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1 Introduction

In this paper we introduce a new time series model that can capture the properties

of data as exemplified by monthly US unemployment data as depicted in Figure 1.

Clearly the data show nonlinear features, as the increases in unemployment during

economic downswings are much steeper than the decreases during economic prosper-

ity. At the same time, the levels of unemployment in each of the two states do not

seem fixed, nor are the transition periods abrupt. Finally, one would want a time

series model that can generate out-of-sample forecasts that mimic the in-sample

properties. Our new and flexible model will be shown to cover just those aspects,

and our illustration to the very same US unemployment data shows its merits.

To analyze time series data with regime switching features, a natural starting

point is the familiar Markov Switching model. Markov Switching (MS) models

(Hamilton, 1989) are suitable for data fluctuating around two levels, where these

levels associate with each of the two states. In the initially proposed MS models,

the occurrence of a state at time t is only dependent on the state at time t − 1

and it is governed by transition probabilities pij, the probability of switching from

state i to state j. In these initial models, the probabilities are fixed across the

sample. Figure 2a shows a simulated example of a MS model with 2 states. Recent

applications of such basic MS models include Kim (2009), Bauwens et al. (2010),

Nalewaik (2011), Cunningham and Kolet (2011), Guérin and Marcellino (2013) and

Chen and Schorfheide (2013).

One of the features of such a basic MS model is that it is not capable of dealing

with cyclicality, which entails for example that the forecasts produced by a basic

two-state MS model are monotonically convergent. One modification to account for

cyclical behavior is to introduce duration dependence in the transition probabilities

(Diebold and Rudebusch, 1990; Durland and McCurdy, 1994). For example, one

could let the probabilities be pij = F (β0 +β1dt) with F any CDF and dt the duration

of the current spell at time t, which is the period since the last state switch. This

means that the probability of switching now has become dependent on the duration

of the spell. Figure 2b shows an example of a duration dependent MS model with
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2 states, in which the duration dependence is positive, that is, the probability of

switching out of a state increases the longer the time series has been within that

state. Such MS models are implemented in, among others, Sichel (1991), Lunde

and Timmermann (2004), Lam (2004), Layton and Smith (2007), Castro (2010) and

Cunningham and Kolet (2011).

A common feature of the two MS models so far is that the mean in each of

the states is fixed. For example, if one were to use a two-state MS model to model

unemployment from 1980 to now, one assumes that the states of high unemployment

and low unemployment imply the same mean for both the eighties and the current

decade. This assumption might not be considered as realistic, which is also clear

from Figure 1. Hence, one may wish to allow the means to be stochastic. In our

model we alleviate the restriction by allowing the means to alternate in such a way

that the difference is different each time. An example of the kind of data that can

be generated by such a model can be found in Figure 2c.

Finally, as already indicated, and is visible from Figure 1, the transitions from

one state to the other may not be immediate, as there might be a gradual transition

from the previous state mean to the new state mean. At the same time, the time it

takes to switch from one regime to the other may also not be the same across the

entire sample, and hence we wish to allow the transition process to be a stochastic

process too. Figure 2d shows a simulated time series with these properties, and it

is clear that the pattern starts to come close to the unemployment data graphed in

Figure 1.

To wrap up, in the present paper we propose a Markov Switching model with

duration dependence, and with stochastic processes for the levels in each of the states

and for the transitions from one regime to the other. We will illustrate our new model

for monthly US unemployment from 1948 to 2012 (see Figure 1). As this new model

is computationally demanding and also requires the data to be informative, we run

various simulations to see how well parameters can be estimated.

The outline of the remainder of this paper is as follows. In Section 2 we will

formally introduce our new MS model. Using simulations, we will highlight some of

the data characteristics that align with this model. Section 3 discusses estimation
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of the parameters and inference of the latent variables. We will also show how

one can produce forecasts using this model, and we will demonstrate that these

forecasts continue the in-sample data features into the future. In Section 4 we

illustrate our model and the associated estimation procedure for US unemployment.

We also outline how our new model can be used for real-time monitoring of the

data. In Section 5 we simulate from the DGP using the estimates from Section 4 to

investigate how accurate the parameters can be estimated. Finally, we conclude in

Section 6 with some final remarks and thoughts for further research.

2 Modeling and simulations

We first reintroduce the Markov Switching model. We choose for a notation that

will make it easier to describe extensions. Denote the time series of interest as yt

with t = 1, . . . , T . We relate yt to the two state means µ0 and µ1, and the differences

between the data and the state means are contained in the error term εt ∼ N(0, σ2
ε).

In the basic MS model the probability of being in one of the states st ∈ 0, 1 depends

only on the state in the previous time period, and in the basic MS model these

probabilities are assumed as fixed. The so far discussed properties of the model can

be captured by the following expressions:

yt = µt + εt, εt ∼ N(0, σ2
ε) (1)

µt = µst (2)

P (st = j|st−1 = i) = pij, i, j ∈ 0, 1 (3)

The time period of the κth switch is described by the variable τκ, so sτκ 6= sτκ−1 ∀κ

and st = st−1 for all other t.

A first extension of this model that is often considered in practice concerns allow-

ing for transition probabilities that are duration dependent. One way to do this is to

use a link function to transform a linear function of the state duration to a variable

between 0 and 1. One possible link function that is commonly used in various ap-

plications is the standard normal CDF Φ(.). If the duration of the relevant state at

time t is captured by the variable dt, then a first extension amounts to replacing (3)
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by P (st = j|st−1 = i) = Φ(β0 + β1dt). This makes the transition probability depen-

dent on the duration dt, but note that it also assumes that switches from one state

to the other occur in a similar way. One way to incorporate a possible difference in

such switching behavior is to consider

P (st = j|st−1 = i) = Φ(β0 + β1I[st−1 = 1] + β2dt + β3dtI[st−1 = 1])
= Φ(β′Dt)

(4)

with I[.] the indicator function and D′t = [1 I[st−1 = 1] dt dtI[st−1 = 1]]. If

both β1 and β3 are zero, then there is no difference in the switching behavior across

the two states. If both β2 and β3 are zero, there is no duration dependence, and the

model reduces to the basic MS model as in equations (1)-(3).

In practice we need to estimate the value of dt when t = 1 as we do not know

whether a switch has occurred just before the start of the sample or whether it has

occurred a long time before that. For this, we introduce the variable d∗1, and we will

set d1 equal to that, and calculate the other dt’s by either adding 1 to the previous

value, or by resetting it to 1.

Next, we propose a second extension by allowing for stochastic state means,

instead of fixing these to two values µ0 and µ1. To allow for this in the notation,

we introduce the difference between the type of state st, which is either H (high)

or L (low), and the sequential number of the state at time t, for which we extend

the variable κ to have an index κt = 0, 1, . . .. The state type will switch around

each time the data enter a new state. We assume the following relation between two

subsequent states means, that is

µκt ∼ N(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ) (5)

This relation assumes that the new state mean on average differs ∆µ∗ from the

previous state mean. This difference is however not fixed, so it is not exactly the

same each time. Also, whether the change in the state mean is upwards or downwards

depends on what type of state st will be associated with the new state mean µκt .

We do not want new state means to be on the wrong side of the previous state mean

(for example, having a state mean of type st = H being lower than the directly

preceding state mean of the low type). Therefore, we adjust the preceding relation
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to a Truncated Normal distribution with parameters for the bounds denoted by lbκt

and ubκt as

µκt ∼ TN(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ, lbκt , ubκt) (6)

lbκt =

{
−∞ if st = L
µκt−1 if st = H

ubκt =

{
µκt−1 if st = L
∞ if st = H

(7)

The observation mean µt can now be generalized from (2) to

µt = µκt (8)

Our third and final extension concerns the stochastic linear transitions. We

introduce the notation λκt to denote the time taken by the transition of state mean

µκt−1 to µκt . The linear transition property indicates that between the start of the

transition τκt and the end of the transition at τκt + λκt , the state mean is not equal

to either µκt−1 or µκt , but a weighted sum of these, with weights dependent on

the length of the transition period. To calculate weights, we can use the duration

variable dt. This results in partly replacing (8) by

µt =
dt
λκt

µκt + (1− dt
λκt

)µκt−1 (9)

We write ”partly” because this replacement is only relevant for the cases in which

t ∈ [τκt ; τκt + λκt ]. For the other cases, (8) remains valid, that is, µt = µκt if

t ∈ [τκt + λκt ; τκt+1]. We impose a distribution on λκt that needs to be positive,

which is why we use the lognormal distribution. We allow the precise distribution

to be dependent on whether the switch is upwards or downwards, as there might

be a difference in transition speed. For the upwards switch, we propose λuκt ∼

LN(λ∗u, σ
2
λ,u). Similarly for the downwards switch, we assume λdκt ∼ LN(λ∗d, σ

2
λ,d).

Finally, we impose that the transition periods have come to an end before the next

one starts. The latter amounts to the restriction

τκt+1 − τκt ≥ λκt (10)

for all κt.
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To wrap up, our new model reads as

yt = µt + εt, εt ∼ N(0, σ2
ε) (11)

µt =

{
µst if t ∈ [τκt + λκt ; τκt+1]
dt
λκt
µκt + (1− dt

λκt
)µκt−1 if t ∈ [τκt ; τκt + λκt ]

(12)

P (st = j|st−1 = i) = Φ(βDt) (13)

D′t = [1 I[st−1 = L] dt dtI[st−1 = L]] (14)

µκt ∼ TN(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ, lbκt , ubκt) (15)

lbκt =

{
−∞ if st = L
µκt−1 if st = H

ubκt =

{
µκt−1 if st = L
∞ if st = H

(16)

λuκt ∼ LN(λ∗u, σ
2
λ,u) λdκt ∼ LN(λ∗d, σ

2
λ,d) (17)

τκt+1 − τκt ≥ λκt (18)

Our new model includes 12 parameters that need to be estimated from the data,

and these are σε, ∆µ∗, σ∆µ, λ∗u, σλ,u, λ
∗
d, σλ,d, β0, β1, β2, β3, d∗1. Additionally, we

need to estimate 3κT +1 latent variables, that is µκt , τκt , λκt ∀κt, plus the start state

mean µ0. The number of latent variables depends on the size of the sample and on

the frequency of state switches. The other variables such as the observation mean µt

or the state duration dt can be directly calculated from the estimates of the latent

variables.

Hypothetical data

To examine how time series data can look like if they are generated from the new

model, we run a few simulations. We generate data from four data generating

processes (DGPs). The reference DGP, for which the associated hypothetical data

are plotted in the top left part of each upcoming graph, is based on the following

parameter configuration, that is, σε = 1, µ0 = 0, ∆µ∗ = 6, σ∆µ = 2, λ∗u = λ∗d = 2.5,

σλ,u = σλ,d = 0.5, β = [−4 0 0.1 0]′ and d∗1 = 0, where we set the sample size at

T = 500. This corresponds with a duration-dependent model in which the transition

behavior is the same for upward and downward switches. The other DGPs differ

from the benchmark DGP each time for only a few parameters, that is, we consider

(i) σ∆µ = 1, which amounts to a process with more similar-sized jumps between the

state means, and thus this process is closer to a model without stochastic means.
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Next, we consider (ii) β = [−3 − 3 0.12; 0]′, for which the most important difference

is β1 = −3 instead of β1 = 0. The intercept for downward switches is β0 +β1, thus a

negative value for β1 makes downward transitions take more time to initialize than

upward transitions, which have just β0 as intercept. Finally, we consider (iii) λ∗d = 4,

which means that the downward transitions take more time to complete than the

upward transitions.

Figure 3 shows several simulated series using each of the four configurations of

the parameters. The top-left graph shows three series generated using the reference

DGP, with two series having a different µ0 which ensures that these lines do not

overlap. The state durations are relatively stable, which illustrates the duration

dependence. Also, the stochastic means are evident from the fact that the level is

not the same each time the data switch between states. Especially the top line shows

a quickly changing mean.

The other graphs in Figure 3 show comparable but slightly different behavior.

The top-right panel shows alternative (i), which incorporates a lower σ∆µ. This is

visible as this series shows less drifting behavior, and stays closer to its starting

value. Alternative (ii) in the lower-left graph depicts the case in which the duration

dependence is different per state. The graph clearly shows that more time is spent in

the high states than in the low states. The lower-right graph represents alternative

(iii), in which the transition time is different across the types of switches. The series

in this graph clearly have a longer upwards transition time than downwards.

Figure 4 shows the first half of one of the series for each type, and then uses 10000

simulations to construct a prediction interval for the remainder of the series. The

top-left graph shows how our new general models short-term forecasts can capture

the cyclical behavior rather well. Of course, for the longer term one eventually

becomes less certain about whether there will be an upward or a downward state.

Also, the confidence intervals increase as the aggregated effect of the unknown future

information increases. The smaller σ∆µ in alternative (i) is clearly visible in the top-

right graph of Figure 4, as the intervals are smaller, especially for the longer term

where the aggregated effect of σ∆µ could have much of an effect. The intervals for

both alternatives (ii) and (iii) seem to be comparable in size for all horizons relative
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to the reference DGP. This shows that the estimation of the stochastic mean shall

be the most important part of the estimation process as this mean dominates the

uncertainty in long-term forecasts.

Finally, Figure 5 shows a simulated histogram of the length of a full cycle (switch-

ing up and down) for each parameter configuration, based on 50000 replications.

While the first three histograms (with symmetric switching behavior between both

types of states) have an approximately symmetrically distributed cycle length, the

last histogram shows a much more asymmetric distribution. This shows that an

asymmetric switching occurrence (alternative (ii)) and an asymmetric transition

length (alternative (iii)) can have different effects on the cycle length.

3 Estimation and inference

In this section we present the estimation routine for the estimation of the parameters

and latent variables in our new general model. We also show how these estimates

can be used for forecasting purposes.

Parameter estimation

We start with assuming that the number of state switches in the sample is known

and is equal to K. To estimate the parameters we will make use of Gibbs Sampling

with Data Augmentation. This method uses conditional distributions of parameters

and latent variables given other parameters and latent variables to draw parameter

values in an iterative manner. If chosen starting values of the parameters and latent

variables are reasonably close to their posterior distribution, then after convergence

the draws will be draws from the posterior distribution of the parameters. From

these, one can take for example the mean to obtain a point estimate. We denote the

draw in iteration m with the superscript (m). For example, µ
(251)
0 denotes the value

of the latent variable µ0 in iteration round 251.

The conditional distributions need to be constructed for different sets of vari-

ables. Per set, one needs to be able to draw all parameters and latent variables

within that set simultaneously (given the other parameters and latent values),
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so we need to group them accordingly. The sets that we create are as follows:

[σε, σ∆µ, σλ,u, σλ,d, d
∗
1], [∆µ∗, λ∗u, λ

∗
d, β], [λ1, λ2, ..., λK ], [µ0], [µ1], ..., [µK ], [τ1],

[τ2], ..., [τK ]. This amounts to 2K + 4 sets. We denote the sets using the notation

B1, B2, ..., B2K+4. To denote all sets except Bi, we use the notation B−i. To denote

the sets with a lower of higher index, we use B<i and B>i.

The conditional distributions

We now present and discuss the conditional distributions of each individual set.

First we discuss the conditional distribution B
(m)
1 |B

(m−1)
−1 . This set consists of all

the σ type parameters. The conditional distribution can be derived for each parame-

ter separately, as these parameters do not directly affect each others contribution to

the likelihood function. To draw σ
(m)
ε , we calculate the residuals of (11) and denote

these residuals as ε̂
(m)
t . Then we have

σ2
ε

(m)|B(m−1)
−1 ∼ IG(

T∑
t=1

ε̂2
t , T ) (19)

with IG denoting the Inverted Gamma distribution. Similarly, the other σ type

variables can be drawn by rewriting their defining equations in a residual form, that

is,

σ2
∆µ

(m)|B(m−1)
−1 ∼ IG(

K∑
i=1

(|µi − µi−1| −∆µ∗)2, K − 1) (20)

σ2
λ,u

(m)|B(m−1)
−1 ∼ IG(

∑
sκ=H

(λuκ − λ∗u)2,
K∑
κ=1

I[sκ = H]) (21)

σ2
λ,d

(m)|B(m−1)
−1 ∼ IG(

∑
sκ=L

(λdκ − λ∗d)2,
K∑
κ=1

I[sκ = L]) (22)

Finally, for the draw of d∗1 we only need to observe the moment of the first switch

τ
(m−1)
1 and the duration dependence parameters β(m−1). The contribution to the

likelihood of d∗1 is then the probability of switching at t = τ1 times the probability

of not switching earlier, like

L(d∗1) ∝ Φ(β(m−1)D
(m−1)
d∗1+τ1−1)

d∗1+τ1−1∏
t=1

(1− Φ(β(m−1)D
(m−1)
t )) (23)
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We draw the new value for d∗1
(m) from 0, 1, ... using the probabilities p(j) = L(j)∑∞

i=1 L(i)
.

Next, for the draws of B
(m)
2 |B

(m)
1 , B

(m−1)
>2 , we again can split the set into parts that

have no influence on each others’ likelihood contribution. For ∆µ∗|B(m)
1 , B

(m−1)
>2 we

can rewrite (15) to a normal distribution with mean equal to the average difference

between subsequent state means and the variance equal to the sample mean variance,

that is,

∆µ∗|B(m)
1 , B

(m−1)
>2 = N(

1

K

K∑
κ=1

|µκ − µκ−1|,
σ2

∆µ

K
) (24)

After applying a logarithmic transformation to (17), we can apply the same method

to find the conditionals of λ∗u and λ∗d:

λ∗u|B
(m)
1 , B

(m−1)
>2 = N(

1

K

∑
sκ=H

λuκ,
σ2
λ,u∑K

κ=1 I[sκ = H])
) (25)

λ∗d|B
(m)
1 , B

(m−1)
>2 = N(

1

K

∑
sκ=L

λdκ,
σ2
λ,d∑K

κ=1 I[sκ = L])
) (26)

For the simulation of β, we rewrite (13) by introducing the latent variable zt:

zt = βDt + ηt, ηt ∼ N(0, 1) (27)

st 6= st−1 if zt ≥ 0
st = st−1 if zt < 0

(28)

Then, we simulate zt from a truncated normal using the observation that there is a

switch or not at time t, that is,

z
(m)
t ∼

{
TN(β(m−1)D

(m−1)
t , 1, 0,∞) if s

(m−1)
t 6= s

(m−1)
t−1

TN(β(m−1)D
(m−1)
t , 1,−∞, 0) if s

(m−1)
t = s

(m−1)
t−1

(29)

After that, we can simulate β(m) using a normal distribution based on the OLS

regression of z
(m)
t on D

(m−1)
t , like

β(m) ∼ N(β̂
(m)
OLS, (Dt

(m−1)′Dt
(m−1))−1) (30)

For B
(m)
3 |B

(m)
<3 , B

(m−1)
>3 , we make use of a Metropolis-Hastings sampler (MH; see

Chib and Greenberg, 1995) for each individual λκ. For the MH sampler we need

a candidate-generating function and a likelihood function for evaluation. For the

candidate-generating function, we make use of (17) and (18) to draw from g(λκ),

which is a truncated log-normal distribution with parameters λ∗u and σλ,u for an
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upwards transition (λ∗d and σλ,d for downwards) and an upperbound equal to τκ+1−

τκ. For the likelihood function we use the contribution of λκ to the likelihood, f(λκ),

which is based on its effect on µt via (12) and on its own likelihood via (17). The

probability of accepting the candidate is

α = min(
f(λ∗κ)g(λ

(m−1)
κ )

f(λ
(m−1)
κ )g(λ∗κ)

, 1), (31)

otherwise, λ
(m)
κ = λ

(m−1)
κ . As the definition g(λκ) is part of the definition f(λκ), this

drops out of the fraction and thus we can also define h(λκ) = f(λκ)
g(λκ)

, which only looks

at the contribution to the likelihood based on its effect on µt via (12), and then use

α = min(
h(λ∗κ)

h(λ
(m−1)
κ )

, 1) (32)

We use this approach for each individual λκ. The drawn value of one λκ will not

affect the distribution of the other λκ’s, which is the reason we can include them all

in one set B3.

For the sets B
(m)
4 |B

(m)
<4 , B

(m−1)
>4 ; . . . ; B

(m)
K+4|B

(m)
<K+4, B

(m−1)
>K+4 we can use the same

approach. For each Bi with i = 4, . . . , K+4, we only draw µκ with κ = i−4. For this,

we at first will neglect the restriction that subsequent state means must alternately

be higher and lower. We can then rewrite (11), (12) and (15) to a regression of yt

and ∆µ∗ on transformations of dt and λκt and on 1 and −1, that is,

yt =

{
µκt + εt if t ∈ [τκt + λκt ; τκt+1]
µκt

dt
λκt

+ µκt−1(1− dt
λκt

) + εt if t ∈ (τκt ; τκt + λκt)
(33)

∆µ∗ =

{
µκ − µκ−1 + ζκ if sκ = H
µκ−1 − µκ + ζκ if sκ = L

(34)

εt ∼ N(0, σ2
ε) ζκ ∼ N(0, σ2

∆µ) (35)

We standardize all equations by dividing each term by the associated standard devia-

tion and collect the variables on the right hand side (except for µκ itself) in the matrix

X. We collect the µκ variables in the vector µ. Without the alternating increase or

decrease in state mean, we could now sample all µκ using µ ∼ N(µ̂OLS, (X
′X)−1).

As we do not want to interfere in the alternating state mean restriction, we can

sample the µκ one by one, conditional on all the others, using the standard formula
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for conditional normal distributions1. We restrict these to be either higher or lower

than both the newly drawn previous state mean µ
(m)
κ−1 and the next state mean of

the previous iteration µ
(m−1)
κ+1 .

For the sets B
(m)
K+5|B

(m)
<K+5, B

(m−1)
>K+5; ... ; B

(m)
2K+4|B

(m)
<2K+4, B

(m−1)
>2K+4 we can use the

same approach for each individual set. Each one of these sets consists of only one

latent variable, that is, τκt . For this, we again make use of a MH-sampling method,

for which we again need a likelihood-evaluating function f and a candidate gen-

erating function g. As candidate-generating function, we consider a discrete uni-

form distribution between the end of the previous transition (τ
(m)
κ−1 + λ

(m)
κ−1) and the

end of the current transition (τ
(m−1)
κ + λ

(m)
κ ). As we want to let τκ only influence

the start of the transition and not also the end, we adjust the transition length:

λ∗κ = λ
(m−1)
κ + (τ

(m−1)
κ − τ ∗κ). For the evaluation of the likelihood, we need to observe

that τκ influences the likelihood in two ways, that is, (i) changing the observation

mean µt via (12), and (ii) the time periods during which the probit in (13) equals 1

(and thus also when it is 0). The adjusted λκ also affects (12), and along with that

it contributes to the likelihood via (17). As our candidate-generating function is a

uniform distribution, its pdf has the same value for each input in its support and it

disappears from the equation to calculate the acceptance probability. This means

that in this case the probability of accepting the candidate τ
(m)
κ = τ ∗κ equals

α = min(
f(τ ∗κ , λ

∗
κ)

f(τ
(m−1)
κ , λ

(m−1)
κ )

, 1), (36)

otherwise, τ
(m)
κ = τ

(m−1)
κ , and similarly for λ

(m)
κ .

Finally, we relax the assumption that the number of switches is known to be

K. Instead, assume that the number of state switches in the sample is an element

of {K, K+1, K+2}. That is, we allow for two states for which it is open whether

they are part of the sample or not. For this, we will allow for two additional sets

of state parameters, µK+1, µK+2, λK+1, λK+2, τK+1 and τK+2. The state means and

transition speeds might be partly simulated using the time series, if the associated

1If X1 and X2 are both multivariate normally distributed vectors with means µ1 and µ2, covari-
ance matrices Σ1 and Σ2 and cross-covariance matrix Σ12, then X1|X2 ∼ N(µ1 + Σ′12Σ−1

2 (X2−
µ2),Σ1 − Σ′12Σ−1

2 Σ12)
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switches occur before t = T . Otherwise, the simulated values will be entirely due to

the distribution assumptions (13)-(18). Similarly, the simulation of the parameters

β, ∆µ∗, σ∆µ, λ∗u, λ
∗
d, σλ,u and σλ,d now incorporate the additional two states and its

latent values.

In practice, we would advise to set K such that K+1 equals the suspected number

of switches in the sample. This way one can account for the situation that the

expected last switch might not have happened, or otherwise, that an unexpected

switch did occur. To evaluate the number of switches outside this interval, one

could compare the estimated average likelihoods for different choices of K, possibly

including a penalizing term for higher values of K.

Forecasting and real-time monitoring

We can of course also construct forecasts of yt, t > T , and also for the associated

latent values. For this one can fix the parameters to the mean or median of the draws

obtained using the Gibbs sampling method. To account for parameter uncertainty,

it is however better to draw the parameters used in forecasting from the entire

posterior distribution. This can be easily done in practice by constructing a forecast

in each iteration of the estimation process using the values of the parameters in

that iteration. More elaborate sampling methods need to be used if one wants to

forecast from a different starting point than at the end of the estimation sample.

In that case, we would also need to re-estimate all the latent variables using only

information up until that starting point.

We can forecast the observation mean µt by simulating from (13)-(18). To ac-

count for the restriction in (18), we first simulate the transition length λ, and then

simulate the next state switch moment τ so that the λ is smaller than the difference

between the two subsequent state switches. To obtain a full forecasting distribution,

we also simulate the observation error εt using (11). If necessary, point and interval

forecasts can be obtained using expected quantiles of this distribution.

Related to forecasting is the concept of real-time monitoring, in which the esti-

mates of now relevant latent variables and short-horizon forecasts are updated each

time a new data point becomes available. The approach for this is comparable to
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the one we use for forecasting, with the main difference that for real-time monitoring

one needs to reapply the sampling procedure each time period. Due to the newly

available sample point, the latent variables associated with the final states in the

sample will change, and the best way to account for this is by re-estimating the pre-

vious latent variables and the parameters. This estimation process may take some

time (depending on processor speed, programming efficiency and software), which

can be in contrast to the goals of real-time monitoring, for which in fact one needs

the updated estimates as quickly as possible after obtaining the new data point.

For a quicker updating of the latent variables of the final states, one could fix the

parameters and the latent variables of the previous states. That way, re-estimating

will be done using less sets of parameters in the Gibbs sampling, which leads to

less autocorrelation in the draws and thus to a smaller simulation sample that is

necessary to obtain an accurate distribution.

4 Application to US unemployment

In this section we illustrate our model and estimation process on monthly unemploy-

ment in the United States for the period 1948 to 2012. Our estimation sample runs

until 1992 (covering 540 months), which leaves 240 months for the forecast evalua-

tion. For the estimation sample we restrict our K to be an element of {15, 16, 17},

based on visual inspection of the data.

Estimation results

Our estimation results are shown in Table 1 for which we have used in total 110000

iterations in the sampling process. After accounting for the burn-in period of 10000

iterations and a thinning factor of 45, this results in 2000 as-good-as-independent

draws from the posterior distribution of the parameters and the latent variables.

The estimates of β1 and β3 show that there is asymmetry concerning the switching

behavior, although it is not statistically significant. The estimate of β2 shows that

the upwards switch is not duration dependent, as zero is approximately in the middle

of the HPD interval. In contrast, for the downwards switch the results show that
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there might be duration dependence as zero is on the border of the interval for

β2 + β3. In fact, there are many ways in which we could have applied our thinning

differently and that could have resulted in an interval that would not include zero.

Next, the estimate of ∆µ∗ shows that on average the high states and low states

in unemployment differ about 2.8 percentage points. The ratio of ∆µ∗

σ∆µ
suggests

that switches in the wrong direction are not likely even if we would remove the

truncation, as the average of this ratio is 2.810, of which the negative (-2.810) is

the 0.25-th percentile of the normal distribution. In fact, if we would calculate for

each iteration the probability that one individual state mean change is in the wrong

direction (Φ(0−∆µ∗

σ∆µ
)), then the HPD-region of these probabilities only runs to 0.033

and it has a mean of 0.008. The median is even lower, that is, 0.003. This shows

that the truncation restriction is not of much influence on our estimation results.

Finally, we discuss the estimates of the transition speed parameters. The esti-

mates of λ∗u, λ
∗
d, σλ,u and σλ,d seem to be quite accurate, considering their relatively

small HPD intervals. The average transition length however is an exponential func-

tion of both of them, which can result in blowing up small differences to large effects.

The average upwards transition length, eλ
∗
u+ 1

2
σ2
λ,u , is 14.6, which means that on aver-

age it takes almost five quarters for unemployment to transit from a local minimum

to a local maximum, what would be called a recession. The opposite movement takes

much more time, as the average for eλ
∗
d+ 1

2
σ2
λ,d amounts to more than three years. This

shows the familiar property for unemployment that an increase in unemployment is

much quicker than a decrease.

Table 2 shows the average results for the latent variables. The first two columns

present results on the timing of the start of the switch (τκ). Next, the results on the

length of the transitions (λκ) follow, and the final two columns contain results on

the state means (µκ).

The first fifteen states all have a state switch that falls entirely inside the sample

that runs to t = 540. These state switches can thus be estimated quite accurately

in most cases. Only the 10th state switch, which occurred around December 1971

(t = 287), has a standard deviation that is relatively high (4.150). For this state, the

observations gradually start to decline and so there is no clear visual starting point
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of the transition. The model arrives at the same conclusion. The last two states do

not fall entirely inside the sample. For κ = 17, the state switch is definitely after

t = 540, but for κ = 16, this is not so clear. On average, the switch occurs after

t = 540, but in fact in 50.5% of the iterations the state switch τ16 occurs on or before

t = 540. This shows why it is important to account for multiple possible numbers of

switches as it might be unclear whether a switch has occurred or not, and then one

can account for both situations. As can be expected, both τ ’s that fall (partially)

outside the sample are estimated less accurately than those inside the sample.

For the values of λκ in Table 2, we can observe an alternating pattern of high

and low values. This is due to the different transition behavior for upwards and

downwards transitions, which was also evident from the final two rows of Table 1.

Again, of all in-sample states, state 10 has the most uncertain estimate of the latent

variable. This makes sense, because if the start of the transition is unclear, then

the length of the transition is also most likely unclear, as that depends on the start.

Also, the two latent variables that fall outside the sample (λ16 and λ17) are both

less accurate than all in-sample estimates, which is similar to the situation for the

corresponding τ variables.

For the in-sample state means (µκ in Table 2), we see again an alternating pat-

tern of high and low values, which follows directly from the relation between two

subsequent state means. The two state means that are most close to each other on

average are µ9 ≈ 5.013 and µ10 ≈ 6.031, which still differ more than 1 percentage

point. Also, there is no single value that is clearly less accurate than the others.

The highest in-sample posterior standard deviation is 0.185 for µ1, while the lowest

is 0.060 for µ8. The numbers in between seem to be about evenly spread out. Even

the two state means around the tenth switch, µ9 and µ10, are both estimated quite

accurately, in contrast to the situation for τ10 and λ10. Again, both state means that

are (partially) outside of the sample are estimated less accurately.

Based on our estimates of the parameters and the latent variables, some inter-

esting graphs can be constructed. Figure 6 shows the original data along with the

estimated mean and HPD intervals for the state means µt until the end of the es-

timation sample t = 540. We also present 7.5 years of forecasts, all constructed
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using information until t = 540. It can be seen that the in-sample intervals are

much smaller than the out-of-sample intervals, as could well be expected. Quite

noticeable is that the forecasts exhibit the same cyclical property of the model, and

this is a feature that does not follow from a standard MS model with two states.

Figure 7 shows the probability of switching out of the state for both the upward

and the downward switch, with on the horizontal axis the time already spent in that

state. These probabilities are calculated for the entire posterior distribution of β and

they incorporate the parameter uncertainty. For both state types, the probability

of switching away increases the longer the duration of the state. For the downward

switch this increase is obtained earlier than for the upward switch, as its line is

mostly above the line of the upward switch.

Figure 8 shows the histogram of the durations of both states, accounting for

both the uncertainty in β and for the completed transition restriction in (18). The

histograms clearly show that the downward switch happens faster than the upward

switch. In fact, the averages amount to 2.3 years and 5.6 years, so upward switches

occur after more than twice the time of downward switches, which means that high

states last twice as short as the lower states. For both states an immediate switch

is not impossible, although it is unlikely. As a comparison, for a standard MS

model this histogram would be monotonically declining, and an immediate switch is

actually the most likely.

Finally, Figure 9 shows the histogram of the length of a total cycle, thus incor-

porating both an upward and a downward switch using the values of β in the same

iteration of the Gibbs sampler for both cycles. The pattern is comparable to the

patterns in Figure 8, which was to be expected as it is the sum of both histograms in

that figure. The average cycle length amounts to 7.8 years, which corresponds well

with the common socio-economic cycle periods mentioned in de Groot and Franses

(2012).

Real-time monitoring

An interesting application of our model is real-time monitoring, in which one in-

vestigates how much the estimates of latent variables get updated when new data
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points become available. We now illustrate how real-time monitoring can be applied

using our model. For this we first re-estimate all latent variables using the data only

until t = 1, only until t = 2, up to until t = 540, while fixing the parameters to

the posterior distribution that has been estimated previously. For this part of the

estimation process, we can use less draws as we can randomly draw the parameters

from the posterior distribution, thereby decreasing the autocorrelation of the draws

of the latent variables. That is why we decided to use 10000 draws with a burn-in

sample of 1000 for each individual monitoring process.

This results in 540 estimated distributions for each individual latent variable.

Using this we can calculate all sorts of statistics to see how the estimates evolve over

time. For example, we can calculate the estimated mean of state 5, µ5, using any

possible set of information, to see from which point on the estimate of µ5 does not

vary any more. Or, we can find the width of the 95% HPD interval of µ5, to see

when the estimate of µ5 first meets a certain accuracy requirement.

Figure 10 shows the average width (calculated over the entire sample period)

of the 95% HPD interval for µt. This width has been calculated using information

starting from t−100 up until t+ 100, thus using a total time period of over 16 years

around each observation. This shows how the accuracy in estimating the observa-

tions’ mean evolves when more information about that mean becomes available. It

can be seen that the width decreases the fastest just before and just after time t.

There is a slower decrease for the time periods that are well before t, while after a

few months after t there is no information gain left anymore.

Next, Figure 11 shows the in-sample Root Mean Squared Error for each obser-

vation yt, calculated using the in-sample forecast ŷt|t+h. As expected, for low h this

value approaches σε, while for high values of h the forecast error is larger. Even

though this graph shows a different characteristic than Figure 10, they both show a

similar pattern.

Forecasting

We have constructed forecasts for the last 240 hold-out observations, allowing for

varying forecast horizons. We produce these forecasts starting at different starting
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points, for which we each time need to re-estimate the latent variables to account

for the new information. We will not update the parameter estimates, however, as

these are based on the first 540 observations. For simulating the latent variables

we have used the same approach as discussed for real-time monitoring, with again

10000 iterations per information set.

We will compare the forecasting performance of our model with several others.

We use two simple forecasting models as a baseline comparison. The first of these

is just taking the average of yt for t = 1, . . . , 540, so this means that we forecast the

future using the sample average of the estimation sample. The second simple model

is the Random Walk model, in which each forecast is just the most recently observed

value at that time. In other words, ŷt+h|t = yt. We also compare our model with two

other Markov Switching models, namely the two-state and the three-state models.

These models do not incorporate the duration dependence or stochastic means of

our model, but instead they use fixed transition probabilities and fixed state means.

To use an approach that comes close to our approach, we have estimated these

models using Gibbs sampling on the same estimation sample and we forecast using

draws from the entire posterior distribution of the parameters. For these simpler

models, we have used 50000 iterations to estimate the parameters (after 100 burn-in

iterations), and 5000 iterations for updating the estimates as the forecasting windows

moves.

Table 3 shows the results of this forecast comparison. For each competing model,

the RMSE (Root Mean Squared Error) has been calculated and then divided by the

RMSE of our model. Values above 1 indicate that the alternative model performs

worse, and values below 1 indicate the opposite. As can be seen, our model is the

best model for the short-to-mid-term: for forecasting 6 months to 2 years ahead, our

model beats the Random Walk model and a simple first order autoregression, and

it is much better than both other MS models. For the other forecast horizons, our

model is beaten by other models. On the very short horizon of 1 month, this defeat

is no surprise, as our model takes no short-term information into account and the

two models that beat our model here do. On the other hand, we easily outperform

both other MS models again for 1 month ahead. On the longer term (more than 3
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years), our model loses from all alternatives. For 3 to 5 years ahead the forecasting

performance is not too bad as our model still beats the Random Walk, and no other

model outperforms by more than 8%. For the two longest horizons however, our

model performs very poorly. This might be because in the long-run our simulated

state cycles are often out-of-sync with reality. This latter feature is studied next,

using simulations.

5 Simulations

In this section we investigate the accuracy of our estimation method in practically

realistic situations. We do this by simulating multiple time series from a Data

Generating Process (DGP) and by applying our estimation method to these time

series.

As DGP we use the model and its parameters as presented in Section 4. We

set the sample size in our simulations at 540, which is the length of the time series

used in Section 4, and at 2160. The number of simulated time series in both cases is

400, while we use 10000 iterations in the estimation process after a burn-in of 1000

iterations.

Various summary statistics of the simulation results are shown in Table 4. As

these results are calculated across 400 time series with 10000 iterations each in the

estimation process, we report summary scores of various statistics, like for example

the standard deviation of the mean. In that case, the standard deviation is calculated

based on 400 values of the mean, of which each individual value is based on 10000

iterations.

Table 4 also shows the values of the parameters in the DGP. For most parameters,

the mean of the mean and median of the median are quite close to the true DGP

values. This holds true for T = 540 and even more so if T = 2160. Moreover, in

all cases the spread in the point estimate (StDev of mean) is smaller when using

more observations, which was to be expected. For some variables the StDev of mean

for T = 2160 is about 10% of the same statistic for T = 540, while for most it is

about a half. The least improvement is made for d∗1 (only a 16% drop to 84% of
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previous value), which might be explained by the fact that this value is for a large

part affected by the initial observations only, and these cannot be influenced by the

choice of T .

The β parameters are the only ones that are not always accurately estimated,

especially if T = 540. The reason for the large differences in the mean of the

posterior distribution (column StDev of mean) is the apparently small number of

state switches in a sample of this length. On average the number of state switches

is about equal to 15, as in the estimation sample of Section 4, which is already

quite small, and for some of the simulated series this number dropped to as low as

10. Naturally, estimating the parameters in a probit model with four explanatory

variables using only 10 observations with a ’1’ results in substantial uncertainty

around the estimates. Having a longer time series obviously will make this situation

less likely, and this is evident from the much lower values of StDev of mean for β

when T = 2160. Also, for larger T the point estimates are on average much closer

to the true values, even though there is still room for improvement.

The final two columns for both values of T provide an indication of how the DGP

configurations are located as compared to the posterior. The mean of StDev shows

how narrow (or wide) the estimated posterior is. Most posteriors are much more

narrow for a higher T , with d∗1 as only exception as that parameter is not really

affected by the value of T . The mean of quantile shows the quantiles where the true

parameters are located. Both sample sizes show a similar pattern, so the sample size

does not seem to matter much.

6 Conclusion

In this paper we have introduced a new model that can deal with changing levels

and cyclicality in time series. We have proposed a Markov switching model with

two states that each have a stochastic mean, where the transition behavior of these

states is governed by duration dependence and stochastic linear transition periods.

We have shown with artificial data that data from this model have characteristics

comparable with actual data. We have presented an estimation method that uses
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Gibbs Sampling with Data Augmentation, which also generates a density forecast.

We have applied this estimation method to postwar monthly US unemployment and

we have found that for two to three years ahead forecasts, our model has superior

forecasting performance compared to a set of benchmark models. We have also

shown, using a set of simulations, that the parameters of our model can be estimated

quite accurately, granted that there is a sufficient number of state switches.

We envisage various potential extensions to our model and analysis. The major

drawback of our model, as we have seen in the simulation exercise, is the poten-

tial difficulty in estimating parameters that fully depend on state switches. For

many currently available samples of macroeconomic data, one typically encounters

a limited number of state switches. One way to alleviate this is to jointly model

several time series for which a common parameter can be assumed. Alternatively,

the parameters of the different time series can be linked using an underlying joint

distribution.

Applications to other than macroeconomic series can be particularly interesting.

We then think of high-frequency financial time series data or data in marketing

contexts, where different regimes may occur much more frequently. Other extensions

could include implementing an autoregressive model to the stochastic-mean part of

the model (15) or to the shocks in (11). An alternative distribution like a log-normal

distribution instead of the truncated normal in (15) could also be considered.
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Tables and Figures

Table 1: Results on the posterior density of the main parameters of applying the
SMDDMS-SLT model to US unemployment.

Parameter Average Standard Error 95% HPD interval
σε 0,313 0,010 0,292 0,332
β0 -1,967 0,342 -2,688 -1,347
β1 -0,594 0,476 -1,471 0,415
β2 0,021 0,019 -0,016 0,055
β3 -0,011 0,019 -0,051 0,023

∆µ∗ 2,806 0,280 2,244 3,333
σ∆µ 1,040 0,222 0,673 1,469
λ∗u 2,375 0,265 1,857 2,909
λ∗d 3,184 0,326 2,554 3,792
σλ,u 0,713 0,125 0,519 0,953
σλ,d 0,816 0,164 0,566 1,144
d∗1 46,455 29,592 0 98

β0 + β1 -2,561 0,329 -3,218 -1,940
β2 + β3 0,011 0,006 -0,001 0,022

∆µ∗

σ∆µ
2,810 0,605 1,663 3,982

Φ(0−∆µ∗

σ∆µ
) 0,008 0,015 0,000 0,033

eλ
∗
u+ 1

2
σ2
λ,u 14,558 4,612 7,857 23,568

eλ
∗
d+ 1

2
σ2
λ,d 36,669 17,654 15,177 63,317
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Table 2: Average results on the latent variables. For example, the sixth state
switch is estimated to start around t = 127, the transition length for this switch is

about 9 and the level of the sixth state is about 5.7.

τκ λκ µκ
κ Mean StDev Mean StDev Mean StDev
0 7,273 0,097
1 11,386 0,734 8,634 1,358 4,019 0,185
2 22,685 0,979 17,582 1,402 8,024 0,059
3 69,541 0,593 5,732 1,104 5,093 0,155
4 79,874 1,515 10,316 2,370 6,885 0,062
5 116,981 0,655 7,565 1,110 3,555 0,176
6 127,021 0,999 9,207 1,523 5,746 0,089
7 150,353 1,573 6,686 2,133 4,342 0,090
8 159,719 1,667 69,800 3,184 7,373 0,060
9 263,398 0,985 12,534 1,750 5,013 0,107
10 287,225 4,150 17,099 5,828 6,031 0,090
11 318,829 0,854 8,314 1,293 2,337 0,120
12 329,791 1,674 40,408 3,041 5,156 0,113
13 380,478 1,521 36,920 1,817 1,394 0,074
14 418,860 0,816 65,760 1,992 5,672 0,069
15 507,878 1,605 21,436 3,643 3,474 0,133
16 541,674 6,440 18,445 10,247 6,070 1,105
17 578,684 17,344 9,725 6,210 3,264 1,461

Table 3: RMSE relative to our model. A value larger than 1 indicates that the
corresponding model performs less than our model for the corresponding horizon,

while a value smaller than 1 indicates that the model outperforms our model.

Forecast horizon Fixed Mean Random Walk AR1 MS2 MS3
1 month 9,599 0,762 0,766 5,290 4,615
6 months 3,314 1,095 1,083 2,256 2,016

1 year 1,838 1,096 1,055 1,496 1,426
1.5 years 1,366 1,106 1,038 1,228 1,233
2 years 1,142 1,131 1,033 1,083 1,163
3 years 0,978 1,184 1,035 0,972 1,036
4 years 0,951 1,218 1,031 0,955 0,973
5 years 0,947 1,175 0,968 0,941 0,921

7.5 years 0,769 0,786 0,680 0,751 0,726
10 years 0,791 1,062 0,783 0,770 0,787
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Table 4: Summary results of multiple parameter distributions estimated using
simulated data from the same Data Generating Process for time series length

T = 540 and T = 2160, with 400 time series for each case. Parameters have been
estimated using Gibbs sampling with 10000 iterations (after a burn-in of 100

iterations). The table presents the mean and standard deviation of the mean of the
posterior distribution, the median of the median of the posterior distribution, the
mean of the standard deviation of the posterior distribution, and the mean of the

quantile of the DGP parameter in the posterior distribution.
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σε 0,313 0,315 0,011 0,315 0,012 0,544 0,315 0,007 0,314 0,005 0,565
β0 -1,967 -3,813 3,225 -2,919 1,105 0,072 -2,597 0,304 -2,568 0,255 0,030
β1 -0,594 0,116 3,404 -0,354 1,462 0,599 -0,319 0,421 -0,352 0,338 0,693
β2 0,021 0,094 0,162 0,053 0,047 0,835 0,037 0,016 0,036 0,010 0,821
β3 -0,011 -0,068 0,163 -0,030 0,050 0,315 -0,025 0,017 -0,023 0,010 0,251

∆µ∗ 2,806 2,742 0,309 2,743 0,344 0,445 2,775 0,169 2,781 0,163 0,447
σ∆µ 1,040 1,080 0,247 1,023 0,279 0,482 1,045 0,111 1,036 0,119 0,482
λ∗u 2,375 1,914 5,935 2,350 1,356 0,495 2,344 0,163 2,342 0,156 0,442
λ∗d 3,184 3,151 0,364 3,155 0,358 0,469 3,161 0,187 3,176 0,165 0,467
σλ,u 0,713 0,726 0,130 0,675 0,202 0,416 0,683 0,055 0,672 0,063 0,321
σλ,d 0,816 0,764 0,139 0,709 0,200 0,302 0,738 0,062 0,728 0,070 0,185
d∗1 46,455 49,858 18,771 49 24,947 0,497 51,329 15,241 50 28,022 0,516
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Figure 1: Monthly unemployment in the United States in the period 1948 to 2012.

Figure 2: Four stylized series to characterize the gradual steps from a standard MS
model to our model.
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Figure 3: Three sample series of each of a reference DGP and three alternatives.

Figure 4: Simulated confidence intervals for the second half of one series for each of
a reference DGP and three alternatives.

30



Figure 5: Simulated histograms for the length of a full cycle (consisting of an
upward and a downward switch).
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Figure 6: The mean and 95 % bounds for the estimation and forecasted
observation means. Up until the vertical line at t = 540 the mean and bounds are
in-sample and they are shown together with the original unemployment series for
the period 1948 to 1992. For t > 540, mean and bounds of out-of-sample forecasts

are shown, all constructed with the information set at t = 540.
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Figure 7: Estimated posterior probability of switching out of a state, accounting
for the uncertainty in β by using the entire posterior distribution.

Figure 8: Estimated histograms for the duration of one state, accounting for the
uncertainty in β by using the entire posterior distribution.
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Figure 9: Estimated histograms for the length of one full cycle, which incorporates
both one upwards switch and one downwards switch together with their transition

periods.
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Figure 10: The average width of the 95 % interval of the observation mean for
information sets that lead or lag with horizons up to h = 100.
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Figure 11: The in-sample root mean squared forecast error for horizons up to
h = 100.

36


