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Abstract 

 

Many publicly available macroeconomic forecasts are judgmentally-adjusted model-based 
forecasts. In practice usually only a single final forecast is available, and not the underlying 
econometric model, nor are the size and reason for adjustment known. Hence, the relative 
weights given to the model forecasts and to the judgment are usually unknown to the analyst.  

This paper proposes a methodology to evaluate the quality of such final forecasts, also 
to allow learning from past errors. To do so, the analyst needs benchmark forecasts. We propose 
two such benchmarks. The first is the simple no-change forecast, which is the bottom line 
forecast that an expert should be able to improve. The second benchmark is an estimated model 
based forecast, which is found as the best forecast given the realizations and the final forecasts. 
We illustrate this methodology for two sets of GDP growth forecasts, one for the US and for 
the Netherlands. These applications tell us that adjustment appears most effective in periods of 
first recovery from a recession.  
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Introduction 
 

Many publicly available macroeconomic forecasts are judgmentally-adjusted model-based 

forecasts. Econometric models can be multiple-equation systems with hundreds of variables or 

identities, or Bayesian vector autoregressions or even simple extrapolation tools. An 

illustration of the first is given in Franses, Kranendonk and Lanser (2011), where all the 

forecasts from the large macroeconomic model of the Netherlands Bureau for Economic Policy 

Analysis (CPB) are manually adjusted by experts with domain-specific knowledge.  

 In many situations it can be beneficial to adjust model-based forecasts. When experts 

foresee that a prediction error is to be made with the model, then adjustment can help to 

improve accuracy. For example, adjustment can be needed due to measurement issues in the 

explanatory variables at the forecast origin or due to anticipated changes, not included in the 

model at the forecast origin.  

 Despite the potential success of expert adjustment it is rarely documented what an 

expert does and why certain decisions have been made. This hampers a straightforward 

evaluation of forecast errors, as it is usually unknown which part of the error could be due to 

the econometric model and which part to the manual adjustment. In other words, the relative 

weights given to the econometric model forecasts and to the judgment are usually unknown to 

the analyst.  

 In this paper we propose a methodology that allows to study the merits of the relative 

contribution of an expert. In fact, our methodology allows to indicate when, that is, for which 

years or quarters, did the expert make the final forecast better than an underlying model forecast 

and when did the expert touch harm that forecast quality? For this methodology we need 

benchmark econometric model forecasts. Now, typically, one resorts to the simplest benchmark 

possible, and this is the no-change forecast, see Vuchelen and Gutierrez (2005) and also 

recently Franses and Maassen (2015). The idea is that an expert would not show much expertise 

if this trivial forecast cannot be beaten. In the present paper we additionally propose another 

benchmark forecast, and this associates with in some sense a “best model-based” forecast. We 

derive this best forecast from the final forecasts and the realizations, and use the technique 

called Total Least Squares (TLS), which here in our setting of forecasts and realizations boils 

down to the so-called Deming regression (Deming, 1943). We illustrate our methodology using 

two sets of forecasts for growth in Gross Domestic Product (GDP), one for the Netherlands 

and one for the USA. Zooming in on successful contributions of the experts we find that they 
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have in common that they have been particularly successful in the first periods of recovery 

from a recession as then the experts’ added valuable information to the model forecast. 

 The outline of our paper is as follows. Section 2 introduces the two benchmark model-

based forecasts, where most attention will be given to the “best model-based” forecast. Section 

3 presents a detailed illustration of our methodology, and Section 4 concludes.  

 

 

Benchmark model-based forecasts 
 

When an analyst wants to evaluate the quality of forecasts, say from the IMF, OECD, the World 

Bank, or, as in our illustration below, wants to analyse the qualities of the Econometric Institute 

Current Indicator of the Economy (EICIE), then a benchmark is needed. In some situations, 

typically in business forecasting, there is the availability of the actual model-based forecasts, 

see Franses (2014) for a review, but in many other situations, typically in macroeconomics, 

such model-based forecasts are not available.  

 

The no-change forecast 

 

A first and simple benchmark forecast is of course the no-change forecast. That is, if we 

consider a variable 𝑦𝑦𝑡𝑡 that needs to be predicted, then the one-step-ahead no-change forecast is 

𝑦𝑦𝑡𝑡−1.  

Denoting the final expert-adjusted forecast as 𝑓𝑓𝑡𝑡, Vuchelen and Gutierrez (2005) 

advocate the use of this no-change forecast in their auxiliary regression 

 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝛾𝛾1𝑦𝑦𝑡𝑡−1 + 𝛾𝛾2(𝑓𝑓𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜀𝜀𝑡𝑡       (1) 

 

where they advocate a Wald test for the composite null hypothesis that 𝜇𝜇 = 0, 𝛾𝛾1 = 1, 𝛾𝛾2 = 1. 

Under this null hypothesis, the model-based forecast is unbiased and the expert-adjustment on 

top of that no-change forecast is then unbiased too. If the null hypothesis is rejected, one can 

have a closer look at the estimated parameter values of 𝛾𝛾1 and 𝛾𝛾2. 

 

 

The best model-based forecast 
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To arrive at a method to retrieve an estimator of the “best model-based” forecast, we somehow 

need to make assumptions. A first assumption is that an observed expert-adjusted forecast 𝑓𝑓𝑡𝑡 is 

a forecast of a variable 𝑦𝑦𝑡𝑡∗, which is the true variable of interest, but that this true variable is 

measured with error, hence 𝑦𝑦𝑡𝑡. Next, we assume that 𝑓𝑓𝑡𝑡 amounts to a concerted outcome of an 

econometric model forecast 𝑓𝑓𝑡𝑡𝑀𝑀 and an expert touch 𝑓𝑓𝑡𝑡𝐸𝐸, with  

 

𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑀𝑀 + 𝑓𝑓𝑡𝑡𝐸𝐸 .          (2) 

 

The third assumption is that 𝑓𝑓𝑡𝑡𝐸𝐸 and 𝑓𝑓𝑡𝑡𝑀𝑀 are independent. This assumption corresponds with an 

optimal situation, as when it does not hold, the expert is adding something to the model forecast 

that is already in there, and this amounts to double counting.  

Our simple method to estimate 𝑓𝑓𝑡𝑡𝑀𝑀 and 𝑓𝑓𝑡𝑡𝐸𝐸 from 𝑓𝑓𝑡𝑡 and the realizations 𝑦𝑦𝑡𝑡 relies on the 

familiar regression 

 

𝑦𝑦𝑡𝑡∗ = 𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡𝑀𝑀 + 𝜀𝜀𝑡𝑡         (3)

     

 which is usually used to test if 𝛼𝛼 = 0 and 𝛽𝛽 = 1, where these parameter values associate with 

unbiased forecasts. Our method is now based on the assumption that the two variables in (3) 

are measured with error. First, as mentioned, for 𝑦𝑦𝑡𝑡∗ we assume that   

 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡∗ + 𝑤𝑤𝑡𝑡          (4)

            

where 𝑤𝑤𝑡𝑡 has variance 𝜎𝜎𝑤𝑤2  and where 𝑤𝑤𝑡𝑡 is independent from 𝑦𝑦𝑡𝑡∗ and the 𝜀𝜀𝑡𝑡 in (3). For 𝑓𝑓𝑡𝑡𝑀𝑀 we 

introduce a measurement error via (2), that is,  𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑀𝑀 + 𝑓𝑓𝑡𝑡𝐸𝐸 , which thus treats the expert touch 

as a measurement error. The 𝑓𝑓𝑡𝑡𝐸𝐸  has variance 𝜎𝜎𝐸𝐸2, 𝑓𝑓𝑡𝑡𝑀𝑀 has variance 𝜎𝜎𝑀𝑀2  and, as said, we further 

assume that 𝑓𝑓𝑡𝑡𝐸𝐸 and 𝑓𝑓𝑡𝑡𝑀𝑀 are independent, so the variance of 𝑓𝑓𝑡𝑡 is 𝜎𝜎𝐹𝐹2 = 𝜎𝜎𝑀𝑀2 + 𝜎𝜎𝐸𝐸2. 

 For practical purposes it is interesting to estimate 𝑓𝑓𝑡𝑡𝐸𝐸 and 𝑓𝑓𝑡𝑡𝑀𝑀, and in particular the 

variances 𝜎𝜎𝐸𝐸2 and 𝜎𝜎𝑀𝑀2 . It is also important to study the model-based forecast errors 𝑦𝑦𝑡𝑡 − 𝑓𝑓𝑡𝑡𝑀𝑀 

versus 𝑦𝑦𝑡𝑡 − 𝑓𝑓𝑡𝑡 to learn about the contribution of the expert. That is, does the expert touch lead 

to better forecasts? 

 In sum, the key unobserved variable to estimate is 𝑓𝑓𝑡𝑡𝑀𝑀 using data on 𝑦𝑦𝑡𝑡  and 𝑓𝑓𝑡𝑡. We now 

propose a methodology to do so. The key problem that we face is estimating 𝑓𝑓𝑡𝑡𝑀𝑀, given that the 
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true regression model is 𝑦𝑦𝑡𝑡∗ = 𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡𝑀𝑀 + 𝜀𝜀𝑡𝑡 and that the data are assumed to follow from 𝑦𝑦𝑡𝑡 =

𝑦𝑦𝑡𝑡∗ + 𝑤𝑤𝑡𝑡 and 𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑀𝑀 + 𝑓𝑓𝑡𝑡𝐸𝐸 , which is the case of measurement errors in two variables, the 

dependent and the independent variables. There are many techniques available which usually 

focus on obtaining consistent estimators of 𝛼𝛼 and 𝛽𝛽, see for example Koopmans (1937), Fuller 

(1987) and Wansbeek and Meijer (2000). One technique, which goes back to Frisch (1933), is 

particularly useful as it delivers a simple estimator to predict the values of 𝑓𝑓𝑡𝑡𝑀𝑀.  This method is 

called Total Least Squares and it is also sometimes coined as the Deming regression (Deming, 

1943).  

 An alternative least squares estimator for 𝛽𝛽 is the Total Least Squares (TLS) estimator, 

which seeks to minimize the squares of the orthogonal distances to the regression line. It is 

thus assumed that part of the error in the regression model corresponds with a measurement 

error in the dependent variable. Define 

 

𝛿𝛿 = 𝜎𝜎𝜀𝜀2+𝜎𝜎𝑤𝑤2

𝜎𝜎𝐸𝐸
2           (5) 

 

see Carroll and Ruppert (1996), and define 𝑦𝑦� = 1
𝑇𝑇
∑ 𝑦𝑦𝑡𝑡𝑇𝑇
𝑡𝑡=1  and 𝑓𝑓̅ = 1

𝑇𝑇
∑ 𝑓𝑓𝑡𝑡𝑇𝑇
𝑡𝑡=1 , where T is the 

number of one-step-ahead forecasts. The TLS estimators for 𝛽𝛽 and 𝛼𝛼 now converge to 

 

�̂�𝛽𝑇𝑇𝑇𝑇𝑇𝑇 →
𝜎𝜎𝑦𝑦2−𝛿𝛿𝜎𝜎𝐹𝐹

2+�(𝜎𝜎𝑦𝑦2−𝛿𝛿𝜎𝜎𝐹𝐹
2)2+4𝛿𝛿𝜎𝜎𝐹𝐹𝑦𝑦

2

2𝜎𝜎𝐹𝐹𝑦𝑦
       (6) 

𝛼𝛼�𝑇𝑇𝑇𝑇𝑇𝑇 → 𝑦𝑦� − �̂�𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓 ̅         (7) 

 

where we denote as 𝜎𝜎𝐹𝐹𝐹𝐹 the covariance between the observed series and its forecasts, see 

Deming (1943, page 184). In practice, these TLS estimators are of course based on the sample 

equivalents of the variances and covariance. The key feature of this method, which is relevant 

for our purposes, is that an interesting by-product of TLS is an estimator for the measurement-

error-free explanatory variable, that is, 

 

𝑓𝑓𝑡𝑡𝑀𝑀 = 𝑓𝑓𝑡𝑡 + 𝛽𝛽�𝑇𝑇𝑇𝑇𝑇𝑇
𝛽𝛽�𝑇𝑇𝑇𝑇𝑇𝑇
2 +𝛿𝛿

(𝑦𝑦𝑡𝑡 − 𝛼𝛼�𝑇𝑇𝑇𝑇𝑇𝑇 − �̂�𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑡𝑡)      (8) 

 

see Linnet (1990). Our key assumption now is that we will coin this 𝑓𝑓𝑡𝑡𝑀𝑀 as the “best model-

based” forecast in our illustrations below.  
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The key parameter that one should set from the outset is 𝛿𝛿 in (5). Given our particular 

case of realizations and forecasts it may not be unreasonable to assume that 𝜎𝜎𝑤𝑤2 = 𝜎𝜎𝐸𝐸2. Then  

 

𝛿𝛿 =
𝜎𝜎𝜀𝜀2

𝜎𝜎𝐸𝐸2
+ 1 

 

 Simulation results in Table 1 show that, in case the value of 𝛿𝛿 is known, the correlation 

between simulated 𝑓𝑓𝑡𝑡𝑀𝑀 and estimated 𝑓𝑓𝑡𝑡𝑀𝑀 ranges from around 0.8 to close to 1. The size of the 

unexplained part depends on the variances, and can range from 5% to close to 60%. The sample 

size does not seem to matter. Tables 2a and 2b present the results for the cases where the true 

value of 𝛿𝛿 is deliberately underestimated by a fraction 1
2
 and deliberately overestimated by a 

fraction 2, respectively. In general the correlations do not differ much from those in Table 1. 

For the explained part we see that overestimation leads to a slightly larger fraction of the 

unexplained part.  

 In the next section we apply our methodology to two cases, one concerning annually 

observed IMF forecasts for USA real GDP growth and one concerning quarterly forecasts for 

GDP growth in the Netherlands. 

 

 

 Illustrations 
 

We first present the various relevant parameter estimates, and then turn to an evaluation of the 

forecast performance.  

 

Benchmarks 

 

Columns 2 and 3 of Table 3 presents the data on the Econometric Institute Current Index of the 

Economy (EICIE) (available from the website of the Erasmus School of Economics) and the 

second release data from Statistics Netherlands concerning year-to-year GDP growth observed 

per quarter. The available data range from 2004Q4 to 2015Q2. The second release data appear 

90 days after the relevant quarter. The EICIE is published during the relevant quarter, and 

hence in fact amounts to a nowcast. Figure 1 gives a graphical impression of the data. An 
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application of Ordinary Least Squares (OLS) to the regression model as in (3) for the 

observable data, that is,  

 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡 + 𝜀𝜀𝑡𝑡         (6) 

 

 gives 𝛼𝛼� = -0.582 with standard error 0.229, and �̂�𝛽 = 1.248 with standard error 0.124. The Wald 

test value for the joint hypothesis that 𝛼𝛼 = 0,𝛽𝛽 = 1 is 6.811, with a p value of 0.033. This 

suggests that the EICIE delivers biased forecasts.  

 This bias is reinforced by looking at the estimation results for the regression (1), see the 

second column of Table 5. The estimated 𝛾𝛾1 is quite close to 1, but the estimated 𝛾𝛾2 is not. The 

model fit is substantial (0.770), but the Wald test on 𝜇𝜇 = 0, 𝛾𝛾1 = 1, 𝛾𝛾2 = 1 results in a p value 

of 0.001. Hence, on average, the added contribution of the expert, on top of a no-change model 

forecast, apparently does not improve the final forecast.  

 The estimated TLS parameters for the regression (3) appear in the left-hand side panel 

of Table 6. The variance 𝜎𝜎𝐹𝐹2 is estimated as 4.865, the variance 𝜎𝜎𝐹𝐹2 is 2.227, and the covariance 

between the CBS data (Statistics Netherlands) and the EICIE forecasts is estimated as 2.778. 

The average observed growth rate is 0.791 and the average nowcast is 1.1. Table 6 reports on 

the TLS estimates for various values of 𝛿𝛿, ranging from 0.7 to 1.3. Clearly, the estimated 

parameter values do not change much across this range of 𝛿𝛿. 

 Table 4 presents the IMF forecasts for US real GDP growth for the years 1991 to and 

including 2013, the columns 2 and 3. Figure 2 gives a graphical impression of the data. The 

right-hand column of Table 5 shows that final expert forecasts do add something relevant to 

the no-change forecasts, as the p value of the Wald test on 𝜇𝜇 = 0, 𝛾𝛾1 = 1, 𝛾𝛾2 = 1 is 0.695. 

Moreover, the estimated value of 𝛾𝛾2 is 0.9543, which is quite close to 1. So, the contribution 

of the IMF experts is unbiased and relevant. The variance 𝜎𝜎𝐹𝐹2 is estimated as 3.024, the variance 

𝜎𝜎𝐹𝐹2 is 0.610, and the covariance between the actual data and the IMF forecasts is estimated as 

0.781. The average observed growth rate is 2.483 and the average forecast is 2.421. Table 6 

reports on the TLS estimates for various values of 𝛿𝛿, ranging from 0.7 to 1.3, and again the 

estimated parameter values do not change much across this range of 𝛿𝛿. 

 

 

 

Forecast performance 
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For further analysis, we now set 𝛿𝛿 = 1. Table 7 presents the fraction of times that forecasts 

have the lowest absolute forecast error across three forecasts, that is, the final judgmentally 

adjusted forecast, the no-change forecast and the best-model forecast. As could be expected, 

and by creation, the best-model forecast is best in about half the cases across these sets of 

forecasts. The no-change forecast seems on average about equally good as the final expert 

forecast. But still, in 1 of 4 quarters or years, the expert touch does seem to improve on both 

benchmark forecasts.  

 Table 8 zooms in on the quarters and years where the expert forecasts were more 

accurate than the benchmarks. Clearly, the quarters 2009Q3, 2009Q4, 2012Q2 and 2012Q3 as 

well as the years 2002-2005 and 2013 are recovery quarters and years. So, it seems that the 

expert adjustment was most useful in these recovery periods. Apparently, econometric models 

can need the help of experts, particularly in these business cycle episodes.  

 

 

Conclusion  
 

We have proposed a simple methodology to benchmark final macroeconomic forecasts. This 

is necessary as those final forecasts are typically the combination of an econometric model-

based forecast and a manual modification by an expert. The analyst usually does not know the 

specific weights in the combination. Illustrations to two sets of GDP growth forecasts showed 

the merits of the methodology.  
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Table 1: Average correlation between the predicted measurement-error-free explanatory 

variable and its true observations, and the percentage unexplained of the true observations.  The 

setting is 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡∗ + 𝑤𝑤𝑡𝑡, with 𝜎𝜎𝑤𝑤2  

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡∗ + 𝑣𝑣𝑡𝑡, with 𝜎𝜎𝑣𝑣2 

DGP: 𝑦𝑦𝑡𝑡∗ = −1 + 2𝑥𝑥𝑡𝑡∗ + 𝜀𝜀𝑡𝑡, with 𝜎𝜎𝜀𝜀2 

 

where 𝑦𝑦𝑡𝑡∗,𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡∗, 𝑣𝑣𝑡𝑡 , 𝜀𝜀𝑡𝑡 are draws from a N(0,1) distribution. Simulations are for samples T = 

100 and 500, and the number of replications is 10000. It is assumed that 𝛿𝛿 is known.  

 

T Correlation Percentage unexplained 

 

𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗
2  = 1 100   0.912  22.4 

     500   0.913  20.5 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 1 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.864  36.2 
     500   0.866  33.8 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 2, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.798  58.8  
     500   0.801  56.1 
 
𝝈𝝈𝒘𝒘𝟐𝟐  = 2, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.813  52.9 
     500   0.816  50.6 
 
𝜎𝜎𝑤𝑤2  = 1, 𝝈𝝈𝒗𝒗𝟐𝟐 = 2, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.898  22.9 
     500   0.899  25.6 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝝈𝝈𝒙𝒙∗

𝟐𝟐  = 2 100   0.976  5.5 
     500   0.976  5.1 
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Table 2a: Average correlation between the predicted measurement-error-free explanatory 

variable and its true observations, and the percentage unexplained of the true observations.  The 

setting is 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡∗ + 𝑤𝑤𝑡𝑡, with 𝜎𝜎𝑤𝑤2  

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡∗ + 𝑣𝑣𝑡𝑡, with 𝜎𝜎𝑣𝑣2 

DGP: 𝑦𝑦𝑡𝑡∗ = −1 + 2𝑥𝑥𝑡𝑡∗ + 𝜀𝜀𝑡𝑡, with 𝜎𝜎𝜀𝜀2 

 

where 𝑦𝑦𝑡𝑡∗,𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡∗, 𝑣𝑣𝑡𝑡 , 𝜀𝜀𝑡𝑡 are draws from a N(0,1) distribution. Simulations are for samples T = 

100 and 500, and the number of replications is 10000. It is assumed that 𝜹𝜹 is incorrectly 

specified as 𝟏𝟏
𝟐𝟐
𝜹𝜹  

 

T Correlation Percentage unexplained 

 

𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗
2  = 1 100   0.907  20.6 

     500   0.908  18.8 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 1 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.852  31.6 
     500   0.853  29.8 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 2, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.765  48.9  
     500   0.767  47.0 
 
𝝈𝝈𝒘𝒘𝟐𝟐  = 2, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.786  44.7 
     500   0.788  42.8 
 
𝜎𝜎𝑤𝑤2  = 1, 𝝈𝝈𝒗𝒗𝟐𝟐 = 2, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.897  29.4 
     500   0.898  22.1 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝝈𝝈𝒙𝒙∗

𝟐𝟐  = 2 100   0.974  5.6 
     500   0.975  5.2 
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Table 2b: Average correlation between the predicted measurement-error-free explanatory 

variable and its true observations, and the percentage unexplained of the true observations.  The 

setting is 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡∗ + 𝑤𝑤𝑡𝑡, with 𝜎𝜎𝑤𝑤2  

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡∗ + 𝑣𝑣𝑡𝑡, with 𝜎𝜎𝑣𝑣2 

DGP: 𝑦𝑦𝑡𝑡∗ = −1 + 2𝑥𝑥𝑡𝑡∗ + 𝜀𝜀𝑡𝑡, with 𝜎𝜎𝜀𝜀2 

 

where 𝑦𝑦𝑡𝑡∗,𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡∗, 𝑣𝑣𝑡𝑡 , 𝜀𝜀𝑡𝑡 are draws from a N(0,1) distribution. Simulations are for samples T = 

100 and 500, and the number of replications is 10000. It is assumed that 𝜹𝜹 is incorrectly 

specified as 𝟐𝟐𝜹𝜹  

  

 

T Correlation Percentage unexplained 

 

𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗
2  = 1 100   0.898  33.2 

     500   0.899  30.9 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 1 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.840  54.1 
     500   0.842  52.0 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝝈𝝈𝜺𝜺𝟐𝟐 = 2, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.772  78.8  
     500   0.774  76.7 
 
𝝈𝝈𝒘𝒘𝟐𝟐  = 2, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.787  73.8 
     500   0.788  71.6 
 
𝜎𝜎𝑤𝑤2  = 1, 𝝈𝝈𝒗𝒗𝟐𝟐 = 2, 𝜎𝜎𝜀𝜀2 = 0, 𝜎𝜎𝑥𝑥∗

2  = 1 100   0.888  58.5 
     500   0.890  47.2 
 
𝜎𝜎𝑤𝑤2  = 1, 𝜎𝜎𝑣𝑣2 = 1, 𝜎𝜎𝜀𝜀2 = 0, 𝝈𝝈𝒙𝒙∗

𝟐𝟐  = 2 100   0.973  6.6 
     500   0.973  6.1 
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Table 3: The EICIE forecasts and realizations 

 

 
Quarter 

Actuals EICIE 
No change 

forecast 
Best model 

forecast 
     

2004Q4 1.6 1.1 NA 1.465293 
2005Q1 -0.5 1.0 1.6 0.488282 
2005Q2 1.3 -1.5 -0.5 0.587519 
2005Q3 1.3 1.6 1.3 1.472545 
2005Q4 1.6 1.8 1.3 1.665138 
2006Q1 2.9 2.3 1.6 2.395027 
2006Q2 2.8 2.5 2.9 2.406960 
2006Q3 2.7 1.9 2.8 2.190500 
2006Q4 2.7 2.3 2.7 2.304697 
2007Q1 2.5 2.5 2.7 2.271466 
2007Q2 2.6 3.1 2.5 2.487926 
2007Q3 4.2 2.8 2.6 3.124916 
2007Q4 4.5 3.5 4.2 3.460255 
2008Q1 3.3 3.5 4.5 2.918277 
2008Q2 3.0 2.7 3.3 2.554389 
2008Q3 1.8 1.8 3.0 1.755467 
2008Q4 -0.6 1.4 1.8 0.557314 
2009Q1 -4.5 -1.3 -0.6 -1.974944 
2009Q2 -5.4 -2.0 -4.5 -2.581272 
2009Q3 -3.7 -2.6 -5.4 -1.984764 
2009Q4 -2.2 -1.3 -3.7 -0.936152 
2010Q1 0.6 2.0 -2.2 1.270588 
2010Q2 2.2 0.6 0.6 1.593536 
2010Q3 1.9 1.6 2.2 1.743534 
2010Q4 2.5 2.0 1.9 2.128720 
2011Q1 2.8 2.0 2.5 2.264214 
2011Q2 1.6 3.1 2.8 2.036277 
2011Q3 0.9 2.2 1.6 1.463181 
2011Q4 -0.6 0.9 0.9 0.414568 
2012Q1 -1.1 -0.5 -0.6 -0.210945 
2012Q2 -0.4 0.0 -1.1 0.247955 
2012Q3 -1.5 -1.0 -0.4 -0.534350 
2012Q4 -1.7 -0.7 -1.5 -0.539032 
2013Q1 -1.8 -0.5 -1.7 -0.527099 
2013Q2 -1.7 0.4 -1.8 -0.224991 
2013Q3 -0.4 1.1 -1.7 0.561996 
2013Q4 0.8 1.1 -0.4 1.103975 
2014Q1 0.0 1.0 0.8 0.714107 
2014Q2 1.1 0.6 0.0 1.096723 
2014Q3 1.2 1.8 1.1 1.484478 
2014Q4 1.4 0.1 1.2 1.089472 
2015Q1 2.5 1.2 1.4 1.900326 
2015Q2 1.8 1.2 2.5 1.584172 
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Table 4: The IMF forecasts and realizations 

 

 
Year 

Actuals IMF 
No change 

forecast 
Best model 

forecast 
     

1991 -0.1 1.678600 NA 1.660111 
1992 3.6 3.001200 -0.1 2.770674 
1993 2.7 3.141500 3.6 2.537561 
1994 4.0 2.555300 2.7 2.843543 
1995 2.7 2.459800 4.0 2.482932 
1996 3.8 2.022900 2.7 2.746576 
1997 4.5 2.349000 3.8 2.962763 
1998 4.4 2.581600 4.5 2.954253 
1999 4.7 2.030900 4.4 2.991573 
2000 4.1 2.598900 4.7 2.874187 
2001 1.0 3.155700 4.1 2.077139 
2002 1.8 2.189200 1.0 2.216891 
2003 2.8 2.559400 1.8 2.518064 
2004 3.8 3.914200 2.8 2.898140 
2005 3.3 3.540100 3.8 2.732408 
2006 2.7 3.268400 3.3 2.547731 
2007 1.8 2.922400 2.7 2.275648 
2008 -0.3 1.939000 1.8 1.626678 
2009 -2.8 0.054956 -0.3 0.796930 
2010 2.5 1.518100 -2.8 2.353165 
2011 1.6 2.312600 2.5 2.172479 
2012 2.3 1.782300 1.6 2.320036 
2013 2.2 2.116400 2.3 2.319659 
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Table 5: Regression of actuals on past actuals and differences between judgmental forecasts 

and past actuals, that is, 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝛾𝛾1𝑦𝑦𝑡𝑡−1 + 𝛾𝛾2(𝑓𝑓𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜀𝜀𝑡𝑡 and the Wald test on 𝜇𝜇 =

0, 𝛾𝛾1 = 1, 𝛾𝛾2 = 1. 

 

     EICIE    IMF 

 

Parameters 

 

𝜇𝜇     -0.329 (0.230)   -0.236 (1.040) 

𝛾𝛾1     1.135 (0.120)   1.152 (0.404) 

𝛾𝛾2     0.691 (0.215)   0.943 (0.469) 

 

𝑅𝑅2     0.770    0.338 

P value of Wald test    0.001    0.695 
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Table 6: TLS parameter estimates for various values of 𝛿𝛿 

 

   EICIE      IMF 

 𝛿𝛿  𝛼𝛼�𝑇𝑇𝑇𝑇𝑇𝑇  �̂�𝛽𝑇𝑇𝑇𝑇𝑇𝑇     𝛼𝛼�𝑇𝑇𝑇𝑇𝑇𝑇  �̂�𝛽𝑇𝑇𝑇𝑇𝑇𝑇   

  

0.7  -0.993  1.622    -6.053  3.526 

0.8  -0.977  1.608    -5.940  3.479 

0.9  -0.963  1.594    -5.828  3.433   

1.0  -0.949  1.582    -5.719  3.388 

1.1  -0.936  1.570    -5.610  3.343 

1.2  -0.924  1.559    -5.506  3.300 

1.3  -0.912  1.549    -5.405  3.258 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 
 



Table 7: Forecast performance. Fraction that forecasts have the lowest absolute forecast error 

across three forecasts, that is, the judgmentally adjusted forecast, the no change forecast and 

the best model forecast 

 

   Judgment  No change  Best model 

 

EICIE   21%   35%   44% 

IMF   27%   23%   50% 
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Table 8: Quarters and years in which the final forecasts improve on both the no-change 

forecast and the best model forecast 

 

 

EICIE  Quarters:  2007Q1, 2008Q1, 2008Q2, 2008Q3, 2009Q3, 2009Q4 

2012Q2, 2012Q3, 2013Q4 

 

IMF  Years:  1992, 2002, 2003, 2004, 2005, 2013 
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Figure 1: EICIE forecasts and actual quarterly GDP growth in the Netherlands  

(CBS2 concerns the second release data from Statistics Netherlands) 
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Figure 2: IMF forecasts and actual annual GDP growth rates (in the USA).  

Source is www.imf.org 
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