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Abstract

Objective: The death receptor Fas and Fas ligand (FasL) are present in human advanced atherosclerotic plaques. The activation of
pathway of apoptosis has been implicated in plaque vulnerability. In the present study, we investigated whether overexpression
pre-existing atherosclerotic lesions can induce lesion remodelling and rupture-related events.
Methods and results: Carotid atherogenesis was initiated in apolipoprotein E-deficient mice by placement of a perivascular silast
The resulting plaques were incubated transluminally with recombinant adenovirus carrying FasL (Ad-FasL, lateral) or control�-galactosidas
(Ad-LacZ, contralateral). Transfection was restricted to the smooth muscle cell-rich cap of the plaque, and FasL expression led to
increase in apoptosis in the cap one day after gene transfer. Three days after gene transfer, FasL expression led to a 38% red
number of cap cells. Two weeks after Ad-FasL transfer, non-thrombotic rupture, intra-plaque haemorrhage, buried caps and iron de
observed in 6 out of 17 Ad-FasL-treated carotid arteries versus 0 out of 17 controls (P = 0.009), indicative of enhanced plaque vulnerabi
Conclusions: These data demonstrate that advanced murine plaques are sensitive to Fas/FasL-induced apoptosis, which may
stimulation of this pathway could result in plaque remodelling towards a more vulnerable phenotype.
© 2005 Published by Elsevier Ireland Ltd.

Keywords: Apoptosis; Atherosclerosis; Carotid arteries; Gene expression; Vascular smooth muscle

1. Introduction

Fas is one of the major apoptosis-mediating receptors from
the tumor necrosis factor-�-receptor (TNF�-R) superfamily.
When Fas ligand (FasL) binds to Fas, programmed cell death
is rapidly induced. The Fas/FasL pathway is involved in tis-
sue homeostasis, the down-regulation of immune reactions
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and T cell mediated toxicity[1]. Additionally, FasL has
gatekeeper function on endothelial cells (ECs) of the ve
wall [2]. The death receptor Fas and FasL are present i
man advanced atherosclerotic plaques and the activat
the Fas/FasL pathway of apoptosis has been implicat
plaque remodelling[3–5].

In the atherosclerotic plaque, FasL is present on T cell
macrophages, and on ECs forming the outermost layer o
fibrous cap and the plaque[3–5]. The Fas receptor is prese
on ECs, smooth muscle cells (SMCs) and macrophages[6,7],
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coinciding with evidence of apoptosis in the shoulder area
[6,8]. In vitro studies indicate that several factors in an athero-
matous setting, including macrophage-derived cytokines and
p53, cause translocation or trafficking of Fas to the cell sur-
face of SMCs[6,9]. In addition to Fas, in macrophages FasL
is also transported to the cell surface in response to oxidized
low-density lipoprotein (Ox-LDL)[6,10]. The presence of
Fas and FasL in human atherosclerotic plaques[3,6], as well
as the fact that human blood-derived macrophages can induce
apoptosis in human plaque-derived SMCs by Fas/FasL inter-
actions in vitro[11], have fuelled speculation about the role
of the Fas/FasL pathway of apoptosis in lesion remodelling.

A series of previous in vivo studies focussed on the role of
FasL in vascular disease at the level of the normal, balloon-
injured, or denuded vessel wall, either in a normo- or hyper-
cholesterolemic setting[12–14]. These studies demonstrated
that amongst others adenovirus-delivered FasL can modu-
late infiltration of inflammatory cells and thereby the initi-
ation and progression of atherosclerosis. In the present in
vivo study, and in contrast to previous studies, we focused
on the role of FasL in pre-existing advanced atherosclerotic
plaques; a setting in which cells may be highly sensitive to this
apoptotic trigger. To this end, we transduced advanced collar-
induced[15] pre-existing carotid artery lesions in ApoE−/−
mice with adenovirus carrying a murine FasL transgene.

The present study shows that advanced murine plaques
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fixed using phosphate buffered formalin pH 7.4. The regula-
tory authority of the institutional experimental animal com-
mittee approved all animal work.

2.3. Tissue preparation and histological analysis

The obtained carotid artery specimens were either dehy-
drated and embedded in paraffin or snap-frozen to prepare
cryosections. Transverse 5�m cross-sections were prepared,
serially mounted, and routinely stained with hematoxylin
(Merck Diagnostica, Darmstadt, Germany) and eosin (HE)
(Sigma), Masson’s trichrome (kit #HT15, Sigma Diagnos-
tics, St. Louis, USA) and picrosirius red (Chroma, Stuttgart,
Germany).�-Galactosidase was demonstrated by incubation
with X-gal (1 mg/ml, Sigma) at 37◦C for 4 h. Apoptosis
was assessed by terminal deoxynucleotidyl transferase end-
labeling (TUNEL)[18,19]. Iron deposits were visualized by
Perls iron staining.

Slides were stained with an antibody against Fas[20]. Se-
rial slides were stained with antibodies against the endothe-
lial cell marker CD31 (dilution 1:200, Pharmingen), SM-�-
actin (clone 1A4, dilution 1:1500, DAKO) and the mono-
cyte/macrophage antibody AIA31240 (dilution 1:3000, Ac-
curate Chemical and Scientific, New York, USA). Polyclonal
biotinylated goat anti-rat Ig (1:100, Pharmingen), biotiny-
lated rabbit anti-mouse Ig (1:300, DAKO), goat anti-mouse
I rg,
T er-
s cuba-
t om-
p sed
u e
s

rea,
fi s) of
t osis)
a in
s de-
s

2

l-
y test.
F t test.
P gnifi-
c

3

3

in-
t ucts
( tive
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icate that stimulation of this pathway could result in pla
emodelling towards a more vulnerable phenotype.

. Methods

.1. Adenoviral vectors

Serotype 5 adenoviral vectors containing the murine
igand cDNA (Ad-FasL; kind gift from Dr. K Walsh, Molec
lar Cardiology, Whitaker Cardiovascular Institute, Bos
SA) or bacterial�-galactosidase cDNA (Ad-LacZ) drive
y the cytomegalovirus promoter were used and have
escribed previously[13]. Adenoviral vectors were prop
ated in PER.C6 cells, tested and their titer quantified
ording to standard protocols[16].

.2. Carotid collar placement and adenovirus injection

Carotid atherosclerotic lesions were induced by per
ular collar placement in male ApoE−/− mice, aged
0–12 weeks[15]. Four weeks after surgery, the c

ars were removed and 10�l of adenoviral suspension
.5× 1010 pfu/ml was instilled bilaterally (at random
ide with Ad5-CMV.FasL, the contralateral side with Ad
MV.LacZ) into the common carotid artery via the ex
al carotid as described[17]. 1 (n = 9), 3 (n = 9) or 14 days
n = 17) after transfection mice were sacrificed by perfu
ith phosphate buffered saline and tissues were perfu
gG peroxidase conjugate (dilution 1:500, Nordic, Tilbu
he Netherlands) and donkey anti-rabbit Ig (1:3000, Am
ham) were used as secondary antibodies. Following in
ion with horseradish peroxidase labeled avidin-biotin c
lex (abc/HRP) (DAKO), peroxidase activity was visuali
sing NovaRED (Vector) or 3,3′-diamino-benzidine as th
ubstrate.

Morphometrical analysis (media area, total intima a
brocellular cap area, core area, nuclei counts and ratio
hree sections per carotid artery (point of maximum sten
t 80�m intervals was blindly performed using LeicaQw
oftware (Leica Imaging Systems, Cambridge, UK), as
cribed previously[17].

.4. Statistical analysis

All data are represented as mean± S.D. Data were ana
sed using the non-parametric Mann–Whitney rank sum
requency data analysis was carried out by Fisher’s exac
-values less than 0.05 were regarded as statistically si
ant.

. Results

.1. Adenoviral activity

Functionality of the transgene was confirmed by
ravenous injection of both LacZ and FasL constr
2× 109 pfu/mouse) in wild type animals and Fas-defec
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mice (lpr mice). As analysed on 5�m liver cryosections,
three days after intravenous injection of Ad-LacZ, virtually
all liver cells of both wild type andlpr mice displayed�-
galactosidase activity (not shown). Following Ad-FasL in-
jection, hematoxylin-eosin stained paraffin sections of livers
of wild type mice displayed the typical features of apoptosis,
including cell shrinkage, nuclear condensation and fragmen-
tation in 75.8± 5.1% of the hepatic cells (n = 3, not shown).
Liver apoptosis in Ad-FasL injected mice was accompanied
by extremely high serum alanine aminotransferase (ALT) lev-
els (>10,000 U/L versus 42± 8 U/ml for Ad-LacZ). In con-
trast, Ad-FasL injectedlpr mice displayed no features of
liver apoptosis and damage (serum ALT levels of 34± 6 U/L,
n = 3). This demonstrates that the two adenoviral constructs
have comparable transduction efficiency, with Ad-FasL be-
ing a potent and specific inducer of apoptosis of Fas-bearing
liver cells.

3.2. Effects of Ad-FasL one day after transfection

Presence of the Fas death receptor in pre-existing carotid
artery lesions of ApoE-deficient mice was confirmed by im-
munohistochemistry. The cap area demonstrates the pres-
ence of Fas-positive lining of morphologically identified
SMCs (Fig. 1B), which was comparable with Fas-positive
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Fig. 2. (Immuno)histochemical staining of collar-induced carotid artery le-
sions one day after transfection of Ad-LacZ (left panels) and Ad-FasL (right
panels). (A) X-gal staining, showing an Ad-LacZ-incubated carotid artery
lesion three days after transfection and (B) hematoxylin and eosin staining
one day after Ad-FasL incubation. (C and D) TUNEL staining for apoptosis.
Apoptosis is observed as positive red staining. (E and F) SM-�-actin stain-
ing. (G and H) Monocyte/macrophage AIA31240 staining. (I and J) CD31
staining (magnification 400×; scale bar 25�m, insets magnification 600×).

tion with control Ad-LacZ, showing�-galactosidase-positive
blue cells in the shoulders and cap of the lesion (Fig. 2A).

Success of transfection by Ad-FasL was monitored using
TUNEL staining, which allows detection of FasL-induced
apoptosis. One day after transfection, TUNEL-positive nuclei
were absent 100�m proximal to the atherosclerotic lesion at
the level of the non-diseased vessel wall, which was also ex-
posed to either Ad-FasL (lateral) or Ad-LacZ (contralateral)
(Table 1). By contrast, at the site of the atherosclerotic le-
sion, Ad-FasL incubation resulted in the presence of TUNEL-
positive nuclei, located in the SM-�-actin-positive cap area,
as well as in the core (Fig. 2D). In Ad-LacZ-incubated le-
sions such TUNEL-positive material was mainly confined to
the core of the lesions and only incidentally found in caps
of lesions (Fig. 2C). Quantitation of the number of TUNEL-
positive nuclei in the core showed equal presence of TUNEL-
positive nuclei for Ad-FasL and Ad-LacZ-incubated lesions
(3.3± 4.9 versus 4.0± 2.3% TUNEL-positive nuclei for Ad-
LacZ and Ad-FasL, respectively,Table 1). Quantification of
ining observed for hepatocytes (Fig. 1D). In addition, Fa
ositivity was observed for endothelial cells and (c
acrophages.
Previous local adenoviral delivery to pre-existing col

nduced carotid artery lesions of ApoE-deficient mice
ulted in efficient transduction of a superficial layer of
M-�-actin-positive fibrous cap[17]. Endothelial cells an
ccasional superficial macrophages can also be target

his procedure. In the present study, we confirmed tran
ion of the SMC-rich cap area by�-galactosidase staining

collar-induced carotid artery lesion one day after inc

ig. 1. Immunohistochemistry of the Fas receptor. (A) Control IgG
ody and (B) Fas antibody staining of atherosclerotic plaque, demons

hat amongst others SMCs have Fas-positive lining (B, arrows). (C)
rol IgG antibody and (D) Fas antibody staining of wild type liver, show
as-positive lining of liver cell membranes and leukocytes (D, arrows)
edia, P, plaque, L, lumen, magnification 400×.)
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Table 1
Quantification of TUNEL-positive nuclei and the number of AIA31240-
positive cells present at the lumenal side of the endothelial lining of Ad-FasL-
treated or contralateral Ad-LacZ-treated pre-existing carotid atherosclerotic
plaques and normal vessel wall one day after transfection

Ad-LacZ Ad-FasL

TUNEL-positive nuclei (% of total nuclei)
Non-diseased vessel wall 0.0± 0.0 0.0± 0.0

Atherosclerotic vessel wall
Total 3.7± 2.0 5.5± 1.8
Core 3.3± 4.9 4.0± 2.3
Cap 0.5± 0.7 1.5± 1.7a

Adhering lumenal AIA31240-positive cells (cells/section)
Non-diseased vessel wall 1.7± 1.3 2.5± 1.1
Atherosclerotic vessel wall 1.2± 0.9 10.2± 3.9a

a Significantly different from Ad-LacZ-treated group (P < 0.05).

the number of TUNEL-positive nuclei in the cap revealed that
Ad-FasL-incubated lesions had a significant (P = 0.04) three-
fold higher presence of TUNEL-positive nuclei as compared
to the Ad-LacZ-incubated lesions (0.5± 0.7 versus 1.5± 1.7
TUNEL-positive nuclei for Ad-LacZ and Ad-FasL, respec-
tively, Table 1). This indicates that Ad-FasL induces apopto-
sis not only in the liver of systemically-treated animals, but
also specifically at the level of the atherosclerotic vessel wall
of locally-treated animals.

The increase of TUNEL positivity in cap cells of the Ad-
FasL-incubated lesions coincided with increased presence
of cells staining positive for monocyte/macrophage antibody
AIA31240, both subendothelial and at the lumenal side of the
endothelial lining (Fig. 2H). Quantitation of the AIA31240-
positive cells at lumenal side of the endothelial lining yielded
10.2± 3.9 compared to 1.2± 0.9 cells per section (n = 4)
for Ad-LacZ-incubated lesions (P = 0.01,Table 1). Although
the presence of AIA31240-positive cells was also detected
at the level of the adenovirus-incubated non-diseased part
of the vessel wall, their number was low and compara-
ble for Ad-LacZ and Ad-FasL incubations (2.5± 1.1 versus
1.7± 1.3 AIA31240-positive cells per section for Ad-LacZ,
P = 0.76,Table 1). Subendothelial presence of AIA31240-
positive cells in this part of the vessel wall was not detected.

Ad-FasL and Ad-LacZ-incubated arteries had a continu-
ous CD31-positive lining with equal staining intensity both

at the site of the lesion (Fig. 2I and J), as well as at the site of
the non-diseased vessel (not shown), indicating that Ad-FasL
did not affect the integrity of the endothelial lining.

3.3. Effects of Ad-FasL three days after transfection

Three days after FasL overexpression presence of
AIA31240-positive cells subendothelial and at the lume-
nal side of the endothelial lining was strongly reduced and
only observed in one out of nine plaques. Interestingly, in
one plaque, we observed presence of cells, morphologically
identified as red blood cells, suggesting intra-plaque hem-
orrhage. Detailed morphometrical analysis revealed no dif-
ferences at three days after incubation between Ad-FasL
and Ad-LacZ-treated carotid artery lesions for total intima
area, macrophage area, cap–plaque ratio or cap–core ratio
(Table 2). A tendency towards a 40% decrease in the cap
SMC area was observed that coincided with a significant 38%
reduction in number of cap cells (Table 2).

3.4. Effects of Ad-FasL two weeks after transfection

Total cross-sectional intima area did not differ between
treatment groups (Table 3). The plaques of both groups
consisted of a distinctive fibrous cap overlying a hypocel-
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arameters

edia area (×103�m2) 4
otal intima area (×103�m2) 5
acrophage area (from AIA31240) (×103�m2) 3
MC cap area (SM-�-actin) (×103�m2) 1
ap–intima ratio
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uclei/cap
uclei/cap surface area (×10−3�m2)
a Significantly different from Ad-LacZ-treated group.
ular core. The core and cap area and consequently
he cap–core ratio were not different between the treat
roups. In addition, the cap–intima ratio, the surface are
ollagen-rich matrix as determined by Masson’s trichro
nd the average number of nuclei contained within e
�m section of the cap were not different (Table 3). Inti-
al macrophage area was unaffected by Ad-FasL (Table 3).
taining for SM-�-actin was confined to the media and
brous cap in both groups (not shown) and was not diffe
etween the treatment groups (Table 3).

.5. Evidence of rupture-related events in
d-FasL-treated plaques

Despite the absence of morphometrical differences
eeks after incubation, further histological analysis of
tandard Masson’s trichrome stained sections of the
asL-treated collar-induced plaques revealed the occur

sL-treated and contralateral Ad-LacZ-treated carotid arteries three days afte

Z Ad-FasL P-value

.5 46.3± 15.3 0.906
3.9 40.5± 15.1 0.409
8.3 33.7± 13.4 0.814
.9 6.7± 2.7 0.077
.04 0.2± 0.05 0.110
.06 0.2± 0.07 0.087
7 69± 28 0.013a

11 ± 3 1.000
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Table 3
Morphometric evaluation of collar-induced atherosclerotic lesions of Ad-FasL-treated and contralateral Ad-LacZ-treated carotid arteries 14 days after trans-
fection (n = 13)

Parameters Ad-LacZ Ad-FasL P-value

Media area (×103�m2) 33.4± 5.3 36.8± 9.2 0.293
Total intima area (×103�m2) 44.1± 26.2 58.5± 35.8 0.343
Core area (×103�m2) 33.0± 17.6 48.1± 34.0 0.228
Macrophage area (from AIA31240) (×103�m2) 29.2± 19.6 41.8± 27.9 0.157
Cap area (collagen, Masson’s) (×103�m2) 12.0± 11.4 11.3± 7.1 0.525
SMC cap area (SM-�-actin) (×103�m2) 10.5± 6.2 12.6± 5.7 0.327
Cap–intima ratio 0.2± 0.1 0.2± 0.1 0.908
Cap–core ratio 0.3± 0.2 0.3± 0.1 0.419
Nuclei/cap 70± 52 86± 42 0.140
Nuclei/cap surface area (×10−3�m2) 8 ± 2 8 ± 3 0.577

of cap breaks in 2 of a total of 17 carotid arteries (Fig. 3A and
B, Table 4), which was accompanied by infiltrated red blood
cells not only at the shoulder regions, but also throughout the
Ad-FasL-treated plaque, indicating intraplaque hemorrhage
(IPH) had occurred. In addition, two cases of single buried
caps were found, which is considered a sign of previous rup-
ture[21]. Another two plaques showed IPH, of which one also
had a buried cap. Both were confirmed by evidence of phago-
cytosis of erythrocytes by macrophages, as demonstrated by

Fig. 3. Masson’s trichrome (A, B, C) and Perl iron (D) stain demonstrating
rupture-related events only in the Ad-FasL-treated carotid arteries 14 days
after transfection of pre-existing carotid atherosclerosis. (A and B) Intra-
plaque hemorrhage (IPH). (C) IPH and a buried cap. (D) Serial section
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cally significant (6 out of 17 carotid arteries) as compared to
the control Ad-LacZ-treated group (0 out 17; Fisher’s exact
test,P = 0.009,Table 4).

4. Discussion

The presence of Fas and Fas ligand in human atheroscle-
rotic plaques[3,6], and the fact that human blood-derived
macrophages can induce apoptosis in human plaque-derived
SMCs by Fas/Fas ligand interactions in vitro[11], have
suggested the Fas/Fas ligand pathway of apoptosis as a
potential key player in lesion remodelling. In the present in
vivo study we transfected the SMC-rich cap of pre-existing
plaques with adenovirus carrying FasL. FasL expression
led to a three-fold increase in cap-apoptosis one day after
gene transfer. Three days after gene transfer, FasL-induced
a 38% reduction in the number of cap cells. Two weeks
after Ad-FasL transfer, non-thrombotic rupture, intra-plaque
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laque remodelling towards a more vulnerable ph
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In the current study, we investigated whether FasL is

o induce remodelling of advanced atherosclerotic plaq
ther in vivo studies on the role of FasL in vascular dis
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non-injury hypercholesterolemic rabbit model, endoth

ells of non-atherosclerotic carotid arteries were transd
ith FasL, resulting in decreased T cell infiltration and
elerated atherosclerotic lesion growth by increasing sm
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muscle lesion cellularity[14]. Adenovirus-mediated delivery
of FasL to denuded vessels caused inhibition of neointima
formation in a rat carotid artery balloon-injury model in
combination with decreased T-cell infiltration of the lesion
[12]. Transgenic mice on an ApoE−/− background, that
specifically overexpress different levels of FasL on vascular
ECs, show reduced atherosclerotic lesion area in aortas. This
coincided with decreases in both macrophage and CD8 T-cell
accumulation in lesions[22]. In a rat aortic allograft model,
adenovirus-mediated overexpression of soluble Fas blocked
Fas binding to FasL and reduced CD45+ cell infiltration, thus
protecting the integrity of the vessel wall from immune injury
and attenuating transplant arteriosclerosis[23]. Overall,
these studies using various models of vascular disease and
gene expression protocols, suggest that Fas ligand functions
to inhibit infiltration of inflammatory cells and thereby
modulates the initiation and progression of the disease. In
contrast, the present in vivo study focuses on pre-existing
lesions and the SMC-rich cap is targeted. In line with in vitro
findings[7,9,11,24,25], we demonstrate that FasL is capable
of inducing lesional apoptosis and thereby secondary recruit-
ment of AIA31240-positive cells (monocytes/macrophages)
was caused only at the level of the diseased atherosclerotic
vessel wall. Apparently, Fas/FasL interactions result in
various effects depending on the model and targeted cell
type.
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nd superficial macrophages can be targeted by our
denovirus procedure. On the other hand, macrophag
nown to be very hard to transduce in vivo[26]. Whereas, EC
o express Fas on their cell surface under normal, but
athological conditions, they are resistant to Fas-med
poptosis[14,27,28]. This was supported by our obser

ion that FasL did not affect the integrity of the contin
us CD31-positive endothelial lining covering the plaq

n addition to SMC apoptosis, macrophage foam cells
key role in the vulnerability of the atherosclerotic plaq
high macrophage:SMC ratio makes a plaque more p

o rupture. Previous studies have shown that macroph
nd SMCs in the atherosclerotic plaque synthesize an
rete matrix proteases, like metalloprotease 1 and 3[29,30].
hese MMP’s can degrade the fibrous cap and thereby

ribute to plaque instability. Although there is no differenc
he number of macrophages in the FasL and control-tre
esions, we cannot exclude the possibility that the lesion
ific macrophages may in fact differ in their propensity
nduce plaque rupture.
estabilisation.
Rupture-prone plaques exhibit accumulation of v

us pro-inflammatory cytokines from T-cells, monocy
acrophages, as well as SMCs[31]. In vitro it was shown tha
nly after treatment with cytokines, such as interferon gam
IFN�), interleukin-1�, or TNF-�, which are also present
he plaque, SMC were sensitive to Fas-mediated deat[6].
n addition, pharmacological concentrations of some st
ave also been found to “sensitize” SMCs to Fas-med
eath[32]. Our model, in which rupture occurs more f
uently and in a controlled fashion, may help to delin

he molecular pathways involved in plaque (de)stabiliza
nd to evaluate (anti-inflammatory) therapies aimed at pl
tabilization and prevention.

Our p53 and FasL adenovirus studies were both aim
riggering endogenous pathologically activated pathwa
he atherosclerotic plaque. In both studies, we observed o
imited increase in apoptosis (up to 1.5% of cap cells) alre
oinciding with destabilization of the plaque and ruptu
elated events. Our experimental approach using trans
ice with collar-induced lesions and adenovirus medi
ene delivery may be far from the human and physiol
ally relevant situation. However, the p53 or FasL-indu
poptosis levels are still within the range observed in
an atherosclerotic lesions[18]. Together with human hi

ological data[3–5] and in vitro studies with human ce
9–11,24,25], our data suggest that p53 and Fas may be
ortant and physiologically relevant triggers for apopt
nd remodelling of the plaque towards a more vulner
henotype.
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