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Scope and Purpose--One of the key problems in manufacturing operations is to determine the assignment of 
jobs to machines and the sequence of the jobs on each machine. In this paper we consider an environment in 
which the machines are identical, change-over times in between the processing of two consecutive jobs are job- 
dependent and the objective is to maximize the utilization of the machines which is equivalent to minimizing the 
makespan. Unfortunately, such problems fall into the strongly NP-hard category. However, it is the purpose of 
this paper to show that the computational complexity drastically improves if the jobs are divided into a small 
number of classes where each class consists of "similar" jobs. Such situations can be found in many applications 
where the jobs in a group are identical, such as for example in the Aircraft Sequencing Problem (where an 
optimal sequence has to be determined for the landing of airplanes which are divided into several classes 
according to their size) or if the jobs in a group require a similar state of the machine, like e.g. color for a painting 
machine or tool-loading in flexible manufacturing systems. In such cases the change-over times are actually 
determined by the class of the jobs. For a fixed number of job classes, we give fast algorithms for the one- 
machine problem and the problem with multiple machines and identical processing times. 

Abstract--In this paper we consider the problem of scheduling n jobs such that makespan is minimized. It is 
assumed that the jobs can be divided into K job-classes and that the change-over time between two consecutive 
jobs depends on the job-classes to which the two jobs belong. In this setting, we discuss the one machine 
scheduling problem with arbitrary processing times and the parallel machines scheduling problem with identical 
processing times. In both cases it is assumed that the number of job-classes K is fixed, By using an appropriate 
integer programming formulation with a fixed number of variables and constraints, it is shown that these two 
problems are solvable in polynomial time. For the one machine scheduling case it is shown that the complexity 
of our algorithm is linear in the number of jobs n. Moreover, if the problem is encoded according to the high 
multiplicity model of Hochbaum and Shamir, the time complexity of the algorithm is shown to be a polynomial 
in log n. In the parallel machine scheduling case, it is shown that if the number of machines is fixed the same 
results hold. Copyright © 1996 Elsevier Science Ltd 

1 INTRODUCTION 

In this paper  we  cons ide r  schedul ing  p rob lems  wi th  the fo l lowing characterist ics .  There  are m parallel  

mach ines  and n jobs  (denoted  by Ji .... J~) are to be p rocessed  on these machines .  All j obs  are avai lable 

at t ime zero  and p reempt ion  is not  a l lowed.  Fur thermore ,  there is a j o b - d e p e n d e n t  change -ove r  t ime 

be tween  any pair  o f  jobs ,  and the objec t ive  is to f ind a distr ibution o f  the jobs  over  the mach ines  and a 

sequence  o f  the j o b s  on  each  mach ine  such that makespan  is minimized .  

The largest  part  o f  this paper  is devo ted  to the s ingle  mach ine  case  (i.e. m =  1). Clearly, in this case  the 

p r o b l e m  o f  d iv id ing  the jobs  over  the mach ines  vanishes.  To keep the presenta t ion clear, we  will  f r o m  

n o w  on a s sume  that  there is only  a s ingle  machine .  In Sect ion 5 we  come  back  to the case m - 2 .  

Appl ica t ions  o f  the above  desc r ibed  single mach ine  sequenc ing  p rob lems  appear  i f  the mach ine  mus t  

be in s o m e  beginning state Bi (e.g. temperature ,  tool- loading or paint-color)  in order  to p rocess  j ob  J;. In 

some  appl icat ions  the state o f  the mach ine  after job  Ji has been  processed ,  the ending state Ei, differs  f rom 

the beg inn ing  state B~, e.g. i f  the state o f  the mach ine  is g iven by the temperature  (see Gi lmore  and 
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Gomory [9]). Let d[ij] denote the change-over time needed to transform the machine from the ending 
state E/for  job J / to  the beginning state Bj for job Jj ( i j=  1 ..... n) and p~ the processing time of job J; 
(i= 1 ..... n). A dummy job J0 (with po=0) can be used to model the fact that the machine is in a beginning 
state Bo before the jobs are being processed and should be in an ending state Eo after all jobs have been 
processed. In mathematical terms, by introducing a dummy job Jo, a sequence of jobs is transformed to 
a cyclic permutation of 0, 1 ..... n where Jo marks the beginning (and end) of the sequence. For a given 
cyclic permutation ~- the completion time of the last job in the sequence (i.e. the makespan) is given by 
the sum of all processing times and change-over times: 

~o+d[i,~(i)]~- E pi-I- d[i,7(i)]. 
i=O ~ ] i=0 i=0 

Clearly, the sum of the processing times is a constant, hence the problem of finding a sequence that 
minimizes the makespan can be formulated as 

min{~d[i,z(i)]:7"isacyclicpermutationofO, l i = o  .... n}, 

i.e. as an asymmetric Traveling Salesman Problem (TSP) with distance matrix D=(d[ij]). In TSP-terms, 
a cyclic permutation is exactly the same as a tour. For notational simplicity, we will assume, without loss 
of generality, that it is our objective to find a shortest tour with respect to an (n × n)-matrix D=(d[id]), 
i.e. we do not consider a separate dummy job J0. So we want to solve the TSP 

min{d(r)=Ed[i,z(i)]:7"isacyclicpermutationofli=, ..... n}. 

We will consider a special case of this problem in the following sense. On top of the previous 
assumptions, it will be assumed that the jobs are divided into K groups N~ ..... NK and that the change-over 
time between two jobs is determined by the job groups to which they belong. We will denote the number 
of jobs in group k by nk (i.e. nk= IN~I, k= 1 ..... K). In this paper the terms "group" and "class" both refer 
to the same and will be used interchangeably. Let C=(c[p,q]) be a (K× K)-matrix, where c[p,q] denotes 
the change-over time if a job from group Nq is scheduled directly after a job from group Np (p,q = 1 ..... 
K). Then, the distance matrix D=(d[ij]) of the corresponding TSP is given by 

d[ij] =c[p,q] if J, ENp and J~ENq 
for all i j  ~ { 1 ..... n } and all p,q ~ { 1 .... K}. We will refer to the TSP restricted to the class of matrices 
satisfying this property as the K-group TSP. 

Throughout this paper we will use the following example for illustration purposes. 

Example: Assume that there are nine jobs J~ ..... ,/9 divided into three job classes (i.e. n=9 and K=3), 
and that the first job-group consists of jobs Jl, J2 and ,/3 (so Nl={Ji,J2,J3}, N2={Ja,Js} and 
N3= {J6,J7,Js,Jg}). Furthermore, assume that the matrix C=(c[p,q]) is given by 

12 36 25] 

C= 42 19 30 .  

L56 29 44 

It follows that the 9 × 9 distance 

12 12 
12 12 
12 12 

D= 42 42 
42 42 
56 56 
56 56 
56 56 
56 56 

matrix D=(d[ij]) of the 3-group TSP is 

12 36 36 25 25 25 25- 
12 36 36 25 25 25 25 
12 36 36 25 25 25 25 
42 19 19 30 30 30 30 
42 19 19 30 30 30 30 
56 29 29 44 44 44 44 
56 29 29 44 44 44 44 
56 29 29 44 44 44 44 
56 29 29 44 44 44 44 

~ven by 

.[:] 
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It is easy to see that for variable K (i.e. K is part of the input) the K-group TSP is NP-hard. This follows 
immediately from the observation that the ordinary asymmetric TSP can be formulated as an n-group 
TSP. It is the purpose of this paper to show that for K fixed, the K-group TSP is solvable with low time 
complexity in n or in log n. 

In order to derive the complexity of our algorithms let us make clear how the input of the K-group TSP 
can be encoded. A straightforward way of encoding the input is to encode every single job by its 
processing time and by the number of the group it belongs to, and to encode the change-over times by 
a (K × K)-matrix. Clearly, this "standard" encoding is of size O(n). However, as mentioned above, the 
processing times of the jobs are of no relevance, hence we can encode an instance of the K-group TSP 
by the (K× K)-matrix of change-over times together with the K numbers n~ .... nr, which yields an 
encoding of size O(log n). Following Hochbaum and Shamir [11] we will refer to this encoding as the 
high multiplicity (HM) encoding. In this paper it is shown that if the standard encoding is used, the K-TSP 
is solvable in O(n) time. Moreover, it is shown that our algorithm can be adapted to run in O(p(log n)) 
time with p(.) a certain polynomial, if the high multiplicity encoding of the input and an appropriate way 
of representing the output (i.e. an optimal tour)is used. 

A number of authors have discussed algorithms for the K-group TSP. In 1980, Psaraftis [13] presented 
a dynamic programming approach to solve the K-group TSP. Using the standard encoding of an instance, 
the computational complexity of Psaraftis' algorithm is 

O(K2/-/~k=l (1 +nk)K). 

Later, Bianco et aL ([3] and [4]) introduced a branch and bound method for solving the same problem, 
using a Lagrange dual for estimating the lower bound of the optimal value. In particular, jobs are assumed 
to subject to arbitrary release times in [3] and [4]. In 1984, Cosmadakis and Papadimitriou [6] gave an 
algorithm for the K-group TSP (which they referred to as the many-visits TSP) based on solving an 
exponential number of transportation problems. Under the assumption that K is fixed and the high- 
multiplicity encoding is used, it was shown that their algorithm runs in O(p(log n)) time, i.e. it has similar 
time complexity as the algorithm presented in this paper. However, the approach proposed in this paper 
has several advantages. It is flexible in implementation and easy in proving the correctness. Moreover, 
our method is more general. As we will show in Section 5, the same technique is applicable to the case 
where there are m-->2 parallel machines and all processing times are identical. 

The remainder of this paper is organized as follows. In Section 2 we will discuss some applications of 
the K-group TSE In Section 3 we will give an O(n) algorithm for the K-group TSP for fixed K using the 
standard encoding. The high multiplicity model is discussed in Section 4. Finally, in Section 5, we discuss 
the generalization of our algorithm for the parallel machine case. 

2. SOME APPLICATIONS 

Although we formulated the K-group TSP in terms of minimizing the summation of change-over times, 
it is clear that the same model can be used if the problem is to minimize the summation of change-over 
COSTS. 

Applications of the K-group TSP occur if the jobs can be divided into K groups of identical jobs. One 
important motivation for studying the K-group TSP is the Aircraft Sequencing Problem (ASP), see 
Bianco et al. [3] and Psaraftis [13]. Assume there are n airplanes waiting for permission to land on a 
single runway. According to the number of passenger seats, the airplanes can be divided into K= 3 
classes: small, medium and large. Safety regulations require a certain time-gap between the landing of 
two airplanes. This time-gap depends on the size of the two airplanes. Now assume that there are n~ small 
airplanes, n 2 medium sized airplanes and n3 large airplanes and that the flight controller wants to 
determine the sequence in which the n=nl +n2+n3 airplanes will land according to the safety regulations, 
and the total amount of time is minimized. Clearly, this ASP can be modeled as a 3-group TSP. Some 
heuristic methods for solving the ASP are discussed in [10]. 

In another application of the K-group TSP, the machine needs to be in one of K "states" in order to be 
able to process a~ob. Jobs are classified with respect to their required state of the machine. Examples of 
such "states" are:  

• Color for a l~ainting-machine (cf. Conway et al. [5]). Here a change-over time is needed for cleaning 
the machine and inserting a new paint-color. The change-over times might differ for different colors, 
e.g. changing over from "black" to "white" might require considerable more time than the other way 
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round. Obviously, in this case a job-group consists of all jobs that need to be painted with the same 
color, and K denotes the number of different colors. 

• Tool-loading for a machine in a flexible manufacturing system (see e.g, Tang and Denardo [15]). In 
this case, each job requires a certain set of tools to be loaded in the limited capacity tool magazine 
of the machine. Tools can be switched between the magazine of the machine and a (central) tool 
storage area. The change-over time between two jobs is determined by the time it takes to replace 
the set of required tools. Here a job group consists of all jobs that need the same set of tools and K 
denotes the number of possible tool-loads. 

A real-life application including a two-dimensional machine-state was recently given in A1-Haboubi 
and Selim [1]. In that paper a problem in the weaving industry is discussed. A job represents an order for 
a batch of cloth pieces with a given specification (width, length and type). There is one weaving machine 
that has to be set-up with respect to the width and the type (i.e. type of fiber used and thickness) of the 
job but that can produce any required length. Assuming that there are W possible widths and T possible 
types, the jobs can be classified into K= W. T classes, where each job class consists of all jobs with a 
given width and a given type. Clearly, the problem of sequencing the jobs such that the total set-up time 
is minimized can again be formulated as a K-group TSR 

3. A L I N E A R  T I M E  A L G O R I T H M  

In this section we will give a linear time algorithm for the K-group TSP based on the standard encoding 
of the input. Our approach is the following. First we will give a lower bound for the K-group TSP by 
means of an integer programming problem (IPP). Thereafter it will be shown that the solution of (IPP) 
can be transformed in linear time to a cyclic permutation with the same length as the value of the solution 
of (IPP). Since (IPP) has an input length of O(log n), it is solvable, using Lenstra's algorithm, in time 
complexity polynomial in O(log n), which means that this approach leads to an O(n) algorithm. 

For a given cyclic permutation, let Xeq denote the number of times a job from group Nq is scheduled 
directly after a job from group Np (p,q= 1 ..... /Q. Consider the following integer programming problem 
(IPP): 

K K 
minimize ?g Y. c[p,q]Xpq 

q=l p=l 

s.t. 

K 
~=1Xpq=nq for q= 1,.. ,,K (1) 

K 
~l  Xeq=np for p= 1 ..... K (2) 

p • s  ?g xpq>- 1 for all S C { 1 ..... K}, S # O  (3) 
q~S 

Xpq>-O and integer for p,q= 1 ..... K. (4) 

Let X=(xpq) be a (K × /Q-matrix that satisfies all constraints (1)-(4) in (IPP). According to the degree- 
constraints (1)-(2), the pth row-sum and the pth column-sum of X both have to be equal to %. This 
reflects the fact that since there are np jobs in group Np, there have to be np jobs that are scheduled directly 
after (and before, respectively) jobs in this group. Note that from the degree constraints it follows that 

Y~ ~ Xpq= Y~ I~ XpqfOrallSC{1 .... ,K}. 
pES q¢~S p~S q~S 

This corresponds to the observation that if the job-groups are divided into two nonempty parts (S and 
{ 1 ..... K}L~), a job from one part has to precede a job from the other part as many times as the other way 
round. 

The third type of constraints in (IPP), the connectivity constraints (3), assure that the jobs are 
scheduled such that for any partition of the job-groups, there is always a job in one part preceded by a 
job in the other part. Clearly, the connectivity constraints in (IPP) correspond to the subtour-elimination 
constraints for the integer programming formulation of the ordinary TSP (which can be traced back to 
Dantzig et aL [71). 
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Intuitively it is clear that i f X  corresponds to an optimal tour it must satisfy all four conditions in (IPP). 
This intuition is formally supported by the following lemma. 

L e m m a  1: Let X*=(Xpq) be an optimal solution of (IPP). Furthermore, let 7-*be an optimal solution of 
the K-group TSP with the same C and Nl ..... ArK. Then, 

K K 
Z Z c[p,q]x*m<--d(~* ). 

p=l q=I 

Proof'. From an optimal tour I:' we will construct a (K × K)-matrix Y= (ypq) such that 
K K 
X X c[p,q]ypq=d(:) 

p=l q=l 

and such that Y satisfies conditions (1)-(4) in (IPP). The assertion then follows immediately. Define 

Epq(T*): = {(i,:(i)):JieN p and J:toeNq} and Yeq: = IEpq(Z*)l 

for p,q =1 ..... K. Note that the sets Epq(':*) are mutually disjunct (i.e. Epq(F)AEp,q,(:)=Q5 if 
(p,q)#(p',q')) and that d[i,7:(i)] = c[p,q] for all (i:*(i))eEpq( r*). Furthermore, note that Yeq is nonnegative 
and integer for all p,q, hence satisfies condition (4) in (IPP). Since for all q 

p=l p=l [Epq( ¢)[=[ (i,z*(i))'Ji~(Ni and ~ y p q = ~  { • U . . .  O N r )  J:fi)ENql=nq, 

condition (1) in (IPP) is satisfied by Y= (ym). Similarly, it can be shown that Y also satisfies condition (2) 
in (IPP). Finally, assume that Y does not satisfy condition (3) in (IPP), i.e. that there is an S C { 1 ..... K} 
such that 

~ ypq-~O. 
p~S q~S 

Since conditions (1) and (2) of  (IPP) are satisfied, we have 

X X Ypq= X Xypq=O, 
p~S qES p~S q¢~S 

By defining " S .= Up~SNp, it is easy to see that these equalities imply that for all i~S' it holds that : ( i )  ~S '  
and for all i ~t S'  that : ( i )  ~t S' ,  which contradicts with the fact that F is a tour. [] 

An important observation is that (IPP) can be solved with time complexity polynomial in log n. This 
follows from the fact that (IPP) is an integer program with K 2 variables and 2 r+K2+2K constraints. The 
encoding length of the inequalities is a constant, and the length of  each equality constraint is O(log n). 
It can be shown that in this case the problem is solvable with the number of  operations polynomial in 
log n, using e.g. Lenstra's algorithm (cf. Lenstra [12] and Schrijver [14]). For practical purposes, K being 
small, one can apply a branch and bound method to solve (IPP) efficiently (cf. Balas and Toth [2]). 

It will now be shown that, given an optimal solution X* of (IPP), a tour ~- can be constructed such 
that 

g K 
d('r)= ~ ~ c[p,q]X;q. 

p=l q=l 

Note that, by Lemma 1, a tour ~" that satisfies this equality is an optimal tour. In order to find a tour for 
which equality holds, consider the following procedure. 
Procedure  Construct_Tour: 

Step 1. Construct a weighted directed multi-graph G=(V,A,w) with vertex- set V = { 1 ..... K} as follows. 
There are X*pq arcs from vertex p to vertex q (p,q= 1 ..... K). Note that self-loops are allowed. The weight 
w(p,q) of  an arc from vertex p to vertex q is given by c[p,q] (for all p and q). 

Step 2. Construct an Eulerian cycle in G. 
Step 3. Construct a tour from the Eulerian cycle by simply replacing the vertices k in V by the jobs in 

the corresponding job group Nk (k= 1 ..... K). []  
It is easy to see that the number of  arcs in the graph G constructed in Step 1 is equal to n. Moreover, 

from the degree constraints (1)-(2) in (IPP) it follows that for all vertices k e  V we have 

in-degree(k) = out-degree(k) = nk. 
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Furthermore, by the connectivity constraints (3) in (IPP), G is connected, From these two properties it 
follows that G is Eulerian (i.e. contains a Eulerian cycle), which makes Step 2 feasible. Since the length 
(defined by the sum of the weights of the arcs) of all Eulerian cycles in G is equal to the value of the 
optimal solution of (IPP), the length of the tour constructed in Step 3 is equal to the value of the optimal 
solution of (IPP). 

Example (continued): The integer program (IPP) is solved by 

I2° 1 X*= 0 . 

2 

The graph G is shown in Fig. 1. Note that (1,1,1,3,3,3,2,3,2) forms a Eulerian cycle in G. The tour 
constructed from this cycle is ~- = (1,2,3,6,7,8,4,9,5). The length of the tour is 267 which is both equal 
to the value of the optimal solution of (IPP) and the weight of the Eulerian cycle. [] 

So, by first solving (IPP) and then using Procedure Construct_Tour we have determined an optimal 
solution for the K-group TSP. By evaluating the time requirement for this algorithm we obtain the 
following theorem. 

Theorem 1: For fixed K, the K-group TSP is solvable in O(n) time. 
Proof'. In order to find ~-we first had to solve (IPP), which took time polynomial in log n. Since 

Procedure Construct_Tour takes linear time, an optimal solution can be determined in O(n) time, [] 

4. THE HIGH MULTIPLICITY MODEL 

In Hochbaum and Shamir [11] the notion of high multiplicity for scheduling problems is introduced. 
In their model, jobs are divided into relatively small number of groups. Each group contains identical 
jobs. Clearly, our problem can be modelled as a high multiplicity one-machine scheduling problem. 
Interestingly, the complexity results contained in Section 3 can be further sharpened and interpreted as 
a polynomial procedure under the high multiplicity model. To be more specific, in this section it will be 
shown that if K is fixed and if the input and output of the problem are recorded in a compact way, then 
it is even possible to solve the problem in time that is polynomial in log n. 

Recall that the HM-encoding of the input of the K-group TSP is of size O(log n). Clearly, due to 
Lenstra's result [12], the complexity required to solve (IPP) is polynomial in the HM-encoding length, 
because in this case 

K 
O( ~ log nk) = O(log n). 

k=l 

1 

2 

Fig. 1. The graph G in the example. 
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So, using the HM-encoding, an optimal solution X* of (IPP) can be computed in O(p(log n)) time. 
This brings us to the question of how the output should be represented. Clearly, in case of the HM- 

encoding of the input, the output can not be represented by the exact optimal tour, because then the output 
size is exponential in the input size. So, we have to represent the output by a compact description of the 
Eulerian cycle in G. 

Having an optimal solution X* of (IPP), we should not construct the graph G explicitly because the 
number of arcs in G is equal to n, i.e. exponential in the HM-encoded input. A more compact way is to 
construct G'  as a complete graph on K vertices (including self-loops) with x~ as capacity on the arc (ij). 
Using a labeling procedure we can find a cycle in G'.  Now, circulate a flow along the cycle until the 
minimum capacity is saturated. Delete the saturated arc(s) and repeat the procedure until there is no arc 
left. Clearly, there can be at most K 2 iterations, each resulting in a cycle, and a Eulerian cycle in G can 
be easily constructed based on the cycles generated by this procedure. The capacity being achieved at 
each iteration is counted as the degree of multiplicity of the cycle. This procedure is polynomial 
according to the HM-model. Note that the output of the algorithm is given as a series of cycles of job- 
groups, where each cycle is labeled with its degree of multiplicity. We will call this the HM-output. It is 
easily seen that a sequence of jobs can directly be constructed from the HM-output. Hence, we conclude 
that the K-group TSP discussed in this paper is indeed solvable in time polynomial in log n when K is 
fixed. In other words, we have proven the following theorem. 

Theorem 2: Suppose that K is a fixed integer. If  an instance of the K-group TSP is described by the 
HM-input, then the HM-output of the K-group TSP can be determined in O(p(log n)) time. 

5. P A R A L L E L  M A C H I N E S  

In this section we discuss the sequencing problem where there are m >2  parallel identical machines 
M1 ..... M,,, instead of a single machine. As before, the jobs are divided into K job-groups N~ ..... N~<, and 
the change-over time for scheduling a job from Nq directly after a job from class Np is given by c[p,q] 
on any machine (p,q • { 1 ..... K}). It is assumed that both m and K are fixed. The objecuve is to minimize 
the makespan, i.e. to minimize the largest workload on the m machines. 

If the jobs have arbitrary processing times, the problem is NP-hard. This follows immediately from the 
observation that the special case with m=2, K= 1 and zero change-over times is the Partition Problem 
which is well-known to be NP-hard (see e.g. Garey and Johnson [8]). However, as will be shown below, 
the same technique used in Section 3 for the single machine case can be used to derive similar results for 
the parallel machine case if all the n jobs have identical processing times. Without losing generality, we 
assume that the processing times are unit. 

The output of the parallel machine problem consists of the sequences of jobs processed on each 
machine. We introduce a group of dummy jobs No with no=m where it is assumed that one dummy job 
is placed on each machine. The dummy job marks the beginning and end of the sequence on each 
machine. The dummy jobs are assumed to have zero processing times. Furthermore, the corresponding 
change-over times are given by c[i,0] =c[0j]  =0 for ij= 1 ..... K. 

As the single machine problem was reformulated as a TSP, the parallel machine problem can be seen 
as a (one-depot, uncapacitated) Vehicle Routing Problem. The jobs correspond to the customers and the 
machines to the trucks. The output describes which truck visits which customer (which job is processed 
on which machines) and in what sequence the customers are visited by each truck (the sequence of jobs 
on the machines). The central depot, where all trucks start and return after their tour, is represented by 
the group of dummy jobs No. 

In order to solve the parallel machine problem with unit processing times, let XJpq denote the number 
of times a job from class Nq is scheduled directly after a job from class Np on machine Mj (p,q = 0,1 ..... 
K; j = I ..... m). Furthermore, let ~ be the number of jobs belonging to group Ni that are processed on 
machine Mj (i= 1 ..... K; j =  1 ..... m). Note that, by definition x~ =0 and d0= 1 for all j. Because of the unit 
processing times of the "regular" jobs, we can formulate the workload on machine Mj by 

K K K 
X r~+ X X c[p,q]~q. 
i=1 p=|  q=l 

Consider the following mixed integer programming formulation (MIP). 
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minimize t 
K K K 

t > -- X r~+ X X c[p,q]X~,q f o r j = l  ..... rn (1) 
i=1 /7=1 q=l 

~=n~ for i= 1 ..... K (2) 
j= l  

do= 1 for j =  1 ..... m (3) 

K 
pX=o XJpq=n~ for j =  1 ..... m; q=0,1 ..... K (4) 

s . t .  K 

qX=o X~q=dp for j =  1 ..... m; p=0,1 ..... K (5) 

n(Ep~S q~sX~'q~ (n -1 )  Edif°rallj=l~s ..... m; SC_{ 1 ..... K} (6) 

~q-----0 and integer, j = 1 ..... m; p,q = O, 1 ..... K (7) 

~ 0  and integer, j =  1 ..... m; i= 1 ..... K. (8) 

Clearly, constraints (1) together with the objective function make sure that makespan is minimized. 
Constraints (2)-(5) are a generalization of the degree constraints in (IPP), and are used to assure that the 
jobs are correctly divided over the machines. Constraints (6) are generalized from the connectivity 
constraints in (IPP). Note that it is not necessary that jobs from each job-group are present on a given 
machine. Therefore, two cases are to be distinguished. 

1. E;,,n{=0, i.e. no jobs belonging to a group in S are scheduled on machine Mj. In this case the constraint 
reads 

E E ~q=0.  
p~S q~S 

2. Ejd~>0,  i.e. there is a job belonging to a group in S that is scheduled on machine Mj. Note that, since 
S does not contain 0, we have E ~ . ~ > 0 .  So, in this case we have the constraint 

x Xx~q< x ~  
p~S q~S i~S 

or equivalently 

p~S q ~ S  

Note also that under constrain (6) it is not possible that there is a subtour in { 1 ..... K}~S because, clearly, 
this set is also a subset of  { 1 ..... K}, i.e. that subtour is prohibited by constraint (6) for that particular 
set. 

Finding an optimal solution of (MIP), again using Lenstra's algorithm, can be done in time complexity 
polynomial in log n when both m and K are fixed as constants. Analogous to the one machine case, we 
can construct an optimal schedule in the compact way as we described in the previous section, based on 
the optimal solution of the above mixed integer program in time complexity polynomial in m, K and log 
n .  

Example  (continued): Assume that there are m = 2  parallel machines. The optimal solution of the integer 
programming problem is 

Ei ° lil i! 1 °il X 1 = 0 0 a n d  X 2= 2 0 
0 0 0 0 ' 
0 1 0 0 

s o  that  t t ~ 2 2 nx=O,n:=2,n3=2,nl=3,n2=O, and n~=2, hence four jobs are scheduled on MI and five on Ms The 
corresponding tours are (D~,4,6,5,7) on machine Mt with length 89 and (D2,1,2,3,8,9) on machine M2 with 
length 93 (where Dj is the dummy job on machine M i, j = 1,2). The makespan is therefore given by 
t=max{89+4 ,93+5  } =98. [] 
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