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Regime jumps in electricity prices
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Abstract

Many countries are liberalizing their energy markets. Participants in these markets are
exposed to market risk due to the characteristics of electricity price dynamics. Electricity
prices are known to be mean-reverting very volatile and subject to frequent spikes. Models
that describe the dynamics of electricity prices should incorporate these characteristics. In
order to capture the price spikes, many researchers have introduced stochastic jump processes,
but we argue and show that this specification might lead to potential problems with specifying
the true amount of mean-reversion within the process. In this paper, we propose a regime-
switching model that models price spikes separated from normal mean-reverting prices.
� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Participants in electricity markets face enormous market risks due to the highly
volatile electricity markets. Daily volatilities of 29% are common; for comparison
international stock indices have volatilities close to 20%, but on a yearly basis. For
risk management, portfolio management and option pricing issues it is crucial to
have a good insight in the dynamics of electricity prices. Researchers have examined
these dynamics and have indicated various stylised facts of electricity prices: high
volatility, mean-reversion(prices tend to fluctuate around a long term equilibrium
mean), seasonality(for example high summer prices in Arizona due to huge demand
for power from air conditioning usage), and frequent extreme jumps in prices that
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die out rapidly(result of fluctuations in demand and low elasticity of supply, due
to system breakdown and limited inventory capacities).1

In this paper, we also focus on modelling electricity prices and concentrate on
estimating the extreme jumps. Jumps in electricity prices are characterized by their
short existence; prices fall back to a normal level sometimes after even one day
(for example in case of system breakdown). The motivation for our study comes
from past studies that have applied a stochastic jump model in combination with
mean-reversion to model the jumps. The mean-reversion component is used to force
the price of electricity to fall back to a normal level after a shock or jump has
occurred; mean-reversion is directly associated with the jump process. However, it
might well be that mean-reversion exists only in the ‘normal’ price process; the
normal mean reverting process is then not specified correctly in traditional jump
models. We argue that a stochastic jump process with mean-reversion might lead to
an erroneous specification of the true mean-reversion process.

In this paper, we show the existence of such a normal mean reverting process
that is not directly associated with jumps. In the regime jump model, we assume
that the electricity price is in one out of three different regimes at each point in
time. We identify a normal regime that can contain a mean-reversion component.
In addition, we identify two extra regimes: the first regime models a price jump
and a second regime models the way the process falls back to the normal process.
Markov transition matrices specify the probabilities that the electricity prices move
from one regime to another from one time point to the next. The advantage of the
regime-switching framework is that we can explicitly model the short-lived charac-
teristics of power spike, which is not captured by stochastic jump models.

Our results indicate that the electricity prices process exhibits significant mean-
reversion in its normal process and we show that the regime jump process performs
better in modelling the jumps in combination with mean-reversion than a stochastic
jump model. We therefore conclude that the regime jump model is a much richer
specification of the electricity price dynamics than the other models used.

This paper is organized as follows. We explain the methodology in Section 2. In
Section 3, we present summary statistics of the data we use. Section 4 shows
empirical estimates from applying the model to electricity prices from several
international markets. Section 5 concludes.

2. Electricity price modeling

Following Lucia and Schwartz(2002), we model the movement in the natural
logarithm of the spot price for electricity as follows. Lets(t) be the natural logarithm
of the spot price at dayt. We model the spot price as the sum of a deterministic
componentf(Ø) and a stochastic componentx(Ø):

s t sf t qx t , wherets1,«,T. (1)Ž . Ž . Ž .

See Pilipovic(1998) and Clewlow and Strickland(2000) for results on stylised facts of electricity1 ´
price dynamics.



427R. Huisman, R. Mahieu / Energy Economics 25 (2003) 425–434

The componentf(Ø) is a deterministic function of time and models the predictable
regularities, such as any periodic behaviour and trends. We letf(Ø) account for the
fact that prices for electricity delivered on weekend days is lower than the price on
an average working day. To do so, letD1(t) be a dummy variable that equals 1 ift
is a Saturday and 0 for other days andD2(t) be a dummy that equals 1 ift is a
Sunday and 0 for other days. We specifyf(t) as follows:

f t sm qb D1 t qb D2 t (2)Ž . Ž . Ž .0 1 2

The parameterm reflects the average price level. The second componentx(Ø) in0

Eq. (1) is the stochastic component and can be interpreted as the spot price from
which deterministic trends are removed. In this paper, we shall compare the impacts
that spikes have on parameter estimates for different specifications ofx(t). We shall
specify models that describe the change in the stochastic component of the spot
price:

dx t sds t ydf t , wherets1,«,T (3)Ž . Ž . Ž .

The operatord models the change in the value of the variable under consideration
between today and the day before, i.e.dx(t)sx(t)yx(ty1). In the following, we
shall consider four models that describe the dynamics ofx(t): a basic random walk
type of model, a mean reverting model, a mean reverting model with stochastic
jumps and a regime switching model.

2.1. The basic model

The basic model is a simplistic model in which we assume that the stochastic
change in the spot price of electricity is normally distributed:

dx t ss ´ t , where´ t ;N 0,1 . (4)Ž . Ž . Ž . Ž .0

The parameters is the volatility of the changes in the spot price.0

2.2. The mean-reverting model

Previous studies have indicated that energy prices tend to move around the long-2

term equilibrium price level, modelled bym in (Eq. (2)), which reflects the0

marginal costs of producing electricity. We introduce the rate of mean-reversiona0

that forces prices to move back to their long-term equilibrium value after the actual
price has deviated from this equilibrium:

dx t sya x ty1 qs ´ t , where´ t ;N 0,1 . (5)Ž . Ž . Ž . Ž . Ž .0 0

See Pilipovic (1998), Clewlow and Strickland(2000) and Lucia and Schwartz(2002) among2 ´
others.
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2.3. Incorporating spikes: stochastic jumps

The existence of large jumps is another stylised fact of electricity prices. These
spikes are often modelled by adding a Poisson error component to the mean-
reverting model Eq.(5). Let Z(i) be the size of theith jump in the spot price and
let n be the actual number of jumps during the time interval under consideration,
so is1,«,n. We assume thatZ is log-normally distributed. The mean-reverting
model with Poisson jumps is given in the following equation:

dx t sya x ty1 ql 1n Z iŽ . Ž . Ž .0 8i
2qs ´ t , where´ t ;N 0,1 and lnZ i ;N m ,s (6)Ž . Ž . Ž . Ž . Ž .0 z z

wherel is the mean number of times that a jump occurs.

2.4. Incorporating spikes: regime jumps

The stochastic jump process used in the previous section allows for sudden jumps
in the price level. This jump process is commonly used to model sudden level shifts
in, for instance, stock prices. It does not explicitly model an important characteristic
of electricity price spikes: spikes are temporal level shifts that die out rather quickly
and do not lead to sustainable higher price levels. For example, a sharp price
increase in one day due to system breakdown might lead directly to a jump down
in prices on the following day when the system is repaired or when alternative
supply is being generated. One may therefore expect that a sudden up-jump will be
shortly followed by a down-jump or vice versa. The stochastic jump process
introduced above only models a sustainable price increase, not explicitly the fast
die-out property of electricity price jumps. Only in addition to a mean-reverting
component in the price model as in Eq.(5), the stochastic jump process is capable
of modelling the die-out property; mean-reversion forces extreme high or low prices
to revert back to the long-term equilibrium price. However, this specification might
lead to identification problems. If the price process in non-spike periods also exhibits
mean-reversion, then the ‘normal’ mean-reverting process is calibrated with data
from the jumps and could to an exaggeration of the amount of mean-reversion in
normal periods.

In order to circumvent this problem, we introduce a regime-switching model that
makes it possible to separately model the mean reversion in normal periods and
spike periods. Following Hamilton and James(1989). To set up the regimes3

Hamilton and James(1989) introduced regime-switching models to describe exchange rate dynamics.3

Hamilton observed large swings in the value of the dollar relative to other currencies; long periods of
dollar appreciation are followed with long periods of dollar depreciation. Obviously, the dynamics of
the value of the dollar are different in each swing and Hamilton therefore introduced the regime model.
In this model, the dollar is in one out of two regimes at each time period, representing an appreciation
or a depreciation swing, and with a certain probability the dollar switches between both regimes from
one period to another. Practically, regime models allow for distinct time series behaviour in each of the
regimes.
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framework, we assume that on each day the electricity market can be in one out of
three regimes: a normal regime(regime 0) when prices follow ‘normal’ electricity
price dynamics, an initial jump regime(regimeq1) that models the process when
the price of electricity suddenly increases or decreases in case of a spike and a
regime(regimey1) that describes the process of how the electricity price reverts
back to the normal regime after the spike has occurred. Since the occurrence of a
jump is stochastic we capture the regimes in the specification for the stochastic
componentdx(t):

dx t sya x ty1 qs ´ t , in regime 0 with´ t ;N 0,1 , (7)Ž . Ž . Ž . Ž . Ž .0 0

dx t sm qs ´ t , in regimeq1 with ´ t ;N(0,1), (8)Ž . Ž . Ž .1 1

and

dx t sya x ty1 qs ´ t , in regimey1 with ´ t ;N 0,1 . (9)Ž . Ž . Ž . Ž . Ž .y1 y1

Note that when we condition on the regimes, the parameters of the model can
easily be estimated by maximum likelihood. In order to estimate the regime
dynamics we need to specify the mechanism that describes how to move from one
regime to another. In regime switching models this is accomplished through a
Markov transition matrix, which contains probabilities of jumping from a regime on
a specific day to another regime on the next day. Maximum likelihood estimates of
the parameters and the regimes can be found by applying Kalman filter
methodology.4

2.4.1. The Markov transition probabilities
The switches between the regimes are controlled by one-period transition proba-

bilities. Let p(i,j) be the probability that the electricity price process switches from
regime j in period t to regime i in period tq1. We restrict the probabilities as
follows. At any normal day, there is a probability of a spike tomorrow. Therefore,
p(0,0) equals the probability that no spike will occur andp(q1,0)s1yp(0,0) is
the probability of a spike. As we cannot proceed from a normal regime to the spike
reverting regime we setp(y1,0) equal to 0. Being in a spike regime at timet, we
assume that the reverting regime will start tomorrow, thusp(y1,q1) equals 1 and
p(0,q1) and p(q1,q1) are zero. Note that we assume that spikes last for only
one day in this paper. This assumption can be relaxed by allowing different values
for p(y1,q1). Being in the reverting regimey1 at dayt, we assume that we will
be back in the normal regime tomorrow, thusp(0,y1) equals 1 andp(q1,y1)
and p(y1,y1) are zero. Again, this assumption can be relaxed by allowing for
different values forp(0,y1).

Given the assumptions outlined above, we only need to estimate the Markov

See for example Harvey(1989).4
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Table 1

APX LPX UK

Start Jan 2, 01 Jun 15, 00 Aug 15, 00
End Nov 5, 02 Nov 5, 02 Nov 5, 02
n 673 865 786
Mean 0.001 0.000 y0.001
Stddev 0.470 0.330 0.183
Min y2.374 y1.425 y1.217
Max 2.227 2.243 1.103
Skew 0.499 1.027 0.779
Kurt* 3.982 3.391 8.132

Note: StartyEnd are the start and end dates of the series;n is the number of observations.
Kurt is excess kurtosis.*

probability p(0,0). In order to keep the estimates between 0 and 1, we model the
probability as follows:

p 0,0 sexp p y 1qexp p . (10)Ž . Ž . Ž Ž ..

Therefore, we estimate the parameterp and transform this into the probability
according to Eq.(10).

3. Data

The electricity price data that we use in this study are day-ahead base load prices
for the Dutch APX market, the German LPX market and the UK market(Telerate
UK Power Index). All series are at a daily frequency. The sample lengths differ,
however, depending on market existence and on the general availability of the data.
The following table provides the summary statistics of the daily changes in natural
logarithm of the prices.

From Table 1, we clearly observe the impacts of mean-reversion and spikes on
the price dynamics: high daily volatility levels, positive skewedness and large excess
kurtosis. The positive skewedness might indicate that the upward jumps are more
intense than the jump reversals.

4. Empirical results

In this section, we compare the estimation results from the models that we
described in Section 2. All parameters are estimated using maximum likelihood.
Table 2 presents the estimates for the basic model Eq.(4). The average log price
levels range from 2.9 for the UK through 3.4 for the APX. Daily volatility ranges
from 0.2 for UK through 0.5 for the APX. Furthermore, a significant weekend effect
is visible from the negative estimates for bothb coefficients. For all series, Sunday
prices are lower than Saturday.

The basic model does not capture mean-reversion being one of the most important
characteristics of power prices. Table 3 contains the parameter estimates for basic
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Table 2
Estimation results: basic model Eq.(4)

APX LPX UK

m0 3.442 3.153 2.904
(0.047) (0.034) (0.050)

EqPr* 31.259 22.422 18.253
b1 y0.262 y0.256 y0.114

(0.044) (0.022) (0.016)
b2 y0.625 y0.535 y0.227

(0.045) (0.023) (0.017)
s0 0.524 0.308 0.215

(0.021) (0.010) (0.009)
LogLik y568.103 y500.758 y313.385

EqPr: equilibrium price level. Standard errors are between parentheses.*

Table 3
Estimation results: mean reverting model Eq.(5)

APX LPX UK

m0 3.446 3.156 2.903
(0.050) (0.035) (0.049)

EqPr* 30.945 23.477 18.227
b1 y0.267 y0.259 y0.115

(0.047) (0.025) (0.017)
b2 y0.627 y0.538 y0.227

(0.045) (0.024) (0.018)
a 0.473 0.284 0.206

(0.018) (0.010) (0.008)
s0 0.371 0.291 0.154

(0.042) (0.034) (0.028)
LogLik y533.756 y466.676 y297.616

EqPr: equilibrium price level. Standard errors are between parentheses.*

model extended with mean-reversion Eq.(5). The log likelihood for the mean-
reversion model is lower than for the basic model presented in Table 2, indicating
an improved fit. The mean-reversion parametera is significant and positive for all
power series and ranges from 0.21 for the UK series through 0.47 for the APX.
This highlights the importance of mean-reversion in electricity price processes. Note
also the impact from including mean-reversion on volatility estimates.

Note that the inclusion of mean-reversion leads to a richer specification of the
electricity price process indicated by the lower log-likelihood values. Furthermore,
imposing mean-reversion leads to a slightly reduction in volatility estimates. The
effect is most noteworthy for the APX. The volatility estimate reduces from 0.52 to
0.37 due to including mean-reversion.

For both the basic model and the basic model with mean-reversion, spikes are
implicitly modelled through volatility. Table 4 lists the parameter estimates for
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Table 4
Estimation results: stochastic jump model Eq.(6)

APX LPX UK

m0 3.283 3.144 2.775
(0.026) (0.024) (0.037)

EqPr* 26.645 23.197 16.039
b1 y0.236 y0.253 y0.056

(0.021) (0.013) (0.007)
b2 y0.516 y0.518 y0.133

(0.026) (0.013) (0.009)
a 0.453 0.240 0.089

(0.032) (0.022) (0.014)
s0 0.147 0.128 0.058

(0.016) (0.006) (0.004)
6l 0.679 0.477 0.577

(0.083) (0.056) (0.042)
l 0.461 0.228 0.333
mZ 0.140 0.009 0.028

(0.039) (0.0.31) (0.014)
sZ 0.414 0.318 0.236

(0.047) (0.036) (0.019)
LogLik y109.882 y252.053 y582.291

EqPr: equilibrium price level. Standard errors are between parentheses.*

model Eq.(6), which is an extension of the previous model. It allows both for
mean-reversion and stochastic jumps in prices.

From Table 4 we infer that the frequency with which spikes occur in the market
is very high. Thel parameter, which equals the frequency of a jump in a stochastic
jump framework, equals 0.46 for the APX. This would imply that more than 40%
of all observations are seen as jumps. For the LPX market, the frequency is more
than 20% and for the UK the frequency is 33%. These frequencies are rather
unlikely; we would expect values of 10% and lower. Compared with the results
from the mean-reverting model in Table 3, we see that the volatility estimate has
reduced in all cases by more than one half due to the inclusion of stochastic jumps.
The fact the stochastic jump process identifies too much jumps, results in less
volatility for the non-jump markets. This is especially apparent in the UK market,
where the inclusion of stochastic jumps leads to a big reduction in the estimate of
the mean-reversion parameter from 0.21 to 0.06. These peculiar results are due to
the fact that stochastic jumps are suited to model shifts to sustainable higher or
lower price levels(for example in equity) markets, but not for non-sustainable price
increases such as jumps that only last for a short period of time after which they
revert back to normal levels. There is no component in the stochastic jump
framework that allows the spike to last only for a short period of time. This
difference in specification might explain the results we found. The short-life
characteristic of power spikes is explicitly modelled in the regime-switching model.

Table 5 presents the parameter estimates for the regime-switching spike model
Eqs.(7)–(9). The probability of a spike is low for all series. The parameterp(0,0),
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Table 5
Estimation results: regime-switching model Eqs.(7)–(9)

APX LPX UK

m0 3.368 3.146 2.852
(0.042) (0.031) (0.045)

EqPr* 29.015 23.243 17.316
m1 0.377 0.037 0.103

(0.184) (0.154) (0.097)
b1 y0.258 y0.256 y0.089

(0.039) (0.022) (0.012)
b2 y0.559 y0.532 y0.192

(0.040) (0.022) (0.014)
a0 0.371 0.299 0.112

(0.041) (0.036) (0.026)
ay1 0.444 0.401 0.313

(0.184) (0.157) (0.148)
s0 0.340 0.241 0.144

(0.022) (0.015) (0.007)
s1 0.874 0.705 0.542

(0.184) (0.194) (0.105)
sy1 0.918 0.477 0.453

(0.211) (0.128) (0.092)
P 2.533 3.286 2.947

(0.470) (0.760) (0.331)
p(0,0) 0.926 0.964 0.950
LogLik y510.152 y447.834 y256.595

EqPr: equilibrium price level. Standard errors are between parentheses.*

the probability that(while being in the normal regime today) the process will again
be in the normal regime tomorrow, ranges from 0.92 for the APX through 0.96 for
the LPX. The probability of a spike therefore, ranges from 8% to 4%. The average
size of a price jumpm is rather low, ranging from 0.04 for LPX through 0.38 for1

APX, but the level of expected spikes is very uncertain with standard errors ranging
from 0.10 for UK through 0.18 for APX. The mean-reversion parameter for the
spike reverting regime ranges from 0.31(UK) through 0.44(APX), which implies
that prices strongly move back to normal levels after one day. Note that this estimate
is influenced by our assumption that spikes only last for one day. Further research
could experiment with more relaxed assumptions on the spike reverting process.
The other parameters seem to be very robust with respect to the estimates from the
mean-reverting model as presented in Table 3. The volatility estimates are somewhat
reduced due to the fact that spikes are not captured through volatility in the regime-
switching model.

5. Concluding remarks

In this paper, we introduced a regime-switching framework to capture spikes in
modelling the dynamics of power prices. Previous studies used stochastic jump
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process to model spikes, but these models do not account for the fact that power
spikes are rather short-lived. Furthermore, the force with which the prices process
reverts back to the long-rum price level is stronger after spikes than in normal
periods. The methodology we proposed allows for different mean-reverting behaviour
for normal periods and periods in which spikes occur. The parameter estimates
indicate that the regime jump model is a better specification for simultaneously
modelling mean-reversion and spikes in the dynamics of power prices.
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