
The Annals of Statistics
2006, Vol. 34, No. 1, 146–168
DOI: 10.1214/009053605000000886
© Institute of Mathematical Statistics, 2006

SPATIAL EXTREMES: MODELS FOR THE STATIONARY CASE

BY LAURENS DE HAAN1 AND TERESA T. PEREIRA2

Erasmus University and University of Lisbon

The aim of this paper is to provide models for spatial extremes in the
case of stationarity. The spatial dependence at extreme levels of a stationary
process is modeled using an extension of the theory of max-stable processes
of de Haan and Pickands [Probab. Theory Related Fields 72 (1986) 477–492].
We propose three one-dimensional and three two-dimensional models. These
models depend on just one parameter or a few parameters that measure the
strength of tail dependence as a function of the distance between locations.
We also propose two estimators for this parameter and prove consistency un-
der domain of attraction conditions and asymptotic normality under appro-
priate extra conditions.

1. Introduction. The paper develops a framework as well as concrete models
for statistics of spatial extremes which are sufficiently simple to be used in appli-
cations. Only the case of stationary processes is considered and the dependence
structure will be represented by one parameter or a few parameters. Instead of de-
veloping more complicated models we aim at developing several simple models
with somewhat different features.

For simplicity of exposition and in order to stay close to the existing literature
we shall start discussing processes which are defined on R rather than R

2. After
that we discuss stationary processes in R

2.
The setting is as follows. Consider independent replications of a stochastic

process with continuous sample paths

{Xn(t)}t∈R,

n = 1,2, . . . . Suppose that the process is in the domain of attraction of a max-
stable process, that is, there are sequences of continuous functions an > 0 and bn

such that as n → ∞{
max1≤i≤nXi(t) − bn(t)

an(t)

}
t∈R

W→ {Z̃(t)}t∈R(1.1)
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in C-space. Necessary and sufficient conditions have been given by de Haan and
Lin [4]. The limit process {Z̃(t)} is a max-stable process. Without loss of generality
we can assume that the marginal distributions of Z̃ can be written as

exp
{−(1 + γ (t)x

)−1/γ (t)}
for all x with 1+γ (t)x > 0 where the function γ is continuous. For the time being
we shall discuss the standardized process, called simple max-stable,

{Z(t)}t∈R := {(
1 + γ (t)Z̃(t)

)1/γ (t)
+

}
t∈R

,

whose marginal distribution functions are all Fréchet: exp(−1/x), x > 0.
{Z(t)} is a simple max-stable process. We assume that {Z(t)} is a stationary

process. The theory of de Haan and Pickands [5] applies. According to Theo-
rem 6.1 of that paper the process is determined by a nonnegative L1 function and a
group of linear L1+ isometries. However, since we aim at manageable models, we
shall restrict ourselves to the subclass of stationary max-stable processes which is
discussed on pages 490–491 of [5], the one of moving maximum processes. The
process is defined as follows.

Let φ be a unimodal continuous probability density on the real line and let
{Xj,Yj }j≥1 be the points of a homogeneous Poisson process on R × R+. The
process is defined as a functional of the Poisson process as follows:

Z(t) := max
j≥1

φ(Xj − t)

Yj

for t ∈ R.

It is easy to check directly that this process is stationary and simple max-
stable. The almost sure continuity of the process follows from [1]. We think of t

as a space parameter, not a time parameter. Note that for t1, t2, . . . , td ∈ R and
x1, x2, . . . , xd > 0 (cf. [5]),

P {Z(t1) ≤ x1, . . . ,Z(td) ≤ xd} = exp
{
−
∫ +∞
−∞

max
1≤i≤d

φ(s − ti)

xi

ds

}
.

However, this is not yet sufficiently simple for applications. We shall consider
three specific examples depending on just one parameter. For φ we choose the
normal density

β√
2π

exp
{
−β2x2

2

}
,(1.2)

the double exponential density

β

2
exp{−β|x|}(1.3)

and the t-density

β�((ν + 1)/2)√
πν�(ν/2)

{
1 + β2x2

ν

}−(ν+1)/2

, with ν a positive integer,(1.4)
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where β is a positive constant. The constant β measures the strength of tail depen-
dence. We shall see that in all cases small values of β point at strong dependence
and large values of β point at weak dependence. However, the dependence does
not decrease at the same rate in all cases.

As it should be for spatial models, the tail dependence between Z(0) and Z(t)

decreases monotonically and continuously with |t |. In particular, when |t | → ∞,
the random variables Z(0) and Z(t) become independent.

The same happens for fixed t when varying β: as β ↓ 0 the process becomes
a.s. constant and as β → ∞ Z(0) and Z(t) become independent (cf. propositions
below). The dependence decreases monotonically as β increases.

Next we extend the definition to processes on R
2, that is, to random fields.

It is readily seen that the theory of de Haan and Pickands [5] remains valid if
the underlying Poisson process is based on R

2 × R+ rather than R × R+. So we
consider a unimodal (i.e., nonincreasing in each direction starting from the mode)
continuous probability density φ on R

2. Let {Xj,Wj ,Yj }j≥1 be the points of a
homogeneous Poisson point process on R

2 × R+. The process defined by

Z(t1, t2) := max
j≥1

φ(Xj − t1,Wj − t2)

Yj

for (t1, t2) ∈ R
2

is easily seen to be stationary and simple max-stable. The a.s. continuity of the
process follows from an extension of the arguments in [1].

The specific models we consider are analogous to the ones in the one-
dimensional situation:

φ(t1, t2) = β2

2π
exp

{
−β2(t2

1 + t2
2 )

2

}
(1.5)

(we call this the normal model),

φ(t1, t2) = β2

4
exp{−β(|t1| + |t2|)}(1.6)

(we call this the exponential model) and

φ(t1, t2) = β2

2π

{
1 + β2(t2

1 + t2
2 )

2(α − 1)

}−α

, α > 1(1.7)

(we call this the t-model), for β > 0. Finally we consider the general normal model

φ(t1, t2) = β1β2

2π

√
1 − ρ2

exp
{
− 1

2(1 − ρ2)
[β2

1 t2
1 − 2ρβ1β2t1t2 + β2

2 t2
2 ]
}
,(1.8)

where ρ is the correlation coefficient (−1 < ρ < 1), for β1, β2 > 0.
The paper is organized as follows. The two-dimensional distributions of the

process are derived for the mentioned models in Section 2. Those are sufficient
for the estimation theory developed in Section 3. The two-dimensional marginal
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distribution for the normal model was derived earlier by Smith in an unpublished
paper [14]. Higher-dimensional marginal distributions do not seem easy to calcu-
late explicitly.

In Section 3 we are mainly concerned with estimating the dependence parameter
β on the basis of observations at finitely many locations from a stationary stochas-
tic process in the domain of attraction of the max-stable process. In all the models
there is a simple relation between β and a well-known dependence coefficient for
two-dimensional extremes,

λ := lim
t↓0

t−1P {1 − F1(X1) ≤ t and 1 − F2(X2) ≤ t},

where (X1,X2) has a distribution function F which is in the domain of attrac-
tion of some extreme-value distribution (F1 and F2 are the marginal distribution
functions).

The coefficient λ ∈ [0,1] is related to the general framework of multidimen-
sional extremes in the following way. If

lim
n→∞Fn(anx + bn, cny + dn) = G(x,y),

where the two marginals of G are of the form exp{−(1 + γix)
−1/γi+ }, i = 1,2, then

lim
t↓0

t−1P {1 − F1(X1) ≤ tx or 1 − F2(X2) ≤ ty}

= − logG

(
x−γ1 − 1

γ1
,
y−γ2 − 1

γ2

)

=: L(x, y)

and

lim
t↓0

t−1P {1 − F1(X1) ≤ tx and 1 − F2(X2) ≤ ty}
= x + y − L(x, y) =: R(x, y).

Then λ ≡ R(1,1).
D. Mason and X. Huang (see [9]) proved consistency and asymptotic normality

for a natural estimator R̂(x, y) of R(x, y). We use this for estimating λ = R(1,1).
This result leads to a consistent asymptotically normal estimator of β based on
observations taken at just two sites, ti and tj . In general observations are available
at sites t1, t2, . . . , td (i.e., finitely many). One of our estimators of β is the average
of β-estimators based on the various pairs of sites. Consistency and asymptotic
normality follow.

The theory we develop can be used to solve some common problems in spatial
extremes. One is an extrapolation problem: it consists of estimating the extremal
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behavior of a process X(t) at a site t0 where no observations are available based on
repeated observations of the process at d different space points t1, t2, . . . , td . An-
other problem refers to the extreme values of the (unobserved) aggregate process∫
S X(t) dt over a space region S assuming that the process has been discretely ob-

served at a number of space points in S. Similarly one can look at the tail behavior
of supt∈S X(t).

In order to attack those problems, the estimation of β has to be complemented
by estimation of local parameters: the extreme-value index, the scale and the lo-
cation. The latter objects are not needed for the estimation of β but only for the
application.

The proposed models are quite simple examples of the representation in [5],
which is valid for all stationary max-stable processes. It seems that the full model
is not easily applicable: how does one estimate the initial nonnegative L1 function
and a general group of transformations? Moreover the representation is not unique.
Instead we have tried to look at simpler models which can be analyzed mathemat-
ically. We hope that providing several simple models with quite different features
will widen the scope for applications. Later we want to consider somewhat more
general parametric groups of transformations.

The validity of the model in applications can be checked with the following
steps: estimate β as outlined in Section 3, estimate R(1,1) for each pair of sites
using the relation in Corollary 3.2 and check if this estimate of R(1,1) is similar
to the direct estimate using Proposition 3.2. We have not done this yet.

2. Marginal distributions for the two models, and in R and R
2. We find the

two-dimensional marginal distributions for all the models introduced in Section 1.
Note that in this section, different from other sections, for simplicity and without
loss of generality we consider the standardized process Z, not Z̃. First we consider
the processes on the line, next the ones on R

2.

PROPOSITION 2.1. For t ∈ R and the exponential model, for w1,w2 > 0,

− logP {Z(0) ≤ w1,Z(t) ≤ w2}

= β

2

∫ ∞
−∞

max
{
e−β|s|

w1
,
e−β|s−t |

w2

}
ds(2.1)

=




1

w2
, for 0 < w2 < e−β|t |w1,

1

w1
+ 1

w2
− e−β|t |/2

√
w1w2

, for e−β|t |w1 ≤ w2 < eβ|t |w1,

1

w1
, for w2 ≥ eβ|t |w1,

(2.2)



SPATIAL EXTREMES 151

=
∫ arctan(eβ|t |)

arctan(e−β|t |)
max

{
sin θ

w1
,

cos θ

w2

}
s(θ) dθ

(2.3)

+ 1

2
max

{
e−β|t |

w1
,

1

w2

}
+ 1

2
max

{
1

w1
,
e−β|t |

w2

}
,

where the spectral density s is given by

(θ) = e−β|t |/2

4
(sin θ cos θ)−3/2;(2.4)

= 1

w1
+ 1

w2
+ 1

w2
χ

(
w2

w1

)
,

and where the dependence function χ is given by

χ(s) =



−s, 0 < s ≤ e−β|t |,
−e−β|t |/2√s, e−β|t | < s ≤ eβ|t |,
−1, s > eβ|t |,

s > 0.

REMARK 2.1. Formula (2.1) follows directly from [5] and (2.3) reveals the
spectral measure, which has a density on the interval (arctan(e−β|t |), arctan(eβ|t |))
and atoms of size

√
1 + e−2β|t |/2 at each of the two boundary points of that

interval. The last characterization (2.4) is in the spirit of Sibuya [13] and
Pickands [11].

PROOF OF PROPOSITION 2.1. The integrand of (2.1) is β
2

e−β|s−t |
w2

if e−β|s−t |
w2

>

e−β|s|
w1

, that is, if

|s − t | − |s| < 1

β
log

(
w1

w2

)
.(2.5)

Since the joint distributions of (Z(0),Z(t)) and (Z(0),Z(−t)) are the same we
proceed as if t is positive. The left-hand side is t for s < 0, t −2s for 0 < s < t and
−t for s > t . Hence if 1

β
log (w1

w2
) > t , then inequality (2.5) holds for all s and we

get the first line of (2.2). Similarly, if 1
β

log (w1
w2

) < −t , we get the last line of (2.2).

Next suppose −t < 1
β

log (w1
w2

) < t . In this case (2.5) becomes

t − 2s <
1

β
log

(
w1

w2

)
,

that is,

s >
t

2
− 1

2β
log

(
w1

w2

)
.
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Hence the integrand over this interval becomes

β

2

∫ ∞
t/2−1/(2β) log (w1/w2)

e−β|s−t |

w2
ds = 1

w2
− β

2

∫ t/2−1/(2β) log (w1/w2)

−∞
eβ(s−t)

w2
ds

= 1

w2
− 1

2w2
e−βteβt/2e−(1/2) log (w1/w2)

= 1

w2
− 1

2

e−β|t |/2

√
w1w2

.

This in combination with the integral stemming from the case e−β|s−t |
w2

< e−β|s|
w1

gives
the second line of (2.2).

To check the equivalence of (2.2) and (2.3) for e−β|t | < w1
w2

< eβ|t | it suf-
fices to see that the density of (2.2), after transformation to the polar coordinates

r =
√

w2
1 + w2

2 and θ = arctan w2
w1

, is r−3s(θ) (cf. the construction of the spectral
measure in [6]). For (w1,w2) outside this range just evaluate the integral in (2.3).

�

REMARK 2.2. The parameter β controls the dependence: if β → ∞, the spec-
tral density s(θ ) goes to zero and the spectral measure is concentrated at the points
{0, π

2 }. This means that X(0) and X(t) are independent. If β ↓ 0, the spectral mea-
sure concentrates on {π

4 }. This means that X(0) = X(t) a.s.

PROPOSITION 2.2. For t ∈ R and the normal model, for w1,w2 > 0,

− logP {Z(0) ≤ w1,Z(t) ≤ w2}
= 1

w1
�

(
β|t |

2
+ 1

β|t | log
w2

w1

)
+ 1

w2
�

(
β|t |

2
+ 1

β|t | log
w1

w2

)
(2.6)

=
∫ π/2

0
max

{
sin θ

w1
,

cos θ

w2

}
s(θ) dθ,(2.7)

where the spectral density s is given by

s(θ) := 1

β|t | sin θ cos θ

{
1

cos θ

(
1

2
− 1

t2β2 ln(tan θ)

)
ϕ

( |t |β
2

+ 1

|t |β ln(tan θ)

)

+ 1

sin θ

(
1

2
+ 1

t2β2 ln(tan θ)

)
ϕ

( |t |β
2

− 1

|t |β ln(tan θ)

)}

with ϕ(u) = �′(u);

= 1

w1
+ 1

w2
+ 1

w2
χ

(
w2

w1

)
,(2.8)

where the dependence function χ is given by

χ(s) = −s�

(
−|t |β

2
− 1

|t |β ln s

)
− �

(
−|t |β

2
+ 1

|t |β ln s

)
, s > 0.
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REMARK 2.3. Again the parameter β controls the dependence: if β → ∞,
the variables Z(0) and Z(t) become independent; if β ↓ 0, we get Z(0) = Z(t)

a.s.

REMARK 2.4. This distribution function has been obtained in a number of
ways in the literature. Eddy [7] found it when studying convex hulls of samples.
Hüsler and Reiss [10] obtained the distribution as the limit distribution of the com-
ponentwise maxima in a triangular array where the distribution of the nth array is
the two-dimensional normal distribution with correlation coefficient ρ(n) such that
limn→∞(1 −ρ(n)) logn exists. A related reference is [2]. In [14] Smith developed
the distribution in the same way as it is done here. The distribution is mentioned in
[3] and [12]. Falk, Hüsler and Reiss [8] obtained the distribution as the pointwise
maximum of independent Brownian motions shifted by an amount corresponding
to points of a Poisson point process. Another way of obtaining the distribution is

− logP {Z(0) ≤ w1,Z(t) ≤ w2}
= E max

{
1

w1
,

1

w2
exp (Nβt − β2t2/2)

}
, t ∈ R,

where N is a standard normal random variable.

PROOF OF PROPOSITION 2.2. Clearly the distribution depends only on |t |.
So we consider t > 0 only:

− logP {Z(0) ≤ w1,Z(t) ≤ w2} = β√
2π

∫ ∞
−∞

max
{
e−β2u2/2

w1
,
e−β2(u−t)2/2

w2

}
du.

Now e−β2u2/2

w1
≥ e−β2(u−t)2/2

w2
if and only if βu ≤ βt

2 + 1
βt

ln w2
w1

, hence

− logP {Z(0) ≤ w1,Z(t) ≤ w2}

= 1

w1

1√
2π

∫ βt/2+(1/βt) lnw2/w1

−∞
e−u2/2 du

+ 1

w2

1√
2π

∫ ∞
βt/2+(1/βt) lnw2/w1

e−(u−βt)2/2 du

= 1

w1
�

(
βt

2
+ 1

βt
ln

w2

w1

)
+ 1

w2

{
1 − �

(
−βt

2
+ 1

βt
ln

w2

w1

)}
.

Hence the first part of the result. In order to obtain the second result note that

r−3s(θ) =
(
− ∂2

∂w1 ∂w2
[− logP {Z(0) ≤ w1,Z(t) ≤ w2}]

)
w1=r cos θ,w2=r sin θ

(cf. the construction of the spectral measure in [6]). �
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PROPOSITION 2.3. For t ∈ R and the t-model, for w1,w2 > 0,

− logP {Z(0) ≤ w1,Z(t) ≤ w2}

=




1

w2
, 0 < w2 < b

−(ν+1)/2
2,ν w1,

1

w1
p1,ν(β, t, x) + 1

w2

(
1 − p2,ν(β, t, x)

)
,

b
−(ν+1)/2
2,ν w1 ≤ w2 < w1,

2

w
P

{
Tν,1 ≤ β|t |

2

}
, w1 = w2 =: w,

1

w1

(
1 − p1,ν(β, t, x)

)+ 1

w2
p2,ν(β, t, x),

w1 < w2 < b
−(ν+1)/2
1,ν w1,

1

w1
, w2 ≥ b

−(ν+1)/2
1,ν w1,

(2.9)

where

b1,ν = 1 + β2t2

2ν
− β|t |√

ν

√
1 + β2t2

4ν
,

b2,ν = 1 + β2t2

2ν
+ β|t |√

ν

√
1 + β2t2

4ν
,

p1,ν(β, t, x) = P

{∣∣∣∣Tν,1 − βt

1 − x

∣∣∣∣≤ β

√
t2x

(1 − x)2 − ν

β2

}
,

p2,ν(β, t, x) = P

{∣∣∣∣Tν,1 − βtx

1 − x

∣∣∣∣≤ β

√
t2x

(1 − x)2 − ν

β2

}
,

Tν,1 is a random variable with a Student t-distribution with ν degrees of freedom

and scale parameter 1 and x = (w1
w2

)2/(ν+1);

= 1

w1
+ 1

w2
+ 1

w2
χ

(
w2

w1

)
,(2.10)
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where the dependence function χ is given by

χ(s) =




−s, 0 < s ≤ b
−(ν+1)/2
2,ν ,

sp1,ν

(
β, t, s−2/(ν+1)

)− s − p2,ν

(
β, t, s−2/(ν+1)

)
,

b
−(ν+1)/2
2,ν < s ≤ 1,

−sp1,ν

(
β, t, s−2/(ν+1)

)− 1 + p2,ν

(
β, t, s−2/(ν+1)

)
,

1 < s ≤ b
−(ν+1)/2
1,ν ,

−1, s > b
−(ν+1)/2
1,ν ,

s > 0.

REMARK 2.5. The spectral measure corresponding to (2.9) is concentrated

on [b−(ν+1)/2
2,ν , b

−(ν+1)/2
1,ν ], having a density on (b

−(ν+1)/2
2,ν , b

−(ν+1)/2
1,ν ) and atoms at

each of the boundary points of the interval.

PROOF OF PROPOSITION 2.3.

− logP {Z(0) ≤ w1,Z(t) ≤ w2}
= β�((ν + 1)/2)√

πν�(ν/2)

×
∫ ∞
−∞

max
{
(1 + β2u2/ν)−(ν+1)/2

w1
,
(1 + β2(u − t)2/ν)−(ν+1)/2

w2

}
du.

Now (1+β2u2/ν)−(ν+1)/2

w1
≥ (1+β2(u−t)2/ν)−(ν+1)/2

w2
if and only if (1 − x)u2 − 2tu ≥

− (1−x)ν

β2 − t2. This is equivalent to

(
u − t

1 − x

)2

≥ xt2

(1 − x)2 − ν

β2(2.11)

if 0 < x < 1 and to the reversed inequality if x > 1. Hence if 0 < x ≤ b1,ν , then
(2.11) holds for all u and we get the last line of (2.9). Similarly if x > b2,ν , we get
the first line of (2.9). In the case b1,ν < x < 1 condition (2.11) becomes

∣∣∣∣u − t

1 − x

∣∣∣∣≥
√

xt2

(1 − x)2 − ν

β2 ,

that is,

u ≥ t

1 − x
+
√

xt2

(1 − x)2 − ν

β2 or u ≤ t

1 − x
−
√

xt2

(1 − x)2 − ν

β2 .
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Hence the integral over this interval becomes

β�((ν + 1)/2)√
πν�(ν/2)

∫ t/(1−x)−
√

xt2/(1−x)2−ν/β2

−∞
(1 + β2u2/ν)−(ν+1)/2

w1
du

+ β�((ν + 1)/2)√
πν�(ν/2)

∫ +∞
t/(1−x)+

√
xt2/(1−x)2−ν/β2

(1 + β2u2/ν)−(ν+1)/2

w1
du

= 1

w1

{
Fν,1

(
βt

1 − x
− β

√
xt2

(1 − x)2 − ν

β2

)

+ 1 − Fν,1

(
βt

1 − x
+ β

√
xt2

(1 − x)2 − ν

β2

)}
.

This, in combination with the integral stemming from the case (1+β2u2/ν)−(ν+1)/2

w1
<

(1+β2(u−t)2/ν)−(ν+1)/2

w2
, gives the fourth line of (2.9). Similarly in the case 1 < x ≤

b2,ν we get the second line of (2.9). Note that in the case x = 1, (1+β2u2/ν)−(ν+1)/2

w1
≥

(1+β2(u−t)2/ν)−(ν+1)/2

w2
if and only if u ≤ t/2 for t > 0 and u ≥ t/2 for t < 0. Hence

we get for (2.9) 2
w1

P {Tν,1 ≤ β|t |/2}. �

Next we move to the two-dimensional models.

PROPOSITION 2.4. For t = (t1, t2) ∈ R
2 and the exponential model, for

w1,w2 > 0,

− logP {Z(0,0) ≤ w1,Z(t1, t2) ≤ w2}

(2.12)
=




1

w1
, (w1,w2) ∈ A1,

1

w1
+ 1

w2
− 1√

w1w2
e−β(|t1|+|t2|)/2

[
1 + β

|t1| + |t2|
4

+ 1

4
ln
(

w1

w2

)]
,

(w1,w2) ∈ A2,

1

w1
+ 1

w2
− 1√

w1w2
e−β(|t1|+|t2|)/2

[
1 + β

min(|t1|, |t2|)
2

]
,

(w1,w2) ∈ A3,

1

w1
+ 1

w2
− 1√

w1w2
e−β(|t1|+|t2|)/2

[
1 + β

|t1| + |t2|
4

+ 1

4
ln
(

w2

w1

)]
,

(w1,w2) ∈ A4,

1

w2
, (w1,w2) ∈ A5,
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where

A1 =
{
(w1,w2) :

1

β
ln
(

w1

w2

)
< −(|t1| + |t2|)

}
,

A2 =
{
(w1,w2) :−(|t1| + |t2|) ≤ 1

β
ln
(

w1

w2

)
< |t1| ∧ |t2| − |t1| ∨ |t2|

}
,

A3 =
{
(w1,w2) : |t1| ∧ |t2| − |t1| ∨ |t2| ≤ 1

β
ln
(

w1

w2

)
< |t1| ∨ |t2| − |t1| ∧ |t2|

}
,

A4 =
{
(w1,w2) : |t1| ∨ |t2| − |t1| ∧ |t2| ≤ 1

β
ln
(

w1

w2

)
< |t1| + |t2|

}
,

A5 =
{
(w1,w2) :

1

β
ln
(

w1

w2

)
≥ |t1| + |t2|

}
.

PROOF. We work out the integral as in the one-dimensional case on the areas
of u defined by |u1 − t1| + |u2 − t2| − |u1| − |u2| ≷ 1

β
ln (w1

w2
). It is convenient,

similarly to the one-dimensional case, to consider separately the nine areas defined
by the position of u1 with respect to 0 and t1 and by the position of u2 with respect
to 0 and t2. So, for example, if 0 < t1 < t2, we can write

|u1 − t1| + |u2 − t2| − |u1| − |u2|

=




−t1 − t2, if u1 > t1 and u2 > t2,

−2u2 + t2 − t1, if u1 > t1 and 0 < u2 < t2,

t2 − t1, if u1 > t1 and u2 < 0,

−2u1 + t1 − t2, if 0 < u1 < t1 and u2 > t2,

−2u1 − 2u2 + t1 + t2, if 0 < u1 < t1 and 0 < u2 < t2,

−2u1 + t1 + t2, if 0 < u1 < t1 and u2 < 0,

t1 − t2, if u1 < 0 and u2 > t2,

−2u2 + t2 + t1, if u1 < 0 and 0 < u2 < t2,

t1 + t2, if u1 < 0 and u2 < 0.

The calculations are complicated but not difficult. �

PROPOSITION 2.5. For t = (t1, t2) ∈ R
2 and the normal model, we have for

w1, w2 > 0,

− logP {Z(0,0) ≤ w1,Z(t1, t2) ≤ w2}
(2.13)

= 1

w1
�

( |t|β
2

+ 1

|t|β log
w2

w1

)
+ 1

w2
�

( |t|β
2

+ 1

|t|β log
w1

w2

)
,

that is, it is the same as in the one-dimensional case with |t | replaced by |t|.
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PROOF. As in the one-dimensional case. Now e−β2|u|2/2

w1
≥ e−β2|u−t|2/2

w2
if and

only if β t1u1+t2u2|t| ≤ |t|β
2 + 1

|t|β log w2
w1

. Next note that if the vector (U1,U2) has a

standard two-dimensional normal distribution, t1U1+t2U2|t| is also standard normal.
The rest of the proof is as in the one-dimensional case. �

PROPOSITION 2.6. For t = (t1, t2) ∈ R
2 and the t-model, for w1,w2 > 0,

− logP {Z(0,0) ≤ w1,Z(t1, t2) ≤ w2}

(2.14) =




1

w2
, 0 < w2 < b−α

2,αw1,

1

w1
P {(T1, T2) ∈ A1,α} + 1

w2
P {(T1, T2) ∈ Ac

2,α},
b−α

2,αw1 ≤ w2 < w1,

2

w
P {T1 ≤ |t|/2}, w1 = w2 =: w,

1

w1
P {(T1, T2) ∈ Ac

1,α} + 1

w2
P {(T1, T2) ∈ A2,α},

w1 < w2 < b−α
1,αw1,

1

w1
, w2 ≥ b−α

1,αw1,

where (T1, T2) is a random vector with bivariate t-density (1.7),

b1,α = 1 + β2|t|2
4(α − 1)

− β|t|√
2(α − 1)

√
1 + β2|t|2

8(α − 1)
,

b2,α = 1 + β2|t|2
4(α − 1)

+ β|t|√
2(α − 1)

√
1 + β2|t|2

8(α − 1)
,

A1,α =
{
(u1, u2) ∈ R

2 :
(
u1 − t1

1 − x

)2

+
(
u2 − t2

1 − x

)2

≤ x|t|2
(1 − x)2 − 2(α − 1)

β2

}
,

A2,α =
{
(u1, u2) ∈ R

2 :
(
u1 − t1x

1 − x

)2
+
(
u2 − t2x

1 − x

)2

≤ x|t|2
(1 − x)2 − 2(α − 1)

β2

}
and

x =
(

w1

w2

)1/α

.
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PROOF. Analogous to the one-dimensional case. �

PROPOSITION 2.7. For t = (t1, t2) ∈ R
2 and the general normal model, for

w1, w2 > 0,

− logP {Z(0,0) ≤ w1,Z(t1, t2) ≤ w2}

= 1

w1
�

(√
tT �−1t

2
+ 1√

tT �−1t
log

w2

w1

)
(2.15)

+ 1

w2
�

(√
tT �−1t

2
+ 1√

tT �−1t
log

w1

w2

)
,

where

�−1 = 1

1 − ρ2

[
β2

1 −ρβ1β2

−ρβ1β2 β2
2

]
.

PROOF. As in the one-dimensional case. Now e−uT �−1u/2

w1
≥ e−(u−t)T �−1(u−t)/2

w2
if

and only if uT �−1t ≤ tT �−1t
2 + log w2

w1
. Next note that if the vector U = (U1,U2)

has a bivariate normal distribution with mean value zero and covariance matrix �,
UT �−1t has a normal distribution with mean value zero and variance tT �−1t. The
rest of the proof is as in the one-dimensional case. �

3. Estimating the dependence parameter β . We consider a sequence of in-
dependent, identically distributed stochastic processes with continuous paths

{Xi(t)}t∈R, i = 1,2, . . . .

We assume that the processes are in the max-domain of attraction [as processes in
C(R)] of a max-stable stationary process {Z̃(t)}t∈R such that the related process Z

(see the Introduction) has exponential spectral function (2.2) or (2.12), or normal
spectral function (2.6) or (2.13), or t spectral function (2.9) or (2.14) as discussed
in Section 2. For definition of convergence and convergence criteria see [4].

Ideally it would be nice if we could assume that we have observed the sample
paths of n processes X as a basis for estimation of the main parameter β . However,
in reality this is too much to expect. Usually one can observe the n processes only
at finitely many points in space, say t1, t2, . . . , td .

In this setup we propose estimators for β that are closely related to an extension
of the estimator R̂(x, y) for the dependence function R(x, y) which was intro-
duced by Mason and Huang (see Huang [9]),

R̂t1,...,td (x1, . . . , xd) := 1

k

n∑
i=1

I{Xi(t1)≥Xn−[kx1]+1,n(t1),...,Xi(td )≥Xn−[kxd ]+1,n(td )}
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with k � n, where {Xi,n(tj )}ni=1 are the nth-order statistics of {Xi(tj )}ni=1 for j =
1,2, . . . , d .

Let us now introduce our estimators in R. All three densities have the form
βϕ0(βt). Corollary 3.2 below states that

Rt1,...,td (1, . . . ,1) = 2
∫ +∞
(β/2)(max1≤j≤d tj−min1≤j≤d tj )

ϕ0(t) dt

= 2
{

1 − F

(
β

2

(
max

1≤j≤d
tj − min

1≤j≤d
tj

))}

with F(t) := ∫ t
−∞ ϕ0(s) ds. It follows that

β = 2F←(1 − Rt1,t2,...,td (1,1, . . . ,1)/2)

max1≤j≤d tj − min1≤j≤d tj
.

Hence we introduce the estimators

β̂(1) := 2F←(1 − R̂t1,t2,...,td (1,1, . . . ,1)/2)

max1≤j≤d tj − min1≤j≤d tj

and

β̂1 := 2

d(d − 1)

∑
1≤j<m≤d

2

|tj − tm|F
←(1 − R̂tj ,tm(1,1)/2

)
.

Considering the two-dimensional space, note that the standard normal and Student
densities are spherical symmetric. This means (cf. proof of Proposition 2.5) that
it is sufficient to consider the marginal distribution and hence we introduce the
estimators

β̂2 := 2

d(d − 1)

∑
1≤j<m≤d

2

|tj − tm|F
←(1 − R̂tj ,tm(1,1)/2

)
,

with F the (common) marginal distribution corresponding to ϕ0 (standard normal
or Student). The exponential model in two-dimensional space is more complicated.
We consider

β̂e,2 := 2

d(d − 1)

∑
1≤j<m≤d

Qaj,m,bj,m

(
R̂tj ,tm(1,1)

)

with aj,m := |t (j)
1 − t

(m)
1 |, the absolute difference of the first components of

tj and tm, and bj,m := |t (j)
2 − t

(m)
2 | and Qa,b the inverse function of 1

2(1 +
β
2 min(a, b)) exp{−β

2 (a + b)}, which is decreasing in β for a, b > 0.
Note that β̂(1) is simpler than β̂ and summarizes the information of the sam-

ple in a somewhat more crude way. We could not find analogues of β̂(1) in
two-dimensional space since we were unable to calculate explicitly the necessary
higher-dimensional distributions.
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All the mentioned estimators are consistent and asymptotically normal under
the appropriate conditions. We now state the results. The proofs will be given at
the end of the section after some lemmas. First we consider consistency.

THEOREM 3.1. Suppose that the normalized sequence of maxima [see (1.1)]
converges weakly to {Z̃(t)} in C(−∞,∞). For sequences k = k(n) → ∞,
k(n)/n → 0 as n → ∞ (recall that the sequence k figures in the definition of R̂),
all the indicated estimators are weakly consistent for β .

Also the estimators are asymptotically normal under some extra conditions, that
is,

√
k(β̂ − β) has asymptotically a normal mean zero distribution. In order to de-

scribe the asymptotic distribution more accurately, we now state a slight extension
of a result of Huang and Mason.

PROPOSITION 3.2 ([9], pages 29 and 43). Let {(Xi(t1), . . . ,Xi(td)}∞i=1 be
i.i.d. random vectors with distribution function F. Suppose that the marginal dis-
tributions Fi (i = 1,2, . . . , d) are continuous and strictly increasing. Define

F̃t1,...,td (x1, . . . , xd) := 1 − F
(
F←

1 (1 − x1), . . . ,F
←
d (1 − xd)

)
= P {1 − F1(X(t1)) ≤ x1 or · · · or 1 − Fd(X(td)) ≤ xd},

where the arrow denotes inverse function. Suppose that for all x1, x2, . . . , xd ≥ 0,
x1 + x2 + · · · + xd > 0 and a positive function L,

lim
t↓0

1

t
F̃t1,t2,...,td (tx1, tx2, . . . , txd) = Lt1,t2,...,td (x1, x2, . . . , xd).(3.1)

Next we introduce the definition of a function R which is connected with the func-
tion L as follows. Let νt1,t2,...,td be the measure that satisfies for x1, x2, . . . , xd > 0

νt1,...,td {(s1, . . . , sd)|s1 ≤ x1 or · · · or sd ≤ xd} = Lt1,...,td (x1, . . . , xd).

Such a measure exists by virtue of (3.1). The function R is given by

Rt1,t2,...,td (x1, x2, . . . , xd) := νt1,t2,...,td ([0, x1] × [0, x2] × · · · × [0, xd ]).
Define

R̂t1,...,td (x1, . . . , xd) := 1

k

n∑
i=1

I{Xi(t1)≥Xn−[kx1]+1,n(t1),...,Xi(td )≥Xn−[kxd ]+1,n(td )},

where Xn−[kxi ]+1,n(tj ) is the (n−[kxi]+1)st-order statistic of X1(tj ), X2(tj ), . . . ,
Xn(tj ), j = 1,2, . . . , d . Then for all x1, x2, . . . , xd ≥ 0, x1 + x2 + · · · + xd > 0,

R̂t1,t2,...,td (x1, x2, . . . , xd) → Rt1,t2,...,td (x1, x2, . . . , xd) in probability,(3.2)

n → ∞, k = k(n) → ∞, k/n → 0.
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Suppose now that the function L has continuous first-order partial derivatives
L

(j)
t1,t2,...,td

, j = 1,2, . . . , d . Moreover suppose that for some α > 0

F̃t1,t2,...,td (tx1, tx2, . . . , txd)
(3.3)

= t
{
Lt1,t2,...,td (x1, x2, . . . , xd) + O(tα)

}
, t ↓ 0,

uniformly on x2
1 + x2

2 + · · · + x2
d = 1, xi ≥ 0, i = 1,2, . . . , d . Then for a sequence

k = k(n) → ∞ with k = o(n2α/(2α+1)), n → ∞,

√
k
{
R̂t1,...,td (x1, . . . , xd) − Rt1,...,td (x1, . . . , xd)

} d→ Bt1,...,td (x1, . . . , xd)(3.4)

in D(Rd+), where

Bt1,t2,...,td (x1, x2, . . . , xd)

= Wt1,t2,...,td (x1, x2, . . . , xd)

− L
(1)
t1,t2,...,td

(x1, x2, . . . , xd)Wt1,t2,...,td (x1,0, . . . ,0)

− · · · − L
(d)
t1,t2,...,td

(x1, x2, . . . , xd)Wt1,t2,...,td (0,0, . . . , xd)

and W is a continuous mean zero Gaussian process with covariance structure

EWt1,...,td (x1, . . . , xd)Wt1,...,td (y1, . . . , yd) = νt1,...,td

(
Ax1,...,xd

∩ Ay1,...,yd

)
with

Ax1,x2,...,xd
:= {(t1, t2, . . . , td)|t1 < x1 or t2 < x2 or · · · or td < xd}.

The function L is called the tail dependence function and it is directly related
with the extreme-value limit distribution. In fact if F is in the domain of attraction
of an extreme-value distribution G, condition (3.1) holds with L(x1, . . . , xd) =
− logG((− logG1)

←(x1), . . . , (− logGd)←(xd)) where G1, . . . ,Gd are the mar-
ginals of G.

REMARK 3.1. For the exponential model in one-dimensional space

Lt1,...,td (x1, . . . , xd) := β

2

∫ ∞
−∞

max
(
x1e

−β|s−t1|, . . . , xde−β|s−td |)ds

and (see Lemma 3.1 below)

Rt1,...,td (x1, . . . , xd) := β

2

∫ ∞
−∞

min
(
x1e

−β|s−t1|, . . . , xde−β|s−td |)ds.

Similarly for the normal model and the t-model.
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THEOREM 3.3 (One-dimensional space). Suppose for the processes {Xn(t)}
the limit relation (1.1) holds and moreover the second-order condition (3.3): for
some α > 0

F̃t1,...,td (tx1, . . . , txd) = t{− logP {Z(t1) ≤ 1/x1, . . . ,Z(td) ≤ 1/xd} + O(tα)},
t ↓ 0, uniformly on x2

1 + x2
2 + · · · + x2

d = 1, xi ≥ 0, i = 1,2, . . . , d .
If k = k(n) → ∞, k(n) = o(n2α/(2α+1)), as n → ∞, then

√
k(β̂1 − β) → 2

d(d − 1)

∑
j<m

2Btj ,tm(1,1)

|tj − tm|
1

ϕ0(β|tj − tm|/2)
(3.5)

and
√

k
(
β̂(1) − β

)
(3.6)

→ 2Bt1,t2,...,td (1,1, . . . ,1)

max1≤j≤d tj − min1≤j≤d tj

1

ϕ0(β(max1≤j≤d tj − min1≤j≤d tj )/2)

in distribution. Here B is as in Proposition 3.2.

THEOREM 3.4 (Two-dimensional space). Under the same conditions,

√
k(β̂2 − β) → 2

d(d − 1)

∑
j<m

2Btj ,tm(1,1)

|tj − tm|
1

ϕ0(β|tj − tm|/2)
(3.7)

and
√

k(β̂e,2 − β) → 2

d(d − 1)

∑
j<m

Btj ,tm(1,1)Q′
ajm,bjm

(
Q←

ajm,bjm
(β)

)
(3.8)

in distribution, where ajm := |t (j)
1 − t

(m)
1 |, bjm := |t (j)

2 − t
(m)
2 |.

For the estimation of the general normal model we proceed as follows. Write

�−1 = 1

1 − ρ2

[
β2

1 −ρβ1β2

−ρβ1β2 β2
2

]

with −1 < ρ < 1 and β1, β2 > 0. For two sites tj and tm (1 ≤ j < m ≤ d) we write

(tj − tm)T �−1(tj − tm)

= 1

1 − ρ2

{
β2

1
(
t
(1)
j − t (1)

m

)2
− 2ρβ1β2

(
t
(1)
j − t (1)

m

)(
t
(2)
j − t (2)

m

)+ β2
2
(
t
(2)
j − t (2)

m

)2}
= tTj,ma,
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where

tj = (
t
(1)
j , t

(2)
j

)T for j = 1,2, . . . , d,

tj,m =




(
t
(1)
j − t

(1)
m

)2
(
t
(1)
j − t

(1)
m

)(
t
(2)
j − t

(2)
m

)
(
t
(2)
j − t

(2)
m

)2




and

a := 1

1 − ρ2




β2
1

−2ρβ1β2

β2
2


 .(3.9)

Now note that

2 − Rtj ,tm(1,1) = Ltj ,tm(1,1) = 2�
(√|tj − tm|T �−1|tj − tm|/2

)
.

Hence we define estimators

Q̂j,m := (
2�←(1 − Rtj ,tm(1,1)/2

))2
.(3.10)

Using the result of Proposition 3.2 and Cramér’s delta method we get
√

k(Q̂j,m − tTj,ma)
d→ 2Btj ,tm(1,1)

√
tTj,ma

(
φ
(√

tTj,ma/2
))−1

,(3.11)

where φ is the standard normal density. Now compose the (d(d − 1)/2)-dimen-
sional vectors

q̂ :=




Q̂1,2

Q̂1,3

...

Q̂d−1,d




and

� :=




tT1,2

tT1,3
...

tTd−1,d


 .

Then
√

k(q̂ − �a)
d→ b(3.12)
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with

b := 2




Bt1,t2(1,1)
√

tT1,2a
(
φ
(√

tT1,2a/2
))−1

Bt1,t3(1,1)
√

tT1,3a
(
φ
(√

tT1,3a/2
))−1

...

Btd−1,td (1,1)
√

tTd−1,da
(
φ
(√

tTd−1,da/2
))−1




.

Next define

â := (�T �)−1�T q̂.(3.13)

Then
√

k(â − a) = (�T �)−1�T
√

k(q̂ − �a)
d→ (�T �)−1�T b.(3.14)

By solving the equations (3.9) we get

β1 :=
√

a1 − a2
2

4a3
,

β2 :=
√

a3 − a2
2

4a1

and

ρ := − a2

2
√

a1a3
.

Cramér’s delta method now gives the joint asymptotic normality of the estimators

β̂1 :=
√

â1 − â2
2

4â3
,(3.15)

β̂2 :=
√

â3 − â2
2

4â1
(3.16)

and

ρ̂ := − â2

2
√

â1â3
.(3.17)

For the proofs of the theorems we need a number of auxiliary results.

LEMMA 3.1. Suppose for some measure ν on R
d and some positive integrable

functions g1, . . . , gd

ν
([x1,∞) ∪ · · · ∪ [xd,∞)

)= ∫ ∞
−∞

max{g1(x − x1), . . . , gd(x − xd)}dx.
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Then

ν
([x1,∞) ∩ · · · ∩ [xd,∞)

)= ∫ ∞
−∞

min{g1(x − x1), . . . , gd(x − xd)}dx.

PROOF. Note that

ν
([x1,∞) ∪ [x2,∞) ∪ · · · ∪ [xd,∞)

)

=
d∑

i=1

ν
([xi,∞)

)+ (−1)
∑
i �=j

ν
([xi,∞) ∩ [xj ,∞)

)

+ · · · + (−1)d−1ν
([x1,∞) ∩ [x2,∞) ∩ · · · ∩ [xd,∞)

)
,

and for any real a1, a2, . . . , ad ,

max(a1, a2, . . . , ad) =
d∑

i=1

ai + (−1)
∑
i �=j

ai ∧ aj + · · ·+ (−1)d−1a1 ∧ a2 ∧ · · · ∧ ad

(both follow by induction). Then the statement also follows by induction. �

COROLLARY 3.1. Hence for our models in R

Rt1,t2,...,td (x1, x2, . . . , xd) =
∫ +∞
−∞

min
i

φ(s − ti)

xi

ds.

REMARK 3.2. We apply Lemma 3.1, for example, to the functions gj (x) :=
e−β|x|
wj

.

LEMMA 3.2. Suppose p is a probability density on R, p(x) = p(−x) for
x > 0 and p(x) is decreasing for x > 0. Then∫ ∞

−∞
min{p(|s − t1|), . . . , p(|s − td |)}ds

(3.18)
= 2

∫ ∞
(1/2)(max1≤j≤d tj−min1≤j≤d tj )

p(s) ds.

PROOF. Note that

min{p(|s − t1|), . . . , p(|s − td |)}
= min

{
p

(∣∣∣∣s − min
1≤j≤d

tj

∣∣∣∣
)
,p

(∣∣∣∣s − max
1≤j≤d

tj

∣∣∣∣
)}

=




p

(∣∣∣∣s − min
1≤j≤d

tj

∣∣∣∣
)
, s > min

1≤j≤d
tj + 1

2

(
max

1≤j≤d
tj − min

1≤j≤d
tj

)
,

p

(∣∣∣∣s − max
1≤j≤d

tj

∣∣∣∣
)
, s < min

1≤j≤d
tj + 1

2

(
max

1≤j≤d
tj − min

1≤j≤d
tj

)
.
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So the integral on the left-hand side equals

2
∫ ∞

min1≤j≤d tj+(1/2)(max1≤j≤d tj−min1≤j≤d tj )
p

(∣∣∣∣s − min
1≤j≤d

tj

∣∣∣∣
)

ds. �

COROLLARY 3.2. Hence for our models in R

Rt1,...,td (1, . . . ,1) = 2
∫ ∞
(1/2)(max1≤j≤d tj−min1≤j≤d tj )

φ(s) ds

= 2
{

1 − F

(
β

2

(
max

1≤j≤d
tj − min

1≤j≤d
tj

))}
.

LEMMA 3.3. Under the conditions of Theorem 3.3,
√

k

{
R̂t1,...,td (1, . . . ,1) − 2

[
1 − F

(
β

2

(
max

1≤j≤d
tj − min

1≤j≤d
tj

))]}
(3.19) → Bt1,...,td (1, . . . ,1)

in distribution with B as in Proposition 3.2.

PROOF. Combine Proposition 3.2 and Corollary 3.2. �

LEMMA 3.4. Under the conditions of Theorem 3.4, for the standard normal
and Student models,

√
k

{
R̂tj ,tm(1,1) − 2

(
1 − F

(
β

2
(|tj − tm|)

))}
→ Btj ,tm(1,1)(3.20)

in distribution. For the exponential model
√

k

{
R̂tj ,tm(1,1) − 1

2

(
1 + β

2
min

(∣∣t (j)
1 − t

(m)
1

∣∣, ∣∣t (j)
2 − t

(m)
2

∣∣)

× e−(β/2)(|t (j)
1 −t

(m)
1 |+|t (j)

2 −t
(m)
2 |)

)}
(3.21)

→ Btj ,tm(1,1)

in distribution, where tj = (t
(j)
1 , t

(j)
2 ), tm = (t

(m)
1 , t

(m)
2 ).

PROOF. Propositions 2.5, 2.6 and 2.4 give Ltj ,tm(1,1), which is
2 − Rtj ,tm(1,1). �

PROOF OF THEOREM 3.1. Follows immediately from statement (3.2) of
Proposition 3.2 and Lemma 3.2. �

PROOF OF THEOREMS 3.3 AND 3.4. Immediately from Lemmas 3.3, 3.4 and
Cramér’s delta method. �
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