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Abstract

Amongst the most important signal transduction molecules involved in regulating growth and
differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of
interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both
compartments is required to dissect the mechanisms that control this process. Here we report a
search for PTK in mouse TSC, using RT-PCR to survey the repertoire of PTK mRNAs expressed in
a freshly isolated TSC preparation. We identified 10 different PTK ¢cDNAs among the 216 cDNAs
sequenced, and demonstrate that transcripts of three of those (ufo, fyn and fer) are widely
expressed among a large panel of immortalized thymic epithelial cell lines (TEC) and in primary
cultures of TSC. Of the other seven, none were expressed in established TEC lines but, instead,
displayed distinct expression patterns in cell types likely to have contaminated the fresh TSC
preparation, i.e. macrophages, B cells, T cells and fibroblasts. Among the three PTK expressed in
TEC lines, only one, ufo, exhibited expression exclusively in cells of non-hemopoietic origin.
Although expression of ufo (also known as tyro 7, axl or ark) is not thymic-specific, in that it is
also expressed in cell types of mesodermal origin in other tissues, its presence in TEC suggests a
role for ufo in differentiation of the TSC compartment. Consistent with this notion, high-level
expression of this receptor PTK at the protein level could be documented in every TEC line
investigated, as well as in fresh thymus tissue sections. These data provide the first example of a
receptor PTK in TSC and open new approaches to study the regulation of TSC differentiation.

Introduction

Stromal cells in the thymus provide specialized microenviron-
ments which support the differentiation of bone marrow-
derived precursors into functional T cells (for reviews see 1-
4). While there have been considerable advances in under-
standing the progressive steps in early T cell development,
much less is clear about the role of the thymic microenviron-
ment in this process. As thymocytes migrate through the
thymus, niches formed by stromal cells allow for extensive
communication with the developing T cells. Development of
the most prominent of these, the aff TCR-expressing popula-
tion, can be subdivided into multiple stages based on the
membrane expression of proteins such as the TCR itself and
its co-receptors, CD4 and CD8 (3-5). Most thymo-
cytes develop from TCRCD4"CD8  precursors via

TCR°CD4*CD8* intermediates into either TCRMCD4*CD8~
or TCRCD4-CD8* mature T cells. Cytokines provide some
of the early differentiation-inducing signals for TCR-CD4-CD8"~
T cells (B), with later (selection) steps more dependent on
cell-cell interactions. These interactions are facilitated by the
intricate microenvironment created by thymic stroma and
lymphocytes, but information on the signal transduction mole-
cules involved is lacking. Here we report on an analysis of
the protein tyrosine kinases (PTK) expressed in freshly isolated
thymic stromal cell (TSC) preparations.

Stromal cells encompass ~1% of the total cell number in
the thymus and constitute a large yet poorly characterized
variety of cell types. Thymic epithelial cells (TEC), unique
amongst other epithelial cells because they create a three-
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dimensional network structure, can be further classified into *

a yet unknown number of subtypes based on localization
(medulia, cortex or subcapsular area), morphology (1,2), and
the expression of various intracellular and transmembrane
proteins as defined by mAb (7). The same holds true for
thymic macrophages, which are present in all mentioned
thymic compartments and have an unknown variety of thymic
subtypes. In addition, interdigitating or dendritic cells are
present in the thymic medulla and also fibroblasts can be
detected. The role of this exceptional cellular diversification
in the thymic microenvironment is not clear, but the hypothesis
that special functions can be attributed to the different com-
partments has been entertained. In negative and positive
selection, arguments both for and against the notion that
specific thymic cell types are responsible for these alternative
forms of selection have been presented (reviewed in 8,9). For
early T cell differentiation, cells of both mesenchymal and
epithelial origin are required (10), while for the later steps of
development, after the off TCR has been produced, the
mesenchymal compartment can be missed. Macrophages
do play a special role, to the extent that they have long been
thought to be engaged in removal of apoptotic cells (11),
firmly documented recently by in situ visualization of apoptotic
cells in thymic macrophages (12). Overall, however, it is not
clear what purpose is served by the large diversity of thymic
stromal subtypes.

To complicate matters further, recent evidence supports
the view that the communication between TSC and thymocytes
is in fact bidirectional (13,14). Thus, not only are thymocytes
dependent on the thymic stromal microenvironments, but TSC
need properly developing thymocytes for their correct spatial
organization. This is particularly illustrated by the finding that
mice carrying targeted mutations in T cell differentiation-
associated genes also exhibit, as a secondary effect, an
altered thymic stromal environment (13). For example, mice
with deleted RAG genes not only show a specific block in
maturation of their thymocytes at the CD44-CD25* stage of
development (3-6,15,16), but these animals also lack normal
thymic medullary epithelium (13). Likewise, mice with an even
earlier block in T cell development, i.e. at the CD44*CD25~
stage, fail to develop a functional thymic cortex (17).

Despite this evidence for ‘cross-talk’ between TSC and
thymocytes, the surface receptors and intracellular signal
transduction pathways that operate in TSC are still largely
unknown. In contrast, several PTK have been implicated in T
cell development (18-24) by virtue of their function in signal
transduction through the TCR (25). Mice deficient in p56/ck
(21) or expressing a dominant negative form of p56/ck (22)
display an early block in thymocyte development at the CD44~
CD25* stage (21,22). ZAP-70 (23) and itk (24) deficient mice
display a phenotype more consistent with a later block, i.e.
at the transition of double-positive (CD4*CD8%) to single-
positive stages. Interestingly, also proper development of the
TSC compartment is affected by the /lck mutation (13). The
latter phenomenon might be an indirect consequence of the
absence of specific thymocyte subpopulations which support
the proper maturation of TSC. Alternatively, the tyrosine kinase
genes expressed by TSC and thymocytes overlap; the TSC
compartment would then be directly affected by the above
mutations.

To begin to address which signal transduction pathways
underlie TSC differentiation, we sought to define the
repertoire of tyrosine kinase genes expressed by mouse
TSC. In this report, we used homology-based cloning by
PCR of PTK cDNAs out of fresh TSC cDNA. Transcripts of
10 different PTK were identified and their expression
characteristics in TSC and other thymic cell types are
presented. Three of these PTK are expressed by thymic
stroma cells, i.e., fer, fyn and ufo. ufo represents a receptor-
like PTK (also named ax/ or tyro 7) and is the only one of
these PTK of which expression is restricted to non-
hemopoietic cell types. Every TSC line we investigated
manifests expression of Ufo/AxI/Tyro 7 at the protein level,
as did primary cuitures of TSC. Also, thymus tissue sections
exhibit staining for Ufo in a reticular pattern predominantly
in the medullary, but also in the cortical region. This
receptor PTK may therefore be involved in the regulation
of differentiation of the TSC compartment. Of the two other
PTK expressed in stroma, one (fer) is also expressed in B
cell and macrophage cell lines, while we found fyn to be
universally expressed throughout the hemopoietic system.
Identification of the physiological role of these kinases in
TSC will be a challenge for the future.

Methods

Mice
Ten 8-week-old female C57BL/6 mice (B6) were used for

isolation of TSC and thymus tissue section analysis. For the
isolation of other organs we used 16-week-old B6 males.

Isolation of mouse TSC

Fresh C57BL/6 TSC were isolated as described (26, 27). In
short, 10 thymi from female B6 mice were minced in cold
PBS, subjected to enzymatic digestion with 400 IU/ml colla-
genase and 10 pg/ml DNase for 30 min at 37°C, and filtered
through a 100 um mesh to remove cell debris. Subsequently,
the cells were incubated in 5 mM EDTA for 30 min at 37°C to
disrupt rosettes and centrifuged on FCS (containing 5 mM
EDTA) at 50 g for 3 min. The cells that had entered the FCS
were harvested at 450 g for 3 min and washed twice in cold
PBS (with 5 mM EDTA). Thus, ~4x10% TSC were isolated.

Isolation of cDNA from mouse TSC

TSC were lysed in 600 ul solution D (4 M guanidinium
thiocyanate, 25 mM sodium citrate (pH 7.0, 0.5% sarkosyl,
0.1 M B-mercaptoethanol) as described (28). DNA was depuri-
nated by adding 60 pl 2 M sodium acetate, pH 4.0. Next,
600 ul phenol saturated with water was added, followed by
120 pl 50:1 solution of chloroform:isoamyl-alcohol. After 15
min on ice and 15 min centrifugation at 12,000 r.p.m. the
water phase was transferred to a clean tube and RNA was
precipitated overnight at -20°C by adding 1 vol. isopropanol.
The pellet was collected by 15 min centrifugation at 12,000
r.p.m. and dissolved in 300 ul solution D to repeat the above
procedure once more. Finally, the RNA pellet was washed
with 70% ethanol and dissolved in 50 ui DEPC-treated water.
Then, 5 ul RNA was mixed with 0.5 ug oligo-dT (Pharmacia,
Uppsala, Sweden) and DEPC-treated water was added to
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tyro 8 DSDLSVKVSDFGMTRYV*LDDQYVSSVGTKF *PVKWSAPEVFHYFKYSSKS

Ick SDT--C-IA---LA-LI*E-NE-TARE-A~--*-I~-T~--AIN-GTFTI--
fgr GEY-IC~IA-~~LA-LI*E~NE-NPQQ-~~~*~I~--T--~AALFGRFTV--
hck SAS-VC-IA---LA-II*E-NE-TARE-A--*=I==T---AINFGSFTI~~
lyn SES-MC-IA---LA-VI*E-NE-TARE~A~--*-I--T-~-AINFGCFTI--
fyn GNG-IC~IA---LA-LI*E-NE-TARQ-A--*-I--T---AAL-GRFTI--
blk SET-CC~IA~~~LA~11*%~SE~TAQE~RA—r*=]-~~T—~AT~FGVFTI-A
fes TEKNVL-I-—----5-EE*A-GI-AACS-LRQV----T---ALN-GR~--E-
fer GENNTL~ I »~r=—=~G-~0E*NEEV~5~—~GLRQT *~ [ ~~T=A~ALN~GR~—~—E~

ufo-R NENMSVCVADFGLSKKIYNGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWSFGVTMWE IATRG

Fig. 1. Predicted amino acid sequences of the partial tyrosine kinase tyro 8 cDNA (top) and the other tyrosine kinase cDNAs isolated in this
study. Tyro 8 is shown as reference since it was previously isolated (29) using the same set of degenerate primers utilized in the present
study. Src family: Ick, fgr, hck, lyn and fyn and bik; fes family: fes and fer. The one receptor PTK isolated, ufo, is shown separately at the
bottom. An asterisk indicates the absence of an amino acid residue. A dash indicates identity with the Tyro 8 reference sequence.

ufor

Fig. 2. Northern blot analysis of mouse TSC lines MTE-1 (S1), B6TE/
A (82), TNCR3.1 (83), 2.4B6 (S4), A2T (S5), TEC (S6), 1D4 (S7) and
Tepi (S8), macrophage cell line P388D1 (M), B cell line SP2/0 (B), T
cell line RMA-S (T) and 8 days cultured TSC (S8) hybridized to a
partial ufo cDNA probe. Migration positions of 185 and 28S rRNA
are indicated by horizontal lines.

12 pl. After 10 min incubation at 70°C, followed by chilling on
ice, a cDNA reaction was performed in a 20 pl volume using
200 p M-MLV reverse transcriptase (BRL, Grand Island, NY)
for 1 h at 37°C. The reaction was stopped by 3 min at 85°C,
180 ul DECP water was added and 20 pl of the cDNA was
used for PCR amplification.

Degenerate PCR amplification and cloning of TSC tyrosine
kinase cDNA

Amplification of TSC cDNAs was performed in a DNA Thermal
Cycler (Perkin Elmer Cetus, Norwalk, CT) using degenerate

oligonucleotide primers based on conserved tyrosine kinase
domains as described (29). The primers contained EcoRl
and BamHI cloning sequences and increasing annealing
temperatures were used during the ampilification. Two pools
of products were generated of 148 and 213 bp (A series
and B series respéctively). A series primers: forward 5'-
CCGGAATTCCAYCGGGACCTGCGGGCTGCCAACWKYYTN-
GT-3’, reverse: 5'-CCCGGATCCCTCRGGGGCYRTCCACTT-
DATNGG-3'. B series primers: forward same as A-series,
reverse: 5'-CCCGGATCCCTCYSWCAGCAGGATGCCRAAG-
GACCANACRTC-3'. The pools were separated from the
primers by 1.2% agarose gel electrophoresis and re-amplified
using corresponding fresh primers by 30 rounds of 45 s 94°C,
45 s 60°C and 1 min 72°C. The PCR products were extracted
with Tris-HCI, pH 8.0, saturated phenol, precipitated, digested
with 5 u EcoR! and BamHI at 37°C for 1 h, phenol extracted,
and precipitated again. The digested products were purified
by 1% low melting agarose gel electrophoresis (30) and
ligated into the EcoRl and BamHl sites of pUC18. Ligates were
transformed into electrocompetent Escherichia coli DH5a
bacteria by electroporation at 25 puF capacitance and 200
ohm resistance. Thus two libraries (A series and B series) of
partial tyrosine kinase domain cDNAs were generated of
~5000 clones each.

DNA sequencing of TSC tyrosine kinase cDNA clones

Plasmid DNA was isolated from single colonies as described
(30) and subjected to PCR-aided non-radioactive automated
DNA sequencing in a DNA sequencer 373A-36 (Applied
Biosystems, Foster City, CA). Databases were searched with
nucleic acid sequences (GenBank) and predicted protein
sequences (GenBank, Protein Identification Resource and
Swis-Prot).
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Fig. 3. Northern blot analysis of mouse TSC lines 1D4 (S1), Tec (S2),
Tepi (S3), 1C2 (S4) and TNCR3.1 (S5), thymus (Th), spleen (Sp), 8
days cultured TSC (S8), bone marrow (Bm), macrophage cell line
P388D1 (M), T cell line RMA-S (T), and B cell line SP2/0 (B) hybridized
to a complete fyn cDNA probe. Migration positions of 18S and 28S
RNA are indicated by horizontal lines.
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Fig. 4. (A) Northern blot of Fig. 5(A) rehybridized to fer cDNA probe
(Ick signal still visible). (B) Northern blot of Fig. 5(B) rehybridized to
tyro 8 probe (TCRP signal still visible).

Northern blot analysis of RNA isolated from mouse tissues
and cell lines

RNA was extracted by using the guanidinium-HCI method
essentially as previously described (31). Cell lines were
harvested (if necessary, by treatment with 0.05% trypsin/0.5
mM EDTA), washed twice in PBS and lysed in 6 M guanidinium
hydrochloride. The following cell lines were used: TEC lines
1D4 (27), Tec (32), Tepi (33), TEC1-2C1 (gift of Dr Kasai),
TNCR3.1 (34), MTE-1 (35), B6TE/A (36), 2.4B6 (36), A2T (37),
fibroblast cell line NIH 3T3 (ATCC CRL 1658), macrophage
cell line P388D1 (38), T cell lines RMA-S (39) and 18.2 (day
18 fetal thymus cell line), and B cell line SP2/0 (ATCC
CRL 1581).

Sixteen-week-old BALB/c males were sacrificed to obtain
complete organs (thymus, spleen, bone marrow, liver, testis,

S  TuSeSsF MT B
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Fig. 5. (A) Northern blot analysis of mouse TSC lines 1D4 (S1), Tec
(S2), Tepi (83), 1C2 (S4) and TNCR3.1 (S5), thymus (Th), spleen
(Sp). 8 days cultured TSC (S8), fibroblast cell line NIH/3T3 (F),
macrophage cell line P388D1 (M), T cell line RMA-S (T), and B cell
line SP2/0 (B) hybridized to Ick cDNA probe. (B) Northern blot
analysis as above; hybridization to TCRB probe. Fibroblast RNA
replaced by mouse bone marrow (Bm). Migration positions of 18S
and 28S RNA are indicated by horizontal lines.

heart, lung, kidney and brain) which were directly frozen in
liquid nitrogen and crushed in a mortar just prior to the
addition of 6 M guanidinium-HCI. Aliquots of 30 ug of RNA
were separated by electrophoresis for 4 h at 120 V in 1.2%
agarosef/formaldehyde gels (30). RNA was transferred to
nylon membranes (Amersham Hybond N*) by overnight
capillary blotting in 0.05 N NaOH. Hybridization was per-
formed according to the manufacturer’s instructions and
washing was done with 1XSSPE/0.1% SDS at 65°C. Blots
were exposed to Kodak XAR-5 films at —-80°C. The following
probes were used: a 0.6 kb EcoRl fragment containing
TCRB C-region cDNA, a 2.1 kb EcoRlI fragment containing a
complete /ck cDNA (gift of Dr Pertmutter), a 3.8 kb EcoRl
fragment containing an almost complete ufo cDNA (gift of Dr
Bartram), a 2.2 kb Xho! fragment containing a complete lynA
cDNA (gift of Dr Miller), a 2.0 kb EcoRI fragment containing
a complete hck cDNA (gift of Dr Perlmutter) and a 2.6 kb
EcoRl fragment containing a complete c-fes cDNA (gift of
Dr Pawson). In addition, when full length probes were not
available, DNA minipreps (including the pUC18 vector) of the
various tyrosine kinase cDNAs that we cloned during this
study were used as probes. Labeling was performed by
random priming and Klenow DNA polymerase (Pharmacia).

Western blot analysis

Cells were lysed for 30 min on ice with lysis buffer containing:
1% Nonidet P-40, 0.1% SDS, 10 mM Tris—HCI, pH 8.0, 140
mM NaCl, 2 mM EDTA, protease inhibitors (1 mM phenyl-
methyisulfonyl fluoride, 10 ug/mi of: chymostatin, leupeptin,
aprotinin, antipain and pepstatin) and phosphatase inhibitors
(2 mM sodium orthovanadate and 10 mM NaF). Lysates were
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Table 1. Expression characteristics of mouse tyrosine kinase
genes in thymus (Th), spleen (Sp), 8 days cultured TSC (S8),
TEC lines (S), bone marrow (Bm), macrophages (M), T cell
lines (T), B cell (B) and fibroblast (F) lines, as assessed by
Northern blotting analyses (sizes of the various mRNAs are
indicated in kb).

PTIK Th Sp S8 S Bm M T B F Size Reference

(kb)

Ilck +++ - - ND - 44+ - - 22 43
fgr -~ - - - ++ ++ - - ++ 26 44
hck + + - - ++ + - ++ + 24 45
pp - + - - ND + - - + 32 46
fes - + - - ++ ++- - - 28 47
ufo + ++ ++ + - - - + 42 48
fyn ++ + + + + + + + + 28 49
tyro + - - ++ 4+ - ++ - 23 29
8

fer - - ++ ++ ND ++ - ++ ++ 24 50
bk - + - - ND- - + ND 25 51

spun at 14,000 g, 15 min at 4°C, and the supernatants added
to 2XSDS sample buffer. The proteins were separated on
7.5% SDS-PAGE gels, and transferred onto nitrocellulose
membranes (Schleicher & Schuell, Dassel, Germany). Mem-
branes were blocked overnight at 4°C with 2% BSA, 0.2%
Tween 20, 10 mM Tris—=HCI, pH 8.0, 150 mM NaCl. Ufo/
AxIfTyro7 protein was detected with affinity-purified rabbit
polyclonal anti-Ax| antibody (gift of Dr B. Varnum), followed
by anti-rabbit peroxidase-conjugated secondary antibody
staining. Blots were developed using enhanced chemilumin-
escence (Amersham, Amersham, UK).

Immunohistology

Frozen sections of thymuses from 8-week-old female B6 mice
were incubated as described (7) with rat mAb ER-TR4 or ER-
TR5 (staining cortical and medullary epithelial cells respect-
ively) (7), or with affinity-purified rabbit-anti-Axl or -anti-Fyn
polyclonal antibody after blocking with 10% normal rabbit
serum. Negative controls were incubated with rat Ig (for ER-
TR4 and ER-TR5) or rabbit Ig (for the polyclonal antisera).
Second-step reagents were FITC-anti-rat Ig or FITC-anti-
rabbit 1g. Sections were analyzed under a fluorescence
microscope.

Results

Isolation of tyrosine kinase cDNAs from fresh TSC cells

Fresh mouse TSC were isolated from 10 female C57BL/6
mice. RT-PCR was performed with two different primer com-
binations (A and B) resulting in two pools of tyrosine kinase
cDNAs of 148 and 213 bp in size. DNA sequencing was
performed on 239 independent clones (59 from pool A and
180 from pool B). Database searches revealed that the
following partial tyrosine kinase cDNAs were cloned: /ck (23
A clones, 46 B clones), fgr (19 A, 43 B), hck (11 A, 16 B), lyn
(1 A, 1B), tyro 8(2A, 2B), fes (1 A, 25 B), ufo (0O A, 1 B), fyn
(1 A, 12 B), fer (0 A, 13 B) and blk (1 A, 0 B). No novel
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kinases were identified and 21 clones appeared to be empty
(10%). Figure. 1 displays the amino acid sequences of the 10
tyrosine kinases that were sequenced. Comparison of the
primary cDNA sequences reveals that nine cytoplasmic tyros-
ine kinases were isolated (/ck, fgr, hck, lyn, fyn, blk, tyro 8,
fes and fer) and only one transmembrane receptor type
kinase: ufo. Blk and tyro 8 belong to the cytoplasmic tyrosine
kinase family encompassing itk (19), tec (40), dsrc28C (41)
and bpk (42); fes and fer to the fes family; and Ick, fgr, hck,
lyn, and fyn to the src family kinases.

Expression of tyrosine kinase transcripts in TSC

In order to assess the expression of the above 10 tyrosine
kinase cDNAs in TSC, Northern blotting experiments were
performed on an extended panel of TEC lines that have been
isolated by various groups of researchers from various mouse
TSC preparations (see Methods). Since immortalized TEC
lines often lose characteristics that are expressed by intact
thymic epithelium, we also isolated RNA from complete thymus
stromal cell preparations that had been cultured for 8 days,
while regularly removing the unattached thymocytes (prepara-
tion S8) (26).

Surprisingly, only three of the isolated tyrosine kinases
showed detectable expression in the short-term stromal cell
culture S8 and TEC lines: ufo, fyn and fer. As is shown in Fig.
2, the 4.2 kb ufo mRNA is present both in S8 and in all TEC
lines tested, while SP2/0 (B cell), RMA-S (T cell) and P388
(macrophage) are negative. Additional experiments revealed
a rather broad expression pattern, ufo transcripts being
present in spleen, heart, bone marrow and testis, but absent
from kidney, liver and brain (not shown). The characteristic
fyn mRNAs of 2.8 and 3.7 kb are clearly present in all TEC
preparations tested, but the same mRNAs can also be
detected in B cell, T celi, macrophage cell lines, thymus,
spleen and bone marrow (Fig. 3). Liver and kidney are
consistently negative for fyn (results not shown). Finally,
2.4 kb fer mRNA transcripts are present in S8, TEC lines,
fibroblasts, macrophages and B cells (Fig. 4A), but could not
be detected in whole thymus, T cells and spleen. Of the three
PTK expressed in TSC, ufo is thus the only one of which
expression is restricted to non-hemopoietic cell types.

None of the seven other isolated tyrosine kinases showed
detectable mRNA levels in TEC lines as assessed by Northern
blotting. For example, Ick is clearly only expressed in mouse
thymus, T cells and spleen (Fig. 5A) and absent from S8,
TEC lines, B cells, macrophages and fibroblasts. Figure 5(B)
displays an independent Northern blot hybridized to a mouse
TCR B probe, showing the same expression characteristics
as /ck. This analysis confirms the lymphoid specificity of Ick
gene expression (43), and indicates that the original isolation
of Ick out of TSC cDNA was a result of contamination by
thymocytes. Transcripts for fgr, hck, lyn and fes were easily
detectable in the macrophage cell line P388 and other
macrophage cell lines (data not shown), but not in any of the
TEC lines or the TSC preparation S8 (data not shown).
Presence of these PTK in fresh TSC is thus likely to have
been a result of contaminating macrophages. The kinases
tyro 8 (Fig. 4B) and bik {data not shown) were differentially
expressed in the different cell types tested, but not in TSC.
Presence of blk and tyro 8 in B cells suggests that B cell
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Fig. 6. Imnmunohistology analysis of thymus tissue sections. Frozen sections of thymuses from 8-week-old B6 mice were stained with ER-TR4
(cortical epithelial marker, A), ER-TR5 (medullary epithelial marker, B), anti-Axl (C) and anti-Fyn (D). Second-step reagents were FITC-anti-rat
Ig (A and B) or FITC-anti-rabbit Ig (C and D); controls consisting of second step reagents alone or irrelevant rat or rabbit Ig followed by
appropriate second step reagents did not reveal staining. Magnification: X200.
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Fig. 7. Western blot analysis of Ufo/Axl expression on lysates from
stromal celt lines BMS2 (lane 1), 2.4B6 (lane 2), 1D4 (lane 3), TEC
(tane 4), MTE (lane 5) and TNCR3.1 (lane 6). Whole thymus lysate is
shown in lane 7. Blotting with a negative control anti-Ick antiserum
gave no effect in lanes 1-6, consistent with the failure to detect Ick
mRNA in TSC lines on Northern blots (Table 1). Ufo/Ax! appears in
several species, consistent with earlier studies (53).

contamination of the TSC preparation may have contributed
to the isolation of these kinases. Table 1 summarizes the
expression characteristics of the isolated tyrosine kinases,
as assessed by the above Northern blotting experiments.
References to pertinent earlier descriptions of these kinases
are listed as well (43-51). In summary, only fyn, fer and ufo
are expressed in thymic stroma, and of these three PTK, the
expression of fyn is probably the least relevant, since no
defect in T cell development was noted in mutant mice that
do not express fyn (52). The identification of fer and ufo as
PTK expressed in thymic stroma should permit dissection of
their role in signal transduction events in thymic stroma.

Protein expression of the TSC PTK Ufo

We next investigated the possible functional significance of
ufo expression in thymic stroma by testing cell lysates of
several TSC lines and thymic tissue sections for presence of
Ufo/Axl protein. Such analysis was not possible for Fer
because of our lack of success in generating a Fer-specific
antiserum or monoclonal. Fyn protein was detectable in both
lymphoid and non-lymphoid compartments of the thymus
by immunohistology (Fig. 6D), consistent with the mRNA
expression pattern (Table 1). Western blotting of lysates from
6 different stromal cell lines with an Axl-specific antiserum
(kindly provided by Dr B. Varnum) clearly showed presence
of the 140 kDa Ufo/AxI protein (Fig. 7, lanes 1-6), although it
was barely detectable in lysates from whole thymus (lane 7).
In addition, bands representing previously described (53)
smaller immunoreactive species of Ufo/Ax] at 120, 104 and
80 kDa were also found to a different extent in the various
cell lines. It should be noted that Axt expression is not thymus-
specific as also the bone marrow stromal cell line BMS (54)
contains Axl (Fig. 7, lane 1). However, staining with anti-Axl
on thymic tissue sections showed a reticular staining pattern
(Fig. 6C), confirming that the expression in TEC lines is also
reflected in the in situ thymus. The staining pattern obtained
with anti-Ax| (Fig. 6C) was different from that resulting from
staining for the cortical epithelium marker detected by the
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ER-TR4 mAb (Fig. 6A). Staining resembled that obtained with
the medullary epithelium-specific ER-TR5 mAb (Fig. 6B),
although some staining with anti-Axl in the cortical compart-
ment was also noted. In summary, Ufo/Axl is a suitable
candidate for a receptor on thymic stroma receiving signals
from the environment (13,14).

Discussion

This study was performed to get insight into the repertoire of
PTK that are expressed in normal mouse TSC. These molec-
ules are likely to play a role in the signal transduction pathways
that are induced in TSC through interactions with thymocytes
(13,14), but PTK that are functional in mouse TSC have yet
to be identified. Some in vitro experiments point towards
specific phosphorylation of TSC molecules upon contact with
thymocytes (55). Two partial PTK cDNA sequences have
been cloned from a medullary TEC line (56). However, since
both immortalization of cells and the use of certain culture
medium components, such as fibronectin (57), can influence
the expression of PTK genes, we chose to characterize PTK
expression in fresh, unstimulated mouse TSC.

For three of the PTK cDNAs amplified from fresh TSC, i.e.
ufo (48), fyn (49) and fer (50), expression could be confirmed
by Northern blotting of RNA from multiple TEC cell lines and
short-term TSC cultures. Of these three PTK, only ufo exhibited
an expression pattern restricted to non-hemopoietic cells.
Expression at the protein level was confirmed for ufo by
staining on tissue sections and Western blotting. Ufo/AxL/Tyro
7 represents a receptor PTK (48) with previously reported
transforming ability (58,59), that has been implicated in devel-
opment of the nervous system (29). It is broadly expressed
in other developing tissues (60) and the product of the growth-
arrest-specific gene 6 (gast) (61) was recently shown to
function as its ligand (62,63). Nothing is known about the
function of gas6, although a role as a positive regulator of
fibroblast growth has been suggested (63). Likewise, the
related protein S has been reported to function as a growth
factor for smooth muscle cells (64). The response of stromal
cells to gast will be next investigated.

The choice of using degenerate PTK domain PCR primers
to amplify cDNAs from freshly isolated TSC implies several
drawbacks. First, the TSC preparation contains thymocytes,
macrophages, B cells and fibroblasts. Second, the design of
the PCR primers was based on PTK cDNA sequences that
are known to date (29) and thus a bias will be introduced
towards amplification of TSC kinases that have similar DNA
sequences. Also, the primers used were biased towards
cytoplasmic kinases (29). Therefore, it cannot be excluded
that TSC express various other, novel PTK that are structurally
more divergent from the ones detected here. Thirdly, a bias
due to the use of degenerate PTK domain PCR primers was
illustrated by variations in frequencies of PTK cDNAs amplified
by the A series and B series of primers. For example, the A
series proved unable to amplify fer cDNA because of several
3’ mismatches, while the B series performed well (13 clones).
Finally, TSC are very heterogeneous in cellular composition,
which implies that the exact cell type that expresses a certain
PTK needs to be further defined after cloning. Most likely all
of the above factors played a role in the present study,
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necessitating the conclusion that it probably underestimates
the number of PTK operative in TSC. Nevertheless, this study
identified three PTK present in TSC, ufo, fyn and fer, and
expression of one of those, ufo, is restricted to cells of non-
hemopoietic origin.

The other PTK cDNAs isolated from fresh TSC are not
expressed by TSC. The notion that thymocyte cDNA was
present in our original TSC cDNA preparation was confirmed
by a positive PCR amplification of TCR § chain cDNA under
high stringency conditions. Combining the Northern blot data
with the various PTK cDNAs we isolated from fresh TSC
cDNA, the following conclusions can be drawn: /ck most
probably derived from thymocytes, fgr and lyn derived from
macrophages or fibroblasts, hck from macrophages,
fibroblasts or B cells, fes from macrophages, ufo from
fibroblasts and TEC, tyro 8 from macrophages and B cells,
fer from TEC, macrophages, fibroblasts and B cells, and blk
from B cells. Finally fyn was found to be ubiguitously
expressed in all cell types of either hemopoietic or stromal
cell origin. Thus, for many PTK the exact TSC types of
expression still need to be established. Transcripts for ufo,
fer and fyn could easily be detected in both short-term TSC
cultures devoid of hemopoietic celis (as detected by absence
of CD45 staining), as well as in long-term lines. Given the
observation that fyn knockout mice do not express any
thymic phenotype (52), Fer and Ufo-R are therefore the
best candidates for PTK operative in TSC, be it in signal
transduction pathways that create the thymic microenviron-
ment or in interactions that induce thymocyte differentiation
directly. Our present efforts focus on the possible differential
expression of these PTK in mutant mice in which the thymic
microenvironment is affected. Also, the effects of interference
in T cell development on these PTK with mADb against known
interaction molecules will be studied. Together these experi-
ments should clarify the functional significance of these PTK.
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