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Abstract 

The dorsal cap of Kooy of the inferior olive (DC) is involved in compensatory eye movements. The rat DC receives a prominent input 
from the nucleus prepositus hypoglossi (NPH); part of these axon terminals are immunoreactive for choline acetyltransferase (CHAT) and 
part of them are GABAergic. In the present study we investigated the fine distribution of cholinergic terminals in the rat DC, and the 
possible coexistence of ChAT and GABA. ChAT-positive terminals were observed throughout the entire neuropil of the rat DC contacting 
both extraglomerular and intraglomerular dendrites. Twenty nine percent of these terminals also contained GABA. The ChAT/GABA 
double-labelled terminals showed the same morphological characteristics as terminals traced from the NPH. The present data demonstrate 
colocalization of ChAT and GABA in axon terminals of the rat DC and strongly suggest that neurons in the NPH are the source of these 
profiles. 
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The dorsal cap of Kooy (DC) and the ventrolateral 
outgrowth (VLO) of the inferior olive are part of the 
anatomical circuit involved in the optokinetic reflex (e.g. 
[1,3,12,20]). Direction selective optokinetic signals from 
the retinal ganglion cells reach the DC and VLO via 
different tectal and tegmental nuclei. The caudal DC re- 
ceives its input predominantly from the nucleus of the 
optic tract and is primarily involved in horizontal eye 
movements. The rostral DC and VLO receive their input 
from the terminal nuclei of the accessory optic tract and 
the ventral tegmental relay zone, and are involved in 
vertical eye movements [11,14,15]. The DC and VLO, in 
turn, send the optokinetic information via climbing fibres 
to the contralateral vestibulocerebellum [5,20,22]. 

Studies in the rabbit have indicated that the descending 
pathways mentioned above are non-GABAergic and pre- 
sumably excitatory [18]. In addition, the DC and VLO 
receive a prominent GABAergic input; the caudal DC 
receives most of its GABAergic input from the nucleus 
prepositus hypoglossi (NPH) [10] while the rostral DC and 
VLO receive their GABAergic innervation predominantly 
from the ventral dendate nucleus and dorsal group y [8]. 
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GABAergic terminals in the DC and VLO mostly have 
pleomorphic vesicles and symmetric synapses and they are 
situated both in the extra- and intraglomerular neuropil. 
Within the latter location these terminals frequently con- 
tact dendrites linked by dendrodendritic gap junctions. The 
DC and VLO contain more crest synapses than any other 
olivary subnucleus; the vast majority of these terminals are 
GABAergic [8]. 

The DC also receives a dense cholinergic projection [4]. 
These cholinergic terminals, which are absent in the VLO, 
originate from the NPH and adjacent medial vestibular 
nucleus (MVN). The fact that the NPH provides both a 
GABAergic and a cholinergic projection to the DC raises 
the possibility that both neurotransmitters coexist within 
the same terminals. In the present study we investigated 
this possible colocalization and, in addition, we studied the 
ultrastructural characteristics of the terminals immuno- 
reactive for choline acetyltransferase (CHAT) and com- 
pared them to those of the GABAergic terminals traced 
from the NPH. Since the rat DC has not yet been studied 
using this anti-ChAT antiserum we also report light mi- 
croscopy observations. 

Fourteen adult Wistar rats were used, five for light 
microscopy and nine for electron microscopy. For light 
microscopy, the animals were anaesthetized with Nembutal 
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(0.1 ml /100 g b.wt), and subsequently intracardially per- 
fused with saline (200 ml). Animals processed for ChAT 
were perfused with a fixative of 4% paraformaldehyde (pH 
7.4) in 0.1 M phosphate buffer, while animals processed 
for glutamic acid decarboxylase, the GABA synthesizing 
enzyme, were perfused with 0.5% zinc-salicylate and 4% 
paraformaldehyde (pH 4.5). The brains were removed and 
blocks containing the inferior olive were immersed for an 
additional 2 h in the same fixative. Sections of 40 ~m 
were cut on a cryotome, rinsed, and incubated in antisera 
against ChAT (Abl7; 1:500: kindly donated by Prof. C. 

Cozzari, Rome, Italy [24]) or glutamic acid decarboxylase 
(1:2000; kindly provided by Prof. E. Mugnaini, Chicago, 
USA [16,17,19]). Binding of the primary antibodies was 
visualized with the avidin-biotin complex (ABC) method, 
while diaminobenzidine (DAB) was employed as a chro- 
mogen. The labelled sections were washed, dehydrated, 
cleared in xylene, mounted on glass slides, and cover- 
slipped. 

For electron microscopy, two types of experiments were 
performed: (1) ChAT/GABA double labelling; and (2) 
anterograde tracing of wheat germ agglutininated 

Fig. 1. Electron micrographs of the rat DC. (A) Terminal displaying immunoreactivity for both ChAT (DAB precipitate) and GABA (black dots indicate 15 
nm gold particles). (B) Crest synapse formed by two cholinergic terminals; note the clear asymmetric synapses involved in the crest synapse. (C) Double 
ChAT/GABA-tabelled terminal establishing both an asymmetric (arrows) and a symmetric (arrowheads) synapse with two different dendrites. (D) Double 
WGA-HRP/GABA-Iabelled terminal traced from the NPH that makes both an asymmetric (arrows) and a symmetric (arrowheads) synaptic contacl with 
two different dendrites (large arrow indicates WGA-HRP reaction product). Note the similarity between the terminal in C and 13. Scale bars indicate I #m.  
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horseradish peroxidase (WGA-HRP) from the NPH com- 
bined with GABA postembedding immunocytochemistry. 
For double labelling of ChAT and GABA the animals 
were anaesthetized with Nembutal (0.1 ml /100 g b.wt), 
perfused with saline, and subsequently fixed with 2% 
paraformaldehyde and 2% glutaraldehyde (pH 7.3) in 0.1 
M cacodylate buffer. After a 2-h postfixation period, 80 
/xm vibratome sections were cut and ChAT terminals were 
labelled using the ABC technique as described above. The 
parts containing stained terminals in the DC were dis- 
sected, osmicated in 1.5% OsO 4 overnight, stained en 
block in uranyl acetate, and embedded in plastic. From 
these tissue blocks, ultrathin sections were cut and incu- 
bated in an antiserum against GABA (1:1000, generously 
supplied by Prof. R.M. Buijs, Amsterdam, Netherlands 
[6,21]). The primary antiserum against GABA labelling 
was visualized with the use of 15 nm immunogold parti- 
cles linked to a secondary antibody. Control staining was 
achieved by omitting the primary antibody from the sol- 
vent. 

The second type of electron microscopic experiment 
was performed as published elsewhere [8-10]. In short, the 
animals were anaesthetized, injected with WGA-HRP in 
the NPH, and allowed to recover. After a survival period 
of two days, the animals were reanaesthetized with Nem- 
butal (0.1 ml /100 g b.wt) and intracardially perfused with 
saline and 5% glutaraldehyde in 0.1 M cacodylate buffer. 
Vibratome sections containing the DC were reacted with 
tetramethylbenzidine and stabilized with diaminobenzi- 
dine-cobalt. Subsequently, the sections with anterograde 
labelling were imbedded in plastic and processed for 
postembedding GABA immunocytochemistry as described 
above. 

The light microscopic examination of the rat inferior 
olive showed a heavy cholinergic innervation, which was 
almost exclusively present in the DC. The /3-nucleus and 
VLO showed only a few single fibres. In contrast, the 
entire rat olivary complex displayed GAD terminals. The 
highest degree of GAD innervation was observed in the 
/3-nucleus. The DC and VLO contained a lower, but still 
appreciable, density of GABAergic boutons. These results 
do not differ from previous reports [4,8,10,17,23]. 

The electron microscopic examination of the ultrathin 
sections of the rat DC showed four categories of terminals, 
i.e. single CHAT, single GABA, double-labelled, and unla- 
belled profiles (Fig. 1A,B,C); no cholinergic or GABAer- 
gic cell bodies or dendrites were observed. ChAT-labelled 
terminals were characterized by an electron-dense DAB 
precipitate (Fig. 1A,B,C). The DAB precipitate appeared 
as patchy densifications. This is the case even in the most 
optimal staining conditions, but in the illustrations pre- 
sented here this feature is accentuated, because 2% glu- 
taraldehyde had been added to the fixative. This glu- 
taraldehyde is required for GABA labelling but hinders the 
ChAT immunostaining. Control stainings remained com- 
pletely unlabelled. A terminal was classified as GABA- 

Table l 
Percentages of single ChAT-immunoreactive, GABAergic, double- 
labelled, and unlabelled axon terminals in intra- and extraglomerular 
locations in the rat DC 

ChAT GABA Double Unlabelled 

n = 8 4 0  ,+27% ,+11% +11% + 5 t %  
Extraglomerular ± 76% + 81% _+ 75% -+ 88% 
Intraglomerular _+24% -+ 19% ,+25% ± 12°A 

positive when it contained at least six times more gold 
particles than surrounding nonlabelled profiles with the 
same surface area. A total of 840 terminals was sampled in 
electron micrographs obtained from nonserial sections (for 
details of the sampling procedure see [9]). A summary of 
the quantitative data is given in Table 1. Two hundred and 
twenty-eight (27.2%) of the axon terminals were single 
ChAT labelled. These terminal profiles were usually circu- 
lar with a diameter of 0.8 to 1.8 /xm. The ChAT-labelled 
terminals were filled with predominantly pleomorphic 
vesicles and an occasional dense core vesicle (Fig. 1B). 
The vast majority were apposed to dendritic profiles; only 
a few ChAT-labelled terminals contacted a cell body (data 
not shown). Most (76%) of the terminals apposed to 
dendrites were located in the extraglomerular neuropil. 
They showed both asymmetric and symmetric synapses 
(Fig. 1B,C). Sometimes, the ChAT-labelled terminals 
formed crest synapses; these synapses are characterized by 
two asymmetric synapses contacting a thin dendritic ele- 
ment (Fig. 1B). 

Ninety-one (10.8%) of the sampled axon terminals were 
single GABA labelled (Table 1). The morphological char- 
acteristics and the postsynaptic distribution of these termi- 
nals were as described in detail in previous publications 
[8-10,23]. They contained mostly pleomorphic vesicles, 
established predominantly symmetric synapses, and were 
located also both in the intraglomerular and extraglomeru- 
lar neuropil. Some of the GABAergic terminals inside the 
glomeruli were strategically located next to dendrites cou- 
pled by gap junctions, and some of the extraglomerular 
terminals formed crest synapses. 

Ninety-four (11.2%) of the sampled axon terminals 
were ChAT/GABA double labelled (Fig. 1A,C). The 
ChAT/GABA-positive axon terminals showed the general 
structural and spatial characteristics of the single CHAT- 
and GABA-labelled profiles described above. They were 
present inside (25%) and outside (75%) glomeruli and also 
formed asymmetric and symmetric synaptic complexes. 
Relatively frequently, individual terminals of this type 
formed an asymmetric as well as a symmetric synapse, 
each with a different postsynaptic dendrite (Fig. 1C). 

Combined WGA-HRP anterograde tracing from the 
NPH and GABA immunostaining resulted in double- 
labelled terminals in the DC (see also [10]). The single- 
and double-labelled terminals showed the same ultrastruc- 
tural features as those of the cholinergic and GABAergic 
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terminals.  Interest ingly,  like the C h A T / G A B A  double-  

label led terminals,  individual  W G A - H R P / G A B A  double-  

labelled terminals  f rom the N P H  were  also observed  to 

establish both symmet r ic  and asymmet r i c  synapses with 

different  dendri tes  (Fig. I D), We  were  unable to f ind 

double  W G A / H R P - I a b e l l e d  terminals  that fo rmed  crest  

synapses in the DC. 

The main f inding of  the present  study is the demonst ra-  

tion o f  co loca l iza t ion  o f  C h A T  and G A B A  immunoreac t iv -  

ity in axon terminals  of  the rat DC. Because  the N P H  

contains  both chol inergic  and G A B A e r g i c  neurons [4,10] 

and because  the double  C h A T / G A B A - l a b e l l e d  terminals  

show the same morpho log ica l  characteris t ics  as the 

G A B A e r g i c  terminals  anterogradely labelled f rom the 

NPH,  the N P H  is the most  likely source for the coexis-  

tence of  these neurotransmit ters  in the DC. The funct ion o f  

this coexis tence  is unclear.  The f inding that individual  

double  C h A T / G A B A - l a b e l l e d  terminals  can establish an 

excitatory,  a symmet r ic  synapse with one dendri te  and an 

inhibitory,  symmet r ic  synapse with another  dendrite,  raises 

the possibi l i ty  that these terminals  evoke  different  effects  

through different  dendrites.  Coex is tence  o f  C h A T  and 

G A B A  has been observed  in neurons in several areas of  

the central nervous  system. These  neurons include amacr ine  

cells  in the retina, hypoglossa]  motoneurons ,  dorsal  horn 

cells  in the spinal cord, and interneurons in the cerebral  

cortex [7,13]. A clue to the possible  interactions be tween  

C h A T  and G A B A  profi les  in the DC might  be inferred 

fi 'om the retinal amacr ine  cells, which can also be single 

CHAT-,  s ingle G A B A - ,  and double  C h A T / G A B A - I a b e l l e d .  

In the rabbit retina the wir ing o f  the G A B A e r g i c  and 

chol inergic  amacr ine  neurites de termines  the ou tcome  of  

computa t ions  creat ing direct ional  sensit ivi ty [2]. S ince  neu- 

rons in the DC may perform similar  mathemat ica l  func- 

tions [22], they may operate  with s imilar  cel lular  mecha-  

nisms. 

The  source of  the chol inergic  terminals  invo lved  in 

crest synapses eludes us. The  present  demons t ra t ion  that 

such crest synapses exist  in the DC suggests  that the N P H  

is one o f  the sources. However ,  the fact that we have not 

been able to trace these types of  terminals  f rom the N P H  

(see also [10]) and the f inding that the chol inergic  input to 

the DC is only partially deple ted  after lesions o f  the N P H  

[4], leaves open the possibi l i ty  that terminals  forming  crest  

synapses are der ived f rom another  origin. Crest  synapses 

in the DC and V L O  have been traced f rom the ventral  

dentate nucleus and dorsal group y [8], but chol inergic  

neurons have not been obser, ,ed in these nuclei ,  nei ther  in 

the present  nor in a previous  study [25]. 
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