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Introduction 

New prospects for an immunologically based strategy of the treatment of cancer and 
infectious diseases are regularly highlighted in the preclinical and clinical literature. 
The hallmark of the immunologically based therapeutic strategies is the specificity for 
the cancer or virally infected tissues by virtue of the presence of specific receptors 
on populations of immune cells, e.g., T lymphocytes. Hence immune attack leaves 
normal or non-infected tissues intact. This idea goes back to the beginning of the 
twentieth century; in Germany, Paul Ehrlich put forward his hypothesis of "magic 
bullets" [30] and Von Leyden and Blumenthal initiated their studies aimed at ac- 
tive immunization of cancer patients against their own cancerous tissue. During the 
subsequent 6 decades, cancer patients were non-specifically immunostimulated using 
relatively crude leukocyte extracts such as transfer factor, immune RNA, or from bac- 
terial extracts, e.g., bacillus Calmette-GuErin (BCG), levamisole, and Coley's toxin. 
In those days very little was known about the various components of the immune sys- 
tem that could react against cancer, and even less was known about tumor-associated 
antigens. 

In the 1960s Burnett formulated the immuno-surveillance theory, highlighting that 
cell-mediated immunity played a critical role in the control of cancer and infectious 
diseases [18]. In order to discriminate between malignant cells or infected cells and 
normal tissues it was postulated that T cells during ontogeny learned to distinguish 
"self" (which should be left intact) from "non-self" (which should be eliminated). 
Hence, one of the major tasks of the host immune T cells was to continuously monitor 
whether in the host "self" became "altered self" due to, e.g., viral infection of cells 
or neoplastic transformation. 

Recently, Ridge et al. [84] have proposed that discrimination between "self/non- 
self" is a life-long during process in which foreign molecules are also tolerant to the 
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T cells, if the co-stimulatory signal (second signal) is not accompanied by a "danger" 
signal. Tumors, when they arise, do not represent imminent danger to their host, and 
hence the immune system may become tolerant to the tumor-associated antigen or, 
in other words, anergic. By the time tumors are life threatening, the tolerant immune 
system ignores the tumor, unless immune activation occurs by artificially targeting 
T cells to the tumor cells with the ultimate aim of breaking tolerance and possibly 
inducing systemic immunity with immunological memory. The important task of the 
immune system therefore is to guarantee the integrity of the internal environment 
of the host by detecting and eliminating potentially harmful, undesired alterations or 
infiltrations: immune surveillance. 

Research during the past 30 years has led to the identification and characterization 
of a number of immune effector cells, such as natural killer (NK) cells, macrophages, 
and immune T and B cells, the latter producing antibodies following their matura- 
tion into plasma cells. The effector mechanisms range from cytolysis, which is the 
process of target cell destruction, to cytostasis, the latter being the growth arrest of 
target cells. The advent of new biotechnologies, such as the production of mono- 
clonal antibodies (mAbs), in vitro expansion of immune T cells, gene cloning, and 
viral vector-mediated gene transfer to recipient cells, has allowed the identification 
of the individual molecules on immune effector cells and their target cells involved 
in immune reactions. The concerted, scaled-up use of these technologies allows us to 
specifically target genes of choice to either immune cells or target cells, aiming to 
repair genetic defects in cells and to cause their destruction or to redirect specificity 
of immune cells. 

In this review we will first describe the T cell and target cell structures that 
are well known to play major roles in effector lymphocyte/target cell interactions 
and subsequently will focus our attention on the following targeting strategies: (1) 
production of bispecific mAbs (bs-mAbs) and single chain Fv(scFv)-mAb for targeting 
of T cells; (2) targeting of T cells with bs-mAb; (3) targeting of T cells by genetically 
engineering single chain Ig/7 or ff receptors into T cells. 

Cytotoxic T lymphocyte/target cell interactions 

The physical interaction between effector cells, i.e., cytotoxic T lymphocytes (CTL) 
and target cells involves the establishment of multiple bonds between effector and 
target cells mediated by T cell receptors (TCRs) and adhesion molecules, which are 
both present on all CTLs. 

TCRs and immunoglobulins 

Antigen-specific T cells and CTL express TCRs on their membrane which specifically 
bind target cell antigen (Ag). Most T cells, including CTL, recognize and bind to 
"non-self" Ag. These Ags are bound to and presented by major histocompatibility 
complex (MHC) class I or II molecules on the surface of Ag-presenting cells (e.g., 
dendritic cells) or target cells by the effector cells. The TCR initiates the recognition 
and binding of target cells. The TCR is a multi-component complex consisting of an 
immunoglobulin (Ig)-like Ag binding portion, the polymorphic c~/3 or -),~5 TCR, which 
is non-covalently linked to the non-polymorphic signal-transducing proteins, CD3/~e, 
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CD3/Te, ~ and r/. TCR recognize Ag in the context of MHC on the target cells, 
whilst Ab molecules, i.e., Igs, recognize soluble Ag. In the B cell receptor complex, 
CD79 functions as the analogue of CD3 for TCR. Nevertheless TCR and Ig share 
many structural characteristics, e.g., both molecules are disulfate-linked heterodimers 
or tetradimers, TCR and Ig genes are assembled in an identical way, and both contain 
an invariant constant (C) region and an Ag-binding variable (V) region [21, 25]. 
The Ag diversity of the TCR and Ig, the hallmark of the immune system, is created 
by similar processes of genetic rearrangements involving the variable (V), diversity 
(D, and for Ig heavy chain, H), and joining (J) gene segments. Only in the case of 
Ig do somatic mutations add to Ag diversity. In short the V,D, and J segments are 
combined to form the Ag-binding domains. For Ig-mediated effector functions, the 
Ig C region interacts with complement and Fc receptors on monocytes, NK cells, 
and some T cells. In contrast, the C region of the TCR contains a transmembrane 
structure anchored to the T cell surface, which takes part in the signalling process 
via the CD3 complex following Ag recognition by the TCR. The fashion and form 
in which proteins fold are critical for their biological function, and for Ig and TCR, 
both members of the Ig supergene family, the foldings are similar. 

Adhesion and co-activation molecules on T cells 

TCR and CD28 each have counter-regulatory molecules which are expressed on the T 
cell membrane, for TCR the NK receptor gene family [81] and for CD28 the CTLA- 
4 [55, 69, 92]. These counter-regulatory molecules, which only become expressed 
on activated T cells, deliver a negative signal to T cells, and the immune response 
returns to the baseline state: self-limiting immune response. TCRs which recognize 
antigens without a co-stimulatory signal will become anergic or tolerant. The best- 
characterized second signalling molecule thus far is CD28 [69, 92]. The intrinsic 
binding affinities of TCRs for Ag are low to moderate in comparison to Ab, and 
the number of MHC peptides per target cell that form complexes with the TCR is 
also low [109]. Nevertheless, even the low numbers of TCR/Ag complexes formed 
following Ag recognition by the TCR induce a rapid increase in affinity of the adhesion 
molecules, e.g., lymphocyte function-associated antigen-1 (LFA-1) for its target cell 
ligand intercellular adhesion molecule-1 (ICAM-1). The increase in affinity does not 
require an increase in LFA-1 cell surface density on the T cells [11]. CD2 on T cells 
and ICAM-3 on the target cells are also involved in the adhesion processes [14, 38]. 
Consequently, where no foreign Ag is expressed on normal cells, turning dangerous 
"self' into "non-self', T cells with dangerous "non-self' recognizing TCRs will not 
bind to any "self' and continue their immunosurveillance. 

A second group of accessory molecules are the very late Ag (VLA), a sub- 
family of integrins (VLA 3, 4, 5, and 6]. These molecules recognize collagen, fi- 
bronectin, and laminin, which are present in the extracellular matrix of target cells 
[102, 114]. Thirdly, CD44, which also recognizes extracellular matrix proteins such 
as glycosaminoglycans (e.g., hyaluronate and chondroitin sulfate), does not belong 
to the integrin family [24, 67]. The extracellular matrix proteins are critical in guid- 
ing the trafficking of immune cells to particular organs and most likely influence the 
maturation process of T cells as they interact with the receptors on the T cells [114]. 

Several of the adhesion molecules, such as CD2, can also serve as signal- 
transducing receptors themselves, provided they become crosslinked [10, 37]. Com- 
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binations of mAbs against distinct signalling molecules (e.g., CD2 and CD3 or CD16 
etc.) critically enhance the T lymphocyte activation process [9, 13, 110, 111]. Other 
molecules that can serve as signal-transducing receptors are CD44 [34, 97], present 
on interleukin-2-activated NK cells but also on a small amount of CD56 ÷ T cells 
[93], and CD69, an early activation marker on T cells which serves as a cytotoxic 
triggering molecule on NK clones and 76 T lymphocyte clones [76]. The CD8 and 
CD4 molecules on T cells which specifically associate with the same MHC class I or 
II molecule that present Ag also secure stabilization of the T cell/target cell interaction 
and enhance the signalling process. 

In summary, crosslinking of multiple TCRs on individual effector cells with mul- 
tiple Ags on the individual target cells, the occurrence of additional bonds between 
CD4 or CD8 cytotoxic T cells and MHC/Ag, and crosslinking between T lymphocyte 
adhesion molecules and target cell ligands, which all move towards the contact region 
between T cells and target cells, result in conjugate formation between T cells and 
target cells, stabilization of the cell conjugates, increase in overall TCR/Ag affinity, 
signal transduction through the CD3/e~ [15, 23, 26] and e portions [8, 62, 66, 80, 
90, 91, 98] (patch formation in the contact region), lymphokine production by T 
helper/inducer cells and CTL, and cytolysis of target cells by CTLs. 

The CTL lyric mechanisms 

CTL-induced target cell lysis is an apoptotic process. During CTL/target cell inter- 
action aggregation of TCR, co-stimulatory molecules, and adhesion molecules takes 
place. The CTL microtubule organizing center arrives at the CTL-target cell contact 
region followed by an accumulation of cytoskeleton elements at the interaction site 
[36, 61]. The result is selective exocytosis of specialized cytolysins into the narrow 
gap between the interacting cells [45]. 

Perforins. The exocytosed granules contain perforin and a plethora of other enzymes 
including granzymes [108]. Perforin shows homology with complement proteins, in 
particular the pore-forming protein C9, and produces the lysis-inducing pores in the 
target cells [29, 51, 68, 99] (in the presence of calcium perforins form aggregates 
resulting in cylindrical structures that are inserted into the lipid bilayer of the target cell 
membrane). The result is apoptosis: the target cell chromatin condenses, its membrane 
blebs, its DNA breaks up into oligonucleosome-length DNA fragments, consequently 
the cells shrink, its endoplasmic reticulum dilates, and finally the target cells become 
fragmented: sealed membrane fragments (apoptotic bodies) are produced [4]. The 
susceptibility of the target cell to this apoptotic death is dependent on the stage of the 
mitotic cycle of the target cell: quiescent (GO) cells are refractory whereas G1 stage 
target cells are susceptible to CTL-induced DNA fragmentation [78, 89]. Consequently 
the physical association and aggregation at the contact region between CTL and target 
cells does not only stabilize the conjugate formation between the effector and target 
cells following initial TCR recognition, but also channels the exocytosed perforins 
and granzymes, thereby avoiding death of innocent healthy "bystander" cells which 
are adjacent to the aberrant target cells. The chance of innocent bystander target cell 
lysis is further decreased because of the short half life of cytolysins in serum. 

In summary, the lytic protein perforin is a critical cytolysin in this cytocidal 
mechanism. Besides these natural serine proteases (perforins, granzymes), both of 
which are stored in unique secretory CTL granules [45, 82, 100], calcium is involved 
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in the degranulation process of the effector cell [29, 51]. The DNA breakdown, 
however, is caused by the granule proteases [45, 101]. 

Fas-Fas-ligand interactions. Recently it has been shown that CTL devoid of perforin 
could nevertheless lyze their target cells. These CTL showed a specific alloreactive 
CTL response in mixed lymphocyte cultures and protected mice in vivo against in- 
traperitoneally administered tumor allografts [56, 57, 70, 116]. This mechanism is 
now known to involve Fas and Fas ligand (FasL), two cell surface proteins that are 
homologous to tumor necrosis factor (TNF) and TNFa receptor, respectively [52, 72]. 
When the FasL on the target cells is crosslinked by Fas on the effector T cells [72] 
or by Abs [107], the target cell is triggered into an apoptotic suicide mechanism. 

In summary, potent and specific CTL-mediated lysis of target cells occurs by 
at least two distinct mechanisms: (1) the secretion of cytolysins and the perforin- 
mediated pathway cause direct pore-forming channels in target cells through which the 
lysis-inducing enzymes can enter the target cells, resulting in granule protease-induced 
DNA fragmentation, the process of target cell apoptosis; (2) the CTL Fas/target cell 
FasL-dependent pathway involves the triggering of a programmed disintegration of 
the CTL-bound target cell. 

Anti-TCR mAb mimic TCR/Ag interactions 

For T cell activation, Ag can be substituted by mAbs, provided they are specific for 
and hence bind to: the Ag-binding part of the polymorphic TCRc~ 3 (e.g., anti-TCR 
idiotypic Abs) or any of the non-polymorphic signalling structures of the TCR/CD3 
complex, because otherwise only cell/cell conjugate formation will occur upon in- 
teraction with irrelevant target cells. Following crosslinking of the TCR complexes 
by these mAbs, T cells then become activated as if the TCRs were interacting with 
their natural target cell ligands, as described earlier [15, 23, 26]. Again, all these cell 
surface molecules co-aggregate in the contact region between T cell and target cell 
as if normal TCR/Ag interactions were taking place. This also explains why trigger- 
ing through any of these signalling molecules have the same result: T lymphocyte 
activation and/or triggering of T cell-mediated target cell lysis. 

Targeting of CTL by bs-mAbs or chimeric Ig-receptor genes 

Cellular based therapies utilizing tumor-reactive T cells have been developed for 
patients with metastatic melanoma, resulting in significant tumor reduction in some 
patients [87, 88]. However, the generation or isolation of tumor-specific CTLs has 
proved extremely difficult, laborious, and time consuming, and hence has, as yet, 
not been exploited for immunotherapy. In contrast, a plethora of mAbs have been 
generated that recognize tumor-associated antigens common to certain cancers. To 
combine the ability of mAbs to selectively recognize tumor-associated antigens with 
the potent anti-tumor effector functions of T cells, and specifically CTLs, we and 
others designed bs-mAbs and chimeric Ig-receptor genes to retarget the specificity of 
T cells for tumor-associated antigens. 
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Production of bs-mAb and single chain Fv (scFv) Ab 

The bs-mAbs can be produced by chemically coupling two types of m_Abs with 
defined specificities [44]. This method is inefficient and unreliable because it yields 
unstable material. The hybrid-hybridoma technology has already proved to be a more 
sophisticated and reliable method [112], although this method also produces bs-mAbs 
with undesirable chain combinations, requiring the isolation of the relevant bs-mAbs. 

The central concept of the bs-mAb approach for the retargeting of T lympho- 
cyte specificity is that the bs-mAb with specificities for a particular tumor-associated 
antigen on target cells and for effector T cells crosslink the effector and target cells 
thereby triggering immune attack [112]. The availability of large-scale culture tech- 
nologies for the production of human activated T cells combined with an array of 
mAbs specific for T lymphocyte activation molecules has allowed the application of 
the general concept of redirection of T lymphocyte specificity by means of adop- 
tive transfer of bs-mAb redirected T cells to clinical treatment of cancer. It has now 
been clearly demonstrated that bs-mAbs specifically redirect CTLs of all specificities 
towards human and animal cancer cells inducing tumor cell lysis [94-96]. 

With the recent advances in antibody gene engineering [ 121], bispecific molecules 
can be made even more easily by the production of molecularly engineered versions, 
including scFv fragments provided with multimerization domains or tags, scFv2s, or 
dimerized and crosspaired scFv's, so called diabodies [46, 47, 58, 79]. In particular, 
the relative ease of producing diabodies [123], combined with their demonstrated 
efficacy in retargeting T cells to tumor cells [123], suggests that this format will 
provide a significant stimulus to the further development of therapeutic bispecific 
molecules. A second advantage of the molecular route is the speed with which many 
different bispecific molecules can be made and screened, allowing the tailoring of 
both affinity and specificity of the antibodies. 

Immune responses to the bispecific antibody or the retargeted T cell can be re- 
duced dramatically and sometimes avoided entirely by using genes encoding antibody 
fragments of human origin. These types of Abs are now readily available, mainly due 
to the advances made with the phage display technique. Phage display involves the 
expression of proteins on the surface of phage as fusion proteins attached to normal 
phage coat proteins. The physical link between the protein on the surface of the phage 
and the gene which encodes it within the phage allows a rapid evolution of protein 
properties on the basis of binding, by a series of repetitive cycles of phage binding, 
elution, and regrowth to amplify the selected phage population. One of the most suc- 
cessful applications of phage display has been the derivation of mAbs using large 
phage antibody libraries, and the subsequent improvement of the affinity of selected 
antibodies by their mutation and further selection [122]. Antigen-specific antibodies 
are selected from libraries of randomly paired combinations of variable domains of 
heavy and light chains (formatted as scFv [74], Fab [48], or diabody fragments), 
which are displayed on the surface of filamentous bacteriophage via fusion to the 
minor coat protein pIII. To generate human antibodies, the libraries are made from 
"naive" B cells from human donors [73], or from cloned human V gene segments 
[49]. A number of very large collections of human antibodies have been made, with 
over 10 billion different antibodies, allowing the isolation of antibodies to any chosen 
antigen and with a moderate to high affinity (10 nM-0.3 nM) [40, 115]. Human Fab or 
scFv fragments with tumor antigen binding characteristics can thus be isolated from 
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such libraries and their genes directly transfected into CTLs for retargeting to tumor 
cells. 

bs-mAb-mediated T cell targeting: redirection of CTL specificity 

We and others have exploited the phenomenon that mAbs, by crosslinking the rel- 
evant antigens, induce lymphocyte activation and trigger the lytic machinery of T 
cells by generation and use of bs-mAbs [112]. bs-mAbs recognize a T cell triggering 
molecule, e.g., CD3~, and a tumor-associated antigen cell surface molecule. Crosslink- 
ing of the signalling/adhesion molecules occurs when bs-mAb crosslink them to the 
tumor-associated antigens on tumor cells by virtue of their dual specificity: bs-mAb 
recognize, e.g. CD3-~ on T cells on the one hand and tumor-associated antigens on 
the target cells on the other. The same CD3-ff is expressed on all T cells, irrespective 
of their antigen specificity, all T cells become activated and all activated CTL are 
triggered to lyze the tumor-associated antigen-expressing target cell. 

Lymphokine production by bs-mAb-retargeted T cells 

From in vivo studies aimed at tumor neutralization in nude mice it appeared that 
much lower numbers of effector cells were required to inhibit tumor growth in vivo 
than required to induce lysis in vitro [106], and that supernatants obtained from pe- 
ripheral blood lymphocytes inhibited growth of tumor cells which themselves were 
not recognized by the Ab-targeted T cells. Hence, the inhibition of "bystander" tu- 
mor cell growth did not require effector cell/target cell contact. That lymphokine 
production induced by lymphocyte triggering molecules was indeed responsible for 
the inhibition of tumor growth was demonstrated by the addition of cytokine-specific 
mAbs, particularly anti-TNFa and anti-interferon-"/mAbs, which abrogated the tumor 
growth inhibitory activity [28]. A number of other lymphokines are also triggered by 
crosslinking of activation molecules, in particular inflammatory lymphokines that can 
recruit and act on other cellular components of the immune system and induce homing 
of immune cells to target cells. 

This site-specific induction of the immune reactions has great advantage over 
the systemic administration of cytokines such as interferon-c~, TNF-c~ or interleukin- 
2, and others, because these highly active biomolecules have pleiotropic effects on 
many different cell types, and hence may cause unwanted toxic effects in the patient. 
Moreover, generally these lymphokines have a short half-life, function at a short 
range, and interact with specific cell surface receptors. These interactions trigger the 
delivery of signals to target cells which affect their gene expression, proliferation 
and differentiation, and ultimately cause their death (apoptosis); the effect(s) occur 
depending on their degree of differentiation and maturation. Site-specific immune 
reactivity avoids systemic toxic effects of cytokines by virtue of specific trafficking 
and homing of immune T cells to the target site by retargeting T cell specificity with 
bs-mAb or scFv chimeric receptors. 

In summary, redirection of T cell specificity results in cytokine-triggered inflam- 
matory reactions at the target site, mobilizing the different effector arms of the immune 
system. The immune activation may result in systemic, specific humoral and cellular 
immune responses against the tumor and tumor regression by CTLs. 
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Immunotherapy 

Animal models 

Now that in vitro studies have proved that bs-mAbs efficiently redirect T lympho- 
cyte specificity towards tumor cells (or virus-infected cells) and subsequently trigger 
cytokine production and cytolysis of the target cells, suitable animal models have 
been developed to study their in vivo functions. Two models have been developed (1) 
a xenograft model in which human tumors were transplanted into immunodeficient 
nude mice, followed by treatment of the tumor xenograft by bs-mAb-targeted human 
T cells; (2) a syngeneic model in which murine bs-mAbs, tumors, and T cells are 
used. 

Early studies involved the treatment of syngeneic lymphoma with activated host- 
derived T cells and bs-mAbs directed against V/38 TCR and Thyl.1. on the lymphoma 
cells, and showed tumor protection [15, 16, 26-28, 117-119]. bs-mAb-mediated ther- 
apy was also successful in syngeneic solid tumor animal models [5, 118]. In the 
xenograft studies CTLs, bs-mAbs, and tumor cells were mixed and injected subcu- 
taneously into nude mice: a Winn-type assay [106]. The anti-cancer effect involved 
direct lyzing of the tumor cells [106], as well as tumor growth inhibition by cy- 
tokines released by these activated T cells [83]. Even established ovarian carcinoma 
xenografts growing intraperitoneally in nude mice could be successfully treated with 
bs-mAbs (OCTR) targeted to CD3 on the T cells on the one hand and to a human 
folate binding protein (MOV-18), which is overexpressed in ovarian carcinoma cells 
on the other hand [19, 35]. Also, human T cells prolonged survival in this model 
system [75, 113]. Subsequently, syngeneic models [1, 3] were developed to avoid 
irrelevant activation conditions obviously occurring in a xenogeneic system due to 
incompatibilities between donor and host adhesion molecules and their ligands. Such 
incompatibilities can result in abnormal trafficking of the human T cells in animals. 
These studies served as preclinical models for the design of patient treatment proto- 
cols. 

Clinical studies 

The first international multicenter study involved locoregional treatment of ovarian 
carcinoma cells in patients with advanced disease [12, 20]. The high frequency of 
relapse of advanced ovarian carcinoma after induction chemotherapy called for a new 
therapeutic strategy. Prior to entry into the study, laparotomy was performed to reduce 
tumor load and to indicate remaining macroscopical lesions. We treated 28 patients 
with two 5-day cycles of treatment, consisting of daily intraperitoneal injections of 
autologous activated T cells, which had been expanded in vitro following activation 
with phytohemagglutinin and addition of exogenous interleukin-2 for each of the ten 
infusions and retargeted with the bs-mAb OC/TR specific for CD3 and for the folate 
receptor overexpressed by ovarian carcinoma cells. T cells [109] were incubated with 
1 mg bs-mAb. The patients received additional infusions of interleukin-2 and bs-mAb 
after each administration of targeted T ceils to maintain the lytic activity of the re- 
targeted T lymphocytes; 6-10 weeks following treatment those patients without signs 
of tumor progression underwent explorative laparotomy for objective assessment of 
tumor response by comparing remaining tumor with that documented by pretreatment 
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laparotomy. The overall intraperitoneal response rate was 27%. Complete responses 
were seen in 3 patients, and lasted 26 months, 23 months, and 18 months, respectively. 
Toxicity of the treatment was mild, WHO grade II. 

Of 24 patients evaluated, 23 developed a human anti-mouse antibody (HAMA) 
response [20]. In vitro studies showed that although during treatment cycles the levels 
of HAMA increased with time, HAMA did not block the bs-mAb-mediated triggering 
of cytolysis and cytokine production by the patient's T cells until day 40 following 
the first administration of bs-mAb, i.e., after the 2 cycles of treatment were completed 
[64]. Other pilot studies that followed reported the treatment of patients with malignant 
ascites or pleural effusions resulting from colon, mammary, ovarian, lung, and gastric 
carcinomas. These patients were treated locally with ex vivo activated autologous 
cells and an anti-CD3-based bs-mAb. Again, the bs-mAb-targeted T cells exerted 
strong local biological effects within hours: conjugates between tumor cells and T 
cells were identified with a decrease in tumor cell number and in serum levels of 
carcino-embryonic antigen. Elevated levels of cytokines and an increase in granulocyte 
numbers were also observed [59]. 

The anti-cancer effects obtained so far with bs-mAb-retargeted T lymphocytes 
have been locoregional. Systemic administration of bs-mAb-retargeted activated T 
cells is expected to be more effective for systemic anti-cancer effects, as demon- 
strated by mouse studies. There is only limited experience of systemic treatment with 
bs-mAb. One ovarian cancer patient treated with intravenous infusion of 1 mg of the 
bs-mAb used for the locoregional treatment suffered severe toxicity starting 30 min 
after administration [105], and other patients showed similar toxicity (Bolis, Milan; 
personal communication). The patients developed chills, headache, fever in combina- 
tion with hypertension, and fatigue, although all symptoms resolved after treatment 
was discontinued. The toxicity was most likely due to an increase in serum TNFc~ 
levels. Other studies revealed extravasation of T cells following intravenous injection 
of bs-mAb and a subsequent rise in TNF-~ [54, 60], probably due to crosslinking of 
the bs-mAb-targeted TCR, following binding to tumor cell antigens or crossreactive 
normal tissue. 

In conclusion, the clinical studies involving bs-mAb-targeted T cells have shown 
"proof of principle," and have yielded encouraging results, even in the locoregional 
therapy of advanced stages of disease with tumors already resistant to standard treat- 
ment regimens [20]. Therefore this approach deserves further testing, focusing on 
how toxicity following systemic administration can be avoided. The most appropri- 
ate setting for this bs-mAb-targeted T lymphocyte approach is ultimately expected to 
be the treatment of minimal residual disease following standard therapy. In such an 
adjuvant setting the bs-mAb-targeted T cells are expected to effectively attack and 
destroy circulating tumor cells and small metastases. 

Immuno-gene-therapy 

Retargeting of T lymphocyte specificity with chimeric receptor genes encoding Ab- 
type specificity 

The use of bs-mAb for therapy may be hampered by the inaccessibility of solid tumors 
to antibody penetration [53]. Moreover, bs-mAb-redirected CTL retain the bispecific 
antibody for only limited periods (i.e., 48-96 h) due to dissociation from the CTL 
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surface [7, 65]. In addition, bs-mAb-redirected CTL lose signal transduction and lytic 
capacity following target cell recognition, lysis, and TCR/CD3 complex clustering 
[7]. 

Because systemic eradication of tumors requires long-lasting, systemic immune 
responses, molecular engineering of chimeric receptors with Ab-dictated specificity 
into T cells or other immune cells may result in such a sustained immune response. 
Because each immune cell population shows specific patterns of cytokine production, 
e.g., T helper 1 versus T helper 2 cells, NK cells, antigen-presenting dendritic cells, 
etc., each population can trigger different immunological responses and therapeutic 
outcomes [86, 104]. The future gene retargeting of the specificity of these individual 
populations will allow further fine-tuning of immuno-gene-therapy strategies. 

To this end we and others have adopted an approach in which T cells are "gene 
grafted" with a permanent antibody-dictated specificity [31, 103]. This molecular ap- 
proach to graft T cells with a predetermined antibody specificity exploits the already 
described structural similarity between Ab and TCR molecules. It is possible to con- 
struct chimeric genes in which the Ab recognition unit has been used in the form 
of a single-chain Fv (scFv)-encoding gene, to create hybrid molecules in which the 
signalling subunits are molecules such as the ~-chain derived from the CD3 complex 
or the "),-chain from the high-affinity receptor for IgE Fce-RI. In another approach the 
TCR variable region is replaced by an Ab variable region in a chimeric TCR gene. 
The variable domains of mAb fused by a flexible linker sequence have been shown to 
display similar binding affinities and specificities compared with those of the natural 
mAb [6, 22, 120]. 

To transfect genes to primary T cells, retroviral vectors have been adapted for the 
delivery of foreign genes to primary human cells [2, 16, 32, 33, 39, 41-43, 63, 71, 85]. 
Chimeric receptors are then cloned into these retroviral vectors, which transduce the 
chimeric genes into, e.g., T cells where they become stably integrated in the cellular 
DNA. The integration of the chimeric receptor encoding gene in the cellular DNA 
results in synthesis of the chimeric proteins and expression on the lymphocyte surface. 
The original studies used the two-chain receptor approach, with VH and VL linked to 
the c~ and/3 chains of the TCR [2, 41, 42, 63], followed by the single chain receptor 
(scFv) approaches, which allowed the expression of full Ab specificity on a single 
receptor molecule. Various anti-tumor mAbs have been engineered into a single-chain 
format and expressed on the surface of the CTL [50]. Single-chain antibodies (scFv) 
juxtaposed to a signal-transducing molecule, like the Fc(e)RI 7 or TCR ~ chain, have 
now been functionally expressed in mouse T cell hybridomas or CTL [17, 31, 77, 
103], tumor-infiltrating lymphocytes, and human CD8 + T cells [50, 85]. 

Conclusions 

In summary, human single-chain gene transduced T cells were shown: to express the 
scFv on their surface, to recognize their relevant ligand (tumor-associated antigen) 
on tumor target cells, to produce cytokines and, to lyze tumor cells. In our earlier 
review on retargeting T lymphocyte specificity [11], we concluded that a number of 
questions needed to be answered: (1) Is triggering of cytolysis by CTL or lymphokine 
production most important to generate anti-cancer effects? Both are important, espe- 
cially to eliminate bystander cells which do not express tumor-associated antigen [35, 
75, 83, 106]. (2) Can targeted CTL traffick and home to the tumor site? Yes, they can. 
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(3) Does "humanization" of mouse mAbs reduce HAMA responses? Our preliminary 
experiences suggest that this is the case (unpublished data). 

Significant progress has therefore been made in the laboratory and in clinical tests, 
and will continue to be made. We are now preparing for the clinical phase I/II testing 
of in vivo anti-tumor activity of T lymphocytes retargeted by transfer of chimeric 
receptor genes encoding Ab-type specificity. 
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