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Abstract

Long distance truck drivers in Sub-Saharan Africa are extremely vulnerable to HIV

and other infectious diseases. The NGO North Star Alliance aims to alleviate this situ-

ation by placing so-called Roadside Wellness Centers (RWCs) at busy truck stops along

major truck routes. Currently, locations for new RWCs are chosen so as to maximize

the expected patient volume and to ensure continuity of access along the routes. As

North Star’s network grows larger, the objective to provide equal access to healthcare

along the different truck routes gains importance. This paper considers the problem to

locate a fixed number of RWCs based on these effectiveness and equity objectives. We

come up with a novel, set-partitioning type of formulation for the problem and propose

a column generation algorithm to solve it. Additionally, we propose and analyze sev-

eral state-of-the-art acceleration techniques, including dual stabilization, column pool

management, and accelerated pricing, which solves the pricing problem as a sequence

of shortest path problems. Though the facility location problem is strongly NP-hard,

our algorithm yields near-optimal solutions to large randomly generated problem in-

stances within an acceptable amount of time. Our analysis of the trade-off between the

equity criterion and North Star’s current criteria shows that solutions that are close to

optimal with respect to each of the effectiveness and equity objectives are likely to be

attainable.
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1 Introduction

Long distance truck drivers in Sub-Saharan Africa are extremely vulnerable to HIV and other

infectious diseases (Apostolopoulos and Sönmez 2007). The underlying determinants seem

to be loneliness, long separation from home, monotony, and stress, which make them engage

in high-risk sexual behaviors (Morris and Ferguson 2007). This context thereby brings about

huge health (and thereby social and economic) risks to this population, and seems to fuel

the spread of HIV and other infectious diseases (Gatignon and Wassenhove 2008).

Providing long distance truck drivers with continuous access to basic (HIV) prevention,

treatment, and care services is therefore believed to be an effective way to combat HIV and its

consequences. Traditional healthcare facilities, however, are generally incapable of delivering

these services. The main reasons are that truck drivers do not have time or permission to

deviate from their routes, that these facilities cannot be accessed by truck, and that the

opening hours are inconvenient to the drivers (Gatignon and Wassenhove 2008, Ferguson

and Morris 2007).

Non-governmental organization North Star Alliance (North Star) aims to fill this gap

by placing so-called Roadside Wellness Centers (RWCs) at busy truck stops along major

truck routes in Sub-Saharan Africa. These RWCs provide basic healthcare services, like

clinical services, HIV testing and counseling, and behavior change communication to truck

drivers and surrounding populations. North Star’s current network consists of 35 RWCs,

and will expand considerably in the next couple of years. This is expected to bring about

large health benefits to truck drivers and surrounding populations. In the first place, by

placing new RWCs at busy truck stops, North Star makes sure that many truck drivers are

provided with (at least a basic level of) access to the most needed health services when they

spend the night there. In addition, establishing a dense network of RWCs ensures that many

truck drivers also have continuous access to the needed health services. That is, they are

sufficiently close to an RWC at every moment during their trip, which is a requirement for

several health services to be effective (De Vries et al. 2014a).

Choosing the locations of a given number of new RWCs presents novel and complex

optimization problems. Decision makers face a huge number of possible location decisions,

and have to balance multiple objectives. De Vries et al. (2014b) propose a mixed-integer

programming (MIP) formulation for the problem to locate a given number of new RWCs and

to decide on the set of health services to be offered by these RWCs. The objectives are to

maximize the impact of the new RWCs in terms of the patient volume served and in terms

of the extent to which the truck drivers have continuous access to healthcare. Numerical
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and analytical results suggest that the model potentially yields significant improvement for

the location decisions taken by North Star.

In spite of that, further improvement of the model is needed in two directions. First, as

many other non-profit organizations, North Star operates in a complex environment that is

characterized by many different objectives and stakeholders. As North Star’s network grows

larger, a third objective is gaining importance among them: to provide equitable access

to healthcare. More specifically, inequalities in access among truck drivers using different

truck routes are to be minimized, both for ethical reasons, as inspired by the right to health

(United Nations 1946), as well as for medical and financial reasons.

The second direction for improvement deals with the complexity of the location prob-

lem. De Vries et al. (2014b) show that the location problem is strongly NP-complete, and

numerical experiments show that solving large problem instances becomes extremely diffi-

cult. Moreover, the complexity of the problem will be increased considerably by including

an equity criterion. Alternative model formulations and solution methods are required to

deal with this.

This paper considers these two directions in the context of the problem of locating a

given number of RWCs (i.e., we do not consider the decisions on the health services to offer

at the RWCs). Our contributions are fourfold. First, we introduce and motivate the eq-

uity criterion, and propose several measures for (in)equality in access to healthcare among

mobile patient populations. Second, we propose and analyze a novel set partitioning type

of formulation for this type of facility location problem. The strengths of this formulation

are that it allows for a variety of objective functions (e.g., maximizing patient volume, en-

suring continuous access, and providing equity), and that the integrality gap is very small.

Third, to deal with the exponential number of variables our formulation brings about, we

propose and analyze a column generation approach to solve it. Moreover, we investigate

several strategies to speed up our algorithm, including dual stabilization, column pool man-

agement, and accelerated pricing. The latter solves the pricing problem to near-optimality

as a sequence of shortest path problems. Last, we numerically assess the trade-off between

the equity criterion and North Star’s current criteria (patient volume and continuous access)

based on randomly generated instances. Our results suggest that solutions that are close to

optimal with respect to each of the optimization criteria are attainable.

Though we specifically focus on the problem to select locations for a given number of

RWCs, these contributions also apply to the extension in which decisions on the health

services to offer are considered. Additionally, our contributions are also applicable to a
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variety of related facility location problems that deal with moving demand units. Examples

include the positioning of refueling stations, billboards, detection or inspection stations,

convenience stores, and ambulances.

The remainder of this paper is organized as follows. Section 2 describes the problem and

the optimization criteria in detail. Next, we present the set partitioning type of formulation

in Section 3. Section 4 describes our basic column generation approach. After this, we

describe our acceleration techniques in Section 5. Section 6 presents our results and is

followed by Section 7, which investigates the trade-off between equity and North Star’s

current objectives. Finally, in Section 8 we draw some conclusions and discuss possible

directions for future research.

2 Problem Description

Before we describe our problem in detail, let us introduce some notations. Let KP denote

the set of potential RWC locations – potential locations for new RWCs – and let KC denote

the set of current RWC locations – locations corresponding to the current RWCs. The union

of these sets KC ∪KP is the set of RWC locations K. Furthermore, let binary variable xk

indicate whether or not an RWC is available at a given RWC location k ∈ KP . We consider

the problem to select locations for p new RWCs from the set KP , and measure the quality

of a solution with respect to the patient volume criterion, the continuous access criterion,

and the equity criterion by variables ZPV , ZCA, and ZEQ, respectively. Finally, wPV , wCA,

and wEQ represent the relative importance of the three criteria. Then our objective function

is defined as:

max wPVZPV + wCAZCA + wEQZEQ (1)

The definitions of ZPV , ZCA, and ZEQ use the following notations. Parameter dk denotes

the expected daily number of patients entering an RWC at location k. The set of long

distance truck routes using the road network is denoted by Q and indexed by q. We measure

the level of access along truck route q by means of the variable cq ∈ [0, 1], which we refer to

as the coverage score of route q. Additionally, we relate to route q an ordered set of RWC

locations Kq ⊆ K, where elements Kq(1), Kq(2), ... represent the 1st, 2nd, ... RWC location

passed when traveling the route. Similarly, KPq and KCq denote the ordered sets of potential

and current RWC locations, respectively. Given location decisions x = {xk}, Kx
q represents
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the ordered set of RWC locations along route q for which xk = 1. Finally, the number of

truck drivers traveling route q is represented by fq.

The facility location problem described above is unique in the sense that it deals with

servicing mobile patients. Traditional healthcare facility location models, in contrast, as-

sume patients to be static (see Daskin and Dean (2004) and Rahman and Smith (2000)

for literature reviews). De Vries et al. (2014b) propose definitions of ZPV and ZCA based

on interviews with North Star’s CEO and staff. This section briefly describes these defini-

tions and the rationale behind them, and introduces and motivates the equity criterion and

corresponding measures.

2.1 Patient Volume

The patient volume criterion refers to the objective of serving as many truck drivers as

possible. The rationale behind this objective is that the more truck drivers can be provided

with at least a basic level of access to the needed health services, the better it is. Namely, such

basic level of access suffices to provide these truck drivers with many important “single shot”

services like HIV testing and counseling, behavioral change communication, and condom

distribution.

Given location decisions x, we measure patient volume ZPV as the total expected daily

number of patients entering an RWC:

ZPV =
∑
k∈KP

dkxk (2)

The patient volume objective provides an incentive to place RWCs at busy truck stops,

as many truck drivers can be reached there.

2.2 Continuous Access

Whereas providing truck drivers with a basic level of access suffices to effectively provide

some health services, providing continuous access is beneficial or even required for other

health services. Continuous access provides truck drivers with adequate access at any point

in time, and enables truck drivers to receive continuous and coordinated care over time (as

the clinics share information, truck drivers can obtain or continue a service at every clinic)

(De Vries et al. 2014a). These characteristics have been shown to lessen treatment delay
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and to stimulate treatment adherence, and thereby to decrease disease progression, disease

transmission, and drug resistance (see, e.g., Starfield et al. 2005). Continuous access seems

to be particularly crucial for the provision of HIV treatment and TB treatment (Munro et al.

2007, Mills et al. 2006). These treatments rely on continuous adherence, and require frequent

patient-provider contacts. In addition, adequate access at any point in time is necessary in

case of complications (e.g., opportunistic infections) and in case that medicines need to be

refilled.

Variable cq, the coverage score of truck drivers traveling route q, indicates to what extent

the level of access to healthcare provided along this route is “sufficient”, and ranges from 0

(insufficiently covered) to 1 (sufficiently covered). Given location decisions x, we measure

the total level of continuous access provided as the sum of the coverage scores of all truck

drivers in the network, and refer to this measure as the continuous access score:

ZCA =
∑
q∈Q

fqcq (3)

Before we formally define cq, we make the following assumption:

Assumption 1. RWC equivalents are accessible at the origin and destination of each truck

route.

An RWC equivalent refers to other healthcare facilities that also contribute to continuity

of access along a truck route. As many truck route origins and destinations correspond to

large cities, this assumption holds in most cases. We regard these facilities as RWCs in our

model, implying that Kx
q (1) and Kx

q (m) correspond to current RWC locations at the origin

and destination of route q, respectively (here, m = |Kx
q |). Based on this assumption, we can

split up the truck route in m − 1 sub-routes between two adjacent RWCs along the route:(
Kx
q (j), Kx

q (j + 1)
)
, j ∈ {1, 2, ...,m − 1}, corresponding to a travel time of t(Kx

q (j),K
x
q (j+1))

time units.

Now consider a given moment during the trip of a truck driver along route q. We define

him to be “safe” if the travel time to the next RWC along his route (i.e., his access time) is

at most a given critical time-limit τ , and measure cq as a piece-wise linear function g(·) of

the fraction of time he is “safe” during his trip:

6



Fraction of time safe0 0.4 0.8

1

Insufficiently
covered

Sufficiently
covered

Coverage score

Figure 1: Coverage score as a piece-wise linear function of the fraction of time safe, with µ1 = 0.4, µ2 = 0.8.

cq = g

∑m−1
j=1 min{t(Kx

q (j),K
x
q (j+1)), τ}

Tq

 (4)

Here, Tq denotes the total travel time for route q and the numerator represents the total

time a truck driver traveling route q is safe. Figure 1 shows an example of the function g(·)
with three different sections. In this example, if the truck driver is safe less than 40% of

the time, he is regarded as being insufficiently covered. If he is safe 80% or more of the

time, then we regard him as being sufficiently covered. For later use, we denote the two

breakpoints of the function by µ1 and µ2, respectively, and represent the three segments of

by σ1 = [0, µ1], σ2 = [µ1, µ2], and σ3 = [µ2, 1].

2.3 Equity

Equity involves the comparison of two or more populations (or individuals) along some di-

mension. In the context of the health sector, this comparison is made based on the service or

utility the health system provides to the different populations. Examples of specific concepts

that can be used to make this comparison include health status, distribution of resources,

expenditures, utilization, and access (Goddard and Smith 2001, Culyer and Wagstaff 1993,

Musgrove 1986).

The equity issue arises in a natural way in our healthcare facility location problem. Truck

drivers generally drive along the same truck route for years (personal communication, North

Star, 2011), so that, to a large extent, each truck route corresponds to a unique population

of truck drivers. Different location allocation decisions have a different impact in terms of

access to healthcare along these truck routes, so that these decisions implicitly determine
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the (in)equality in access to healthcare among the different populations.

As North Star’s network is growing larger, this issue is gaining more and more importance.

Whereas it can easily be defended why North Star should assign its first RWCs to the

largest populations, one faces a dilemma as soon as the number of RWCs in the network

grows. Namely, one has to decide whether to assign new RWCs to large and relatively well-

served truck populations, where the total health impact may be largest, or to underserved

populations, where the total health impact may be smaller. Hence, the principle of providing

equal access to healthcare for truck drivers who (supposedly) have equal needs starts playing

a role. Next to this ethical reason, there also is a pragmatic reason for taking the equity

criterion into account: donors seem to be more willing to finance North Star’s operations in

case that a large part of the truck driver population benefits from them.

To account for the equity criterion in facility location decisions, one needs to clarify the

exact meaning of equity. Though literature on equity stresses the importance of the subject,

particularly in a resource allocation context, there is no consensus on its definition (Waters

2000). Young (1995) classifies resource allocation rules based on three equity concepts:

parity (claimants should be treated equally), proportionality (goods should be divided in

proportion to differences among claimants), and priority (the person with the greatest claim

to the good should get it). Depending on the weights assigned to these concepts, many

views on equity are possible, ranging from a totally egalitarian perspective (inequalities are

unacceptable) and a Marxist perspective (inequalities should represent differences in need)

to a Rawlsian perspective (inequality is only allowed if it benefits those least advantaged)

(Williams and Cookson 2000).

Equity measures compare effects of actions on different groups, and possibly weigh such

effect based on the characteristics of a group (e.g., needs or size). In contrast to the other

two objectives, an abundance of literature is available on how to measure equity. Marsh and

Schilling (1994) provide a list of 20 equity measures that have been developed in the facility

location context. Though each of these measures prefer a completely equitable distribution

over any other distribution, they differ in their valuations of inequitable distributions. More

specifically, they assign different weights to the concepts of parity, proportionality, and pri-

ority. Though the measures might have been developed in a different context, they are easily

transferrable to our situation. Let the effect for population q be represented by cq. Some

of the most common equity measures are the sum of absolute deviations (SAD), the mean

absolute deviation (MAD), the minimum effect (ME), and the Gini coefficient (GC):
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ZSAD
EQ =

∑
q1,q2∈Q|q2>q1

|cq1 − cq2|fq1fq2 (5)

ZMAD
EQ =

∑
q∈Q

|cq − c̄|fq (6)

ZME
EQ = min

q∈Q
cq (7)

ZGC
EQ =

∑
q1,q2∈Q|q2>q1 |cq1 − cq2|fq1fq2

2
∑

q∈Q cqfq
(8)

Here, c̄ =
∑

q∈Q cqfq∑
q∈Q fq

. Measure (7) only considers the population that is least well-off,

and thereby neglects inequalities among the other populations. Note that increasing the

effect for the least well-off is often not possible, as it might be impossible to provide each

population of truck drivers with access to healthcare. Hence, this measure would probably

have hardly any effect on the facility location decisions. The Gini coefficient (8), which is

defined as the mean absolute deviation over the mean effect, in contrast, does consider the

inequalities among all populations, but has the disadvantage that it is highly non-linear. We

therefore believe that measures (5) and (6) (or comparable alternatives) are most useful in

the context of our facility location problem. For the remainder of the paper, we measure

equity as ZSAD
EQ , and henceforth refer to this measure as the equity score ZEQ. Note though

that with some minor adaptations, the models and solution methods presented next can also

be applied when equity is measured by ZMAD
EQ or ZME

EQ .

There is a clear trade-off between this equity objective and the other two objectives.

Locating RWCs so as to obtain more equitable access to healthcare will generally imply that

RWCs are allocated to small and underserved populations of truck drivers. One thereby

neglects the possibility to capture a much larger patient volume, and/or to ensure continuous

access to a relatively well-served, but much larger population.

3 Set Partitioning Type Formulation

De Vries et al. (2014b) propose a MIP formulation for the location problem defined in Section

2. This formulation uses binary variables xk to indicate whether or not an RWC is placed

at potential location k and iklq to identify pairs of RWCs (k, l) that are adjacent along route

q. The latter variables are used to calculate the travel time gaps between facilities along the

route (which yield the coverage scores cq). We describe this formulation in Appendix A and
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refer to it as the direct formulation.

This section proposes an alternative, set partitioning type of problem formulation, which

we refer to as the set partitioning formulation. In contrast with the direct formulation, this

formulation uses binary variables to indicate whether or not to establish a configuration

of RWCs along a given route. A configuration of RWCs defines for each RWC location

along a path whether or not an RWC is located there, as illustrated in Figure 2. The main

advantage of introducing these decision variables is that this allows us to pre-calculate the

coverage scores cq, in contrast with the direct formulation, which defines cq as a variable.

Figure 2: Four possible configurations of RWCs along truck route 1.

Let Nq denote the set of possible configurations for route q, indexed by n, and let Nk
q

be the subset of configurations for route q with an RWC located at potential RWC location

k. We use binary decision variables ynq to indicate whether or not configuration n ∈ Nq

is chosen for route q. Furthermore, parameter cnq denotes the coverage score of route q

given that configuration n ∈ Nq is realized, as calculated by (4). Using these notations, the

location problem defined in Section 2 can be formulated as the following MIP model:
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max wPV
∑
k∈KP

dkxk + wCA
∑
q∈Q

∑
n∈Nq

fqc
n
q y

n
q − wEQ

∑
q1∈Q

∑
q2∈Q
q2>q1

(
∆+
q1q2

+ ∆−q1q2
)
fq1fq2 (9)

s.t.
∑
n∈Nq

ynq = 1 q ∈ Q (10)∑
k∈KP

xk = p (11)

xk −
∑
n∈Nk

q

ynq = 0 k ∈ KP, q ∈ Q (12)

∑
n∈Nq1

cnq1y
n
q1
−
∑
n∈Nq2

cnq2y
n
q2

= ∆+
q1q2
−∆−q1q2 q1, q2 ∈ Q, q2 > q1 (13)

xk, y
n
q ∈ {0, 1} k ∈ KP, q ∈ Q, n ∈ Nq (14)

∆+
q1q2

,∆−q1q2 ≥ 0 q1, q2 ∈ Q, q2 > q1 (15)

Here, ∆+
q1q2

= max{cq1 − cq2 , 0} and ∆+
q1q2

= max{−(cq1 − cq2), 0}, so that |cq1 − cq2| =

∆+
q1q2

+ ∆−q1q2 . The objective function (9) maximizes a weighted sum of the patient volume,

the continuous access score and the equity score. Constraints (10) ensure that for each route

q ∈ Q only one configuration n ∈ Nq is chosen. Next, constraint (11) ensures that the

total number of newly placed RWCs is equal to p. The variables xk and ynq are linked by

constraints (12), enforcing the choice of a configuration n ∈ Nk
q if and only if xk equals 1.

Constraints (13) determine the value of ∆+
q1q2

and ∆−q1q2 . Finally, constraints (14) define ynq

and xk as binary variables, and constraints (15) define ∆+
q1q2

,∆−q1q2 as non-negative variables.

Note that this model is closely connected to the set partitioning problem, as constraints (10)

represent set partitioning constraints, and as we could express the model in terms of the

“partitioning variables” ynq only (by substituting the variables xk).

4 Column Generation Approach

Column generation has been proven to be a suitable technique for solving integer linear

programming problems (ILPs) that involve a large number of variables. Instead of directly

solving the linear programming relaxation of an ILP, called the Master Problem (MP),

the method starts with a small subset of variables and solves the LP relaxation using this

restricted variable set. This reduced problem is called the Restricted Master Problem (RMP).
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Using the resulting dual variables as an input, the method identifies excluded variables

that may improve the solution value, and adds them to the set of included variables. The

problem to find these variables is called the Pricing Problem. This process repeats till

optimality is proven. Detailed information about column generation techniques can be found

in Desaulniers et al. (2005) and Lübbecke (2010).

As our set partitioning formulation induces an exponential number of variables, we set

out to develop a column generation approach to solve its LP relaxation. As we will show in

Section 6, the set partitioning formulation has a very tight LP relaxation. Therefore, instead

of embedding our column generation approach in a computationally expensive Branch-and-

Bound scheme, we propose a heuristic that directly constructs a feasible integer solution from

the LP relaxation solution. This section presents our basic solution approach, which solves

the pricing problem exactly using a MIP formulation. Section 5 proposes several acceleration

techniques, including an alternative method for solving the pricing problem.

4.1 Restricted Master Problem

The RMP is obtained by relaxing the variables xk and ynq from the set partitioning formu-

lation (i.e., by defining them as continuous variables instead of discrete variables) and by

including only a subset of all variables ynq . We denote the subset of configurations n for route

q for which the variable ynq is included in the RMP by N∗q . Furthermore, we represent the

dual variables associated with constraints (10), (11), (12), and (13) by αq, β, γkq, and δq1q2 ,

respectively.

4.2 Pricing Problem

Generating a column for the RMP corresponds to finding a configuration n ∈ Nq \ N∗q for

some route q for which the so-called reduced costs of variable ynq is positive. Let parameter

ankq indicate whether or not configuration n for route q has an RWC located at potential

RWC location k. Then the reduced costs of the corresponding variable ynq are calculated as:

rqn = −αq +
∑
k∈KPq

ankqγkq − cnq ρq (16)

Here, ρq =
∑

u<q δuq −
∑

u>q δqu − wCAfq. Note that the reduced costs for ynq are inde-

pendent of the characteristics of other routes, and hence that the pricing problem can be
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separated per route q:

max
n∈Nq

−αq +
∑
k∈KPq

ankqγkq − cnq ρq (17)

This problem can be regarded as an instance of the Roadside Healthcare Facility Location

Problem with |Q| = 1, and hence can be solved using the MIP formulation presented in

De Vries et al. (2014b). We describe the MIP formulation of (17) in Appendix B.

4.3 Initialization and Termination Criterion

We start the column generation approach with a small subset of variables ynq for route q:

the ones corresponding to configurations without new RWCs, configurations with one new

RWC and configurations with an RWC at each potential RWC location along the route.

Solving the pricing problem for route q to optimality, we obtain one configuration n∗q

having reduced costs r∗q = rqn∗q . Because ynq ≤ 1, LP duality implies:

zRMP ≤ z∗MP ≤ zRMP +
∑
q∈Q

r∗q = UB

Here, z∗MP , zRMP , and UB denote the optimal solution value of the Master Problem, the

optimal solution value of the RMP, and an upper bound on the optimal solution value of

our location problem, respectively. The last equality follows from the observation that the

MP is a relaxation of the location problem. Our column generation algorithm stops when
UB−zRMP

zRMP
< ε, where ε is a fixed threshold.

4.4 Obtaining Integer Solutions

In each iteration (i.e., each time we solve the RMP), we use refined search to build a feasible

solution from the fractional RMP solution. We first select the p+s potential RWC locations

with the largest value for xk, where s denotes some strictly positive integer. Afterwards, we

perform a refined search, identifying p out of the p + s locations that yield a high solution

value. Specifically, we first choose the p − s locations with the largest value for xk. Next,

we complement these by s out of the 2s remaining locations, evaluating each of the
(
2s
s

)
possibilities. If the resulting solution has a higher solution value then the best known integer

solution, we replace the best solution by the current solution.
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Our numerical experiments show that such heuristic solution often has a higher solution

value than the corresponding solution of the RMP. We therefore add the variables corre-

sponding to the configurations that produce a heuristic solution to the variable set of the

RMP.

5 Acceleration Strategies

Column generation solution approaches often converge slowly towards the optimum. Causes

include a large number of iterations needed to reach convergence, and large solution times

for the pricing problem and/or the restricted master problem. This section proposes five

acceleration strategies tackling these causes: accelerated pricing, adding multiple columns,

column pool management, dual stabilization, and a 2-stage approach.

5.1 Accelerated Pricing

Solving the pricing problem using the MIP model is computationally expensive. Instead of

directly solving the pricing problem to optimality, the method presented next tries to quickly

identify an attractive (note, not necessarily optimal) variable using a sequence of shortest

path problems, and only uses the MIP model if no attractive column is identified. Next, we

introduce some theoretical results inspiring this approach.

Let enq represent the fraction of time a truck driver traveling route q is “safe” when

choosing configuration n (see Section 2.2). Furthermore, let g1(e
n
q ) = 0, g2(e

n
q ) =

enq−µ1
µ2−µ1 , and

let g3(e
n
q ) = 1, i.e. these functions are the extrapolations of the three function segments of

g(·). Next, consider the set of configurations n for which enq lies in a given segment σi: Nqi.

We relate to this set the acyclic graph Gqi depicted in Figure 3. This graph has one node

for each RWC location along route q, including origin node O := KCq(1) and destination

node D := KCq(m). Let φn denote the O −D path visiting the nodes corresponding to the

RWCs in configuration n. In Appendix C, we prove the following result:

Proposition 5.1. There exist arc weights for graph Gqi such that for each n ∈ Nqi holds

that the length of the corresponding O −D path l (φn) equals −rnq

Proof. See Appendix C
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Figure 3: Directed graph Gqi for route q. Each node corresponds to an RWC location. The nodes visited
in a path φn from KCq(1) to KCq(m) correspond to the RWCs located in configuration n.

A direct implication of Proposition 5.1 is that configurations n ∈ Nqi for which rnq is

larger correspond to shorter paths in the acyclic graph. This inspires the following solution

approach for the pricing problem corresponding to route q (see Algorithm 1). We construct

the acyclic graph corresponding to segment σ1 and solve the shortest path problem for this

graph using the Bellman-Ford algorithm. Next, we calculate rn̂q for the configuration n̂

corresponding to the shortest path. If rn̂q > 0, we mark variable yn̂q as an attractive variable.

We repeat this procedure for segment σ2, and add the attractive variable having the largest

reduced costs to the set of variables included in the RMP. (The proof of Proposition 5.1

implies that the configurations obtained for segments σ1 and σ3 are the same, so that we do

not need to repeat the procedure for σ3).

Note that this first part of our solution approach is not exact. Since the graph cor-

responding to segment σi misrepresents the reduced costs corresponding to configurations

n 6∈ Nqi, the configuration found may not be the one with the largest reduced costs. In some

cases, however, we can use the configurations obtained to prove that no configuration with

positive reduced costs exists. For example, let the configurations found for the graphs Gq1

and Gq2 be represented by n1 and n2, respectively. Suppose that en1
q ∈ σ3 and en2

q ∈ σ2, that

0 ≥ rn2
q ≥ rn1

q , and that ρq > 0. By optimality of n2 know that for each of the configurations

n for which enq ∈ σ2 holds that rnq ≤ rn2
q . Furthermore, because ρq > 0, we know that for

each of the configurations n for which enq ∈ σ1 ∪ σ3 holds that rnq ≤ rn1
q ≤ rn2

q (see equation

(16)), showing that for each n holds that rnq ≤ rn2
q ≤ 0.

In case that we cannot prove that a column with positive reduced costs does not exist,
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we set out to find one using a refined search. Specifically, we propose to solve the pricing

problem |KPq| times. In each time, we adapt the graphs Gqi such that they enforce locating

an RWC at a specific potential RWC location k ∈ KPq and optimize the other location

decisions using the Bellman-Ford algorithm. Next, we add the attractive variable having the

largest reduced costs to the set of variables included in the RMP. If also the refined search

fails to identify an attractive variable, we solve the pricing problem using the MIP model

presented in Appendix B.

Algorithm 1 Pricing algorithm for route q

Require:
route q and dual variables αq, β, γkq, and δq1q2

Ensure:
variable with positive reduced cost or certificate that no such variable exists

1: construct graphs Gq1 and Gq2

2: obtain configuration(s) using the Bellman-Ford algorithm
3: if reduced costs of at least one of the corresponding variables are positive then
4: return the variable with the largest reduced costs
5: else if certificate that no such variable exists then
6: stop
7: else apply refined search
8: if variable with positive reduced cost found then
9: return the variable with the largest reduced costs

10: else
11: solve pricing problem as a MIP
12: return a variable with positive reduced costs or a certificate that no such variable

exists
13: end if
14: end if

Note that we apply this solution method to each route q, yielding up to |Q| variables to

be included in the RMP per iteration.

5.2 Adding Multiple Columns

The algorithm presented in the previous subsection adds in each iteration at most one variable

per route to the set of variables included in the RMP. Adding multiple attractive variables

per iteration is a common acceleration technique. The ideas underlying it are that any

variable with positive reduced costs is attractive for entering the RMP, that it is often easy
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to find multiple attractive variables, and that adding multiple variables tends to significantly

decrease the number of iterations required to solve the RMP. We propose to adapt steps 3 - 7

of Algorithm 1 as follows: we start with obtaining the optimal configuration(s) corresponding

to the two generated graphs and perform the refined search algorithm. All variables with

positive reduced costs found are then added to the variable set of the RMP.

5.3 Column Pool Management

We save each column generated in our the column generation approach in a column pool.

Before each iteration, we determine for each column in the pool whether or not to include it

in the RMP. The aim is to balance the purpose to maximize the objective value of the RMP

(by including as many attractive columns as possible) and on the other hand the aim to

minimize the solution time for the RMP (by minimizing the number of columns included).

Specifically, we include a column if at least one of the following conditions holds: (1) it was

generated in the initialization, (2) it resulted from the previous call to the pricing problem,

(3) it has been part of the basis at least once in the last κ iterations, where κ denotes some

strictly positive integer (4) it has reduced costs greater than a given percentage of the best

reduced cost among all columns available for that path, (5) it is part of an integer solution

found that has an objective value greater than the corresponding RMP relaxation.

5.4 Dual Stabilization

Column generation is often characterized by large oscillations in the dual variables from

iteration to iteration. This leads to slow convergence and often to degeneracy. Several tech-

niques have appeared that stabilize the dual variables and thereby accelerate the convergence

(see Desaulniers et al. 2005). We propose to call the pricing problem twice per iteration.

The first call provides the dual solution obtained in the current iteration, π∗, as an input.

The second call provides πST = λπ̂ + (1 − λ)π∗ as an input, as suggested by Pessoa et al.

(2010). Here, π̂ represents the best known dual solution (i.e., the dual that produces the

smallest upper bound) and λ denotes some constant between 0 and 1.

5.5 2-Stage Approach

The time required to solve the RMP is relatively large. This seems to be caused by the large

number of variables and constraints needed to calculate the equity score. In response to that,

we implement a 2-Stage column generation approach. In the 1st stage we solve the RMP
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without constraints (13). This corresponds to leaving the equity score out of consideration.

In the 2nd stage, we include constraints (13), and solve the full RMP with the columns

generated so far.

6 Computational Experiments

This section numerically analyzes the column generation approach presented in Sections 4

and 5. Section 6.1 starts with describing the randomly generated networks used for this anal-

ysis. Next, we analyze the integrality gap for the direct formulation and the set partitioning

formulation in Section 6.2. For our baseline case, Section 6.3 describes the convergence of the

column generation approach and the impact of each of the acceleration strategies. Finally,

Section 6.4 analyzes the computational performance of the column generation approach in

detail for the entire set of instances. All mathematical models are implemented in Java,

using ILOG CPLEX v12.61 as a solver, and analyzed using a computer running Windows

8.1 with a 2.3 GHz i7-4712HQ processor and 16GB of RAM.

6.1 Randomly Generated Instances

We generate our problem instances as follows. First, we generate the locations of nOD O-D

nodes in [0, 1000]2 according to a continuous uniform distribution. We calculate Euclidian

distances between nodes, and take the minimum spanning tree of the full graph. Next, the

full road network is obtained by adding for each node na additional arcs, connecting it to the

na closest nodes it has not yet been connected to in the minimum spanning tree. We assume

that each O-D node represents a current RWC location (in accordance with Assumption 1),

and that currently no RWC is located elsewhere. The locations of np potential RWC locations

are generated by drawing completely random positions at the full road network (hence, each

location along the full road network has equal probability of being selected). Next, we

generate for each O-D node nr truck routes that have this node as an origin, and randomly

select one of the other O-D nodes as its destination (if a generated flow already exists,

we draw a different destination). The specific routes corresponding to the truck flows are

obtained by applying a shortest-path algorithm. The truck driver volume parameters fq

are calculated as fq = ηOqηDq , and normalized such that
∑

q∈Q fq = 100nODnr (hence, the

average truck driver volume equals 100). Here, ηOq and ηDq denote the population at the

origin and destination of flow q, respectively, which are drawn from a uniform distribution

on [0, 1]. Finally, we generate the patient volume parameters as dk = dfk + dvk, where dfk = 10
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represents the fixed patient volume and dvk the patient volume that depends on the flow

volume passing this location, fk. The first reflects the fact that North Star only selects

potential locations at which the expected patient volume exceeds a given threshold. We

draw dvk from a Gamma distribution with shape parameter fk and scale parameter 1, and

normalize them such that
∑

k∈K d
v
k = 20|K| afterwards (hence, the average patient volume

equals 10 + 20).

Instance Names Quantity nOD nr np

M
ed

iu
m

r75p150n1, r75p150n2,... 10 15 5 150
r125p150n1, r75p150n2,... 10 25 5 150
r200p100n1, r200p100n2,... 10 40 5 100
r200p200n1, r200p200n2,... 10 40 5 200

L
ar

g
e r320p600n1, r320p600n2,... 3 80 4 600

r500p1000n1, r500p1000n2,... 3 100 5 1000
r2400p5000n1, r2400p5000n2,... 3 300 8 5000

Table 1: Characteristics of the randomly generated instances

Table 1 describes the characteristics of 49 randomly generated instances used for our

numerical experiments. As for notation, an instance named r75p150n1 is the first instance

in the set of instances having 75 routes and 150 potential locations. The instances can be

accessed at http://people.few.eur.nl/hdevries. Finally, we use the following parameter

values in our experiments: p = 20, µ1 = 0.4, µ2 = 0.8, τ = 100, wPV = 10, wCA = 1.5 and

wEQ = 10−4. The values of the latter three parameters were chosen so as to reflect the

trade-offs decision makers face in practice.

6.2 Integrality Gap

Figure 4 shows boxplots of the integrality gap (i.e., the gap between the optimal solution

value and the optimal solution value of the LP relaxation) for the direct formulation and

the set partitioning formulations, based on the 40 medium instances (large instances were

excluded, as many could not be solved to optimality). We observe that the integrality gap for

the direct formulation is much larger: it generally ranges between 20% and 40% whereas the

gap for the set partitioning formulation is generally smaller than 1%. Furthermore, solving

the LP relaxation of the direct formulation results in an integer (i.e., an optimal) solution

for 20% of the instances, highlighting the strength of the formulation.
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(a) Direct formulation (b) Set partitioning formulation

Figure 4: Integrality Gap

6.3 Effect of Acceleration Strategies
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Figure 5: Convergence of the basic column generation approach for instance r200p200n1

Figure 5 shows the convergence of the basic column generation approach for our baseline

case r200p200n1. It confirms the slow convergence behavior that has motivated several of
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our acceleration techniques. The effects of these techniques in terms of the optimality gap

reached after 500 seconds (note, we know the optimal solution by solving the location problem

exactly), the time/number of iterations needed to reach convergence, the time/number of

iterations needed to find the final solution (i.e., the best solution found), and the total

number of columns generated/included in the last iteration are described for the baseline

case in Table 2. This table provides these statistics for the following solution approaches:

(1) the basic approach (BA), as presented in Section 4, (2) approach 1 + accelerated pricing

(AP), (3) approach 2 + adding multiple columns (MC), (4) approach 3 + column pool

management (CM), (5) approach 4 + dual stabilization (DS), and (6) approach 5 + 2-Stage

approach (2S).

Solution approach 1 2 3 4 5 6

Opt. gap after 500 sec. (%) 2.314 0.759 1.130 0.000 0.684 0.000
Time final solution (sec.) 3026 6368 1410 495 946 375
Time convergence (sec.) >7200 >7200 1410 1387 946 393
Iterations to final solution 57 120 28 10 22 23
Iterations to convergence >130 >133 28 35 22 24
Columns last iteration 7573 5764 14432 13232 12616 9073
Total columns generated 7573 5764 14432 16706 18458 10031

Table 2: Impact of acceleration strategies for instance r200p200n1. Solution approaches: 1 = BA, 2 = 1
+ AP, 3 = 2 + MC, 4 = 3 + CM, 5 = 4 + DS, and 6 = 5 + 2S

Though each approach identified the optimal solution, the table shows that the accelera-

tion techniques jointly result in a vast improvement in the computational performance of the

column generation algorithm. Particularly adding multiple columns, column pool manage-

ment, and the 2-stage approach have a large impact. This seems to be explained by the fact

that MC greatly reduces the number of iterations and that CM and 2S significantly reduce

the time required to solve the RMP (which accounts for approximately 99% of the solution

time).

Figure 6 provides a more detailed view on the performance of the acceleration techniques,

showing the development of the solution value for solution approaches 1, 4, and 6 (for sake

of clarity we excluded the others from the figure). It shows that the approach including all

acceleration techniques obtains near-optimal solutions within a couple of seconds.
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Figure 6: Development of the solution value over time for solution approaches 1 (BA), 4 (BA + AP + MC
+ CM), and 6 (BA + AP + MC + CM + DS + 2S), measured as a fraction of the optimal solution value

6.4 Overall Results

Next, we analyze the performance of the column generation approach for the full set of

instances and compare it with the performance of CPLEX 12.61 on the direct formulation.

The specific column generation approach we consider here includes each of the acceleration

strategies, and will be referred to as the 2-stage approach from now on. Table 3 describes

the performance of the two approaches for the 40 medium instances. The 2-stage approach

obtains the optimal solution in 34 of the 40 instances, and yields a negligible optimality gap

for the others. Columns tCONV and tSOL contain the average time to convergence and the

average time to finding the final solution (i.e., the best solution found) for both approaches.

They show that average solution times for both approaches are comparable and that the

approach using CPLEX on the direct formulation seems to outperform the 2-stage approach

in terms of time to convergence. Columns tRMP and tPP , providing the average time the

2-stage approach spends on the RMP and the pricing problem, highlight the efficiency of our

approach for solving the pricing problem and stress the importance to decrease computation

times for the RMP.

Table 4 describes some more details about the 2-stage solution approach, including the

average number of iterations till convergence, the average number of columns included in the

last iteration, the average total number of columns generated during the execution of the

algorithm, and the average total number of columns in the instances (i.e., included in the
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Avg. optimality gap (%) Avg. computation time

DF 2S
DF 2S

tSOL tCONV tSOL tCONV tRMP tPP

r75p150 0.00% 0.01% 3.28 4.75 5.61 12.05 3.32 0.30
r125p150 0.00% 0.03% 44.38 88.84 19.75 143.52 73.70 5.09
r200p100 0.00% 0.03% 30.11 57.49 40.45 60.28 32.29 0.53
r200p200 0.00% 0.00% 133.84 230.05 169.2 1056.68 890.1 7.05

Table 3: Performance of CPLEX 12.61 on the direct formulation (DF) and the column generation approach
including each of the acceleration strategies (2S) on the 40 medium problem instances

master problem). The huge number of columns corresponding to the larger instances show

that a column generation solution approach is crucial for the set partitioning formulation.

#Iterations
#Columns

Last Iteration Generated Total
r75p150 32 4,224 4,950 345,623
r125p150 60 9,704 16,871 976,515
r200p100 23 3,035 3,158 19,237
r200p200 58 14,677 32,164 2,476,941

Table 4: Average numbers of iterations performed and columns generated by the 2-stage approach on the
40 medium problem instances

The computational benefits of the 2-stage approach become particularly visible when

large problem instances are considered. Though both formulations did not converge after

the time limit of 1 hour, Table 5 shows that the value of the best solution obtained by the

2-stage approach is on average much higher. For the set of largest instances, CPLEX even

fails to produce an integer solution within the time limit.

Instance
Obj. value

Difference
DF 2S

r320p600n1 16888.75 17001.31 112.57
r320p600n2 24863.54 24704.83 -158.70
r320p600n3 23539.43 22933.96 -605.48
r500p1000n1 13397.37 14759.82 1362.45
r500p1000n2 7977.70 8594.52 616.81
r500p1000n3 -6661.87 15562.55 22224.42
r2400p5000n1 - 227090.11 -
r2400p5000n2 - 222021.25 -
r2400p5000n3 - 222671.04 -

Table 5: Objective value obtained after 1 hour for the 9 large problem instances using
approaches DF and 2S.
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7 Sensitivity Analysis on Equity

As motivated, it is becoming more and more relevant to have insight in the trade-off between

the equity criterion and North Star’s current optimization criteria. This section investigates

this trade-off for a small problem instance: r200p50n1. We solve this instance to optimality

for 300 settings of the weight parameters wPV , wCA, and wEQ, yielding a large number of

Pareto efficient solutions. Figures 7 and 8 show their relative optimality with respect to

each of the three criteria, measured as a fraction of the highest attainable value for these

criteria. The filled dots in such figure represent solutions that are not only Pareto efficient

with respect to the three criteria, but also with respect to the two criteria considered in the

figure.
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Figure 7: Relative optimality with respect to pa-
tient volume and equity.
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Figure 8: Relative optimality with respect to con-
tinuous access and equity.

Note: A point in these figures shows the relative optimality of the corresponding solution with respect to

two optimization criteria. Here, relative optimality with respect to a criterion is measured as the fraction of

the highest attainable value for that criterion (based on p new facilities).

We see that considerable gains in terms of equity can be made at a marginal cost in terms

of continuous access and/or patient volume. For example, choosing the solution correspond-

ing to point B (equity is assigned a significant weight) in these figures instead of the solution

corresponding to point A (equity is hardly considered) increases the equity score by 7.2%

and decreases the patient volume by only 2.0% (and increases the continuous access score

by 0.4%). More generally, our results suggest that it is possible to obtain solutions that are

close to optimal with respect to each optimization criterion, as illustrated by the fact that

for 6 of the Pareto efficient solutions the relative optimality with respect to each of the three
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criteria equals at least 94%.

Figure 9 illustrates the impact of including the equity criterion on the actual levels of

access provided in solutions A and B, showing the distribution of the coverage scores for the

entire truck driver population we consider. As expected, increasing the importance of equity

significantly decreases the number of truck drivers having a coverage score between 0 and

0.25.
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Figure 9: Coverage scores for truck driver population in Pareto efficient solutions A (equity is hardly
considered) and B (equity is assigned a significant weight). Very low: cq ∈ [0, 0.25), low:cq ∈ [0.25, 0.5),
medium: cq ∈ [0.5, 0.75), high: cq ∈ [0.75, 1].

8 Conclusions and Discussion

This paper considers the problem to locate a given number of new RWCs based on three

optimization criteria: maximize patient volume, ensure continuity of access, and establish an

equitable health system. We first propose several measures of equity of access to healthcare

in the context of a mobile patient population, based on a review of the literature available.

Measures for the patient volume criterion and the continuous access criterion are taken from

previous work on this problem. The equity criterion significantly increases the complexity of

the location problem, and existing models and solution methods will be unsuitable for solving

large instances. We therefore come up with a novel, set-partitioning type of formulation for

the problem. Numerical experiments show that, in contrast with the formulation previously

introduced, the integrality gap for this formulation is very small. As this formulation requires

an exponential number of variables, we propose a column generation algorithm to solve
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it. Additionally, we propose and analyze several state-of-the-art acceleration techniques,

including accelerated pricing, dual stabilization and a 2-stage approach. Though the facility

location problem is strongly NP-hard, our algorithm yields near-optimal solutions to large

randomly generated problem instances within an acceptable amount of time.

Our numerical analysis of the trade-off between equity and North Star’s current optimiza-

tion criteria provides some interesting insights. Considerable gains in terms of equity can be

made at a marginal loss in terms of patient volume and/or continuous access. Furthermore,

our results suggest that solutions that are close to optimal in terms of each of the three

criteria are attainable by appropriately balancing the weights attached to them, providing a

strong argument for considering the equity criterion in future network design decisions.

Although our solution approach solves large problem instances to near-optimality, we

see several opportunities for improvement. First, our approach can be transformed into an

exact approach by embedding it in a Branch-and-Price scheme. Furthermore, we notice

that our formulation weakens when the relative importance of the equity criterion increases.

Cutting plane techniques may be beneficial or even necessary in this context. Finally, we

use a relatively simple heuristic for generating feasible integer solutions. More advanced

(meta)heuristics, taking better advantage of the benefits of placing multiple facilities along

a route, seem to be promising. We believe that our solution method and subsequently the

solutions proposed can greatly benefit from advancing further research in these areas.
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A Direct Formulation

The direct formulation uses the following notations in addition to those introduced in the

paper. Kkq represents the set of locations that are passed after location k during a trip from

along route q. Variable iklq, k ∈ Kq, l ∈ Kkq equals 1 if locations k and l are adjacent RWCs

along route q (i.e., RWCs are located at both locations, and there is no RWC between them),

and equals 0 otherwise. Finally, λiq and ziq are auxiliary variables to model the piecewise

linear function g(·)

max wPV
∑
k∈K

dkxk + wCA
∑
q∈Q

fqcq − wEQ
∑
q1∈Q

∑
q2∈Q
q2>q1

(
∆+
q1q2
−∆−q1q2

)
fq1fq2 (A.1)

s.t. cq = λ3q + λ4q q ∈ Q (A.2)

λ1q0 + λ2qµ1 + λ3qµ2 + λ4q =
1

Tq

∑
k∈Kq

∑
l∈Kkq

iklq min{tkl, τ}

 q ∈ Q (A.3)

λ1q + λ2q + λ3q + λ4q = 1 q ∈ Q (A.4)

λ1q ≤ z1q q ∈ Q (A.5)

λ2q ≤ z1q + z2q q ∈ Q (A.6)

λ3q ≤ z2q + z3q q ∈ Q (A.7)

λ4q ≤ z3q q ∈ Q (A.8)

z1q + z2q + z3q = 1 q ∈ Q (A.9)

cq1 − cq2 = ∆+
q1q2
−∆−q1q2 q1, q2 ∈ Q, q2 > q1 (A.10)

xk = 1 k ∈ KC (A.11)∑
k∈KP

xk = p (A.12)∑
l∈Kq

iklq = xk k ∈ Kq, q ∈ Q (A.13)∑
l∈Kq

iklq = 1 k ∈ KCq(1), q ∈ Q (A.14)∑
k∈Kq

iklq = xl l ∈ Kq, q ∈ Q (A.15)∑
k∈Kq

iklq = 1 l ∈ KCq(m), q ∈ Q (A.16)

xk ∈ {0, 1} k ∈ Kq, q ∈ Q (A.17)
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∆+
q1q2

,∆−q1q2 ≥ 0 q1, q2 ∈ Q, q2 > q1 (A.18)

iklq ∈ [0, 1] k ∈ Kq, l ∈ Kkq, q ∈ Q (A.19)

λiq ≥ 0, ziq ∈ {0, 1} i ∈ {1, 2, 3, 4}, q ∈ Q (A.20)

The objective function (A.1) represents a weighted sum of the patient volume, the con-

tinuous access score, and the equity score. Constraints (A.3) - (A.9) define cq as a piece-wise

linear function of the fraction of time a truck driver travelling route q is “safe” during his trip.

This fraction is calculated by the right-hand side of (A.3). Next, constraints (A.10) enable

the calculation of |cq1− cq2|. The current network of RWCs is described in constraint (A.11).

Constraints (A.13)-(A.16) ensure that the variables iklq attain the correct value. Finally, the

decision variables are defined in (A.17) - (A.20).

B MIP Formulation Pricing Problem

max −αq +
∑
k∈KPq

γkqxk − ρqcq (B.1)

s.t. cq = λ3q + λ4q (B.2)

λ1q0 + λ2qµ1 + λ3qµ2 + λ4q =
1

Tq

∑
k∈Kq

∑
l∈Kkq

iklq min{tkl, τ}

 (B.3)

λ1q + λ2q + λ3q + λ4q = 1 (B.4)

λ1q ≤ z1q (B.5)

λ2q ≤ z1q + z2q (B.6)

λ3q ≤ z2q + z3q (B.7)

λ4q ≤ z3q (B.8)

z1q + z2q + z3q = 1 (B.9)

xk = 1 k ∈ KCq (B.10)∑
l∈Kq

iklq = xk k ∈ Kq (B.11)∑
l∈Kq

iklq = 1 k ∈ KCq(1) (B.12)∑
k∈Kq

iklq = xl l ∈ Kq (B.13)
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∑
k∈Kq

iklq = 1 l ∈ KCq(m) (B.14)

xk ∈ {0, 1} k ∈ Kq (B.15)

iklq ∈ [0, 1] k ∈ Kq, l ∈ Kkq (B.16)

λiq ≥ 0, ziq ∈ {0, 1} i ∈ {1, 2, 3, 4} (B.17)

See Appendix A for the interpretation of this model. Solving the problem formulated in

this model yields location decisions xk, which define a configuration of RWCs n for route q.

C Proof of Proposition 5.1

Let Kn
q denote the ordered set of RWC locations along route q for which xk = 1 in configu-

ration n. Our proof of Proposition 5.1 makes use of the following lemma:

Lemma C.1. Suppose that enq lies in segment σi of the piecewise linear function g(·). Then

cnq =
m−1∑
j=1

gi

(
min{t(Kn

q (j),K
n
q (j+1)), τ}

Tq

)
(C.1)

Proof. This immediately follows from definition (4), and from the fact that the linearity of

gi(·) implies that the summation can be taken out of this function.

Proposition 5.1. There exist arc weights for graph Gqi such that for each n ∈ Nqi holds

that the length of the corresponding O −D path l (φn) equals −rnq .

Proof. We define the weights corresponding to the arcs in this graph as follows. First, we

add αq to all arcs departing from the Kq(1) (the current RWC location at the origin of the

route) and add −γkq to all incoming arcs for potential RWC location k ∈ KPq. Finally, we

add gi

(
min{tkl,τ}

Tq

)
ρq to each arc (k, l).

To prove our claim, let us define l (φn). Note that path φn must use an arc departing

from the node corresponding to Kq(1), so that it’s length includes the term αq. Furthermore,

it includes the term −γkq for each visited node corresponding to a potential RWC location

k ∈ KPq. Finally, the length includes the term gi

(
min

{
t(Kn

q (j),Kn
q (j+1)),τ

}
Tq

)
ρq for each of the

arcs corresponding to the pair of RWC locations
(
Kn
q (j), Kn

q (j + 1)
)
. Hence, using Lemma

C.1 we obtain that:
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l (φn) = αq −
∑
k∈KPq

ankqγkq +
m−1∑
j=1

gi

(
min{t(Kn

q (j),K
n
q (j+1)), τ}

Tq

)
ρq

= αq −
∑
k∈KPq

ankqγkq + cnq ρq = −rnq

This concludes the proof.
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