
Pergamon S0305-0548(96)00016-0

Computers Ops Res. Vol. 23, No. 11, pp. 1059-1067, 1996
Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0305=0548196 $15.00+0.00

LOW-COMPLEXITY ALGORITHMS FOR SEQUENCING JOBS
WITH A FIXED NUMBER OF JOB-CLASSES

Jack A. A.van der Veen~'~, Shuzhong Zhang2§
~Nijenrode University, The Netherlands Business School, Straatweg 25, 3621 BG Breukelen, The Netherlands

'-Econometric Institute, Erasmus University Rotterdam, EO. Box 1738, 3000 DR Rotterdam, The Netherlands

(Received November 1995; in revised form Februa~ 1996)

Scope and Purpose--One of the key problems in manufacturing operations is to determine the assignment of
jobs to machines and the sequence of the jobs on each machine. In this paper we consider an environment in
which the machines are identical, change-over times in between the processing of two consecutive jobs are job-
dependent and the objective is to maximize the utilization of the machines which is equivalent to minimizing the
makespan. Unfortunately, such problems fall into the strongly NP-hard category. However, it is the purpose of
this paper to show that the computational complexity drastically improves if the jobs are divided into a small
number of classes where each class consists of "similar" jobs. Such situations can be found in many applications
where the jobs in a group are identical, such as for example in the Aircraft Sequencing Problem (where an
optimal sequence has to be determined for the landing of airplanes which are divided into several classes
according to their size) or if the jobs in a group require a similar state of the machine, like e.g. color for a painting
machine or tool-loading in flexible manufacturing systems. In such cases the change-over times are actually
determined by the class of the jobs. For a fixed number of job classes, we give fast algorithms for the one-
machine problem and the problem with multiple machines and identical processing times.

Abstract--In this paper we consider the problem of scheduling n jobs such that makespan is minimized. It is
assumed that the jobs can be divided into K job-classes and that the change-over time between two consecutive
jobs depends on the job-classes to which the two jobs belong. In this setting, we discuss the one machine
scheduling problem with arbitrary processing times and the parallel machines scheduling problem with identical
processing times. In both cases it is assumed that the number of job-classes K is fixed, By using an appropriate
integer programming formulation with a fixed number of variables and constraints, it is shown that these two
problems are solvable in polynomial time. For the one machine scheduling case it is shown that the complexity
of our algorithm is linear in the number of jobs n. Moreover, if the problem is encoded according to the high
multiplicity model of Hochbaum and Shamir, the time complexity of the algorithm is shown to be a polynomial
in log n. In the parallel machine scheduling case, it is shown that if the number of machines is fixed the same
results hold. Copyright © 1996 Elsevier Science Ltd

1 INTRODUCTION

In this paper we cons ide r schedul ing p rob lems wi th the fo l lowing characterist ics . There are m parallel

mach ines and n jobs (denoted by Ji J~) are to be p rocessed on these machines . All j obs are avai lable

at t ime zero and p reempt ion is not a l lowed. Fur thermore , there is a j o b - d e p e n d e n t change -ove r t ime

be tween any pair o f jobs , and the objec t ive is to f ind a distr ibution o f the jobs over the mach ines and a

sequence o f the j o b s on each mach ine such that makespan is minimized .

The largest part o f this paper is devo ted to the s ingle mach ine case (i.e. m = 1). Clearly, in this case the

p r o b l e m o f d iv id ing the jobs over the mach ines vanishes. To keep the presenta t ion clear, we will f r o m

n o w on a s sume that there is only a s ingle machine . In Sect ion 5 we come back to the case m - 2 .

Appl ica t ions o f the above desc r ibed single mach ine sequenc ing p rob lems appear i f the mach ine mus t

be in s o m e beginning state Bi (e.g. temperature , tool- loading or paint-color) in order to p rocess j ob J;. In

some appl icat ions the state o f the mach ine after job Ji has been processed , the ending state Ei, differs f rom

the beg inn ing state B~, e.g. i f the state o f the mach ine is g iven by the temperature (see Gi lmore and

"~ To whom all correspondence should be addressed (e-mail:vanderveen@nijenrode,nl).
¢ Jack A. A. van der Veen is Assistant Professor in the area of Production and Logistics at Nijenrode University, the Netherlands

Business School. He obtained a Ph.D. in Economics from the University of G-roningen, the Netherlands. His research interests
include Solvable cases of combinatorial optimization problems, Sensitivity analysis and Scheduling. He has published in several
journals including the European Journal of Operational Research. the Journal of the Operational Research Society and
Discrete Applied Mathematics.

§ Shuzhong Zhang is an Assistant Professor of Operations Research at the Econometric Institute at the Erasmus University of
Rotterdam. He received a B.Sc. degree in Mathematics from Fudan University Shanghai. P.R. China. and a Ph.D. degree in
Operations Research from the Erasmus University Rotterdam. His papers have been published in Mathematical Programming,
Operations Research, Journal of Optimization Theory and Applications, etc. Dr Zhang's current research interests include
Analysis of algorithms, Special cases of combinatorial optimization and Interior point methods for mathematical
programming.

1059

1060 JackA. A. van derVeen and ShuzhongZhang

Gomory [9]). Let d[ij] denote the change-over time needed to transform the machine from the ending
state E/for job J / to the beginning state Bj for job Jj (i j= 1 n) and p~ the processing time of job J;
(i= 1 n). A dummy job J0 (with po=0) can be used to model the fact that the machine is in a beginning
state Bo before the jobs are being processed and should be in an ending state Eo after all jobs have been
processed. In mathematical terms, by introducing a dummy job Jo, a sequence of jobs is transformed to
a cyclic permutation of 0, 1 n where Jo marks the beginning (and end) of the sequence. For a given
cyclic permutation ~- the completion time of the last job in the sequence (i.e. the makespan) is given by
the sum of all processing times and change-over times:

~o+d[i,~(i)]~- E pi-I- d[i,7(i)].
i=O ~] i=0 i=0

Clearly, the sum of the processing times is a constant, hence the problem of finding a sequence that
minimizes the makespan can be formulated as

min{~d[i,z(i)]:7"isacyclicpermutationofO, l i = o n},

i.e. as an asymmetric Traveling Salesman Problem (TSP) with distance matrix D=(d[ij]). In TSP-terms,
a cyclic permutation is exactly the same as a tour. For notational simplicity, we will assume, without loss
of generality, that it is our objective to find a shortest tour with respect to an (n × n)-matrix D=(d[id]),
i.e. we do not consider a separate dummy job J0. So we want to solve the TSP

min{d(r)=Ed[i,z(i)]:7"isacyclicpermutationofli=, n}.

We will consider a special case of this problem in the following sense. On top of the previous
assumptions, it will be assumed that the jobs are divided into K groups N~ NK and that the change-over
time between two jobs is determined by the job groups to which they belong. We will denote the number
of jobs in group k by nk (i.e. nk= IN~I, k= 1 K). In this paper the terms "group" and "class" both refer
to the same and will be used interchangeably. Let C=(c[p,q]) be a (K× K)-matrix, where c[p,q] denotes
the change-over time if a job from group Nq is scheduled directly after a job from group Np (p,q = 1
K). Then, the distance matrix D=(d[ij]) of the corresponding TSP is given by

d[ij] =c[p,q] if J, ENp and J~ENq
for all i j ~ { 1 n } and all p,q ~ { 1 K}. We will refer to the TSP restricted to the class of matrices
satisfying this property as the K-group TSP.

Throughout this paper we will use the following example for illustration purposes.

Example: Assume that there are nine jobs J~ ,/9 divided into three job classes (i.e. n=9 and K=3),
and that the first job-group consists of jobs Jl, J2 and ,/3 (so Nl={Ji,J2,J3}, N2={Ja,Js} and
N3= {J6,J7,Js,Jg}). Furthermore, assume that the matrix C=(c[p,q]) is given by

12 36 25]

C= 42 19 30 .

L56 29 44

It follows that the 9 × 9 distance

12 12
12 12
12 12

D= 42 42
42 42
56 56
56 56
56 56
56 56

matrix D=(d[ij]) of the 3-group TSP is

12 36 36 25 25 25 25-
12 36 36 25 25 25 25
12 36 36 25 25 25 25
42 19 19 30 30 30 30
42 19 19 30 30 30 30
56 29 29 44 44 44 44
56 29 29 44 44 44 44
56 29 29 44 44 44 44
56 29 29 44 44 44 44

~ven by

.[:]

Low-complexity algorithms for sequencing jobs ! 061

It is easy to see that for variable K (i.e. K is part of the input) the K-group TSP is NP-hard. This follows
immediately from the observation that the ordinary asymmetric TSP can be formulated as an n-group
TSP. It is the purpose of this paper to show that for K fixed, the K-group TSP is solvable with low time
complexity in n or in log n.

In order to derive the complexity of our algorithms let us make clear how the input of the K-group TSP
can be encoded. A straightforward way of encoding the input is to encode every single job by its
processing time and by the number of the group it belongs to, and to encode the change-over times by
a (K × K)-matrix. Clearly, this "standard" encoding is of size O(n). However, as mentioned above, the
processing times of the jobs are of no relevance, hence we can encode an instance of the K-group TSP
by the (K× K)-matrix of change-over times together with the K numbers n~ nr, which yields an
encoding of size O(log n). Following Hochbaum and Shamir [11] we will refer to this encoding as the
high multiplicity (HM) encoding. In this paper it is shown that if the standard encoding is used, the K-TSP
is solvable in O(n) time. Moreover, it is shown that our algorithm can be adapted to run in O(p(log n))
time with p(.) a certain polynomial, if the high multiplicity encoding of the input and an appropriate way
of representing the output (i.e. an optimal tour)is used.

A number of authors have discussed algorithms for the K-group TSP. In 1980, Psaraftis [13] presented
a dynamic programming approach to solve the K-group TSP. Using the standard encoding of an instance,
the computational complexity of Psaraftis' algorithm is

O(K2/-/~k=l (1 +nk)K).

Later, Bianco et aL ([3] and [4]) introduced a branch and bound method for solving the same problem,
using a Lagrange dual for estimating the lower bound of the optimal value. In particular, jobs are assumed
to subject to arbitrary release times in [3] and [4]. In 1984, Cosmadakis and Papadimitriou [6] gave an
algorithm for the K-group TSP (which they referred to as the many-visits TSP) based on solving an
exponential number of transportation problems. Under the assumption that K is fixed and the high-
multiplicity encoding is used, it was shown that their algorithm runs in O(p(log n)) time, i.e. it has similar
time complexity as the algorithm presented in this paper. However, the approach proposed in this paper
has several advantages. It is flexible in implementation and easy in proving the correctness. Moreover,
our method is more general. As we will show in Section 5, the same technique is applicable to the case
where there are m-->2 parallel machines and all processing times are identical.

The remainder of this paper is organized as follows. In Section 2 we will discuss some applications of
the K-group TSE In Section 3 we will give an O(n) algorithm for the K-group TSP for fixed K using the
standard encoding. The high multiplicity model is discussed in Section 4. Finally, in Section 5, we discuss
the generalization of our algorithm for the parallel machine case.

2. SOME APPLICATIONS

Although we formulated the K-group TSP in terms of minimizing the summation of change-over times,
it is clear that the same model can be used if the problem is to minimize the summation of change-over
COSTS.

Applications of the K-group TSP occur if the jobs can be divided into K groups of identical jobs. One
important motivation for studying the K-group TSP is the Aircraft Sequencing Problem (ASP), see
Bianco et al. [3] and Psaraftis [13]. Assume there are n airplanes waiting for permission to land on a
single runway. According to the number of passenger seats, the airplanes can be divided into K= 3
classes: small, medium and large. Safety regulations require a certain time-gap between the landing of
two airplanes. This time-gap depends on the size of the two airplanes. Now assume that there are n~ small
airplanes, n 2 medium sized airplanes and n3 large airplanes and that the flight controller wants to
determine the sequence in which the n=nl +n2+n3 airplanes will land according to the safety regulations,
and the total amount of time is minimized. Clearly, this ASP can be modeled as a 3-group TSP. Some
heuristic methods for solving the ASP are discussed in [10].

In another application of the K-group TSP, the machine needs to be in one of K "states" in order to be
able to process a~ob. Jobs are classified with respect to their required state of the machine. Examples of
such "states" are:

• Color for a l~ainting-machine (cf. Conway et al. [5]). Here a change-over time is needed for cleaning
the machine and inserting a new paint-color. The change-over times might differ for different colors,
e.g. changing over from "black" to "white" might require considerable more time than the other way

1062 Jack A. A. van der Veen and Shuzhong Zhang

round. Obviously, in this case a job-group consists of all jobs that need to be painted with the same
color, and K denotes the number of different colors.

• Tool-loading for a machine in a flexible manufacturing system (see e.g, Tang and Denardo [15]). In
this case, each job requires a certain set of tools to be loaded in the limited capacity tool magazine
of the machine. Tools can be switched between the magazine of the machine and a (central) tool
storage area. The change-over time between two jobs is determined by the time it takes to replace
the set of required tools. Here a job group consists of all jobs that need the same set of tools and K
denotes the number of possible tool-loads.

A real-life application including a two-dimensional machine-state was recently given in A1-Haboubi
and Selim [1]. In that paper a problem in the weaving industry is discussed. A job represents an order for
a batch of cloth pieces with a given specification (width, length and type). There is one weaving machine
that has to be set-up with respect to the width and the type (i.e. type of fiber used and thickness) of the
job but that can produce any required length. Assuming that there are W possible widths and T possible
types, the jobs can be classified into K= W. T classes, where each job class consists of all jobs with a
given width and a given type. Clearly, the problem of sequencing the jobs such that the total set-up time
is minimized can again be formulated as a K-group TSR

3. A L I N E A R T I M E A L G O R I T H M

In this section we will give a linear time algorithm for the K-group TSP based on the standard encoding
of the input. Our approach is the following. First we will give a lower bound for the K-group TSP by
means of an integer programming problem (IPP). Thereafter it will be shown that the solution of (IPP)
can be transformed in linear time to a cyclic permutation with the same length as the value of the solution
of (IPP). Since (IPP) has an input length of O(log n), it is solvable, using Lenstra's algorithm, in time
complexity polynomial in O(log n), which means that this approach leads to an O(n) algorithm.

For a given cyclic permutation, let Xeq denote the number of times a job from group Nq is scheduled
directly after a job from group Np (p,q= 1 /Q. Consider the following integer programming problem
(IPP):

K K
minimize ?g Y. c[p,q]Xpq

q=l p=l

s.t.

K
~=1Xpq=nq for q= 1,.. ,,K (1)

K
~l Xeq=np for p= 1 K (2)

p • s ?g xpq>- 1 for all S C { 1 K}, S # O (3)
q~S

Xpq>-O and integer for p,q= 1 K. (4)

Let X=(xpq) be a (K × /Q-matrix that satisfies all constraints (1)-(4) in (IPP). According to the degree-
constraints (1)-(2), the pth row-sum and the pth column-sum of X both have to be equal to %. This
reflects the fact that since there are np jobs in group Np, there have to be np jobs that are scheduled directly
after (and before, respectively) jobs in this group. Note that from the degree constraints it follows that

Y~ ~ Xpq= Y~ I~ XpqfOrallSC{1 ,K}.
pES q¢~S p~S q~S

This corresponds to the observation that if the job-groups are divided into two nonempty parts (S and
{ 1 K}L~), a job from one part has to precede a job from the other part as many times as the other way
round.

The third type of constraints in (IPP), the connectivity constraints (3), assure that the jobs are
scheduled such that for any partition of the job-groups, there is always a job in one part preceded by a
job in the other part. Clearly, the connectivity constraints in (IPP) correspond to the subtour-elimination
constraints for the integer programming formulation of the ordinary TSP (which can be traced back to
Dantzig et aL [71).

Low-complexity algorithms for sequencing jobs 1063

Intuitively it is clear that i f X corresponds to an optimal tour it must satisfy all four conditions in (IPP).
This intuition is formally supported by the following lemma.

L e m m a 1: Let X*=(Xpq) be an optimal solution of (IPP). Furthermore, let 7-*be an optimal solution of
the K-group TSP with the same C and Nl ArK. Then,

K K
Z Z c[p,q]x*m<--d(~*).

p=l q=I

Proof'. From an optimal tour I:' we will construct a (K × K)-matrix Y= (ypq) such that
K K
X X c[p,q]ypq=d(:)

p=l q=l

and such that Y satisfies conditions (1)-(4) in (IPP). The assertion then follows immediately. Define

Epq(T*): = {(i,:(i)):JieN p and J:toeNq} and Yeq: = IEpq(Z*)l

for p,q =1 K. Note that the sets Epq(':*) are mutually disjunct (i.e. Epq(F)AEp,q,(:)=Q5 if
(p,q)#(p',q')) and that d[i,7:(i)] = c[p,q] for all (i:*(i))eEpq(r*). Furthermore, note that Yeq is nonnegative
and integer for all p,q, hence satisfies condition (4) in (IPP). Since for all q

p=l p=l [Epq(¢)[=[(i,z*(i))'Ji~(Ni and ~ y p q = ~ { • U . . . O N r) J:fi)ENql=nq,

condition (1) in (IPP) is satisfied by Y= (ym). Similarly, it can be shown that Y also satisfies condition (2)
in (IPP). Finally, assume that Y does not satisfy condition (3) in (IPP), i.e. that there is an S C { 1 K}
such that

~ ypq-~O.
p~S q~S

Since conditions (1) and (2) of (IPP) are satisfied, we have

X X Ypq= X Xypq=O,
p~S qES p~S q¢~S

By defining " S .= Up~SNp, it is easy to see that these equalities imply that for all i~S' it holds that : (i) ~S '
and for all i ~t S' that : (i) ~t S' , which contradicts with the fact that F is a tour. []

An important observation is that (IPP) can be solved with time complexity polynomial in log n. This
follows from the fact that (IPP) is an integer program with K 2 variables and 2 r+K2+2K constraints. The
encoding length of the inequalities is a constant, and the length of each equality constraint is O(log n).
It can be shown that in this case the problem is solvable with the number of operations polynomial in
log n, using e.g. Lenstra's algorithm (cf. Lenstra [12] and Schrijver [14]). For practical purposes, K being
small, one can apply a branch and bound method to solve (IPP) efficiently (cf. Balas and Toth [2]).

It will now be shown that, given an optimal solution X* of (IPP), a tour ~- can be constructed such
that

g K
d('r)= ~ ~ c[p,q]X;q.

p=l q=l

Note that, by Lemma 1, a tour ~" that satisfies this equality is an optimal tour. In order to find a tour for
which equality holds, consider the following procedure.
Procedure Construct_Tour:

Step 1. Construct a weighted directed multi-graph G=(V,A,w) with vertex- set V = { 1 K} as follows.
There are X*pq arcs from vertex p to vertex q (p,q= 1 K). Note that self-loops are allowed. The weight
w(p,q) of an arc from vertex p to vertex q is given by c[p,q] (for all p and q).

Step 2. Construct an Eulerian cycle in G.
Step 3. Construct a tour from the Eulerian cycle by simply replacing the vertices k in V by the jobs in

the corresponding job group Nk (k= 1 K). []
It is easy to see that the number of arcs in the graph G constructed in Step 1 is equal to n. Moreover,

from the degree constraints (1)-(2) in (IPP) it follows that for all vertices k e V we have

in-degree(k) = out-degree(k) = nk.

1064 Jack A. A. van der Veen and Shuzhong Zhang

Furthermore, by the connectivity constraints (3) in (IPP), G is connected, From these two properties it
follows that G is Eulerian (i.e. contains a Eulerian cycle), which makes Step 2 feasible. Since the length
(defined by the sum of the weights of the arcs) of all Eulerian cycles in G is equal to the value of the
optimal solution of (IPP), the length of the tour constructed in Step 3 is equal to the value of the optimal
solution of (IPP).

Example (continued): The integer program (IPP) is solved by

I2° 1 X*= 0 .

2

The graph G is shown in Fig. 1. Note that (1,1,1,3,3,3,2,3,2) forms a Eulerian cycle in G. The tour
constructed from this cycle is ~- = (1,2,3,6,7,8,4,9,5). The length of the tour is 267 which is both equal
to the value of the optimal solution of (IPP) and the weight of the Eulerian cycle. []

So, by first solving (IPP) and then using Procedure Construct_Tour we have determined an optimal
solution for the K-group TSP. By evaluating the time requirement for this algorithm we obtain the
following theorem.

Theorem 1: For fixed K, the K-group TSP is solvable in O(n) time.
Proof'. In order to find ~-we first had to solve (IPP), which took time polynomial in log n. Since

Procedure Construct_Tour takes linear time, an optimal solution can be determined in O(n) time, []

4. THE HIGH MULTIPLICITY MODEL

In Hochbaum and Shamir [11] the notion of high multiplicity for scheduling problems is introduced.
In their model, jobs are divided into relatively small number of groups. Each group contains identical
jobs. Clearly, our problem can be modelled as a high multiplicity one-machine scheduling problem.
Interestingly, the complexity results contained in Section 3 can be further sharpened and interpreted as
a polynomial procedure under the high multiplicity model. To be more specific, in this section it will be
shown that if K is fixed and if the input and output of the problem are recorded in a compact way, then
it is even possible to solve the problem in time that is polynomial in log n.

Recall that the HM-encoding of the input of the K-group TSP is of size O(log n). Clearly, due to
Lenstra's result [12], the complexity required to solve (IPP) is polynomial in the HM-encoding length,
because in this case

K
O(~ log nk) = O(log n).

k=l

1

2

Fig. 1. The graph G in the example.

Low-complexity algorithms for sequencing jobs 1065

So, using the HM-encoding, an optimal solution X* of (IPP) can be computed in O(p(log n)) time.
This brings us to the question of how the output should be represented. Clearly, in case of the HM-

encoding of the input, the output can not be represented by the exact optimal tour, because then the output
size is exponential in the input size. So, we have to represent the output by a compact description of the
Eulerian cycle in G.

Having an optimal solution X* of (IPP), we should not construct the graph G explicitly because the
number of arcs in G is equal to n, i.e. exponential in the HM-encoded input. A more compact way is to
construct G' as a complete graph on K vertices (including self-loops) with x~ as capacity on the arc (ij).
Using a labeling procedure we can find a cycle in G'. Now, circulate a flow along the cycle until the
minimum capacity is saturated. Delete the saturated arc(s) and repeat the procedure until there is no arc
left. Clearly, there can be at most K 2 iterations, each resulting in a cycle, and a Eulerian cycle in G can
be easily constructed based on the cycles generated by this procedure. The capacity being achieved at
each iteration is counted as the degree of multiplicity of the cycle. This procedure is polynomial
according to the HM-model. Note that the output of the algorithm is given as a series of cycles of job-
groups, where each cycle is labeled with its degree of multiplicity. We will call this the HM-output. It is
easily seen that a sequence of jobs can directly be constructed from the HM-output. Hence, we conclude
that the K-group TSP discussed in this paper is indeed solvable in time polynomial in log n when K is
fixed. In other words, we have proven the following theorem.

Theorem 2: Suppose that K is a fixed integer. If an instance of the K-group TSP is described by the
HM-input, then the HM-output of the K-group TSP can be determined in O(p(log n)) time.

5. P A R A L L E L M A C H I N E S

In this section we discuss the sequencing problem where there are m >2 parallel identical machines
M1 M,,, instead of a single machine. As before, the jobs are divided into K job-groups N~ N~<, and
the change-over time for scheduling a job from Nq directly after a job from class Np is given by c[p,q]
on any machine (p,q • { 1 K}). It is assumed that both m and K are fixed. The objecuve is to minimize
the makespan, i.e. to minimize the largest workload on the m machines.

If the jobs have arbitrary processing times, the problem is NP-hard. This follows immediately from the
observation that the special case with m=2, K= 1 and zero change-over times is the Partition Problem
which is well-known to be NP-hard (see e.g. Garey and Johnson [8]). However, as will be shown below,
the same technique used in Section 3 for the single machine case can be used to derive similar results for
the parallel machine case if all the n jobs have identical processing times. Without losing generality, we
assume that the processing times are unit.

The output of the parallel machine problem consists of the sequences of jobs processed on each
machine. We introduce a group of dummy jobs No with no=m where it is assumed that one dummy job
is placed on each machine. The dummy job marks the beginning and end of the sequence on each
machine. The dummy jobs are assumed to have zero processing times. Furthermore, the corresponding
change-over times are given by c[i,0] =c[0j] =0 for ij= 1 K.

As the single machine problem was reformulated as a TSP, the parallel machine problem can be seen
as a (one-depot, uncapacitated) Vehicle Routing Problem. The jobs correspond to the customers and the
machines to the trucks. The output describes which truck visits which customer (which job is processed
on which machines) and in what sequence the customers are visited by each truck (the sequence of jobs
on the machines). The central depot, where all trucks start and return after their tour, is represented by
the group of dummy jobs No.

In order to solve the parallel machine problem with unit processing times, let XJpq denote the number
of times a job from class Nq is scheduled directly after a job from class Np on machine Mj (p,q = 0,1
K; j = I m). Furthermore, let ~ be the number of jobs belonging to group Ni that are processed on
machine Mj (i= 1 K; j = 1 m). Note that, by definition x~ =0 and d0= 1 for all j. Because of the unit
processing times of the "regular" jobs, we can formulate the workload on machine Mj by

K K K
X r~+ X X c[p,q]~q.
i=1 p=| q=l

Consider the following mixed integer programming formulation (MIP).

1066 Jack A. A. van der Veen and Shuzhong Zhang

minimize t
K K K

t > -- X r~+ X X c[p,q]X~,q f o r j = l rn (1)
i=1 /7=1 q=l

~=n~ for i= 1 K (2)
j= l

do= 1 for j = 1 m (3)

K
pX=o XJpq=n~ for j = 1 m; q=0,1 K (4)

s . t . K

qX=o X~q=dp for j = 1 m; p=0,1 K (5)

n(Ep~S q~sX~'q~ (n -1) Edif°rallj=l~s m; SC_{ 1 K} (6)

~q-----0 and integer, j = 1 m; p,q = O, 1 K (7)

~ 0 and integer, j = 1 m; i= 1 K. (8)

Clearly, constraints (1) together with the objective function make sure that makespan is minimized.
Constraints (2)-(5) are a generalization of the degree constraints in (IPP), and are used to assure that the
jobs are correctly divided over the machines. Constraints (6) are generalized from the connectivity
constraints in (IPP). Note that it is not necessary that jobs from each job-group are present on a given
machine. Therefore, two cases are to be distinguished.

1. E;,,n{=0, i.e. no jobs belonging to a group in S are scheduled on machine Mj. In this case the constraint
reads

E E ~q=0.
p~S q~S

2. Ejd~>0, i.e. there is a job belonging to a group in S that is scheduled on machine Mj. Note that, since
S does not contain 0, we have E ~ . ~ > 0 . So, in this case we have the constraint

x Xx~q< x ~
p~S q~S i~S

or equivalently

p~S q ~ S

Note also that under constrain (6) it is not possible that there is a subtour in { 1 K}~S because, clearly,
this set is also a subset of { 1 K}, i.e. that subtour is prohibited by constraint (6) for that particular
set.

Finding an optimal solution of (MIP), again using Lenstra's algorithm, can be done in time complexity
polynomial in log n when both m and K are fixed as constants. Analogous to the one machine case, we
can construct an optimal schedule in the compact way as we described in the previous section, based on
the optimal solution of the above mixed integer program in time complexity polynomial in m, K and log
n .

Example (continued): Assume that there are m = 2 parallel machines. The optimal solution of the integer
programming problem is

Ei ° lil i! 1 °il X 1 = 0 0 a n d X 2= 2 0
0 0 0 0 '
0 1 0 0

s o that t t ~ 2 2 nx=O,n:=2,n3=2,nl=3,n2=O, and n~=2, hence four jobs are scheduled on MI and five on Ms The
corresponding tours are (D~,4,6,5,7) on machine Mt with length 89 and (D2,1,2,3,8,9) on machine M2 with
length 93 (where Dj is the dummy job on machine M i, j = 1,2). The makespan is therefore given by
t=max{89+4 ,93+5 } =98. []

Low-complexity algorithms for sequencing jobs 1067

REFERENCES

1. M.H. Al-Haboubi and S.Z. Selim, A sequencing problem in the weaving industry, Eur. J. Opl Res., 66, 65-71 (1993).
2. E. Balas, and E Toth. Branch and bound methods. In The Traveling Salesman Problem (Edited by E. L. Lawler, J. K. Lenstra,

A. H. G. Rinnooy Kan and D. B. Shmoys) John Wiley & Sons, New York (1985).
3. L. Bianco, R. Rinaldi and A. Sassano: A combinatorial optimization approach to aircraft sequencing problem. In Flow Control

of Congested Networks (Edited by A. R. Odoni et al.) NATO-ASI Series 38, 324-339, (1987).
4. L. Bianco, S. Ricciardelli, G. Rinaldi and A. Sassano, Scheduling tasks with sequence-dependent processing times, Naval Res.

Logist., 35, 177-184 (1988).
5. R.W. Conway, W. L. Maxwell, and L. W. Miller. Theo~ of Scheduling. Addison-Wesley, Reading MA (1967).
6. S.S. Cosmadakis and C.H. Papadimitriou, The traveling salesman problem with many visits to a few cities, SIAM Z Computg,

13, 99-108 (1984).
7. G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a large-scale traveling salesman problem, Ops Res., 2, 393-410

(1954).
8. M.R. Garey, and D. S. Johnson. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and

Company (1979).
9. RC. Gilmore and R.E. Gomory, Sequencing a one state-variable machine: a solvable case of the traveling salesman problem,

Ops Res., 12, 655-679 (1964).
10. A. ten Have. A new approach to aircraft sequencing. Master's Thesis, Department of Econometrics, University of Groningen,

The Netherlands (1992).
l I. D.S. Hochbaum and R. Shamir, Strongly polynomial algorithms for the high multiplicity scheduling problem, Ops Res., 39,

648-653 (1991).
12. H.W. Lenstra, Integer programming with a fixed number of variables, Math. Ops Res., 8, 538-548 (1983).
13. H.N. Psaraftis, A dynamic programming approach for sequencing groups of identical jobs, Ops Res., 28, 1347-1359 (1980).
14. A. Schrijver Theory of Linear and Integer Programming. John Wiley, New York (1986).
15. C.S. Tang and E.V. Denardo, Models arising from a flexible manufacturing machine, part I: minimization of the number of tool

switches, OpsRes., 36, 767-7771 (1988).

