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Abstract

Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts

affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt

composition and electrical conductivity. In this present paper, we develop an adaptive neuro-fuzzy inference system

(ANFIS) model for groundwater electrical conductivity based on the concentration of positively charged ions in water.

It is shown that the ANFIS model outperforms more traditional methods of modelling electrical conductivity based on

the total solids dissolved in the water, even though ANFIS uses less information. Additionally, the fuzzy rules in the

ANFIS model provide a categorization of ground water samples in a manner that is consistent with the current

understanding of geophysical processes.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Water quality assessment is an important activity in

agricultural water management. The ionic composition

of water has significant influence on plant growth.

Irrigation with water of insufficient quality might retard

plant growth and may contaminate soil, rendering it less

suitable for agriculture because of its salinity. The

concentration of positively charged ions, especially of

sodium is more important than others. High concentra-

tions of sodium, both in absolute and in relative terms,

make water unsuitable for irrigation (Drever, 1997),

since sodium adversely affects soil structure and soil
e front matter r 2005 Elsevier Ltd. All rights reserve
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permeability by replacing calcium and magnesium

(McNeely et al., 1979).

Electrical conductivity (EC) is an important para-

meter in groundwater quality assessments for drinking

and irrigation, since it is related to the concentration of

charged particles in the water. EC is measured by an

electronic probe, which applies an electric voltage

between two electrodes. The resistance of the water is

measured by the drop in the voltage. EC, which is

inversely proportional to the resistance, is then the

conductance per unit distance. Pure liquid water has a

very low electrical conductivity. The presence of charged

particles in the water increases its conductivity. In

general, as the concentration of total dissolved solids

(TDS) in the water increases, its conductance also

increases. Important water quality classification systems

such as the Wilcox (1948) diagram and the USA Salinity
d.
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Fig. 1. Dissolved solids and EC, Gila River at Bylas, Ariz.

(Hem, 1985).
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Laboratory (1954) classification system use EC as input.

Wilcox diagram classifies water quality based on the EC

and sodium concentration of water. For this diagram,

an EC level between 0 and 750 mS/cm is determined to be

excellent-good and an EC level between 750 and

2000 mS/cm is good-permissible for irrigation. Water

with an EC level greater than 2000mS/cm is considered

to be doubtful for irrigation. Alternatively, the USA

Salinity Laboratory system uses EC together with the

sodium, magnesium and calcium concentrations in the

water. According to this system, water with EC level

between 100 and 250mS/cm has low, between 250 and

750 mS/cm has medium and above 750mS/cm has high

salinity hazard.

Since EC is influenced by the composition of mineral

salts in the groundwater, it is important to understand

the relationships between mineral salt composition and

electrical conductivity. Traditional methods of model-

ling EC are based on TDS, but then it is not possible to

study how the specific composition of water influences

EC. This paper shows that the relation between the

composition of groundwater and EC can be modelled by

using an adaptive neuro-fuzzy inference system (AN-

FIS). ANFIS models are attractive since they can learn

the underlying relations from numerical data, while the

fuzzy rules obtained can provide a transparent linguistic

description for the working of the model. Fuzzy systems

provide the possibility of integrating (logical) informa-

tion processing with the attractive mathematical proper-

ties of general function approximators (Setnes et al.,

1998). Various papers have already considered engineer-

ing applications of neural-fuzzy modelling in hydro-

geological-based systems. In one of these studies, Chang

and Chang (2001) have shown that using ANFIS for

modeling of real-time reservoir operation is practicable

and effective. Another paper presented by Lu and Lo

(2002) has investigated reservoir water quality using self-

organizing maps and fuzzy theory. Similarly, Hasebe

and Nagayama (2002) studied the reservoir operation

using neural networks and fuzzy systems. In an

interesting study, minimizing the variance of reservoir

systems operations using fuzzy-neural techniques has

been discussed in Ponnambalam et al. (2003). In a recent

paper, Nayak et al. (2004) have utilized ANFIS for

modelling hydrological time series. In addition to these

papers, a comprehensive book entitled Fuzzy Logic in

Geology has been edited by Demicco and Klir (2004).

In this paper, we study the modelling of EC from the

major positively charged ions in the water by using an

ANFIS. The model is developed by using real-world

data regarding the water sources in Mersin region of

southern Turkey. Our results indicate that the ANFIS

model outperforms more traditional methods of model-

ling electrical conductivity based on the total solids

dissolved in the water, even though ANFIS uses less

information.
The paper is organized as follows. Section 2 explains

how EC is currently modelled based on TDS as input.

Section 3 presents a brief description of ANFIS models.

In this section, architecture of ANFIS and the corre-

sponding learning algorithms are described. The first

part of Section 4 describes the study area and sampling.

In the second part, a short explanation of sampling is

given. Section 5 explains the application of the ANFIS

method to model the electrical conductivity of water

from positively charged ions. Validation of the model is

also given in this section. Finally, Section 6 concludes

the paper.
2. Modelling EC from TDS

Electrical conductance mostly depends on major

anions and cations in water. The major cations in

natural groundwater are sodium (Na+), calcium

(Ca+2), potassium (K+), magnesium (Mg+2), while

the major anions are chloride (Cl�), sulfate (SO4
�2),

carbonate (CO3
�2), and bicarbonate (HCO3

�). Electrical

conductivity provides a good indication of the changes

in the composition of water, especially in its total

dissolved solids (McNeely et al., 1979). The presence of

charged ionic species in a solution makes it conductive.

The relationship between ionic concentration and

conductivity is fairly simple and direct in dilute solutions

of single salts (Fig. 1). As the concentration is increased,

the slope of the relation decreases slightly. This general

behaviour is typical of all salts, but the slope of the

straight part of the curve and the degree it flattens with

increasing concentration are different for different salts.

To conduct a current, solute ions actually must move

through the solution to transfer charges, and the

effectiveness of a particular ion in this process depends
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on its charge, size, the way it interacts with the solvent

and other factors. Increasing concentration, owing to

interferences and interactions among the ions, decreases

ionic mobility. Then, the relationships that affect

conductivity may be complicated (Hem, 1985).

For most natural waters with EC in the range of

100–5000 mS/cm, empirical relationships between elec-

trical conductivity and total dissolved solids are used. It

is observed that multiplying the TDS by 1.56 closely

approximates EC when EC is in mS/cm and TDS is in

mg/l (Todd, 1980; Hubbert, 1940; Lusczynski, 1961)

proposes to use

TDS ¼ AC

for conversion between the conductivity values and the

TDS, where C is the conductance expressed in mS/cm,

TDS is the total dissolved solids in mg/l and A is a

conversion factor. Although this kind of linear relation-

ship is used often the conversion factor is not constant

for all waters, and it varies mostly between 0.55 and 0.75

(Hem, 1985). Therefore, a nonlinear modelling approach

might capture this variation. The following section

describes the basics of the ANFIS method that is used

in this paper.
3. Adaptive neuro-fuzzy inference system (ANFIS)

In this paper, ANFIS proposed by Jang (1993) is used

for modelling the electrical conductivity. ANFIS can

construct an input–output mapping based on a given

initial fuzzy system and available input–output data

pairs by using a learning procedure. The adaptive

network simulates a fuzzy inference system represented

by the fuzzy if–then rules. The hybrid network of

ANFIS system is functionally equivalent to Sugeno’s

inference mechanism (Fuller, 1999).

3.1. Outline of ANFIS

Among various fuzzy inference systems, Takagi–

Sugeno (TS) systems (Takagi and Sugeno, 1985) have

been applied successfully for data-driven-based fuzzy

modelling. The TS model consists of a set of local

input–output relations that describe the overall system.

The rules in a first-order TS model have the following

structure:

Ri : ðif x1 is Ai1 and . . . and xn is AinÞ then

yi ¼ aT
i xþ bi; I ¼ 1; 2; . . . ;K,

where Ri is the ith rule in the rule base, x ¼ ½x1; ::;xn�
T is

the input (antecedent) vector, and Ai1; . . . ;Ain are the

fuzzy sets defined for the respective antecedent variables.

The rule consequent yi is an affine combination of the

inputs with parameters ai and bi (Setnes et al., 1998).
An ANFIS system can be considered as an imple-

mentation of a TS system in a neural network

architecture. In the following, we sketch briefly the

outline of an ANFIS system by using a model with two

inputs as an example (Jang et al., 1997). Let the inputs of

the fuzzy system be x and y, and let the output be z. We

consider a TS system with first-order consequents

(Takagi and Sugeno, 1983) and two rules as follows:

Rule 1. If x is A1 and y is B1, then f 1 ¼ p1xþ q1yþ r1.

Rule 2. If x is A2 and y is B2, then f 2 ¼ p2xþ q2yþ r2.

To construct the adaptive system, five layers are used

as shown in Fig. 2. Each layer involves several nodes

described by a node function. The circles in the network

represent nodes that possess no variable parameters,

while the squares represent nodes that possess adaptive

parameters to be determined by the network during

training. The node function in each layer is described

below.

Layer 1: The nodes in this layer represent the fuzzy

sets in the antecedents of the fuzzy rules. It has

parameters that control the shape and the location of

the centre of each fuzzy set. In this study, we choose

mAi(x) to be Gaussian with height equal to 1. The

membership function is given by

mAi
ðxÞ ¼ e�ðx�ciÞ

2=2s2
i , (1)

where ci represent the centre of the Gaussian function,

and si represent the spread of the membership function.

The outputs of this layer are the values of the antecedent

membership functions corresponding to the fuzzified

inputs of the system.

Layer 2: Every node in this layer computes the

product of its inputs. The output of the layer is given by

wi ¼ mAi
ðxÞ � mBi

ðyÞ; i ¼ 1; 2, (2)

where mAi
and mBi

are the fuzzy sets defined for the

variables x and y, respectively. The aim of this layer is to

compute the degrees of activation (firing strength) of

particular fuzzy rules (Gorzalczany, 2001).

Layer 3: The nodes in this layer normalize the firing

strength of the rules by calculating the ratio of the ith

rule’s firing strength to the sum of all rules firing

strengths.

w�i ¼
wi

w1 þ w2
; i ¼ 1; 2. (3)

Layer 4: Nodes in this layer are adaptive where each

node function represents a first order model with the

consequent parameters. Thus, the output from this layer

is expressed by

O4
i ¼ w�i f i ¼ w�i ðpixþ qiyþ riÞ, (4)

where w�i is the output of Layer 3, and {pi, qi, ri} is the

parameter set.
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Fig. 2. ANFIS architecture.
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Layer 5: This is the output layer where each node is

fixed. The single node labelled S computes the overall

output as the summation of all the inputs from the

previous layer, i.e.,

O5
i ¼

X
i

w�i f i ¼

P
iwif i

wi

. (5)

3.2. Training and learning in ANFIS

Optimizing the values of the adaptive parameters

is of vital importance for the performance of the

adaptive system. In particular, the premise para-

meters in Layer 1 and the consequent parameters in

Layer 4 need to be determined. Layer 1 parameters

define the centre and the spread of the antecedent

membership function. Layer 4 parameters defined by the

set {pi, qi, ri} corresponds to the consequent coefficients

in Eq. (4).

Jang (1993) proposed a hybrid-learning algorithm for

determining the parameters of an ANFIS. A hybrid

learning algorithm combines gradient descent and the

least square techniques for optimizing the network

parameters. In this proposed approach, the output of

the system, f is written as

f ¼
w1

w1 þ w2
f 1 þ

w2

w1 þ w2
f 2 ¼ w�1f 1 þ w�2f 2

¼ ðw�1xÞp1 þ ðw
�
2yÞq1 þ ðw

�
1Þr1

þ ðw�2xÞp2 þ ðw
�
2yÞq2 þ ðw

�
2Þr2, ð6Þ
where (p1, q1, r1, p2, q2, r2) are the consequent

parameters of the linear sub-systems. If the objective

function to minimize is chosen to be the minimization of

the squared prediction errors, the objective function is

linear in the consequent parameters. Therefore, least

squares estimation can be used to determine these

parameters, assuming that the Layer 1 parameters are

fixed. Afterwards, the Layer 4 parameters can be fixed,

and a back propagation approach is used to adapt the

premise parameters in Layer 1. Iterating between

optimizing the Layer 1 parameters and Layer 4

parameters, the optimal values for all free parameters

are computed. In Section 5, an ANFIS model for

electrical conductivity is developed, where the hybrid

learning approach is used to optimize the parameters of

the adaptive network.
4. Study area and sampling

Mersin is located in the Southern part of Turkey

(Fig. 3). The study area is situated between latitude

341200 and 341570and longitude 361380 and 371000 and it

covers an area of approximately 800 km2. This study

area can be divided in to two parts as its hydrogeological

properties. The north part is low-productive Hillside

aquifer which is mainly consist of sedimentary rocks and

the south part is most-productive Coastal aquifer which

is characterized by a deltaic environment. Maximum

specific discharge rates are 0.65 l/s/m for Hillside aquifer
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Fig. 3. Locality map of study area.
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and 21.4 l/s/m for Coastal aquifer (Hatipoglu, 2004).

Fig. 4 illustrates the distribution of Hillside and Coastal

aquifer according to the outcrop of the rocks and

alluvium material. It is determined from the geological

map of the the study area which is prepared by Senol

et al. (1998). Fifty one groundwater samples collected

from springs and wells for the current study are shown
in Fig. 4. These samples were taken during September

through November 2002 for chemical analyses, each

sample being analysed for the major, minor ions and

nutrients. Samples were preserved in the field and analysed

in International Research and Application Center for

Karst Water Resources Laboratory in Hacettepe Uni-

versity. EC, pH, and temperature were measured at the
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Fig. 4. Map of study area showing location of sampled wells and spring.
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time of sampling. EC was measured using portable YSI

EC meter, pH and temperature were measured using

Orion pHmeter. Samples were collected in two new 250ml

polyethylene bottles. All sampling bottles were washed

with de-ionized water. Chemical analyses were performed

Ion Cromotography Dionex 650. All samples had ionic

balance errors below 5%.
5. ANFIS model for electrical conductivity

5.1. Rule base design and optimization

We have chosen a data driven to design the ANFIS

model. First, the available data set consisting of 51

records was divided into two subsets randomly: the

training set and the validation set, respectively. The

training set consisted of 35 samples, and the validation

set of 16 samples. To model the electrical conductivity, a

network with four inputs was selected, with input

variables corresponding to the concentration of Sodium

(Na+), potassium (K+), calcium (Ca+2), and magne-

sium (Mg+2) ions. Fuzzy c-means clustering algorithm
(Bezdek, 1981) was used to design an initial rule base.

After the data were clustered, the antecedent member-

ship functions have been chosen such that the centres of

the Gaussians correspond to the centres of the fuzzy

clusters. The spreads of the membership functions were

selected manually to provide sufficient coverage over the

domain of discourse on which the variables were

defined. A crucial point in the rule base design is

selecting the number of rules. When fuzzy systems are

designed by using fuzzy clustering, each cluster corre-

sponds to a fuzzy rule. Hence, the number of clusters

determines the number of rules. We have determined the

number of clusters experimentally, by developing

various models and studying the rules and their

consequent parameters. The appropriate number of

clusters resulted to be two. The cluster centres deter-

mined by the clustering algorithm lied at the following

coordinates:
Na+
 K+
 Ca+2
 Mg+2
Cluster 1
 31.0
 1.92
 84.9
 30.0
Cluster 2
 110
 5.10
 62.0
 42.0
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A first-order Takagi–Sugeno system was designed.
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Thus, the rule base consisted of two rules, each with five

consequent parameters. The rules obtained from fuzzy

clustering looked like as follows:

IF ðNa is lowÞ AND ðK is lowÞ AND

ðCa is highÞ AND ðMg is lowÞ THEN y ¼ Y

IF ðNa is highÞ AND ðK is highÞ AND

ðCa is lowÞ AND ðMg is highÞ THEN y ¼ Y .

As this is the initial rule base, the rule consequents were

determined from global least squares regression, leaving

it up to ANFIS to optimize the consequent parameters.

Hence, al the rules in the rule base initially had the same

consequent determined by the least square estimation as

Y ¼ 3:4Naþ 13:4Kþ 4:0Caþ 8:4Mg� 10:1.

After the initialization, the ANFIS system was trained

by using a hybrid training algorithm. Figs. 5–8 show the

initial and the final membership functions for the four

inputs that have been determined by training. For each

input, the membership functions are labelled as ‘low’

and ‘high’. The training algorithm has produced a

considerable change in the membership functions for
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Fig. 5. Initial and final membership functions for Na+.

0 5 10 15

0

Concentration of K+ (ppm)

D

(b)

Fig. 6. Initial and final membership functions for K+.
K+. The membership functions for other inputs have

been modified only slightly. After optimization, the

following rule consequents have been determined.

Rule 1. y1 ¼ 1.89Na+15.11K+4.01Ca+5.08Mg+110.9.

Rule 2. y2 ¼ 3.44Na+9.92K+4.64Ca+8.00Mg+14.2.

The fuzzy system has identified two relations: one is

for water characterized by high calcium content and low

other cations, the other for water characterized by low

calcium and high other cations. Compared with global

linear regression, the coefficient for sodium is lower in

the former case, while the coefficient for sodium is

higher in the latter case. Furthermore, one can also

observe a significant change in the coefficients for

potassium, compared to the global regression. There-

fore, we conclude that the learning algorithm has

significantly modified the local models.

5.2. Evaluation of the prediction performance

To assess the performance of the identified ANFIS

model, we have plotted the measured EC values against

the predicted EC values. Fig. 9 illustrates the results
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Fig. 7. Initial and final membership functions for Ca+2.
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Fig. 8. Initial and final membership functions for Mg+2.
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together with the cross-correlations between predicted

and measured data both for the training set and the

validation set, respectively. The large determination

coefficient indicates that the model has good prediction

capability. We have also compared the performance of

the ANFIS model against the performance of a

traditional method for modelling EC based on TDS,

as explained in Section 2. Fig. 10 shows the prediction

from the TDS method against the measured EC together

with the cross-correlations between predicted and

measured data both for the training set and the

validation set, respectively. As observed from the

determination coefficient, the ANFIS method outper-

forms the method based on TDS.

We have also investigated to what degree our model

can explain the variance in the data by using the

‘‘variance account for’’ VAF in (7) as a performance

index (Grima, 2000):

VAF ¼ 1�
varðy� y�Þ

varðyÞ

� �
100%, (7)

where ‘var’ denotes the variance, y is the measured

value, y* is the predicted value. In general, the closer the

VAF to 100%, the better the model performs. Table 1

shows the VAF values obtained from ANFIS and from
TDS models. The ANFIS model performs better than

the TDS model, both on the training data and on the

validation data.

In order to test the sensitivity of the ANFIS modelling

approach to sampling variation, we have randomly

drawn the training and the validation data sets 13 more

times. In each case, the training set had 35 records and

the validation set had 16 records. With each training

data, ANFIS models and TDS models were developed

and the performance on both the training data and the

validation data was quantified by using the VAF index.

The values of the VAF for 13 experiments are given in

Table 2.

Table 2 shows that on average, ANFIS models

outperform the TDS model. This indicates a good

generalization capability for the ANFIS model. The

VAF values predicted by the ANFIS and the TDS

models for both the training and the evaluation data are

shown in Figs. 11 and 12, respectively.

5.3. Discussion

Our results show that the ANFIS modelling that we

propose for electrical conductivity has high predictive
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Fig. 10. Scatter plot of measured and predicted values for TDS method.
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Fig. 9. Scatter plot of measured and predicted values for ANFIS model.
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power. It outperforms methods based on total dissolved

solids, as indicated by the VAF performance index.

However, model validation is more important with

ANFIS models, since they have more parameters than

the models based on TDS. Hence, there is a danger of

over fitting, which must be managed by the model

validation procedure. Note that the method-based total-
dissolved solids needs the identification of all ionic

species in the solution. In this sense, it needs more

information for the modelling. The ANFIS model,

however, has as inputs the concentrations of the

major cations in the solution. Hence, it can achi-

eve better performance, while it uses less information.

This is possible because of the nonlinear function
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Table 1

Performances comparison of ANFIS and TDS model

VAF–ANFIS/Training VAF–TDS/Training VAF–ANFIS/Testing VAF–TDS/Testing

0.9742 0.9027 0.8957 0.8897

Table 2

VAF statistics for ANFIS and TDS model

VAF–ANFIS/Training VAF–TDS/Training VAF–ANFIS/Testing VAF–TDS/Testing

0.9640 0.9031 0.9310 0.7696

0.9623 0.9148 0.9230 0.8356

0.9855 0.9096 0.7016 0.9376

0.9715 0.8613 0.9091 0.9338

0.9688 0.9030 0.9066 0.8158

0.9766 0.9070 0.9081 0.8920

0.9603 0.8894 0.9591 0.8739

0.9828 0.9170 0.8555 0.8962

0.9743 0.9030 0.9120 0.9066

0.9764 0.9222 0.8529 0.8768

0.9674 0.8959 0.9784 0.8769

0.9513 0.8899 0.9763 0.9263

0.9770 0.8856 0.9147 0.9125

Average Average Average Average

0.9707 0.9002 0.9022 0.8811

St. Dev. St. Dev. St. Dev. St. Dev.

0.0095 0.0160 0.0713 0.0490

Validation Performances for Training
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Fig. 11. VAF values from ANFIS and TDS models for training

sets.
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approximation characteristic of ANFIS. Since determin-

ing and measuring all ionic species in the water is more

time consuming and more expensive, our modelling

approach could reduce costs of sampling and monitor-

ing water resources in water management.

In addition to the numerical prediction, ANFIS

models provide more information regarding the process

compared to the TDS based models. In particular,

the fuzzy rules identified can be studied and the degree

of firing of the rules can provide information about

the type of composition of cations in the studied

sample. For all the samples in our data set, we have

studied to what degree the two local models represented

by the rule consequents are active by looking at the

normalized degree of fulfilment (relative degree of

activation) of the fuzzy rules (i.e. wi
* in Layer 3 of

the ANFIS). One can use the normalized degree

of fulfilment as a simple classifier by assigning a sample

to the rule that fires most. Fig. 13 shows the dominant

rule in each of the available data points in our total

data set.
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Fig. 12. VAF values from ANFIS and TDS models for

evaluation sets.

Fig. 13. Rule activation and sodi
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Recall that Rule 1 indicates sources with low sodium

content but high calcium content. Conversely, Rule 2

indicates sources with high sodium content and low

calcium content. This implies that the fuzzy model has

captured an essential characteristic of geophysical process

in coastal areas. As a result of dissolution of calcite, Ca+2

and HCO3
� ions dominate in fresh water in coastal areas.

When seawater intrudes in a coastal fresh water aquifer,

an exchange of cations takes place, whereby sodium

replaces calcium (Appelo and Postma, 1994). The fuzzy

rules have partitioned the water sources according to this

geophysical phenomenon. As expected, Rule 2 dominates

in samples that are close to the coastline, while Rule 1

dominates in the hillside samples. However, Rule 2 is also

active on some hillside samples, indicating a possible

mixing with seawater or dissolution of salts.

Finally, we have also considered to what degree our

fuzzy system is able to distinguish samples with high

sodium content from samples with low sodium content.

For that reason, we have shown in Fig. 13 also the

relative sodium content (in percentages) of the data

samples. We find that in sources where Rule 2 is active,
um content for data points.
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the relative sodium content is high (above 0.25%), while

in sources where Rule 1 is active, the relative sodium

content is low. There were two exceptions to this rule:

our fuzzy model did not classify data sources 85 and 106

correctly.
6. Conclusions

We have presented an adaptive neuro-fuzzy inference

system (ANFIS) for modelling the relation between

the major cations in groundwater and its electrical

conductivity. It has been observed that the ANFIS

model outperforms more traditional methods of model-

ling electrical conductivity based on the total solids

dissolved in the water. In addition to the numerical

prediction power, another attractive property of the

fuzzy model provided by ANFIS is its transparency.

We have observed that the fuzzy rules in the ANFIS

model provide a categorization of ground water samples

in a manner that is consistent with the current under-

standing of geophysical processes in coastal areas. In

our two-rule model, it has been found that one of

the rules describes the relation between cationic compo-

sition and electrical conductivity for low sodium and

high calcium samples, while the other rule describes

the relation between high sodium and low calcium

samples.

The approach can easily be extended to other

hydrogeology-based domains such as evaluating the

special reservoir topics and pollution processes. It is

clear that the soft computing approaches such as fuzzy

sets and neural networks can have a large impact in

geological and mining systems.
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