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Osteoporosis and fractures

The problem
Osteoporosis is characterized by low bone mass and deterioration of micro-

architectural structure [1]. It is a very common disease; in 2007 it was estimated 

that 1.9 in 1,000 men and 16.1 in 1,000 women had diagnosed osteoporosis in 

the Netherlands. However, the true number is expected to be 2-3 times higher, 

since osteoporosis often goes undetected because it causes no symptoms until 

a fracture occurs [2]. Whether one develops osteoporosis is determined by mul‑

tiple factors; for instance, high age, female sex, low body weight, smoking, limited 

physical activity and use of medication such as glucocorticoids are all risk factors 

[3]. In addition, osteoporosis is highly heritable; bone mineral density (BMD), the 

parameter obtained by dual-energy X-ray absorptiometry (DXA) scanning to diag‑

nose osteoporosis, has an estimated heritability of 50-85% [4]. Recently, 56 genetic 

determinants have been identified that influence BMD [5, 6]. 

Fractures are the most important possible consequence of osteoporosis. They 

form a major health care burden. For example, in 2005, more than 2 million fractures 

were reported in the United States only, leading to 17 billion dollars of costs [7]. 

Moreover, fractures lead to morbidity and mortality. In the Netherlands, a striking 

25% of persons who sustained a hip fracture dies within one year [8]. The problem 

of osteoporosis and fractures is expected to increase over time because of global 

demographic changes due to improved health; the number of people aged ≥65 

years is expected to increase from 506 million in 2008 to 1.3 billion in 2040 [7].

Pathophysiology
Bone tissue needs to be remodeled constantly to maintain its structure and 

strength. The balance of the activity of osteoblasts, the bone forming cells, and 

osteoclasts, the bone resorbing cells, is crucial in this process. Human bone mass 

reaches its peak at young adulthood, around the age of 30. Until that time, bone 

formation occurs at a higher rate than bone resorption, net leading to bone being 

accrued. However, with ageing bone resorption starts to outweigh bone formation, 

leading to a decrease in bone mass and more porous bone. In women, this process 

is more pronounced after menopause, since levels of estrogen, which stimulates 

bone formation and inhibits bone resorption, steeply decrease. Whether an indi‑
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vidual actually develops osteoporosis or not depends on his or her peak bone mass 

and on the amount of bone loss over time [9]. 

Diagnosis
The gold standard for diagnosing osteoporosis is DXA, by which BMD can be as‑

sessed. This measurement is most often performed and best-validated at the femo‑

ral neck and lumbar spine (Figure 1). A ‘T-score’ is derived from these measurements, 

reflecting how many standard deviations the BMD differs from the average BMD of 

a young, healthy adult. A T-score ≤-2.5 is defined as osteoporosis. Osteopenia, the 

precursor stage of osteoporosis, is diagnosed when the T-score is between -1 and 

-2.5 [10].

Next to DXA, other techniques have been developed to investigate bone health. 

Amongst others, quantitative ultrasound (QUS) forms an alternative with several 

advantages as compared with DXA; it is measured using a portable device which 

makes use of ultrasonic waves instead of ionizing radiation. Although its measure‑

ment can be performed at several sites in the body, the best validated site is the 

Quantitative 
ultrasound 

of the 
calcaneus

FN-BMD

LS-BMD

Figure 1. Best-validated and most 
frequently measured skeletal sites using 
DXA/QUS.
LS-BMD=lumbar spine bone mineral 
density, FN-BMD=femoral neck bone 
mineral density.
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calcaneus [11] (Figure 1). Speed of sound and ultrasound attenuation are two pa‑

rameters which are obtained. These are claimed to reflect bone micro-architecture 

[12] and are able to predict fracture incidence partly independently of BMD [13].

In addition, the measurement of bone turnover markers has shown to reflect 

bone remodeling. Bone turnover markers are divided in bone formation and 

bone resorption markers. Bone formation markers, such as alkaline phosphatase, 

osteocalcin and propeptides of type I procollagen, are produced by osteoblasts. 

Bone resorption markers include products from the degradation of type I collagen, 

such as pyridinoline, deoxypyridinoline and telopeptides of type I collagen, and 

products that reflect osteoclast activity. In particular, bone turnover markers can 

be used to monitor anti-osteoporotic treatment efficacy [14], but its use in clinical 

practice is limited by lack of standardization [15]. 

Prevention and treatment
Currently, several preventive strategies and treatment options for osteoporosis 

exist. Adequate calcium and vitamin D intake or sunlight exposure, no smoking 

nor heavy drinking, and regular (preferably weight-bearing) physical activity are 

important preventive measures for osteoporosis [9]. For treatment purposes, cal‑

cium and vitamin D supplements can be prescribed. In addition, prescription of 

medicines has been shown to effectively reduce fracture risk [3]. Generally used 

anti-osteoporotic medications can be roughly divided into inhibitors of bone 

resorption, such as bisphosphonates, selective estrogen receptor modulators, 

and antibodies to RANKL (denosumab), and stimulants of bone formation, such as 

teriparatide and PTH 1-84 [3]. These drugs are available in the form of oral, subcu‑

taneous or intravenous formulations. While these medications are very effective in 

reducing fracture risk (with an estimated decrease of 50-60% in the risk of vertebral 

fractures and 20-30% for non-vertebral fractures), they also have some side-effects, 

e.g. on the gastro-intestinal system, leading to a disappointingly low adherence to 

the prescribed treatment. For example, it has been shown that approximately half 

of the patients stops taking their oral anti-osteoporotic medication within one year 

[3, 16].
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Homocysteine: a new risk factor for osteoporotic fractures

Approximately a decade ago, high plasma homocysteine levels have been associ‑

ated with increased risk of incident osteoporotic fractures [17, 18]. The reason for 

investigating this was the observation that patients who suffer from homocys‑

tinuria, a disease that is often caused by a genetically determined cystathionine 

β-synthase (CBS) deficiency, also frequently suffer from osteoporosis [19]. Recently, 

the observed association between homocysteine and fractures was confirmed in a 

meta-analysis [20]. More details about this association are reported in Chapter 1.2.

Homocysteine is an amino-acid. It is absent in the human diet, but is formed 

after demethylation of methionine [21, 22], an amino-acid which is essential and is 

present in our food. Fasting plasma reference values of homocysteine are between 

6 and 19 µmol/l, but levels above 15 µmol/l are generally regarded as elevated 

B2

B12

B6

B6

Cystathionine-
β-synthase

Cystathionine-
γ-lyase

Methionine-
synthase

MTHFR

Folate-cycle

Methionine-cycle

Methionine

Homocysteine

S-Adenosyl-
methionine (SAM)

S-Adenosyl-
homocysteine (SAH)5-methyl-THF

5,10-methylene-
THF

Tetrahydrofolate

Folic acid

Cystathionine

Cysteine

Sulphate

Methyl acceptor

Methylated
acceptor

Figure 2. Homocysteine metabolism. 
(diamond: co-factor, square: enzyme, rectangle: enzymatic product. B2=riboflavin, B6=pyridoxine, 
B12=cobalamin, MTHFR=methylenetetrahydrofolate-reductase, THF=tetrahydrofolate).
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[23, 24]. In Figure 2, the commonly accepted methylation cycle is depicted. As 

can be seen, s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) are 

two intermediates in the conversion from methionine to homocysteine. A methyl 

group is released when SAM converts to SAH, and this methyl group can be used 

to, for example, methylate DNA.

Homocysteine can be broken down via the transsulfuration pathway. For this 

pathway, the enzyme CBS is needed. Severe hyperhomocysteinemia (>50 µmol/l) 

or homocystinuria (a state in which homocystine is excreted in urine) can, amongst 

others, be caused by a mutation in the gene encoding for this enzyme [21]. More‑

over, homocysteine can also be reconverted to methionine. In this remethylation 

pathway, vitamin B12 and folate are two important co-factors. It is therefore of no 

surprise that already two decades ago it has been shown that homocysteine levels 

are negatively associated with plasma vitamin B12 and folate and folate intake 

[25], and that supplementation with these vitamins is able to lower homocysteine 

levels [26]. Vitamin B2 (riboflavin) and vitamin B6 (pyridoxine) are also co-factors 

which are of importance in the metabolism of homocysteine. However, it has been 

shown that supplementation with B6 complementary to folic acid and vitamin B12 

supplementation does not have an additional lowering effect on homocysteine 

levels [26].

Plasma homocysteine levels are also partly genetically determined, as was 

mentioned in the example of CBS. Genetic determinants can be divided in rare 

Mendelian mutations detected in family studies, and more commonly present 

variations such as single nucleotide polymorphisms, which can be identified using 

genome-wide association studies and which generally have more subtle effects. 

The most important and well-known genetic polymorphism known to influence 

homocysteine levels resides in the gene encoding for methylenetetrahydrofolate-

reductase (MTHFR). This enzyme catalyzes the conversion of 5,10-methylenetet‑

rahydrofolate to 5-methyltetrahydrofolate. In persons with the MTHFR C677T TT 

genotype, MTHFR is less active and these persons therefore on average have 2.6 

µmol/l higher plasma homocysteine levels than persons having the CC genotype 

[27]. The homocysteine-increasing effect of the TT genotype is especially pro‑

nounced in persons who have low (below median) plasma folate levels [27].

Elevated plasma homocysteine levels have not only been associated with osteo‑

porotic fractures, but also with several other unfavorable health outcomes, such as 
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cardiovascular disease [28] and cognitive impairment [29]. All these associations are 

of great interest since plasma homocysteine is an easily modifiable factor. However, 

whether the association with fractures is causal or not is an important question 

which remains to be answered. 

Vitamin B12, folate, and older persons

Vitamin B12

As mentioned above, vitamin B12 and folate are important co-factors in the ho‑

mocysteine metabolism. Vitamin B12, or cobalamin, is an essential vitamin that 

is present in products of animal origin, such as meat, dairy, fish and eggs. It is a 

water-soluble vitamin, but it nonetheless can be stored in the human liver. Rec‑

ommended daily intake of vitamin B12 for adults is 2.8 µg in the Netherlands. To 

make its uptake in the intestine possible, vitamin B12 first has to be released from 

dietary proteins. This is facilitated by gastric acid and pepsin in the stomach. Then, 

B12 can be coupled to Intrinsic Factor (IF), a glycoprotein that is produced in the 

gastric wall. This complex can subsequently be taken up in the ileum. When IF is 

not sufficiently produced, vitamin B12 cannot be taken up effectively and a vitamin 

B12 deficiency can develop. In addition, in elderly a vitamin B12 deficiency can also 

be caused by atrophic gastritis, which in turn can be associated with Helicobacter 

pylori infection. Atrophic gastritis can lead to reduced gastric acid production and/

or proteolytic activity. It should be noted that a small part (±1%) of vitamin B12 

can be taken up passively. Therefore, when taking vitamin B12 in relatively large 

amounts, for example in the form of supplements (cyanocobalamin), passive dif‑

fusion can importantly contribute to vitamin B12 uptake. This way, IF-dependent 

uptake of vitamin B12 can be bypassed by consuming high doses of vitamin B12 

supplements [30, 31].

Clinically, vitamin B12 deficiency can result in pernicious anemia and neurologi‑

cal symptoms, which may be irreversible. Measurement of vitamin B12 status can 

be done in several ways, however, no gold standard has been defined as of yet. 

Serum levels of total vitamin B12 can be measured, and although they are sensi‑

tive for detecting clinical deficiency, they do not necessarily represent a functional 

but subclinical vitamin B12 deficiency. To detect a functional deficiency, resulting 

in suboptimal function of the involved enzymes, measurement of methylmalonic 
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acid (MMA) or homocysteine is preferred, since both of these markers accumulate 

in the presence of too low vitamin B12 levels. However, both also strongly depend 

on renal function. Currently, holotranscobalamin is also regarded as an informative 

marker of B12 status, as this is the metabolically available form of vitamin B12 [30, 32].

Folate
Folate is an essential, water-soluble B-vitamin. In its natural form, it is mostly found 

in grains and green leafy vegetables. In addition to the natural folate, also a more 

stable, synthetic form exists, named folic acid. This is generally used in supple‑

ments. Recommended daily folate/folic acid intake in the Netherlands is 300 µg 

[30]. In addition, the Dutch Health Council recommends to not exceed 1 mg of 

intake of synthetic folic acid, since excess intake may mask the hematological signs 

(macrocytosis) of vitamin B12 deficiency. A vitamin B12-deficiency may thus remain 

undetected and untreated, which may lead to ongoing neurological damage. In 

the Netherlands, women who want to become pregnant are advised to take 400 µg 

folic acid daily to prevent neural tube defects in the newborn. However, contrary 

to many other countries, such as the United States and Canada [30], no general 

mandatory folic acid food fortification exists in the Netherlands. An overview of 

countries with mandatory folic acid food fortification is presented in Figure 3.

Folate status can be determined by measuring folate levels in serum or in red 

blood cells. Normal reference values are 8 to 28 nmol/l and 390 to 1560 nmol/l 

Figure 3. Countries with mandatory folic acid food fortification (shown in dark grey) (adapted from [33]).
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[23], respectively. Serum levels reflect short-term folate status, while red blood cell 

levels represent folate status over a longer term (about 3 months). Deficiency in 

folate can give rise to impaired DNA-synthesis and consequently to megaloblastic 

anemia [30].

Especially older persons are prone to develop deficiencies in folate and vitamin 

B12. Consistently, levels of homocysteine tend to rise with age. Therefore, with 

regard to lowering homocysteine levels, supplementation with B-vitamins may be 

crucial, especially in older persons, to normalize homocysteine levels.

Aims and outline of this thesis

Taken together, osteoporosis and fractures form an important and increasing 

health care burden, for which preventive and treatment strategies may still be im‑

proved. Homocysteine is a modifiable risk factor, however, whether its association 

with incident osteoporotic fractures is causal is, as yet, undetermined. This thesis 

contains several studies aiming to investigate the role of homocysteine and a 

homocysteine-lowering intervention on both clinical and intermediate endpoints 

related to bone health.

Chapter 1.2 describes the rationale and design of the B‑PROOF (B-vitamins for the 

PRevention Of Osteoporotic Fractures)-study, a trial that was designed to assess 

the efficacy of vitamin B12 and folic acid supplementation in fracture prevention 

in hyperhomocysteinemic elderly men and women. In this chapter, the actual link 

between the topics ‘bone’ and ‘homocysteine’ will be further explained. Due to its 

descriptive character, Chapter 1.2 forms an addition to this introduction.

In Chapter 2.1, cross-sectional associations between homocysteine and bone 

mineral density and bone quality are studied. For this purpose, not only B‑PROOF-

data, but also data of the Rotterdam Study, which is a large prospective observa‑

tional cohort study, have been analyzed. In Chapter 2.2, Rotterdam Study data 

were used to assess associations between SAM and SAH, as a measure of methyla‑

tion capacity, and incident fractures.

The results concerning B‑PROOF’s main study outcome – osteoporotic fractures – 

are presented in Chapter 3.1. Next, effects of the same intervention on bone min‑
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eral density and quality parameters (Chapter 3.2) and bone turnover markers 

(Chapter 3.3) are investigated. 

Chapter 4.1 describes a Mendelian randomization approach, used to investigate 

the association of a genetic risk score predicting plasma Hcy levels with fractures 

and bone mineral density within the international GEFOS (GEnetic Factors for 

OSteoporosis)-consortium and B‑PROOF. 

In Chapter 5, a reflection on all findings that are described in this thesis is pre‑

sented and finally, a summary is provided in Chapter 6.
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Abstract

Background
Osteoporosis is a major health problem, and the economic burden is expected to 

rise due to an increase in life expectancy throughout the world. Current observa‑

tional evidence suggests that an elevated homocysteine concentration and poor 

vitamin B12 and folate status are associated with an increased fracture risk. As vita‑

min B12 and folate intake and status play a large role in homocysteine metabolism, 

it is hypothesized that supplementation with these B-vitamins will reduce fracture 

incidence in elderly people with an elevated homocysteine concentration.

Methods/Design
The B‑PROOF (B-Vitamins for the PRevention Of Osteoporotic Fractures) study is 

a randomized double-blind placebo-controlled trial. The intervention comprises 

a period of two years, and includes 2919 subjects, aged 65 years and older, inde‑

pendently living or institutionalized, with an elevated homocysteine concentration 

(≥12 μmol/L). One group receives daily a tablet with 500 μg vitamin B12 and 400 

μg folic acid and the other group receives a placebo tablet. In both tablets 15 μg 

(600 IU) vitamin D3 is included. The primary outcome of the study is osteoporotic 

fractures. Measurements are performed at baseline and after two years and cover 

bone health i.e. bone mineral density and bone turnover markers, physical perfor‑

mance and physical activity including falls, nutritional intake and status, cognitive 

function, depression, genetics and quality of life. This large multi-center project is 

carried out by a consortium from the Erasmus MC (Rotterdam, the Netherlands), 

VUmc (Amsterdam, the Netherlands) and Wageningen University, (Wageningen, 

the Netherlands), the latter acting as coordinator.

Discussion
To our best knowledge, the B‑PROOF study is the first intervention study in which 

the effect of vitamin B12 and folic acid supplementation on osteoporotic fractures 

is studied in a general elderly population. We expect the first longitudinal results 

of the B‑PROOF intervention in the second semester of 2013. The results of this 

intervention will provide evidence on the efficacy of vitamin B12 and folate supple‑

mentation in the prevention of osteoporotic fractures.
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Trial Registration
The B‑PROOF study is registered with the Netherlands Trial Register (NTR NTR1333) 

and with ClinicalTrials.gov (NCT00696514).

Background

Osteoporosis is a chronic, multifactorial disorder which is characterized by low bone 

mass and micro architectural deterioration of bone tissue [1]. Its major consequence 

is fractures, and especially hip fractures are associated with institutionalization and 

increased mortality. In 2000, approximately 9 million fractures occurred worldwide, 

leading to a loss of 5.8 million disability adjusted life-years (DALYs)  [2]. Due to a 

rise in life expectancy, the economic burden of osteoporotic fractures in Europe 

is expected to increase substantially in the coming decades: from €36.3 billion in 

2000 to €76.8 billion in 2050 [3].

Pharmacological interventions may prevent 30-60% of fractures in patients 

with osteoporosis  [4]. However, due to the high prevalence of osteoporosis and 

osteoporotic fractures, attention has been shifted towards preventive lifestyle in‑

terventions, such as vitamin D and calcium supplementation and promoting physi‑

cal activity. Vitamin D and calcium supplementation has been shown to decrease 

the incidence of hip fractures and other non-vertebral fractures by 23-26%  [5]. 

Increased physical activity is related to higher bone mineral density (BMD), bone 

structure and elasticity [6, 7] and is suggested to reduce the risk of hip fracture [8].

Besides those well-established factors, it has been shown that elevated homo‑

cysteine concentrations and low vitamin B12  status are strongly associated with 

lower bone mass and higher fracture risk in independently living elderly [9-11] and 

frail elderly  [12]. Vitamin B12  and folate deficiencies and elevated homocysteine 

concentrations have been associated with lower BMD [13-18].

An elevated plasma homocysteine concentration (≥15 μmol/L) is prevalent in 

30-50% of Dutch people older than 60 years, increases with age  [19-21] and is 

multifactorial; age, sex and lifestyle factors, as well as environmental and genetic 

factors, nutritional intake of B-vitamins and hormonal factors affect homocysteine 

status  [22]. B-vitamins play a central role in the homocysteine metabolism  [23]. 

Treatment with vitamin B12 and folic acid supplements is effective in normalizing 

homocysteine concentrations [24, 25].
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Evidence of a beneficial effect of supplementation with B-vitamins on fracture 

incidence has been signalled in Japan in elderly hemiplegic patients following 

stroke [26]. However, the generalizability of these findings is limited, since a highly 

selective patient population with a high percentage of vitamin D deficiency and 

a high fracture risk was studied. Moreover, pharmacological doses of folic acid (5 

mg/day) and vitamin B12 (1.5 mg/day) were given, which may increase the risk of 

adverse effects.

In vitro studies support the hypothesis of a beneficial effect of vitamin B12 supple‑

mentation. Vitamin B12 has been shown to stimulate osteoblast proliferation and 

alkaline phosphatase activity [27] and vitamin B12 deficiency has been associated 

with defective functional maturation of osteoblasts [28]. Recent publications indi‑

cate a shift to more evidence of osteoclast stimulation by high homocysteine and 

low vitamin B12 concentrations  [29-31]. These mechanisms might be interrelated 

with another, with subsequent interference of homocysteine with collagen cross-

linking. Cross-links are important for stability and strength of the collagen network. 

Interference in cross-link formation would cause an altered bone matrix, further 

resulting in more fragile bone [32].

Accordingly, these mechanistic studies support the hypothesis of a beneficial 

effect of homocysteine reduction by B-vitamin supplementation on fracture 

incidence and related outcome measures. However, it remains unknown whether 

this relationship is causal as evidence from Randomized Controlled Trials (RCTs) is 

still limited. It would be most valuable to assess this relationship in a population 

consisting of generally healthy elderly people as deficiencies of vitamin B12  and 

folate are highly prevalent in this population and lead to elevated homocysteine 

concentrations.

The primary aim of our current intervention is therefore to assess the efficacy of 

oral supplementation with vitamin B12 and folic acid in the prevention of fractures in 

Dutch elderly people with elevated homocysteine concentrations. We will address 

potential pathways and phenotypes leading to fractures, osteoporosis measures, 

falls and physical performance. We will concurrently address other outcomes asso‑

ciated with elevated homocysteine concentrations, such as cognitive function [33] 

and cardiovascular disease  [34]. The aim of this article is to describe the design 

of our intervention and to describe the baseline characteristics of the population 

enrolled.
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Methods/Design

Study design
The B‑PROOF study is a randomized, placebo-controlled, double-blind, parallel 

intervention study. B‑PROOF is an acronym for ‘B-vitamins for the PRevention Of 

Osteoporotic Fractures’. This large multi-centre project is carried out in The Nether‑

lands by a consortium from Erasmus MC (EMC, Rotterdam), VU University Medical 

Center (VUmc, Amsterdam) and Wageningen University (WU, Wageningen), the 

latter acting as coordinator. The study aimed to include 3000 subjects, aged 65 

years and older, with elevated plasma homocysteine concentrations (≥12 μmol/L). 

The intervention period is 2 years. Participants were randomly allocated in a 1:1 

ratio to the intervention group or to the control group. We stratified for study 

centre, sex, age (65-80 years, >80 years), and homocysteine concentration (12-18 

μmol/L, ≥18 μmol/L). The intervention group receives a daily tablet with 500 μg 

vitamin B12 and 400 μg folic acid and the control group receives a daily placebo 

tablet. Both tablets contain 15 μg (600 IU) of vitamin D3 to ensure a normal vitamin 

D status [35]. The intervention and placebo tablets, produced by Orthica, Almere, 

the Netherlands, are indistinguishable in taste, smell and appearance. The random 

allocation sequence and randomization were generated and performed using SAS 

9.2 by an independent research dietician.

Recruitment took place from August 2008 until March 2011. The B‑PROOF study 

has been registered with the Netherlands Trial Register  http://www.trialregister.

nl website under identifier NTR 1333 since June 1, 2008 and with ClinicalTrials.gov 

under identifier NCT00696514 since June 9, 2008. The WU Medical Ethics Commit‑

tee approved the study protocol, and the Medical Ethics committees of EMC and 

VUmc gave approval for local feasibility.

Sample size
Sample size calculation was based on the primary outcome measure of the in‑

tervention, i.e. osteoporotic fractures. The fracture rate in the non-treated group 

was estimated to be 5-6% in a period of two years, based on osteoporotic fracture 

incidence in both independently living and institutionalized elderly. Elderly in 

the highest quartile of homocysteine concentrations have been shown to have a 

doubled risk of fracture [11], we expected that the fracture rate in the treated group 
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would be reduced by 34%. With a power of 80%, a significance level (α) of 0.05, one 

tail, 1500 participants were required for both intervention and placebo group. To 

compensate for the expected drop-out rate of 15%, we extended the intervention 

period with one year for the first 600 participants of the study.

Subjects
Most participants were recruited via the registries of municipalities in the area of 

the research centres by inviting all inhabitants aged 65 years and older by mail. 

Furthermore, inhabitants of elderly homes in the area of Rotterdam, Amsterdam 

and Wageningen were invited to participate, after providing information brochures 

and information meetings. In addition, elderly who participated in previous studies 

of the research centres were approached. All participants gave written informed 

consent before the start of the intervention.

A total of 2919 subjects were included in the intervention (Figure 1). Inclusion 

and exclusion criteria are listed in Table 1.

Changes to inclusion criteria after trial commencement
The inclusion criteria regarding cut-off values for plasma homocysteine concentra‑

tions and age were adapted during the first phase of the intervention. The initial eli‑

gibility criterion for plasma homocysteine concentrations has been adjusted from 

≥15 μmol/L to ≥12 μmol/L before the start of the study. Extended data analyses 

(unpublished data), based on Van Meurs et al., 2004, showed that a relation between 

homocysteine status and fracture incidence is also present at a lower homocysteine 

concentration (~14 μmol/L). Furthermore, cross-calibration between different local 

Table 1. Inclusion and exclusion criteria for the B‑PROOF study.

Inclusion criteria Exclusion criteria

Men and women, aged 65 years and older Immobilization: being bedridden or wheelchair bound

Compliance for tablet intake of >85% 4-6 weeks prior to start of 
the trial

Cancer diagnosis within the last 5 year, except skin cancer as basal 
cell carcinoma and squamous cell carcinoma

Competent to make own decisions Serum creatinine level >150 μmol/L

Elevated homocysteine level (≥12 μmol/L and ≤50 μmol/L) Current or recent (<4 months) use of supplements with very high 
doses of vitamin B12 (intramuscular injections) or folic acid (>300 
μg)

Participation in other intervention studies
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homocysteine methods used in the current study (Architect Analyser, HPLC and 

LC-MS) and the methods used in the previous leading studies [9, 11] showed that 

a homocysteine concentration of 14 μmol/L in these studies corresponded with a 

concentration of 12 μmol/L when using the current methods.

It was decided to adapt the criterion for age from 70 years and older to 65 years 

and older after the first year of recruitment, because the association between ho‑

mocysteine and fractures is also present in people aged 65-70 years [9, 11].

Screening and run-in period
Blood samples were obtained from participants in the morning at the research 

centres or at an external location in the living area of the participants. Participants 
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Figure 1. Recruitment and baseline measurements in participants of the B‑PROOF study.
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were in a fasted state, or had taken a light breakfast. Venous blood was drawn by a 

skilled nurse to obtain plasma, serum and buffy coats. For homocysteine analysis, a 

plasma EDTA tube was stored on ice immediately after blood drawing and samples 

were processed within 4 hours after blood drawing, to prevent a temperature- and 

time-dependent increase in plasma homocysteine [36]. Plasma homocysteine was 

measured using the Architect i2000 RS analyser (VUmc, intra assay CV=2%, inter 

assay CV=4%), HPLC method [37] (WU, intra assay CV=3.1%, inter assay CV=5.9%) 

and LC-MS/MS (EMC, CV=3.1%). According to a cross-calibration, outcomes of the 

three centres did not differ significantly. Serum creatinine was measured with the 

enzymatic colorimetric Roche CREA plus assay (CV=2%). The remaining plasma, 

serum and buffy coats samples were kept frozen at -80°C until further analysis.

After blood sampling participants started with a six-week run-in period, in 

which the participants took placebo tablets and were asked to daily fill out their 

study supplement intake on a research calendar. Subsequently, participants were 

informed whether they could further participate in the study or not, as an elevated 

plasma homocysteine concentration was an inclusion criterion, and an elevated 

serum creatinine concentration was an exclusion criterion. In case of laboratory 

results outside the reference range set for homocysteine (>50 μmol/L) or creatinine 

(>150 μmol/L) participants were referred to their general practitioner.

Measurements
Eligible participants were invited for baseline measurements, which were performed 

during a 1.5-2 hour session at one of the study centres or at the participant’s home. 

The 2-year intervention period started after these baseline measurements. Adher‑

ence was assessed by recordings on the research calendar, counts of bi-annually 

returned tablets, and periodical phone calls with the participants. After two years 

of intervention, participants are invited for follow-up measurements, in which the 

baseline measurements are repeated.

Primary outcome
The primary outcome of the trial is time to first osteoporotic fracture. Participants 

recorded fractures on the research calendar, which was returned every 3 months. 

Incomplete or unclear data were further inquired by telephone. Furthermore, the 

research team verified reported fractures with the participants’ general practitioner, 
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hospital physician and/or by radiographs. All fractures are considered osteoporotic, 

except for head/hand/finger/foot/toe fractures and fractures caused by traffic ac‑

cidents [38]. The time to fracture is the difference between starting date and date 

of fracture reported on the calendar or by the general practitioner.

Secondary outcomes

Falls
Falls were recorded weekly on the research calendar. A fall was defined as an un‑

intentional change in position resulting in coming to rest at a lower level or on 

the ground [39]. Recurrent falling was defined as at least two falls of a participant 

within six months during the two years of follow-up [40].

Dual Energy X-ray Assessment (DXA)
In two out of three study centres Dual Energy X-ray Assessment (DXA) was per‑

formed to measure bone mineral density (BMD) and lean body mass and to assess 

vertebral fractures, using the Hologic QDR 4500 Delphi device (VUmc, Hologic 

Inc., USA, CV=0.45%) or the GE Lunar Prodigy device (EMC, GE Healthcare, USA, 

CV=0.08%). The two devices were cross-calibrated. DXA was performed under stan‑

dard protocols within four weeks after the participant’s start of the intervention.

Total hip, femoral neck and lumbar spine BMD (g/cm2) were measured. Total hip 

BMD was measured at the left femur, while in case of a hip prosthesis at the left 

side, the right side was measured. Instant vertebral assessment (IVA) was performed 

to detect clinical and non-clinical vertebral fractures. Results were independently 

evaluated by two researchers, and inconsistencies were discussed.

Furthermore, total body composition was measured. The amount of fat-free soft 

tissue (i.e. lean mass minus bone mineral content) of the extremities can be used as 

an indicator of skeletal muscle mass and has been validated in older persons [41].

Quantitative Ultrasound (QUS)
Quantitative ultrasound (QUS) measurements of the calcaneus were performed us‑

ing a Hologic Sahara bone densitometer (Hologic Inc., USA). Broadband ultrasound 

attenuation (BUA, dB/MHz, CV=3.7%) and speed of sound (SOS, m/s, CV=0.22%) 

were measured in duplicate in both the right and the left calcaneus. From these 
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parameters, the quantitative ultrasound index (QUI, CV=2.6%) and estimated BMD 

(eBMD) were calculated.

Bone turnover markers
After completion of the study, bone turnover markers will be determined in a sub‑

sample in order to obtain better insight in the mechanism underlying the effect 

of B-vitamin supplementation on bone health. Standard assays will be performed 

in baseline and follow-up blood samples to measure markers of bone formation 

and bone resorption, such as procollagen type 1 N-extension peptide (P1NP) and 

cross-linked carboxyterminal telopeptide of type 1 collagen (CTx).

Physical performance and handgrip strength
Physical performance was measured using three tests; a walking test, a chair stands 

test, and a balance test. These performance tests are commonly used in elderly 

people [42-44]. During the timed walking test, participants were asked to walk 3 

meters, turn around, and walk back as quickly as possible. During the timed chair 

stands test the participants rose from and sat down in a chair as quickly as possible 

for five consecutive times without the use of their arms. Standing balance was 

assessed with the modified Romberg test in which the participants were asked 

to maintain balance for 10 seconds in four different positions with increasing dif‑

ficulty. Each position was performed with eyes open and eyes closed.

Hand grip strength (kg) was measured using a strain-gauged dynamometer 

(Takei, TKK 5401, Takei Scientific Instruments Co. Ltd., Japan, inter observer CV=5%). 

Participants were asked to perform two maximum hand grip trials with each hand 

in standing position with their arms along their body. Maximal hand grip strength 

was defined as the average of the highest score of the left and right hand.

Vascular parameters
Blood pressure measurements were performed using an Omron M1 plus blood 

pressure device (Omron Healthcare Europe). In two of the centres vascular struc‑

ture and function was assessed non-invasively in a subsample by measuring blood 

pressure, intima-media-thickness (IMT) of the carotid artery, carotid distensibility 

(DC), aortic pulse wave velocity (PWV) and augmentation index (AIx).

        



1.2

Rationale and design of the B-PROOF study  |  33

Carotid B-mode ultrasonography is performed using the L105 40 mm 7.5 MHz 

array transducer (Picus, Pie Medical Equipment, Maastricht, the Netherlands) on the 

right carotid artery. IMT is evaluated as the distance luminal-intimal interference 

and the media-adventitial interface (Art.Lab, Esoate Europe, Maastricht, the Neth‑

erlands). The vessel wall movement-detector system has been described in detail 

previously  [45]. The system consists of a wall track system and data-acquisition 

system (Art.Lab, Esoate Europe, Maastricht, the Netherlands). AIx is calculated using 

arterial tonometry obtained from the right radial, carotid and femoral artery using 

the Sphygmocor device (Sphygmocor version 7.1, AtCor Medical, Sydney, Australia). 

PWV is measured with simultaneously three channel ECG recording and recording 

of the right carotid and femoral artery pulse waveforms. Twenty-four hour ambula‑

tory blood pressure recording was performed using Oscar 2 ambulatory 24 hour 

blood pressure monitor (SunTech Medical, North Carolina, USA).

Biomarkers of cardiovascular disease and cardiovascular events
Cardiovascular events were defined as cardiovascular mortality, myocardial infarc‑

tion and stroke. Participants were requested to fill out a questionnaire regarding 

their cardiovascular history. After completion of the study cardiovascular and 

inflammatory biomarkers, such as amino-terminal B-type natriuretic peptide (NT-

proBNP) and high-sensitivity hsC-reactive protein (hs-CRP) will be measured in 

baseline and follow-up blood samples.

Cognitive function
We used the Mini-Mental State Examination (MMSE) for a description of global cog‑

nitive performance in our study population [46]. In a subsample, i.e. all participants 

of WU, domain specific cognitive function was assessed using six standardized 

tests; the Symbol Digit Modalities Test, the Letter Fluency test, the Trail Making 

Test, the Digit Span Test, the Word Learning Test and the Stroop Colour Word Test. 

These tests were used to construct the following cognitive domains: attention, 

working memory, executive function, information processing speed and episodic 

memory [47].
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Depression and Quality of Life
The Geriatric Depression Scale (GDS) was used to measure depressive symp‑

toms  [48]. To determine quality of life the EuroQoL EQ-5D  [49] and Short Form 

Health Survey (SF-12) [50] questionnaires were used.

Measurement of covariates

General self-reported health and medication usage
Self-reported medical history, ethnicity, use of medication and of nutritional 

supplements, current alcohol intake and smoking habits and history of falls and 

fractures were determined using a questionnaire.

Medication use during the study period was also retrieved from pharmacies. 

Data included the prescription period, the total amount of drug units per prescrip‑

tion, the prescribed daily number of units, product name, and the Anatomical 

Therapeutic Chemical (ATC) code.

Physical Activity
Physical activity was measured using the LASA Physical Activity Questionnaire 

(LAPAQ), which is a validated questionnaire to measure physical activity in elderly 

people  [51]. The activities included walking, cycling, gardening, participation in 

sports and light and heavy household activities. Frequency and duration of each 

activity during the last two weeks were assessed. Physical activity was calculated in 

minutes/day and kcal/day.

Nutritional status and food intake
The Mini Nutritional Assessment (MNA) [52] and the Simplified Nutritional Appetite 

Questionnaire (SNAQ) [53] were used to screen for malnutrition and appetite loss. 

Standing height was measured in duplicate to the nearest 0.1 cm with the person 

standing erect and wearing no shoes. Weight was measured to the nearest 0.5 

kg with the person wearing light garments without shoes and empty pockets. 

In a subsample, i.e. all participants of WU, we estimated dietary intake by a Food 

Frequency Questionnaire (FFQ) with its main focus on macronutrients, vitamin 

B12, folate, vitamin D, and calcium. The FFQ was developed by the dietetics group 

at the department of Human Nutrition, Wageningen University and was derived 
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from an FFQ which was validated for energy, fat, cholesterol, folate and vitamin 

B12 intake [54, 55].

Genotyping
From the blood samples drawn at baseline, DNA was isolated for genotyping. Sub‑

sequently, all samples were genotyped for approximately 700.000 single nucleo‑

tide polymorphisms (SNPs) using the Illumina Omni-express array, which has >90% 

coverage of all common variation in the genome. If known functional SNPs were 

not tagged well by the array, they were genotyped separately using TaqMan allelic 

discrimination assays on the ABI Prism 9700 HT sequence detection system. The 

data will be used in a hypothesis-free genome-wide association study (GWAS) as 

well as in analyses of genetic variation in known candidate genes.

Data analysis
The data analyses will be performed by following the intention-to-treat procedure 

(effectiveness study) and the per-protocol-procedure (efficacy study). If necessary, 

data will be transformed and analyses will be adjusted for the presence of covari‑

ates. Time to first fracture will be analysed using Cox Proportional Hazard Models.

Differences in mean change between groups will be analysed with independent 

sample Student’s t-test, ANOVA or other similar tests. Two-sided P values will be 

calculated and a significance level of 0.05 will be applied.

We did not perform an interim analysis because we did not expect and observe 

negative side effects of the supplementation and because of the relatively long 

recruitment period, with most of the participants included in the last year of re‑

cruitment. We keep track of any serious adverse events (SAEs) occurring during the 

duration of the study.

Inclusion and baseline characteristics of the participants
Baseline characteristics of participants in the B‑PROOF study are shown in Table 2. 

During the recruitment, we addressed approximately 69.000 people (Figure 1). This 

resulted in the screening of 6242 interested persons, of which 3027 were eligible to 

participate. One hundred and eight participants withdrew consent before start of 

the intervention resulting in 2919 participants who completed baseline measure‑

ments. The mean age of participants at the start of the intervention was 74.1 years 
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(SD: 6.5) and 50% was female. Median plasma homocysteine concentration was 

14.4 μmol/L (IQR: 13.0-16.6).

Discussion

To our best knowledge, the B‑PROOF study is the first intervention study in which 

the effect of vitamin B12 and folic acid supplementation on osteoporotic fractures 

is studied in a general elderly population. Currently, folic acid fortification is not 

mandatory in the Netherlands, and it is only applied on small scale in bread sub‑

stitutes. This intervention is therefore an excellent opportunity to investigate the 

effect of folic acid and vitamin B12 supplementation in a non-fortified population. 

Positive evidence emerging from this intervention might enable elderly to live into 

an advanced age with lower fracture risk. Implementation of vitamin B12 and folic 

acid supplementation might therefore reduce the costs of national health services 

for osteoporosis in the elderly.

Table 2. Baseline characteristics of the B-PROOF study participants.

Total (n=2919) Male (n=1456) Female (n=1463)

Study location (n)

-WU 856 499 357

-VUmc 778 301 477

-Erasmus MC 1285 656 629

Age (years)* 74.1 (6.5) 73.4 (6.1) 74.9 (6.8)

Plasma homocysteine (μmol/L)# 14.4 14.6 14.1

[13.0-16.6] [13.1-16.8] [12.9-16.3]

Serum creatinine (μmol/L)# 82.0 90.0 73.0

[71-94] [81.0-101.0] [65.0-84.0]

Weight (kg)# 77.9 (13.3) 83.1 (11.9) 72.7 (12.5)

Height (cm) # 169.3 (9.3) 175.9 (6.6) 162.7 (6.6)

Physical activity (min/day)# 130.0 116.3 142.9

[84.0-192.9] [72.5-177.0] [96.0-205.7]

Years of education* 10.1 (4.0) 10.9 (4.1) 9.2 (3.6)

Smoking (%)

- Current 9.6 10.8 8.5

- Former 56.5 69.1 44.0

- Never 33.9 20.1 47.6

*Results are presented in mean (standard deviation); #Results are presented in median [interquartile range].
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Elevated homocysteine concentrations are associated with various health out‑

comes, but until now there are no large interventions investigating the effect of ho‑

mocysteine lowering treatment on, for example, physical performance. Therefore, 

the wide range of secondary outcomes studied in the B‑PROOF study is unique. 

The possibility to perform a GWAS in such a large general elderly population will 

provide us with relevant data on the underlying mechanisms and genes involved 

in age-related diseases as osteoporosis and cognitive decline. In addition, DNA 

analysis gives us the opportunity to focus on the effect of B-vitamins on epigenetic 

changes.

We have some remarks on the expected outcomes of this study. We expect 

the effect of folic acid and vitamin B12 supplementation to be most beneficial in 

people with an elevated homocysteine concentration. We therefore only included 

elderly people with elevated homocysteine concentrations (≥12 μmol/L), but as 

a consequence, we cannot extrapolate the results to elderly with low to normal 

homocysteine concentrations (<12 μmol/L). However, 49% of the elderly screened 

in our study had an elevated homocysteine concentration. This percentage might 

be higher in the general Dutch elderly population, since people interested in nutri‑

tion and health, with a subsequent healthier lifestyle are probably more willing to 

participate in a long term intervention study. Therefore, the B‑PROOF study covers 

a large segment of the general Dutch elderly population.

Because we supply both folic acid and vitamin B12, it will not be possible to 

indicate whether the effects of the intervention will be the consequence of folic 

acid or vitamin B12  supplementation or lowering homocysteine concentrations 

in general. However, since both vitamins play a significant role in homocysteine 

metabolism, and folic acid supplementation alone might mask a possible vitamin 

B12 deficiency [56], it is the most efficient and safest to supplement both vitamins.

The first longitudinal results of the B‑PROOF study will become available in the 

second semester of 2013.
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Abstract

Introduction
High plasma homocysteine levels have been associated with incident osteoporotic 

fractures, but the mechanisms underlying this association are still unknown. It has 

been hypothesized that homocysteine might interfere with collagen cross-linking 

in bone, thereby weakening bone structure. Therefore, we wanted to investigate 

whether plasma homocysteine levels are associated with bone quality parameters, 

rather than with bone mineral density.

Methods
Cross-sectional data of the B‑PROOF study (n=1227) and of two cohorts of the Rot‑

terdam Study (RS-I (n=2850) and RS-II (n=2023)) were used. Data on bone mineral 

density of the femoral neck and lumbar spine were obtained in these participants 

using dual-energy X-ray assessment (DXA). In addition, participants of B‑PROOF 

and RS-I underwent quantitative ultrasound measurement of the calcaneus, as a 

marker for bone quality. Multiple linear regression analysis was used to investigate 

the associations between natural-log transformed plasma levels of homocysteine 

and bone mineral density or ultrasound parameters.

Results
Natural-log transformed homocysteine levels were inversely associated with 

femoral neck bone mineral density in the two cohorts of the Rotterdam Study 

(B=− 0.025, p=0.004 and B=− 0.024, p=0.024). In B‑PROOF, no association was 

found. Pooled data analysis showed significant associations between homocys‑

teine and bone mineral density at both femoral neck (B=− 0.032, p=0.010) and 

lumbar spine (B=− 0.098, p=0.021). Higher natural-log transformed homocysteine 

levels associated significantly with lower bone ultrasound attenuation in B‑PROOF 

(B=− 3.7, p=0.009) and speed of sound in both B‑PROOF (B=− 8.9, p=0.001) and 

RS-I (B=− 14.5, p=0.003), indicating lower bone quality. Pooled analysis confirmed 

the association between homocysteine and SOS (B=− 13.1, p=0.016). Results from 

ANCOVA-analysis indicate that differences in SOS and BUA between participants 

having a plasma homocysteine level above or below median correspond to 0.14 

and 0.09 SD, respectively.
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Discussion
In this study, plasma levels of homocysteine were significantly inversely associated 

with both bone ultrasound parameters and with bone mineral density. However, the 

size of the associations seems to be of limited clinical relevance and may therefore 

not explain the previously observed association between plasma homocysteine 

and osteoporotic fracture incidence.

Introduction

Osteoporosis is characterized by low bone mass and micro-architectural deteriora‑

tion of bone tissue, leading to bone fragility and increased fracture risk [1]. Osteo‑

porotic fractures are a major health care problem, since they lead to a significant 

increase in morbidity and mortality [2]. For example, excess mortality rates in the 

first year after a hip fracture vary from 12% to 35% [3]. Due to a continuing rise in 

life expectancy and aging of the population, the economic burden of osteoporotic 

fractures in Europe is expected to increase substantially in the coming decades; 

from €36.3 billion in 2000 to €76.8 billion in 2050 [4]. 

Moderately elevated plasma homocysteine (Hcy) levels have been associated 

with osteoporotic fracture incidence [5-7]. However, the mechanisms underlying 

the association between Hcy and osteoporotic fractures have not yet been unrav‑

eled. In literature, conflicting results concerning the association between Hcy and 

bone mineral density (BMD) exist; inverse [8, 9], mixed [10] and no associations [7, 

11, 12] have been reported. A recent meta-analysis in women showed no signifi‑

cant association between Hcy and BMD [13]. A meta-analysis in men was not pos‑

sible. It therefore remains not fully certain whether the major pathway underlying 

the association between Hcy and osteoporotic fractures includes BMD. It has also 

been hypothesized that Hcy may interfere with the collagen cross-linking in the 

bone, thereby weakening bone structure [14]. Since the bone structure and micro-

architecture are not completely captured by BMD, which measures the amount of 

mineralized bone in an area, it has been suggested that quantitative ultrasound 

(QUS) measurement might be more suitable for determining bone quality [15]. 

Bone micro-architecture has been shown to be a determinant of QUS-parameters, 

independent of BMD [16]. In addition, QUS has been proven to predict fracture risk 

to a similar degree as does BMD measured using dual-energy X-ray assessment 
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(DXA) [17, 18]. More importantly, both QUS and DXA predict fracture incidence 

partly independently of each other [19], as was recently confirmed in an updated 

meta-analysis [20]. Two studies investigating the association between Hcy and QUS 

parameters have been published [8, 21], showing an inverse association in women 

only.

Thus, data concerning the association between Hcy and bone quality are rela‑

tively scarce, and the association between Hcy and BMD remains inconsistent. We 

therefore analyzed cross-sectional data from three large Dutch studies to investi‑

gate the association between Hcy and BMD. In one of these studies, associations 

between Hcy and QUS parameters were studied as well.

Methods

Design and study population
In this study, data of three studies (B‑PROOF, Rotterdam Study-I and Rotterdam 

Study-II) were analyzed, both per cohort and pooled where applicable.

B-vitamins in the PRevention Of Osteoporotic Fractures (B‑PROOF)
In the current study, baseline data of a subsample of the B‑PROOF-study with data 

on bone parameters available were used. The B‑PROOF-study is a multicenter, dou‑

ble-blind, randomized, placebo-controlled trial investigating the effect of a 2-year 

daily oral supplementation with 500 μg of vitamin B12 and 400 μg of folic acid on 

fracture incidence. The study population consists of 2919 Dutch men and women 

aged 65 years and over who have elevated plasma levels of Hcy (12–50 μmol/l) and 

normal serum creatinine levels (≤150 μmol/l). Details on the B‑PROOF study design 

and population have been described elsewhere [22]. QUS-measurements were 

performed in a random subsample of persons who were screened for participation, 

and of whom levels of Hcy were not available yet (n=2185). DXA-measurements 

were done in a subsample of included participants (Hcy ≥12 μmol/l) who were 

able to visit one of the study centers. In total, of the participants having Hcy ≥12 

μmol/l 627 participants underwent both DXA and QUS-measurements, while 600 

underwent DXA only and 618 underwent QUS-measurement only (Figure 1). In ad‑

dition, QUS-measurements were performed in 940 participants who turned out to 

be excluded from further participation in the B‑PROOF-trial based on the exclusion 
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criterion of a plasma Hcy-level <12 μmol/l. The Wageningen University Medical Eth‑

ics Committee approved the study protocol, and the Medical Ethics committees of 

Erasmus MC and VUmc gave approval for local feasibility. All participants, including 

those who were not eligible for the trial, gave written informed consent.

Rotterdam Study (RS-I and RS-II)
The Rotterdam Study is an ongoing, population-based cohort study among people 

aged 55 years or over, who reside in the Ommoord district of the city of Rotterdam 

in the Netherlands. The Rotterdam Study was designed to investigate chronic, 

disabling diseases. Its rationale and design have been described previously [23]. 

The participants in the current study are part of either the Rotterdam Study-I (RS-

I) or the RS-II cohort. Baseline measurements in the RS-I cohort were performed 

between 1990 and 1993 (RS-I-1). This cohorts’ second follow-up visit after baseline 

took place between 1997 and 1999 (RS-I-3). Measurements and blood drawing per‑

formed at this second visit are used for cross-sectional analysis in the current study. 

Enrollment to the RS-II cohort started in 2000 and baseline data (RS-II-1) collected 

at that visit are used in the current study. From the RS-I and RS-II cohorts, 2850 and 

2023 participants who underwent DXA were included in the analyses, respectively. 

In addition, QUS-parameters were available in 744 persons from the RS-I cohort. 

The Rotterdam Study was conducted according to the Declaration of Helsinki and 

Invited for trial 
participation 

QUS not performed QUS performed 
(n=2185) 

Excluded from trial 
(based on Hcy<12µmol/l) 

(n=940) 

Included in trial 
(Hcy ≥12µmol/l 

(n=1245) 

DXA performed 
(n=627) 

DXA not performed 
(n=618) 

Excluded from trial Included in trial 
(n=1674) 

DXA not performed 
(n=1074) 

DXA performed 
(n=600) 

Figure 1. Flow-chart describing number of B‑PROOF-participants with data on DXA and/or QUS. (White blocks 
represent participants with QUS and/or DXA measured at baseline included in the current, cross-sectional 
analyses.)
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approved by the medical ethics committee of Erasmus MC. All participants gave 

written informed consent.

Measurements

Bone mineral density (B‑PROOF and Rotterdam Study)
In the B‑PROOF-study, BMD-measurements were performed at two study centers 

(VUmc or Erasmus MC). DXA was used to measure femoral neck (FN) and lumbar 

spine (LS) BMD (g/cm2) under standard protocols and within four weeks of the 

individual’s start in the intervention. For all measurements, the Hologic QDR 4500 

Delphi device (VUmc (Hologic, USA, CV=0.45%)) or the GE Lunar Prodigy device 

(Erasmus MC (GE Healthcare, USA, CV=0.08%)) were used. The two devices were 

cross-calibrated by measuring a European spine phantom (ESP) five times on both 

machines and all results were adjusted accordingly. 

In RS-I and RS-II, BMD at the femoral neck (FN-BMD (g/cm2)) was assessed by DXA 

using a Lunar DPX-densitometer (DPX-L, Lunar Corp. Madison, WI, USA) under stan‑

dard protocols. In addition, in the RS-II cohort, lumbar spine BMD was measured as 

well.

Quantitative ultrasound measurement (B‑PROOF and RS-I)
Quantitative ultrasound (QUS) measurements were performed in the B-PROOF-

study and RS-I. Concerning B‑PROOF, QUS measurements of the calcaneus were 

performed using a Hologic Sahara bone densitometer (Hologic, USA) (Erasmus 

MC, VUmc, WUR) or a CUBA Clinical system (VUmc). Participants were excluded 

from QUS measurements if edema in the foot/ankle was visibly present, since this 

is known to affect the measurement [24]. Broadband ultrasound attenuation (BUA, 

dB/MHz, CV=3.7%) and speed of sound (SOS, m/s, CV=0.22%) were measured in 

duplo in both the right and the left calcaneus. For each individual, an average 

was calculated. Measurements were excluded when linearity of the frequency-

attenuation relation was violated, since this indicates invalid results.

In RS-I, QUS-measurements were performed as well. Measurements were per‑

formed at the baseline visit (RS-I-1), approximately six years prior to blood drawing. 

BUA and SOS were measured at the right foot using a Lunar Achilles Ultrasound 

Bone Densitometer (Lunar, USA), which is a system using a water bath.
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Blood chemistry (B‑PROOF and Rotterdam Study)
In the B‑PROOF-study, blood was drawn when participants were in fasting state 

or had only consumed a light, restricted breakfast. EDTA-blood was placed on ice 

water immediately and blood was centrifuged within 4 h of venapuncture to pre‑

vent a time- and temperature-dependent increase in plasma Hcy. Total plasma Hcy 

levels were measured using the Architect i2000 RS analyzer (VUmc), HPLC-method 

(WUR) and LC–MS/MS (EMC). Cross-calibration did not reveal any differences in 

outcomes between the centers. Serum creatinine was measured with the enzy‑

matic colorimetric Roche CREA plus assay (CV=2%). 

In the Rotterdam Study, fasting venous blood samples were drawn from partici‑

pants to determine levels of Hcy. After withdrawal, EDTA-blood was kept on ice and 

centrifuged at 4 °C within 2 h. Plasma aliquots were stored at − 80 °C till analysis. 

Hcy was determined in EDTA-plasma using isotope-dilution liquid chromatography 

tandem mass spectrometry (LC–MS/MS; Waters Acquity UPLC Quattro Premier XE) 

by a method adapted from Ducros et al. [25].

Covariates (B‑PROOF and Rotterdam Study)
In the B‑PROOF-study, weight was measured to the nearest 0.5 kg in all included 

participants using a calibrated weighing device (SECA 761), while participants were 

wearing light-weight clothes and no shoes. In addition, duplicate measurements of 

height to the nearest millimeter were performed using a stadiometer; the average 

of these measurements was used for analysis. Subsequently, the participant’s body 

mass index (BMI (kg/m2)) was calculated. In the participants who were excluded 

from participation in the B‑PROOF-trial based on their levels of Hcy and/or creati‑

nine, but in whom ultrasound measurements were performed, height and weight 

were assessed by self-reporting, using a questionnaire. In all participants, the use 

of alcohol and tobacco and history of falling were assessed by a questionnaire. 

Additionally, in all included participants, this questionnaire was checked together 

with the participant and physical activity was assessed using a validated question‑

naire (LASA Physical Activity Questionnaire (LAPAQ)) [26].

In the Rotterdam Study, height and weight were measured at baseline while 

participants were wearing lightweight clothing and no shoes. Results were used 

to calculate BMI. Data on smoking behavior, alcohol intake, physical activity and 
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history of falling at baseline were obtained from all participants during a structured 

home interview.

Statistical analysis
Distributions of all variables were visually checked for normality and Hcy was 

natural-log transformed due to presence of skewness. Differences in baseline char‑

acteristics between the three studies were assessed using ANOVA for continuous 

traits and Chi-square for categorical traits. Pearson correlation coefficients between 

the four (FN-BMD, LS-BMD, BUA and SOS) bone parameters were calculated in RS-I 

and the B‑PROOF-study. Data on the three different studies (B‑PROOF, RS-I, RS-II) 

were analyzed both separately and pooled. For the latter, we adjusted for interac‑

tion between cohort and the continuous level of Hcy, since distributions of levels 

of Hcy were different in the three studies. To investigate the association between 

Hcy and bone parameters, multiple linear regression analyses were performed. 

The assumption of linearity between dependent and independent variables was 

checked and confirmed using partial regression plots. Age, sex and BMI were 

added as covariates in the regression model. Serum creatinine, alcohol, smoking, 

fall history, and physical activity were regarded as potential confounders. If their 

introduction to the model led to a change of 10% or more in beta for Hcy, the 

covariate was regarded as a confounder and was kept in the model. Additionally, 

stratification for sex was done to investigate whether associations are sex-specific. 

Finally, we stratified the participants according to their plasma Hcy levels. ANCOVA 

was performed to show differences in adjusted bone parameters between partici‑

pants with a plasma Hcy level below and above median to facilitate interpretation 

of effect sizes. All analyses were done using IBM SPSS Statistics version 20. Statistical 

significance was set at α=0.05.

Results

Baseline characteristics of the three study populations are shown in Table 1. The 

RS-II cohort was significantly younger, had lower levels of Hcy and higher FN-BMD 

compared with the RS-I and B‑PROOF studies.

Both in crude analysis and after adjustment for confounders, a significant inverse 

association was observed between natural log-transformed levels of Hcy and 
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FN-BMD in both the RS-I (B=− 0.025, p=0.004 (adjusted model)) and the RS-II (B=− 

0.024, p=0.024 (adjusted model)) cohort (Table 2). This association was not present 

in the B‑PROOF study. Pooled analysis of the data of the three studies, adjusted for 

age, sex, BMI, serum creatinine, cohort and interaction between level of Hcy and 

cohort, showed significant inverse associations between natural log-transformed 

Hcy and FN-BMD (B=− 0.032, p=0.010) and LS-BMD (B=− 0.098, p=0.021). Stratify‑

ing the pooled analysis for sex did not show different results for men and women.

Concerning ultrasound parameters in the B‑PROOF-study, an inverse associa‑

tion was observed between natural log-transformed Hcy and both SOS (B=− 8.9, 

p=0.001) and BUA (B=− 3.7, p=0.009) after adjustment for age, sex, BMI, serum 

creatinine, study center and type of ultrasound device (Table 2). Stratification for 

sex showed that this association was most pronounced in women (Table 3). In 

RS-I, natural log-transformed Hcy and SOS were significantly associated (B=− 14.5, 

Table 2. Multiple linear regression of lnHcy-levels on bone parameters.

    Model 1   Model 2

  n B p 95% CI   B p 95% CI

B‑PROOF                

FN-BMD (g/cm2) 1190 0.019 0.344 (-0.020;0.058) -0.003 0.896 (-0.042;0.037)

LS-BMD (g/cm2) 1223 0.010 0.754 (-0.054;0.074) -0.025 0.455 (-0.090;0.040)

SOS (m/s) 2183 -13.806 <0.001 (-19.662;-7.950) -8.924 0.001 (-13.965;-3.882)

BUA (dB/mHz) 2185 -2.069 0.126 (-4.721;0.582) -3.743 0.009 (-6.541;-0.946)

RS-I

FN-BMD (g/cm2) 2850 -0.017 0.034 (-0.033;-0.001) -0.025 0.004 (-0.041;-0.008)

SOS (m/s) 744 -9.350 0.032 (-17.914;-0.786) -14.494 0.003 (-23.904;-5.083)

BUA (dB/mHz) 744 -0.107 0.942 (-2.986;2.771) -1.479 0.360 (-4.648;1.689)

RS-II

FN-BMD (g/cm2) 2000 -0.024 0.024 (-0.044;-0.003) -0.032 0.003 (-0.054;-0.011)

LS-BMD (g/cm2) 2014 -0.020 0.180 (-0.050;0.009) -0.026 0.103 (-0.056;0.005)

Pooled analysis

n.a.

       

FN-BMD (g/cm2) -0.032 0.010 (-0.056;-0.008)

LS-BMD (g/cm2) -0.098 0.021 (-0.181;-0.015)

SOS (m/s) -13.123 0.016 (-23.823;-2.424)

BUA (dB/mHz)   -2.755 0.233 (-7.285;1.776)

Model 1: adjusted for age, sex and BMI.
Model 2 (B‑PROOF): additionally adjusted for study region, serum creatinine and type of QUS-device (BUA and SOS only), use 
of alcohol (FN and LS-BMD only) and smoking (LS-BMD only).
Model 2 (RS-I and RS-II): additionally adjusted for serum creatinine.
Pooled analysis: adjusted for age, sex, BMI, serum creatinine, cohort, lnHcy*cohort.
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p=0.003) after adjustment for confounders. For BUA, the association was not sig‑

nificant (Table 2). Stratification did not reveal clear differences between men and 

women. A pooled analysis, combining the B‑PROOF and RS-I data, confirmed the 

association between Hcy and SOS (B=− 13.1, p=0.016), but not for BUA (Table 2).

Table 4 shows the mean level of the bone parameters according to the Hcy levels 

of the participants. Participants having a plasma level of Hcy above median have 

0.012 g/cm2 lower FN-BMD and 0.019 g/cm2 lower LS-BMD. For SOS and BUA, these 

differences are respectively 5.1 m/s and 1.1 dB/mHz, corresponding to 0.14 and 

0.09 SD, respectively. For FN-BMD, LS-BMD and SOS, differences are statistically 

significant.

Table 3. Multiple linear regression analysis for the association between lnHcy and QUS-parameters, stratified 
for sex.

  Males   Females

  B p 95% CI   B p 95% CI

B-PROOF (n=2185)

SOS (m/s) -5.039 0.316 (-14.908;4.830) -11.152 <0.001 (-16.997;-5.307)

BUA (dB/mHz) -1.277 0.633 (-6.521;3.966) -5.407 0.001 (-8.718;-2.095)

RS-I (n=744)

SOS (m/s) -15.969 0.041 (-31.270;-0.668) -13.262 0.026 (-24.941;-1.582)

BUA (dB/mHz) -0.489 0.837 (-5.148;4.170)   -2.543 0.255 (-6.934;1.847)

Model is adjusted for BMI, age, serum creatinine. The B-PROOF data are additionally adjusted for study center and QUS-
device.

Table 4. Adjusted means for bone parameters according to plasma Hcy below and above median (studies 
taken together, ANCOVA).

    Median Hcy 
(μmol/l)

Hcy<median   Hcy>median Difference 
between means

p
  n Mean SE   Mean SE

FN-BMD (g/cm2) 6039 13.8 0.884 0.003 0.872 0.003 0.012 0.009

LS-BMD (g/cm2) 3236 13.5 1.172 0.006 1.153 0.006 0.019 0.050

SOS (m/s) 2644 12.8 1538.4 1.183 1533.3 1,030 5.1 0.006

BUA (dB/mHz) 2644 12.8 81.7 0.501   80.6 0.436 1.1 0.132

FN-BMD and LS-BMD: adjusted for age, sex, BMI, cohort, creatinine, lnHcy*cohort.
SOS and BUA: adjusted for age, sex, BMI, creatinine, cohort, lnHcy*cohort.
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Discussion

Overall, this study shows that plasma Hcy was inversely and modestly associated 

with both bone ultrasound parameters. However, small associations between Hcy 

and FN and LS-BMD were also observed.

Concerning BMD, a small but significant association was observed between Hcy 

and BMD in both the RS-I and the RS-II cohorts, while no such association was 

observed in the B-PROOF study. A possible explanation for the absence of the as‑

sociation in B-PROOF might be that in this study only participants with levels of Hcy 

>12 μmol/l were included, creating a narrower range of Hcy. In our opinion, clinical 

relevance of the strength of the observed associations in the individual cohorts 

is questionable. Differences in BMD between participants with a plasma level of 

Hcy below and above median had the size of approximately 0.09 SD. We therefore 

speculate that the fairly strong relationship between Hcy and osteoporotic fracture 

risk is not largely explained by effects of Hcy on BMD. This is supported by the 

recent meta-analysis observing no association between levels of Hcy and BMD in 

women only [13].

A previous study showed lower BUA in 1267 elderly women with low levels of 

vitamin B12 and high levels of Hcy compared with women with low or normal levels 

of vitamin B12 and normal levels of Hcy [21]. This relationship was not seen in men. 

In addition, Gerdhem et al. studied 996 women, all aged 75 years and observed up 

to 2% lower ultrasound results in women with Hcy in the 4th quartile compared 

with women in the first three quartiles [8]. Our results are in line with these previ‑

ous findings, as we also observed negative associations which seemed to be more 

pronounced in women than in men. The results may support the hypothesis of Hcy 

affecting the process of collagen cross-linking, possibly by blocking the aldehyde 

groups in collagen [27] which are responsible for cross-linking. However, it should 

be noted that the differences in our study in BUA and SOS between participants 

with high and low levels of Hcy were limited to 0.09 and 0.14 SD, respectively. It 

has been shown that a decrease in BUA of 20.6 dB/mHz, which is more than 1 SD, 

is associated with a 2.3-fold relative risk of hip fracture [18]. It is therefore expected 

that the effect we observed is of limited clinical relevance and is possibly not 

large enough to explain the relationship between Hcy and osteoporotic fracture 

incidence. In addition, it should be noted that the pooled analysis did not show a 
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significant association between Hcy and BUA, although an association was present 

in B-PROOF. The reason for the absence of an association in RS-I and in the pooled 

analysis, while an association with SOS was observed, is unknown.

A major strength of this study is its size; we investigated Hcy and FN-BMD of 6040 

elderly participants in the pooled analysis. A limitation is the cross-sectional design 

of this study, so reverse causality and residual confounding cannot be ruled out. In 

addition, it should be noted that the ultrasound measurements in RS-I were done 

approximately six years before blood drawing and measurement of Hcy took place. 

Clearly, during this time Hcy may have altered. This may have led to an underesti‑

mation of the association between Hcy and BUA/SOS in the RS-I study. 

Based on this study, we conclude that there are modest inverse associations 

between plasma levels of Hcy and bone ultrasound parameters and BMD. However, 

clinical relevance of these associations is expected to be limited. Moreover, the 

strength of each of these associations by itself may not be large enough to explain 

the previously observed strong association between Hcy and osteoporotic fracture 

incidence. The upcoming results of the B-PROOF-study, a trial with Hcy-lowering 

B-vitamins on osteoporotic fracture incidence, will be important in further elucidat‑

ing what explains the association between plasma Hcy levels and fracture risk and 

in determining causality of relationships.
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Abstract

Background
An elevated level of plasma homocysteine (Hcy) is a known risk factor for osteo‑

porotic fractures. In addition, Hcy is related to DNA-methylation metabolism. To 

determine whether the association between Hcy and fractures is explained by an 

altered methylation capacity, we investigated the associations between levels of 

s-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and fracture risk.

Methods
We studied 503 females aged 55 years and over from the Rotterdam Study (RS) 

in whom plasma Hcy, SAM and SAH levels were measured. Bone mineral density 

(BMD) at the hip was assessed using DXA. Incident fractures were recorded over 

a mean period of 7.0 years. Cox proportional hazards analysis and linear regres‑

sion were used to assess relationships between plasma metabolite levels, incident 

osteoporotic fractures and BMD.

Results
Over a total of 3502 person-years of follow-up, 103 subjects sustained at least one 

osteoporotic fracture. Whereas incidence of osteoporotic fractures was associated 

with quartiles of Hcy (p=0.047), it was not associated with quartiles of SAM, SAH or 

SAM/SAH-ratio (all p for trend >0.6). Stepwise linear regression showed that SAM/

SAH-ratio, but not Hcy, was independently associated with hip BMD (β=0.073, 

p=0.025).

Conclusion
Since SAM, SAH and SAM/SAH-ratio were not associated with osteoporotic fractures, 

alterations in methylation capacity most likely do not appear to be an important 

factor in the association between Hcy and fractures.
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Introduction

Osteoporosis is characterized by low bone mass and microarchitectural deteriora‑

tion of bone tissue, leading to bone fragility and increased fracture risk [1]. Osteo‑

porotic fractures are a major health care problem, since they are associated with 

significant morbidity and mortality [2]. Excess mortality rates in the first year after a 

hip fracture vary from 12% to 35% [3]. Due to a rise in life expectancy, the economi‑

cal burden of osteoporotic fractures in Europe is expected to increase substantially 

in the coming decades; from €36.3 billion in 2000 to €76.8 billion in 2050 [4].

Mildly elevated plasma homocysteine (Hcy) levels are associated with osteo‑

porotic fractures [5-7]. The mechanism underlying this association has not yet 

been clarified and literature concerning the presence of an association between 

Hcy and bone mineral density (BMD) is inconsistent [7, 8]. Hcy is hypothesized to 

interfere with collagen cross-linking in bone, thereby weakening bone structure 

[9]. Alternatively, by influencing methylation capacity, Hcy could possibly disturb 

DNA-methylation [10, 11] and gene-expression, which may lead to changes in 

bone structure. Methylation capacity is reflected by S-adenosylhomocysteine 

(SAH) and its precursor S-adenosylmethionine (SAM), two important intermediates 

in the conversion of methionine to Hcy. SAM donates its methyl group to DNA or 

other molecules, resulting in the production of SAH. It is known that when Hcy 

accumulates, the reaction of SAH to Hcy, which is catalyzed by SAH-hydrolase, 

reverses [12], thereby increasing SAH levels [11]. This results in a lower methylation 

capacity, which is reflected by a lower SAM/SAH-ratio. The hypothesis that altered 

methylation capacity might play a role in bone metabolism is supported by the 

finding that a lower SAM/SAH-ratio in bone correlated with reduced bone strength 

in hyperhomocysteinemic rats [13].

To determine whether this hypothesis also holds true in humans, we investigated 

associations between levels of SAM and SAH and incident osteoporotic fractures 

and femoral neck BMD in older females in the Rotterdam Study. In order to also 

address potential other mechanisms underlying the association between Hcy and 

osteoporotic fractures, we investigated the mutual associations between plasma 

Hcy, SAM, SAH, serum levels of vitamin B12 and folate, and methylenetetrahydrofo‑

late reductase-genotype (MTHFR) and the potential associations of B-vitamin levels 

and MTHFR-genotype with osteoporotic fracture incidence.
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Methods

Setting
Subjects were participants of the Rotterdam Study, which is an ongoing, popula‑

tion-based cohort study among people aged 55 years or over, who reside in the 

Ommoord district of the city of Rotterdam in The Netherlands. The Rotterdam 

Study was designed to investigate chronic, disabling diseases. Its rationale and 

design have been described previously [14]. The Rotterdam Study was conducted 

according to the Declaration of Helsinki and approved by the medical ethics com‑

mittee of the Erasmus Medical Center. All subjects gave written informed consent. 

The subjects in the current study are part of the Rotterdam Study-I (RS-I) cohort. 

Baseline measurements in the RS-I cohort were performed between 1990 and 1993 

(RS-I-1). The second follow-up visit to the research center took place between 1997 

and 1999 (RS-I-3) and measurements and blood drawing at that moment serve as 

baseline for the current study.

Study population
Inclusion criteria for the current study were female sex, age of 55 years or over at 

enrollment in RS-I, and a negative history for hip fracture, cancer, cardiovascular 

disease, dementia and stroke between RS-I-1 and RS-1-3. Maximal duration of 

follow-up for fractures was 9.6 years.

Clinical measurements
At time of blood drawing at RS-I-3, bone mineral density at the femoral neck (FN-

BMD, g/cm2) was assessed by dual-energy X-ray assessment (DXA) using a Lunar 

DPX-densitometer (DPX-L, Lunar Corp. Madison, WI, USA) under standard protocols. 

Height and weight were measured at baseline while subjects were wearing light‑

weight clothing and no shoes. Body mass index (BMI, kg/m2) was calculated by 

dividing the subject’s weight (kg) by the squared height (m).

Assessment of osteoporotic fractures
General practitioners continuously monitored participants for incident fractures, 

which were reported by means of a computerized system. Events were classified 

independently by two research physicians according to the International Statistical 
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Classification of Diseases and Related Health Problems, 10th Revision (ICD-10-CM). 

An expert in osteoporosis reviewed all coded events for final classification. Follow-

up started at RS-I-3 and ended on December 31st, 2006. Incident osteoporotic 

fractures were defined as all incident fractures, except for fractures of hand, foot, 

face or skull, and for high-trauma and cancer-related fractures.

Blood chemistry
Fasting venous blood samples were drawn from participants to determine levels 

of Hcy, SAM and SAH in EDTA-plasma and vitamin B12 and folate in serum. After 

withdrawal, EDTA-blood was kept on ice and centrifuged at 4 °C within 2 h. Plasma 

aliquots were stored at − 80 °C till analysis. In addition, MTHFR 677 C → T polymor‑

phism (rs1801133) was determined from isolated DNA as described previously [15].

Hcy was determined in EDTA-plasma using isotope-dilution liquid chromatogra‑

phy tandem mass spectrometry (LC–MS/MS; Waters Acquity UPLC Quattro Premier 

XE) by a method adapted from Ducros et al. [16]. For chromatographic separation, 

we used a Waters Symmetry C8 column (2.1 × 100 mm, reference WAT 058961, 

Waters, Etten-Leur) with a precolumn (Waters, reference 205000343). The column 

was eluted at 0.25 ml/min and no splitter was used. Calibration was performed with 

aqueous standards because they gave similar results as plasma-based standards.

SAM and SAH were also determined using LC–MS/MS by a method adapted from 

Gellekink et al. [17]. In short, non-acidified EDTA-plasma was stored at − 80 °C and 

200 μl of plasma was used for sample clean-up. Samples (10 μl) were injected on 

a 50 × 2.1 mm Atlantis C18 column (Waters) and eluted in a gradient of methanol 

in aqueous acetic acid (0.1%). The retention times were 0.6 min (SAM) and 1.4 min 

(SAH). Standards were dissolved in 1 mmol/l HCl; pool sera were SAM and SAH de‑

pleted by solid phase extraction and spiked with the calibrator. Calibration curves 

for SAM and SAH were linear till 500 nmol/l.

In serum, vitamin B12 and folate were measured using electrochemiluminescence 

immunoassay (Modular E170, Roche, Almere, The Netherlands).

Genomic DNA was isolated using the salting out method. MTHFR 677 C → T 

polymorphism was determined using a Taqman assay as described previously [15]. 

Primers and probes are available on request.
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Statistical analysis
Distributions of all variables were visually checked for normality and natural loga‑

rithms of the variables Hcy, SAM, SAH, SAM/SAH-ratio, vitamin B12 and folate were 

taken. Pearson correlation coefficients between Hcy and the related metabolites 

were calculated. To estimate the hazard ratios for osteoporotic fractures within 

quartiles of Hcy, SAM, SAH, SAM/SAH-ratio, serum levels of folate and B12 and MTHFR 

677 C → T mutation, we conducted Cox proportional hazards analyses, adjusted for 

age and BMI. We adjusted for these variables since they are known confounders 

in the relationship between Hcy and osteoporotic fractures. In a second model, 

additional adjustment for FN-BMD was performed to investigate whether potential 

associations between metabolites and fractures were explained by differences in 

FN-BMD at time of measurement of metabolites.

In addition, to identify determinants of FN-BMD, multiple linear regressions were 

performed. For all statistical analyses, SPSS version 17 was used. The level of statisti‑

cal significance was set at 0.05.

Results

Baseline characteristics
We included 503 women in this study; mean follow-up time for fracture was 7.0 

(SD 2.3) years. Table 1 shows the baseline characteristics of the participants. In total, 

there were 3502 person-years of follow-up, during which 103 subjects sustained at 

least one osteoporotic fracture. Median levels of Hcy, vitamin B12 and folate were 

Table 1. Baseline characteristics of study subjects (n=503).

Median Range

Age (y) 68.5 61.3-74.9

BMI (kg/m2) 27.0 16.8-45.1

FN-BMD (g/cm2) 0.83 0.38-1.38

Hcy (µmol/l) 9.3 3.5-29.7

Folate (nmol/l) 17.4 6.1-45.4

B12 (pmol/l) 328 83-1476

SAM (nmol/l, n=489) 85.6 53.1-198.3

SAH (nmol/l, n=489) 17.2 9.6-43.5

SAM/SAH 5.1 3.0-8.7

Female reference values [18]: Hcy 6-19 µmol/l; folate 8-28 nmol/l; B12 145-637 pmol/l, SAM 70-128 nmol/l; SAH 9-20 nmol/l; 
SAM/SAH 4.7-9.0.
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within the normal ranges. In addition, levels of SAM and SAH were also within 

normal ranges, indicating reliable measurement of these instable metabolites.

Distribution of MTHFR 677 C → T genotype frequencies did not deviate from 

Hardy–Weinberg equilibrium (p=0.05). Of the 486 MTHFR 677 C → T genotyped 

subjects, 41.8% were homozygous for the C-allele, 48.8% were heterozygous, 

and 9.5% were homozygous for the T-allele. T-allele frequency was 33.8%, which 

is similar to other reports in Caucasians [19, 20]. We checked correctness of the 

genotyping assay by including 5% duplicates and found no discrepancies. Compar‑

ing levels of Hcy, folate, B12, SAM, SAH and SAM/SAH-ratio using one-way ANOVA 

showed that Hcy and folate differed significantly across genotype groups (Table 

2). Confirming previous observations, Hcy was 0.8 μmol/l higher and folate was 3.8 

nmol/l lower in TT-individuals compared with CC-individuals. SAM and SAH levels 

did not significantly differ between MTHFR 677 C → T genotypes.

Hcy and related metabolites
Figure 1 shows statistically significant correlations between Hcy, SAM, SAH, SAM/

SAH-ratio, vitamin B12 and folate. Plasma Hcy levels correlated negatively with 

vitamin B12 and folate, while the B-vitamins correlated positively, but weakly, with 

each other. With increasing levels of Hcy, SAM and SAH both increased significantly, 

while the SAM/SAH-ratio declined. Folate levels were positively but weakly cor‑

related with SAM/SAH-ratio.

Table 2. Levels of homocysteine and related metabolites in individuals with different MTHFR 677 C→T 
genotypes.

MTHFR 677 C→T genotype

CC CT TT pa

Hcy (µmol/l) 9.3 9.4 10.1 0.047

Folate (nmol/l) 17.9 17.5 14.1 0.013

B12 (pmol/l) 330 321 353 0.158

SAM (nmol/l) 85.6 86.4 87.3 0.916

SAH (nmol/l) 17.6 17.0 15.9 0.644

SAM/SAH 5.0 5.1 5.4 0.354

aP-values are based on one-way ANOVA using ln-transformed variables.
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Hcy, related metabolites and incident osteoporotic fractures
In Table 3, results from Cox-regression on osteoporotic fractures are shown. Quar‑

tiles of Hcy significantly predicted incident osteoporotic fractures, however, after 

adjusting for FN-BMD this effect attenuated slightly. Quartiles of SAM/SAH-ratio, 

SAH or SAM did not predict incident osteoporotic fractures after adjustment for 

age and BMI (model 1), or age, BMI and FN-BMD (model 2). When blood parameters 

were entered in the model as continuous variables, no significant associations with 

incident fractures were observed.

Using Cox regression models 1 and 2, no associations between osteoporotic 

fracture incidence and MTHFR 677 C → T genotype (p for trend >0.37) or serum 

folate (p for trend >0.15) or B12 levels (p for trend >0.14) were observed (data not 

shown). In addition, no effect of interaction between MTHFR 677 C → T genotype 

and folate levels was seen.

When using a multivariate model including age, BMI, MTHFR 677 C → T genotype 

and the continuous blood parameters Hcy, SAM/SAH-ratio, folate and B12 all to‑

gether in one model, none of these individual parameters contributed significantly 

to the prediction of osteoporotic fractures (data not shown).

SAM

SAM/SAH

SAH

Folate

Hcy

B12

0.134

-0.679
-0.236

0.154

0.647

0.407

-0.496

-0.334 0.306

0.120

-0.092

Figure 1. Statistically significant Pearson’s correlations between metabolites in the Hcy-pathway.
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Hcy, related metabolites and FN-BMD
We performed regression analyses of FN-BMD on all blood parameters and MTHFR 

677 C → T genotype, adjusted for age and BMI (Table 4, model 1). The results show 

that Hcy, folate, SAM/SAH-ratio and SAH were all significantly associated with FN-

BMD in the expected directions. We next tested all the parameters in a multivariate 

forward stepwise regression analysis to assess independent determinants of FN-

BMD (Table 4, model 2). The analysis shows that only age, BMI, SAM/SAH-ratio and 

folate levels contributed significantly to the determination of FN-BMD, while levels 

of B12 and Hcy and MTHFR 677 C → T genotype did not. Inclusion of current alcohol 

use, smoking status and level of education did not change these results (data not 

shown).

Table 3. Hazard ratios for osteoporotic fractures (OF) in quartiles of Hcy, SAM, SAH and SAM/SAH.

Number of 
subjects with OF/
total number of 

subjects

Percentage 
of subjects 

with OF

Model 1a Model 2b

HR for OF 95% CI HR for OF 95% CI

Hcy (µmol/l)

<7.9 18/128 14.1 1.00 1.00

7.9-9.4 23/125 18.4 1.27 0.68-2.35 1.28 0.69-2.38

9.4-11.6 36/134 26.9 1.96 1.10-3.46 1.82 1.02-3.22

>11.6 26/116 22.4 1.64 0.89-3.02 1.50 0.81-2.77

p (trend) 0.047 0.107

SAM (nmol/l)

<78.3 25/122 20.5 1.27 0.69-2.37 1.27 0.68-2.37

78.3-86.2 24/123 19.5 1.19 0.64-2.19 1.32 0.71-2.45

86.2-97.9 28/122 23.0 1.46 0.83-2.57 1.68 0.95-2.98

>97.8 21/122 17.2 1.00 1.00

p (trend) 0.603 0.635

SAH (nmol/l)

<15.0 24/127 18.9 1.00 1.00

15.0-17.2 28/119 23.5 1.25 0.72-2.17 1.21 0.70-2.10

17.2-20.2 22/122 18.0 0.96 0.54-1.72 0.94 0.52-1.68

>20.2 24/121 19.8 0.99 0.55-1.79 0.88 0.49-1.60

p (trend) 0.734 0.938

SAM/SAH

<4.5 25/123 20.3 1.03 0.58-1.82 0.92 0.52-1.64

4.5-5.1 24/122 19.7 1.06 0.60-1.89 1.04 0.58-1.85

5.1-5.7 26/123 21.1 1.10 0.60-1.89 1.11 0.63-1.95

>5.7 23/121 19.0 1.00 1.00

p (trend) 0.971 0.712

a Model 1: Adjusted for age and BMI, b Model 2: Adjusted for age, BMI and FN-BMD.

        



70  |  Chapter 2.2 

Discussion

This study showed that indicators of methylation capacity (plasma SAM, SAH and 

their ratio) were not associated with incident osteoporotic fractures in healthy, 

elderly women, while levels of Hcy were. This suggests that methylation capacity is 

not an important factor in the association between plasma Hcy and osteoporotic 

fractures. We further showed that SAM/SAH-ratio significantly associated with FN-

BMD independently of age, BMI and serum folate levels.

To the best of our knowledge, circulating levels of SAM/SAH-ratio have not been 

investigated previously in relation to osteoporotic fracture risk in humans. However, 

some studies have been conducted on related outcome measures. Holstein et al. 

investigated associations of SAM, SAH and their ratio with bone morphology, all 

measured in the hip bone of patients undergoing hip replacement due to osteo‑

arthritis (n=82) [21]. Higher levels of SAH and Hcy, but unexpectedly also of SAM, 

turned out to be associated with impaired cancellous bone structure. However, 

no significant association with SAM/SAH-ratio was found. In addition, Herrmann et 

al. investigated effects of a high homocystine diet in rats [13]. This diet decreased 

SAM/SAH-ratio in bone as well as plasma. In addition, bone SAM/SAH-ratio was 

positively correlated with bone strength in these rats. We did not observe a signifi‑

Table 4. Multiple linear regression on FN-BMD (g/cm2).

Model 1 Model 2

B p B p

Age (y) n.a. n.a. -0.005 <0.001

BMI (kg/m2) n.a. n.a. 0.008 <0.001

lnHcy (µmol/l) -0.046 0.022

lnSAM/SAH 0.085 0.007 0.073 0.025

lnSAM (nmol/l) 0.002 0.952

lnSAH (nmol/l) -0.053 0.036

lnFolate (nmol/l) 0.038 0.008 0.034 0.021

lnB12 (pmol/l) -0.008 0.542

MTHFR-genotype

- CT vs. CC 0.008 0.509

- TT vs. CC -0.013 0.501

Model 1: Linear regression adjusted for age and BMI.
Model 2: Stepwise linear regression (age, BMI, MTHFR 677 C→T, folate, B12, SAM/SAH and Hcy).
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cant association between SAM/SAH-ratio and osteoporotic fractures in the current 

study. This may be due to the fact that, in general, our study population had normal 

SAM/SAH-ratios, similar to previously observed values in healthy adults [17]. In ad‑

dition, levels of Hcy were low to normal, indicating sufficient methylation capacity. 

Alternatively, the effects of SAM/SAH-ratio on fracture incidence might have been 

too small to detect in our study.

Interestingly, although it was not predicting fractures, high SAM/SAH-ratio did 

associate independently and significantly with high FN-BMD, a finding which has 

not been observed previously. This observation might be explained by results from 

an in vitro study which showed that decreased SAM/SAH-ratio, caused by inhibi‑

tion of SAH-hydrolase, inhibited osteoblast differentiation and extracellular matrix 

calcification [22]. We may speculate that the effect of SAM/SAH-ratio on BMD was 

not large enough to affect fracture incidence, which is known to be multifactorial. 

In addition, possible residual confounding effects of lifestyle factors, co-morbidities 

or drug use cannot be fully ruled out. Next to SAM/SAH-ratio, also folate levels were 

independently associated with FN-BMD, while vitamin B12 levels were not. Previous 

studies on effects of these vitamins on BMD have shown inconsistent results, as 

was reviewed by Herrmann et al. [23]. Our results may suggest folate to have a 

direct effect on BMD, bypassing the Hcy-pathway.

The association between Hcy and osteoporotic fracture risk observed in earlier 

studies by us [7] and others [5, 6] was confirmed by our results. Hcy did not inde‑

pendently associate with FN-BMD, a phenomenon which also has been observed 

previously [7, 24, 25], though not consistently [19]. Since BMD is not the only aspect 

of bone strength, effects of Hcy or SAM/SAH-ratio on other parameters reflecting 

bone quality, such as bone ultrasound attenuation, remain to be investigated.

We did not observe any associations between MTHFR 677 C → T genotype and 

BMD or fracture incidence. A meta-analysis on the association between MTHFR 677 

C → T genotype and BMD showed that, overall, the TT-genotype was associated 

with a slightly lower BMD than the CT/CC-genotypes, an effect which was more 

pronounced in women than in men [26]. However, results from individual stud‑

ies were inconsistent. Concerning fractures, again inconsistent results have been 

observed. While some studies observed a deleterious effect in individuals with the 

MTHFR 677 TT genotype on fractures [20, 27], others observed no [28, 29] or even 
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a protective effect [30]. In our study, lack of power might have been a cause for 

absence of associations.

A limitation of this study is the fact that the study population was relatively 

healthy and considerably homogenous and that subjects had somewhat low and 

narrowly distributed Hcy levels. This might have reduced the power to find any 

associations, and may explain why the association between Hcy and osteoporotic 

fracture incidence was somewhat weaker than observed previously [7]. In addition, 

levels of SAM/SAH are not informative concerning gene-specific methylation. How‑

ever, the fact that the ratio of SAM/SAH in plasma has been correlated with other 

outcomes previously [31, 32] shows that it is a relevant pathway to study further 

and justifies investigating its association with bone phenotypes as well. However, 

additional gene-specific effects of methylation cannot be ruled out based on this 

study. In addition, because levels of SAM and SAH are known to be tissue-specific, 

the circulating levels of SAM and SAH that were examined in the current study 

might not fully reflect the local levels in the bone. However, the fact that we did 

find an association between plasma SAM/SAH-ratio and FN-BMD might indicate 

that the problem of tissue-specificity was small.

Within our study, plasma samples were prepared within half an hour of sampling 

and were immediately frozen in liquid nitrogen. Storage thereafter was at − 80 

°C. Gellekink et al. [17] discussed the importance of acidifying plasma in order to 

prevent SAM from converting to SAH preanalytically. However, we showed earlier 

that this is not necessary when EDTA whole blood is rapidly separated and stored 

at − 80 °C and appropriate measures are taken when thawing and analyzing the 

stored plasma samples [33]. The fact that the ratios of SAM to SAH we measured 

in our study population are within the normal range supports the assumption that 

absence of acidification did not lead to any problems.

In conclusion, this study shows that a higher plasma SAM/SAH-ratio indepen‑

dently predicts a higher FN-BMD, but is not associated with a decrease in osteopo‑

rotic fracture risk. To gain more insight into the association between SAM/SAH-ratio 

and FN-BMD, it would be interesting to investigate DNA-methylation patterns of 

genes known to influence BMD in relation to Hcy and SAM/SAH-ratio. The B-PROOF-

study, a currently running multi-center trial in which the effect of supplementation 

with folic acid and vitamin B12 is investigated, might provide more insight into the 
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potentially causal role of Hcy in the occurrence of osteoporotic fractures and its 

effects on bone quality and DNA-methylation [34].
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Abstract

Background
Elevated plasma homocysteine levels are a risk factor for osteoporotic fractures. 

Lowering homocysteine with vitamin B12 and folic acid supplementation may 

reduce fracture risk. 

Objective
This study (B-PROOF) aimed to determine whether vitamin B12/folic acid supple‑

mentation reduces osteoporotic fracture incidence in hyperhomocysteinemic 

elderly. 

Design
It is a double-blind, randomized, placebo-controlled trial including 2,919 partici‑

pants aged ≥65 years with elevated homocysteine levels (12-50 μmol/L). Partici‑

pants were assigned to daily 500 μg vitamin B12 and 400 μg folic acid or placebo 

supplementation for two years. Both tablets also contained 600 IU vitamin D3. 

Primary endpoint was time-to-first osteoporotic fracture. Exploratory, pre-specified 

subgroup analyses were performed among men and women, and persons below 

and above age 80y. Data were analyzed according to intention-to-treat and per-

protocol principles. 

Results
Osteoporotic fractures occurred in 61 persons (4.2%) in the intervention group 

compared with 75 (5.1%) in the placebo group. Osteoporotic fracture risk was not 

significantly different between groups in the intention-to-treat analyses (Hazard Ra‑

tio (HR)=0.84, 95%CI 0.58-1.22) or per-protocol analyses (HR=0.82, 95%CI 0.55-1.22). 

For persons >80 years, in per-protocol analyses, osteoporotic fracture risk was lower 

in the intervention group compared with placebo (HR=0.28, 95%CI 0.10-0.74). The 

total number of adverse events (including mortality) did not differ between groups. 

However, 63 vs. 42 participants in the intervention and placebo group, respectively, 

reported incident cancer (HR=1.55, 95%CI 1.04-2.30). 
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Conclusion
These data show that combined vitamin B12/folic acid supplementation had no 

effect on osteoporotic fracture incidence in this elderly population. Exploratory 

subgroup analyses suggest a beneficial effect on osteoporotic fracture prevention 

in compliant persons >80 years. However, treatment was also associated with 

increased incidence of cancer, although this possible adverse effect should be 

interpreted with caution. Therefore, vitamin B12/folic acid supplementation cannot 

be recommended at present for fracture prevention in elderly people.

Introduction

Osteoporosis is a chronic, multifactorial disorder, characterized by low bone mass 

and micro-architectural deterioration of bone tissue with fractures as a major con‑

sequence [1]. Fractures lead to pain, impairment in physical and social functioning, 

loss of quality of life and an increased risk of mortality [2]. Because of further ageing 

of the population, the number of fractures and their socio-economic burden is 

expected to rise substantially in the coming decades [3]. 

An elevated circulating plasma homocysteine (Hcy) concentration has been 

identified as an independent risk factor for osteoporotic fractures in observational 

studies [4-10], a finding that is consistent with meta-analyses [11, 12] and mecha‑

nistic studies [13, 14]. Elevated Hcy concentrations (≥15 µmol/L) are prevalent in 

30-50% in persons >65y [15, 16]. Treatment with vitamin B12 and folic acid, both 

playing a central role in the Hcy metabolism [17], is effective in normalizing Hcy 

concentrations [18, 19]. Three randomized controlled trials investigated the effect 

of B-vitamin supplementation on fracture risk [20-22]. Among stroke survivors, 

a large protective effect of 2y supplementation of 1.5 mg vitamin B12 and 5 mg 

folic acid was observed on hip fracture risk in the trial of Sato and colleagues [21]. 

However, in the HOPE-2 trial no effect of 5y supplementation of 1 mg vitamin B12, 

2.5 mg folic acid and 50 mg vitamin B6 was observed on fracture incidence among 

persons with high cardiovascular risk [22]. In the VITATOPS-study, also no effect of 

treatment with 2 mg folic acid, 25 mg vitamin B6 and 500 μg vitamin B12 during 

a mean of 2.8y on osteoporotic fracture incidence was observed in patients with 

cerebrovascular disease [20]. Given the conflicting results and low generalizability 

to the general older population, further investigation is needed. 
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We conducted the B-vitamins for the PRevention Of Osteoporotic Fractures 

(B-PROOF) study to assess the efficacy (through intention-to-treat analysis) and ef‑

fectiveness (through per-protocol analysis) of two-year oral supplementation with 

500 µg vitamin B12 and 400 µg folic acid in the prevention of osteoporotic fractures 

in Dutch elderly people with elevated plasma Hcy concentrations.

Subjects and methods

Study design
B-PROOF is a randomized, placebo-controlled, double-blind multi-center trial, of 

which the design and methods have been described in detail previously [23]. The 

B-PROOF study is registered with the Netherlands Trial Register (NTR1333) and with 

ClinicalTrials.gov (NCT00696414).

Setting and Participants
The included participants had to be independently or assistedly living but not 

residing in a nursing home, aged 65y or older with elevated Hcy concentrations 

(12-50 µmol/L). Exclusion criteria were a serum creatinine concentration >150 

µmol/l, cancer diagnosis in the past 5 years and severe immobility (being bedrid‑

den or using a wheelchair permanently). In total, 2,919 participants were included. 

Randomization and Intervention
Participants were randomized in a 1:1 ratio to receive daily either an oral tablet 

containing 500 µg B12 and 400 µg folic acid or a placebo tablet. Tablets in both 

treatment arms contained 600 IU vitamin D3 to ensure a normal vitamin D status 

[24]. The intervention and placebo tablets were indistinguishable in taste, smell and 

appearance. Randomization was stratified for study center, sex, age (65-80y, >80y) 

and concentration of Hcy (12-18 µmol/L, >18 µmol/L).  The intervention period 

comprised two years. As planned at the start of the B‑PROOF study [23], to increase 

power, participants who finished their intervention more than one year before the 

end of the study (n=678) were invited to extend their participation with one year. 

In total, 393 participants agreed and extended their participation. Participants with 

extended follow-up (n=393) were significantly older (75.3 vs. 73.9 yrs, p<0.001) and 

had higher serum methylmalonic acid (MMA) (0.23 vs. 0.22 µmol/L, p=0.021) as 
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compared with participants without extended follow-up (n=2526). There were no 

differences with regard to sex, Hcy, vitamin B12, folate and holotranscobalamin (ho‑

loTC) concentrations. The Medical Ethics Committee of Wageningen UR approved 

the study protocol and the Medical Ethics Committees of Erasmus MC and VU 

University Medical Center gave approval for local feasibility. All participants gave 

written informed consent. 

Outcomes and Follow-up
At baseline and 2y follow-up, a broad set of measurements was performed. In the 

current paper, the primary outcome of the study is reported, i.e. time-to-first osteo‑

porotic fracture, as well as the secondary outcome time-to-first of any fracture, and 

adverse events.  

Fracture assessment
Fractures were reported by the participants on a study calendar which was returned 

every three months during the intervention period. Additionally, participants 

were asked for the occurrence of fractures at the follow-up measurement using a 

structured questionnaire. All reported fractures were verified with the participants’ 

general practitioner or hospital. Fractures were classified as osteoporotic or non-

osteoporotic. Osteoporotic fractures were defined as all fractures except for head, 

hand, finger, foot or toe fractures, fractures caused by traffic accidents and fractures 

caused by cancer [25].

Subjects who dropped out of the study, or who were unable to complete the 

follow-up measurements were contacted around the end of the follow-up period 

to obtain information on incident fractures. In case this was not successful, a par‑

ticipant was regarded as lost to follow-up, and date of last contact was recorded. 

Date, type and cause of fracture were recorded and verified. 

Compliance
Every six months, new tablets were sent to the participants and they were re‑

quested to return any remaining tablets. Participants were defined as compliant 

when at least 80% of the tablets had been taken during the intervention period, as 

indicated by the returned tablets.
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Adverse events
Adverse events, that is, ill-health related conditions, were recorded by participants 

on the study calendars. In addition, all events reported to the study team by phone 

or otherwise were recorded. In case participants during the study reported a cancer 

diagnosis of any type, except for non-melanoma skin cancer, they were excluded 

from further tablet use. Also at the end of the intervention period, participants 

were asked whether they had been diagnosed with cancer during the trial. Re‑

ported cases of cancer, except for non-melanoma skin cancer, were verified with 

the participants’ general practitioner or hospital. In case a participant deceased 

during the study period, this was reported by relatives. 

Baseline characteristics
Height and weight were measured and information on demographic factors, 

lifestyle characteristics, medication use and medical history were obtained using a 

questionnaire. Anti-osteoporotic medication use included use of bisphosphonates, 

strontium-ranelate, selective estrogen-receptor modulators, estrogens, androgens, 

denosumab or teriparatide at baseline. Plasma Hcy and serum creatinine were 

determined [23], and serum 25(OH) vitamin D were measured [26]. For Hcy, follow-

up concentrations were measured as well. In addition, baseline serum vitamin 

B12 and folate were determined using immunoelectrochemiluminescence assay 

(Elecsys 2010, Roche, Almere, the Netherlands). Serum holoTC was determined by 

the AxSYM analyser (Abbott Diagnostics, Hoofddorp, the Netherlands) and serum 

MMA was measured by LC-MS/MS. 

Statistical analyses
Fracture rate was estimated to be 5-6% in untreated elderly people (either inde‑

pendently or institutionalized). With an expected fracture rate reduction of 34% in 

the intervention group, a power of 80%, and a significance level of 0.05 (one-sided), 

1,500 participants per treatment group were required [23]. 

Statistical analyses were performed before the treatment code was revealed. 

Baseline characteristics of the treatment groups were compared with Chi-square 

tests for categorical data and unpaired Student’s t-tests for continuous data. Non-

parametric tests were applied if the distribution was skewed. Difference between 
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the treatment groups in change of Hcy after two years was tested with an unpaired 

Student’s t-test. 

To assess the efficacy of the supplementation the primary analysis was based on 

the intention-to-treat (ITT) principle, including all subjects who agreed to start the 

treatment and completed the baseline measurements. To assess the effectiveness 

of the supplementation pre-specified per-protocol (PP)-analyses were performed 

that included only data from subjects who were compliant to the study protocol. 

For drop-outs, the time until drop-out was used in these analyses.

Time-to-event data were analyzed using the Kaplan-Meier approach and the 

log-rank test. Hazard ratios (HR) and 95% confidence intervals (95%CI) were calcu‑

lated with the use of crude and adjusted (for age, sex, study center, baseline Hcy 

and HoloTC) Cox proportional-hazards models. Individual time of follow-up was 

calculated as the time until the first fracture (primary outcome: osteoporotic or 

secondary outcome: any type), end of intervention period, date of lost-to-follow-

up, or death, whichever came first. Log-minus-log plots were used to check the 

proportional hazard models assumption, which was not violated.

The difference in number of persons who reported at least one adverse event 

between treatment groups was tested using Chi-square. For time-to-cancer, post-

hoc analyses were performed following the same approach as the fracture analyses. 

Additionally, sensitivity-analyses were done including cancer cases that could not 

be fully verified, and this was repeated after excluding relapse cancer cases.

For all outcomes, interaction with treatment was tested for the pre-specified 

covariates sex, baseline age below and above 80y, and plasma Hcy below and 

above 18 µmol/l. In case of significant interaction (p<0.1), subgroup analyses were 

performed. 

Statistical significance was set at α=0.05. Data were analyzed using IBM SPSS 

Statistics 20 (SPSS Inc., Chicago, Illinois). 
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Results

Characteristics of the participants
Analyses included 2,919 participants (Figure 1) (49.9% men, mean age=74.1y, me‑

dian plasma Hcy concentration=14.4 µmol/L). At baseline, no significant differences 

between the intervention (n=1,461) and placebo (n=1,458) group were observed, 

except for a 3% higher holoTC concentration in the intervention group (p=0.028) 

(Table 1). Mean change in Hcy concentrations was -4.4 µmol/L in the intervention 

vs. -0.2 µmol/L in the placebo group (p<0.001) (Table 2).

 
Blood sampling eligible 

participants 
N=6,242 

Randomized 
N=3,027 

Allocated to the intervention group (n=1,516) 
Received allocated intervention (n=1461) 
Did not receive allocated intervention (n=55) (withdrew 
before starting the intervention)  

Allocated to the placebo group  (n=1,511) 
Received  allocated intervention (n=1458) 
Did not receive allocated intervention (n=53) (withdrew 
before starting the intervention)  

Lost to follow-up after drop-out 
(n=69) 

Included in the intention to treat 
analyses 
(n=1,461) 

Included in the intention to treat 
analyses 
(n=1,458) 

Excluded 
Not meeting inclusion criteria (n=3,172) 
Declined to participate (n=43) 

Drop-out (n=200) 
Deceased (n=26) 
No longer motivated or personal event (n=40) 
No longer capable, too burdensome (n=92) 
Perceived side effects (n=13) 
Reason unknown (n=29) 

Drop-out (n=222) 
Deceased (n=16) 
No longer motivated or personal event (n=42) 
No longer capable, too burdensome (n=118) 
Perceived side effects (n=14) 
Reason unknown (n=32) 

Lost to follow-up after drop-out 
(n=55) 

Figure 1. Screening, randomization and follow-up in the B-PROOF study.
Note: the number of participants that dropped out because they deceased does not equal the total number of 
deceased participants; some participants (n=37) dropped out for other reasons and deceased after drop-out 
(Intention-to-treat).
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Table 1. Baseline characteristics of the B-PROOF study population (n=2,919).

Placebo group
(N=1,458)

Intervention group
(N=1,461)

Age (y) 1 74.2 (6.4) 74.0 (6.6)

Sex (% women) 2 49.7 50.4

Study center 2

- WUR (%)
- VUmc (%)
- EMC (%)

29.6
26.8
43.6

29.2
26.4
44.4

History of fracture (% yes) 2,3 42.9 41.3

Height (cm) 1 169.2 (9.3) 169.4 (9.4)

Weight (kg) 1 77.8 (13.3) 77.9 (13.3)

Current smoker (%) 2 9.7 9.5

Alcohol use 3

- Light (%) 66.8 68.0

- Moderate (%) 29.0 28.5

- Excessive (%) 4.2 3.5

Physical activity (min/day) 2,4 131 [86-193] 126 [81-190]

Education 2

- Low (%)
- Intermediate (%)
- High (%)

53.6
21.1
25.4

52.4
21.1
26.5

B12 and/or folic acid supplement use (% yes) 2,3 15.8 15.3

Vitamin D supplement use (% yes) 2,3 19.7 18.3

Osteoporotic medication use (% yes) 2,3 7.1% 7.8%

Biochemical analyses:

Homocysteine (µmol/L) 4 14.5 [13.0-16.7] 14.3 [13.0-16.5]

Vitamin B12 (pmol/L) 4 266 [204-343] 267 [213-341]

Folate (nmol/L) 4 18.9 [14.8-24.5] 18.8 [14.9-24.7]

Methylmalonic acid (µmol/L) 4 0.23 [0.18-0.31] 0.22 [0.18-0.30]

Holotranscobalamin (pmol/L) 4

25(OH) vitamin D 1
63.0 [45.0-84.0]
55.8 (23.9)

65.0 [48.0-86.0]5

55.5 (25.8)

Creatinine (µmol/L) 1 84.1 (18.0) 83.9 (18.6)

1Presented as mean (SD), difference tested using t-test. 2Presented as percentages, differences tested using Chi-squared test. 
3Data based on self-report. 4Presented as median [interquartile range], differences tested using Mann-Whitney U test. 5P 
<0.05. WUR=Wageningen UR, VUmc=VU University Medical Center, EMC=Erasmus MC.
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Primary endpoint: Osteoporotic fractures
In the ITT-analyses, 52 persons sustained a total of 61 osteoporotic fractures (frac‑

ture rate=2.0/100 person-y) in the intervention group vs. 61 persons with 75 osteo‑

porotic fractures (fracture rate=2.5/100 person-y) in the placebo group (incidence 

rate ratio=0.80, 95%CI=0.55 to 1.16). Two fractures could not be verified, and were 

considered as non-case. Time-to-first osteoporotic fracture was not significantly 

different between the intervention and placebo group (log-rank p=0.396). Cox 

proportional-hazard models adjusted for age, sex, study center, baseline plasma 

Table 3. Fracture and cancer rates and Hazard Ratios as measures of the association of treatment with time-
to-first osteoporotic fracture, time-to-first fracture of any type, and time-to-cancer diagnosis in the total group 
and subgroups, derived from Cox proportional-hazards analyses; intention-to-treat and per-protocol analyses.

Outcome Placebo group Intervention 
group

Crude model Adjusted model

Intention-to-treat analysis N Rate/100 
person-y

N Rate/100 
person-y

Hazard Ratio 
(95%CI)

p-value Hazard Ratio 
(95%CI)

p-value

Osteoporotic fracture (n=2,919) 75 2.5 61 2.0 0.85 (0.59-1.23) 0.385 0.84 (0.58-1.22) 1 0.362

Any type of fracture (n=2,919) 94 3.1 79 2.6 0.84 (0.60-1.17) 0.298 0.83 (0.59-1·16) 1 0.279

Cancer (n=2,906) 42 1.4 63 2.1 1.56 (1.05-2.31) 0.029 1.55 (1.04-2.30) 1 0.032

   Age ≤80y (n=2,416) 36 1.4 49 1.9 1.33 (0.86-2.04) 0.201 1.30 (0.85-2.01) 2 0.231

   Age >80y (n=490) 6 1.2 14 2.9 3.66 (1.21-11.11) 0.022 3.68 (1.21-11.24) 2 0.022

   Men (n=1,450) 29 1.9 32 2.1 1.17 (0.70-1.96) 0.551 1.15 (0.69-1.94) 3 0.585

   Women (n=1,456) 13 0.9 31 2.0 2.35 (1.23-4.50) 0.010 2.34 (1.22-4.46) 3 0.010

Per-protocol analysis N Rate/100 
person-y

N Rate/100 
person-y

Hazard Ratio 
(95%CI)

p-value Hazard Ratio 
(95%CI)

p-value

Osteoporotic fracture (n=2,661) 62 2.3 48 1.8 0.82 (0.55-1.22) 0.326 0.82 (0.55-1.22) 1 0.327

   Age ≤80y (n=2,263) 36 1.6 41 1.8 1.07 (0.68-1.68) 0.769 1.08 (0.69-1.71) 2 0.728

   Age >80y (n=398) 26 6.0 7 1.9 0.30 (0.11-0.82) 0.018 0.28 (0.10-0.74) 2 0.011

Any type of fracture (n=2,661) 84 3.0 68 2.4 0.81 (0.57-1.16) 0.255 0.81 (0.57-1·16) 1 0.250

   Age ≤80y (n=2,263) 55 2.3 60 2.5 1.01 (0.68-1.51) 0.957 1.02 (0.68-1.52) 2 0.930

   Age >80y (n=398) 29 6.4 8 2.0 0.29 (0.11-0.77) 0.013 0.26 (0.10-0.71) 2 0.008

Cancer (n=2,651) 27 1.0 43 1.6 1.66 (1.02-2.70) 0.042 1.67 (1.02-2.71) 1 0.040

Age ≤80y 23 1.0 35 1.5 1.50 (0.89-2.54) 0.131 1.50 (0.88-2.53) 2 0.135

Age >80y 4 0.9 8 2.1 2.89 (0.77-10.87) 0.118 2.75 (0.73-10.39) 2 0.137

Men 18 1.3 24 1.7 1.43 (0.77-2.67) 0.257 1.49 (0.80-2.77) 3 0.213

Women 9 0.7 19 1.4 2.09 (0.94-4.61) 0.069 2.03 (0.92-4.49) 3 0.080

1Adjusted for age, sex, study center, and baseline levels of homocysteine and holotranscobalamin, 2Adjusted for sex, study 
center, and baseline levels of homocysteine and holotranscobalamin, 3Adjusted for age, study center, and baseline levels 
of homocysteine and holotranscobalamin, 95%CI=95% Confidence Interval. Stratified analyses were performed if the 
interaction of sex, age, homocysteine, or study center with treatment was significant (p<0.10).
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No. at risk              
Intervention  1454 1424 1401 1374 188 182 0 

Placebo 1452 1426 1400 1378 209 203 0 

A 

No. at risk             
Intervention  1461 1425 1403 1369 178 171 0 

Placebo 1458 1419 1389 1357 200 188 0 

B 

No. at risk             
Intervention  1461 1431 1431 1380 178 171 0 

Placebo 1458 1421 1396 1364 200 189 0 

C 

Figure 2. Time-to- A) first osteoporotic fracture, B) first fracture of any type, and C) cancer diagnosis, 
adjusted for age, sex, study center, plasma homocysteine and serum holotranscobalamin, derived from Cox 
proportional-hazards analysis (Intention-to-treat).
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Hcy, and serum holoTC showed that persons in the intervention group did not have 

a significantly lower probability to sustain an osteoporotic fracture than persons in 

the placebo group (HR=0.84, 95%CI 0.58 to 1.22) (Figure 2A, Table 3). PP-analysis 

was performed among 2,661 compliant participants, including 91.4% of partici‑

pants in the intervention group vs. 90.9% of the placebo group. Fracture rates are 

presented in Table 3. Multivariable Cox proportional-hazard models did not show 

a significantly different osteoporotic fracture risk between the intervention group 

and placebo group (HR=0.82, 95%CI 0.55 to 1.22) (Table 3).

Secondary endpoint: Any type of fractures
The rate of fractures of any type in the intervention group vs. the placebo group 

was 2.6/100 person-y vs. 3.1/100 person-y, respectively. No significant effects of 

the intervention in both the ITT- and the PP-analyses were observed (HR=0.83, 

95%CI 0.59 to 1.16 and HR=0.81, 95%CI 0.57 to 1.16, respectively) (Figure 2B, Table 

3). Specific types of fractures are shown in Table 4.

Table 4. Total number of fractures during the intervention period per fracture type according to treatment 
group and age category.

Placebo group Intervention group

Total sample 
(N=1,458)

Age ≤80y 
(N=1,205)

Age >80y 
(N=253)

Total sample 
(N=1,461)

Age ≤80y 
(N=1,220)

Age >80y 
(N=241)

Head 5 5 0 2 2 0

Arm 11 8 3 13 10 3

Elbow 1 1 0 0 0 0

Wrist 12 8 4 16 14 2

Hand 4 4 0 2 2 0

Fingers 1 1 0 4 3 1

Rib 11 7 4 13 13 0

Vertebra 15 8 7 7 3 4

Pelvis 6 0 6 1 0 1

Hip 13 8 5 8 5 3

Leg 5 2 3 2 0 2

Ankle 7 7 0 6 5 1

Foot 3 3 0 3 3 0

Toe 0 0 0 2 2 0

Total 94 62 32 79 62 17
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Exploratory analyses
Interactions of treatment group with age, sex and Hcy concentration were not sig‑

nificant in the ITT-analyses for both osteoporotic fractures and any type of fractures. 

In the PP-analyses, a significant interaction effect with age was observed (p=0.020 

and p=0.018 for respectively osteoporotic fractures and any type of fractures). 

Persons >80y in the intervention group had a lower probability of sustaining an 

osteoporotic fracture (HR=0.28, 95%CI 0.10 to 0.74) compared with the placebo 

group (Table 3). The number needed to treat was 25 (for two years). Results were 

similar when any type of fractures was considered. No effect was observed in 

persons <80y and no statistically significant interaction was observed with sex and 

Hcy concentrations.

Adverse events
Mortality did not differ between the intervention and placebo group (n=37 vs. 

n=42 respectively, p=0.571, ITT). In the total number of adverse events, no differ‑

ence was observed between treatment groups (p=0.862). However, 63 participants 

in the intervention group and 42 participants in the placebo group reported a 

new, subsequently verified diagnosis of cancer during the intervention period 

(Chi-square p=0.038). The HR was 1.55 (95%CI 1.04 to 2.30) (ITT, Table 3, Figure 2C). 

Verification of cancer diagnosis was not possible in 13 cases. PP-analyses (Table 3) 

and sensitivity analyses (data not shown) provided similar results. 

Interaction effects with age (p=0.085) and sex (p=0.090) were observed (ITT). 

Corresponding subgroup analyses revealed that the effect was more pronounced 

in participants aged >80y (HR=3.68, 95%CI 1.21 to 11.24), and in women (HR=2.34, 

95%CI 1.22 to 4.46). Differences mainly appeared for colorectal cancer (14 in 

intervention group vs. 5 in placebo) and other gastro-intestinal cancers (7 vs. 1, 

respectively) (data not shown). 

Discussion

Daily supplementation of 500 µg vitamin B12 and 400 µg folic acid – in addition to 

600 IU vitamin D3 - for 2 years did not significantly reduce osteoporotic fracture 

risk in elderly aged ≥65y with an elevated plasma Hcy concentration. Pre-specified 

subgroup analysis suggested a reduction of fractures among those aged >80y 
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who were compliant in taking the supplement. Mortality did not differ between 

treatment groups over the two-year intervention period. However, supplementa‑

tion was associated with a higher cancer incidence, especially colorectal and other 

gastro-intestinal cancers. The subgroup analysis in persons aged >80y who were 

compliant and the analyses on mortality and cancer should be considered as ex‑

ploratory analyses as the study was only powered to detect differences in fracture 

risk. 

Compared to the Sato trial [21] (a strong treatment effect on fractures) and the 

HOPE-2 [22] and VITATOPS trials [20] (no treatment effect), differences in study 

design and population with B-PROOF should be noted. Regarding baseline health 

status, the Sato trial included a very specific, high fracture risk population consist‑

ing of post-ischemic stroke, hemiplegic patients. HOPE-2 and VITATOPS included 

participants with a history of vascular or cerebrovascular disease, while B-PROOF in‑

cluded participants primarily based on elevated Hcy concentrations. Also, median 

Hcy concentrations differed substantially between the studies: 19.9 µmol/L in the 

Sato trial, 11.5 µmol/L in the HOPE-2 trial, 14.3 µmol/L in VITATOPS and 14.4 µmol/L 

in B-PROOF. In addition, dietary patterns, presence of fortified food and/or supple‑

ment use might contribute to differences between the populations. Mean age did 

not differ substantially between the studies. Whereas sex distribution was similar 

for the Sato trial and B-PROOF (53% vs. 50% women), fewer women participated 

in HOPE-2 (28%) and VITATOPS (36%). However, we did not find evidence for an 

interaction between sex and treatment in our study. Comparison of dose and dura‑

tion across the three trials indicates that higher supplementation dose and longer 

study duration did not result in more favorable outcomes, therefore not explaining 

the differences in results. Concluding, in the Sato trial, Hcy concentrations were 

higher and the general health status of the participants was worse, resulting in a 

higher a priori fracture risk than for participants in HOPE-2, VITATOPS, and B-PROOF. 

In the current study, only a significant effect of B-vitamins on fracture risk was 

observed in compliant persons aged >80y. It is known that Hcy concentrations 

increase with age, and therefore baseline Hcy concentrations or change in Hcy 

concentrations might provide a possible explanation for the results. On the one 

hand, we did not observe significant interaction of baseline Hcy concentration 

(below and above 18 µmol/L) with treatment. Interestingly, on the other hand, Hcy 

concentrations appeared to decrease more in compliant persons >80y compared 
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with persons <80y (Table 2, post-hoc analysis), especially when taking into account 

the changes over time as shown in the placebo group. As these analyses should be 

considered exploratory, future studies are needed to examine this further. 

The observation of a significantly higher cancer incidence in the intervention 

group than in the placebo group was unexpected. It is important to note that B-

PROOF was not designed to study cancer as primary outcome. The limited follow-

up time of 2 years, for instance, does not allow firm conclusions about cancer 

development and long-term cancer risk. The results of the present trial differ from 

the B-Vitamin Treatment Trialists’ collaboration meta-analysis of 13 trials, involving 

49,621 individuals, which reported that allocation to folic acid had no significant ef‑

fects on overall cancer incidence (1904 in the folic acid group vs 1809 in the control 

group, rate ratio (RR) 1.06, 95%CI 0.99 to 1.13), or on cancer incidence at any site 

[27]. This meta-analysis, primarily involving participants at high risk of cardiovascu‑

lar disease, tested the effect of a mean daily dose of folic acid of 2 mg (range 0.5-5 

mg) for an average duration of 5.2 years [27]. These findings were consistent with 

two previous meta-analyses (RR 1.05, 95% CI 0.99 to 1.11 and RR 1.07, 95% CI 1.00 to 

1.14) [28, 29]. The higher cancer risks observed in B-PROOF may reflect the effects 

of chance as they were based on only 105 incident cancer events compared with 

3713 cancer events in the B-Vitamin Treatment Trialists’ collaboration meta-analysis 

[27]. However, cancer risk after B-vitamin treatment should be a point of attention 

in future studies. 

The dose of folic acid provided in B-PROOF (400 µg) was relatively low and well 

below the tolerable upper intake level for folic acid of 1 mg per day in Europe 

[30]. In addition, no national mandatory folic acid food fortification exists in the 

Netherlands. Subgroup analysis in two of the three meta-analyses on this potential 

side-effect showed that increased risk of cancer was mainly seen in low-dose 

(≤1mg/day) supplementation rather than in high-dose supplementation, while a 

dose-response effect was absent [28, 29]. However, it should be noted that the low-

dose trials all had doses above ours (ranging from 0.5 to 1.0 mg) and in addition, 

dose-related effects were absent in the third meta-analysis [27]. 

Regarding vitamin B12 and vitamin D3, to date, little is known about the possible 

relation between vitamin B12 and cancer risk or the interaction between folic acid, 

B12 and/or vitamin D3 and cancer risk.
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Folate is required for DNA-synthesis and DNA-methylation, processes that are 

also important in cancer initiation and progression. It has been hypothesized that 

folic acid prevents against the initiation of cancer, while it enhances growth and 

progression of established neoplastic cells [31]. As shown in Figure 2C, the curves 

for cancer incidence diverge shortly after the start of the intervention. This fits with 

the hypothesis of an effect on cancer progression, rather than cancer induction. 

This idea is supported by the observation that the effect on cancer incidence in our 

study was most pronounced in persons aged >80y, among whom the presence 

of latent cancer is speculated to be more likely. The fact that our study population 

was older (mean age 74y) than the populations in the three meta-analyses (mean 

population ages ranging from 26y to 69y [29]) may therefore also explain the higher 

overall HR observed in our study. Further research into the effects of folic acid on 

cancer progression is warranted, especially in the oldest old.

The major strengths of B-PROOF are its double-blind randomized placebo-

controlled design and the use of clinical endpoints. It is the first trial primarily 

designed to study the effect of B-vitamin supplementation on fracture prevention 

in an elderly population with mildly elevated Hcy concentrations. Another strength 

is the high compliance with the allocated treatment. A limitation of the study is 

that we included 2,919 instead of 3,000 participants as indicated by our sample 

size calculation. As described before, there was a pre-planned prolonged follow-up, 

which included in total 393 persons, to increase power. These persons were slightly 

different (in terms of age and MMA status) compared with the persons without 

extended follow-up, with potentially a slightly higher a priori risk of fractures. How‑

ever, the subgroup was too small for further sub-analyses. Both the occurrence 

of a fracture and the diagnosis of cancer were based on self-report, which could 

be regarded as a limitation. However, structured questionnaires were used and 

the diagnoses were verified with the participant’s general practitioner or hospital. 

Potential underreporting is expected to be non-differential for treatment groups. 

In addition, it should be noted that multiple statistical tests have been performed. 

Although they were pre-specified, the occurrence of false-positive findings cannot 

be ruled out.

In conclusion, an overall effect of supplementation of vitamin B12 and folic acid 

in reducing fracture risk in elderly with elevated Hcy concentrations was not ob‑

served in B-PROOF. Exploratory analyses suggested a reduced fracture risk in elderly 
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aged >80y who were compliant in taking the supplement. On the other hand, 

supplementation of vitamin B12 and folic acid was also associated with higher 

cancer risk, although these results should be treated with caution as they have not 

been observed in meta-analyses of previously available trials with folic acid. Hence, 

vitamin B12 and folic acid supplementation cannot be recommended for fracture 

prevention. 
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Abstract 

High plasma homocysteine levels are associated with increased osteoporotic 

fracture incidence. However, the mechanism remains unclear. We investigated 

the effect of homocysteine-lowering vitamin B12 and folic acid treatment on bone 

mineral density (BMD) and calcaneal quantitative ultrasound (QUS) parameters 

within the B-PROOF study. This randomized, double-blind, placebo-controlled 

multi-center trial included participants aged ≥65 years with plasma homocysteine 

levels between 12-50 µmol/l. The intervention comprised 2-year supplementation 

with either a combination of 500 µg B12, 400 µg folic acid and 600 IU vitamin D3 or 

placebo with 600 IU vitamin D3 only. In total, 1111 participants underwent repeated 

dual-energy X-ray assessment and 1165 participants QUS. Femoral neck (FN) BMD, 

lumbar spine (LS) BMD, calcaneal broadband ultrasound attenuation (BUA) and 

calcaneal speed of sound (SOS) were assessed. After two years of intervention, FN-

BMD and BUA had significantly decreased, while LS-BMD significantly increased (all 

p<0.01) and SOS did not change in either treatment arm. ANCOVA-analyses showed 

that no statistically significant differences between the intervention and placebo 

group were present for FN-BMD (p=0.24), LS-BMD (p=0.16), SOS (p=0.67) and BUA 

(p=0.96). However, for BUA an interaction effect with age was observed among 

compliant participants. Subgroup analyses among compliant persons >80 years 

revealed a small positive effect of the intervention on BUA at follow-up (estimated 

marginal mean 64.4 dB/MHz for the intervention group and 61.0 dB/MHz for the 

placebo group, p=0.04 for difference). In conclusion, this study showed no overall 

effect of treatment with vitamin B12 and folic acid on BMD or QUS parameters in 

elderly, mildly hyperhomocysteinemic persons, but suggests a small beneficial ef‑

fect on BUA in persons >80 years who were compliant in taking the supplement. 

Introduction

Approximately a decade ago, plasma levels of homocysteine (Hcy) were discovered 

to be positively associated with incident osteoporotic fractures [1, 2]. Vitamin B12 

and/or folate are important co-factors in the remethylation of Hcy to methionine 

and high plasma Hcy levels are often caused by vitamin B12 and/or folate deficiency 

[3]. Subsequent supplementation with these vitamins has been shown to be effec‑
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tive in reducing levels of Hcy [4]. Supplementation was therefore hypothesized to 

be associated with a lower fracture incidence as well. However, intervention studies 

with B-vitamin supplementation observed inconsistent effects on fracture preven‑

tion [5-8]).

The potential mechanism underlying the association between Hcy and fractures 

remains to be determined. One of the hypotheses concerns the role of bone 

mineral density (BMD) in this association. Previously, cross-sectional studies on the 

relation between Hcy and BMD showed conflicting results (e.g. [9-11]). Moreover, 

two trials investigated the effect of B-vitamin supplementation on BMD, and both 

observed no effects [6, 12]. However, these trials were limited either in size (n=47) 

[12] or in generalizability (hemiplegic post-stroke patients) [6] and both used fairly 

high doses of B-vitamins.

Alternatively, Hcy is thought to interfere with collagen cross-linking in bone, 

thereby reducing bone quality. This suggestion is supported by clinical observa‑

tions in patients with homocystinuria, among whom bone collagen profiles are 

disturbed [13]. Previous cross-sectional data indeed showed inverse associations 

between Hcy and bone quality, as reflected by quantitative ultrasound (QUS) pa‑

rameters [14-16]. However, intervention studies on the effect of B-vitamin supple‑

mentation on those QUS parameters are lacking. 

The current study investigated the effects of vitamin B12 and folic acid supple‑

mentation on BMD and QUS parameters, that is broadband ultrasound attenuation 

(BUA) and speed of sound (SOS), in a large, mildly hyperhomocysteinemic, but 

otherwise general elderly population. 

Materials and Methods

Study design
The B-PROOF study is a double-blind, randomized, placebo-controlled multicenter 

trial. It was primarily designed to investigate the effect of 2-year oral supplementa‑

tion with 400 µg folic acid and 500 µg vitamin B12 on osteoporotic fracture inci‑

dence in hyperhomocysteinemic persons aged 65 years and over [17]. Participants 

in both treatment arms additionally received 600 IU of vitamin D3 daily. Participants 

(n=2919) were randomly assigned to the treatment groups in a 1:1 ratio while strati‑

fying for study centre, sex, age (65-80 years, >80 years), and Hcy level (12-18 μmol/L, 
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≥18 μmol/L). The random allocation sequence and randomization were generated 

and performed using SAS 9.2 by an independent research dietician. Intervention 

and placebo tablets were indistinguishable in taste, smell and appearance. Both 

the participants and all researchers and research assistants were blinded to the 

study treatment. Treatment effects on BMD and QUS were predefined secondary 

outcomes [17]. Recruitment of participants took place between September 2008 

and March 2011. Details of the B-PROOF study were described previously [17]. The 

B-PROOF study has been registered with the Netherlands Trial Register http://www.

trialregister.nl under identifier NTR 1333 since June 1, 2008 and with ClinicalTrials.

gov under identifier NCT00696514 since June 9, 2008. The Medical Ethics Commit‑

tee of Wageningen University (WU) approved the study and local feasibility was 

given by the Medical Ethics Committees of VU University Medical Center (VUmc) 

and Erasmus MC. The study was performed in accordance with the Declaration of 

Helsinki and all participants gave written informed consent. 

Study population
Inclusion criteria were an age of 65 years or over at baseline and a plasma Hcy level 

between 12.0 and 50.0 µmol/l. Exclusion criteria were a level of serum creatinine of 

>150 µmol/l, the presence of cancer in the past five years (excluding non-melanoma 

skin cancer), use of high doses of B-vitamins (intramuscular injections of vitamin B12 

and/or folic acid intake >300 µg/day) or permanent use of a wheel chair. For BMD 

measurements, participants had to be able to visit one of the study centers. Figure 

1 shows the flow-chart of the study sample.

Basic characteristics
At baseline, height was measured without shoes to the nearest millimeter using 

a stadiometer. Weight was measured while the participant wore light clothes 

and no shoes. Body mass index was calculated as weight/height2. Structured 

questionnaires were used to assess fracture history, current use of medication 

and supplements, level of education, use of alcohol and current smoking behav‑

ior[17]. Anti-osteoporotic medication use defined as the use of bisphosphonates, 

strontium-ranelate, selective estrogen-receptor modulators, estrogens, androgens, 

denosumab or teriparatide. Blood drawing was done when the participant was in a 

fasted state or had consumed a light, restricted breakfast. EDTA-blood was placed 
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on ice immediately after drawing. Plasma Hcy, serum creatinine, folate, vitamin 

B12, holotranscobalamin and methylmalonic acid and methylenetetrahydrofolate 

reductase (MTHFR)-genotype were determined; details of the methods used have 

been described previously [8, 17]. 

Dual-energy x-ray (DXA) assessment
In a subsample of 1227 participants, DXA was performed at baseline. Of these 

participants, 1111 persons also underwent a DXA after the 2 years of intervention 

(Figure 1). DXA was performed in two of the three study centers. In VUmc, a Hologic 

QDR 4500 Delphi device (Hologic Inc., USA, CV=0.45%) was used. In Erasmus MC, a 

GE Lunar Prodigy device (GE Healthcare, USA, CV=0.08%) was used. 

In Erasmus MC, during the intervention period, a new scanner of the same type 

was installed. Follow-up measurements for participants who were measured using 

the new device at follow-up were adjusted for results of a cross-calibration with the 

old system. A participant’s baseline and follow-up measurement always took place 

in the same study center.

A scan of the femur was made to determine the BMD at the femoral neck. The left 

hip was scanned, but in case a prosthesis was present, the right hip was scanned. 

A scan of the lumbar spine was made to assess BMD in the vertebrae L1 to L4. 

Measurements were performed according to manufacturer’s protocols.

QUS parameters
QUS parameters of the calcaneus were measured using the portable Hologic Sa‑

hara bone densitometer (Hologic, USA) (Erasmus MC, VUmc, WU) or the portable 

CUBA Clinical system (McCue Ultrasonics, UK) (VUmc). At baseline, QUS measure‑

ments were performed in 1405 participants. Repeated QUS was available in 1165 

participants (Figure 1). Measurements of both the left and right calcaneus were 

performed in duplo. Mean broadband ultrasound attenuation (BUA, CV=3.7%) 

and speed of sound (SOS, CV=0.22%) were calculated as the average of these four 

measurements. Measurements were excluded if the expected linear frequency-

attenuation relation was violated, because this indicates invalid results.
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Compliance
Participants were asked to return remaining study tablets every 6 months during 

their 2-year intervention period. Participants were regarded as compliant to the 

study treatment when at least 80% of the tablets had been taken during the in‑

tervention period, as indicated by the number of returned tablets. Compliance of 

participants who dropped out of the study was calculated over the planned full 

study period of 2 years.

Adverse events
Adverse events were reported by the participants on their study calendar or via 

telephone, as has been described previously [8].

Sample size calculation and statistical analyses
Based on an expected increase in BMD of 0.027 g/cm2 (extrapolated from [18]), 

who observed a one-year-change in spinal BMD of 0.0135 when folate levels in‑

creased with 15 nmol/l) between the two treatment groups, an SD of 0.18 g/cm2 

and a power of 80% to detect this difference, we estimated that 541 participants 

had to be included in both treatment arms. Similarly, a decline in BUA of 2.1 dB/

MHz is expected in 2 years in the placebo group, and we expect this decline to be 

prevented in the intervention group (extrapolated from [19]). With a difference of 

2.1 dB/MHz and an SD of 9.4, 316 participants per group would be needed.

All statistical analyses were performed according to a predefined analysis plan. 

Differences in baseline characteristics between the two treatment groups were 

tested using a t-test for continuous traits and a Chi-squared test for categorical 

traits. If a variable was non-normally distributed, a Mann-Whitney U test was used.

In the primary intention-to-treat analyses, all participants of whom both baseline 

and follow-up data were available were included. In the secondary per-protocol 

analyses, only compliant participants were included.

Paired t-tests were done to assess the difference within treatment groups be‑

tween baseline and follow-up for all outcomes. To test the difference in outcomes 

after two years of treatment between the intervention group and the placebo 

group, analysis of covariance (ANCOVA) was performed. In addition to the baseline 

value of the outcome of interest (FN-BMD, LS-BMD, BUA, or SOS), sex and age were 

entered as covariate in the basic model. This was defined as the primary analysis. 
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Next, other potential confounders, defined by a p-value of the difference between 

the treatment arms <0.2, were entered in the model. They were retained in the fully 

adjusted model if they changed F of the treatment in the basic model with at least 

10%. This was done for each outcome separately. For BMD, analyses were repeated 

after stratification for study center, since both centers used different DXA-devices, 

which are known to produce systematically different results.

Interactions between treatment and baseline age, sex, and Hcy were investi‑

gated. Stratified analyses were performed if the interaction term was statistically 

significant. All statistical analyses were performed using IBM SPSS Statistics 20. Level 

of significance was set at α=0.05.

Results

Table 1 shows the general characteristics at baseline of 1111 participants with re‑

peated DXA and of 1165 participants with repeated QUS. At baseline, LS-BMD was 

higher in the intervention group compared with the placebo group (1.14 vs. 1.11 g/

cm2, respectively, p=0.03). In the BMD-sample, levels of serum holotranscobalamin 

were slightly higher in the intervention group (70 vs. 65 µmol/l, p=0.03). In the 

QUS-sample, participants in the placebo group more often had a positive fracture 

history (45% vs. 35%, p<0.01).

A total of 611 participants had both FN-BMD as well as QUS available at base‑

line and at follow-up. At baseline, FN-BMD correlated significantly with both BUA 

(r=0.48, p<0.01) and SOS (r=0.42, p<0.01).

For the BMD-sample, median levels of Hcy changed from 14.3 to 10.5 μmol/l in 

the intervention group and from 14.3 to 14.4 μmol/l in placebo during the inter‑

vention period (p<0.01 for difference in change between groups). For the QUS-

sample, median levels went from 14.2 to 10.2 μmol/l, and remained 14.3 μmol/l, 

respectively (p=<0.01 for difference between groups). 

BMD effects
Baseline and follow-up BMD per treatment group are shown in Table 2. FN-BMD 

significantly decreased in both treatment groups. On the contrary, LS-BMD in‑

creased significantly in both treatment groups. Estimated mean BMD at follow-up 

in both the femoral neck (0.84 g/cm2 (95% CI 0.834;0.839) in the intervention group 
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Table 1. Baseline characteristics for B-PROOF participants with BMD at baseline and follow-up (N=1111) and 
for participants with QUS at baseline and follow-up (n=1165). 

BMD QUS

  Placebo Intervention Placebo Intervention

  N=563 N=548 N=587 N=578

Age (y)a 72.8 (5.4) 72.4 (5.6) 73.3 (73.3) 73.4 (73.4)

Sex (% female) 48.3 48.2 57.4 53.8

Hcy (µmol/l)b 14.3 [12.9-16.3] 14.3 [12.9-16.0] 14.3 [12.9-16.4] 14.2 [13.0-16.1]

Creatinine (µmol/l)b 80 [71-93] 82 [71-93] 79 [70-92] 82 [70-93]

Folate (nmol/l)b 19.1 [14.8-25.4] 19.8 [15.4-24.8] 19.1 [14.8-24.5] 18.9 [15.6-24.6]

B12 (pmol/l)b 269 [204-343] 286 [218-348] 268 [204-352] 270 [216-346.3]

Methylmalonic acid (µmol/l)b 0.21 [0.17-0.29] 0.21 [0.17-0.28] 0.22 [0.18-0.30] 0.23 [0.18-0.30]

Holotranscobalamin (pmol/l)b 65 [47-88]c 70 [50-91]c 65 [45-85] 66 [49-88]

MTHFR-genotype (%)

CC 43.1 47.9 43.2 47.4

CT 41.9 40.1 46.3 39.2

TT 15.0 12.0 10.5 13.4

Height (cm)a 169.9 (8.9) 170.4 (9.0) 168.5 (8.8) 168.9 (9.2)

Weight (kg)a 77.7 (12.9) 78.5 (13.0) 76.7 (12.2) 76.6 (12.5)

BMI (kg/m2)a 26.9 (3.9) 27 (3.8) 27.0 (3.9) 26.8 (3.8)

Smoking status (%)

Current 8.7 8.4 7.5 10.0

Former 58.6 56.9 55.2 56.2

Never 32.7 34.7 37.3 33.7

Alcohol consumption (%)

No/light 62.9 64.4 64.9 67.3

Moderate 31.8 31.2 30.7 28.4

Excessive 4.8 3.6 3.9 3.5

Very excessive 0.5 0.7 0.5 0.9

Level of education (%)

Low 54.8 52.2 53.6 52.6

Middle 19.9 18.8 22.2 20.4

High 25.3 29.0 24.2 27.0

Study center (%)

VUmc 35.7 32.5 35.4 36.2

Wageningen UR - - 20.4 21.1

Erasmus MC 64.3 67.5 44.1 42.7

Users of folic acid and/or vit. B12 (%) 17.1 14.6 17.4 14.4

Osteoporotic medication use (%) 6.4 7.5 8.9 10.4

Positive fracture history (%) 41.4 39.1 45.0c 35.3c

FN-BMD (g/cm2)a 0.84 (0.15) 0.85 (0.17) - -
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vs 0.83 g/cm2 (95% CI 0.831;0.837) in placebo (p=0.24)), and lumbar spine (1.14 g/

cm2 (95% CI 1.134;1.142) vs 1.13 g/cm2 (95% CI 1.130;1.138), respectively, p=0.16) 

were not significantly different between treatment groups (Figure 2). This did not 

change after adjusting for other potential confounders (holotranscobalamin and 

vitamin B12). No statistically significant interaction was observed. When the analyses 

were stratified for study center, as pre-specified, similar results were obtained. For 

FN-BMD, in VUmc, estimated means after 2 years were 0.717 (95% CI 0.712;0.722) 

and 0.719 (95% CI 0.714;0.724) g/cm2 in the placebo and intervention groups, 

respectively. In Erasmus MC, these values were 0.896 (95% CI 0.892;0.899) and 0.898 

(95% CI 0.895;0.902) g/cm2, respectively. For LS-BMD, in VUmc, estimated means 

after 2 years were 1.018 (95% CI 1.011;1.024) and 1.017 (95% CI 1.010;1.024) g/cm2 

in the placebo and intervention groups, respectively. In Erasmus MC, correspond‑

Table 1. Continued

BMD QUS

  Placebo Intervention Placebo Intervention

  N=563 N=548 N=587 N=578

T-score FN-BMDa -1.23 (0.93) -1.15 (1.04) - -

LS-BMD (g/cm2)a 1.11 (0.22) c 1.14 (0.25) c - -

T-score LS-BMDa -0.3 (1.7) -0.1 (1.9) - -

BUA (dB/MHz)a - - 70.9 (16.8) 71.8 (17.6)

SOS (m/s)a - - 1537 (31) 1539 (33)

aPresented as mean (standard deviation). bPresented as median [interquartile range]. cP-value<0.05.
BMD=bone mineral density, QUS=quantitative ultrasound, BMI=body mass index, FN=femoral neck, LS=lumbar spine, MTH
FR=methylenetretrahydrofolate reductase

Table 2. Bone mineral density (n=1111) and quantitative ultrasound parameters (n=1165) at baseline and 
follow-up.

  Placebo Intervention

  Baseline Follow-up p-value Baseline Follow-up p-value

FN-BMD (g/cm2) 0.84 (0.15) 0.83 (0.15) <0.01 0.85 (0.17) 0.85 (0.17) <0.01

LS-BMD (g/cm2) 1.11 (0.22) 1.12 (0.22) <0.01 1.14 (0.29) 1.15 (0.25) <0.01

BUA (dB/MHz) 70.9 (16.8) 68.5 (17.4) <0.01 71.8 (17.6) 69.4 (17.9) <0.01

SOS (m/s) 1537 (31) 1537 (33) 0.25 1540 (34) 1539 (35) 0.46

FN=femoral neck, LS=lumbar spine, BMD=bone mineral density, BUA=broadband ultrasound attenuation, SOS=speed of 
sound. Presented as mean (standard deviation).
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ing values were 1.202 (95%CI 1.197;1.207) and 1.208 (95% CI 1.203;1.212) g/cm2. All 

differences were non-significant.

In the per-protocol analyses, 1069 participants were included, and results were 

similar to the intention-to-treat analyses (data not shown).

QUS effects
A significant two-year decline in BUA was observed in both the intervention group 

and the placebo group (both p<0.01), whereas SOS levels did not change signifi‑

cantly in any of the groups (Table 2). Changes in BUA and SOS were not significantly 

different between treatment groups after adjustments for age, sex, and baseline 

values of BUA/SOS (Figures 3A and 3B). The estimated marginal means for BUA 

were 69.0 dB/MHz (95% CI 68.4; 69.6) in both the intervention group and in the 

placebo group (p=0.96), and the estimated marginal means for SOS were 1538.1 

m/s (95% CI 1536.6; 1539.6) in the intervention group vs. 1537.6 m/s (95% CI 1536.2; 
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Figure 2. Estimated mean FN-BMD (A) and LS-BMD (B) after 2 years of intervention, adjusted for baseline FN-
BMD/LS-BMD, age and sex.
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1539.1) in the placebo group (p=0.67). Additional adjustments for fracture history, 

holotranscobalamin, smoking, vitamin B supplement use and MTHFR genotype 

(BUA), or fracture history, smoking and MTHFR-genotype (SOS) did not change 

the findings (data not shown). No interactions with age, sex, and baseline Hcy 

concentration were observed. Results of the per-protocol analyses, including 1097 

participants, did not substantially differ from the intention-to-treat analyses (data 

not shown). Yet, in the analyses with BUA as outcome, the interaction with age 

was significant (p=0.02). Stratified analyses showed no effect among persons ≤80 

years, but among persons >80 years, a significant beneficial effect of the treatment 

was observed (p=0.04, Figure 4). The estimated marginal means were 64.4 dB/MHz 

(95% CI 62.1; 66.6) in the intervention group vs 61.0 dB/MHz (95% CI 58.8; 63.3) in 

the placebo group.
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Figure 3. Estimated mean BUA (A) and SOS (B) after 2 years of intervention, adjusted for baseline BUA/SOS, 
age and sex.
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Discussion

This randomized controlled trial did not show an overall effect of 2-year oral folic 

acid and vitamin B12 supplementation on BMD and QUS parameters compared 

with the placebo. In a subgroup of persons >80 years who were compliant with the 

study protocol, a small but statistically significant positive effect of the B-vitamin 

intervention was observed on BUA. 

This study is the first trial investigating the effects of vitamin B12 and folic acid on 

QUS. Moreover, effects on BMD have not been studied before in a large, mildly hy‑

perhomocysteinemic, but otherwise general older population. Two previous trials 

have been conducted, showing results that are in concordance with our findings. 

A Japanese trial investigated the effect of 1.5 mg vitamin B12 and 5 mg folic acid 

on hip fracture incidence and metacarpal BMD in hemiplegic post-stroke patients. 

In that study, no effect of a 2-year treatment on BMD was observed, while fracture 

incidence was strongly and significantly reduced in this specific population [6]. In 

addition, a small trial (n=47) has been performed which investigated the effect of 

a 1-year treatment with vitamin B12, B6 and folic acid on BMD among osteoporotic 

patients [12]. Overall, no effects were observed in that study. However, in partici‑

pants with Hcy >15 µmol/l (n=8 in the intervention group), a significant increase in 

T-score was seen. In our study, no interaction effect of the treatment with baseline 

Hcy levels was observed. It should be noted that in comparison to our study, Her‑

rmann et al. used higher doses (2.5 mg folic acid, 25 mg B6 and 500 µg B12) [12].

QUS parameters are largely determined by BMD, but bone microarchitecture is 

an important determinant as well, independent of BMD [20]. QUS has been shown 
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Figure 4. Estimated mean BUA among compliant persons >80y after 2 years of intervention, adjusted for 
baseline BUA, age and sex.
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to be an independent predictor for fracture risk [21]; a decrease of 1 SD in BUA 

has been associated with a 1.4 fold increased risk of any clinical fracture [21]. We 

observed a mean difference in BUA of 3.4 dB/MHz (5.2% of mean baseline BUA) 

between the intervention and placebo group among compliant persons >80 years. 

Because the spreading of BUA is relatively large (SD=17.1), the observed effect will 

be of minor importance on population level. However, when applying a longer 

duration of intervention, it might become clinically relevant. 

Recently, we have shown within the B-PROOF study that fracture incidence was 

lower in the intervention group compared with placebo only when specifically 

addressing compliant participants aged 80 years or over [8]. The currently reported 

change in BUA might partly explain this age-specific treatment effect. Unfortunate‑

ly, we were not able to test this hypothesis due to a too low absolute number of 

fractures among participants in this age category of whom BUA data were available 

(n=23). Alternatively, the lack of an effect on BMD does not completely rule out the 

possibility of BMD as a mediator. Participants of the DXA-subsample had to be able 

to visit one of the study centers and may therefore not be fully representative of the 

complete study population: as compared to the total sample, the DXA-subsample 

was significantly younger (mean age 72.6 vs 74.1, p<0.01), with a lower percentage 

of persons aged >80 years (9.0% vs 16.9%, p<0.01). In line with this, the subgroup of 

persons aged >80 years with DXA was also significantly younger than the subgroup 

of the complete study population (mean age 83.9 vs 85.1, p<0.01). The somewhat 

selective sample hampers definite conclusions about the absence of an effect of 

B-vitamins on BMD in persons >80 years.

It should be noted that LS-BMD increased in both treatment groups during 2 

years of intervention, while FN-BMD decreased. In older persons, an increase in 

LS-BMD can be expected due to, for instance, degenerative changes of the spine 

[22, 23]. Our observation therefore supports the presumption that LS-BMD may 

not be a valid indicator of osteoporosis at high age [24].It could be regarded as a 

limitation that baseline levels of BMD in this randomized controlled trial differed 

significantly between the intervention and placebo group. However, we adjusted 

for baseline BMD, and therefore we assume that this did not influence the results of 

the analyses. Another limitation of the study is the fact that all participants received 

600 IU vitamin D3 daily, which is in line with the guidelines of the Dutch Health 

Council [25]. In the past, vitamin D supplementation with 400 IU daily has been 
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shown to influence BMD up to 2.6% [26, 27]. Effects of vitamin D may therefore 

have masked the possibly small effects of vitamin B12 and folic acid on BMD. 

From the current study we conclude that there is no overall effect of 2-year treat‑

ment with vitamin B12 and folic acid on BMD or QUS in hyperhomocysteinemic 

elderly people. Among elderly >80 years who were compliant in taking the supple‑

ment, a positive effect of the treatment on BUA was observed. This might partly 

explain the previously reported reduction in fracture risk in the same subgroup [8]. 

It is important to note that an adverse effect of our treatment with vitamin B12 and 

folic acid on cancer incidence was observed, as has been published previously [8], 

implying caution in designing further research. Nonetheless, research on effects 

of B-vitamin treatment on other mechanisms, for instance on bone markers, com‑

puted tomography, or potentially the relatively new assessment of trabecular bone 

score, is warranted to reveal the additional pathways by which vitamin B12 and folic 

acid exert a potential anti-fracture effect in hyperhomocysteinemic elderly. 
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The objective of this thesis was to gain more insight into the potential role of 

homocysteine on incidence of fractures and other measures of bone health. To 

this end, we made use of both cross-sectional and longitudinal observational data. 

Moreover, we set up a large clinical trial to investigate the effects of a homocysteine-

lowering treatment on fracture incidence and bone parameters.

Main findings

B-PROOF: A homocysteine-lowering intervention
In the past decades, high plasma homocysteine levels have been associated with 

increased risk of, e.g., cardiovascular disease [1] and cognitive impairment [2]. 

However, trials with folic acid and/or vitamin B12 that were designed to reduce ho‑

mocysteine levels to prevent cardiovascular disease showed disappointing results 

[3, 4]. In 2004, the first evidence was published that plasma levels of homocysteine 

were also positively associated with incident fractures [5, 6]. In the years thereaf‑

ter, this observation was replicated in other studies, and recently a meta-analysis 

reconfirmed these findings; an increase of 1 µmol/l of plasma homocysteine was 

associated with 4% increased fracture risk [7]. Up till now, four clinical trials [8-11], 

including B-PROOF, have been published that investigated the effect of supple‑

mentation with folic acid/vitamin B12 on fracture incidence. An overview of these 

trials is given in Table 1. 

As can be seen, only in the first trial a significant and very impressive reduction of 

(hip) fractures was observed. This finding was not replicated in the other three trials. 

The positive trial included persons with both much higher baseline homocysteine 

levels and a higher a priori fracture risk than the other trials, and the results are 

based on a relatively small number of fractures. This might explain the differences 

in results. It should also be noted that the four trials use different interventions and 

doses, however, the fact that the reduction in homocysteine in B-PROOF is similar 

to HOPE-2 and VITATOPS suggests that low dose supplementation is sufficiently 

effective in reducing homocysteine. The larger reduction in homocysteine that was 

observed in the Sato study is probably mainly caused by the high levels of homo‑

cysteine at baseline. Next, in HOPE-2 and VITATOPS some included participants live 

in countries with mandatory folic acid fortification, which could have attenuated 

effects of the homocysteine-lowering intervention. This is not the case for the Japa‑
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nese and Dutch study populations. Finally, it should be noted that only B-PROOF 

was primarily designed to investigate the effect on fractures.

It would be of special interest to perform a meta-analysis of the available trials in 

the future, especially since power to detect effects on fractures per study is relatively 

low. For example, B-PROOF was powered to detect a reduction in osteoporotic 

fracture incidence of 34% [12], which might be regarded as over-optimistic given 

the current insights. More importantly, besides the exceptionally strong findings of 

Sato et al., a trend towards beneficial treatment effects was also observed in both 

VITATOPS and B-PROOF, although this was not statistically significant in either study. 

Furthermore, it is noteworthy that within B-PROOF a significant and beneficial ef‑

fect (HR=0.30, p=0.018) of the intervention on fracture incidence was observed in 

a subgroup of participants who were at least 80 years old and who were compliant 

to the study treatment. This age group might thus be more susceptible to effects 

of a homocysteine-lowering intervention, a hypothesis which seems to be in line 

with observations in cardiovascular disease; homocysteine becomes of increased 

importance as a risk indicator for cardiovascular disease in the oldest old (>85 

years) [13]. In support of this, we also observed a relatively strong reduction of the 

homocysteine levels in this subgroup, which also had a slightly higher baseline 

level of homocysteine. Therefore, effects of homocysteine and its reduction espe‑

cially merit further investigation in persons older than approximately 80 years.

Within our study, it was unexpectedly observed that intervention with folic acid 

and vitamin B12 was associated with a higher cancer incidence. Previously, a large 

meta-analysis (n=49,621 participants) reported no significant effect of folic acid 

treatment on cancer incidence, although the hazard ratio (HR=1.06) was only bor‑

derline non-significant (95% CI 0.99-1.13, p=0.10) [14]. In our study, the increase in 

cancer appeared most strongly in persons older than 80 years (HR=3.66, p=0.022). 

Unfortunately, in the meta-analysis, cohorts were included with participants of 

lower age. Thus, it cannot be excluded that effects of folic acid in the oldest old are 

different and/or stronger than in younger persons. A new, stratified meta-analysis, 

investigating potential age-specific effects on cancer incidence, is therefore war‑

ranted.

Within B-PROOF, not only folic acid was supplemented, but also vitamin B12. 

Unfavorable effects of vitamin B12 supplementation on cancer incidence therefore 

cannot be ruled out. Such an association has not been studied as extensively as 
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for folic acid. Vitamin B12 levels have been shown to be positively associated with 

prostate cancer in a meta-analysis [15]. However, a meta-analysis for breast cancer 

reported no significant associations [16], while for cervical neoplasms, a protective 

effect of high vitamin B12 levels was observed in a small meta-analysis [17]. Thus, 

we cannot draw conclusions concerning the role of vitamin B12 in the unfavorable 

cancer results in B-PROOF. 

The results of B-PROOF imply that caution is needed when further research on 

potential beneficial effects of homocysteine-lowering treatment is designed. For 

instance, performing interim analyses or using supplements not containing folic 

acid may be considered. In addition, it is recommended to further investigate the 

long-term effects of the intervention within B-PROOF on cancer incidence, espe‑

cially since it was hypothesized that folic acid may influence cancer progression, 

rather than initiation. This hypothesis is not only supported by the fact that we saw 

an effect on cancer within B-PROOF immediately after the start of the intervention, 

but also by observations that after starting mandatory folic acid food fortification in 

the United States and Canada, a temporary increase in colorectal cancer incidence 

was seen [18], while on the longer term a decrease in colorectal cancer was recently 

reported [19]. It is conceivable that high levels of folate inhibit the initiation of can‑

cer by ensuring proper DNA-synthesis, while they stimulate latent malignancies by 

meeting their high folate demands needed to facilitate a higher proliferation rate 

[18]. If this hypothesis is indeed true, one would expect the unfavorable effect on 

cancer within B-PROOF to diminish over time, possibly even followed by a favor‑

able treatment effect on the longer term if cancer initiation has been inhibited.

Potential mechanisms
As discussed above, intervention studies aiming to reduce fracture incidence by 

lowering levels of homocysteine show inconclusive results. Although this may be 

due to differences in study design, it could reflect the absence of a causal rela‑

tion between homocysteine and fractures. Therefore, it is of importance to also 

investigate potential underlying mechanisms to gain insights into whether or not 

homocysteine could be causally related to fractures. In this thesis, several potential 

mechanisms of how homocysteine may influence bone metabolism were exam‑

ined; here, the roles of quantitative ultrasound parameters, bone mineral density 

(BMD), bone turnover, and DNA-methylation will successively be addressed.
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Firstly, it has been hypothesized that homocysteine influences collagen cross-

linking [20], thereby weakening the structure of the bone. As a proxy of this, we 

used quantitative ultrasound measurements, of which the parameters have been 

associated with bone micro-architecture [21]. While levels of homocysteine cross-

sectionally associated negatively with these parameters (Chapter 2.1), we did not 

observe an effect of the treatment with vitamin B12 and folic acid (Chapter 3.2). 
However, a small effect was observed on BUA in persons >80 years of age who were 

compliant to the study treatment. This might support the findings concerning a 

protective effect of the homocysteine-lowering intervention on fractures in this 

same subsample, although the clinical relevance of the effect size on BUA may be 

limited. To our knowledge, this is the first trial investigating such effects. It should be 

noted that although quantitative ultrasound parameters are known to be related 

to micro-architectural structure of the bone [21], and predict fractures partly inde‑

pendently of BMD [22], it remains difficult to grasp what they actually represent. 

Table 1. Overview of randomized controlled trials investigating preventive effect on fractures of intervention with B-vitamins.

Study, year of 
publication, [ref]

n Primary 
study 

outcome

Main fracture 
outcome

n of fractures Main 
inclusion 

criteria

Age (y, mean 
(SD))

Sex (% 
female)

Country 
of study

Ethnicity Mean 
baseline Hcy 

(µmol/l)

Intervention Placebo Follow-up 
duration (y)

Change in Hcy (%) Result

Folic acid 
(mg)

B12 (mg) B6 (mg) D3 (IU) Intervention Placebo

Sato, 2005, [9] 628 Unknown Hip fracture 33 (fractures) ≥65y, residual 
hemiplegia 
after stroke

71.4 (5) 53.8 Japan No 
information

19.9 5 1.5 - - Double 
placebo

2 -38.1% +31.2% RR: 0.22 (0.09-0.53)

HOPE 2, 2007, [10] 5522 Composite of 
CVD-death, 

nonfatal MI or 
stroke

Any type of 
fracture

350 (fractures) ≥55y, pre-
existing CVD 
or DM+CVD 

risk factor

68.9 (7) 28.2 Canada, 
USA, Brazil, 

Western 
Europe, 
Slovakia

No 
information

11.5 2.5 1 50 - Matching 
placebo

5 -19% +7% HR: 1.01 (0.82-1.24)

VITATOPS, 2013, [8] 8164 Composite 
of stroke, MI 
or death due 

to vascular 
causes

Osteoporotic 
fracture

145 (persons) Recent stroke 
or transient 

ischemic 
attack

62.2 (12) 36 Multiple 
(n=20)

Western 
European, 

Oriental, and 
Asian

14.2 2 0.5 25 - Matching 
placebo

2.8 -23% +7% RR: 0.86 (0.62-1.18)

B-PROOF, 2014, [11] 2919 Osteoporotic 
fractures

Osteoporotic 
fracture

103 (persons) ≥65y, plasma 
Hcy ≥12 

µmol/l, serum 
creatinine 

<150 µmol/l

74.1 (7) 50.1 Netherlands Mainly 
Caucasian

14.4 0.4 0.5 - 600 600 IU vitamin 
D3

2 -29% -1% HR: 0.84 (0.58-1.22)

CVD=cardiovascular disease, DM=diabetes mellitus, MI=myocardial infarction.
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It would be interesting to take bone biopsies to assess the level of homocysteine 

in bone [23] and perform micro-CT (computed tomography) to visually inspect 

the changes at the microarchitectural level after an intervention like B-PROOF’s. In 

addition, it may be informative to perform high resolution peripheral quantitative 

CT in vivo. However, drawbacks of these methods are the invasiveness and the use 

of higher-dose ionizing radiation.

A second hypothesis proposes direct effects of homocysteine levels on BMD. 

Whether homocysteine influences fracture incidence via BMD has been under 

debate in the last few years; results were conflicting, but recently a meta-analysis 

in females showed no significant association [7]. We investigated this second 

potential mechanism in Chapters 2.1 and 3.2. Cross-sectionally, a negative as‑

sociation between plasma homocysteine levels and BMD at both the femoral neck 

and lumbar spine was observed. However, the effect size was very small. Moreover, 

no effect of the B-PROOF intervention on BMD in either femoral neck or lumbar 

Table 1. Overview of randomized controlled trials investigating preventive effect on fractures of intervention with B-vitamins.

Study, year of 
publication, [ref]

n Primary 
study 

outcome

Main fracture 
outcome

n of fractures Main 
inclusion 

criteria

Age (y, mean 
(SD))

Sex (% 
female)

Country 
of study

Ethnicity Mean 
baseline Hcy 

(µmol/l)

Intervention Placebo Follow-up 
duration (y)

Change in Hcy (%) Result

Folic acid 
(mg)

B12 (mg) B6 (mg) D3 (IU) Intervention Placebo

Sato, 2005, [9] 628 Unknown Hip fracture 33 (fractures) ≥65y, residual 
hemiplegia 
after stroke

71.4 (5) 53.8 Japan No 
information

19.9 5 1.5 - - Double 
placebo

2 -38.1% +31.2% RR: 0.22 (0.09-0.53)

HOPE 2, 2007, [10] 5522 Composite of 
CVD-death, 

nonfatal MI or 
stroke

Any type of 
fracture

350 (fractures) ≥55y, pre-
existing CVD 
or DM+CVD 

risk factor

68.9 (7) 28.2 Canada, 
USA, Brazil, 

Western 
Europe, 
Slovakia

No 
information

11.5 2.5 1 50 - Matching 
placebo

5 -19% +7% HR: 1.01 (0.82-1.24)

VITATOPS, 2013, [8] 8164 Composite 
of stroke, MI 
or death due 

to vascular 
causes

Osteoporotic 
fracture

145 (persons) Recent stroke 
or transient 

ischemic 
attack

62.2 (12) 36 Multiple 
(n=20)

Western 
European, 

Oriental, and 
Asian

14.2 2 0.5 25 - Matching 
placebo

2.8 -23% +7% RR: 0.86 (0.62-1.18)

B-PROOF, 2014, [11] 2919 Osteoporotic 
fractures

Osteoporotic 
fracture

103 (persons) ≥65y, plasma 
Hcy ≥12 

µmol/l, serum 
creatinine 

<150 µmol/l

74.1 (7) 50.1 Netherlands Mainly 
Caucasian

14.4 0.4 0.5 - 600 600 IU vitamin 
D3

2 -29% -1% HR: 0.84 (0.58-1.22)

CVD=cardiovascular disease, DM=diabetes mellitus, MI=myocardial infarction.
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spine was observed. In persons older than 80 years, an effect was also absent. The 

results of this intervention are in line with findings from previous trials [24, 25]. 

Therefore, BMD does not appear to be part of the mechanism that could underlie 

the potentially causal relation between homocysteine and fractures.

Thirdly, we assessed the associations between homocysteine and bone turnover 

markers (osteocalcin and osteopontin) and the effect of the homocysteine-

lowering treatment on these markers. Supplementation with vitamin B12 and folic 

acid did not influence levels of these markers (Chapter 3.3). While osteocalcin is 

an established marker of bone formation [26], which was also associated negatively 

with femoral neck BMD and borderline significantly positively with fractures in 

our study, the effects of osteopontin are not that comprehensible. In vitro, it was 

seen that homocysteine stimulates pre-osteoblastic production and expression of 

osteopontin [27], but osteopontin is known to be rather pleiotropic [28]. Possibly, 

assessing a marker of bone resorption, such as the C-terminal telopeptide, would 

have been more appropriate to exclude a dissociation between bone formation 

and resorption, but this marker was not available, and such an effect is not very 

likely. 

Lastly, it has been hypothesized that homocysteine could influence DNA-

methylation, thereby exerting its influence on fractures. We investigated this 

hypothesis in Chapter 2.2 using data of the Rotterdam Study. The ratio of plasma 

SAM/SAH, which is regarded as a measure for overall methylation capacity, was as‑

sociated with femoral neck BMD, but not with incident fractures. It should be noted 

that although SAM/SAH-ratio may reflect methylation capacity, it is known to be 

tissue-specific and it does not necessarily reflect methylation of specific genes. 

To our knowledge, this has been the only study in humans so far investigating 

this phenomenon. Thus, the role of DNA-methylation in the association between 

homocysteine and fractures merits more investigation; especially the response in 

gene-specific methylation to the intervention with vitamin B12 and folic acid would 

be interesting to investigate further, as well as specific effects in the oldest old.

Mendelian randomization approach
A more fundamental way to assess causality in relationships is to use the approach 

of Mendelian randomization. We used this approach within B-PROOF and the 

GEFOS-consortium (a large-scale global collaboration investigating genetic factors 
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for osteoporosis) to investigate whether gene variants known to predict plasma 

homocysteine levels are also related to fracture incidence. If such an association is 

present, it would support the hypothesis of homocysteine being causally related to 

incident fractures, since presence of reverse causation and confounding is unlikely 

when dealing with genetic markers. However, our analysis showed that there was 

no significant association between a risk score combining the effect of 18 single 

nucleotide polymorphisms (predicting levels of homocysteine) and risk of fractures 

or FN-BMD, therefore not supporting causality. However, previous studies did ob‑

serve associations between the MTHFR C677T genotype and fractures. Inclusion of 

cohorts originating from countries in which folic acid fortification of staple foods 

is mandatory may have distorted our findings, since a gene-environment interac‑

tion between the MTFHR C677T genotype and plasma folate levels on levels of 

homocysteine is well-known [29]. This merits further investigation. In addition, the 

low amount of variance in homocysteine that is explained by the genetic risk score 

decreases power to observe associations.

So…
Is homocysteine truly a risk factor for osteoporotic fractures, or is it merely a risk 

indicator, or by others nicely typed as ‘innocent bystander’ [30] or just ‘an expensive 

creatinine’ [31]? The ambiguity of the results presented in this thesis prevent us 

from drawing firm conclusions about this. In summary, we investigated several 

pathways that could potentially be underlying the observed association between 

homocysteine and incident osteoporotic fractures. Based on these results, none 

of these pathways clearly arose to be of importance in this association. However, 

although the overall effects of the B-PROOF intervention on fractures were not 

statistically significant, there does appear to be a trend towards a preventive effect 

of B-vitamins, especially in the oldest old and such an age-specific trend was also 

seen for bone ultrasound attenuation. 

Methodological considerations: B-PROOF, what if…

Talking in retrospect is always easy. So let’s start with that. What if� B-PROOF had 

had an intervention period of 10 years? What if... 5000 participants were included 

in the trial? What if� the cut-off level for homocysteine had been 15 µmol/l? Or if 
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it was even raised to 20 µmol/l? What if� the cut-off level for age had not been 65, 

but 70 years? It all comes down to power. As in every trial, in designing B-PROOF 

several compromises had to be made to keep the study feasible, both practically 

and financially. Unfortunately, the results concerning the primary outcome can 

be regarded to be inconclusive to some extent, and with the current knowledge, 

some of these decisions possibly would have been made differently.

The intervention within B-PROOF consisted of vitamin B12 and folic acid. How‑

ever, also riboflavin (vitamin B2) and pyridoxin (vitamin B6) are co-factors in the 

metabolism of homocysteine. One could argue that the trial design should have 

also included these vitamins. However, it is known that especially folate/folic acid 

supplementation, and to a lesser extent also vitamin B12, are the strongest influenc‑

ers of plasma homocysteine levels [32]. Addition of B6 to these vitamins did not 

have an additional effect on homocysteine levels [32]. Vitamin B2 supplementation 

has shown to be ineffective in lowering homocysteine levels [33, 34]. Moreover, 

especially for vitamin B12, intake and status are of important public health concern 

in the Netherlands, specifically in the elderly [35]. Reassuringly, the intervention has 

proven its effect by lowering plasma homocysteine by 4.4 µmol/l on average, while 

levels in the placebo group remained largely unchanged (-0.2 µmol/l), showing 

that the intended lowering of homocysteine was indeed accomplished. A recent 

meta-analysis showed a reduction of 4% in fractures for every 1 µmol/l decrease 

in homocysteine [7], which implies that within B-PROOF a fracture reduction of 

4.2*4%=16.8% could be obtained. The observed HR of 0.84 matches perfectly with 

these expectations.

Finally, 600 IU of vitamin D3 were supplemented to both the intervention and 

placebo group. This was done for ethical purposes; the Dutch Health Council rec‑

ommends vitamin D supplementation for women above 50 years of age (400 IU) 

and for men and women above 70 years of age (400 IU) [36], the latter was even 

raised to 800 IU in 2012 [37]. However, although we do not expect interactions 

between the B-vitamin intervention and vitamin D3 to have occurred for any of 

the study outcomes, this cannot be fully excluded either. In addition, the expected 

separate effect of vitamin D3 supplementation may have attenuated any effects of 

the lowering of homocysteine. 
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Clinical implications

Fractures have large implications, both for the individual and for society. The indi‑

vidual patient experiences pain, loss of quality of life, immobilization, and has a risk 

of dying sooner [38]. In addition, the costs of a fracture are high; in the Netherlands, 

a hip fracture is estimated to cost €14,000 [39]. Currently, several treatments are 

available to combat osteoporosis and recurrent fractures. For example, bisphos‑

phonates are first-line therapy in case of osteoporosis, and they are able to prevent 

fractures (RR=0.30-0.80) by inhibiting bone resorption [40]. However, current prob‑

lems in osteoporosis treatment are, besides the suboptimal screening, also the very 

low adherence to medication use, partly because of its side effects [40], such as 

gastro-intestinal problems. Therefore, next to medication, nutritional advices and 

other preventive strategies are all the more important. Concerning vitamin D, the 

Dutch Health Council already recommends vitamin D supplementation, since it is 

known that 41-78% of women above 50 years are vitamin D deficient (<50 nmol/l) 

[37]. In analogy, the screening of participants for the B-PROOF study showed that 

approximately 48% of screened participants had mildly elevated plasma homocys‑

teine levels. Prevention of fractures via lowering homocysteine would therefore be 

an interesting strategy in clinical practice, especially since it is a preventive measure 

that is not merely a general lifestyle guideline, but is personalized for the patient 

based on his plasma homocysteine level. The results of the B-PROOF trial show 

that this might be a relevant strategy in the oldest old. However, since we also 

observed an unfavorable effect of the intervention on malignancies, this strategy 

clearly cannot be advised yet based on the current evidence.

Future directions

Taken together, the results reported in this thesis temper the expectations of 

homocysteine being a modifiable causal factor for fractures. Firstly, no clear 

mechanisms were found which could support causality in the association between 

homocysteine and fractures. It should be noted that especially the roles of (tissue-

specific) DNA-methylation and bone microarchitecture need further investigation. 

Secondly, the intervention with vitamin B12 and folic acid did not have significant 

effects on the overall population. However, the effect sizes were of a clinically rel‑

        



160  |  Chapter 5 

evant size (HR=0.84), and in a subgroup of compliant participants above 80 years 

of age, the effect was substantially larger and statistically significant. Possibly, due 

to issues discussed above, we had limited power to detect beneficial effects of the 

treatment. Therefore, a meta-analysis on the currently reported four RCT’s could 

provide more insights, and future research on this topic may need to focus on the 

oldest old as results were most promising in this subgroup. Clearly, the fact that we 

observed a higher cancer incidence in B-PROOF’s intervention group as compared 

with the placebo group is of concern. To follow-up both fractures and cancer, it 

is recommended that both these outcomes are going to be monitored within 

B‑PROOF for a longer duration. Plans for this expansion of the study are currently 

being made.
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6.1 Summary

Osteoporosis is a multi-factorial disease, characterized by low bone mass and 

deterioration of bone micro-architecture. Due to aging of the world’s population, 

the problem of osteoporosis is expected to increase in the coming decades. In 

2004, first evidence was published concerning a potential role of the amino acid 

homocysteine in fracture incidence; high plasma homocysteine levels were associ‑

ated with higher risk of osteoporotic fractures. However, whether this relationship 

was causal remained to be determined. Since it is also known that homocysteine 

levels can be reduced by supplementation with folic acid and vitamin B12, two 

vitamins that are essential in the conversion of homocysteine to methionine, ho‑

mocysteine is a potential modifiable risk factor for fractures and/or osteoporosis. In 

this thesis, the role of homocysteine in bone and potential protective effects of a 

homocysteine-lowering treatment are addressed. 

Chapter 1.1 provides a general introduction to this thesis, complemented by 

Chapter 1.2, in which the design of the B-PROOF study is discussed in detail. 

In short, the B-PROOF study is a large (n=2919) randomized controlled trial, for 

which hyperhomocysteinemic (12-50 µmol/l) men and women aged 65 years and 

over were randomized to either receive 400 µg of folic acid and 500 µg of vitamin 

B12 daily, or placebo. All participants received 600 IU of vitamin D3 daily. Incident 

fractures, but also (amongst others) bone mineral density, quantitative ultrasound 

measurements and blood parameters at baseline and after 2 years of follow-up 

were assessed. 

Chapter 2 describes cross-sectional associations within B-PROOF and within the 

Rotterdam Study. The Rotterdam Study is a large prospective cohort study in Om‑

moord, Rotterdam, among middle-aged and elderly men and women. In Chapter 
2.1, we address the cross-sectional associations of plasma homocysteine levels 

with bone mineral density and ultrasound parameters. Inverse associations were 

observed, however based on the effect size they appeared to be of limited clinical 

relevance. Chapter 2.2 focuses on the association of the ratio of s‑adenosylmethio‑

nine to s‑adenosylhomocysteine with bone mineral density and incident fractures 
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within a female sample of the Rotterdam Study. Although an association with bone 

mineral density was seen, no association of this ratio with fractures was observed.

In Chapter 3, effects of the B-PROOF intervention are reported. In Chapter 3.1, 

the effects of the intervention with vitamin B12 and folic acid on fracture incidence 

are described. In the overall study population, no statistically significant beneficial 

effects of the treatment on fracture incidence were seen. However, exploratory 

analyses in compliant participants older than 80 years did show a protective effect 

of the treatment on fractures. Notably, we also observed an unfavorable associa‑

tion of the intervention with cancer incidence; participants who received vitamin 

B12 and folic acid reported significantly more often cancer than participants in 

the placebo group. Chapter 3.2 presents the effect of the intervention on bone 

mineral density and quantitative ultrasound parameters. In general, no effects of 

the treatment on any of the parameters were observed. In a subgroup of compliant 

participants aged 80 years and over, a small beneficial effect on bone ultrasound 

attenuation was seen. Chapter 3.3 focuses on osteocalcin and osteopontin, two 

markers reflecting bone turnover. Both were inversely associated with bone min‑

eral density, and osteocalcin was borderline significantly associated with incident 

fractures. The intervention with folic acid and vitamin B12, which showed to be ef‑

fective in reducing homocysteine levels, had no effect on levels of osteocalcin and 

osteopontin, indicating that bone turnover does not appear to play an important 

role in the previously observed association between homocysteine and incident 

fractures.

Chapter 4 discusses the results of a Mendelian randomization approach. Using data 

of B-PROOF and of the GEFOS-consortium, we investigated whether a combination 

of genes that are known to predict plasma homocysteine levels is able to predict 

fractures. Such an association is not expected to be influenced by confounding. We 

did not observe an association of these genes with fractures. These data therefore 

do not support a truly causal role of homocysteine in the occurrence of fractures.

In the general discussion (Chapter 5), the main findings of this thesis are discussed 

and suggestions for further research are given.
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6.2 Samenvatting

Osteoporose (botontkalking) is een aandoening met diverse oorzaken die wordt 

gekenmerkt door een lage botmassa en een verslechtering van de micro-architec‑

tuur van het bot. Ten gevolge van de vergrijzing van de wereldbevolking bestaat de 

verwachting dat het probleem van osteoporose in de komende decennia toe zal 

nemen. In 2004 werd het eerste bewijs gepubliceerd voor een mogelijke effect van 

het aminozuur homocysteine op het vóórkomen van osteoporotische fracturen; 

een hoog plasma homocysteinegehalte werd in verband gebracht met een ver‑

hoogd risico op osteoporotische breuken. Echter, het is onzeker of dit verband ook 

daadwerkelijk oorzakelijk is. Het is bekend dat het homocysteinegehalte omlaag 

kan worden gebracht door middel van suppletie met foliumzuur en vitamine B12, 

twee vitamines die essentieel zijn bij de omzetting van homocysteine in methio‑

nine. Homocysteine vormt mogelijk dan ook een risicofactor voor osteoporotische 

fracturen die beïnvloedbaar is. In dit proefschrift wordt de rol van homocysteine in 

het bot en de mogelijk beschermende rol van homocysteine-verlagende vitamine‑

suppletie besproken.

Hoofdstuk 1.1 betreft een algemene introductie in het onderwerp, aangevuld 

met Hoofdstuk 1.2, waarin de opzet van de B-PROOF-studie wordt besproken. In 

het kort betreft B-PROOF een grote (n=2919) gerandomiseerde, gecontroleerde 

interventiestudie. Mannen en vrouwen van 65 jaar en ouder met een verhoogd 

homocysteinegehalte (12-50 µmol/l) werden gerandomiseerd over de twee inter‑

ventie-armen: één groep ontving gedurende twee jaar dagelijks 400 µg foliumzuur 

en 500 µg vitamine B12, terwijl de andere groep een placebo-tablet innam. Alle 

deelnemers ontvingen daarnaast 600 IE vitamine D3. Er werd informatie verzameld 

over de fracturen die tijdens de studie ontstonden, daarnaast werden aan het 

begin en aan het einde van de studie botdichtheidsmetingen en een echo van de 

hiel uitgevoerd en werden diverse bepalingen in het bloed gedaan.

Hoofdstuk 2 beschrijft cross-sectionele associaties binnen B-PROOF en de Rot‑

terdam Studie. De Rotterdam Studie is een grote prospectieve cohort-studie bij 

mannen en vrouwen van middelbare en oudere leeftijd in Ommoord, Rotterdam. 

In Hoofdstuk 2.1 wordt de cross-sectionele associatie van plasma homocystei‑
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negehaltes met botdichtheid en metingen met ultrasoon geluid behandeld. Er 

werden omgekeerde verbanden gezien, echter, deze verbanden waren dusdanig 

klein, dat de klinische relevantie ervan beperkt lijkt. Hoofdstuk 2.2 richt zich op 

het verband van de ratio van s-adenosylmethionine en s-adenosylhomocysteine 

met botdichtheid en fracturen binnen een groep vrouwen uit de Rotterdam Studie. 

Hoewel we een associatie van deze ratio met botdichtheid zagen, bleek er met 

fracturen geen verband te zijn.

In Hoofdstuk 3 worden de effecten van de B-PROOF-interventie gerapporteerd. 

De effecten van vitamine B12/foliumzuursuppletie op het vóórkomen van fracturen 

zijn te lezen in Hoofdstuk 3.1. In de gehele onderzoekspopulatie zagen we geen 

statistisch significante effecten van suppletie op de fractuurincidentie. Echter, 

analyses in therapietrouwe deelnemers die ouder dan 80 jaar waren lieten wel 

een beschermend effect van suppletie op botbreuken zien. Er dient echter ook 

te worden opgemerkt dat we een ongunstige associatie van de suppletie met het 

vóórkomen van kanker zagen; deelnemers die vitamine B12/foliumzuursuppletie 

ontvingen, meldden significant vaker kanker dan de deelnemers in de placebo‑

groep. Hoofdstuk 3.2 beschrijft de effecten van de interventie op botdichtheid 

en metingen met ultrasoon geluid die de botkwaliteit dienen te weerspiegelen. 

Er werden geen effecten van suppletie op deze parameters gevonden, echter, in 

een subgroep van therapietrouwe deelnemers die ouder dan 80 jaar waren werd 

wel een gunstig, maar klein, effect gezien op één van de maten van botkwaliteit. 

Hoofdstuk 3.3 richt zich op osteocalcine en osteopontine, twee markers die 

botombouw weerspiegelen. Beide markers waren omgekeerd geassocieerd met 

botdichtheid, daarnaast leek osteocalcine ook geassocieerd te zijn met fracturen, 

echter dit laatste effect was niet statistisch significant. Suppletie met foliumzuur 

en vitamine B12 bleek weliswaar effectief in het verlagen van het homocysteine‑

gehalte, maar het had geen effect op de osteocalcine- en osteopontinegehaltes. 

Dit suggereert dat botombouw geen belangrijke rol lijkt te spelen in het eerder 

waargenomen verband tussen het homocysteinegehalte en fracturen.

In Hoofdstuk 4 worden de resultaten van een analyse op basis van Mendeliaanse 

randomisatie beschreven. Met behulp van data van de B-PROOF-studie en van het 

GEFOS-consortium is onderzocht of een combinatie van genen, waarvan bekend 
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is dat ze het plasma homocysteinegehalte beïnvloeden, tevens fracturen kan 

voorspellen. Er werd echter geen verband tussen deze genen en fracturen waar‑

genomen. Dit ondersteunt dan ook niet de hypothese van een causaal verband 

tussen homocysteine en het vóórkomen van fracturen.

In de algemene discussie (Hoofdstuk 5) worden ten slotte de belangrijkste bevin‑

dingen uit dit proefschrift besproken en worden suggesties voor verder onderzoek 

gedaan.
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A

List of abbreviations

B-PROOF=B-vitamins for the PRevention Of Osteoporotic Fractures

BMD=bone mineral density

BMI=body mass index

BUA=bone ultrasound attenuation

CBS=cystathionine β synthase

CV=coefficient of variation

DNA=desoxyribonucleic acid

DXA=dual-energy X-ray absorptiometry

FN-BMD=femoral neck bone mineral density

GEFOS=GEnetic Factors for OSteoporosis

GRS=genetic risk score

GWAS=genome-wide association study

HR=hazard ratio

HoloTC=holotranscobalamin

Hcy=homocysteine

IF=intrinsic factor

ITT=intention-to-treat

LS-BMD=lumbar spine bone mineral density

MTHFR=methylenetetrahydrofolate-reductase

MMA=methylmalonic acid

PP=per protocol

QUS=quantitative ultrasound

SAH=s-adenosylhomocysteine

SAM=s-adenosylmethionine

SNP=single-nucleotide polymorphism

SOS=speed of sound

RCT=randomized controlled trial

RS=Rotterdam study
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Dankwoord

Een proefschrift schrijf je niet alleen…

Geachte prof. Uitterlinden, beste André. In het begin van mijn promotietraject was 

onze samenwerking nog van beperkte omvang. Samen met de rest van het team 

was ik druk bezig met het verzamelen van alle deelnemers en data, maar van een 

afstandje bleef je natuurlijk op de hoogte. Naar het einde toe werd de samenwer‑

king intensiever en bleek ook dat je er voor B-PROOF was toen het nodig was. Je 

nooit aflatende enthousiasme voor B-PROOF en voor wetenschap in het algemeen 

was enerzijds erg aanstekelijk, maar kon me aan de andere kant ook laten twijfelen 

of dit ‘het wel was’ voor mij. Het lijkt me geweldig om zo’n passie voor je werk te 

hebben als jij! Enorm bedankt voor alle adviezen en je positiviteit.

Geachte dr. Van der Velde, beste Nathalie, ook jou wil ik hartelijk danken voor alles 

wat je in de afgelopen jaren voor mij hebt gedaan. Het belangrijkste voor mij was 

wel het altijd in mij gestelde vertrouwen, ook op momenten dat dat er bij mijzelf 

even aan ontbrak. Je hielp me de grote lijnen te blijven zien en de grote brij aan 

werk stap voor stap aan te pakken. Mede daardoor ligt dit proefschrift nu hier!

Geachte dr. Zillikens, beste Carola, dank voor al je hulp! De manier waarop je mee‑

dacht met mijn manuscripten vond ik erg prettig. Je hield niet alleen een goede 

inhoud, maar ook de praktische uitvoerbaarheid helder voor ogen en je kon me 

vaak weer op nieuwe gedachten brengen.

Prof. Lips, prof. Van den Bergh en prof. Lindemans, hartelijk dank voor het zitting 

nemen in de kleine commissie en voor de beoordeling van mijn proefschrift. Beste 

Paul, tevens mijn dank voor de prettige samenwerking en het delen van je osteo‑

porotische kennis gedurende de afgelopen jaren.

Lieve Suzanne en Annelies, we hebben veel samen gewerkt, gelachen, frustraties 

gedeeld en elkaar geholpen. Heel fijn om twee meiden in de buurt te hebben die 

kunnen fungeren als klankbord of aan wie je ook ‘domme’ vragen kunt stellen. Soms 

hebben jullie heel wat met mij te stellen gehad en jullie hebben geholpen me vol 
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te laten houden als ik het zelf even niet meer zag zitten. ‘Enorm bedankt’ zeggen is 

het minste wat ik kan doen! Suus, je wordt ongetwijfeld een gouden geriater! En 

Annelies, veel succes met de laatste loodjes, over een poosje sta jij hier ook.

Lieve Sandra en Sadaf, ook jullie wil ik enorm bedanken voor al jullie inzet, gezel‑

ligheid en hulp! Sandra, als eerste twee teamleden in het Erasmus MC denk ik dat 

we onszelf toch wel beschouwden als hardcore B-PROOF-ers. Ik zie ons nog op pad 

gaan naar onze eerste serviceflat om deelnemers te werven, een beetje zenuwach‑

tig maar vooral met veel goede moed dat we deze klus zouden gaan klaren. En dat 

deden we! Samen waren we de ‘DEXA-geiten’ van B-PROOF, en tijdens mijn zwan‑

gerschapsverlof kwamen zelfs al deze scans op jouw schouders terecht. Ik ben je 

er erg dankbaar voor! We hebben je wel eens gekscherend onze B-PROOF-moeder 

genoemd, maar zo was het soms ook echt. Fijn dat je mijn paranimf wilt zijn! Sadaf, 

ik heb ervan genoten met je samen te werken. Je was een prettige collega en 

heel goed in systematisch werken. Was er een lijstje met zaken dat moest worden 

uitgezocht, dan was dat een kolfje naar jouw hand. Daarnaast heb je mij, en de rest 

van het team, een hoop geleerd over je achtergrond en cultuur. Hartstikke bedankt!

Beste Karin en Janneke, vanaf het begin van het onderzoek verliep de samenwer‑

king met jullie heel fijn. Karin, ik heb bewondering voor het feit dat je in het VUmc 

‘in je eentje’ zoveel voor elkaar hebt gekregen. Daar waar ik gemakkelijk kon sparren 

met Suzanne en Annelies, kwam jij in je eentje vaak met de beste ideeën. Altijd 

rustig doordacht, heel fijn! Ik ben er trots op dat je mijn paranimf bent. Janneke, 

naast een goede samenwerking op werkgebied was het ook prettig om af en toe 

andere zaken te kunnen delen, zoals zwangerschappen, baby’s en de combinatie 

van werk en privé. Meiden, ik heb veel van jullie geleerd en het samen schrijven 

aan ons belangrijkste manuscript heeft me, naast een goede test van mijn/ons 

doorzettingsvermogen, veel goede moed gegeven in de periode waarin ik dat wel 

kon gebruiken.

Ook wil ik graag de andere leden van het B-PROOF-team hartelijk bedanken: Joyce, 

Rosalie, Lisette, Nikita, Elske, Natasja, Evelien, Hans en Tischa, elk met onze eigen 

bijdrage hebben we het geflikt! En zonder jullie bijdrage was dit proefschrift er ook 

zeker niet geweest. Daarnaast mijn dank aan Fernando Rivadeneira, Karol Estrada, 
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Ling Oei, Lisette Stolk, Sandra Heil en Robert de Jonge voor de fijne samenwerking 

en jullie zeer leerzame bijdrages aan de manuscripten.

Wat zeker niet vergeten mag worden is dat dit proefschrift, maar ook B-PROOF als 

geheel, nooit had kunnen bestaan zonder de bijdrage van de duizenden deelne‑

mers. Ik wil u allen heel hartelijk danken voor uw medewerking. Wat was het leuk 

om zoveel verschillende mensen te ontmoeten en zoveel verschillende manieren 

van ‘ouder worden’ te kunnen zien! 

Beste Jopie Sluimer, met name in de beginfase van B-PROOF heb je ons erg gehol‑

pen met het aanleren van het uitvoeren van de DEXA-scans en de analyse ervan. 

Ik waardeerde je precisie en het feit dat je me altijd hebt willen helpen bij vragen. 

We hebben er een mooie set aan gegevens aan overgehouden, waarvoor aan jou 

mijn dank. Graag wil ik ook Monique de Waart bedanken voor al je werk aan de 

onophoudelijke stroom aan laboratoriumbepalingen, een hele klus!

Dank ben ik zeker verschuldigd aan alle studenten die hebben meegewerkt aan 

het B-PROOF-onderzoek. Martje, Tanya, Niels, Maarten, Martijn, Ymke, Tjitske, 

Kim, Mehmed, Riekske, Colin, Samantha, Nathalie, Shaynah, Marjolein en Emma, 

het werk dat jullie samen hebben verzet is echt immens! Soms was het veel van 

hetzelfde, vaak was het gelukkig leuk om met onze deelnemers in gesprek te zijn, 

maar bovenal was jullie bijdrage zeer belangrijk en nuttig. Daarnaast vond ik het 

leuk en leerzaam om een aantal van jullie bij jullie scripties te begeleiden. Bedankt!
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cysteine, bone mineral density and fractures, and the effect of a homocysteine-lowering 

treatment on their levels.
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