
Down-side Risk Metrics as Portfolio Diversi�cation

Strategies across the GFC

David E. Allena,∗, Michael McAleerb, Robert J. Powellc, and Abhay K. Singhc

aSchool of Mathematics and Statistics, the University of Sydney, and Center for Applied

Financial Studies, University of South Australia
bDepartment of Quantitative Finance National Tsing Hua University Taiwan and

Econometric Institute Erasmus School of Economics Erasmus University Rotterdam and

Tinbergen Institute The Netherlands and Department of Quantitative Economics

Complutense University of Madrid
cSchool of Accounting, Finance and Economics, Edith Cowan University, Australia

Abstract

This paper features an analysis of the e�ectiveness of a range of portfolio di-
versi�cation strategies, with a focus on down-side risk metrics, as a portfolio
diversi�cation strategy in a European market context. We apply these mea-
sures to a set of daily arithmetically compounded returns on a set of ten market
indices representing the major European markets for a nine year period from
the beginning of 2005 to the end of 2013. The sample period, which incorpo-
rates the periods of both the Global Financial Crisis (GFC) and subsequent
European Debt Crisis (EDC), is challenging one for the application of portfo-
lio investment strategies. The analysis is undertaken via the examination of
multiple investment strategies and a variety of hold-out periods and back-tests.
We commence by using four two year estimation periods and subsequent one
year investment hold out period, to analyse a naive 1/N diversi�cation strategy,
and to contrast its e�ectiveness with Markowitz mean variance analysis with
positive weights. Markowitz optimisation is then compared with various down-
side investment opimisation strategies. We begin by comparing Markowitz with
CVaR, and then proceed to evaluate the relative e�ectiveness of Markowitz with
various draw-down strategies, utilising a series of backtests. Our results suggest
that none of the more sophisticated optimisation strategies appear to dominate
naive diversi�cation.

Keywords: Portfolio Diversi�cation, Markowitz Analaysis, Downside Risk,
CVaR, Draw-down
JEL Codes: G11, C61.

∗Corresponding author. Acknowledgements: For �nancial support, the �rst author
acknowledges the Australian Research Council, and the second author is most grateful to the
Australian Research Council, National Science Council, Taiwan, and the Japan Society for
the Promotion of Science.We are grateful to the anonymous reviewers for helpful comments.

Email address: profallen2007@gmail.com (David E. Allen)

Preprint submitted to Example: Nuclear Physics B 31st October 2015

    EI2015-32    

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/43310706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1. Introduction

It is now some sixty years since Markowitz (1952) developed portfolio theory.
Although it became a central foundation of classical �nance, leading directly to
the development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964),
Lintner (1965), Mossin (1966) and Treynor (1962), its practical application has
been surrounded with di�culties. Markowitz (1952, 1959) suggested choosing
the portfolio with the lowest risk for a given level of portfolio return and de�ned
such portfolios as being 'e�cient'. Merton (1972) demonstrated the parabola
that constitutes the e�cient frontier in mean variance space.

Markowitz (1959, p.206) states that: �Problems concerning the proper infor-
mation to serve as the basic inputs concerning securities are outside the scope
of this monograph. There are no magic formulas to supplant the sources of
information and the rules of judgement of the security analyst�. The position
of the e�cient frontier has to be estimated and this leads to 'estimation risk'.
A common approach to portfolio selection is to use historical data to estimate
the required means and covariances but this leads to estimation risk which, in
turn, can lead to extreme and unstable portfolio weights over time. Michaud
(1989, p. 31) suggests that: �The traditional MV procedure often leads to �-
nancially irrelevant or false 'optimal' portfolios and asset allocations. In fact,
equal weighting can be shown to be superior to MV optimization in some cases�.
Michaud (1989, p.33) also suggests that: 'MV optimizers are, in a fundamen-
tal sense, �estimation-error maximizers�. They have a tendency to over-weight
(under-weight) those securities which have large (small) estimated returns, neg-
ative (positive) correlations and small (large) variances'. In turn, these are the
securities likely to have the largest estimation errors.

One approach to adjusting for estimation risk involves the application of
Bayesian techniques, and some of the original suggested adjustments were either
based on the use of di�use priors; see for example, Barry (1974), and Bawa et
al. (1979), or 'shrinkage' estimators. The latter were explored by Jobson et
al. (1979), Jobson and Korkie (1980) and Jorion (1985, 1986). More recent
approaches have used an asset-pricing model to establish a prior; see for example
Pástor (2000) and Pástor and Stambough (2000).

Markowitz considered a number of downside risk measures as an alternative
to mean-variance analysis (1959, 1991) and similarly, as early as (1952) Roy de-
veloped his 'safety-�rst' asset selection criteria. Rockafellar et al. (2006 a, 2006
b, 2007) developed the mean-deviation approach to portfolio as an extension to
the classic mean-variance approach generalising the results to the one fund theo-
rem, (2006 a), the CAPM (2006 b), plus the derivation of market equilibrium for
investors using di�erent deviation measures (2007). More recently, Zabarankin
et al. (2014) have extended the CAPM with a draw-down measure to measure
betas and alphas based on draw-downs. Krokhmal et al. (2005) compare the
CVaR and CDaR approaches to portfolio optimisation on a sample of hedge
funds.

We draw on several of this portfolio optimisation approaches in the empiri-
cal work in this paper, namely: naive diversi�cation, Markowitz mean variance
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analysis with positive constraints, Conditional Value at Risk (CVar), Condi-
tional Draw-Down (CDaR), Average Draw-Down (AveDD), Maximum-Draw-
Down (MaxDD), plus draw-down metrics set at 95% con�dence levels (CDaR95)
and (CDaRmin95). We test their out-of-sample capabilities in times of market
turbulence in a series of hold-out and backtests.

The paper is organised into �ve sections; this introduction is followed by a
discussion of research methods in section 2, which discusses the various portfolio
optimisation strategies adopted beginning with naive diversi�cation, and then
proceeding to Markwitz mean-variance analysis, CVaR, and a variety of optimal
draw-down approaches. Section 3 introduces the data set and its characteristics,
while section 4 presents the results, and a brief conclusion follows in section 5.

2. Research method

We proceed by adopting a variety of portfolio selection approaches and adopt
a naive portfolio benchmark with 1/N weights as a comparator. This approach
was also used by DeMiguel et al. (2007), in an out-of-sample analysis, of the
mean-variance portfolio selection criteria, employing US data sets, plus a variety
of adjustments for estimation risk. They concluded that there are still �many
miles to go�, before the gains promised by portfolio optimisation techniques can
be realised out of sample. P�ug et al. (2012) also came to the conclusion that
a 1/N strategy is optimal under model ambiguity.

Our focus, is broader than theirs, in that we employ a variety of portfolio
optimisation techniques that go well beyond mean-variance optimisation. We
contrast naive diversi�cation, with mean-variance analysis, plus other portfolio
optimisation techniques, such as the optimisation of Conditional Value at Risk
(CVaR), and other techniques, such as various draw-down strategies, and our
analysis is conducted across the major European equity markets.

2.1. Naive 1/N diversi�cation strategy

In this strategy we just consider holding a portfolio where the weights for the
asset ω

j
= 1/N which is applied for each of the N risky assets. This strategy

ignores the data and does not involve any estimation or optimisation. DeMiguel
et al. (2009) suggest that this can be considered as equivalent to imposing
the restriction that µt ∝

∑
t 1N for all t, implying that expected returns are

prporational to total risk rather than systematic risk.

2.2. Markowitz Mean-Variance Analysis

Markowitz (1952) founded modern mathematical �nance and ushered in
formal portfolio analysis in one giant step with his introduction of the mean-
variance model of the risk-return relationship. Variance is an appropriate risk-
measure if either the investor's utility set is quadratic or the return series con-
sidered are multivariate normal.

The Markowitz (1952) approach can be presented as the following non-linear-
programming problem.
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min
ω

1

n

n∑
i=1

 m∑
j=1

ωj(ri,j − µj)

2

s.t.

m∑
j=1

ωjµj = C (1)

m∑
j=1

ωj = 1

ωj > 0, ∀j ∈ {1, .....,m}

in the above formulation, ω are the portfolio weights for the universe of the
j = 1, .....m assets available, i = 1, ...., n are the number of periods considered
for the returns r and for µj , which is the forecast return. The optimisation in-
volves minimizing the portfolio variance subject to the portfolio forecast return
being set to a level C. A full investment constraint and positive constraints on
the weights are included, e�ectively ruling out short sales. In our subsequent
analyses we apply mean-variance optimisation with both a positive weight con-
straint, and with an upper limit on the weight of any one security being less
than 0.4 or 40% of the chosen portfolio.

Jagganathan and Ma (2003) demonstrate that the placement of a short-sale
constraint on the minimum variance portfolio is equivalent to shrinking the
elements of the covariance matrix. For this reason, we do not make any other
adjustments for estimation risk. See for example, the discussions in Best and
Grauer (1992), Chan, Karceski and Lakonishok (1999), and Ledoit and Wolf
(2004).

2.3. Optimising Conditional Value at Risk (CVaR)

Uryasev and Rockafellar (1999) in a series of papers have advocated CVaR
as a useful risk metric. P�ug (2000) proved that CVaR is a coherent risk mea-
sure with a number of attractive properties such as convexity and monotonicity,
among other desirable characteristics. A number of papers apply CVaR to port-
folio optimization problems; see, for example, Rockafeller and Uryasev (2002,
2000), Andersson et al. (2000), Alexander, Coleman and Li (2003), Alexander
and Baptista (2003) and Rockafellar et al. (2006).

The conditional value at risk of X at level α ∈ (0, 1) is de�ned by:

CV aRα(X) = expectation of X in its α−tail (2)

which can also be expressed as:
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CV aRα(X) =
1

1− α

ˆ
1
αV aRτ (X)dτ (3)

In terms of portfolio selection, CVaR can be represented as a non-linear
programming minimisation problem with an objective function given as:

min
ω, υ

1

na

n∑
i=1

max(0, υ −
m∑
j=1

ωjri,j)

− υ (4)

where υ is the α−quantile of the distribution. In the discrete case, this was
shown by Rockfellar and Uryasev (2000) to be capable of being represented by
using auxiliary variables in the linear programming formulation below:

min
ω, d, υ

1

na

n∑
i=1

di + υ

s.t.

m∑
j=1

ωjri,j + υ ≥ −di,∀ ∈ {1, ..., n}

m∑
j=1

ωjµj=C (5)

m∑
j=1

ωj = 1

ωj ≥ 0,∀j ∈ {1, ...., n}

di ≥ 0,∀i ∈ {1, ...., n}

where υ represents the VaR at the α coverage rate and di the deviations
below the VaR.

2.4. Optimal draw-down portfolios

Chekhlov et al. (2000, 2004, 2005) considered the optimization of portfolios
with respect to the portfolio's drawdown. The Conditional Drawdown (CDD)
measure includes the Maximum Drawdown (MaxDD) and Average Drawdown
(AvDD) as its limiting cases. The CDD family of risk functional measures is
similar to Conditional Value-at-Risk (CVaR). Chekhlov et al. (2005) suggest
that portfolio managers would like to avoid large drawdowns and/or extended
drawdowns as it may lead to a loss of mandate or withdrawal of business.
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The analysis can be developed as follows; let a portfolio be optimised over
some time interval [0, T ], and let W (t) be the portfolio value at some moment
in time t ∈ [0, T ]. The portfolio drawdown is de�ned as:

maxτ∈[0,t](W (τ)−W (t))/W (t) (6)

If we think in terms of the portfolio's constituent assets and write W (ω, t) =
y

′

tω as the uncompounded portfolio value at time t, with ω the portfolio weights
for the N constituent assets and write yt for the cumulated returns, the Draw-
down can be written as:

D(ω, t) = max
0≤τ≤t

{W (ω, τ)} −W (ω, t) (7)

This de�nition can be converted into the three previously mentioned func-
tional risk measures; MaxDD, AvDD and Conditional Draw-down at Risk (CDaR).
CDaR is dependent on the chosen con�dence level α in the same way that CVaR
is. CDaR can be de�ned as:

CDaR(ω)α = min
ς
{ς +

1

(1− α)T

ˆ T

0

[D(ω, t)− ς]+dt (8)

where ς is the threshold value for drawdowns so that only (1 − α)T obser-
vations exceed this value. The limiting cases of this family of risk functions ar
MaxDD and the AvDD. In the case that α→ 1, CDaR approaches the maximum
draw-down, CDaR(ω)α→1 = MaxDD(ω) = max0≤t≤T {D(ω, t)dt. The AvDD
results from the case in which α = 0. That is CDaR(ω)α→0 = AvDD(ω) =

(1/T
´ T
0
D(ω, t)dt.

These risk functionals can be used in terms of the optimization of a portfolio's
drawdown and implemented as inequality constraints for a �xed share of the
wealth at risk.

The goal of maximizing the average annualised portfolio return with respect
to limiting the maximum draw-down can be written:

PMaxxDD = arg
ω,u

maxR(ω) =
1

dC
y

′

Tω, (9)

uk − y
′

kω ≤ v1C,

uk ≥ y
′

kω,

uk ≥ uk−1,

u0 = 0,

where u denotes a (T + 1 × 1) vector of slack variables in the program
formulation, in e�ect, the maximum portfolio values up to time period k with
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Table 1: Descriptive Statistics of Indices daily arithmetically compounded returns

Mean Median Min Max Std. Dev Skewness Ex. Kurtosis Hurst Exponent

AEX 0.000209306 0.000604318 -0.111806 0.131065 0.0168772 0.151445 8.60375 0.552931

BFX 0.000135558 0.000391543 -0.0906908 0.110042 0.0161834 0.0177818 5.29293 0.570771

BVL 0.0000685788 0.000296413 -0.121168 0.111047 0.0152447 0.0657292 7.74367 0.586224

DAX 0.000497582 0.000730373 -0.0915454 0.131672 0.0171735 0.177855 6.46489 0.535675

FCH 0.000215969 0.000403166 -0.110744 0.129115 0.0179219 0.271767 6.96039 0.521829

FTSE 0.0002 0.0006 -0.10002 0.129967 0.0153948 0.150327 9.69932 0.533963

IBEX 0.000218544 0.000198572 -0.101087 0.161465 0.0187440 0.302523 6.79814 0.558791

OMXC 0.000463244 0.000820621 -0.130423 0.118779 0.0163018 -0.0765109 6.65507 0.576929

OMXH 0.000228989 0.000135171 -0.0968762 0.104224 0.0175208 0.126917 4.20111 0.576929

OMXSP 0.000462738 0.000652458 -0.0960500 0.133513 0.0192538 0.203474 4.99464 0.541169

1 ≤ k ≤ T.
We include these three approaches to portfolio optimisation; CDaR, MaxDD

and AvDD, in our portfolio analyses. We use programs from the R library
to conduct our analyses, in particular the packages fPortfolio, FRAPO and
PerformanceAnalytics. We also modify R code from Pfa� (2013) to undertake
the various draw-down optimisations.

3. Data set

We utilise a sample of the daily values of ten European Stock Indices taken
from Datastream for a period from the beginning of 2005 to the end of 2013.
The nine year sample period, which incorporates the period of both the Global
Financial Crisis (GFC) and subsequent European Debt Crisis (EDC) is challeng-
ing one for the application of portfolio investment strategies. The ten markets
and indices involved are: the FTSE100 index, the DAX index, the CAC 40
index, the AEX Amsterdam Index, the IBEX 35 Index, the OMX Copenhagen
20 Index, the OMX Stockholm all share Index, the OMX Helsinki all share In-
dex, the BVLG PSI Portuguese general index and the BFX Belgian 20 Index.
The end of day values of these indices are di�erenced in to form arithmetically
compounded return series. Graphs of the returns on these indices, for the whole
sample period, are shown in Figure 1, and QQPlots in Figure 2.

It is clear from the QQ plots, in Figure 2, that all the index return dis-
tributions are non-normal and fat-tailed. This has implications for the use of
Markowitz's method to select e�cient portfolios, given that it is based on the
assumption of multivariate normal distributions. Descriptive statistics for the
series are given in Table 1.

The descriptive statistics in Table (1) suggest that the series have the typ-
ical characteristics on �nancial return series in that they are skewed, mainly
positively, but the OMXC series demonstrates negative skewness. They all
demonstrate excess kurtosis and some evidence of long memory, in that the
Hurst coe�cient for all of them is above 0.5. This suggests that portfolio anal-
ysis based on mean variance analysis is not likely to match the characteristics
of the data.
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Figure 1: Plots of Indices continuously compounded daily returns

(a) AEX and BFX

(b) BVL and DAX

(c) FCH and FTSE

(d) IBEX and OMEXC

(e) OMXH and OMXS
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Figure 2: QQ Plots of Indices

(a) QQPlot AEX and BFC

(b) BVL and FCH

(c) DAX and FTSE

(d) IBEX and OMXC

(e) OMXH and OMXSP

(f) STOXX
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Table 2: Portfolio Optimisation Results Yearly Hold-Out Samples

Naive Diversi�cation Markowitz Pos. Constraints (Max weight 0.4)

Indices included Equal Weights 1
N

Return Indices included (weights)

Return (%) St.Dev Sharpe Ratio Return (%) St.Dev Sharpe Ratio

2007 All 0.00058263 0.010669 0.0546 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.00069980 0.011182 0.0625

2008 All -0.0027037 0.026519 -0.1019 Dax(0.4) OMXC(0.4) OMXSP(0.2) -0.00248078 0.0269006 -0.0922

2009 All 0.0011225 0.019535 0.05746 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.0011954 0.020944 0.04927

2010 All 0.000076592 0.016380 0.00467 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.00070664 0.00054330 1.3006

2011 All -0.00072393 0.019653 -0.0368 Dax(0.4) OMXC(0.4) OMXSP(0.2) -0.00061439 0.020027 -0.03067

2012 All 0.0051752 0.013875 0.3729 Dax(0.4) OMXC(0.4) OMXSP(0.2 0.00092886 0.013461 0.06900

2013 All 0.00083955 0.0096324 0.0871 Dax(0.4) OMXC(0.4) OMXSP(0.2 0.00097143 0.0098360 0.09876

Table 3: Markowitz with positive constraints, 1 year hold-out results

Markowitz Pos. Constraints

year Indices included (weights) Return (%) St.Dev Sharpe Ratio

2007 FTSE(0.32)+OMXC(0.014)+BVLG(0.66) 0.00058082 0.0091520 0.063

2008 AEX(0.17)+IBEX(0.05)+BVLG(0.78) -0.00256311 0.0251282 -0.102

2009 GDAX(0.12)+BVLG(0.69)+BFX(0.19) 0.00127888 0.016421 0.077

2010 BVLGRET(0.86)+BFXRET(0.14) -0.000526745 0.0175202 -0.0.0301

2011 FTSE(0.36)+OMXC(0.15)+BVLG(0.49) -0.000539713 0.0149820 -0.0360

2012 FTSE(0.77)+OMXC(0.22)+BVLG(0.01) 0.000565371 0.0109104 0.0518

2013 FTSE(0.66)+OMXC(0.26)+BVLG(0.08) 0.000648125 0.00798428 0.0812

4. Results

4.1. Naive diversi�cation versus Markowitz portfolios

The analysis commenced with a naive set of portfolios calculated for an an-
nual holding period for each year with portfolio weights of 1/N . The results
are shown in the second to �fth columns of Table 2. Portfolios were also cal-
culated using Markowitz mean/variance analysis with all the portfolio weights
constrained to be positive and an upper limit of 0.4 was set on the holding of any
individual security. The analysis was conducted over a two year sample period,
the optimal portfolio weights were calculated and then these were applied to a
portfolio held for a subsequent period of one year. The analysis suggested that
the optimal portfolio throughout the sample period consisted of 0.4 invested in
the DAX, 0.4 invested in the OMXC and 0.2 invested in the OMXSP. The focus
on these three individual markets is not surprising given that Table 1 reveals
that these markets have the highest returns over the sample period.

The outcomes for the one-year holding periods are shown in columns six to
nine in Table 2. The naive diversi�cation strategy gives a higher return in one
year; 2012. However, when risk is also taken into account the naive portfolio
has higher Sharpe ratios in 2009 and in 2012, and so, on balance, the results
favour the Markowitz with constraints in 5 of the 7 years considered.

The results in Table 3 suggest that the Markowitz optimisation with positive
weights produces a higher Sharpe ratio in the one-year hold out sample in 2007,
2009, and 2010 only, and in the other four periods has an inferior outcome. This
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Figure 3: Minimum CVaR versus minimum variance portfolio:back test (Cvar = 0.1)

is consistent with the previous �ndings of DeMiguel et al. (2009) who suggested,
that in their sample and simulation analysis, it took around 3000 months with
a portfolio of 25 assets to outperform the naive diversi�cation strategy.

4.2. Markowitz versus CVaR portfolios

In the next part of the analysis we compared a standard Markowitz optimi-
sation with an optimisation procedure based on the risk measure CVaR. We use
a one year period to estimate the weights for both the Markowitz and CVaR
portfolios and then roll the window forwards through the data sets to conduct
our back tests. We use two di�erent quantiles to set the CVaR parameters at
10% and 20% respectively. We employ the R packages FRAPO and fPortolio
and modify some of the R code provided in Pfa� (2013). Plots of the results
are shown in Figure 3.

It is clear in Figure 3, that if the quantile for the CVaR is set to 0.1, for
the purposes of the backtest, that there are very few occasions when CVaR
outperforms minimum variance with positive constraints, when applied to this
European set of markets, over the recent nine year sample period. The plot for
CVaR (blue line) in the �rst diagram in Figure 3, is predominantly below the
plot of the Markowitz outcome (black line). This is clear in the second diagram
in which the plot for the di�erence between the CVaR and minimum variance
outcomes in blue, very rarely pierces the horizontal line at 0, at the top of the
diagram, and ventures into positive territory.

The outcomes change to a considerable degree when we alter the quantile
for the CVaR optimisation to 0.2. The results of this second analysis are shown
in Figure 4. There is no longer uniform dominance by the minimum variance
portfolio and for for a prolonged period in 2010-2011, the CVaR portfolio has
superior outcomes, but over the entire backtest it is still inferior. This is in-
dicated by the summary statistics for the two separate backtests of the CVaR
versus minimum variance strategy in Table 4.

It can be seen in Table 4 that CVAR used as an optimiser at both the 0.1 and
0.2 quantiles is still inferior, in that the mean and median di�erences are still
negative. The CVaR(0.2) works better but the mean and median di�erences are
still negative. There is the further problem that ex-ante it is di�cult to know
what is the appropriate quantile to pick for the CVaR optimisation.
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Figure 4: Minimum CVaR versus minimum variance portfolio:back test (Cvar = 0.2)

Table 4: Backtests Minimum CVaR versus Minimum Variance

CVaR(0.1) - Min Var CVaR(0.2) - Min Var

Min -9.294 -2.7527

1st Qu. -7.678 -1.1399

Median -5.544 -0.5865

Mean -5.112 -0.3207

3rd Qu. -2.324 0.3218

Max 0.604 3.6258

Table 5: Average Portfolio weights GMV and Min CVaR through rolling windows

FTSE GDAX FCH AEX IBEX OMXC OMXS OMXH BVL BFX

GMV Weights 0.380222 0.044829 0 0.006797 0.00049 0 0.111106 0 0.003272 0.424209 0.029075

Weights CVaR (0.1) 0.344506 0.047293 0 0.000478 0.002555 0.132861 0.003192 0.010384 0.443938 0.014793

Weights CVaR (0.2) 0.33971665 0.064228 0.0 0 0.002498 0.00689 0.142548 1.09E-10 0.007579 0.435044 0.001496
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Figure 5: Draw-Downs of the Global Minimum Variance Portfolios

Table 5 shows the average weights applied in the rolling windows in the op-
timisation techniques. On average the Markowitz minimum variance portfolios
place greater weight on the FTSE, average weight 0.38, OMXS with an average
of 0.11, and BVL with an average weight of 0.424. The CVaR techniques still
emphasize the FTSE but with an average weight of 0.04 less than GMV, put
slightly more emphasis on the DAX, much greater emphasis on OMXC at around
0.13-0.14, given that it was not included in the GMV. They drop investment in
OMXS and increase the weight in BVL.

However, they both perform worse than Markowitz optimisation, which in
the previous analysis was shown to be inferior to naive diversi�cation for this
sample set of European markets for this particular nine-year period, which in-
cludes the GFC and the European debt crisis.

4.3. Draw-down portfolio analyses

Figure 5 shows the draw-downs of the global minimum variance portfolio.

The trajectory of draw-downs of the global minimum variance portfolio, as
shown in Figure 5, re�ects the initial shock of the GFC, on European markets,
followed by the continuing impact of the European Sovereign debt crisis. The
period from 2007 onwards has been a tough time for investors in European
markets.

A comparison of the draw-downs for the various strategies is shown in Figure
6. The imposition of an average draw-down constraint to optimise the portfolio
can still result in large draw-downs as shown in the �rst graph labelled �(a)
AveDD� in the top left-hand panel of Figure 6. The draw-down of -150% is
much greater than the other draw-down optimiser outcomes, with the minimum
CDaR, in panel (d) of Figure 6, producing the smallest draw-down.

In Table 6 we further analyse these portfolios �tted to historic data in terms
of their weights, risk contributions and diversi�cation ratios.
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Figure 6: Comparison of draw-downs

Table 6: Comparison of portfolio allocations and characteristics

GMV MaxDD AveDD CDaR95 CDaRMin95
FTSE

Weight 0.393953078 1.00 0.00 1.00 1.00

MES 0.029383168 0.019985 0.00 0.022582148 0.001812922

MPR 0.393953078 1.00 0.00 1.00 1.00

GDAXI

Weight 0.00 0.00 1.00 0.00 0.00

MES 0.00 0.00 0.034926 0.00 0.00

MPR 0.00 0.00 1.00 0.00 0.00

FCHI

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

AEX

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

IBEX

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

OMXC20

Weight 14.37856 0.00 0.00 0.00 0.00

MES 0.029383168 0.00 0.00 0.00 0.00

MPR 14.37856 0.00 0.00 0.00 0.00

OMXSPI

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

OMXHPI

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

BVLG

Weight 46.22613 0.00 0.00 0.00 0.00

MES 0.029383168 0.00 0.00 0.00 0.00

MPR 46.22613 0.00 0.00 0.00 0.00

BFX

Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00

MPR 0.00 0.00 0.00 0.00 0.00

Overall

ES 95% 2.9383168 1.9985201 3.4926388 2.2582148 0.1812922

Div Ratio 1.078599 1.000 1.000 1.000 1.000
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In Table 6 we show how the portfolio weights vary if we apply the various
strategies across the entire 9 year sample period. The GMV strategy with posi-
tive weights, places 39% of the portfolio in the FTSE, nearly 15% in OMXC20,
and remainder of around 46% in BVLG. The other strategies, which concentrate
on minimising the maximum draw-down, average draw-down, or conditional av-
erage draw-downs, or minimum draw-downs at a 95% con�dence level produce
much less diversi�ed portfolios, with MaxDD placing 100% in the FTSE, AveDD
placing 100% in the DAX, and CDaR95 and CDaRMIN95, both placing 100%
in the FTSE.

The impact on reducing diversi�cation is shown in the bottom line of Table
(6) which reports the Diversi�cation Ratio which is lower for all the CDaR based
strategies than the minimum variance one, which is the entry at the bottom of
the �rst column. The Diversi�cation Ratio was developed by Choueifaty and
Cognard (2008) and Choueifaty et al. (2011) and provides a measure of the
degree of diversi�cation of long only portfolios. It has a lower bound of one,
which is achieved in single asset portfolios.

Paradoxically, optimising by reducing the average draw-down produces a
higher expected shortfall at the 95% level than the mean variance optimiser, as
shown in the penultimate entry in the fourth column of Table (6), and this is
consistent with the graphical analysis presented in Figure 6.

These results are obtained by �tting the optimisations to the entire data set
and are of limited use. The crucial tests are the out of sample ones, and these are
considered next, using rolling one year windows for estimation purposes. In the
next section of the analysis we compute the draw-down portfolio solutions, and
use the maximum draw-down of the minimum variance portfolio as a benchmark
value. The CDaR portfolios are calculated for a con�dence level of 95%.

4.4. Portfolio comparisons using back-tests

We conducted further analyses to compare the results of the minimum vari-
ance strategy with the various conditional draw-down at risk strategies. The
back-tests are carried out using a recursive window of 250 days, or one year of
daily data. The CDaR portfolio is optimised for a conditional draw-down of
10% at a 95% con�dence level. The GMV portfolio is again constrained to be
long only.

Figure 7 provides a graph of the wealth trajectories of the CDaR strategy
contrasted with the GMV one. An initial wealth of 100 units is assumed. There
are two periods in 2013 when the wealth trajectory of the GMV portfolio falls
well below that of the CDaR strategy, which is much less volatile, but by the
end of the period the GMV trajectory is well above that of the CDaR portfolio.

Table 7 provides an analysis of the �ve greatest draw-downs, that resulted
from the implementation of each strategy. The draw-downs for the CDaR strat-
egy are much shallower, and the period of the drawdowns is slightly less, than
for the GMV strategy.

Figure 8 provides a comparison of the draw-down trajectories. It is readily
apparent that the CDaR strategy successfully minimises draw-downs but it does
not necessarily provide compensating returns.
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Figure 7: Comparison of wealth trajectories

Table 7: Drawdowns Comparison

Drawdowns(MVRet)

From Trough To Depth Length To Trough Recovery

1 4/02/2013 24/06/2013 19/09/2013 -0.1216 164 101 63

2 23/10/2013 1/11/2013 28/11/2013 -0.0299 27 8 19

3 2/12/2013 13/12/2013 23/12/2013 -0.0289 16 10 6

4 20/09/2013 9/10/2013 14/10/2013 -0.0279 17 14 3

5 16/01/2013 16/01/2013 17/01/2013 -0.0081 2 1 1

Drawdowns(CDRet)

From Trough To Depth Length To Trough Recovery

1 4/02/2013 24/06/2013 16/09/2013 -0.013 161 101 60

2 25/10/2013 8/11/2013 27/11/2013 -0.0036 24 11 13

3 2/12/2013 13/12/2013 23/12/2013 -0.0032 16 10 6

4 20/09/2013 9/10/2013 14/10/2013 -0.0026 17 14 3

5 31/01/2013 31/01/2013 1/02/2013 -0.0008 2 1 1
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Figure 8: Comparison of draw-down trajectories

It can be seen in Table 8 that the CDaR optimiser works in terms of the
reducing the size of draw-downs, there are slightly more of them, 13 compared to
11 for GMV, in the analysis period, but their average size is much smaller,with
a mean value of 0.19910 for CDaR, and a maximum of 1.303 compared with a
mean of 2.131 and a maximum of 12.16 for the GMV strategy.

Table 8: Relative performance statistics GMV versus CDaR

Statistics GMV CDaR

Risk/return

VaR 95% 0.03097294 0.03879076

ES 95% 0.01963578 0.01727134

Sharpe ratio 0.4341370 0.05088481

Return annualised % 0.02303186 0.003515948

Draw-down

Count 11 13

Minimum 0.1208 0.00663

1st Quartile 0.2369 0.02455

Median 0.7765 0.05347

Mean 2.1310 0.19910

3rd Quartile 2.8430 0.2570

Maximum 12.16 1.303

However, the more standard risk/return analyses, such as those provided by
Sharpe ratios, are less compelling. The Sharpe ration is higher for GMV at
0.434, than for CDaR at 0.0508. This is a result of the relative di�erences in
returns and standard deviations. The annualised return for the GMV strategy
was 0.0230, whereas that for the CDaR was only 0.0035. Although, the volatiliy
of the CDaR strategy was relatively low, when combined with this low return,
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it produced a lower Sharpe ratio.
Thus, in summary, this portion of the analysis demonstrated that portfolio

strategies, based on optimisers based on reducing draw-downs, do reduce risk
but at the cost of greatly lowering returns, at least in this sample of European
stock indices over this recent nine year sample period. It is not clear that using
a CDaR based strategy dominates portfolio optimisation strategies based on
mean variance optimisers.

5. Conclusion

In this paper we have examined the e�ectiveness of a variety of portfolio
optimisation strategies, for a sample of ten major European market indices over
a recent nine year period terminating at the end of 2013. The optimisation
strategies examined included naive 1/N diversi�cation, Markowitz mean vari-
ance analysis with positive weights and a maximum individual weight ≤ 0.4,
plus Markowitz with only positive weights, but no upper bound constraint. A
set of analyses using CVaR optimisers, plus a further set using four di�erent ap-
plications of draw-down optimisers: MaxDD, AveDD, CDaR95, CDaRMin95.
These were evaluated using a series of one year hold out samples, or rolling
one-year window back tests.

The results suggest that none of these strategies dominates naive diversi�-
cation. The most successful of the optimisation strategies was the Markowitz
one with positive constraints and upper bound on individual exposures ≤ 0.4.
Markowitz with positive constraints was less successful than naive diversi�ca-
tion. The CVaR strategy did not seem to dominate Markowitz and depends on
the quantile level chosen. The draw-down optimisation techniques did success-
fully diminish extreme adverse outcomes, but at the expense of returns, and did
not have higher Sharpe ratios.

Thus, the results of our analyses concur with those of DeMiguel et al. (2009),
and P�ug et al. (2012), in that they suggest that none of the more sophisticated
analyses appears to dominate naive diversi�cation.
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