we discuss next.

2.2 MRQAP To Handle Structural Autocorrelation

A major problem with network data is that it is sensitive to structural
autocorrelation, and hence a straightforward application of OLS might
result in spurious findings (see Greene, 2000; Jonston & DiNardo, 1996).
Structural autocorrelation may occur because row and=or column entries in
a socio-matrix are dependent. Krackhardt (1988) proposes the MRQAP as
an inference procedure that is robust against structural autocorrelation.
The MRQAP entails a non-parametric test for the significance of parameter
estimates. It compares OLS parameter estimates based on the original data
with a reference distribution of OLS estimates that are estimated using
random data.

There are different approaches to generate MRQAP reference distribu-
tions (Krackhardt, 1987b,1988), which give similar results. An often-used
approach permutes simultaneously the rows and columns of the dependent
network data matrix to generate random data, which then become the basis
for the distribution of the coefficients under a null hypothesis. The
advantage of this particular form of permutation (simultaneous row and
column permutation) is that any structural autocorrelation is preserved
under each permutation. Thus, all coefficients derived to produce the null
hypothesis distribution share this amount and form of structural auto-
correlation (Krackhardt, 1988).

For example, assume

yij ¼

y11 . . . y1j . . . y1k

..

. . .
.

. .
. ..

.

yj1 yjj yjk

..

.
. .

. . .
. ..

.

yk1 . . . ykj . . . ykk

2
66666666664

3
77777777775

;
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then one permutation of yij that keeps the possible structural auto-
correlation intact is1:

y�ij ¼

ykk . . . yk1 . . . ykj

..

. . .
.

. .
. ..

.

y1k y11 y1j

..

.
. .

. . .
. ..

.

yjk . . . yj1 . . . yjj

2
666666666664

3
777777777775

With each randomly permuted matrix, the parameters are re-estimated,
and these re-estimated parameters comprise the reference distribution
against which the observed estimates are compared. A particular observed
coefficient is deemed significantly different from random if it lies in the tails
of this reference distribution.

2.3 Two Stage MRQAP

The method described above gives valid results for the null hypothesis that
all regression coefficients are equal to zero. However, problems may arise if
we want to test this hypothesis, while there is serial auto-correlation. We
cannot straightforwardly use this approach for the EC-model nor to the
ADL(1,1) model. Let us focus on the ADL(1,1) model since we may derive
the EC-model from it. In the instances where the r parameter is not equal
to zero the random permutation of yij,t has consequences for the estimation
of r, b2 and b3 in (1) during the QAP-procedure. In the following discussion
of these problems with MRQAP, we will indicate a randomized yij,t in the
MRQAP as y�ij;t and also will identify parameter estimates that are gener-
ated by the MRQAP with an asterisk, for example, r*.

Consider again the ADL(1,1) model in (1). MRQAP offers a basis to test
whether r is a spurious result due to structural autocorrelation. Under the
null hypothesis of MRQAP, the expected value of r* is zero, that is, there is
no relation between y�ij;t and y�ij;t�1. If this null hypothesis is true, but the
OLS estimate of r is different from zero, then this presumably is due to
neglected structural autocorrelation. In that case we should consider that
the OLS value of r is due to neglected structural autocorrelation or is just
zero indeed.

1In this instance of a permutation, row i replaced row j, row j replaced row k, row k re-

placed row i, and hence column l replaced column j, column j replaced column k, column k

replaced column l. For a more detailed example, see Krackhardt (1987b).
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Similarly, we could analyze the b2 and b3 parameters in the ADL(1,1)
model, but here a problem could arise. Note again that there is no linear
relation between y�ij;t and yij;t�1 (the expected value of r* is zero). How-
ever, there may be a linear relation between y�ij;t and p(yij;t�1), where p(.)
represents the randomization function that describes the permutation of
rows and columns that created y�ij;t. This relation implies that possible serial
autocorrelation did not disappear; however, it does not have a first-order
structure anymore. Actually, the serial autocorrelation in the data has
taken a form that can best be interpreted as a form of structural auto-
correlation. In the MRQAP the serial autocorrelation that the ADL(1,1)
specification controls for in the initial (not randomized) data, becomes
autocorrelation that is not explicitly controlled for in the ADL(1,1) model.
Hence, the permutations in an MRQAP change the level of serial auto-
correlation (r*), which affects the estimation of the other parameter
estimates, b�2, and b�3. This has consequences for the usefulness of the
reference distributions, generated by MRQAP to assess the sizes of b2,
and b3.

A consequence of this increase in the level of structural autocorrelation
is that the variation in the size of the estimates of the parameters
increases. As r does not correct for serial autocorrelation anymore, the
estimates of the other parameters would increasingly differ from zero for
increasing levels of serial autocorrelation. This would make the MRQAP a
conservative test.

To deal with the above problem, we have to control for serial correlation
during the MRQAP procedure. A two-stage MRQAP (TS MRQAP) does this.
In the first stage we test the null hypothesis that all regression coefficients,
including r, are zero. If we can not reject the null hypothesis that r is larger
than zero, we conclude that the ADL(1,1) model, and hence the EC-model
are both inappropriate. If we can reject the null hypothesis that r is larger
than zero we use the second stage to asses the hypothesis that all
regression coefficients except r are equal to zero. In this second stage, we
not only randomize yij,t, but also in a similar way randomize yij,t�1.This
keeps intact the relation between y�ij;t and y�ij;t�1, and hence r*¼ r. When
applying MRQAP, we then explicitly control for serial autocorrelation,
which allows the assessment of whether the other parameter estimates are
spurious due to neglected structural autocorrelation.

An additional remark needs to be made with regard to g3 in the EC-
model, (2). For r< 1, when r becomes larger (and |r�1| thus becomes
smaller), g3 ¼ �ðb1 þ b2Þ=ðr� 1Þ, would go to infinity when r approaches
1. The TS MRQAP may then lead to overestimation of g3, especially when r
is large. To counter this outcome we need to control for r when testing the
null hypotheses that g3¼ 0. As g3 is zero when b1 þ b2 ¼ �g2g3 ¼ 0, it
suffices to test whether this condition holds, given that r is less than 1.

198 D. Dekker et al.
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3. SIMULATIONS

In this section we present some simulations to see whether TS MRQAP, as
we described in the previous section, works in practice. These simulations
would indicate whether a TS MRQAP analysis of the ADL(1,1) and the EC-
model is robust against structural autocorrelation.

3.1 Data Generating Process

As is done in Krackhardt (1988), we generate random data with varying
levels of structural and serial autocorrelation on a dependent variable (yij,t)
and a single independent variable (xij,t). This data-generating process
(DGP) implies that there is neither a short-term nor a long-term relation
between x and y. We estimate the parameters for the two period ADL(1,1)
model in (1) and the associated EC-model in (2), with the following data:

yij;t ¼ KRzyi;t þ KCzyj;t þKBzyij;t þ ryij;t�1 ð4Þ

xij;t ¼ KRzxi;t þ KCzxj;t þ KBzxij;t ð5Þ

where KR and KC represent the levels of structural autocorrelation in
respectively the rows and columns of the matrix and r is the serial auto-
correlation parameter. The zxi;t; zxj;t; zxij;t; zyi;t; zyj;t; and zyij;t are randomly
distributed gaussian variables (N(0,1)). The autocorrelations take values
between 0 < KB � 1, KR ¼ 1 � KB, KR ¼ KC and 0 < r < 1, with steps of
.05. Thus, 441 combinations of structural and serial autocorrelation values
have been evaluated.

3.2 Tests

In the simulations we record the percentage of rejections (based on 1000
runs) of the (true) null hypotheses, that is, that there are no short-term and
long-term relations between dependent and explanatory variables. As both
the dependent and independent variables are random, we would expect to
find no relations between them. On the other hand, we would expect the
relation between the dependent (yt) and lagged dependent (yt�1) to be as
large as r. Therefore, we only test the null hypothesis (r¼ 0).

All inference of the parameters in the EC-model can be done on the
basis of the ADL(1,1) model. An advantage of this model is that it is linear
in the parameters. From the ADL(1,1) parameter estimates we derive the
parameter values and (asymptotic) standard errors of the EC-model
parameters (see Greene 2000, pp. 1187120). We determine the robust-
ness against autocorrelation as the degree to which the t-test and TS
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MRQAP-test reject the null hypotheses of no significant effects at the
a¼ .10 level. We expect for TS MRQAP that the rejection rate of the null
hypotheses to be a on average (see Krackhardt, 1988).

3.3 Simulation Results

Figures 1a to 3c and Tables 1a and 1b summarize our simulation results.
First, Figure 1a shows us that the TS MRQAP analysis of r is robust against
structural autocorrelation, but slightly liberal (not to a disturbing extent
though). With increasing levels of structural autocorrelation, the number of
rejections based on the MRQAP-test remains 10% when indeed there is no
serial autocorrelation. As expected we see that the t-test is not robust
against structural autocorrelation (see Figure 1b). This graph indicates
that the t-test based rejection rate of the null-hypothesis that r¼ 0
increases as structural autocorrelation increases.

FIGURE 1a TS MRQAP based Rejection Rates of H0: r ¼ 0.
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Second, Table 1a shows that regular MRQAP is conservative, because
the rejection rate goes to zero in the analysis of b2. These results are similar
for g2 and b3 and we therefore do not report those results. When we control
for serial autocorrelation, as we do in the TS MRQAP analysis, results are
satisfactory (see Table 1b). Furthermore, Figure 2a shows us that TS
MRQAP analysis of b2 (and g2 and b3) is robust against structural auto-
correlation, without becoming a test that is conservative. And, as expected,
Figure 2b shows that the t-test of b2 (and g2 and b3) is not robust against
structural autocorrelation.

Figure 3a shows that when we do not control for r, the TS MRQAP-
analysis of g3 (¼�ðb2 þ b3Þ=ðr� 1Þ) is not robust against increasing levels
of serial autocorrelation. When the structural autocorrelation is indeed
zero, the TS MRQAP-analysis rejects the null-hypothesis that g3¼ 0 more
often with increasing r. However, as discussed above, to test whether g3¼ 0
it is sufficient to test that b2þb3¼ 0. From Figure 3b it becomes clear
that TS MRQAP-analysis of this condition is robust against structural

FIGURE 1b T-test based Rejection Rates of H0: r ¼ 0.
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autocorrelation. Figure 3c again shows that the t-test of g3¼ 0 is not robust
against structural autocorrelation.

To summarize our simulation results, it seems that TS MRQAP
has excellence performance, and it is more reliable than the OLS-based
t-statistics.

4. AN EMPIRICAL ILLUSTRATION: CHANGES IN ACCURACY

To illustrate the usefulness of EC-models we present an example in which
we analyze both ADL(1,1) and EC-models. In this example, we focus on
accuracy of social structural perception. In the example we show that
indeed the ADL(1,1)-model may give results that have a difficult inter-
pretation, while the interpretation of the EC-model is much more
straightforward. First, we will give a short background on the importance of
accuracy studies and we discuss the value of a longitudinal study on
accuracy. Subsequently, we discuss the data and show some results.

FIGURE 2a TS MRQAP based Rejection Rates of H0: g2 ¼ 0 ðb2 ¼ g2Þ.
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4.1 Accuracy of Perceptions

Krackhardt (1990) shows that individuals that accurately perceive the
network structure of relationships have greater power in that network.
Casciaro (1998) suggests that accurate perceptions may not only affect the
individual’s ability to get what he or she wants, but also have consequences
for groups and organizations. Those individuals who perceive the social
structure, which defines the access to resources, more accurately are
better able to obtain the resources that are needed for groups and orga-
nizations (Burt, 1992).

Several studies have shown that degree centrality in networks enhances
individuals accuracy of perceived networks (Bondonio, 1998; Casciaro,
1998). Degree centrality is measured as the number of people that have a
direct relationship with a focal individual. In this illustration we focus on
the effects of indegree centrality and outdegree centrality. The indegree is
the number of relationships that a focal individual receives, while the
outdegree is the number of relationships that originate from that focal
individual.

FIGURE 2b T-test based rejection rates of H0:g2 ¼ 0 ðb2 ¼ g2Þ.
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Centrality indicates the potential for communication in which an actor
could be involved (Freeman, 1979). More involvement in the total com-
munication that occurs in the network could have two effects on perception
accuracy. First, a central individual receives more information about the
structure of the network. Or better, such an individual receives information
on the perceptions about the network structure of more other individuals in
the network. To the extent that such a central person actively seeks out
others (as opposed to being the passive recipient of others inquests), this
effect is especially captured by outdegree. Second, the perceptions of an
individual who is frequently sought out by others tend to carry more sway.
That is, more individuals will take notice of the perceptions of such a
central individual, and therefore his or her perceptions are more likely to
become dominant. This effect of centrality would be especially captured by
the indegree.

If centrality indeed enhances perceptual accuracy, it should do so over
time. For example, changes of centrality should be reflected in enhanced or
diminished accuracy. In our illustration, we study whether centrality
influences the accuracy of social structural perceptions over time. In other

FIGURE 3a TS MRQAP based Rejection Rates of H0:g3 ¼ 0.

206 D. Dekker et al.

D
ow

nl
oa

de
d 

by
 [

E
ra

sm
us

 U
ni

ve
rs

ity
] 

at
 0

3:
32

 0
4 

A
ug

us
t 2

01
5 



words, here we study whether centrality affects the consistency of per-
ception accuracy. Especially, we try to determine what centrality measures
affect accuracy.

4.2 Dependent Variable

In this illustration, accuracy implies a minimum deviation from a certain
reference or benchmark. Krackhardt (1987) defines the locally aggregated
structure as such a reference for perceived social structure. In the locally
aggregated structure (LAS) a relationship exists when both individuals that
are involved in the relationship claim it is present. For example, if indivi-
dual i claims to have a relationship with j (Rij) and j confirms this, then this
(directed) relationship is present in the locally aggregated structure. We
measure the accuracy of individual k’s perceptions as the absolute devia-
tion of individual k’s perceptions from this reference.

However, still different accuracies may be determined. Examples are the
accuracy of individual k concerning the entire network (Krackhardt 1987)
or the accuracy of individual k concerning the relationships of each

FIGURE 3b TS MRQAP based Rejection Rates of H0:g3 ¼ 0 based on b2 þ b3 ¼ 0.
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individual in the network (Bondonio 1998). To keep things simple in our
illustration, we only look at the perceptions individual k has of his=her
direct relationships. That is, accuracy hereafter will refer to the accuracy
(as defined by comparing perceptions to the LAS benchmark) of the per-
ceiver k in assessing his=her own direct ties to a set of alters, j. Thus, the
dependent variable is a matrix M(k,j) where cell (k,j) captures the extent
to which k is accurate in assessing k’s tie to j.

TABLE 2a Values Dependent Variable in ADL(1,1) Model

kRkj �a Rkj

�� ��
‘‘Actual’’ Rkj(aRkj)

No Relationship (0) Relationship (1)

k’s perception

of Rkj (kRkj)

No Relationship (0) Accurate (0) Inaccurate (1)

Relationship (1) Inaccurate (1) Accurate (0)

FIGURE 3c T-test based Rejection Rates of H0: g3 ¼ 0.
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The ADL(1,1) model and the EC-model both have different dependent
variable matrices. In our illustration the dependent variable in the
ADL(1,1) model is the accuracy of individual k on Rkj in period t. Given
that our data is dichotomous, the value of this variable is always one or zero
as can be seen in Table 2a.

The ADL(1,1) models in our example specify the effects of previous
accuracy, current centrality and previous centrality on future accuracy. A
problem with the ADL(1,1) specification could be that current centrality
and previous centrality have opposite effects. It would then be difficult to
understand the effects of centrality.

We therefore rely on the EC-model. In our illustration the EC-model
assumes an effect induced by the levels of centrality and an effect of
change in the level of centrality. These are different effects, with sub-
stantively different meanings. The level effect of centrality would explain
the equilibrium level of accuracy. The change in the level of centrality
would explain the deviation from the equilibrium level of accuracy.

As mentioned, a consequence of using the EC-model is that the
dependent variable in the EC-model differs from that of the ADL(1,1)
model. In the EC-model the dependent variable is the change in accuracy
or the instability of accuracy. Table 2b shows that there are three possible
values for change in accuracy when data are dichotomous. The value is zero
if no change occurs either because individual k remains accurate or inac-
curate. The value becomes positive when an individual becomes more
inaccurate and the value becomes negative when an individual becomes
more accurate. Consequently, a negative parameter estimate indicates
better accuracy, while a positive parameter estimate means lower accuracy.

4.3 Explanatory Variables

In our models we consider the effects of indegree and outdegree
centrality in three types of networks. First, we consider the centrality of
individual k in the consensus structure (CS). In this structure a relationship

TABLE 2b Values Dependent Variable in EC-Model

Period t-1

Accurate (0) Inaccurate (1)

Period t

Accurate (0) Consistently

accurate (0)

More accurate (71)

Inaccurate (1) More inaccurate (1) Consistently

inaccurate (0)
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exists if a majority of individuals (more than 50%) perceive the relationship
to exist. The centrality measures based on this structure reflect whether
the group as a whole considers an individual to be central. Second, we
consider centrality in the LAS. The centrality measures based on the LAS
reflect whether the group of direct contacts agrees with individual k on
his=her centrality. Third, we also consider the structure as perceived by
each individual personally (the slices of the cognitive social structure). In
these structures we measure the centrality individual k perceives individual
j to have. The network we study is an advice request network.

Note that the measures based on the first two structures are group-
based measures that reflect the importance of the perception of k for
others (indegree) and the access others think that k has to resources. The
measures in the third structure reflect how central k perceives j to be. The
indegree measure shows how important j is to others according to k, while
the outdegree measure shows how much access j has to social resources
according to k.

TABLE 3a Results of the ADL(1,1)-Model with as Dependent Variable ‘‘Accuracy

of Advice Relationships’’ (LAS) in Period 2 (t¼ 2) and Different Degree Measures

as Explanatory Variables

Two stage MRQAP Standard OLS statistic

Estimates P-value P-value

Constant .74 .24 .10

Serial autocorrelation

parameter

� .39 .03 .00

Indegree CS (t) �11 �.20 .14 .05

Indegree CS (t-1) �21 .19 .29 .15

Indegree LAS (t) �12 .08 .24 .11

Indegree LAS (t-1) �22 �.09 .44 .27

Indegree SLICE (t) �13 �.03 .06 .04

Indegree SLICE (t-1) �23 .03 .03 .02

Outdegree CS (t) �14 �.27 .08 .03

Outdegree CS (t-1) �24 .09 .22 .14

Outdegree LAS (t) �15 �.04 .32 .16

Outdegree LAS (t-1) �25 .08 .13 .05

Outdegree SLICE (t) �16 .01 .57 .53

Outdegree SLICE (t-1) �26 .00 .81 .81

Adj.R2¼ .16

Boldface and Italic numbers represent significant results a� .10. P-values are two-sided.

TS MRQAP is based on 10000 simulations

Dependent Variable: Accurate¼ 0, Inaccurate¼ 1
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4.4 Data

We collected data on a group of 13 individuals on perceived advice request
relationships over two periods. Hence we study 156 changes in accuracy.
The data setting is similar to that described in Krackhardt & Porter (1985,
1986). The individuals in the network are employees of a big fast food
chain. Employees are subject to standard rules that apply throughout the
chain. For example, they have to wear prescribed uniforms. Most of the
employees are high school students who work to earn some spending
money. Furthermore, working at that specific restaurant comes with social
status, because it is a popular hangout place for students. These data were
collected in the beginning of the 1980s and have not been presented before
in Krackhardt & Porter (1985, 1986). The reason was that those papers
focused on turnover as a dependent variable, and in this branch there was
no turnover between the two periods. This is beneficial to this study,

TABLE 3b Results of the Equilibrium-Correction Model With as Dependent

Variable ‘‘Change in Accuracy: Advice Relationships’’ (LAS) and Different Degree

Measures as Explanatory Variables, Where D Denotes the Change Variable

Two stage MRQAP

statistics Standard OLS Statistics

Estimates P-value P-value

Constant .74 .24 .10

Short-term Adjustment

Parameter

�2 �.61 .03 .00

Indegree CS (�) �11 �.20 .14 .05

Indegree CS (t-1) �31 �.02 .84 .77

Indegree LAS (�) �12 .08 .24 .11

Indegree LAS (t-1) �32 �.02 .90 .86

Indegree SLICE (�) �13 �.03 .06 .04

Indegree SLICE (t-1) �33 .00 .89 .66

Outdegree CS (�) �14 �.27 .08 .03

Outdegree CS (t-1) �34 �.29 .20 .10

Outdegree LAS (�) �15 �.04 .32 .16

Outdegree LAS (t-1) �35 .06 .62 .54

Outdegree SLICE (�) �16 .01 .57 .53

Outdegree SLICE (t-1) �36 .03 .51 .43

Adj.R2¼ .42

Boldface and Italic numbers represent significant results at a� .10. P-values are two-sided.

Italic numbers represent significant results for standard OLS based t-test at a� .10.

TS MRQAP is based on 10000 simulations

Dependent Variable: Consistent¼ 0, More Inaccurate¼ 1; More Accurate¼�1
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because it means that the number of observations is higher than if there
had been mutations in the group.

4.5 Empirical Results

Tables 3a and 3b show the results of our empirical analysis where the
dependent variables are respectively, LAS-based accuracy and change in
LAS-based accuracy. Equation 3 shows the algebraic relation between the
coefficients in these tables. Furthermore, the first index of the parameter
symbols (e.g. b11, b21, and g31) indicate the similar parameters in equations
1 and 2.

Table 3a immediately shows a difficulty with the interpretation of the
ADL(1,1) model. It shows that k’s accuracy at time t, based on LAS, is
positively and negatively related to the indegrees that k perceives j to have
now and in a previous period, respectively (Indegree Slice at time t¼�.03,
p¼ .06 and Indegree Slice at time t�1¼ .03, p¼ .03). Since accuracy in
this model is defined by j agreeing with k’s perception of the tie from k to j,
this would mean that j’s and k’s current perceptions are more similar when
k perceives j to have a high current indegree. However, this result also
implies that the current perceptions of k and j are less similar, when k

perceived j to have a high indegree in the previous period. These results are
not intuitive. On the other hand, in Table 3b (the EC-model), we see that
the change in accuracy is affected by the change in the perceived indegree
(Indegree Slice D¼�.03, p¼ .06) and not the level of perceived indegree
(Indegree Slice t�1¼ .00, p¼ .89). This result allows for a more
meaningful substantive interpretation. As k perceives j to become a more
popular source of information, k becomes more accurate in his=her
assessment of his=her tie to j.

In Table 3a, we also see that current outdegree as perceived by the
majority of individuals in the network enhance accurate perception (Out-
degree CS t¼�.27, p¼ .08), which is (by definition) similar to the change
effects in the EC-model (see table 3b, Outdegree CS D). As no other effects
where found for the EC-model, it seems that change in LAS-based accuracy
is mainly driven by CS-based centrality and individual’s perceptions about
the centrality of partners.

Some other results are worth emphasizing in this illustration. In Table
3a, for example, LAS-based outdegree of previous periods is not significant
(Outdegree LAS t�1¼ .08, p¼ .13). However, based on the standard OLS
t-test we would falsely infer that the accompanying parameter significantly
differs from zero (b25¼ .08, p¼ .05). We emphasize again that the TS
MRQAP approach doesn’t test such hypotheses. However, this approach
does allow us to select a set of relevant explanatory variables, while not
making inferences on spurious results due to autocorrelation.
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5. CONCLUSIONS

In this paper we proposed to use TS MRQAP for analyzing dynamic
network data, captured by an equilibrium-correction model. Our simu-
lation results emphasize that under conditions of serial and structural
autocorrelation it is relevant to follow the TS MRQAP. Especially, the
two-stage procedure is needed to control for disturbing effects of serial
autocorrelation. Although estimation of the ADL(1,1) model is needed to
make inferences on the long-term effect parameter (g3) in the EC-
model, the latter model has more interpretable coefficients, that is the
‘‘level’’-effect and the ‘‘change’’-effect. Our empirical analysis illustrates
this.

The empirical results suggest that the effect of a change in k’s per-
ception of j’s indegree centrality is larger than the level effect on
accuracy of perceptions. Accuracy of perceptions about relations
increases when those relations are with someone that is deemed to be
more central. Note that this is LAS-based accuracy, i.e., accuracy with
reality defined as a confirmation between two individuals. As has been
demonstrated empirically (Krackhardt, 1987a; Kumbasar, Romney &
Batchelder, 1994), individuals (here j) overestimate there own centrality.
Hence, as k deems j to be more central this will on average imply a
higher confirmation between j and k.

As suggested above, one alternative explanation could be that more
central individuals have a more dominant perception. Especially, as k

perceives j to have a higher indegree the effect could show that k adopts
the perceptions j hold about the network. Further study is needed to give
more definite answers. This illustration makes clear changes in perceptions
of partners’ centrality are associated with changes in accuracy over time.

Another finding is the effect of CS-based outdegree on changes in
accuracy. Interestingly, the EC-model suggest that mainly the change
in information sources enhances accuracy, while we could not find an effect
of the amount of information sources (i.e., outdegree level). It suggests
that a given level of centrality accuracy doesn’t change, but changes in level
of outdegree result in immediate change of accuracy.

More substantive, as accuracy enhances performance (Krackhardt,
1990) we may hypothesize that because increasing outdegree centrality
enhances accuracy, centrality enhances performance. Higher outdegree
centrality implies a broader range of information sources that leads to
greater accuracy. Hence, higher outdegree may contribute fundamentally
different to performance than increasing indegree. The latter would
increase deference, while the former enhances perception of the social
environment.
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Specifically, the EC-model could be of great help in further research to
shed some light on these hypotheses. Finally, we want to conclude with the
remark that the equilibrium-correction model can easily be extended to
incorporate more change effects, like for example changes between period
t¼ 1 and t¼ 2, t¼ 2 and t¼ 3, and so on. This could provide additional
insights in the structure of dynamic effects in network data.
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