
Pergamon
Mathl. Comput. Modelling Vol. 24, No. 9, pp. 11-19, 1996

Copyright@1996 Elsevier Science Ltd
Printed in Great Britain. All rinhts reserved

PII: SO895-7177(96)00150-l
66957177/96 il5.00 + 0.00

A Local Search Heuristic for
Unrelated Parallel Machine Scheduling

with Efficient Neighborhood Search

N. PIERSMA AND W. VAN DIJK
Econometric Institute, Erasmus University Rotterdam

P.O. Box 1738
NG3000 DR Rotterdam, The Netherlands

piersma@opres.fev.eur.nl

(Received December 1995; accepted February 1996)

Abstract-The parallel mechine scheduling problem with unrelated machines is studied where
the objective is to minimize the maximum makespan. In this paper, new local search algorithms are
proposed where the neighborhood search of a solution uses the “efficiency” of the machinea for each
job. It is shown that this method yields better solutions and shorter running times than the more
general local search heuristics.

Keywords-unrelated parallel machine scheduling, Local search.

1. INTRODUCTION

Consider m 2 2 parallel machines and n jobs. Each job needs to be scheduled on exactly one
machine, and every machine can process at most one job at a time. No preemption is allowed and
there are no release times and due dates. The R]]C,, scheduling problem is to find a schedule
that minimizes the makespan, i.e., the time necessary to process all jobs. Therefore, the order
in which the jobs are processed on a machine is not important, and a feasible schedule can be
denoted by the assignment of each job to a machine.

Let pij denote the processing time of job j on machine i. In general, one can distinguish
between the following three cases:

1. identical machines: pij = plj for all i and j;
2. uniform machines: pij = pj/vi for all i and j, where vi is the speed of machine i, and pj

is the processing time at unit speed;
3. unrelated machines: pij arbitrary for all i and j.

Denote the minimum makespan by C&,. We will concentrate on the csse of unrelated ma-
chines, where the processing time of each job can differ on every machine. The problem is well
known to be NP-hard, even in the simplest case of two identical machines [l].

Exact algorithms for the problem were developed by Van der Velde [2] and Horowitz and
Sahni [3]. However, the computational requirements for these exact algorithms become very
large for more than five machines and 50 jobs.

Much research effort has been put into designing fast and efficient approximation algorithms
with good theoretical performance bounds. For an overview of the existing methods, see (41. Some
algorithms are based on simple list scheduling rules, like the earliest completion time heuristic
of Ibarra and Kim [5]. The methods with the best theoretical performance bounds are the

11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/43310242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

12 N. PIERSMA AND W. VAN DIJK

LP-based heuristics by Potts [6] and Lenstra, Shmoys and Tardos [7] and the efficient assignment
algorithms by Davis and Jaffe [8].

Hariri and Potts [9] already showed that the approximation methods, despite of their theoretical
guarantees, are outperformed by simple iterative local improvement algorithms. Glass, Potts and
Shade [lo] studied a number of local search heuristics for RI]&,. These local search methods
are often quite general and do not exploit the structure of the problem to which they are applied.
We will introduce an improved iterative local improvement algorithm, based on the iterative local
improvement algorithm by Hariri and Potts and on the ideas by Davis and Jaffe. The novelty
of the algorithm consists of an efficient search of the neighborhoods. We will show that the
algorithm outperforms the general local search methods in both solution quality and running
time. Next, we will show that a Taboo search algorithm with the efficient neighborhood search
strategy also performs better than the general local search algorithms.

In the next section, the basic ideas behind the new improvement method are exhibited and
an outline of the algorithm is presented. In Section 3, the new method is compared primarily
to the local search heuristics formulated by Glass, Potts, and Shade and to the simple iterative
improvement algorithm formulated by Hariri and Potts.

Some alternative ideas, such as the efficient Taboo search algorithm that have been tested are
discussed in Section 4, and the last section contains some final remarks.

2. ITERATIVE DESCENT USING THE STRUCTURE OF RIICm,

The local search algorithm consists of the following elements.

ALGORITHM 2.1. LOCAL SEARCH ALGORITHM.
Starting point

Generate a initial feasible schedule s and compute its maximum makespan.
Neighborhood search

Select a feasible schedule g in the neighborhood of s and compute its maximum makespan.
Acceptance test

Decide whether or not to move from schedule s to schedule g.
If the move is accepted, continue with schedule g.
Otherwise, continue with schedule s.

Termination test
Decide whether to stop the algorithm. If the algorithm is terminated, then output the current
schedule and its maximum makespan.
Otherwise, return to the Neighborhood search.

The major decisions when applying this type of problem is the choice of the starting solution
and the neighborhood search method. We will use a simple starting schedule and the well-known
relocation and two-exchange neighborhoods to select alternative schedules. However, the main
difference with the existing local search methods is the search direction, where we will use the
structure of the R]]C max problem by means of the following concept [8].

Let mj = rninr~i~,,,pij be the smallest processing time of job j and define the eficiency of
machine i for job j by

eff(i,j) = 2.

The efficiency thus indicates a preference for assigning a job to a machine by means of a value
in the interval (0, 11. Notice that a job has the smallest processing time on a machine where it
has efficiency one. Let sij be the decision variable that takes on the value 1 if job j is scheduled
on machine i and 0 otherwise. Let a feasible schedule be denoted by s = (sij)i,j and let S be the

Unrelated Parallel Machine Scheduling 13

set of all feasible schedules. We can formulate the RllC,,,, problem such as to find

Since the mj are fixed constants, it seems best to assign each job to a machine on which it has
efficiency one. However, in this schedule, all the jobs may be assigned to the same machine
yielding an unbalanced workload. The assignment of the jobs relies thus on a trade off between
a high efficiency of the jobs assigned to a machine and the workload of the machines. We will
formulate a neighborhood search method that first considers schedules where every job is assigned
to the machine such that the corresponding efficiency is as large as possible and then changes
this schedule using the efficiencies in nonincreasing order.

To generate a starting schedule, we use a greedy approach (further denoted by GR) that is a
simple on-line list scheduling procedure also known ss the minimum processing time or shortest
processing time heuristic.

STARTING POINT: GR HEURISTIC

Consider the jobs in any sequence. Assign each job to the machine on which it has minimal
processing time. When there is more than one machine with the smallest processing time,
choose the machine with the smallest makespan in the partial schedule. Use the smallest
index rule when there is still a choice between several machines.

Thus, the starting point is a feasible schedule s where every job is assigned to the machine on
which it has efficiency one. However, the schedule may be highly unbalanced. The neighborhood
of the starting point is then searched for a more balanced schedule in the following way.

NEIGHBORHOOD SEARCH: EFF DESCENT METHOD

There are two neighborhoods that are considered for solution s:
NE(s) = {g E S : g can be obtained from s by reassigning one job

from a machine with maximum makespan to another machine}

NI(s) = {g E S : g can be obtained from s by interchanging the machine

assignment of a pair of jobs}
The search for sn alternative schedule g is performed first in neighborhood NR(s) and
then in neighborhood Nl(s).
Searching ~VR(s)

1. Choose machine mmax as the machine with the smallest index among the machines
with maximum makespan. Define the set J max of the jobs assigned to machine mm=.
Also define the set E,, = {(i, j) : i E (1,. . . , m}, i # mmax and j E J,,} of all
other possible assignments of the jobs assigned to machine mm=.

2. When the set Emax is empty stop. Otherwise, select job j, and machine i, such that

When there are multiple choices for i, and jr, choose the ones with the smallest index.
3. When the new schedule is accepted goto step 1. Otherwise remove the point (ir, jr)

from the set Emax and goto step 2 with the current schedule.
Searching IV1 (s)

1. Let Mi be the ordered set that contains the machine indexes in nonincreasing order
of the makespans (In case of ties, use the largest index rule). Also define the set Ms
that contains the machine indexes in nondecreasing makespan sequence. (In case of
ties, use the smallest index rule). Let ml be the first element of Ml, and ms the first
element of M2.

14 N. PIERSMA AND W. VAN DIJK

2. Define the sets J1 and JZ of jobs assigned to the machine ml and ms.

3. Sort the jobs in Jr in nonincreasing order of the efficiencies of the jobs on machine ms.
Also sort the jobs in JZ in nonincreasing order of the efficiencies of the jobs on ma-
chine ml.

4. Set k = 1 and j = 0. Assume EXCHANGE = FALSE
While NOT EXCHANGE and k < [Ji (+ 1 do
Begin
j:=j+l.
If the schedule g with k and j interchanged is accepted then set EXCHANGE =
TRUE. Else set j := j + 1
Ifj=lJslthensetk:=k+landj:=O
End
If EXCHANGE=FALSE then goto step 5.
If EXCHANGE=TRUE then goto step 1.

5. Choose ,for ms the next element in Ms. If ms = ml then choose for ml the next
machine index in Mr and let rns be the first element of the set Ms. If ml is the first
element of the set Ms then stop.

ACCEPTANCE TEST

For solutions g E NR(S) the acceptance test is as follows.
Compare the maximum makespan C,, (3) of schedule s with the maximum makespan of
machine i, in schedule g where job j, is reassigned to machine i,. Move to schedule g if
the makespan of machine i, in schedule g is smaller than Cmax(s). Otherwise continue
with schedule s.

For the solutions g E NI(s), the acceptance test is the following.
Let g be the schedule that is generated by exchanging job j and k in the schedule s. When
the largest makespan of the machines that process job j and k in schedule g is smaller
than the largest makespan of the machines processing job j and k in schedule s, we move
to schedule g. Otherwise continue with schedule s.

TERMINATION TEST
First the neighborhood NR(s) is searched for new schedules. When a new schedule g
is accepted, the neighborhood N&g) is searched for new schedules. When none of the
schedules in NR(s) is accepted, we search the neighborhood NI (s) . If a schedule g E NI (s)
is accepted, the neighborhood Nl(g) is searched. When none of the schedules in Nl(g) is
accepted the algorithm terminates.

Our local search method, further denoted by GR/EFF, is a simple iterative descent method
that differs from the descent method by Hariri and Potts in the way the neighborhoods are
searched and in the starting solution. Using the structure of the schedules, we believe that a
better local optimum can be obtained with less computational effort. Observe that in the case
of identical machines, the jobs have efficiency one on every machine and that in the case of
uniform machines all jobs have efficiency ui/(rnaxr<k< _ _m vk) on machine i. The method is thus
not expected to perform well for identical or uniform machine scheduling problems, but very well
for unrelated machines.

Notice that the greedy heuristic has a running time of O(nm) and a worst case ratio of m,
and that each neighborhood search has a running time of 0(m2n2). For bounded input (i.e., all
pi < oo), the running time of the algorithm is bounded because the algorithm only accepts a
new schedule when a makespan becomes smaller and terminates when there exists no improved
schedule in the neighborhood of the current schedule.

Unrelated Parallel Machine Scheduling 15

3. RESULTS

3.1. Experimental Design

A series of tests is performed using experimental design by Glass, Potts, and Shade [lo]. The
tests are coded in Turbo Pascal 7.0 on a 486DX-66 microcomputer. The problem sizes are 2,3,5,10,
or 25 machines with 50, 100, 150, and 200 jobs, and 50 machines with 50 and 100 jobs.

There are four structures for the processing times.

TP = 1 No correlation between the machines or the jobs, pij continuous uniformly distributed
within the interval [0, 11.

TP = 2 No correlation between the machines or the jobs, pij discrete uniformly distributed
within the interval [l, 1001.

TP = 3 The jobs are correlated, pij discrete uniformly distributed within the interval [@j+l,
pj+20] and pj discrete uniformly distributed within the interval [l, 1001.

TP = 4 The machines are correlated, pij discrete uniformly distributed within the interval
[CQ + 1, CQ + 201 and (pi discrete uniformly distributed within the interval [l, 1001.

3.2. Test Results

First, we compared the solutions derived with the GR/EFF method with optimal solutions.
For small problems (n L 200, m = 2,3,4), for which we calculated the optimal schedule using
a simple branch and bound method, the average relative deviation percentage to the optimal
solution is investigated:

ardp = 100 *
&=/EFF _ c.

m= max

GLX ’

where we take the average over 10 problem instances for every problem type and size.
For almost every test problem, the GR/EFF algorithm has an average relative deviation per-

centage less than l%, with an average running time of less than 0.7 seconds.
Second, we have compared the GR/EFF algorithm to another simple descent algorithm, called

the ECT/SD algorithm. This algorithm uses the ECT-approximation-method to compute a
feasible schedule. This schedule will then be used as a start for a simple descent algorithm (SD)
in the second phase, where other schedules are selected by job index in the relocation and the
interchange neighborhood (Hariri and Potts). The tests are performed on five problem instances
for every size and type of problem. The best known solution value is taken as a replacement of
the optimal solution value when this optimum is not known.

Table 1 shows that the GR/EFF algorithm has a smaller average relative deviation percentage
for almost every problem instance. This difference in the average quality of solution is especially
noticeable for problem instances where the ratio n/m is large (> 3) and where m is large (> 10). If
we compare the average running times of both algorithms (see Table 2), we see that the GR/EFF
algorithm becomes faster as the number of jobs becomes larger. The use of the GR-solution
(O(mn)) instead of the ECT-solution (O(mn2)) seems to be favourable, the second phase of the
GR/EFF method will make up for the poor starting solution fast enough. However, for problem
type TP = 4, the running time of the GR/EFF method becomes very large. On the extreme,
the machine correlation results in all machines being assigned to one machine, then a balancing
between this machine and one other machine is performed, etc. For large m, the running time
of the algorithm thus becomes very large. When we apply the GR/EFF heuristic to problem
structures uncommon to the R(IC max problem, the heuristic does not perform well. The heuristic
thus indeed uses the structure of the RllC,, problem to find a solution.

Third, we have compared the GR/EFF algorithm to the local search methods described by
Glass, Potts and Shade, that is, simulated annealing, Taboo search and genetic algorithms. We
gave all the local search algorithms a maximum running time of 100 seconds because the GR/EFF
method only exceeds this running time once (TP = 4, m = 25, n = 200).

16 N. PIERSMA AND W. VAN DIJK

Table 1. Average relative deviation percentages for the GR/EFF heuristic (left) and
for the ECT/SD algorithm (right).

Average relative deviation percentage

m n TP=l TP=2 TP=3 TP=4

GR ECT GR ECT GR ECT GR ECT
EFF SD EFF SD EFF SD EFF SD

3 50 0.54 2.51 0.61 2.15 0.32 1.48 0.21 0.92

100 0.31 0.43 0.26 1.63 0.12 0.77 0.08 0.92

150 0.25 0.98 0.32 0.69 0.06 0.44 0.18 0.94

200 0.17 0.57 0.12 0.64 0.06 0.44 0.11 0.99

5 50 1.04 8.05 2.20 4.76 0.10 2.00 0.26 1.46

100 1.09 2.57 0.73 3.28 0.09 1.36 0.50 1.70

150 0.21 2.42 0.30 2.91 0.02 1.04 0.30 1.17

200 0.10 2.54 0.00 2.24 0.02 0.84 0.19 1.59

10 50 6.86 13.21 7.78 15.47 1.20 3.88 1.98 4.55

100 1.03 8.55 1.45 9.94 0.11 2.70 1.24 2.71

150 1.09 6.51 0.12 7.04 0.00 1.78 1.50 1.81

200 0.39 3.48 0.11 4.87 0.00 1.47 0.49 1.45

25 50 4.13 5.59 2.35 14.02 4.74 7.97 1.56 3.96
100 10.21 16.83 4.16 19.43 1.25 3.35 0.88 2.52
150 8.48 12.51 0.00 10.11 0.45 2.99 1.48 1.06

200 2.28 7.67 0.52 10.51 0.33 2.35 0.66 1.94

50 50 5.25 5.25 10.16 10.16 0.00 0.00 1.53 5.55
100 8.26 8.16 6.67 6.11 3.00 4.04 0.84 3.17

Table 2. Average running time for the GR/EFF heuristic (left) and for the ECT/SD
algorithm (right).

m

3

5

10

25

50

50 0.1 0.1
100 0.2 0.2

150 0.3 0.6
200 0.5 0.9

50 0.1 0.1

100 0.3 0.3
150 0.5 0.7
200 0.9 1.3

50 0.1 0.1

100 0.4 0.5
150 0.8 1.2
200 1.4 2.1

50 0.2 0.3
100 0.6 1.3
150 1.6 2.8
200 2.4 5.1

0.4 0.7
1 -I- 1: 1.0 2.6

Average running time (set)

TP=2 TP=3 TP=4
GR ECT GR ECT GR ECT

EFF SD EFF SD EFF SD

0.1 0.1 0.1 0.1 0.2 0.1
0.2 0.3 0.2 0.2 0.7 0.3

0.4 0.5 0.3 0.6 2.6 0.5

0.5 0.9 0.7 0.9 5.4 0.9

0.1 0.1 0.1 0.1 0.5 0.1

0.3 0.3 0.4 0.3 3.5 0.3
0.6 0.7 0.8 0.7 9.9 0.8

1.1 1.3 1.2 1.3 25.4 1.3
0.1 0.1 0.2 0.2 1.7 0.1
0.5 0.5 0.6 0.6 10.1 0.6
1.0 1.2 1.5 1.2 43.9 1.2
1.4 2.1 2.2 2.2 81.5 2.2

The results are reported in Table 3. The GR/EFF algorithm seems to be the best algorithm
for almost all problem instances with job correlation in the processing times (TP = 3). For the
problem instances TP = 1 and TP = 2, the GR/EFF algorithm seems to be the better algorithm
when the number of jobs is large (2 150).

Unrelated Parallel Machine Scheduling 17

The GR/EFF method produces one local optimum whose quality is competitive to that of
the solution of simulated annealing, Taboo search and a genetic algorithm, while the last three
algorithms are designed to evaluate more than one local optimum. In the next section, we
will consider a number of alternatives among which a Taboo search algorithm of the GR/EFF
algorithm.

Table 3. The GR/EFF compared to local search algorithms.

Left: GR/EFF average relative deviation percentage

Middle: BEST average relative deviation percentage

Right: Name BEST algorithm

GA = Genetic algorithm

SA = Simulated annealing

TS = Taboo search

m n TP=l TP=2 TP=3 TP=4

a.r.d.p. name a.r.d.p. name a.r.d.p. name a.r.d.p. name
GR BST BST GR BST BST GR BST BST GR BST BST

EFF EFF EFF EFF
3 50 0.54 0.01 GA 0.61 0.00 SA 0.32 0.20 GA 0.21 0.00 GA

100 0.31 0.14 GA 0.26 0.11 GA 0.12 GR EFF 0.08 0.00 GA
150 0.25 GR EFF 0.32 0.18 TS 0.06 GR EFF 0.18 0.03 GA
200 0.17 GR EFF 0.12 GR EFF 0.06 GR EFF 0.11 GR EFF

5 50 1.04 0.09 GA 2.20 0.00 GA 0.10 GR EFF 0.26 0.00 GA
100 1.09 0.67 TS 0.73 0.64 TS 0.09 GR EFF 0.50 0.03 GA
150 0.21 GR EFF 0.30 GR EFF 0.02 GR EFF 0.30 0.02 GA
200 0.10 GR EFF 0.00 GR EFF 0.02 GR EFF 0.19 GR EFF

10 50 6.86 1.52 GA 7.78 0.00 GA 1.20 GR EFF 1.98 0.00 GA
100 1.03 GR EFF 1.45 GR EFF 0.11 GR EFF 1.24 0.17 GA
150 1.09 GR EFF 0.12 GR EFF 0.00 GR EFF 1.50 0.08 GA
200 0.39 GR EFF 0.11 GR EFF 0.00 GR EFF 0.49 0.38 GA

25 50 4.13 0.00 TS 2.35 0.00 TS 4.74 1.04 TS 1.56 0.62 SA
100 10.21 2.73 TS 4.16 GR EFF 1.25 GR EFF 0.88 0.50 SA
150 8.48 1.20 TS 0.00 GR EFF 0.45 GR EFF 1.48 0.95 TS
200 2.28 GR EFF 0.52 GR EFF 0.33 GR EFF 0.66 GR EFF

50 50 5.25 0.00 TS 10.16 0.00 TS 0.00 GR EFF 1.53 0.84 SA
100 8.26 0.00 TS 6.67 5.56 TS 3.00 0.33 SA 0.84 GR EFF

4. ALTERNATIVE METHODS

4.1. Taboo Search Using the Structure of RllC’,

We tested a simple Taboo search algorithm that uses the efficient neighborhood search structure
for the parallel scheduling problem. In this algorithm, the exchange and relocate neighborhoods
are combined into one neighborhood N. When no improved schedule is accepted in the neigh-
borhood N(s) of the current schedule s, we select the best solution found during the search
of N(s).

The alternative schedules in the exchange and relocate neighborhood N(s) are checked for
membership of a Taboo list. The Taboo list is of traditional length (L = 7) and consists of
the objective values of the last seven schedules that were accepted. An alternative g in the
neighborhood N(s) of the current schedule s is Taboo if the value of g, Cm&g) is in the Taboo
list. However, the Taboo list is overruled by the following aspiration function. Let W() be the
number of machines with maximum makespan C,, (). We will overrule a Taboo for schedule g
if

W(g) I W(s),

18 N. PIEFSMA AND W. VAN DIJK

that is, if the number of machines in schedule g with maximum makespan Cmax(g) is not larger
than the number of machines in the current schedule s with makespan C,,(s). The idea is to
make room for future replacements and exchanges.

Table 4 shows that the solution quality of the Taboo search heuristic with efficient search is
better than traditional Taboo search. The Taboo search heuristic with efficient search is also
compared to the GR/EFF method, where the Taboo search runs for 100 seconds. In most cases,
efficient Taboo search found the best solution. Thus, also for the Taboo local search method, the
efficient search of the neighborhoods results into better quality solutions.

Table 4. Average relative deviation percentages for the GR/EFF heuristic (left) and
the TABOO GR/EFF algorithm (right).

Average relative deviation (r%)

m n TP=l TP=2 TP=3 TP=4
GR TABOO GR TABOO GR TABOO GR TABOO

EFF EFF EFF EFF

3 50 0.54 0.19 0.61 0.34 0.32 0.07 0.21 0.00
100 0.31 0.10 0.26 0.10 0.12 0.08 0.08 0.00
150 0.25 0.25 0.32 0.09 0.06 0.04 0.18 0.10
200 0.17 0.12 0.12 0.04 0.06 0.04 0.11 0.07

5 50 1.04 0.55 2.20 0.59 0.10 0.00 0.26 0.16
100 1.09 0.47 0.73 0.32 0.09 0.02 0.50 0.46
150 0.21 0.04 0.30 0.11 0.02 0.00 0.30 0.28

200 0.10 0.02 0.00 0.00 0.02 0.00 0.19 0.06

10 50 6.86 2.95 7.78 1.88 1.20 0.00 1.98 0.45
100 1.03 0.00 1.45 0.63 0.11 0.00 1.24 0.61
150 1.09 0.00 0.12 0.00 0.00 0.00 1.50 1.42

200 0.39 0.01 0.11 0.00 0.00 0.00 0.49 0.49

25 50 4.13 0.00 2.35 0.00 4.74 0.76 1.56 0.61
100 10.21 0.58 4.16 0.00 1.25 0.00 0.88 0.88
150 8.48 1.90 0.00 0.00 0.45 0.06 1.48 1.48

200 2.28 0.12 0.52 0.00 0.33 0.09 0.66 22.29

50 50 5.25 0.00 10.16 0.00 0.00 0.00 1.53 0.57
100 8.26 2.22 6.67 1.77 3.00 1.77 0.84 0.57

4.2. Alternatives of the GR/EFF Algorithm

We have also investigated several alternatives of the GR/EFF algorithm.
Because the GR algorithm is a fast, on-line algorithm with a poor quality of solution, we

have analyzed the ECT/EFF algorithm, where the initial schedule is constructed using the ECT
heuristic. The tests showed that the average relative deviation percentage of the ECT/EFF
algorithm is larger than that of the GR/EFF algorithm. It seems to be essential to start with a
schedule where every job is assigned to a machine on which it has efficiency one, rather than to
start with a schedule where the workload is more balanced. The running time of the ECT/EFF
algorithm shows to be larger, especially for the problem instances with uncorrelated processing
times (TP = 1,2) and with job correlated processing times (TP = 3).

The second idea is to use the efficiency assignment heuristic of Davis and Jaffe to construct a
starting feasible schedule. This heuristic does take into account the efficiency of a machine for
a job, but results into a more balanced schedule. However, the tests on the resulting algorithm
EFF/EFF show that the GR heuristic should be preferred as a starting point. The running time
of the EFF/EFF algorithm is larger and the solution quality is worse than that of the GR/EFF
algorithm in almost all cases. We conclude that the GR/EFF algorithm cannot benefit from a
more balanced starting schedule.

Unrelated Parallel Machine Scheduling 19

We also tried to make the improvement-phase faster by considering only machines for the
relocation and interchange of jobs that have an efficiency of at least 0.4 (like Davis and Jaffe do
in their efficiency assignment heuristic). It turns out that this structure gives no improvement in
the average running time, and serious worse average relative deviation percentages.

5. CONCLUSIONS

In this paper, we report on the results of a local improvement method and a Taboo search
method with efficient search for the parallel machine problem with unrelated machines. We
showed that these methods have a better performance than their counterparts that do not search
the neighborhood efficiently. In particular, the local improvement algorithm GR/EFF has a
running time that is comparable to the descent algorithm of Hariri and Potts (less than 10
seconds for most test problems) and yields solutions that are of comparable quality to the local
search heuristics that have user defined running times (100 seconds in our test cases).

The Taboo search algorithm with efficient neighborhood search should only be used to obtain
high quality solutions, since the running time is user defined (100 seconds in our test cases).
Notice that also a Simulated Annealing algorithm can be constructed that uses efficient search
of the neighborhoods.

It is worthwhile to use the structure of the problem in a local search method for the RI(C,,,
scheduling problem. We claim that the performance of improvement and local search methods
for other combinatoral optimization problems will also benefit from the incorporation of problem
specific features. Recently proposed methods in scheduling theory [11,12] support this view.
Future research should, therefore, pay attention to the special features of combinatorial problems
that can be used to improve the performance of local search methods.

REFERENCES

1. R.M. Karp, Reducibility among combinatorial problems, In Compledty of Computer Computations (Edited
by R.E. Miller and J.W. Thatcher), pp. 85-103, Plenum Press, New York, (1972).

2. S.L. van der Velde, Duality based algorithms for scheduling unrelated parallel machines, ORSA Journal on
Computing 5, 192-205 (1993).

3. E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling nonidentical processors,
J. Assoc. Comput. Mach. 23, 317-327 (1976).

4. E.G. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, Sequencing and scheduling: Algorithms
and complexity, In Handbooks in OR & MS, Vol. 4, Chapter 9 (Edited by S.C. Graves, A.H.G. Rinnooy
Kan and P.H. Zipkin), Elsevier Science Publishers B.V., Amsterdam, (1993).

5. O.H. Ibarra and C.E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical processors,
Journal of the Association for Computing Machinery 24, 280-289 (1977).

6. C.N. Potts, Analysis of a linear programming heuristic for scheduling unrelated parallel machines, Discrete
Applied Mathematics 10, 155-164 (1985).

7. J.K. Len&a, D.B. Shmoys and E. Tardos, Approximation algorithms for scheduling unrelated parallel
machines, Mathematical Programming 46, 259-271 (1990).

8. E. Davis and J.M. Jaffe, Algorithms for scheduling tasks on unrelated processors, Journal of the Association
for Computing Machinery 28, 721-736 (1981).

9. A.M.A. Hariri and C.N. Potts, Heuristics for scheduling unrelated parallel machines, Computers and Oper-
ations Research 18, 323-331 (1991).

10. C.N. Potts, C.A. Glass and P. Shade, Unrelated parallel machine scheduling using local search, Mathl.
Comput. Modelling 20 (2), 41-52 (1994).

11. H.R. Lourenco and M. Swijnenburg, Combining the large-step optimization with tabu-search: Application
to the job-shop scheduling problem, Technical Report, Centro de Inveatigacao Operational, Faculdade de
Ciencias da Universidade de Lisboa, (1995).

12. H.R. Lourenco, Jobshop scheduling: Computational study of local search and large-step optimization
methods, European Journal of Operational Research 83, 347-364 (1995).

