
E L S E V I E R Decision Support Systems 16 (1996) 67-83

Constraint logic programming for qualitative and quantitative
constraint satisfaction problems

H o G e u n L e e a , . , R o n a l d M . L e e b, G a n g Y u c

a Information and System Management Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong

b Erasmus University Research Institute for Decision and Information Systems (EURIDIS), Erasmus University Rotterdam, P.O. Box
1738, 3000 DR Rotterdam, The Netherlands

c Department of Management Science and Information Systems, Graduate School of Business, The University of Texas at Austin,
Austin, TX 78712-1175, USA

Abstract

AI and OR approaches have complementary strengths: AI in domain-specific knowledge representation and OR
in efficient mathemat:ical computation. Constraint Logic Programming (CLP), which combines these complementary
strengths of the AI and OR approach, is introduced as a new tool to formalize a special class of constraint
satisfaction problems that include both qualitative and quantitative constraints. The CLP approach is contrasted with
the Mixed Integer Programming (MIP) method from a model-theoretic view. Three relative advantages of CLP over
MIP are analyzed: (1) representational economies for domain-specific heuristics, (2) partial solutions, and (3) ease of
model revision. A case example of constraint satisfaction problems is implemented by MIP and CLP for comparison
of the two approaches. The results exhibit those relative advantages of CLP with computational efficiency
comparable to MIP.

Keywords: Constraint logic programming; Logic modelling; Constraint solving

I. Introduct ion

Since most decisions are made under restrictions or constraints, Constraint Satisfaction Problems
(CSP) have been widely studied in both O R and AI. In the O R approach, constraints are quantitative,
and a special algorithm like simplex method optimizes single or multiple objective functions subject to
numeric constraints. In contrast, AI research has mostly focused on symbolic (qualitative) constraints and
employed inference-based approaches to deal with domain-specific heuristics.

Many important decision problems in organizations include not only qualitative (symbolic) constraints
but also quantitative ones. Research in management science has consistently emphasized the importance
of both qualitative and quantitative constraints for managerial decision supports. Those studies range
from decision theories such as multiple criteria decision making [17] to applications such as strategic

* Corresponding author. E-mail: hlee@uxmail.ust.hk

0167-9236/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0167-9236(94)(10057-3

68 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

planning [3], sales mix [18] and real estate investment [20]. This study addresses the class of CSP that
contain both qualitative and quantitative constraints, which we call Qualitative/Quantitative Constraint
Satisfaction Problems (QQCSP). The solver of the QQCSP should be capable of qualitative inference as
well as mathematical computation to handle both types of constraints.

It is widely recognized that there is a remarkable parallel between logical inference and 0-1 integer
programming [6,12,7]. Consider, for instance, propositions X,. joined by logical connectives and 0-1
integer variables d i, where d i = 1 means X i is true and d~ = 0 means X i is false. It can be easily seen
that the constraint X 1 V X 2 is equivalent to d 1 + d 2 > 1, and that X 1 -'-') X 2 is equivalent to d 1 - d 2 < 0.
Therefore, the QQCSP can be modeled using Mixed Integer Programming (MIP) in which symbolic
constraints are represented by 0-1 integer variables and quantitative constraints are formed using
continuous variables. In this OR-oriented approach, the QQCSP is built quantitatively through arith-
metic operators and relations, and a mathematical algorithm such as branch-and-bound method may be
employed as a solver.

In this study Constraint Logic Programming (CLP) is proposed as a way to structure and implement
the QQCSP and is compared with MIP. CLP is an extension of logic programming where unification is
replaced by constraint satisfaction [4]. In CLP qualitative constraints are expressed as symbolic relations
and are logically inferred to draw conclusions. On the other hand, a mathematical solver like the simplex
method deals with other quantitative constraints involving continuous variables. The motivation of this
integration stems from the observation that AI and OR have complementary advantages: AI approaches
are well-suited for representating symbolic and domain-specific knowledge, while OR techniques offer
fast and efficient mathematical computation.

The remainder of the paper is organized as follows. In the next section the CLP approach is
introduced and contrasted with MIP from a model-theoretic point of view. This is followed by the
analysis of advantages of CLP over MIP. A case example of the QQCSP is then presented and
implemented by MIP and CLP to illustrate those advantages. The computational efficiency of CLP is
also discussed. Finally, the results are summarized and future research issues are addressed.

2. Constraint logic programming

2.1. The CLP scheme and C L P (~)

The CLP scheme represents a framework for the formal foundation of a programming language class
that combines logic programming and constraint solving. Like logic programming, CLP uses resolution,
but syntactic unification is replaced by constraint satisfaction. There are several CLP languages such as
C L P (~) [13], Prolog III [5], and Constraint Handling In Prolog (CHIP) [8]. In this study we have used
CLP(91) in order to compare CLP with MIP.

CLP(9]) was an experimental implementation of the CLP paradigm. The development was motivated
by the deficiency of Prolog unification. The conventional unification algorithm in logic programming uses
a semantics defined within the context of the Herbrand Universe. Herbrand Universe is a semantic
domain where individual names denote themselves. In this universe only those items which are
syntactically equivalent can be unified. Consider, for instance, the successor function (s (X) = X + 1) and
the factorial function (fac t (X)) [16]. Even though the terms s(s(O)), s(fact(1)), and s(fact(s(O))) are
semantically equivalent, unification will fail in logic programming because they are syntactically different.
Developers of CLP([R) chose the real number domain 91 to highlight the existence of a framework of
formal semantics that is not restricted to the unification on the Herbrand Universe. As a result the
semantics of arithmetic processing in C L P (~) is directly inherited from the real domain 9/. This is
significantly different from Prolog where arithmetic constraints fall outside the scope of semantics.

H.G. Lee et aL / Decision Support Systems 16 (1996) 67-83 69

2.2. Model-theoretic view for QQCSP

In general, constraints are relations and functions that should be maintained throughout the decision
process. Therefore, the QQCSP can be conceptualized as an empirical relational system W that consists
of the objects under investigation and relations and functions over those objects [19].

W= [O,R,F]

Here O is a set of objects, R a set of relations and F a set of functions. The model-theoretic view divides
the problem formalization process of the QQCSP into representational and computational level.

2.2.1. Representatior,~al level
This level formally represents the empirical relational system W. At the representational level the

CLP approach contains two formal models: a logical model and a mathematical model (see Fig. 1). The
constraint satisfaction problem is first divided into a qualitative portion and a quantitative one for the
purpose of formal representation.

W= [E, RE,Fe] U [N, RN, FN] tJ [EU N, REN,FEN],

where E: a set of symbolic objects, RE: a set of relations among E, be: a set of functions on E, N: a set
of real numbers, RN: a set of numeric relations among N, FN: a set of numeric functions on N, REx: a
set of relations among E and N, FEN: a set of functions on E and N

The qualitative portion [E, R E, F E] is represented by first-order predicate logic in CLP. The
quantitative portion is expressed through mathematical modelling which can be derived from the
empirical relational system W by mapping the quantitative part of W into the numeric relational system
[N, RN, FN]. The :motivation behind this mapping is to use an efficient mathematical computation to

Conceptual
Level

Represen-
tational

Level

QQCSP I,Y = [0, R, F]

Qualitative Quantitative
Constraints Constraints

m

Logic Modefing

[E, Rr, PE]
Math. Modeling

[N, RN, FN]

Compu-
tational

Level

Logical
Inference

Techniques

Mathematical
Algorithm
(Simplex)

Fig. 1. Model-theoretic view of CPL for QQCSP.

70 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

reason about the problem world W [19]. Finally there exists an interdependency between symbolic
constraints and numeric constraints which makes it impossible to solve those constraints separately.
[E U N, ReN, FEN] represents this interdependency relation.

In this way the symbolic constraints are expressed in a natural way without any mapping to the
numeric relational systems while the quantitative constraints are formed in terms of numeric variables,
relations and functions. In addition, [E U N, ReN, FeN] links the logical model with the mathematical
model. This is different from MIP, in which all objects, relations and functions are mapped to the
numeric relational system so that numeric calculation is performed for reasoning in the whole problem
world W.

2.2.2. Computational level
The computational level can be viewed as an implementation of the representational level with

detailed computational methods for carrying out the formal procedures. Since there exist two representa-
tion schemes, the CLP approach requires not only logical inference techniques but also mathematical
computation. The CLP(~R) interpreter consists of an inference engine and a constraint solver [14]. The
inference engine employs deduction techniques to draw logical conclusions. The constraint solver uses a
modified simplex method to handle quantitative constraints and find an optimal solution.

The key feature of CLP at the computational level is that the inference technique and the
mathematical computation are interlinked so that one technique can interweave with the other during
the constraint solving process. That is, if the syntactic unification fails or numeric constraints are
infeasible the interpreter starts backtracking. This unique feature provides a systematic mechanism for
the QQCSP where symbolic and quantitative constraints cannot be solved separately and should be
satisfied simultaneously. This interaction supports the interdependency [E U N, R E N , FeN] at the
computational level. In contrast, MIP relies only on the mathematical computation at this level. The
mathematical solver employed by MIP may be general algorithms like the branch-and-bound method or
specialized algorithms designed for mixed 0-1 integer programming, such as the partitioning method.

3. Advantages of CLP over MIP

The integration of inference techniques and numeric computation provides CLP with relative
advantages over MIP, which relies entirely on mathematical representation and computation. These
advantages include (1) representational economies for domain-specific knowledge, (2) partial solutions,
and (3) ease of model revision.

3.1. Representational economies

In MIP domain-specific heuristic rules should be first expressed by propositional logic so that it can be
later mapped into 0-1 logical variables. Propositional logic is the simplest type of logic where a statement
is either true or false. By contrast, CLP describes domain-specific heuristic rules with predicate logic.
Predicate logic decomposes an elementary proposition into individual variables and relations among
those variables, thus having stronger expressive power than propositional logic. Consider, for instance,
the following simple reasoning example.

Given that: All men are mortal.
Socrates is a man.

Conclude that: Socrates is mortal.

H.G. Lee et aL / Decision Support Systems 16 (1996) 67-83 71

In predicate logic, the preceding example is symbolized as follows:

Given that: V X man(X) ~ mortal(X).
man (Socrates).

Conclude that: mortal(Socrates).

Propositional logic :is insufficient for this in that it cannot reconcile the general statement (about all men)
to the specific statement (about Socrates). The propositional logic requires that sentences for all
individuals be stated explicitly. In general the MIP formulation for this kind of reasoning rules introduces
a large number of 0-1 integer variables and constraints, thus enlarging its matrix size. CLP can replace
the large matrix of MIP with a small number of predicate rules by decomposing the statement into
predicates and individual variables and by employing universal quantifiers on those individual variables.

3.2. Partial solutions

CLP(g]) can generate partial solutions. If numeric variables are not bounded the CLP(g]) interpreter
returns as an answer numeric constraints that describe the relations between unknown variables. In
capital budgeting, for example, Net Present Value (NPV) is an amount at the present that is equivalent
to an investment's cash flows for a particular interest rate I. The predicate npv(V,L,I), where V is NPV, L
a list of cash flows [(CI 0, COo), (CI 1, CO l) (CIn, COn)] and I an interest rate, can be written as follows
in CLP(9~):

npv(O, [3, I): -!.

npv((CI -- (0) +V/ (I +I),[(CI,CO)IT],I):- npv(V,T,I).

The second line of the program uses a recursive rule to compute the NPV and the first line provides a
boundary condition for the recursion. Suppose a firm is considering an investment plan whose initial
investment is $300,000, and has a target NPV of $100,000 with 10% of a discount rate for the next four
years. Then the following query will return the numeric constraints imposed on annual income CI and
annual operating costs CO (dollar amounts scaled down by one thousandth):

query: ~- npv (V, [(0,300), (CI,CO) , (CI,CO), (CI,CO), (CI,CO)],0. I),

V>=IO0.

answer: C I - C 0 > = 126.188.

The partial solution is extremely useful to decision makers since it enables them to consult various
aspects of constraint satisfaction problem environments. When the input is incomplete, CLP solves the
constraint satisfaction problems using only available information and yields a simplified model or answer
in the form of partial solutions. This contrasts to working with a general MIP solver, in which there are
only two answers: an optimal solution or no solution (infeasible solution).

3.3. Ease of model revision

Model revision entails both addition and delete of certain objects and their associated relations. The
model revision is unavoidable when problem environments change. For example, the deletion of a
production line o1" the addition of a new production process can occur frequently in manufacturing
environments. CLP is superior to MIP for making revisions to a model whose underlying assumptions
often change.

The 0-1 variable, s of MIP correspond to propositions of domain-specific knowledge. The change in this
knowledge can ea!dly undermine the mapping between propositions and integer variables since the 0-1

72 H.G. Lee et al. /Decision Support Systems 16 (1996) 67-83

variables represent the knowledge in terms of truth or false of elementary statements. The addition and
deletion of objects or tile updating of relations among those objects requires redefinition of the 0-1
variables and their constraints. Thus when domain-specific heuristics change or evolve modellers need to
rebuild the model. In contrast, CLP can accommodate changes in domain-specific knowledge with
relative ease. The predicate has been widely recognized as a useful tool for changing objects and their
relations in model management [9,1]. The incremental programming style of CLP, which is inherited
from logic programming, also facilitates the incremental revision of domain-specific knowledge.

4. Production planning example

We consider a manufacturing company that produces several metal products. The production
environment includes multiple processes, multiple machines, and multiple worker groups that have
different skills and experiences. There are two objectives for the production planning: assignment and
product mix.

4.1. Assignment

This refers to the assignment of appropriate labor and processes to each product. The product
attributes (raw material and design) determine the necessary processes, and labor is assigned to those
processes depending on its job classification. For instance, the welding process for aluminum is more
difficult than for carbon steel. The surface must be cleaned and a special care should be taken because
aluminum is such a good conductor of heat. Therefore, the product made of aluminum should be
assigned to a welding process requiring higher skill, like the special-welding or the refined-welding
process. Once a process is chosen, a worker must be allocated. Certain processes can be done only by
qualified workers that have enough skill and experience.

There is another type of constraint called preference in the assignment. It is assumed that some
products are considered more important than others from a marketing perspective. This is because
products sold in different regions have varying levels of competition. The ordering of product importance
may be total or partial. The heuristic rules for the preference specify that, whenever possible, more
skilled labor should be assigned to more important products.

4.2. Product mix

Product mix is a Linear Programming (LP) problem. The objective is to determine the production
quantity of products in order to maximize total profit. There are three types of constraints: minimum
production requirements, labor resource constraints and facility resource constraints. All of these
constraints are quantitative and are formed by numeric relations and operators.

It should be pointed out that the formulation of the LP problem is influenced by the assignment. This
corresponds to the interdependency [E u N, R E N , FEN] in the model-theoretic view. Labor groups work
for hourly wages, and skilled workers receive higher wages than unskilled ones. Because of different
experiences and skills, however, it takes less time for skilled workers to do a certain process than for
unskilled ones. Therefore, the coefficients of the objective function and constraints in the LP formulation
vary depending on the assignment. On the other hand, the assignment is also highly dependent on the LP
computation. The assignment that satisfies the qualitative constraints may result in an infeasible or
non-optimal product mix. The overall goal is to find the assignment and the optimal product mix which
satisfy both qualitative and quantitative constraints.

H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83 73

5. MIP formulation

T h e M I P formula t ion is p resen ted by first defining all subscripts, sets, variables and coefficients,
followed by the objective funct ion and the constraints . Note that artificial variables z ~ are in t roduced to
t r ans form the initizl nonl inear formula t ion into a l inear one.

5.1. Sets, variables and coefficients

5.1.1. Subscripts

i = 1,2,...,m labor
j = 1,2,...n p roducts
k = 1,2,...l processes
e = 1,2 h machines
v = 1,2,...,p raw mater ia ls
w = 1,2,...,q designs

5.1.2. Description o f sets
,¢t '= {(j, u): a raw mater ia l of a p roduc t j is v}

~ =

0@-=
J =
~ - =
g , =
_g~,=
~ =

i f =

{(j, w): a design of a p roduc t j is w}
{(c, KL,): a mater ia l v requires one of processes in KL,} where K,, _ {1,2 l}
{(w, Kw): a design w requires one of processes in K w} where K w c_ {1,2 I}
{(i, Ki): l aborer i can do processes in K i} where K i c_ {1, 2 l}
{(k, Ik): a process k can be done by one of labors in I k} where I k _ {1,2 m}
{(e, Ke): a mach ine e is used for processes in K e} where K e c_ {1,2,...,1}
{(i m i): l aborer i is more skilled than laborer i}
{(j >-]): a p roduc t j is more impor tan t than a p roduc t]}
{(k >-k): a process k is p re fe r red to a process k}

5.1.3. Variables

1 if laborer i is assigned to produc t j for process k
Xiik = 0 otherwise

for all i, j, k ~ K i where (i, K i) c g
yj = produc t ion quant i ty of p roduc t j for all j
zij k =artif icial variables replacing x~jky j for all i, j, k ~ K i where (i, K i) ~ 3 -

5.1.4.

aik =

l i =

U i =

L=
g j =

P j =
m c j =

Scj =

L=

Coefficients
n u m b e r of hours required for l aborer i to do process k, for all i, j, k ~ K i where (i, K i) E . Y
total available t ime for l aborer i
unit labor cost (w a g e / h o u r) of laborer i
total available facility capaci ty (hours) for machine e
m i n i m u m produc t ion r equ i remen t for p roduc t j
price of p roduc t j
unit mater i~l cost of p roduc t j
unit sales cost of p roduc t j
fixed cost (both produc t ion and sales)

74

5.2. Objectiue function

H. G. Lee et al. / Decision Support Sys tems 16 (1996) 6 7 - 8 3

max ~ (p j - m c ~ - s c ~ - ~ ~ aikUiXijk)Yj--fc where(i,Ki) • ~ - .
j = l i k G K i

Here, ~ i ~ k E KiaikUiXijk is the unit labor cost of product j. A linear objective function is obtained by
replacing x~kyj by zij k together with associated constraints:

max ~ ((p j - m c j - s c j) y j - Y'~ ~ aikUiZijk) --fc where(i,Ki) ~3- .
j = l i k ~ K i

5.3. Constraints

5.3.1. Possible assignment

~ xij~= 1 where (j , v) e~t',(v,K~.) • ~ ' a n d (k , I k) e.~-.
i ~ l k k ~ K ~

E E xi~k = l w h e r e (j , w) •5P,(W,Kw) ~ .~and(k , t k) ~3- .
i ~ 1 k k ~ K ~

5.3.2. Preference constraints
The heuristic rules for the preference constraints can be summarized as:

If laborer i is assigned to a product j for a process k,
and a product j requires the same process k,
and the product j is more important than the product],
and laborer i is more skilled than laborer i

then assign laborer i to the product] for the process k

The following constraint equivalently says that if laborer i is assigned to a product j for the process k
(Xij k = 1), then laborer i or a more skilled laborer than i (D cannot be assigned to the product j: for the
process k (Et~jx~)k = 0).

xi~ ~ + ~ x~;g _< 1,

where (j,]) ~,.@, J = {(t>- i) ~_~ or /~= i} and i, fE F~,, F w

r,~ = {(j,~.) ~ ' . (; ,~) ~.,(u,/~,.) ~ , (~ , / ~) ~ ,

k ~ K,,,k • K~,i E/k ,/~• Ik ,(k,Ik) • ~)

r . = {(j,w) ~ , (7 , ~) •~,(w,K~) •~,(~,K~) • ~ ,

k • K w , k ~Kw,i • I k , t ~ I k , (k , I k) ~ oar}.

H.G. Lee et aL /Decision Support Systems 16 (1996) 67-83 75

5.3.3. Labor and facility constraints

~ ~ ai~zij~<-li f o ra l l iwhere (i ,K i) ~ g - .
j ~ l kEK i

E ~ E OikZijk<--fe f o r a l l e w h e r e (k , I k) ~3-and(e,Ke) e~ .
k~K, , j -1 i~l k

5.3.4. Minimum production constraints

yj > gj for all j.

5.3.5. Constraints for replacing Xijk Y j with z i j k

Zij k -- Mjx i j k <~ O,

- y j + Zij k <_~ O,

yj - ziik + mjx i jk <- Mj

for all i, j, k ~ K i where (i, K i) ~ Y and Mj is an upper bound of yj.
The MIP formulation process can be considered as building a matrix that contains coefficients of the

objective function and constraints. The MIP formulation requires a large number of variables and
constraints to represent the production planning problem at a propositional level. Modellers may build a
large matrix by using an automatic matrix generator such as GAMS [2]. However, the benefits of using
such an automatic tool are restricted to certain constraints whose expressions share common algebraic
structures, such as labor or facility constraints. In general the constraints for domain-specific heuristic
rules lack these shared common structures. In preference constraints, for example, modellers should
define the complex set like J , F,~ and F w for each pair of (j, j). This propositional level description
requires a large amount of cognitive and coding efforts of modellers.

6. Implementation by CLP(~R)

The CLP(~R) formulation consists of qualitative modelling for the assignment and quantitative
modelling for the product mix. The implementation uses databases assertions called assign as an
interface between the two. Once a candidate assignment is determined it is stored in the database and
used for the LP formulation in quantitative modelling.

6.1. Qualitatir, e model." Assignment

The following rules describe the heuristic rules for the possible assignment. The predicate assignment
specifies the assignment order of products. The predicate possible first obtains the attribute values of the
product and determines the list of assignable processes based on those attribute values. The predicate
find takes the list of assignable processes, and returns one candidate process together with an assignable
laborer to that process. For this purpose the find employs a conventional Prolog predicate member. Note
that the find also obtains a laborer's required work time from the database labor hour to provide useful
information for the LP formulation process. After a valid assignment is returned, the predicate possible

76 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

s tores the o u t p u t t o t h e database assign by assertion. The update o f t h e asserted d a t a b a s e i s p e r ~ r m e d
by the predicate update.

assignment:- possible(pl),possible(p2), ...,possible(pn).
possible(P):- product(P,M,D, , , ,),

material(M,MList), find(MList,MP,ML,MT),
design(D,DList), find(DList,DP,DL,DT),
update(P,MP,ML,MT,DP,DL,DT).

find(List,P,L,T):- member(P,List), pro_labor(P,PList),
member(L,PList), labor hour(L,P,T).

The next step is to test whether the current assignment satisfies the pre~rence constraints. The
predicate pre~r._.eheck assures that the pre~rence constraints are imposed on all product pairs of PI
and P2 ~ r which P1 is more important than P2. The predicate cheek takes the current assignment values
~ r products P1 and P2 and tests those values with rules described by check labor. The predicate
check labor specifies that if P1 and P2 require the
to P1 than to P2.

prefer check:- forall(important(
check(PI,P2):- assign(P1,MPI,ML1

same process, more ski l ledlaborshould be assigned

P1,P2), check(P1,P2)).
,_,DP1,DLI,_),

assign(P2,MP2,ML2,_,DP2,DL2,_),
check Iabor(MPI,MLI,MP2,ML2),
check Iabor(DPI,DLI,DP2,DL2).

check Iabor(AP1,ALI,AP2,AL2):- not (API==AP2),!.
check Iabor(AP1,ALI,API,AL2):- skilled(AL1,AL2).

In this qualitative modelling, the query ? - a s s i g n m e n t , p r e f e r
that is possible and satisfies the preference constraints.

c h e c k yields a valid assignment

6.2. Quantitative model: Product mix

Quantitatwe modelling constructs the LP ~rmulat ion by exploiting the partial solutions of CLP (~) .
The o~ectwe ~nct ion and constraints are ~ r m e d by using database and by leaving the product m s
variables Q1, Qz,...,Qn unbound. The linear programming ~ r the product m s can be built as ~llows:

product mix:- minpro con(Q1,Q2,...,Qn),
labor con(labor1,LR1,QI,Q2,...,Qn),
labor con(labor2,LR2,QI,Q2,...,Qn),

machine con(machinel,MR1,Q1,Q2,...,Qn),
machine con(machine2,MR2,Q1,Q2,...,Qn),

objective(OBJ,QI,Q2,...,Qn).

The minimum production constraints are generated by the predicate minpro_con. In our example
with 5 products, for instance, the query ? - m i n p r o_c o n (Q 1 , Q 2 , Q3, Q4, Q 5) returns constraints
Q 1 > = 2 5 0 , Q 2 > = 1 7 0 , Q 3 > = 1 9 0 , Q 4 > = 1 8 0 , Q5>=200. The constraints on labor resources are
formed through the predicate labor con while the machine resource constraints are generated by the
predicate machine con. If we assume an assignment stored in the assertion assign the labor constraint

H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83 77

f o r t h e skilled m e c h a n i c is o b t a i n e d by ? - l a b o r c o n (s k i l l e d m e c h a n i c , L R , Q 1 , Q 2 , Q 3 , Q 4 ,

Q 5). The resulting constraint is:

Q1 + 2.66667 ,, Q2 + 1.66667 * Q3 + 3.25Q5 < 2133.33.

Assuming the same assertion of assign, we obtain the following constraint for the welding machine
through the query 7- machine con (weld machine,MR,Q1 ,Q2,Q3,Q4,Q5).

1 .25 , Q l + Q 2 + l . 2 5 , Q 3 + 0 . 7 5 , Q 4 + Q 5 < 1 5 3 0 .

The predicate objective forms the objective function of the product mix to get an optimal solution.
After all constraints and an objective function are formed the modified simplex method is applied to the
entire constraint set to test for feasibility and optimality. If it is infeasible or if its objective value is less
than the current optimal value, backtracking is initiated and the interpreter moves to the qualitative
model to generate another feasible assignment. Otherwise the new incumbent value is stored to replace
the current optimal one. This procedure continues until all feasible assignments are explored.

Finally the qualitative model is combined with the quantitative model through the query ?--
a s s i g n m e n t , p r e f e r _ c h e c k , l i n e a r _ p r o g r a m. T h e CLP(91) interpreter t h e n r e t u r n s t h e assign-
ment that is feasible and satisfies the preference constraints, together with the product mix which
maximizes the total profit.

7. Comparison of I~[IP and CLP

7.1. Representationai' economies

For the purpose of comparison at the problem representation level, the following notation is used:
N: number of products
B: number of laborers

L: sum of number of processes that each laborer can do; L = ~_,n(Ki)where(i ,K i) ~ 3-.
i

E: number of machinesHere L is defined using the set J described in the MIP formulation.
It can be easily seen that the MIP formulation requires 2 N L + N numeric variables for xij k, zii k and

Yr" In CLP formulation there are N numeric variables for the production quantity of products. MIP

Table 1
Comparison of represenlat ion by MIP and CLP

Representat ion MIP CLP

Numeric Rules

Variables 0-1 variables (xii k)
prod. quantity (yi)
arti:f, variables (zij k)
total number

Constraints assignment

product mix

total number

possible
preference
labor
facility
min. prod.
linear trans.

N L
N N
N L
2N L + N N
2N
C
B B
E E
N N
3N L
3 N + C + B + E + 3 N L B + E + N 6

20
3
3

78 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

Table 2
Representat ions of three case examples by MIP and CLP

Case I II III

Data N 5 15 30
B 5 8 12
L 14 23 34
C 31 68 125
E 3 6 10

Method MIP CLP MIP CLP MIP CLP

Num. Rul. Num. Rul. Num. Rul.
Variable 0-1 integer 70 345 1,020

total 145 5 20 705 15 20 2,070 30 20
Constraint assignment 41 6 98 6 185 6

prod. mix 223 13 1,064 29 3,112 52
total 264 13 6 1,162 29 6 3,297 52 6

needs 2N constraints for the possible assignment since each product attribute constitutes N constraints.
The number of constraints C for preference constraints in MIP can be defined as:

C = ~_, Y'~ n(H(],])) X (n (I ,) - 1),
(j ,]) ~ kEH~j,j)

where (k, 1 k) ~ .Y- and H(j,)) is the process required by both product j and j:. The set 9 and 9- are
described in the MIP formulation. In contrast, the CLP formulation for the assignment includes six
predicate rules containing 20 symbolic variables (10 for the possible assignment and another 10 for the
preference). Both MIP and CLP include the same number of quantitative constraints for minimum
production, labor and machine resources. The MIP formulation requires additional 3N L constraints to
convert the nonlinear formulation into linear one (see Table 1).

There is no significant difference between MIP and CLP in representational economies for the
quantitative constraints. Even if the MIP formulation requires a large number of constraints for linear
conversion, this part can be easily constructed by an automatic matrix generator. Therefore, the
emphasis for the comparison should be on the representation of the domain-specific heuristic rules for
the assignment. In MIP the knowledge representation process for the assignment is establishing a
(2N + C + 1) × (N L + 1) matrix. The CLP formulation replaces this matrix by six predicate rules that
include 20 symbolic variables.

The comparison of representation is applied to three cases that have different number of products,
processes and laborers. The results are given in Table 2. The representational economies for domain-
specific knowledge of CLP becomes more evident as the number of products, processes and laborers
increases. Consider, for instance, Case III in which there are 30 products, 12 labor groups, 10 machines,
etc. The MIP formulation process in Case III requires building a 186 × 1,021 matrix for the assignment.
If CLP is employed, modellers can replace this large matrix with six predicate rules involving 20
individual variables. Note that as the number of products, processes and labors increases the MIP matrix
size for the assignment grows exponentially, whereas the number of predicate rules in CLP remains
unchanged.

7.2. Partial solutions

If the input is incomplete, the CLP(9~) interpreter simplifies the model using available domain
information and returns partial solutions where final judgements are left to decision makers. This allows

H. G. Lee et al. / Decision Support Systems 16 (1996) 67-83 79

users to consult constraint satisfaction environments with various queries. For instance, users can query
"how many man-hours of skilled welder t ime are necessary to achieve profit between $7,300 and
$7,800?" as follows:

"~ - ob j ect ive (OBJ,Q1,Q2,Q3,Q4,Q5) ,

labor con(skilled welder,LR,Q1,Q2,Q3,Q4,Q5),OBJ>=7300,OBJ <=7800.

CLP(~R) returns the hour range of the skilled welder time necessary for obtaining the target profit, that
is, t_R>= 2 4 7 0 , LR < = 3 3 0 7 . In a similar way, decision makers can have the CLP(~t) interpreter
generate assignments which guarantee a certain profit by using the following query:

~- assignment,prefer check,obj ect ire (OBJ ,QItQ2,Q3,Q4,Q5) ,OBJ>= 7300.

The answer of this query is useful especially under multiple criteria decision situations in which the profit
maximization is just one objective. Once a list of assignments that result in certain profits is obtained, a
decision maker can select the best one from the list by considering other decision criteria. In this way,
CLP(3]) users can get useful information about any local parts of the problem by combining associated
predicate rules. By contrast, the output of a general MIP solver is an all-or-nothing type. It returns an
optimal solution onily when the problem is feasible and the input data is complete. If users want solutions
with partial information, they need to modify the MIP solver to work with subset of total data sets.

7.3. Ease of model reL, ision

It is easier to make revisions to a plan in CLP than in MIP when underlying assumptions of constraint
satisfaction problems often change. The incremental programming style of CLP matches well the
incremental revision of a model. To illustrate the ease of model revision in CLP, it is assumed that some
processes are preferred over others and assigned to more important products. Thus the following
heuristic rule should be added to the existing model.

I f a product j is more important than a product j,
and a process k is preferred to a process k,
and both product j and j have a same product attribute,
and either proces,: k or k can be used for the product attribute,

then assign the process k to the product j and the process k to the product

In CLP this inciemental revision to the preference constraints can be easily achieved by adding the
following rule check_process to the predicate check:

check_process(AI,API,A2,AP2) :- not (AI=:A2),! .

check_process(A1,AP1,A2,AP2) :- API==AP2,! .

check_process(A1,AP1,A2,AP2):- prefer(AP1,AP2).

In contrast, the following set of constraints needs to be built into MIP to make the same revision.
Note that modellers should define complex sets such as ~ , ~9~. and ~9 w again.

Xijk -}- E Xi)f¢ ~ = 1,

where(j ,)) ~ , ~ = {(f¢ ~- k) ~ ~orf~ = k} and k,/~ ~ ~9,~,Ow,

80 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

Another aspect of revision is that certain changes actually require that changes be made in the whole
set of constraints on domain-specific knowledge. For example, the importance ordering of products may
be reversed because of market evolution. If this is the case, CLP can accommodate the changes with
relative ease because individual objects are represented as variables in predicates. Modellers can revise
the model by just changing the assertions important in CLP. There is no need to revise the predicate
rules. This contrasts with MIP, in which modellers should rebuild the whole matrix of preference
constraints since 0-1 variables correspond to propositional logic that describes the knowledge at the
individual object level.

8. Computational efficiency issues

The OR approach has focused on elegant algorithms and provided efficient methods for solving
problems. Hooker [12] proposed integer programming methods for logical inference (propositional logic)
since mathematical computation is more efficient than manipulation of symbols. The motivation to
represent qualitative constraints using 0-1 integer variables is to use this efficient mathematical computa-
tion to reason about the domain world. In this section we compare the computational efficiency of CLP
with that of MIP.

8.1. Matrix size

The branch-and-bound method has proved most successful in general on practical MIP problems. In
the branch-and-bound method, an MIP problem is first solved as an LP problem by relaxing the
integrality conditions. If the resulting solution satisfies the integrality conditions, the problem is solved.
Otherwise, we perform a tree search by branching the variables that have fractional values. The
efficiency of the method highly depends on the search strategy, that is, the selection of branching
variables and search nodes.

The MIP formulation of the QQCSP contains a relatively large matrix. It is already shown that the
domain-specific knowledge representation requires a large number of integer variables and constraints.
There is another aspect of the QQCSP that augments the matrix size of MIP: the interdependency
between qualitative and quantitative constraints. In the example of production planning, the initial MIP
formulation becomes nonlinear because of the interdependency between the assignment and the product
mix. MIP formulation should introduce a great number of artificial variables and constraints to convert
the nonlinear formulation into a linear one. This transformation, which is unavoidable if we want to
employ an efficient MIP solver like the branch-and-bound algorithm, increases the matrix size of the
MIP. Therefore, the MIP in general begins with solving LP with a large matrix for the QQCSP.

In contrast, the LP formulation of CLP includes variables and constraints associated only with the
product mix. It is clear that the LP matrix of CLP is much smaller than that of MIP. In the Case I of
Table 2, for example, the MIP formulation contains a 264 x 145 matrix whereas the LP matrix of the
CLP is 13 x 5. The difference is more significant in the Case III where the MIP matrix is 3,297 x 2,070
and the CLP includes a 52 x 30 LP matrix.

8.2. Rounds of simplex computation

We also need to consider how many rounds of LP computation are necessary in CLP and MIP. The
number of LP computation in MIP is determined by the search strategy and problem structures. The
branch-and-bound method prunes the search tree using the resultant LP solution at each search node,

H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83 81

go :- assignment, prefer_check.

assignment :- possible(p1), possible(p2) possible(p5).

prefer_check : - forall (important (PI ,P2), check(P1 ,P2)).

(a) without using domain specific information

go :- possible(p2),
possible(p3), check(p2,p3),
possible(p4), check(p2,p4), check(p3,p4),
possible(p1), check(p2,pl), check(p3,pl), check(p4,pl),
possible(p5), chock(p2,p5), check(p3,pS), check(p4,p5).

(b) with using domain specific information

Fig. 2. Pruning search space with domain specific information.

thus reducing the number of LP computations. In contrast, the number of LP computations in CLP
varies depending on the set size of feasible solutions of qualitative constraints because of the generate-
and-solve mechanism (CLP first generates an assignment and formulates a LP problem based on that
assignment). There, fore, there is a trade-off between MIP and CLP regarding the number of LP
computations. If the qualitative constraints yield a large number of feasible solutions, the branch-and-
bound method may be more efficient than CLP. However, if complex domain-specific heuristics result in
a small number of feasible solutions, we can use CLP to solve the QQCSP with a small number of LP
computations whose matrix size is much smaller than that of MIP.

8.3. Pruning search space with domain specific information

MIP and CLP employ different search mechanisms. The prominent feature of the branch-and-bound
method is that it can dramatically curtail the search space using the LP solution at search nodes. The
search process of MIP in some sense is mixed with mathematical computation. In contrast, the
generate-and-solve mechanism of CLP separates the search process from mathematical computation.
This separation provides us with a somewhat different opportunity to improve the search process:
pruning the search tree with domain-specific information.

Consider two programs in Fig. 2 where the program (a) represents the original CLP formulation for
the assignment in Case I. In the program (a), the predicate assignment explores all possible nodes and
the predicate prefer__check returns only valid assignments. We can exploit the preference predicate
check to trim the search tree in advance as in the program (b). This improvement of the search process
using domain-specific information is possible because the logical inference is separated from the
mathematical computation. We are here not arguing that CLP is computationally more efficient than
MIP. Instead, it is argued that the computational efficiency of CLP is comparable to that of MIP.

9. Conclusions

The emphasis of the AI research has been on domain-specific knowledge representation. The basic
assumption of the AI approach is that the mental processes under discussion can be represented in the
form of symbolic manipulation. On the other hand, OR has been considered as fundamental instruments
when fast and efficient algorithms are essential for problem solving. Unlike AI techniques, the OR

82 H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83

approach ultimately reduces the problem situation to something that can be formulated in terms of real
numbers. It has been well recognized that AI and OR approaches have complementary advantages: AI
for domain-specific knowledge representation and OR for efficient mathematical computation.

This study has introduced Constraint Logic Programming as a new modelling tool that combines these
complementary strengths of the AI and OR approaches. It is argued that the integration of inference
techniques with mathematical computation of CLP provides relative advantages over the Mixed Integer
Programming approach when constraint satisfaction problems include domain-specific heuristic rules as
well as quantitative constraints. These advantages can be summarized as follows:
• CLP can represent complex domain-specific heuristic rules more efficiently than MIP because a large

number of integer variables and constraints are replaced by a small number of predicate rules and
symbolic variables, and
CLP can return partial solutions that are not available in MIP but very useful to decision makers, and
CLP is superior to MIP in making revisions to a plan whose underlying assumptions often change.

A case example of constraint satisfaction problems is implemented by MIP and CLP for comparison of
the two approaches. The result exhibit that modellers can exploit the advantages of CLP with computa-
tional efficiency comparable to MIP.

Most mathematical models have operated on a stand-alone basis under the implicit assumption that
the user community has sufficient mathematical expertise. In many organization decision making
situations, however, this assumption is not guaranteed. Often, opportunities for OR applications are not
exploited. The managers with real-life problems usually have little, if any, formal computing or
mathematical expertise and demand simple representation. In contrast, OR scientists are mainly
interested in elegant solutions and pay more attention to algorithmic rationality than to non-mathemati-
cal aspects such as representation. The Structured Modelling [10], Production Modelling [15], and
Formal/Unif ied Modelling [11] can be viewed as efforts to overcome this practicality gap and to help
users build mathematical models.

The need for simple modelling environments together with our experience with CLP provides a future
study issue that is worth pursuing: Modelling Language for Constraint Satisfaction based on the CLP
scheme. The language will allow decision makers to represent constraint satisfaction problems efficiently
and facilitate revision of the model. In addition users may be able to interactively communicate with the
system through the partial solutions. Since many decision situations in organizations involve constraints
and require numeric analysis as well as inference, such a modelling language should have many useful
applications.

References

[1] R.H. Bonczek, C.W. Holsapple and A.B. Whinston, A Generalized Decision Support System Using Predicate Calculus and
Network Data Base Management, Operations Research 29, No. 2 (1981), 263-281.

[2] A. Brook, A. Kendrick and A. Meeraus, GAMS: A User's Guide (The Scientific Press, Redwood City, CA, 1988).
[3] G. Chandrasekaran and R. Remesh, Microcomputer Based Multiple Criteria Decision Support System for Strategic Planning,

Information and Management 12 (1987), 163-172.
[4] J. Cohen, Constraint Logic Programming Languages, Communications of the ACM 33, No. 7 (July 1990), 52-68.
[5] A. Colmerauer, An Introduction to Prolog IlI, Communications of the ACM 33, No. 7 (July 1990), 69-90.
[6] G. Dantzig, Linear Programming and Extentions (Princeton University Press, 1963).
[7] V. Dhar and N. Ranganathan, Integer Programming vs. Expert Systems: An Experimental Comparison, Communications of

the ACM 33, No. 3 (March 1990), 323-336.
[8] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier, The constraint logic programming language

CHIP, Proceedings of the International Conference on Fifth Generation Computer Systems (Tokyo, 1988), 693-702.
[9] D. Dolk and B. Konsynski, Knowledge Representations for Model Management Systems, IEEE Transactions on Software

Engineering 10, No. 6 (November 1984), 619-628.

H.G. Lee et al. / Decision Support Systems 16 (1996) 67-83 83

[10] A.M. Geoffrion, An Introduction to Structured Modelling, Management Science 33, No. 5 (May 1987), 547-588.
[11] S.N. Hong, A Forraal, Unified Modelling Framework: Knowledge Representation and Automated Reasoning, Ph.D. thesis

(1991), The Univer~dty of Texas at Austin.
[12] J.N. Hooker, A Quantitative Approach to Logical Inference, Decision Support Systems 4 (1988), 45-69.
[13] J. Jaffar and J-L L~tssez, Constraint Logic Programming, Proceedings of the Fourteenth ACM Symposium of the Principles of

Programming Languages (Munich, 1987), 111-119.
[14] J. Jaffar and S. Michaylov, Methodology and Implementation of a CLP System, Proceedings of the Fourth International

Conference on Logic Programming (Melbourne, 1987), 196-218.
[15] R. Krishnan, Knowledge Based Aids for Model Construction, Ph.D. thesis (1987), The University of Texas at Austin.
[16] C. Lassez, Constraint Logic Programming, BYTE (August 1987), 171-176.
[17] J.K. Lee and E.G. Hurst, Jr, Multiple-Criteria Decision Making Including Qualitative Factors: The Post-Model Analysis

Approach, Decision Sciences 19, No. 2 (Spring 1988), 334-352.
[18] J.K. Lee and H.G. Lee, Interaction of Strategic Planning and Short-term Planning: An Intelligent DSS by the Post-Model

Analysis Approach, Decision Support Systems 3 (1987), 141-154.
[19] F.S. Roberts, Mea,~urement Theory with Applications to Decisionmaking, Utility, and the Social Sciences, Encyclopedia of

Mathematics and the Applications 7.G (Addison-Wesley Publishing Company, Reading, Massachusetts, 1979).
[20] R.R. Trippi, Decisi3n Support and Expert Systems for Real Estate Investment Decisions: A Review, INTERFACES 20, No. 5

(Sep. - Oct. 1990), 50-60.

Ito Geun Lee is Assistant Professor of Information and Systems Management Department at Hong Kong
University of Science and Technology. Prior to that he was Visiting Scholar at the Erasmus University
Research Institute for Decision and Information Systems (EURIDIS) of Erasmus University. He received
his Ph.D. in Management Information Systems from the University of Texas at Austin in 1993 and his M.S.
in Management Science from Korea Advanced Institute of Science and Technology in 1986. His research
interests include (1) integration of AI and OR approaches for management science applications, (2)
electronic commerce and electronic market structures, and (3) telecommunications and multi-media
applications such as distance collaboration and distance education.

Ronald M. Lee is currently Director of the Erasmus University Research Institute for Decision and
Information Systems (EURIDIS) of Erasmus University. Formerly, he was Associate Professor of Manage-
ment Science and Information Systems Department at the University of Texas at Austin. He has a Ph.D. in
Decision Sciences (Wharton, 1980), and has previously served as a research scholar at the International
Institute for Applied Systems Analysis in Vienna, Austria, and as Visiting Professor of Management at the
Universidade Nova de Lisboa, in Lisbon, Portugal. His research focuses on the use of formal logic
representations for management science applications. Current projects involve the use of logic modelling to
represent and manage formal business communications systems focusing on bureaucratic systems (formal-
ized communications within institutions) and electronic contracting systems (formalized communications
between enterprise).

Gang Yu is Associate Professor at the Graduate School of Business, University of Texas at Austin. His
research involves industrial applications of large scale combinatorial and network optimization models.
During the past six years, be has focused on designing and building decision support systems for industry
and government agencies, including United Airlines, IBM, Electronic Data Systems, Continental Airlines,
Tracor, and U.S. Navy. Gang Yu has published numerous papers on Management Science, Operations
Research, Interfaces, ORSA Journal on Computing, Transportation, Science, and other journals.

