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Abstract

For a large number of infectious diseases, vaccination is the most effective way to

prevent an epidemic. However, the vaccine stockpile is hardly ever sufficient to treat

the entire population, which brings about the challenge of vaccine allocation. To aid

decision makers facing this challenge, we provide insights into the structure of this

problem.

We first investigate the dependence of health benefit on the fraction of people that

receive vaccination, where we define health benefit as the total number of people that

escape infection. We start with the seminal SIR compartmental model. Using implicit

function analysis, we prove the existence of a unique vaccination fraction that maxi-

mizes the health benefit per dose of vaccine, and that the health benefit per dose of

vaccine decreases monotonically when moving away from this fraction in either direc-

tion. Surprisingly, this fraction does not coincide with the so-called critical vaccination

coverage that has been advocated in literature. We extend these insights to other

compartmental models such as the SEIR model.

These results allow us to provide new insights into vaccine allocation to multiple

non-interacting or weakly interacting populations. We explain the counter-intuitive

switching behavior of optimal allocation. We show that allocations that maximize

health benefits are rarely equitable, while equitable allocations may be significantly

non-optimal.
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1 Introduction

Infectious diseases have heavily influenced the course of history, and in recent years we have

seen new emerging epidemics due to the SARS coronavirus in 2003, the novel influenza A

H1N1 virus in 2009, the MERS-coronavirus in 2013, and the Ebola virus in 2014. A large

outbreak brings about deaths, health losses and economic losses. Research on preventing an

epidemic or mitigating its consequences is thus of high priority. Vaccination is one of the

most effective ways to prevent an epidemic. However, the vaccine stockpile is hardly ever

sufficient to vaccinate the entire population. This brings about an allocation problem: How

should the doses of vaccine be allocated when they become available?

A reasonable objective for vaccine allocation is maximizing the number of people that

escape infection. This objective may be achieved by evaluating the eventual outcome of

alternative allocations by projecting the course of the epidemic numerically (e.g., Keeling

and Shattock 2012, Yuan et al. 2015) or via simulation (e.g., Ferguson et al. 2005, Cooper

et al. 2006). This approach may use detailed models and thus yield sophisticated allocations,

but it does not give a high-level explanation of why certain allocations yield a higher health

benefit. This is especially problematic because the resulting allocations are often inequitable

and behave counter-intuitively, as illustrated in Table 1. For example, Population 1 has

priority over Population 2 when 2000 doses are available, but this priority switches at 8000

doses and again at 20000 doses. Similar puzzling outcomes have been observed in various

models (Rowthorn et al. 2009, Klepac et al. 2011, Keeling and Shattock 2012, Yuan et al.

2015), but remain poorly understood.

Vaccine stockpile Population 1 Population 2 Population 3
2000 2000 0 0
5000 4200 800 0
8000 0 8000 0
10000 1900 8100 0
15000 0 0 15000
20000 3600 0 16400
25000 0 8200 16800
30000 4100 8500 17400

Table 1: The optimal vaccine allocation over three non-interacting populations (rounded to
the nearest hundred). The sizes of population 1, 2 and 3 are respectively 10000, 20000 and
40000 and the fractions of people initially infected are 0.015, 0.012 and 0.010. (Section 3
contains a detailed description of the model and Section 5 gives the parameters used for this
table.)

We propose to apply analytical methods to vaccine allocation to gain insights into the
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structure of the optimal allocation. We expect that a research agenda along these lines will

yield a high-level understanding of the inequitable and seemingly counter-intuitive outcomes

of a broad range of models. Equity versus efficiency has been studied in various health care

applications (e.g., Zaric and Brandeau 2007, McCoy and Lee 2014). In this paper we derive

analytical insights that explain why an efficient allocation is often inequitable.

Our main contribution in this paper is making a first step towards developing such

analytical insights by studying a seminal class of epidemic models: The compartmental

models introduced by Kermack and McKendrick (1927). These models divide the population

into different compartments that represent all people that are in the same disease state.

We initially focus on the classical SIR model, which consists of three compartments that

respectively contain susceptible (S), infected (I), and removed (R) people. People can be

in the removed compartment because of recovery and immunity, successful vaccination or

death. We define the health benefits in this model in terms of the total number of people

that escape infection. Vaccination affects health benefit in two ways: directly for people that

are vaccinated, and indirectly for people that are not vaccinated by reducing their disease

exposure.

We first investigate the total health benefit as a function of the vaccination fraction

that is used. This function has long resisted analysis because it cannot be characterized

explicitly. Our analysis departs from an implicit relation that extends the final size equation

(Diekmann et al. 2012). We completely characterize the dependence. For example, we prove

that the health benefits are convex-concave in the vaccination fraction. This implies the

existence of a unique vaccination fraction that maximizes the health benefits per dose of

vaccine, our dose-optimal vaccination fraction. We show that health benefits per dose of

vaccine decrease monotonically when moving away from this fraction in either direction.

Surprisingly, this fraction is different from the so-called critical vaccination coverage that

has been advocated in literature (e.g., Keeling and Shattock 2012, Plans-Rubió 2012). We

next extend our analysis to other compartmental models, e.g., the so-called SEIR model.

We then apply these results to optimal vaccine allocation in multiple non- and weakly

interacting populations. We establish links to resource allocation literature (Ginsberg 1974,

Ağralı and Geunes 2009). For the non-interacting case, we characterize the form of the opti-

mal solution. We provide detailed insights explaining both the switching behavior of Table 1

and the highly non-equitable allocations that arise from the health benefit maximizing cri-

terion. For cases with weak interaction, we illustrate how to apply the insights gained from

the non-interactive case.

We hope that these first steps yielding high-level analytical insights into vaccine allo-

cation invite further research into this area. A better high-level understanding of a broad
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range of vaccine allocation models may aid policy-makers in grasping the sometimes puzzling

outcomes of vaccine allocation models.

The remainder of the paper is organized as follows. Section 2 presents an extensive liter-

ature review to position our work. In Section 3 the vaccine allocation problem is formulated.

The objective of maximizing the number of people that escape infection is further analyzed

in Section 4 and the dose-optimal vaccination fraction is presented. Based on this analysis,

the structure of the solution to the vaccine allocation problem is presented in Section 5. Sec-

tion 6 discusses the generality of the results and the effect of the assumptions. We conclude

in Section 7.

2 Literature

There are many different ways to model the spread of an epidemic in a population. These

range from deterministic models with differential equations based on Kermack and McK-

endrick (1927), stochastic Markov formulations (e.g., Lefevre 1979) and simulation models

(e.g., Ferguson et al. 2005). An excellent overview of mathematical methods to analyze

epidemic models is given by Diekmann et al. (2012).

These models are often used to describe the evolution of an epidemic in multiple pop-

ulations that differ geographically (e.g., Sattenspiel and Dietz 1995, Arino and Van den

Driessche 2003). Others distinguish between age groups (e.g., Mylius et al. 2008, Medlock

et al. 2009, Goldstein et al. 2009) or between people heavily contributing to the transmis-

sion of the disease and those who are very vulnerable (e.g., Goldstein et al. 2012). Another

approach is to focus on households and see them as minor sub-populations (e.g., Becker and

Starczak 1997, Ball and Lyne 2002, Keeling and Ross 2015). In this paper we study non-

interacting and weakly interacting populations. Our insights thus apply to geographically

distant populations.

Vaccination is one of the interventions often studied and included in epidemiological

models. Some studies consider vaccination in a completely susceptible population (e.g.,

Keeling and Shattock 2012, Yuan et al. 2015). Others compare optimal vaccination strategies

on different points in time and show how the optimal allocation depends on the moment of

vaccination (Mylius et al. 2008, Medlock et al. 2009, Matrajt and Longini Jr 2010, Matrajt

et al. 2013). Vaccination during an epidemic is especially realistic in the context of an

unknown disease as a vaccine needs to be developed in that case (cf. Bowman et al. 2011).

There are different ways to evaluate the effect of interventions such as vaccination. One

way is to use cost-effectiveness analysis or cost minimization of an allocation (Hethcote and

Waltman 1973, Brandeau et al. 2003, Boulier et al. 2007, Simons et al. 2011). However, most
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papers consider epidemic characteristics instead of costs. The final size, also referred to as

the infection attack rate, is broadly used (e.g., Arino et al. 2006, Matrajt and Longini Jr

2010, Keeling and Shattock 2012). It measures the total number (or the fraction) of people

infected during an epidemic. An implicit analytical expression for the final size can be

derived from the Kermack and McKendrick model (cf. Diekmann et al. 2012). This final

size equation may be shown to hold for a broad range of model specifications (Keeling and

Shattock 2012, Ma and Earn 2006). Our objective also corresponds to minimizing the final

size: an extension of the final size size equation serves as the starting point of our analysis.

In contrast, Cairns (1989) and Goldstein et al. (2009) investigate how to minimize the basic

reproduction ratio R0 (cf. Wallinga et al. 2010). Others analyze the allocations that result

in the threshold R0 = 1 (e.g., Becker and Starczak 1997, Tanner et al. 2008). R0 is a myopic

criterion, because it corresponds to the initial growth rate, whereas the more traditional final

size criterion considers the entire time course of the epidemic. While the former criterion

leads to a much more tractable model, the latter approach may be more appropriate in many

cases.

Many researchers have identified the optimal intervention strategy by determining the

eventual outcome of alternatives using simulation models (e.g. Ferguson et al. 2005, Cooper

et al. 2006, Germann et al. 2006, Halloran et al. 2008, Tuite et al. 2010, Uribe-Sánchez et al.

2011) or numerical evaluation (e.g. Mylius et al. 2008, Keeling and Shattock 2012, Yuan et al.

2015). But to the best of our knowledge, we are the first to use an analytical approach to

provide structural insights explaining why certain interventions are eventually most effective.

Our main technical contribution is providing a detailed mathematical analysis of the final

size in the seminal SIR model. We show the convex-concave structure and prove that there

is an unique vaccination fraction that yields the highest health benefits per dose of vaccine:

the dose-optimal vaccination fraction. The term dose-optimal is also used by Ball and Lyne

(2002) for a vaccine allocation that minimizes R0 under different model specifications. In

general, dose-optimality refers to the most efficient use of available doses of vaccine.

A result on convexity of the final size is found by Wu et al. (2007) for the significantly

simplified case of vaccination in a completely susceptible population and for a limited range of

vaccination fractions. We study the general model that holds for vaccination at any possible

time during or before the outbreak and for all possible vaccination fractions. This general

setting leads to the discovery of the dose-optimal vaccination fraction, which plays a crucial

role in the optimal allocation. The analytical insights we obtain may help practitioners to

better understand the sometimes counter-intuitive outcomes a broad range of models.

By leveraging the results we obtain for the final size of the epidemic, we analyze the vac-

cine allocation problem and establish a link to resource allocation literature. This literature
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investigates for example the allocation of resources among several production plants of a firm

(Ginsberg 1974) or the allocation of a limited budget over multiple investments (Ağralı and

Geunes 2009). We show that connecting Operations Management to epidemiology yields

interesting insights, which is in line with the growing interest for applications in health care

and infectious diseases in the Operations Management community. Recent work in this area

focuses on influenza vaccine composition (e.g. Wu et al. 2005, Cho 2010), resource allocation

for HIV (e.g. Deo and Sohoni 2015) and vaccine allocation (Sun et al. 2009). In this latter

paper game theory is used to analyze whether or not countries should share their vaccine

stockpile with other countries.

3 Vaccine allocation

Vaccinating in multiple populations brings about the question of allocation: How should the

available doses of vaccine be divided over the populations? This paper models the spread of

an epidemic using the seminal deterministic SIR model, which is explained in Section 3.1. In

Section 3.2, we derive an implicit analytical relation that characterizes the final state of the

epidemic, which extends the so-called final size equation to arbitrary starting conditions. The

vaccine allocation problem is formulated in Section 3.3. We keep ourselves to a deterministic

model; for discussion of stochastic models we refer to Section 7.

3.1 The SIR model

Let J denote the set of populations. Every population is divided into three compartments

for which the time course is tracked (cf. Hethcote 2000). Let sj(t), ij(t) and rj(t) be the

fractions of the population respectively susceptible, infected and removed in population j at

time t. People who have died will remain in the removed compartment. By interpretation it

must hold that sj(t) + ij(t) + rj(t) = 1 for all t ≥ 0 and all j ∈ J . The following system of

differential equations is proposed by Kermack and McKendrick (1927), with the transmission

rate and the rate of recovery in population j denoted by βj and γj, respectively.

dsj
dt

= −βjsjij
dij
dt

= βjsjij − γjij
drj
dt

= γjij

(1)
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From (1) the following equation follows, which presents the relation between ij(t) and sj(t)

at any time t (Hethcote 1976):

ij(t) = −sj(t) +
log(sj(t))

σj
+ s0,j + i0,j −

log(s0,j)

σj
(2)

Here i0,j := ij(0) and s0,j := sj(0) are the initial fractions infected and susceptible, where

we assume 0 < i0,j < 1, 0 < s0,j < 1 and 0 < s0,j + i0,j ≤ 1. We define σj =
βj
γj

, which

is assumed to be strictly positive. Note that σj equals the basic reproduction ratio R0 for

the SIR model (Diekmann et al. 2012). For i0,j = 0 there is no transmission, resulting in

ij(t) = 0 for all t ≥ 0. However, in the remainder of the paper we will use i0,j = 0 to refer to

the limit i0,j ↓ 0. Vaccination for the limit i0,j ↓ 0 is sometimes referred to as prophylactic

vaccination (e.g Keeling and Shattock 2012, Yuan et al. 2015), but we will not use this term

as this may lead to confusion with the medical definition of prophylactic vaccination.

3.2 Vaccination

To evaluate the effect of vaccination allocation, assume that at t = τv,j a fraction fj of

the susceptible population in population j is vaccinated, with 0 ≤ fj ≤ 1. Just prior to

vaccination the system is in state (sj(τv,j), ij(τv,j)). By assumption
dsj
dt

< 0 at t = 0, such

that 0 < sj(τv,j) ≤ s0,j for τv,j ≥ 0. Assume that the vaccine is completely effective and that

vaccination takes no time. Assume that it is possible to identify the susceptible people and

that vaccination with a single dose results in immunity immediately. We refer to Section 6

for a discussion of these assumptions. Under our assumptions vaccination causes a shift at

time τv,j from state (sj(τv,j), ij(τv,j)) to state ((1 − fj)sj(τv,j), ij(τv,j)). This implies that

rj(τv,j) shifts to rj(τv,j) + fjsj(τv,j).

In order to evaluate different allocations, we use the characteristics of the final state of

the epidemic, i.e., the disease-free equilibrium. In particular we analyze the final fraction of

susceptible people. This value fully characterizes the disease-free equilibrium, since sj(t) +

ij(t) + rj(t) = 1 and ij(t) = 0 in the disease-free equilibrium.

We define Gj(fj) as the final fraction of people susceptible in population j after vacci-

nating a fraction fj of the susceptible people at time τv,j. More precisely,

Gj(fj) = lim
t→+∞

sj(t), (3)

with sj(t) evolving according to (1) for t > τv,j. The final fraction of people susceptible is

related to a concept which is often called ‘herd immunity’ (cf. Fine 1993, John and Samuel

2000). In the latter paper the term ‘herd effect’ is used and defined as the reduction of
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infection or disease in the unimmunized segment as a result of immunizing a proportion of

the population. The function Gj(fj) measures this herd effect in population j. Section 4

studies the herd effect function Gj(fj) in more detail.

3.3 The vaccine allocation problem

Let Nj denote the size of population j and denote by V the size of the available vaccine

stockpile. Define Fj(fj) as the fraction of people that escape infection in population j:

Fj(fj) = fjsj(τv,j) +Gj(fj) (4)

As can be seen in (4) there are two ways of escaping infection: either you will get vaccinated

(the first term) or you will escape infection without being vaccinated (the second term).

These two terms exactly correspond to the direct effect and the herd effect of vaccination.

As discussed in the introduction, our objective is minimizing the final size of the epi-

demic, i.e., the total number of people that get infected. In fact, it will be more convenient

to maximize the total number of people that escape infection, which can be more easily

expressed in Fj(fj), j ∈ J . An allocation that maximizes this number exploits the available

resources in the most effective way. This gives rise to the following vaccine allocation problem

(cf. Keeling and Shattock 2012):

max
∑
j∈J

NjFj(fj)

s.t.
∑
j∈J

fjsj(τv,j)Nj ≤ V

0 ≤ fj ≤ 1 ∀j ∈ J

(5)

Theorem A.5 proves that the constraint
∑

j∈J fjsj(τv,j)Nj ≤ V will always be met with

equality. Thus, any optimal allocation will use the entire vaccine stockpile.

The final size of the epidemic may be expressed as Zj(fj) = s0,j + i0,j − Fj(fj) and (5)

is thus formally equivalent to a minimization problem involving this final size. The relation

between Zj(fj) and the two components of Fj(fj) is illustrated in Figure 1.

4 Analysis of the objective function

In order to study Problem (5), this section analyzes the function Fj(fj) = fjsj(τv,j) +Gj(fj)

and in particular the function Gj(fj). For notational convenience, the subscript j will be

dropped in this section.
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Figure 1: The final state of the epidemic for different vaccination fractions, for an epidemic
with basic reproduction ratio σ = 2 with (s0, i0) = (0.99, 0.01) and τv = 0.

An implicit relation that characterizes G(f), i.e., the herd effect, is given in Section 4.1

and this expression is analyzed in Section 4.2. Based on this analysis we present our dose-

optimal vaccination fraction in Section 4.3. We extend our analysis to more general com-

partmental models in Section 4.4. A minor detail is sorted out in Section 4.5: we formally

confirm that it is optimal to vaccinate as early as possible.

Figure 2 summarizes the main findings of this section and illustrates the structure of

G(f). In Section 4.2 and 4.3 this result is derived formally.

4.1 Implicit formulation of the function G(f)

We derive an implicit relation that characterizesG(f) and that forms the basis of our analysis.

Note that the state ((1− fj)sj(τv,j), ij(τv,j)) directly after vaccination can be seen as a new

initial state, where ij(τv,j) can be obtained from (2). Gj(fj) is then obtained from (2) by

setting ij(t) = 0 and thus is the unique solution to:

0 = −Gj(fj) +
log(Gj(fj))

σj
+ (1− fj)sj(τv,j) + ij(τv,j)−

log((1− fj)s(τv,j))
σj

⇔ 0 = −Gj(fj) +
log(Gj(fj))

σj
+ s0,j + i0,j −

log(s0,j(1− fj))
σj

− fjsj(τv,j)
(6)
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Figure 2: Illustration of the structure of G(f), which is proven in Section 4: Theorems 1 and 2
establish the increasing-decreasing and convex-concave structure of G(f), the fraction of
non-vaccinated people that escape infection, which is illustrated in this figure using the
parameters (s0, i0) = (0.99, 0.01), σ = 3 and τv = 0. Dashed lines represent the important
vaccination fractions f̄ (left), f ∗ (right) and our dose-optimal vaccination fraction f̃ following
from Corollary 1 (middle).

Above equation holds for all i0,j > 0. The value of Gj(fj) in the limit i0,j ↓ 0 can be

determined by substituting i0,j = 0. (6) extends the final size equation to any initial state.

The original final size equation can be recovered for fj = 0, s0,j → 1 and i0,j → 0 (see e.g.,

Kermack and McKendrick (1927), Ma and Earn (2006), Diekmann et al. (2012) and Keeling

and Shattock (2012)).

We refer to Appendix D for an alternative expression of G(f) using the Lambert W

function denoted by W (x) (cf. Corless et al. 1996, Ma and Earn 2006).

4.2 Analysis of the herd effect

In this and the next section we present the main technical contribution of this paper: a

structural analysis of the herd effect, i.e., the function G(f). All proofs can be found in

Appendix A. For the analysis we distinguish between two types of vaccination: vaccination in

a completely susceptible population (the limit i0 ↓ 0) or vaccination in an infected population
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(i(τv) > 0).

Lemma 1. The function G(f) is twice differentiable for all f ∈ [0, 1) in case of vaccination

in an infected population (i0 > 0) and twice differentiable for all f ∈ [0, 1) with f 6= 1− 1
σs(τv)

in case of vaccination in a completely susceptible population (the limit i0 ↓ 0).

Theorem 1. For s(τv) > 1
σ

there is a unique vaccination fraction f ∗ = 1 − 1
σs(τv)

> 0

such that the herd effect G(f) is increasing in f for all f < f ∗, maximized for f = f ∗ and

decreasing for f > f ∗. For s(τv) ≤ 1
σ

the function G(f) is decreasing for all f ∈ [0, 1]. If

i0 > 0, then G′(f ∗) = 0.

Note that the vaccination fraction f ∗ also plays a role in the critical vaccination coverage,

denoted by pc (cf. Diekmann et al. (2012)). This critical vaccination coverage is defined as

the smallest fraction of people that must be vaccinated in a completely susceptible population

in order to prevent an outbreak (an increase in the fraction of people infected) and equals

pc = 1− 1
σ
. Observe that pc = f ∗ for s(τv) = 1.

To study the effect of one additional dose of vaccine, we consider the convexity and

concavity of the function G(f). We consider G(f) to be convex if the second order derivative

is non-negative and concave if the second order derivative is non-positive.

Theorem 2. Denote by W [·] the Lambert W function (cf. Appendix D) and let C be defined

as follows:

C =
W [−σ exp{−σ(s0 + i0) + log(s0)}] + 2

σ

For s(τv) > C there exists a unique vaccination fraction f̄ > 0 such that G(f) is strictly

convex (G′′(f) > 0) for all f < f̄ and strictly concave (G′′(f) < 0) for all f > f̄ . For

s(τv) ≤ C the function G(f) is concave for all f ∈ [0, 1]. If i0 > 0, then G′′(f̄) = 0.

Recall that G(f) represents the herd effect: the fraction of people that escapes infection

without being vaccinated. G′(f) thus represents the impact of an additional dose of vaccine

on the herd effect for different vaccination fractions. By Theorems 1 and 2, this impact is

initially positive and increasing, then it starts to decrease to eventually become negative.

Lemma 2 will show that f̄ ≤ f ∗. Using Theorems 1 and 2 we can thus distinguish three

cases for the function G(f): (i) the function is first convex and increasing, then concave

and increasing and finally concave and decreasing, (ii) the function is always concave and is

first increasing and then decreasing, or (iii) the function is always concave and decreasing.

Figure 2 graphically illustrates the most general shape (i) of the function G(f). Observe

that for f ↑ 1 the herd effect goes to zero: Vaccinating all susceptible people implies that

there are no people left that could be spared from infection without being vaccinated.

11



4.3 The dose-optimal vaccination fraction

We introduce the function D(f) as the average slope of the function G(f) on the interval

[0, f ], measuring the average herd effect per dose of vaccine:

D(f) =
1

f
[G(f)−G(0)] (7)

Corollary 1. The function D(f) as defined by (7) is maximized by the unique vaccination

fraction f̃ for which G′(f̃) = D(f). The function D(f) is increasing for f < f̃ and decreasing

for f > f̃ .

Corollary 1 is illustrated in Figure 3. The interpretation of Corollary 1 is that f̃ gives

the highest herd effect per dose of vaccine. We therefore introduce the term dose-optimal

vaccination fraction for f̃ . In Section 5 we will show that f̃ plays a central role in optimal

vaccine allocation.

Figure 3: The function G(f), its derivative G′(f) and the function D(f) for an infection
with a basic reproduction ratio σ = 2 when vaccination is offered at time τv = 0. The
left panel shows the case of vaccination in an infected population with initial conditions
(s0, i0) = (0.99, 0.01). In this case we have f̄ ≈ 0.341, the dose-optimal vaccination fraction
f̃ ≈ 0.417 and the critical vaccination coverage f ∗ = 0.5. The right panel shows the case of
vaccination in a completely susceptible population, with initial conditions (s0, i0) = (1, 0).
In this case we have f̄ = f̃ = f ∗ = 0.5.

12



σ 2 3 5 10 15 20 25 30 50 100
f ∗ 0.4949 0.6633 0.7980 0.8990 0.9327 0.9495 0.9596 0.9663 0.9798 0.9899

f̃ 0.4175 0.6255 0.7824 0.8944 0.9304 0.9481 0.9586 0.9656 0.9795 0.9898
f̄ 0.3410 0.5465 0.7158 0.8483 0.8946 0.9186 0.9333 0.9434 0.9642 0.9810

Table 2: The table illustrates that for increasing basic reproduction ratio σ the dose-optimal
vaccination fraction f̃ converges to f ∗. To calculate the numbers an initial state (s0, i0) =
(0.99, 0.01) and s(τv) = 0.99 is used.

Lemma 2. Consider the following three vaccination fractions: f̄ as defined in Theorem 2,

the dose-optimal vaccination fraction f̃ and f ∗ as defined in Theorem 1. The following

relation holds: f̄ ≤ f̃ ≤ f ∗

Recall that the critical vaccination fraction pc = 1 − 1
σ

is equal to f ∗ = 1 − 1
σs(τv)

in

case of vaccination in a completely susceptible population (s(τv) = 1). From Lemma 2 and

Lemma A.2 we can derive that f̄ = f̃ = f ∗ = pc in that case. This is illustrated in the right

graph of Figure 3. Another relation between f̃ and f ∗ is presented in the following lemma:

Lemma 3. For increasing σ the dose-optimal vaccine fraction f̃ converges to f ∗.

This lemma is illustrated in Table 2, which shows that very high σ is needed to obtain

convergence.

4.4 The SEIR model and other extensions

An important extension of the standard SIR compartmental model is the SInR model with

n different consecutive infectious stages. This extension allows to include a latent period or

multiple levels of infectivity. For n = 2 this model is often referred to as the SEIR model.

Let βk and γk denote respectively the transmission rate and recovery rate in infectious stage

k. Hyman et al. (1999) prove that R0 =
∑n

k=1
βk
γk

for this model. Ma and Earn (2006) show

that the final size equation derived from the SIR model also holds for the SInR model for

s(0)→ 1 and without vaccination. We extend the generality of the final size equation for the

SInR model to any initial state and include vaccination. Proofs can be found in Appendix B.

Theorem 3. Up to a constant, the expression for G(f) given in (6) also applies to the SInR

model with σ =
∑n

k=1
βk
γk

.

Corollary 2. The results of Lemma 1, Theorem 1, Theorem 2 and Corollary 1 also apply

to the SInR model with σ =
∑n

k=1
βk
γk

.
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Lemma 1, Theorem 1, Theorem 2 and Corollary 1 form the basis for the analysis of the

vaccine allocation problem in Section 5. By Corollary 2 the results derived in Section 5 are

valid for the more general SInR model.

4.5 Vaccination in a single population

We sort out a minor detail by formally proving that vaccination should be carried out as soon

as possible. Thereto we determine the time τv at which G(f, s(τv)) + fs(τv) is maximized.

Assume that we have a fixed vaccine stockpile, V , such that a fraction of the population can

be vaccinated is restricted by V
Ns(τv)

, where N is the population size. If s(τv) ≤ V/N , all

susceptible people can be vaccinated and the objective function for f = 1 reduces to s(τv),

because limf↑1G(f) = 0 by Theorem A.1. If s(τv) > V/N , all available doses of vaccine

are used and f = V
Ns(τv)

. Let G′s(τv)(f, s(τv)) be the derivative of G(f, s(τv)) with respect to

s(τv):

G′s(τv)(f, s(τv))

[
1− 1

σG(f, s(τv))

]
=

−V/N
σs(τv)[s(τv)− V/N ]

Observe that the objective function is increasing in s(τv), because G(f, s(τv)) <
1
σ

by Theo-

rem A.2. Therefore, to maximize the number of people that do not get infected one should

vaccinate as soon as possible.

5 Analysis of the vaccine allocation problem

In this section we analyze the vaccine allocation problem (5), using the characterization of the

objective function in Theorems 1 and 2. Section 5.1 presents the central insight. Section 5.2

considers an interesting special case to obtain more insight into the structure of the solution.

The general case is discussed in Section 5.3. In Section 5.4 we illustrate how the insights

from the non-interactive case can be applied to populations with weak interaction.

5.1 The optimal allocation

In this section we characterize the optimal allocation, which is the solution to problem (5).

We emphasize that our analysis in Section 4 is essential to obtain this insight. By Theorem 2

let f̄j denote the vaccination fraction such that F ′′j (f) > 0 for all f < f̄j and F ′′j (f) < 0 for

f > f̄j.

Theorem 4 (Central Insight). For every optimal solution to (5) there exist J ′ ⊆ J , k ∈ J\J ′

and ω ≥ 0 such that:
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(i). For all j ∈ J ′, fj is the unique solution to 1
sj(τv,j)

F ′j(fj) = ω for which fj ≥ f̄j.

(ii). 1
sk(τv,k)

F ′k(fk) = ω, and either fk is the unique solution to this equation for which fk ≥ f̄k

or fk is the unique solution for which fk < f̄k.

(iii). Either fj = 0 or fj = 1 for all j ∈ J \ {J ′ ∪ {k}}.

In case vaccination takes place before the peak in infected people is attained, i.e.,

sj(τv,j) >
1
σj

for all j ∈ J , condition (iii) in Theorem 4 reduces to the following by Lemma C.2:

Either fj = 0 for all j ∈ J \ {J ′ ∪ {k}} or fj = 1 for all j ∈ J \ {J ′ ∪ {k}}.
Given a subset J ′ ⊆ J we use the term partial pro rata allocation to denote an allocation

that meets condition (i) of Theorem 4. The optimal vaccine allocation is thus partial pro

rata over a subset J ′ of populations. Possibly some leftover vaccines are allocated to one

population k. The remaining populations are completely vaccinated or not vaccinated at all.

The optimal allocation is thus driven by the goal to make the best possible use of the herd

effect in some populations, which is in line with the numerical results of Wu et al. (2007)

and the intuitive explanation of Keeling and Shattock (2012).

5.2 The special case: identical parameters

Now consider an interesting special case: the case of identical functions Fj(fj) := F (fj) for

all j ∈ J (σj := σ, sj0 := s0, i
j
0 := i0, τv,j := τv and sj(τv,j) = s(τv) for all j ∈ J). In that

case a partial pro rata allocation is a pro rata allocation, with pro rata as usual denoting an

allocation in which the doses of vaccine are distributed equally with respect to population

size, such that the vaccination fraction is the same in all selected populations. For this special

case the optimal allocation may be characterized in more detail. In the context of investing

in factories Ginsberg (1974) have derived similar results for the special case Fj(0) = 0 and

Nj = N for all j.

Observe that the dose-optimal vaccination fraction f̃ as defined by Corollary 1 does not

only maximize the function D(f). It also maximizes the average slope of the function F (f)

on the interval [0, f ], calculated as [F (f)−F (0)]/f , because F (f) = fs(τv) +G(f). Thus, f̃

is the allocation fraction that gives per dose of vaccine the highest total effect, which consists

of the herd effect and the direct effect. The optimal allocation therefore tries to allocate as

close as possible to f̃ in a subset of all the populations:

Theorem 5. Consider a set of populations J with ∀j: Fj(f) = F (f) and a total available

amount of resources equal to V . Let b = V
s(τv)

, |J | = n and order the populations such that

N1 ≤ ... ≤ Nn. The optimal allocation for particular cases is as follows:
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(a). if b < f̃N1, then allocate only to the smallest population. Set f1 = b/N1 and fj = 0 for

j = 2, ..., n.

(b). if b =
∑

j∈K f̃Nj for a subset K ⊆ J , then set xj = f̃ for j ∈ K and xj = 0 for j /∈ K.

(c). if b >
∑

j∈J f̃Nj, then allocate pro rata over all the populations: xj = b∑
j∈J Nj

for all

j ∈ J .

The proof of this theorem can be found in Appendix C. Theorem 5 shows that the

optimal allocation tries to make the best possible use of the herd effect by vaccinating close

to f̃ in (a subset of) the populations. All vaccines are allocated to the smallest population

if the vaccination fraction f̃ cannot be attained in either of the populations. For very large

vaccine stockpiles, the pro rata allocation is optimal. Note that Theorem 5 only specifies

the allocation in specific cases of vaccine stockpiles, but can be extended to any available

amount of vaccines. However, the description of the optimal allocation for a general vaccine

stockpile is quite technical and less insightful and is therefore omitted.

In practice it is not always possible to vaccinate at the start of an epidemic (τv = 0),

because vaccines should be developed, ordered or produced. It is therefore useful to study

the effect of τv on the optimal allocation, which is governed by the dose-optimal vaccination

fraction f̃ .

Theorem 6. The value f̃ , which maximizes D(f) = [G(f)−G(0)]/f , decreases when s(τv)

decreases.

Recall from Theorem 5 that the pro rata allocation is optimal for V large enough to

reach f̃ in every population. Thus by Theorem 6, if vaccination takes place at a later point

in time, the pro rata allocation is already optimal for smaller vaccine stockpiles.

5.3 Discussion of the general case

The insights obtained in Section 5.2 by considering the special case can be translated to

the general case. Recall that a single dose of vaccine leads to a small herd effect in a

population, but multiple doses together can make a difference. We prove that the herd effect

is convex-concave in the vaccination fraction and thus vaccinating a second individual can

have a larger effect than vaccinating a first individual. However, when a very large fraction

of the population is vaccinated, the herd effect is decreasing. This leads to the dose-optimal

vaccination fraction f̃ , which gives the highest decrease in final size per dose of vaccine.

In the general case of the vaccine allocation problem the parameters may differ per

population, causing the functions Fj(·) to be different for different populations j. This
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implies that there is no longer a single value for f̃ , but an f̃j for every population j ∈ J .

Equivalent to vaccinating close to f̃j, we could say that there is an optimal number of vaccines

Ṽj = f̃jsj(τv,j)Nj for every population j. We either come close to Ṽj or we do not allocate to

population j. This explains the structure of the solution of the vaccine allocation problem: a

subset of populations is selected and we divide the vaccines over these populations such that

in these populations we vaccinate as close to Ṽj as possible while respecting the conditions

of Theorem 4. This explains why the smallest populations are prioritized for small vaccine

stockpiles, as the required number of doses of vaccine to reach a fraction f̃j is smaller in

those populations. Numerical analysis of the optimal vaccine allocation (e.g., by Keeling

and Shattock (2012)) shows switch points where a small increase in vaccine stockpile results

in a completely different allocation. Our analysis explains these switch points: they are

related to a change in the subset of populations to approach the dose-optimal vaccination

fraction.

This structure of the optimal allocation is illustrated in Figure 4 where we use the example

from the introduction with three populations of size N1 = 10000, N2 = 20000 and N3 = 40000

respectively. The following parameters are used: a basic reproduction ratio σj = 2 for

j = 1, 2, 3 and let the initial states be (s10, i
1
0) = (0.985, 0.015), (s20, i

2
0) = (0.988, 0.012) and

(s30, i
3
0) = (0.990, 0.010). Furthermore, let τv,j = 0 for j = 1, 2, 3. Observe that the number

of allocated vaccines in the populations that receive vaccination is indeed close to Ṽj.

Table 3 presents the differences between using the equitable allocation and the optimal

allocation. Since the direct effect of vaccination is not affected by the allocation, we only

compare the additional herd effect:

additional herd effect =
∑
j∈J

Nj(Gj(fj)−Gj(0))

The table shows that the optimal allocation is significantly more effective in harnessing the

herd effect.

5.4 Weak interaction

We illustrate how the results derived from the non-interacting case can be applied in the

interacting case. The SIR model with interaction is given by the following differential
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Figure 4: The graphs present the optimal vaccine allocation (the solid lines) over three
populations for different sizes of vaccine stockpile. The dashed and dotted lines indicate the
important vaccination fractions: the dashed line in the middle equals Ṽj = f̃jsj(τv,j)Nj, the
upper dotted line equals V ∗j = f ∗j sj(τv,j)Nj and the lower dotted line equals V̄j = f̄jsj(τv,j)Nj.
The circles indicate the values from Table 1.

equations (Diekmann et al. 2012):

dsj
dt

= −
∑
k∈J

βj,ksjik

dij
dt

=
∑
k∈J

βj,ksjik − γjij

drj
dt

= γjij

(8)
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Vaccine stockpile Equitable Allocation Optimal Allocation Relative Improvement
2000 671.76 762.14 + 13.45%
5000 1742.47 2037.82 + 16.95%
8000 2893.30 3511.54 + 21.37%
10000 3707.30 4274.03 + 15.29%
15000 5912.18 6702.56 + 13.37%
20000 8350.69 8910.43 + 6.70%
25000 10930.50 11170.84 + 2.20%
30000 13255.30 13264.27 + 0.07%

Table 3: The additional herd effect for two different allocation strategies for various vaccine
stockpiles. The equitable allocation allocates pro rata over all populations and the optimal
allocation is specified in Table 1 and Figure 4. The population sizes are: N1 = 10000,
N2 = 20000 and N3 = 40000.

We determine the optimal allocation for an example with three populations. Let Nj denote

the population size of population j ∈ J . We use the following parameters: γj = 1 and

βj,j = β = 2 for all j ∈ J . The interaction is determined as follows: βj,k = 0.01β Nk∑
m 6=j Nm

for j, k ∈ J and j 6= k, such that
∑

k 6=j βj,k = 0.01β for all j ∈ J : interaction between

populations is a factor 100 weaker than interaction within populations. This assumption of

week interaction between populations conforms to Wu et al. (2007) who note that individuals

spend on average more than 97% of their time in their home regions. Analogous to the non-

interacting case we denote by fj the fraction of susceptible people that is vaccinated at time

τv,j in population j. We use the same initial states and population sizes as in Section 5.3.

To apply our insights from Section 5.3 we consider the populations j ∈ J one by one,

varying the vaccination fraction for that population while fixing fk = 0 for k 6= j. Perhaps

surprisingly, we still observe the convex-concave relation between the final fraction of people

susceptible and the used vaccination fraction in that population. This enables us to compute

the important vaccination fractions f̄j, f̃j and f ∗j by numerical evaluation of (8), taking

τv,j = 0 for all j ∈ J . To investigate the relation between the optimal allocation and the

important vaccination fractions, we graphically illustrate them in Figure 5. The optimal

allocation is determined via enumeration.

Note that the optimal allocation follows the same pattern as in the non-interacting case

(Figure 4), where the values Ṽj determine the structure of the solution. In Figure 6 we

illustrate the relative performance of the solution to the non-interacting problem in the model

with interaction. We evaluate the additional herd effect and observe that the non-interacting

solution performs close to optimal and outperforms the pro rata allocation. Note that the

additional herd effect becomes negative for large vaccine stockpiles, because vaccinating
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many people leaves very few people susceptible. This implies that herd effect can be lower

for large vaccine stockpiles than for no vaccination, resulting in a negative additional herd

effect.

In Appendix E we analyze the optimal allocation for somewhat stronger interaction.

The figures with the optimal allocation are given in case interaction between populations is

respectively 0.02, 0.05 and 0.1 times the interaction within a population. From these figures

we conclude that as the interaction between populations increases, the switching behaviour

eventually disappears. For an interaction factor of 0.02 the switching pattern is still clearly

visible up to vaccine stockpiles of around 30% of the total population size. For a factor

0.05 switching priorities occur only for relatively small stockpiles and for a factor 0.1 the

optimal allocation does no longer display any switching behaviour. Yet for all compared

levels of interaction the optimal allocation of small vaccine stockpiles remains unequitable,

prioritizing only a subset of the populations.

6 Discussion

In this section we discuss the effect of modelling assumptions, extensions and the generality

of the results.

Our results hold under several relaxations of assumptions. We assume that vaccination

is completely effective and results in immunity directly. The effectiveness of a vaccine can

be incorporated with an additional parameter (Hill and Longini Jr 2003, Mylius et al. 2008,

cf.) and a delay in attained immunity can be incorporated in the parameter s(τv). These

small adjustments in the parameters do not change the structure of our results. We have

completely characterized the final size expression for the SIR model, but this expression

is also valid for other compartmental models such as the SInR model (see Section 4.4).

This implies that our results can be generalized to other model choices. We assume that

the susceptible people can be identified and that no vaccines are waisted on infected people.

This assumption is more justifiable for the SIR model than for the SInR model, as the latter

possibly contains latent phases. However, this assumption can be relaxed to vaccinating a

fraction of the total population instead of only the susceptible population. Vaccines are then

waisted on individuals that are already infected or immune. Under this adjusted assumption

our results still hold.

Numerical results show that the convex-concave pattern in the final fraction of people

susceptible also holds for a stochastic SIR model. This is an indication that the insights of

this paper carry over, although proving convexity is more difficult for the stochastic model.

Also for populations with weak interaction we numerically illustrate that the insights gained
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Figure 5: The graphs present the optimal vaccine allocation (the solid lines) over three
interacting populations for different sizes of vaccine stockpile. The dashed and dotted lines
indicate the important vaccination fractions: the dashed line in the middle equals Ṽj =
f̃jsj(τv,j)Nj, the upper dotted line equals V ∗j = f ∗j sj(τv,j)Nj and the lower dotted line equals
V̄j = f̄jsj(τv,j)Nj.

from the non-interacting case can still be applied, which is in line with the findings of Wu

et al. (2007).

The results in this paper are established under the assumption that vaccination is the

only intervention used. However, in practice vaccination is often combined with treatment or

isolation of infected patients. These other interventions change the course of the epidemic by

influencing for example the transmission rate or the recovery rate. Further research is needed

to investigate how the results derived in this paper carry over when multiple interventions
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Figure 6: The left figure illustrates the relative performance of the optimal allocation for
the non-interacting case (Figure 4) and the pro rata allocation evaluated in the model with
interaction as described in Section 5.4. We evaluate the additional herd effect for vaccine
stockpiles up to size 550, because the right figure shows that for larger vaccine stockpiles the
additional herd effect becomes negative.

are combined.

Vaccination allocation has an ethical dimension, unlike many other resource allocation

problems where equity does not play a role. This paper shows that for small vaccine stockpiles

it is optimal to allocate only to a limited subset of populations. Only for large vaccine

stockpiles it is optimal to allocate to all populations. The policy that we describe as optimal

need not be the best policy if we also take equity considerations into account. Nevertheless,

the vaccination policies derived in this paper can be used as a benchmark to determine the

effects on the final size of an epidemic if a suboptimal policy is selected motivated by fairness.

Another possibility is to reserve a part of the vaccine stockpile for pro rata allocation and

allocate the remaining vaccines optimally (cf. Kaplan and Merson 2002, Wu et al. 2007). In

this way policymakers are able to make a trade off between equity and health benefits.
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7 Conclusions and future directions

In this paper we analyze the optimal allocation of a vaccine stockpile in order to maximize

the health benefit, where we define health benefit as the total number of people that escape

infection. We prove that the health benefit is convex-concave in the vaccination fraction. We

then prove the existence of a unique vaccination fraction that results in the highest health

benefit per dose of vaccine and introduce the term dose-optimal for this fraction. Based on

this result we characterize the solution of the vaccination allocation problem and provide

links to resource allocation literature.

This study uses an analytical approach to determine the essential problem characteristics

that govern the structure of the solution. This implies that the structure of the solution can

be generalized to problems with the same characteristics. Further research may thus yield

an understanding of the optimal vaccine allocation for a broad range of models, including

interaction and stochasticity. Eventually, such a high level understanding of a range of

vaccine allocation models may increase the adoption of such models by policy-makers, who

may hesitate accepting puzzling modelling outcomes without knowing what causes these

outcomes.

Applying Operations Management in Health Care is increasingly becoming popular, also

in the context of infectious diseases (e.g., Ekici et al. 2013, Deo and Sohoni 2015). This

paper gives rise to many interesting research directions for multidisciplinary and potentially

high impact research.
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Supplement - Dose-optimal vaccine allocation over multiple popu-
lations

Appendix A Analysis of the herd effect - Lemmas and

theorems

This appendix consists of theorems that describe the characteristics of the function G(f).

The proofs for Lemma 1, Theorem 1 and Theorem 2 are presented as well as other results

required for these proofs.

We need that the differential equations (1) have a solution s(t), i(t) and r(t) for all t

which conforms to intuition: all fractions are between 0 and 1, s(t) is non-increasing over

time and r(t) non-decreasing over time. We omit this technical result for brevity.

Theorem A.1. It holds that G(f) > 0 for all f ∈ [0, 1) and limf↑1G(f) = 0.

Proof. Consider the characterization of G(f) in (22). Note that W [0] = 0 and W [x] < 0 for
−1
e
≤ x < 0 (Appendix D). In our case x = −σ exp{−σB(f, σ)}, with limf↑1B(f, σ) = +∞.

Thus, x < 0 for f ∈ [0, 1) and approaches 0 for f ↑ 1. Therefore, W [x] < 0 and G(f) > 0

for f ∈ [0, 1) and limf↑1G(f) = 0.

Theorem A.2. It holds that G(f) < 1
σ

for all f ∈ [0, 1] under the assumption that i0 > 0.

Proof. The differential equations in (1) show that i(t) is maximized when s(t) = 1/σ. Note

that G(f) describes the fraction of people susceptible, when the pandemic has died out.

Therefore, if G(f) = 1/σ, the function i(t) is maximal when the pandemic has died out, so

i(t) is at most equal to 0. This contradicts our assumption that i0 > 0. Using the same

argument, it can be noted that it is not possible for G(f) to be greater than 1/σ. As long

as s(t) > 1/σ, the number of infectives is increasing, thereby reducing s(t). In a final state,

when i(+∞) = 0, it must always hold that the fraction of susceptible people is below 1/σ,

which completes the proof.

Theorem A.3. It holds that G(f) < (1 − f)s(τv) for all f ∈ [0, 1) for vaccination in an

infected population.

Proof. Upon vaccination the system changes from state (s(τv), i(τv)) to state ((1 −
f)s(τv), i(τv)). By assumption we have that s(τv) > 0 and i(τv) > 0 for vaccination in
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an infected population. By the differential equations in (1) this implies that the deriva-

tive of s(t) directly after vaccination is negative. As G(f) = limt→+∞ s(t) (3) and s(t) is

non-increasing over time, we have that G(f) < s(τv + ε) = (1− f)s(τv).

Lemma 1. The function G(f) is twice differentiable for all f ∈ [0, 1) in case of vaccination

in an infected population (i0 > 0) and twice differentiable for all f ∈ [0, 1) with f 6= 1− 1
σs(τv)

in case of vaccination in a completely susceptible population (the limit i0 ↓ 0).

Proof. We prove the following four statements consecutively:

(i). The function G(f) is differentiable for all f ∈ [0, 1) for vaccination in an infected

population.

(ii). In case of vaccination in a completely susceptible population (i.e., s0 > 0, i0 = 0 and

s(τv) = s0) the function G(f) is indifferentiable if and only if f ∗ = 1− 1
σs(τv)

or f = 1.

(iii). The function G(f) is twice differentiable for all f ∈ [0, 1) in case of vaccination in an

infected population.

(iv). The function G(f) is twice differentiable for all f ∈ [0, 1) except for f = f ∗ = 1− 1
σs(τ)

in case of vaccination in a completely susceptible population.

We start the proof:

(i). Note that vaccination in an infected population means i(τv) > 0 and i0 > 0 which

implies G(f) < 1
σ

by Theorem A.2. Denote by G′(f) the first order derivative of the

function G(f) with respect to f which can be obtained by taking the derivative of (6):

G′(f)

[
1− 1

σG(f)

]
=

1

σ(1− f)
− s(τv) (9)

For G(f) = 1
σ

the function G′(f) is not defined as can be seen in (9). However, this

does not occur for vaccination in an infected population (Theorem A.2). The function

G(f) : [0, 1] → R, we analyze the boundaries f = 0 and f = 1. Because G(0) < 1
σ

by

Theorem A.2:

lim
f↓0

G′(f) =
1[

1− 1
σG(0)

] ( 1

σ
− s(τv)

)
(10)

By Theorem A.1 we have limf↑1G(f) = 0 < 1
σ

and thus limf↑1G
′(f) < 0.
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(ii). First we will prove that the given vaccination fractions indeed render G(f) to be indif-

ferentiable. Consider the explicit expression for G(f) in (22) and insert the parameter

settings for vaccination in a completely susceptible population and the value for f ∗:

G(f) =
−1

σ
W [−σ exp{− log(σ)− 1}] =

−1

σ
W [− exp{−1}] =

1

σ

By (i) the function G(f) is indifferentiable at f ∗, because G(f ∗) = 1
σ
. The same

theorem also states that G(f) is indifferentiable at f = 1. Now we will also prove

that for vaccination in a completely susceptible population G(f) is differentiable for

all f ∈ [0, 1) for which f 6= f ∗. By definition of the Lambert W function, W (y(f)),

this function is differentiable for all y(f) /∈ {0,−1/e} (Corless et al. 1996). Let G(f) =
−1
σ
W [y(f)], with y(f) = −σs(τv)(1 − f) exp {−σs(τv)(1− f)} for vaccination in a

completely susceptible population (22). Clearly y(f) < 0, since s(τv) = s0 > 0 by

assumption and f < 1. Thus, we only need to investigate for which f the function

y(f) = − exp{−1}. Note that this only holds for: σs(τv)(1−f) = 1⇔ f = 1− 1
σs(τv)

=

f ∗

(iii). By (9) and (11) G(f) is twice differentiable unless one of the following conditions holds:

G(f) = 1
σ
, f = 1, G(f) = 0. In Theorem A.1 we showed that G(f) > 0 for all f ∈ [0, 1).

By Theorem A.2 we know that G(f) < 1
σ

for vaccination in an infected population and

since limf↑1G(f) = 0, part (iii) follows directly.

(iv). For vaccination in a completely susceptible population we showed that G(f) = 1
σ
⇔

f = f ∗ in part (ii), which proves part (iv).

Theorem 1. For s(τv) > 1
σ

there is a unique vaccination fraction f ∗ = 1 − 1
σs(τv)

> 0

such that the herd effect G(f) is increasing in f for all f < f ∗, maximized for f = f ∗ and

decreasing for f > f ∗. For s(τv) ≤ 1
σ

the function G(f) is decreasing for all f ∈ [0, 1]. If

i0 > 0, then G′(f ∗) = 0.

Proof. Denote by G′(f) the first order derivative of the function G(f) with respect to f which

can be obtained from (6) (see (9)). By Theorem A.1 we have limf↑1G(f) = 0 and thus the

function G′(f) is not defined for f = 1. Because G(f) < 1
σ

for all f ∈ [0, 1] (Theorem A.2),

the function G(f) is maximized for f = f ∗ = 1 − 1
σs(τv)

. It is increasing for f < f ∗ and

decreasing for f > f ∗. Note that for s(τv) ≤ 1
σ

we get f ∗ ≤ 0 and thus the function G(f) is

only decreasing in that case.
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Lemma A.1. Let G′′(f) be the second derivative of the function G(f) with respect to f .

Then for i0 > 0 the following holds:

(i). G′′(f) = 0 if and only if G(f) = 2
σ
− (1− f)s(τv).

(ii). G′′(f) > 0 if and only if G(f) > 2
σ
− (1− f)s(τv).

(iii). G′′(f) < 0 for f ≥ 1− 1
σs(τv)

and G′′(f) < 0 if and only if G(f) < 2
σ
− (1− f)s(τv) for

f < 1− 1
σs(τv)

.

Proof. The function G′′(f) can be derived from (9):

G′′(f)

[
1− 1

σG(f)

]
=

1

σ(1− f)2
− 1

σ

[
G′(f)

G(f)

]2
G′′(f) =

G(f)2 − [G′(f)(1− f)]2

(σG(f)− 1)G(f)(1− f)2

(11)

Because limf↑1G(f) = 0 (Theorem A.1), the function G′′(f) is not defined for f = 1. We

prove the three statements of the lemma:

(i). We analyze G′′(f) = 0 and consider that G(f) < 1
σ

(Theorem A.2):

G′′(f) = 0⇔ G(f)2 − [G′(f)(1− f)]2

(σG(f)− 1)G(f)(1− f)2
= 0

⇔ G(f)2 − [G′(f)(1− f)]
2

= 0

⇔ G(f)2 =

[
[1− σ(1− f)s(τv)]G(f)

[σG(f)− 1]

]2
⇔ [1− σ(1− f)s(τv)]

2 = [σG(f)− 1]2

(12)

In the second step we use that (σG(f)− 1)G(f)(1− f)2 6= 0, which holds for all f < 1

by Theorems A.1 and A.2. In the third step we substitute (9). Thus G′′(f) = 0 if and

only if one of the following two relations holds:

1− σ(1− f)s(τv) = σG(f)− 1⇔ G(f) =
2

σ
− (1− f)s(τv) if f < 1− 1

σs(τv)

1− σ(1− f)s(τv) = 1− σG(f)⇔ G(f) = (1− f)s(τv) if f > 1− 1

σs(τv)

By Theorem A.3 G(f) < (1− f)s(τv) which implies that the second relation does not

hold. Thus, G′′(f) = 0 if and only if the first relation holds. The function G′′(f) = 0

on the interval [0, 1− 1
σs(τv)

] for the value of f which satisfies G(f) = 2
σ
− (1− f)s(τv).

30



(ii). Consider the second expression in (11), by Theorems A.1 and A.2 we have: (σG(f)−
1)G(f)(1− f)2 < 0 for f < 1 From (12) we derive:

G′′(f) > 0⇔ G(f)2 − [G′(f)(1− f)]
2
< 0

⇔ G(f)2 <

[
[1− σ(1− f)s(τv)]G(f)

[σG(f)− 1]

]2
⇔ [1− σ(1− f)s(τv)]

2 > [σG(f)− 1]2

Thus G′′(f) > 0 if and only if one of the following two relations hold:

1− σ(1− f)s(τv) < σG(f)− 1⇔ G(f) >
2

σ
− (1− f)s(τv) if f < 1− 1

σs(τv)

1− σ(1− f)s(τv) > 1− σG(f)⇔ G(f) > (1− f)s(τv) if f ≥ 1− 1

σs(τv)

By Theorem A.3 the second relation cannot hold and thus G′′(f) > 0 if and only if

G(f) > 2
σ
− (1− f)s(τv), which can only hold for f < 1− 1

σs(τv)
.

(iii). Analogous to the previous proof we have: G′′(f) < 0⇔ [1−σ(1−f)s(τv)]
2 < [σG(f)−

1]2 Thus, G′′(f) < 0 if and only if one of the following two relations hold:

1− σ(1− f)s(τv) > σG(f)− 1⇔ G(f) <
2

σ
− (1− f)s(τv) if f < 1− 1

σs(τv)

1− σ(1− f)s(τv) < 1− σG(f)⇔ G(f) < (1− f)s(τv) if f ≥ 1− 1

σs(τv)

By Theorem A.3 the second relation is satisfied and thus G′′(f) < 0 for all f ≥ 1− 1
σs(τv)

.

For f < 1− 1
σs(τv)

we have that G′′(f) < 0 if and only if G(f) < 2
σ
− (1− f)s(τv).

Theorem A.4. The derivative of G(f) with respect to f , denoted by G′(f), is bounded from

above by s(τv), with s(τv) ≥ 0, i.e., G′(f) < s(τv) ∀f ∈ [0, 1]

Proof. From (9) we have:

G′(f)

[
1− 1

σG(f)

]
=

1

σ(1− f)
− s(τv)⇔ G′(f) =

σG(f)

σG(f)− 1
· 1− σ(1− f)s(τv)

σ(1− f)
(13)

From Lemma A.1 we note that G′(f) has an extreme under the following condition:

G(f) =
2

σ
− (1− f)s(τv) (14)
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By contradiction we assume that there exists a vaccination fraction f̄ for which G′(f̄) ≥ s(τv)

and assume that f̄ meets condition (14), then:

G′(f̄) =
2− σ(1− f̄)s(τv)

σ(1− f̄)
≥ s(τv)⇔ f̄ > 1− 1

σs(τv)

We arrive at a contradiction, because by Theorem 1 we have that G′(f) < 0 for all f >

1 − 1
σs(τv)

and s(τv) ≥ 0. Thus, G′(f) < s(τv) for all f that are an extreme for G′(f). This

completes the proof that G′(f) < s(τv) for all f ∈ (0, 1). We consider the two boundary

cases: f = 0 and f = 1. From Lemma 1 we know that limf↑1G
′(f) < 0 and thus the lemma

is satisfied for f = 1. For limf↓0G
′(f), we distinguish between three cases:

(i). if G′′(0) = 0: then f = 0 is an extreme of the function G′(f) for which the derivative

is strictly smaller than s(τv).

(ii). if G′′(0) > 0: then for a very small ε > 0 we have G′(ε) > limf↓0G
′(f) and G′(f) < s(τv)

for all f ∈ (0, 1]. Thus also limf↓0G
′(f) < s(τv).

(iii). if G′′(0) < 0: then from Lemma A.1 we have that G(0) < 2
σ
− s(τv). By (10) we have:

lim
f↓0

G′(f) =
1[

1− 1
σG(0)

] ( 1

σ
− s(τv)

)

Since G(f) < 1
σ

by Theorem A.2, we have limf↓0G
′(f) < 0 in case s(τv) <

1
σ
. In that

case the theorem is satisfied. For s(τv) >
1
σ

we substitute G(0) < 2
σ
− s(τv) in (10):

lim
f↓0

G′(f) <

[
2− σs(τv)
1− σs(τv)

](
1− σs(τv)

σ

)
=

2

σ
− s(τv) < s(τv)

This completes the proof that G′(f) < s(τv) for all f ∈ [0, 1].

Theorem 2. Denote by W [·] the Lambert W function (cf. Appendix D) and let C be defined

as follows:

C =
W [−σ exp{−σ(s0 + i0) + log(s0)}] + 2

σ

For s(τv) > C there exists a unique vaccination fraction f̄ > 0 such that G(f) is strictly

convex (G′′(f) > 0) for all f < f̄ and strictly concave (G′′(f) < 0) for all f > f̄ . For

s(τv) ≤ C the function G(f) is concave for all f ∈ [0, 1]. If i0 > 0, then G′′(f̄) = 0.

Proof. We first prove the convex-concave shape of the function G(f) an then derive the value

C. By (11) note that G′′(f) is a continuous function for f < 1, because both G(f) and G′(f)
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are continuous by Lemma 1. Consider the function M(f) = G(f)− 2
σ

+ (1− f)s(τv). From

Lemma A.1 we have that f̄ must satisfy G(f̄) = 2
σ
− (1 − f̄)s(τv), i.e. M(f̄) = 0. Denote

by M ′(f) the derivative of M(f) with respect to f : By Theorem A.4 we have M ′(f) < 0.

This implies that M(f) = 0 has only one solution and thus there is only one f̄ for which

G′′(f̄) = 0. As G′′(f) is a continuous function this implies that on either side of f̄ the

function G(f) is either convex or concave.

By Lemma A.1 we have G′′(f) < 0 for f ≥ 1 − 1
σs(τv)

and thus G(f) is concave for

f > f̄ . Since M ′(f) < 0 and M(f̄) = 0 it holds that M(f) > 0 for f < f̄ . By Lemma A.1

this implies that G(f) is convex for all f < f̄ , which proves the convex-concave shape of

the function G(f).Note that this prove only holds for i0 > 0. In case i0 = 0 we refer to

Lemma A.2.

We now derive the value C. For certain parameter settings the function G(f) has a

convex and a concave part. By Lemma A.1 the following condition must hold for G(f) to

be convex: G(f) > 2
σ
− (1 − f)s(τv). Since G(f) is convex for all values f below a certain

threshold, the following condition requires that the function G(f) has a convex part:

G(0) >
2

σ
− s(τv) (15)

We solve above inequality with equality to obtain the value C. By substituting in (6) this

results in the following, where H(x) = −x+ 1
σ

log(x):

0 = − 2

σ
+ s(τv) +

1

σ
log

(
2

σ
− s(τv)

)
+ s0 + i0 −

1

σ
log(s0)

H

[
2

σ
− s(τv)

]
= H[s0]− i0

s(τv) =
W [−σ exp{kσ}] + 2

σ
= C with k = H[s0]− i0

We know that −1 < W [−σ exp{kσ}] < 0 (cf. Appendix D) and thus 1
σ
< C < 2

σ
. Note that

for s(τv) ≤ 1
σ

condition (15) is never met by Theorem A.2. By Theorem A.1 the condition

is always met for s(τv) ≥ 2
σ
. Thus only for s(τv) > C the function G(f) has a convex part

and for s(τv) = C we have f̄ = 0.

Lemma A.2. In case of vaccination in a completely susceptible population, the function

G(f) is convex for all f < f ∗ and concave for all f > f ∗, where f ∗ = 1− 1
σs(τv)

.

Proof. By Lemma 1(ii) we have that G(f ∗) = 1
σ

for vaccination in a completely susceptible

population. Since the vaccination fraction f ∗ also maximizes the function G(f) (Theorem 1),
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it holds that G(f) < 1
σ

for all f 6= f ∗. In Lemma A.1 we derived conditions for G(f) to be

convex or concave where we needed that G(f) < 1
σ
. These conditions can still be used if we

apply them only to f 6= f ∗.

G′′(f) > 0⇔ G(f) >
2

σ
− (1− f)s(τv) and G′′(f) < 0⇔ G(f) <

2

σ
− (1− f)s(τv)

Note that for f ∗ we have G(f ∗) = 1
σ

= 2
σ
− (1− f ∗)s(τv). By Theorem 1 the function G(f)

is decreasing for f > f ∗, whereas the expression 2
σ
− (1 − f)s(τv) is increasing in f . This

implies that G(f) is concave for all f > f ∗. The function G(f) is increasing for f < f ∗, just

as the expression on the right hand side in the conditions for convexity and concavity. By

Theorem A.4 the expression 2
σ
− (1 − f)s(τv) increases with a faster rate than G(f). This

implies that G(f) is convex for all f < f ∗.

Theorem A.5. The fraction of people not infected during the epidemic, F (f) = fs(τv) +

G(f), is increasing in f for all f ∈ [0, 1).

Proof. Let F ′(f) denote the derivative of F (f) with respect to f : F ′(f) = d
df
F (f) = s(τv) +

G′(f) By Theorem 1 G′(f) > 0 for all f < 1 − 1
σs(τv)

and G′(f) < 0 for all f > 1 − 1
σs(τv)

.

Because s(τv) > 0 the function F (f) is increasing for all f < 1− 1
σs(τv)

. The function F (f)

is increasing under the following condition:

F ′(f) = s(τv) +G′(f) =
σG(f)

σG(f)− 1

[
1

σ(1− f)
− s(τv)

]
+ s(τv)

=
1

σG(f)− 1

[
G(f)

σ(1− f)
− s(τv)

]
> 0

By Theorem A.2 F ′(f) > 0 if and only if G(f) < (1−f)s(τv), which holds by Theorem A.3

for all f ∈ [0, 1). Thus the function F (f) is increasing for all f ∈ [0, 1).

Corollary 1. The function D(f) as defined by (7) is maximized by the unique vaccination

fraction f̃ for which G′(f̃) = D(f). The function D(f) is increasing for f < f̃ and decreasing

for f > f̃ .

Proof. The function D(f) is defined as follows: D(f) = 1
f

[G(f)−G(0)].

d

df
D(f) =

1

f
[G′(f)−D(f)]

d2

df 2
D(f) =

1

f
G′′(f)− 2

f 2
[G′(f)−D(f)]
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By the first derivative of D(f), f̃ is clearly an extreme of the function D(f). Observe that

in the limit f ↓ 0 is always a solution of the condition G′(f̃) = D(f), by definition of the

derivative. For parameter settings for which the function G(f) does not have a convex part,

the function D(f) only decreases and is thus maximal for f = 0. However, if G(f) has a

convex domain, it holds that G′(f) > D(f) as long as G(f) is convex and increasing is, such

that D(f) is also increasing. This implies that f = 0 cannot maximize the function D(f) if

G(f) has a convex domain and that f̃ is in the concave domain of G(f).

Assume that f̃ is the first value in the concave domain for which G′(f̃) = D(f). Because

of concavity it holds that G(f) for all f > f̃ is below the line through G(0) and G(f̃). For

all f > f̃ this implies:
1

f
[G(f)−G(0)] <

1

f̃

[
G(f̃)−G(0)

]
Let f1 be an arbitrarily selected value greater than f̃ . Because of concavity the function G(f)

for all f > f1 is below the line through G(0) and G(f1). This implies that D(f) is decreasing

for f > f̃ . Thus, there is only one strictly positive solution for the condition G′(f) = D(f),

which is in the concave and increasing domain of G(f). By the second derivative of D(f), f̃

gives a maximum.

Lemma 2. Consider the following three vaccination fractions: f̄ as defined in Theorem 2,

the dose-optimal vaccination fraction f̃ and f ∗ as defined in Theorem 1. The following

relation holds: f̄ ≤ f̃ ≤ f ∗

Proof. By Lemma A.1 we know that G′′(f) ≤ 0 ⇔ G(f) ≤ 2
σ
− (1 − f)s(τv). Filling in

the expression for f ∗ = 1− 1
σs(τv)

results in G(f ∗) ≤ 1
σ
. This clearly holds by Theorem A.2

and thus f̄ ≤ f ∗, due to Theorem 2. The optimal vaccination fraction f̃ is defined as the

fraction that maximizes the function D(f) and meets the condition G′(f̃) = D(f̃). Observe

that D(f̃) ≥ 0, because limf↓0D(f) = 0. This implies that G′(f̃) ≥ 0 and thus f̃ ≤ f ∗ by

Theorem 1. By argument we showed in Corollary 1 that f̃ cannot be in the convex domain

of the function G(f), such that f̄ ≤ f̃ .

Lemma 3. For increasing σ the dose-optimal vaccine fraction f̃ converges to f ∗.

Proof. The basic reproduction ratio is denoted by σ. By Lemma 2 it suffices to show that

limσ↑+∞ f
∗ − f̄ = 0. By definition we have limσ↑+∞ f

∗ = limσ↑+∞ 1− 1
σs(τv)

= 1. Clearly, for

σ ↑ +∞ and f̄ = 1 the condition G(f̄) = 2
σ
− (1 − f̄ s(τv)) is satisfied. This completes the

proof.
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Theorem 6. The value f̃ , which maximizes D(f) = [G(f)−G(0)]/f , decreases when s(τv)

decreases.

Proof. Let K(f) and K ′(f) denote respectively the derivative of G(f) and G′(f) with respect

to s(τv). The functions K(f) and K ′(f) can be determined from (6):

K(f)

[
1− 1

σG(f)

]
= −f and K ′(f)

[
1− 1

σG(f)

]
= −1−G′(f)K(f)

1

σG(f)2

Remark that G(f) is increasing in s(τv), because G(f) < 1
σ

by Theorem A.2 and thus

K(f) > 0.

Define the function C(f) = G(f)−G(0)− fG′(f). The vaccination fraction f̃ is charac-

terized by the unique solution to C(f) = 0. For f < f̃ we have C(f) < 0 and for f > f̃ we

have C(f) > 0. We consider how the function C(f) changes with s(τv):

∂

∂s(τv)
C(f) =

∂

∂s(τv)
(G(f)−G(0)− fG′(f)) = K(f)− fK ′(f) =

fG′(f)K(f) 1
σG(f)2[

1− 1
σG(f)

]
Above expression is negative at f̃ , because G(f) is increasing for f̃ , K(f) > 0 and G(f) < 1

σ
.

This implies that C(f̃) > 0 for any s < s(τv). Thus, the peak of D(f) for s < s(τv) is attained

at a value f < f̃ , for f̃ maximizing D(f) for s(τv). This completes the proof.

Theorem A.6. Let f̄ be the value for which G′′(f̄) = 0 and f ∗ for which G′(f ∗) = 0. Both

f̄ and f ∗ decrease when s(τv) decreases.

Proof. The peak of G(f) is attained at f ∗ = 1 − 1
σs(τv)

. Thus, f ∗ decreases when s(τv)

decreases. For f̄ it holds that G(f̄) = 2
σ
− (1− f̄)s(τv). When s(τv) decreases to s2(τv), the

right side of this expression increases. From Theorem 6 we know that G(f) is increasing in

s(τv), because the derivative K(f) > 0. With s(τv) decreasing, also G(f̄) decreases to G2(f̄).

This implies that G2(f̄) < 2
σ
− (1− f̄)s2(τv). This implies that our initial f̄ is already in the

concave part when s(τv) decreases and thus the value for f where the function G(f) goes

from concave to convex, denoted by f̄ also decreases if s(τv) decreases.

Appendix B Generality of the function G(f )

One of the extensions to the standard SIR compartmental model, is the SInR model with

n different consecutive infectious stages. Let s(t) and r(t) denote the fraction of people
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respectively susceptible and removed at time t. The fractions of people susceptible in every

state are given by ik(t) for k = 1, ..., n. Interpretation dictates that s(t)+
∑n

k=1 ik(t)+r(t) = 1

for all t. Let βk and γk denote respectively the transmission rate and recovery rate in

infectious stage k. The differential equations for the SInR model are:

ds

dt
= −s

n∑
k=1

βkik

di1
dt

= s

n∑
k=1

βkik − γ1i1

dik
dt

= γk−1ik−1 − γkik k = 2, ..., n

dr

dt
= γnin

(16)

Theorem 3. Up to a constant, the expression for G(f) given in (6) also applies to the SInR

model with σ =
∑n

k=1
βk
γk

.

Proof. The following relation can be derived from (16), using σ =
∑n

k=1
βk
γk

.

∫ ∞
0

1

s(t)
ds = −

n∑
k=1

βk

∫ ∞
0

ik(t)dt

log(s(t))− log(s(0)) = −
n∑
k=1

βk
γk

[Gk(t)−Gk(0)]

= σ

[
s(t) +

n∑
k=1

ik(t)

]
− σ

[
s(0) +

n∑
k=1

ik(0)

]
−

n∑
k=1

βk
γk

[
n∑

m=k+1

im(t)− im(0)

]
(17)

We let t → ∞ and assume that ik(∞) = 0 for k = 1, ..., n. This results in the following

expression, which is equal to the expression for the SIR model up to a constant:

0 = −s(∞) +
1

σ
log(s(∞))− 1

σ
log(s(0)) + s(0) +

n∑
k=1

ik(0)− 1

σ

n∑
k=1

βk
γk

n∑
m=k+1

im(0) (18)

Assume that we vaccinate a fraction f of the susceptible people at time τv. Analogous to

the analysis of the SIR model, we let ((1 − f)s(τv), i1(τv), ..., in(τv)) be a new initial state

and define the value s(∞) according to (18). The values for ik(τv) for k = 1, ..., n can be

calculated according to (17). We define G(f) = limt→∞ s(t), where s(t) follows (16) for
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t > τv. This results in the following:

0 = −G(f)+
1

σ
log(G(f))− 1

σ
log(s(0)(1−f))+s(0)+

n∑
k=1

ik(0)−fs(τv)−
1

σ

n∑
k=1

βk
γk

n∑
m=k+1

im(0)

(19)

Above expression equals the expression for the SIR model (6) up to a constant.

Corollary 2. The results of Lemma 1, Theorem 1, Theorem 2 and Corollary 1 also apply

to the SInR model with σ =
∑n

k=1
βk
γk

.

Proof. By Theorem 3 the expression for G(f) in the SInR model is equal to the expression

in the SIR model up to a constant. This constant disappears after taking the derivative,

implying that the first and second order derivative do not change. The structural properties

of the function G(f) thus carry over.

Appendix C Optimal vaccine allocation - Theorems

and proofs

Theorem 2 establishes that Problem (5) is a resource allocation problem with an S-shaped

objective function: non-decreasing and convex for all x smaller than some value x̂ and concave

for all x > x̂ (cf. Ginsberg (1974) and Ağralı and Geunes (2009)). As the vaccine allocation

problem is a maximization problem with inequality constraints, necessary conditions for

the optimum are given by the Karush-Kuhn-Tucker (KKT) conditions. Let ω be the KKT

multiplier for the capacity constraint, λj for the non-negativity constraint fj ≥ 0 for all

j ∈ J and µj for the constraint fj ≤ 1 for all j ∈ J . Denote by f ,λ, µ the vectors with the

variables fj, λj and µj respectively. Let L(f ,λ, µ, ω) denote the Lagrange function of the

maximization problem. The KKT conditions for this problem are given in (20). Observe

that the term partial pro rata follows from the KKT condition that the partial derivative of

L(f ,λ, µ, ω) with respect to fj equals 0 for all j ∈ J .

L(f ,λ, µ, ω) =
∑
j∈J

NjFj(fj)− ω

(∑
j∈J

fjsj(τv,j)Nj − V

)
−
∑
j∈J

(µj(fj − 1)− λjfj)
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∂

∂fj
L(f ,λ, µ, ω) = 0 ∀j ∈ J

ω

(∑
j∈J

fjsj(τv,j)Nj − V

)
= 0 ω ≥ 0

λjfj = 0 ∀j ∈ J λj ≥ 0 ∀j ∈ J

µj(fj − 1) = 0 ∀j ∈ J µj ≥ 0 ∀j ∈ J

(20)

Lemma C.1. The vaccine allocation problem always has a solution for which
∑

j∈J fjsj(τv,j)Nj =

V .

Proof. Let xj for all j ∈ J be a solution of the vaccine allocation problem and assume that∑
j∈J xjsj(τv,j)Nj < V . Let yj for all j ∈ J be the solution for which yj ≥ xj for all j ∈ J ,

such that
∑

j∈J yjsj(τv,j)Nj = V . By Lemma A.5 the functions Fj(f) are non-decreasing

and thus Fi(yi) ≥ Fj(xj) for all j ∈ J . This implies:
∑

j∈J NjFj(yj) ≥
∑

j∈J NjFj(xj) Above

relation proves that the proposed solution yj for all j ∈ J for which
∑

j∈J yjsj(τv,j)Nj = V

is also an optimal solution.

Theorem 4 (Central Insight). For every optimal solution to (5) there exist J ′ ⊆ J , k ∈ J\J ′

and ω ≥ 0 such that:

(i). For all j ∈ J ′, fj is the unique solution to 1
sj(τv,j)

F ′j(fj) = ω for which fj ≥ f̄j.

(ii). 1
sk(τv,k)

F ′k(fk) = ω, and either fk is the unique solution to this equation for which fk ≥ f̄k

or fk is the unique solution for which fk < f̄k.

(iii). Either fj = 0 or fj = 1 for all j ∈ J \ {J ′ ∪ {k}}.

Proof. The proof of this theorem consists of the following steps:

(a). Let J ′ ⊆ J such that 0 < fj < 1 for all j ∈ J ′ ∪ {k}. We prove that 1
sj(τv,j)

F ′j(fj) = ω

for all j ∈ J ′ ∪ {k}.

(b). We prove that for at most one population there is a strictly positive vaccination fraction

in the strictly convex domain, i.e. 0 < fj < f̄j for at most one j ∈ J ′ ∪ {k}.

We proof the two steps consecutively:

(a). This result follows from the KKT conditions. Note that for any population j for which

0 < fj < 1 the KKT conditions require that µj = 0 and λj = 0. This gives the
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following:

∂

∂fj
L(f ,λ, µ, ω) = NjF

′
j(fj)− ωsj(τv,j)Nj − µj + λj

= Nj

[
F ′j(fj)− ωsj(τv,j)

]
= 0⇔ 1

sj(τv,j)
F ′j(fj) = ω

(b). By contradiction assume there is an optimal solution with at least two strictly positive

variables in the convex domain. W.l.o.g. let 0 < fj < f̄j for j = 1, 2, i.e. the

functions F1(f) and F2(f) are convex at respectively f1 and f2. By the KKT conditions

F ′1(f1) = F ′2(f2). Choose an 0 < ε < min
{
f1, f2

N2s2(τv,2)

N1s1(τv,1)
, f̄1 − f1, (f̄2 − f2)N2s2(τv,2)

N1s1(τv,1)

}
and let δ = εN1s1(τv,1)

N2s2(τv,1)
such that:

f1s1(τv,1)N1 + f2s2(τv,1)N2 = (f1 + ε)s1(τv,1)N1 + (f2 − δ)s2(τv,2)N2

By convexity of F1(f1) and F2(f2) the following can be derived:

N1F1(f1+ε)+N2F2(f2−δ) > N1F1(f1)+N2F2(f2)+εN1[F
′
1(f1)−F ′2(f2)] = N1F1(f1)+N2F2(f2)

Above relation shows that the objective function can be improved by a small change

in the allocation. Thus, a solution with more than one strictly positive variable in the

convex domain can never be optimal.

Lemma C.2. If sj(τv,j) >
1
σj

for all j ∈ J , then there is no optimal solution to (5) for which

fj = 0 and fk = 1 for two populations j, k ∈ J . This implies that (iii) of Theorem 4 changes

into: Either fj = 0 for all j ∈ J \ {J ′ ∪ {k}} or fj = 1 for all j ∈ J \ {J ′ ∪ {k}}.

Proof. By contradiction assume that f1 = 0 and f2 = 1 w.l.o.g. Let ε > 0 and δ = εN1s1(τv,1)

N2s2(τv,1)

such that:

f1s1(τv,1)N1 + f2s2(τv,2)N2 = (f1 + ε)s1(τv,1)N1 + (f2 − δ)s2(τv,2)N2

The following holds:

N1F1(ε)+N2F2(1− δ)−N1F1(0)−N2F2(1) = N1[G1(ε)−G1(0)]+N2[G2(1− δ)−G2(1)] > 0

By Theorem A.1 Gj(fj) > 0 for all 0 ≤ fj < 1 and limfj↑1Gj(fj) = 0. This implies that

the second term is positive. Furthermore, for sj(τv,j) >
1
σj

the function Gj(f) is initially
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increasing by Theorem 1, implying that G1(ε) > G1(0). Thus, a small change in allocation

can improve the solution. We arrive at a contradiction and thus the proof of the lemma is

completed.

Theorem 5. Consider a set of populations J with ∀j: Fj(f) = F (f) and a total available

amount of resources equal to V . Let b = V
s(τv)

, |J | = n and order the populations such that

N1 ≤ ... ≤ Nn. The optimal allocation for particular cases is as follows:

(a). if b < f̃N1, then allocate only to the smallest population. Set f1 = b/N1 and fj = 0 for

j = 2, ..., n.

(b). if b =
∑

j∈K f̃Nj for a subset K ⊆ J , then set xj = f̃ for j ∈ K and xj = 0 for j /∈ K.

(c). if b >
∑

j∈J f̃Nj, then allocate pro rata over all the populations: xj = b∑
j∈J Nj

for all

j ∈ J .

Proof. (a). Step (b) in the proof of Theorem 4 shows that an optimal allocation results

in at most one strictly positive vaccination fraction in the convex domain. By this

result, the proposed allocation follows directly from convexity of the function G(f) for

all f < f̄ < f̃ .

(b). The proposed allocation results in the maximum attainable value for the objective

function for V = bs(τv) available vaccines and is thus optimal.

(c). We prove the optimality of the proposed allocation using the items of Theorem 4.

Consider item (iii): for the special case an allocation with fj = 1 and fk < 1 for

arbitrary populations j, k ∈ J cannot be optimal:

NjF (fj − ε) +NkF

(
fk + ε

Nj

Nk

)
−NjF (fj)−NkF (fk) = εNj(F (fk)− F (fj)) > 0

The same holds for an allocation with fj > f̄ and fk < f̄ . For the given amount of

vaccines this also implies that fj > f̃ , such that:

NjF (fj − ε) +NkF

(
fk + ε

Nj

Nk

)
−NjF (fj)−NkF (fk)

= Nj[F (fj − ε)− F (fj)] +Nk

[
F

(
fk + ε

Nj

Nk

)
− F (fk)

]
> 0

By item (i) and (ii) of Theorem 4 the optimal allocation for b >
∑

j∈J f̃Nj is thus a

pro rata allocation over the populations K ⊆ J . Remains to prove that it is optimal
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to allocate pro rata over all populations, i.e. K = J . Let zj denote the pro rata

allocation over K ⊂ J and xj the pro rata allocation over all populations in J . Denote

ẑ = b∑
j∈K Nj

and x̂ = b∑
j∈J Nj

and remark that ẑ > x̂ > f̃ . This implies the following:

[F (ẑ)− F (0)]/ẑ < [F (x̂)− F (0)]/x̂∑
j∈K

NjF (ẑ)−
∑
j∈K

NjF (0) <
∑
j∈J

NjF (x̂)−
∑
j∈J

NjF (0)∑
j∈K

NjF (ẑ) +
∑
j /∈K

NjF (0) <
∑
j∈J

NjF (x̂)

Above inequality proves that if b is allocated pro rata over the populations of a subset

of J , every strict subset will result in a lower objective function. Therefore, it is best

to allocate the available amount pro rata over all the populations.

Appendix D The Lambert W function

This appendix considers the Lambert W function, or product log function (cf. Corless et al.

(1996)). The Lambert W function, W (x), solves x = W (x)eW (x). In this study we consider

only real valued x and the function W (x) is then defined only for x ≥ −1
e
. For x ∈ [−1

e
, 0]

the function W (x) has two values, but two branches of W (x) can be defined that are both

single valued. The constraint W (x) ≤ −1 can be added to construct the branch W−1(x)

defined only for x ∈ [−1
e
, 0]. The other branch W0(x) holds for all x ≥ −1

e
and meets the

constraint W (x) ≥ −1. This branch is also referred to as the principal branch, denoted by

Wp(x).

D.1 Lambert W function for the final size

To study the final size in an epidemic, the fraction of people still susceptible when the

pandemic has died out, denoted by G(f) can be expressed using the Lambert W function

(cf. Ma and Earn (2006)). Let Wp(x) be the principal branch of the Lambert W function

which by definition solves the following expression for x ≥ −1
e

:

x = W (x)eW (x). (21)
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Using the Lambert W function, the function G(f) can be expressed as:

G(f) =
−1

σ
W (−σ exp{−σB(f)})

with B(f) = s0 + i0 −
1

σ
log(s0(1− f))− fs(τv)

(22)

which can be verified by substituting (22) into (21), which leads to (6).

Let G(f) = −1
σ
W [y(f)], with y(f) = −σs0(1 − f) exp {−σ(s0 + i0 − fs(τv))} (22). We

will study y(f) in more detail to determine which branch of the Lambert W function is

needed for the calculation of G(f).

Theorem D.1. −1
e
≤ y(f) ≤ 0

Proof. Because σ > 0, we have y(f) ≤ 0. Analyze the extreme values of y(f):

d

df
y(f) = σs0 exp {−σ(s0 + i0 − fs(τv))} [1− σs(τv)(1− f)] = 0⇔ f = 1− 1

σs(τv)

It suffices to show that y(f) ≥ −1
e

for f = 1− 1
σs(τv)

:

− s0
s(τv)

exp{−σ(s0 + i0 − s(τv))− 1} ≥ −1

e

log(s0)− σ (s0 + i0 − s(τv)) ≤ log(s(τv))

0 ≤ −s(τv) +
1

σ
log(s(τv)) + s0 + i0 −

1

σ
log(s0)

By (2) above relation holds, because i(τv) ≥ 0.

By Theorem A.2 we know that G(f) < 1
σ

and thus −1 < W (−σ exp{−σB(f, σ)}) < 0.

By Theorem D.1 we have that only the principal branch W0(x) is needed for G(f) (22).

Appendix E Interacting populations

In Section 5.4 the optimal allocation is analyzed for weakly interacting populations. In

this appendix three figures are presented with the optimal allocation for increasing levels of

interaction. Figures 7, 8 and 9 display the optimal allocation in case interaction between

populations is respectively 0.02, 0.05 and 0.1 times the interaction within a population. This

corresponds to interaction between populations being a factor 50, 20 or 10 times weaker than

interaction within a population. The figures are discussed in Section 5.4.
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Each of the graphs present the optimal vaccine allocation (the solid lines) over three

interacting populations for different sizes of vaccine stockpile. The dashed and dotted lines

indicate the important vaccination fractions: the dashed line in the middle equals Ṽj =

f̃jsj(τv,j)Nj, the upper dotted line equals V ∗j = f ∗j sj(τv,j)Nj and the lower dotted line equals

V̄j = f̄jsj(τv,j)Nj.

Figure 7: The optimal allocation in case interaction between populations is 0.02 times the
interaction within a population.
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Figure 8: The optimal allocation in case interaction between populations is 0.05 times the
interaction within a population.
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Figure 9: The optimal allocation in case interaction between populations is 0.1 times the
interaction within a population.
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