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STELLINGEN BEHORENDE BIJ HET PROEFSCHRIFT:

‘Osteoarthritis: pathogenesis and therapeutic interventions for a whole joint 
disease.’

1. Bij de behandeling van artrose dient rekening te worden gehouden met pathologie van de 

gewrichtsweefsels én de verstoorde fysiologische belastbaarheid van het gewricht.

2. Stresseiwitten kunnen in de toekomst gebruikt worden om te differentiëren tussen 

fysiologische en artrose-gerelateerde adaptatieprocessen.

3. Een bredere toepassing van moleculair beeldvormende technieken is noodzakelijk voor 

het ontwikkelen van nieuwe behandelstrategieën voor artrose.

4. Synovitis en pijn hebben indirect ook een gunstig effect op artrose doordat ze leiden tot 

verminderde belasting op kraakbeen.

5. Studies naar artrose moeten zich richten op verschillende medicamenteuze behandelingen, 

die gecombineerd de kwaliteit van het gehele gewricht verbeteren.

6. Net als mensen, moet je macrofagen niet te graag in één hokje willen stoppen.

7. Wetenschappelijke waarde drukt zich niet uit in de p-waarde; significante verschillen 

kunnen volstrekt onbelangrijk zijn, terwijl een niet significant verschil soms het belangrijkst 

is.

8. Beeldvormende technieken moeten in de toekomst gaan informeren over de mate van 

belastbaarheid van een gewricht.

9. Wetenschappelijk onderzoek is ‘out of the box’ denken; maar door het verrichten van 

onderzoek leer je diezelfde box nu juist beter kennen.

10. Wetenschap is als het werk van Antoni van Leeuwenhoek, proberen baanbrekend 

onderzoek te doen met daarvoor vaak onpraktische hulpmiddelen.

11. De kunst van het schrijven is steeds zoveel te schrappen dat duidelijk wordt wat bedoeld 

is.



OSTEOARTHRITIS: PATHOGENESIS 

AND THERAPEUTIC INTERVENTIONS  

FOR A WHOLE JOINT DISEASE

Michiel Siebelt



The printing of this thesis was financially supported by: 

Erasmus MC, department of Orthopaedics

Nederlandse Orthopedische Vereniging

Anna Fonds

Link & Lima Nederland

ABN Amro Bank

Chipsoft

The research leading to the results described in this thesis was financially supported by the 

Dutch Arthritis Association, and the BMM/TerM P2.02 Program of the Netherlands Ministry of 

Economic Affairs and the Netherlands Ministry of Education, culture and Science.

© M. Siebelt. All rights reserved. No parts of this publication may be reproduced, stored in a 

retrieval system or transmitted in any form or by any means, without prior written permission 

of the author. 

ISBN: 978-94-91487-22-4

Lay out: Sinds 1961 I Grafisch Ontwerp

Printed by: Print Service Ede

Publisher: Medix Publishers BV, Keizersgracht 317A, 1016 EE Amsterdam, the Netherlands

De digitale versie van dit proefschrift is te vinden in de YourThesis-app en kan gelezen worden 

op een tablet of smartphone. De app kan gedownload worden in de App Store en de Google

Play store of middels het scannen van de onderstaande QR-code.



OSTEOARTHRITIS: PATHOGENESIS 

AND THERAPEUTIC INTERVENTIONS  

FOR A WHOLE JOINT DISEASE

Artrose: pathogenese en therapeutische interventies voor een ziekte  
van het hele gewricht

Proefschrift

ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op 

gezag van de rector magnificus

Prof.Dr. H.A.P. Pols

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

Woensdag 3 juni 2015 om 09:30 uur

door

Michiel Siebelt

geboren te Nuenen



PROMOTIECOMMISIE:

Promotoren:

Prof.Dr.Ir. H.H. Weinans

Prof.Dr.Ir. M. Hendriks-de Jong

Prof.Dr. J.A.N. Verhaar

Leescommissie:

Prof.Dr. S.E.R. Hovius

Prof.Dr. J.F. Verzijlbergen

Dr. J.B.J. van Meurs



TABLE OF CONTENTS

Chapter 1: Introduction 

Chapter 2:  Quantifying osteoarthritic changes accurately using in vivo  

  µCT-arthrography in three etiologically distinct rat models 

Chapter 3: Increased physical activity severely induces osteoarthritic changes in  

  knee joints with sulfated-glycosaminoglycan depleted cartilage 

Chapter 4: Inhibition of Gsk3β in cartilage induces osteoarthritic features through 

  activation of the canonical Wnt signalling pathway 

Chapter 5: Hsp90 inhibition protect against biomechanically induced osteoarthritis 

Chapter 6: FK506 protects against articular cartilage extra-cellular matrix degradation 

Chapter 7: Alendronate treatment protect against cartilage matrix degradation during  

  severe osteoarthritis progression 

Chapter 8: Triamcinolone acetonide activates an anti-inflammatory and folate receptor  

  positive macrophage that prevents osteophytosis in vivo 

Chapter 9: Mesenchymal stem cells reduce pain but not degenerative changes in a   

  mono-iodoacetate rat model of osteoarthritis 

Chapter 10: Clinically applied CT arthrography to measure the sulfated 

  glycosaminoglycan content of cartilage 

Chapter 11: CT arthrography of the human knee to measure cartilage quality  

  with low radiation dose 

Chapter 12: General discussion 

Summary 

Samenvatting

 

References

  

Appendices: List of abbreviations 

  Curriculum Vitae 

  Phd portfolio 

  List of publications 

  Dankwoord 

9

25

41

59

77

93

111

127

145

159

173

187

203

209

215

245





CHAPTER 1
INTRODUCTION

Part of this chapter is based on the following publications: 

PATHOPHYSIOLOGY OF PERI-ARTICULAR BONE 
CHANGES IN OSTEOARTHRITIS

H. Weinans, M. Siebelt, R. Agricola, S.M. Botter, T.M. Piscaer, J.H. Waarsing

Bone, 2012 (Aug);51(2): 190-6

THE ROLE OF IMAGING IN EARLY HIP OA
M. Siebelt, R. Agricola, H. Weinans, Y.J. Kim

Osteoarthritis Cartilage, 2014 (Oct);22(10): 1470-80

Part of this Chapter is based on the following publications:
Part of this Chapter is based on the following publications:
Pathophysiology of peri-articular bone changes in osteoarthritis. Weinans H, Siebelt M, Agricola R, Botter SM, Piscaer TM, Waarsing JH. Bone. 2012 Aug;51(2):190-6. doi: 10.1016/j.bone.2012.02.002. Epub 2012 Feb 11. Review. PMID:  22343134 

Part of this Chapter is based on the following publications:
Part of this Chapter is based on the following publications:
The role of imaging in early hip OA.Siebelt M, Agricola R, Weinans H, Kim YJ. Osteoarthritis Cartilage. 2014 Oct;22(10):1470-80. doi: 10.1016/j.joca.2014.04.030.  PMID: 25278058 
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OSTEOARTHRITIS: A WHOLE JOINT DISEASE

Osteoarthritis (OA) is an invalidating disease characterized by progressive cartilage 

degradation1. OA is the most prevalent arthritic disease and leading cause of disability that 

effects approximately 34% of the population in the United states over age 652,3. Also in the 

Netherlands, approximately 30% of persons aged 65 and older are affected in either the 

hip or knee joint by this severely disabling disease4. Due to the obvious cartilage pathology, 

research has much focused on articular cartilage and chondrocyte pathobiology. Over the years 

more knowledge has been gained on complex biochemical and biomechanical influences of 

chondrocyte behavior. During the past decade, however, pathologic cellular and structural 

changes in subchondral and trabecular bone, ligaments, synovium, supporting musculature, 

fibrocartilagenous structures such as the meniscus, and intra-articular fat tissue support the 

idea that osteoarthritis is not just a cartilage problem. In the current dogma, OA is explained as 

‘a whole joint disease’ that involves a degenerative continuum between multiple joint tissues 

and cell types5. 

Cartilage in distress
Cartilage is evolutionary designed to facilitate motion in joints where two bones meet. Its 

specific composition of extra-cellular matrix (ECM) allows a frictionless movement and functions 

as a biological shock absorber of mechanical forces that are distributed via the underlying 

subchondral bone (Figure 1A). Articular cartilage ECM is composed of a highly organized 

collagen network, predominantly made up of collagen type II. From the deep calcified cartilage 

to the superficial zone of cartilage, collagen molecules are oriented differently which allows 

to withstand stresses from different directions6. Within this collagen network, embedded in 

lacunae, reside chondrocytes. Chondrocytes in the deep zone are larger with a hypertrophic 

appearance, where in the superficial zone chondrocytes have a more flattened or fibroblastic 

appearance (Figure 1A). The chondrocyte is the only cell type responsible for cartilage ECM 

maintenance  through high production of sulfated-glycosaminoglycans (sGAG)7. sGAG contain 

negatively charged sulphate groups that give cartilage a fixed charge density. Due to this fixed 

charge density, large amounts of positive ions and water enter the cartilage creating a high 

hydrostatic pressure within the collagen network. This water is squeezed out during every 

load build-up during joint movement. Since sGAG remain in the ECM, cartilage has a sponge-

like function and water is immediately attracted back into ECM when compressive forces are 

reduced. It is due to this preservation of hydrostatic pressure that cartilage is continuously able 

to absorb forces up to 10-20MPa8, and facilitate dissipation of these forces to the underlying 

bone. In relation to the number of compressive forces, chondrocytes tightly regulate cartilage 

sGAG content in order to equalize its shock absorbing property that meets the demand of daily 

use9-11.
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Figure 1:  Schematic representation of the differences between a healthy joint and an osteoarthritic joint. In the healthy 

situation, chondrocytes within the cartilage synthesize sulphated-glycosaminoglycans (sGAG; pink intensity represents 

sGAG content). A high sGAG content attracts large amounts of positive ions into the cartilage and water diffuses passively 

into the extra-cellular matrix (ECM). This generates a high hydrostatic pressure, which enables cartilage to dissipate high 

loads during joint loading. When cartilage is compressed, the underlying intact subchondral bone plate provides support 

en stability for the cartilage. Superficial chondrocytes and cells within the synovial membrane produce substances like 

lubricin and hyaluronic acid, both compounds provide lubrication and therefore reduce friction during joint articulation. 

In osteoarthritis (OA) the joint becomes pathologically changed due to alterations of multiple cell types. Chondrocytes 

become hypertrophic or in the case of severe OA progression become apoptotic, lacking sGAG synthesis to sustain 

proper hydrostatic pressure. The cartilage ECM becomes vulnerable, wear-and-tear forces may induce fissural lesions and 

cartilage erions. Osteoclasts within the subchondral bone become activated and start to resorb bone, tunneling their way 

through the subchondral bone plate, and reduces its supportive function. Vascular ingrowth is promoted and osteoblasts 

start to deposit large amounts of bone, generating a sclerotic bone phenotype. Synovial macrophages are activated and 

they produce large quantities of cytokines that promotes osteophyte formation, synovial fibrosis and enhances cartilage 

degradation. This figure was published as part of an article by Glyn-Jones et al, ‘Osteoarthritis’, Lancet 2015

Normal chondrocyte functioning depends on their ability to cope with stress12. Reduced coping 

mechanisms induce important changes like abnormal cell activation, terminal differentiation 

and adaptation of a hypertrophic state. Hypertrophic chondrocytes synthesize more cytokines 

that promote cartilage ECM remodeling, for example, like interleukin (IL)-1, A Disintegrin 

And Metalloproteinase  with Thrombospondin Motifs (ADAMTS)-4, ADAMTS-5, and Matrix 

Metallopeptidase (MMP)-1, MMP-13 (Figure 1B). Additionally, hypertrophic chondrocytes 

produce less sGAG. As a result, the hydrostatic pressure within the ECM is reduced which 
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increases cartilage vulnerability for wear-and-tear-induced lesions to the collagen network.  

Regretfully, functional collagen type II turnover is known to be limited during a human life span. 

Any damage to the collagen network is beyond the repair mechanism of articular chondrocytes, 

and once ECM integrity is compromised OA will ultimately manifest in the joint (Figure 1B)13.

As mentioned before, healthy chondrocytes adopt a hypertrophic state during OA progression. 

Chondrocyte hypertrophy is a known feature off endochondral ossification. Endochondral 

ossification is the biological process that dictates longitudinal bone growth during mammalian 

skeletal development until adult length (i.e. of the bone) is achieved14. During this process 

they proliferate and severely increase their production of ECM. Eventually they adopt a 

hypertrophic state and when terminally differentiated, they will die through programmed cell 

death (apoptosis)15. Gene expression pattern of chondrocytes during endochondral ossification 

is closely resembled in differentiating chondrocytes present in OA16. Both in physiological 

endochondral ossification and pathological OA processes, hypertrophic chondrocytes stimulate 

invasion of cells from the subchondral bone17. This recruitment of osteoblasts and osteoclasts 

will collectively start to replace cartilage tissue with bone tissue. As a result, it is not surprising 

that OA is also characterized by prominent periarticular bone changes. 

Peri-articular bone changes in osteoarthritis
The anatomy of subchondral bone in a healthy joint is nicely built with a thin dome-like 

subchondral plate supported by vertical oriented trabeculae (Figure 1A). The subchondral bone 

has an important role in evenly distributing forces from weight bearing and impact during 

physical activity, which protects the cartilage from high peak stresses and ECM damage. 

Normally, healthy cartilage is avascular and aneural18, so there is no need for perforations 

through the subchondral bone plate that otherwise would comprise its biomechanical function. 

However, this steady state is completely disturbed during OA progression (Figure 1B). 

Although OA can be triggered by different initiating events (e.g. ligament19/meniscal trauma20 

or shape incongruity21-23), eventually changes will develop within the subchondral bone. These 

early OA related bone changes are widely investigated in numerous animal models24-26. During 

early OA progression, subchondral bone first shows a reduction in thickness27-29 with increased 

numbers of subchondral pores30-34. On TRAP-stained histology sections, osteoclastic resorption 

was found to form these pores that extend up into the noncalcified cartilage region29. In a 

longitudinal follow-up study, Botter et al investigated collagenase injected C57BI/6 mice, within 

two weeks after OA induction there was a significant increase in bone perforations in diseased 

knee joints related to increased osteoclast activity35. 

Many hypotheses concerning the pathophysiology of OA concentrate on the cartilage-bone 

interface and its interaction. As mentioned before, OA shows many aspects of endochondral 



13

INTRODUCTION

1

ossification which involves the subchondral bone36. Physiological endochondral ossification is 

highly dependent on vascularization, and angiogenesis plays an essential role in this process37.  

Similar events are seen during OA progression. When chondrocytes within the deep cartilage 

zone become hypertrophic, they release angiogenic factors such as vascular endothelial growth 

factor (VEGF)38. VEGF stimulates growth of new blood vessels from the perichondrial vascular 

network and subchondral bone spaces39. Osteoclast infiltration is stimulated in order to make 

room for the neovascularisation from the bone up to the deep cartilage zone40-42, and explains 

why vascular infiltration into subchondral bone is increased in human OA patients43. As a 

consequence of osteoclast induced bone resorption, there is a loss of integrity and plasticity at 

the osteochondral junction. This compromises its biomechanical function and might promote 

further cartilage damage (Figure 1B).

After this initial phase of OA related bone resorption, studies have demonstrated a subsequent 

marked increase in osteoblast activity leading to thickening of the subchondral plate (Figure 

1B). Other studies with larger animals showed similar results and reported thinning of the 

subchondral bone plate as well44-46 followed by a recovery and subsequent thickening of bone44, 

46, 47. During this increased bone turnover in OA joints, there is an altered phenotypic expression 

of osteoblasts that start to produce increasing amounts of collagen type I homotrimer (an 

increasing ratio of collagen type I α1/α2 chains of 4-17:1, compared to the healthy ratio of 

2.4:1) instead of the normal collagen type I heterodimer48, 49. This changed collagen ratio is 

typical for a sclerotic bone phenotype. When sclerotic bone is analyzed more closely, it shows an 

increased bone volume density and a reduction of its mineralization content50, 51. When tested 

biomechanically, the material properties show a decreased energy absorbing capacity and 

increased stiffness52, 53, but a stiffness that is lower than expected based on its higher volume 

fraction51, 54-57. It is suggested that the larger bone volume fraction compensates for reduced 

bone tissue stiffness of OA subchondral bone 58.Eventually, the pathological high bone turnover 

may also induce possible cyst and osteophyte development, characteristic for late phase OA 

(Figure 1B)17. Interestingly, osteophyte formation has been linked to activation of macrophages 

that reside in the synovial membrane59, 60.

Synovitis and osteophyte formation
The healthy synovial lining is composed of a thin layer synoviocytes and fibroblasts, which 

is inhabited by macrophages (Figure 1A)61. In contrast to cartilage, synovium is innervated 

with sensory neurons and highly vascularized enabling small molecules to diffuse through the 

synovium into the synovial fluid. All except the deepest chondrocytes in articular cartilage are 

supplied with necessary nutrients and oxygen through the synovial fluid. Synovial lining cells 

actively produce large amounts of hyaluronic acid (HA) and lubricin62. Both compounds provide 

lubrication and reduce friction between cartilage surfaces in an articular joint. High molecular 

weight molecules like HA and lubricin are not able to diffuse through the synovium and cannot 
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enter the bloodstream. Large molecules within the bloodstream are also not able to diffuse into 

the synovial fluid. In this way, the synovium function as a membrane preserving synovial fluid 

composition and viscosity. 

During OA progression (Figure 1B), chondrocytes produce large amounts of cytokines that 

activate synovial macrophages (e.g. Tumor Necrosis Factor (TNF)α, Interferon (IFN)γ, IL-4, IL-

13). When macrophages become activated, they also start to secrete cytokines and growth 

factors. These molecules are small and able to diffuse through the entire joint, even into the 

cartilage ECM. This inflammatory response induces synovial hyperplasia, stimulates macrophage 

infiltration, neoangiogenesis and fibrosis63. As a result, the synovium becomes a source of 

proinflammatory and catabolic products, including metalloproteinases and aggrecanases 

that contribute to articular matrix turnover and degradation. As a result of macrophage TGFβ 

production, synoviocytes produce bone morphogenetic protein (BMP)-2 and BMP-4 that 

stimulates osteophyte formation59, 60. Additionally, synoviocytes produce less HA and lubricin 

and due to enhanced synovial permeability both molecules now diffuse readily out of the joint. 

As a result, the synovial fluid viscosity is reduced and its lubrication property diminished, which 

increases the friction and mechanical forces upon the cartilage and further contributes to 

cartilage degradation.

ANIMAL MODELS FOR OSTEOARTHRITIS

Most of the findings discussed in the previous sections, were investigated in animal models 

for OA. There are numerous models available and can roughly be divided into five different 

categories: (1) spontaneous, (2) surgical, (3) enzymatic, (4) chemical, and (5) biomechanical. 

Although each animal model has a completely distinct approach to induce OA, these differences 

help us to unravel specific cellular or molecular changes related to the OA pathogenesis. 

However, before starting with animal experiments, one has to carefully evaluate which model is 

best suited to answer the research question at hand (Table 1).

Spontaneous OA does not develop in all available laboratory animals. There are various strains 

of mice87, guinea pigs64, and even nonhuman primates that develop OA88. Rats, however, hardly 

develop OA spontaneously89. In spontaneous models, morphological joint changes closely 

resemble features of different stages seen in human OA. Due to this similar pathophysiological 

developmental pattern, there are equally large variations regarding speed of OA progression 

in each animal and extent of damage. Consequently, large study groups are needed in order 

to obtain significant differences between control and intervention groups, the period for drug 

testing or studies of pathogenesis is long, and experiments are costly89. 
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64, 65 Time

 - Pathological similar to human knee  

          OA progression

 - Bilateral similar progression

 - Progressive development of OA 

 - Interaction with bodyweight

 - Variable and inhomogenous disease 

progression 

 - Long follow up, time consuming and 

costly

 - Limited to several species, not in rats
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66-70

Surgical transection of 

the anterior cruciate 

ligament, medial 

or lateral collateral 

ligament

 - Described in several species

 - Induction resembles traumatic lesion 

in humans

 - Homogenous cartilage lesions develop 

in short time span

 - Ideal for chondroprotective drug 

testing

 - Combination of surgical techniques 

possible

 - The greater the instability, the greater 

the lesions

 - Invasive surgical procedure

 - Risk of coinduction due to cartilage 

dehydration while operating, or 

infection. 

 - Possible direct damage to cartilage 

during micro-surgery 

 - The induced stability is permanent, 

which counteracts possible treatment 

effect. 

 - Therefore not favorable for regenerative 

therapiesM
M

T

67, 71, 

72

Surgical 

destabilizationor 

complete revoval of the 

medial meniscus

G
ro

ov
e

25, 26, 

73

Chondral grooves in 

articular cartilage, 

without damage to the 

subchondral bone

 - Primarily cartilage-driven disease

 - Spontaneous progression to other 

anatomical parts in the joint

 - Complex microsurgery, especially in 

rodents

 - Standarized application of grooves is 

hard to achieve

En
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m
at

ic
 / 

ch
em

ic
al

 M
IA 74-78

Inhibitor of 

glyceraldehydes-

3-phosphate 

dehydrogenase activity, 

induces chondrocyte 

death

 - Possible in nearly all animals

 - Very quick induction, lesions develop 

within 1 week

 - Reproducible lesions

 - Functional impairment as in humans

 - Dose response relation

 - Well described in literature

 - Due to specific chondrocyte cell death, 

loss of target cell for chondroprotective 

drug testing

 - Aggressive disregulation of MMP 

production

 - Targetting pathways in MIA could lead 

to false positive or false negative results 

in human disease

C
ol

la
ge

na
se

29, 

78-80

Digestive enzyme for 

collagen
 - Homogenous lesions

 - Short time span 

 - Can be achieved using one single 

injection intra articular injection in 

mice 

 - Well described in literature

 - Collagenase injections degrades 

ligament within articular joints, and 

represents a enzymatic instability model

 - As for the ACLT model, therefore less 

suitable for regenerative therapies

Pa
pa

in 74, 81, 

82

Digestive enzyme that 

degrades the bond of 

proteoglycans

 - sGAG loss without direct damage to 

collagen

 - No direct toxicity for chondrocytes

 - Overdosing leads to complete loss 

 - articular surface

 - Damage of low dose can be restored

 - Multiple injections needed

B
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h
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se

83, 84

Forced running on a 

motorized treadmill

 - No surgery/injection needed

 - No direct toxic effect on chondrocytes 

or articular structures

 - Microscopic features similar to human 

disease progression

 - Only mild disease progression

 - A 30km running protocol is exhaustive 

for animals to complete

 - Bilateral model

Va
ru

s 
lo

ad
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g

85, 86 Surgical stance 

correction

 - Severity of lesions can be controlled 

through applied load

 - Allows for thorough investigation of  

biomechanics and OA onset

 - Unilateral application

 - Risk for infection through external 

fixation

 - Complex application of varus loading 

devise

Table 1: Overview of different animal models for OA divided over different categories: spontaneous, surgical, enzymatic/

chemical, and biomechanical models.
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Surgical models are most commonly used in OA research. In general, during surgery a ligament 

is transected in the animal’s knee joint that induces some form of instability. Transection of the 

anterior cruciate ligament66, medial or lateral collateral ligament72, and destabilization of medial 

or lateral menisci90 induce OA. It is possible to combine several transections to create larger 

instabilities in the knee joint, and it is assumed that with a greater instability OA will progress 

more severely67. These models are considered to develop OA quite similar to patients that 

suffered traumatic knee injuries. The major disadvantage of these models is that the induced 

instability is irreversible and during tests with disease modifying drugs, the persisting instability 

will continuously counteract any potential beneficial therapeutic effect. 

Enzymatic injections also induce OA, with the advantage of rapid OA development with 

consistent severity of joint degradation. One of them is the enzymatic model using collagenase 

injections, which has some similarity to surgical instability models78, 80.  When mice are injected 

with type VII collagenase, all ligaments in the knee joint will be damaged. Due to this ligament 

damage, knee joint instability develops which subsequently leads to cartilage degradation34. 

Another enzyme used for OA induction is papain. Papain selectively degrades the bond of 

cartilage ECM proteoglycans (PG) with their core protein74. Papain directly induces a loss of 

sGAG from cartilage and does not interfere with collagen. Therefore, papain is thought to 

induce an early feature of OA (sGAG loss) without induction of ligament instability. Although 

this is an advantage of the model, one has to be careful with the injected dose, because high 

doses of papain will result in complete loss of articular cartilage within days74. Low doses of 

papain on the other hand induce minor sGAG loss that can be restored by chondrocytes without 

induction of an ongoing OA process77, an effect that can be mistaken for a therapeutic effect.

Cartilage sGAG loss can also be induced via intra-articular injection of mono-iodoacetate 

(MIA), a chemical compound that is an inhibitor of glyceraldehydes-3-phosphate dehydrogenase 

activity and therefore an inhibitor of glycolysis shown to induce chondrocyte death91. Following 

MIA injection, cartilage lesions will develop characterized by chondrocyte necrosis, cell cloning 

(chondrones), fibrillation, loss of stainable proteoglycan matrix, and erosion with exposure 

of subchondral bone. Subchondral bone shows enhanced bone turnover with sclerosis and 

osteophyte formation75. The combined involvement of subchondral bone together with 

articular cartilage degradation makes this model perfectly suited to investigate mechanisms that 

promote OA progression within the osteochondral subunit. Since MIA kills chondrocytes within 

a short time span75, this model is not suited to investigate therapeutic interventions targeted at 

chondrocytes.

Finally, there are also several biomechanical models for OA. Strenuous running on a 

motorized rodent treadmill is known to induce OA in mice92 and Wistar rats84 (Video 1). A 

30 kilometers running protocol in six weeks time, will result in minor to moderate OA related 
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cartilage lesions, decreased sGAG content, uneven collagen type II distribution and increased 

MMP-13 expression. Gait analysis showed a unique change in gait pattern with stride lengths 

that reduce with ongoing OA93. Exercise as induction method for OA is interesting, since it uses 

a physiological functioning of the joint in order to expose chondrocytes to supraphysiological 

compressive loads. Another approach to induce chronic loads on cartilage is to apply a varus 

loading device85. This device can be placed as a external fixative and the increase of compressive 

load on the medial side of the knee joint can be tightly regulated. This compression results 

in diminished cellularity and increased histological degeneration which may replicate slow 

development of non-traumatic OA in which mechanical loads play a primary etiological role86. 

IMAGING TECHNIQUES FOR OSTEOARTHRITIS

Nowadays there are multiple imaging techniques available in for clinical diagnostics and for 

(pre-)clinical studies (Table 2). In the following paragraphs, all imaging techniques used in this 

thesis are presented.

Radiography
OA of hip and knee is usually assessed with weight-bearing made radiographs of the affected 

joint. X-ray radiographs allow for excellent imaging of dense tissues, like bone. Cartilage is not 

a dense tissue and therefore cannot be visualized directly using plain radiographs. However, 

cartilage thickness can be seen indirectly as the joint space width between the bony parts of 

an articular joint (Figure 2A). With progressing OA cartilage ECM is lost and the joint space 

becomes smaller (Figure 2A). The most commonly used grading scheme for the detection 

of OA on radiographs is the Kellgren-Lawrence score94. This technique evaluates joint space 

narrowing (JSN) and bone related changes that are associated with the disease (like osteophyte 

formation, cysts and sclerosis).

Magnetic resonance imaging
Nowadays, clinical OA measurements (mainly pain scores) remain important, but due to 

subjectivity they poorly correlate with severity of OA95, 96. Therefore, semi-quantitative MRI 

scoring systems for OA (Whole-Organ MRI Score (WORMS) and MRI Osteoarthritis Knee Score 

(MOAKS))have been developed97. In 1996, delayed gadolinium enhanced magnetic resonance 

imaging of cartilage (dGEMRIC) was first described98. This technique was a breakthrough for 

OA research, since this technique enabled quantitative measurement of cartilage sGAG loss.  

dGEMRIC visualizes cartilage sGAG distribution after intravenous or intra-articular injection of a 

negatively charged contrast agent called gadolinium98-102. Healthy cartilage ECM contains high 

amounts of sGAG and its content is an indicator of cartilagehealth103. Due to sGAG negatively 

charged sulphate groups, negatively charged gadolinium is repelled from the cartilage. Due to 

sGAG loss in OA, less negatively charged sulphated groups are present in cartilage ECM. As a 
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result, more gadolinium penetrates the cartilage, which can be imaged and quantified using 

MRI. After first publications on this topic, MRI based imaging techniques have seen a rapid 

improvement during the last years. Several newly developed techniques have been developed 

to measure articular cartilage quality (e.g. Na23 mapping,T2 mapping, and T1rho104, 105). Due to 

more commonly available 3.0 Tesla MR systems and other novel MRI sequences (e.g., Ultrashort 

TE106, SSFP107, UTE T2*108, andDENSE-FSE109), fast MR scans with high in plane resolution for 

quantitative cartilage can now be acquired.  

Imaging

Technique

Abbre-

viation
Basic Principle Pro Contra

Radiographs X-ray

Electromagnetic radiation is 

forced through an object and 

attenuation patterns are captured 

on a detector

 - Simple

 - Low costs

 - Widely available

 - Well described in literature

 - Radiation exposure

 - 2D

 - Not every Xray is recorded in 

the exact same orientation

Computed 

Tomography
CT

X-ray projections are made over 

180 degrees and reconstructed to 

3D images using back projections

 - 3D datasets

 - High resolution

 - Fast

 - Low costs

 - Widely available

 - Well described in literature

 - Allows contrast enhancement

 - Quantitative outcome

 - Radiation exposure

 - Less suited for soft-tissue 

imaging

Magnetic 

Resonance 

Imaging*

MRI

A strong magnetic field is used 

to align hydrogen nuclei, using 

radiowaves these nuclei are 

rotated. While returning to 

equilibrium in the magnetic field 

they emit a radio signal that can 

be detected using antennas (coils)

 - Perfectly suited for soft-tissue 

imaging

 - Without radiation

 - Multiple sequences available 

for specific purposes

 - Quantitative outcome

 - Relative low resolution

 - Long scanning time

 - Absolute contra-indications: 

metal items, like 

pacemakers

 - Relative contra-indications: 

e.g. claustrophobia

 - Costs

Single Photon 

Emission 

Computed 

Tomography

SPECT

Delivery of a gamma-radiation 

emitting radionuclide. During the 

scan multiple gamma cameras 

acquire multiple 2D projections of 

recorded gamma radiation, which 

are reconstructed to a 3D dataset

 - Coupling of radionuclides 

to specific receptors allows 

for imaging of molecular 

processes

 - Coregistration using plain 

CT (SPECT/CT) allows for 

anatomical localization of the 

SPECT signal

 - Quantitative outcome

 - Radiation exposure

 - Technically more challenging

 - More logistical limitations 

when applied for in vivo 

imaging

Table 2: Overview of different imaging techniques used for OA research in this thesis. *: MRI was not used for the 

experiments in this thesis, but frequently discussed when compared with CT based techniques. 
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Computed tomography
Computed tomography (CT) scanning is an X-ray based imaging technique that allows for 

three dimensional imaging of patients or objects, and predominantly used for bone analysis 

in musculoskeletal imaging. One of the main advantages of CT, is its ability for accurate 

imaging of (subchondral) bone. Müller-Gerbl et al showed already in the 90s that CT can 

provide a surface representation of the 3D density distribution in joints of living subjects110. The 

distribution of Hounsfield density within subchondral bone represents the distribution of bone 

mineralization. Using CT, age-related changes in bone mineralization of hip, wrist and ankle 

joints have already been reported. CT showed qualitative bone adaptation related to different 

levels of physical activity with increased mineralization in gymnasts or reduced mineralization 

due to postoperative immobilization111. CT also proved a suitable technique for noninvasive 

investigation of subchondral bone changes within (OA) patients111, 112.

Regular clinical CT systems have pixel dimensions of approximately 0.5 mm × 0.5 mm with a 

slice thickness of ~0.5 – 1.0 mm. As mentioned before, OA changes do not only imply changes 

of gross bone morphology, but also involve small changes of the subchondral bone plate and the 

underlying trabecular bone. This resolution therefore poses a problem for small animal imaging, 

since the average healthy subchondral plate thickness of mice is ~200µm, and ~250µm for 

rats. Nowadays, high-resolution µCT scanners are able to scan samples with spatial resolutions 

within the range of 5-30µm and are ideal for accurate imaging of early OA changes within 

subchondral bone and trabecular bone in small animals (Figure 2B)28.This technique can be 

performed in a longitudinal fashion, measuring subchondral changes over time within a single 

animal. Longitudinal follow up for in vivo experiments will seriously reducing the need for large 

amounts of laboratory animals.

Through the addition of a contrast agent, µCT can be used to image cartilage and soft 

tissue as well. Similar to the technique used for dGEMRIC, the cartilage fixed charge density 

can be quantified using a negatively charged contrast agent (Hexabrix), which represents 

the sGAG-distribution within cartilage (Figure 2C). Loss of sGAG from the ECM reduces the 

overall fixed charged density of cartilage, more contrast penetrates the cartilage, which results 

in increased cartilage X-ray attenuation values113, 114. Contrast enhanced µCT (CECT) has the 

resolution to (quantitatively) measure changes in sGAG content of rat114, 115 and mice92 cartilage. 

CECT is sensitive enough to measure sGAG loss from cartilage well before the ECM degrades. 

Equilibrium partitioning of ionic contrast agent (EPIC) using µCT is the designated technique to 

image cartilage ex vivo 114, 116, 117, whereas intra-articular injected contrast allows for cartilage 

imaging in vivo115 (Figure 2C). 
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Single photon emission computed tomography
Molecular imaging techniques like single photon emission computed tomography (SPECT) 

or positron emission tomography (PET) allow for evaluation of OA changes on a molecular and 

functional level. Nowadays, multi-pinhole SPECT (mph-SPECT)118 and micro-PET (µPET)119 are 

both optimized for preclinical research and these higher resolution techniques are suitable for 

small animal imaging. A broad application of these imaging techniques will divert the scientific 

discussion away from tissue level, but towards a model that will explain cellular mechanisms on 

a molecular level. Use of these molecular imaging techniques in preclinical studies allows for 

immediate studying of early disease changes directly after OA induction. More comprehensive 

patient studies using these techniques, seem a prerequisite in order to gain more knowledge 

regarding the complex OA pathogenesis.

Imaging of subchondral bone remodeling using 99mTc-MDP SPECT/CT
(µ)CT only visualizes the amount and location of (ectopic) bone formation resulting from 

enhanced bone remodeling. However, SPECT/CT is able to capture the actual ongoing 

activity that leads to bone formation, which can be seen only afterwards using CT. After 

intravenously injection of 99mTechnetium-methylene diphosphonate (99mTc-MDP), 99mTc-MDP 

will be incorporated into the hydroxyapatite of exposed osteoid at sites of bone formation 

and destruction. Using single photon emission computed tomography (SPECT) scanning, it 

is possible to visualize the amount of 99mTc-MDP at sites of increased bone turnover. When 

applied in a patient with an osteochondral lesion, SPECT/CT clearly detects enhanced bone 

remodeling within the lateral femoral condyle (Figure 2D). SPECT scanning using radioactive 

labeled polyphosphonates already proved to be highly sensitive for detecting and monitoring 

osteoarthritis120-122. It correlates with clinical pain, osteophytes on radiographs123, meniscus 

injury124, 125, osteochondral lesions126 and arthroscopic findings127. Also, MRI findings of bone 

marrow lesions (BML) showed a nice agreement with increased radioactive uptake in bone 

scintigraphy128, 129. In one of our studies using the mono-iodoacetate OA model76, as early as 48 

hours after injection OA induction, SPECT/CT found significant alterations in the subchondral 

bone (Figure 2D). This finding suggests early OA changes happen within the osteochondral 

subunit, which can be measured accurately with SPECT/CT. 

Imaging of synovial macrophage activation using 111In-DTPA-folate SPECT/CT
Another interesting technique using mph-SPECT measures macrophage activation within the 

synovium (Figure 2E). It is only after activation that macrophages express the functional form of 

folate receptor β (FRβ)130. This receptor is absent in quiescent macrophages and other immune 

cells, rendering FRβ a very suitable target for molecular imaging. The vitamin folic acid binds 

with high affinity to FRβ. After injection of a diagnostic radionuclide coupled to a folic acid 

analogue, the presence of FRβ can be traced with high sensitivity using SPECT. This technique 

has demonstrated elevated levels of activated macrophages in both rheumatoid arthritis as well 

as osteoarthritis animal models131.
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Figure 2: Different imaging techniques available for osteoarthritis research. A: conventional plain radiographs, in this 

case of the knee joint. The healthy example of a knee joint shows a wide joint space (indicated with white bars) between 

femur (F) and tibia (T), on both medial and lateral (side of the fibula, Fib) side of the knee. The OA knee joint shows clear 

joint space narrowing (JSN) and at the margins of the tibial plateau osteophyte formation can be seen (indicated with 

*). B: Three-dimensional frontal views of the patella (P) and top views of the tibial (T) plateau for healthy joints and OA 

made from plain microCT scans. Both circles drawn over the patella mark the physiological articular surface and is of 

exact equal size. This visualizes that at patellar margins in the OA joint, more bone is formed, which is in fact osteophyte 

formation. Top views of the tibial plateau show subchondral pore (red color) development in the OA knee joint, where the 

subchondral bone in the healthy joint remains intact. C: Contrast enhanced microCT techniques for analysis of cartilage 

quality (sGAG distribution) and quantity (volumetric measurements). Equilibrium partitioning of an ionic contrast agent 
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using microCT (EPIC-µCT) is an ex vivo method, with this technique the articular cartilage saturated with ioxaglate and 

scanned at equilibrium. These measurements are highly accurate, since cartilage can be segmented using subchondral 

bone (b) and air as cartilage boundaries. MicroCT Arthrography is similar technique for in vivo cartilage analysis, using intra-

articular ioxaglate injections. Only in this case, cartilage is segmented between subchondral bone (b) and intra-articular 

contrast agent (c). For both techniques, attenuation values are inversely related to the sGAG content, meaning that a high 

attenuation corresponds to low sGAG content. D: Macrophage activation determined after injection of 111In-DOTA-Bz-

folate using SPECT/CT. A plain microCT is made for anatomical reference, sagittal images are shown in black and white. 

Followed by single-photon emission computed tomography (SPECT), sagittal SPECT images are shown in colour. Both 

datasets are combined and allows the SPECT signal to be analyzed in a specific region of interest. 

AIM AND OUTLINE OF THIS THESIS

Nowadays, we have no clue what drives OA progression in some patients, while in others 

it remains quiet for many years or even decades. As described in previous sections, OA is ‘a 

whole joint disease’ with early involvement of different tissues, including bone, cartilage and the 

synovium well before the cartilage ECM is degraded. A loss of joint space width on radiographs 

as a measure for OA is therefore not sensitive enough to detect early OA changes. When 

patients are diagnosed with OA they suffer from pain and severe limited range of motion in the 

effected joint; in other words the disease has already progressed significantly. In this phase of 

the disease, costly and invasive joint replacement surgery is currently the only treatment option 

that effectively treats OA patients’ pain and limited functioning. 

It is the aim of this thesis to study OA pathology in different animal models with multi-

modality imaging techniques in order to clarify early pathological changes in OA, and test 

whether different therapeutic strategies might be beneficial for OA management. 

In Chapter 2 and Chapter 3, we present data of five animal models that were longitudinally 

monitored using different imaging techniques dedicated for small laboratory animals. This work 

enabled us to accurately monitor early OA related changes in cartilage, bone and synovium 

simultaneously and provided us with suitable reference data to further investigate specific 

aspects of OA pathogenesis. 

As mentioned before, articular cartilage is evolutionary designed to facilitate joint mobilization. 

Cartilage is daily exposed to high-peak forces during physical activity8. Chondrocytes within 

the cartilage are sensitive to mechanical stimuli, which can compromise homeostasis8, 132. The 

canonical Wnt/β-catenin signaling pathway is recently suggested as a regulator of cartilage 

development and homeostasis133-135. In Chapter 4 this signaling pathway was investigated in 

vitro, as well as in vivo using µCT-arthrography. In respect to chondrocyte homeostasis and 

cellular stress responses, we investigated the role of Heat Shock Protein (Hsp) 90 and Hsp70 
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during biomechanically induced OA in rats subjected to strenuous running and present this data 

in Chapter 5.

Since OA is a ‘whole joint disease’ with involvement of cartilage, bone and synovium, we 

tested different therapeutic approaches thought to influence specific cell types in these tissues. 

First of all, tacrolimus (or FK506) is an immunosuppressive drug known to inhibit calcineurin 

activity and exerts positive effects on ECM marker expression on in vitro cultured chondrocytes. 

In Chapter 6 FK506 is tested as a therapeutic agent for OA in vitro as well as in vivo. Secondly, 

alendronate (ALN) is a potent inhibitor of bone resorption and used widely as therapeutic 

for osteoporosis treatment. In Chapter 7 alendronate was tested in vivo to see whether an 

inhibited osteoclastic bone resorption may prevent sclerotic bone formation. In the third place, 

we investigated intra-articular triamcinolone injections for OA management. Triamcinolon 

is widely used as a corticosteroid therapy for clinical patient care that predominantly acts as 

functional pain management. Chapter 8 describes the effect of triamcinolon on macrophage 

activation in vivo.  Finally, also mesenchymal stem cells (MSCs) and bone marrow mononuclear 

cells (BMMNCs) might be able to influence OA progression. These pluripotent cells are thought 

to stimulate anabolic processes and reduce catabolic events that promote cartilage health. The 

effects of intra-articular treatment of OA with these cell types is presented in Chapter 9.

All experiments in Chapters 2-9 were conducted in animal models for OA using multi-modality 

imaging techniques. These techniques give insights to disease development with regard to OA 

as a ‘whole joint disease’. The current standard to diagnose OA in human patients remains plain 

radiography, but this technique is not sensitive enough to detect early OA. CT-arthrography 

(CTa) is an established clinical technique for imaging knee abnormalities, but it has not yet been 

investigated in humans as an indicator for cartilage sGAG content. In Chapter 10 and Chapter 

11, we describe the use of clinical CTa as a measure for cartilage quality.

Finally, a general discussion on the results of our presented work in this thesis is provided 

in Chapter 12. Here, we discuss how this thesis work might contribute to new therapeutic 

management strategies for OA and how it may provide a basis for further studies. 
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ABSTRACT

Introduction
In vivo µCT arthrography (μCTa) can be used to measure both quantity (volumetric) and 

quality (glycosaminoglycan content) of cartilage. This study investigated the accuracy of four 

segmentation techniques to isolate cartilage from μCTa datasets and then used the most 

accurate one to investigate if the μCTa method could show osteoarthritic changes in rat models 

during longitudinal follow-up.

Methods
Volumetric measurements and glycosaminoglycan contents of patellar cartilage from in vivo 

μCTa-scans were compared with an ex vivo gold standard μCT-scan. Cartilage was segmented 

with three global thresholds and one local threshold algorithm. Comparisons were made for 

healthy and osteoarthritic cartilage. Next, three rat models were investigated for 24 weeks using 

μCTa. Osteoarthritis was induced by injection with a chemical (mono-iodoacetate), a surgical 

intervention (grooves applied in articular cartilage), and via exercise (strenuous running). After 

euthanasia all knee joints were isolated for histology.

Results
Local thresholds accurately segmented cartilage from in vivo μCTa scans and best measured 

cartilage quantity and glycosaminoglycan content. Each of the three osteoarthritic rat models 

showed a specific pattern of osteoarthritis progression. All μCTa results were comparable to 

histology. 

Conclusion
In vivo μCTa is a sensitive technique for imaging cartilage degradation. Local thresholds 

enhanced the sensitivity of this method and will probably more accurately detect disease-

modulating effects from interventional strategies. The data from rat models presented in this 

paper may serve as a reference for the time sequence of cartilage degeneration during in vivo 

testing of new strategies in osteoarthritis treatment. 
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INTRODUCTION

Current treatment strategies for osteoarthritis (OA) are limited and end-stage OA is treated 

with costly, invasive joint replacement surgery. Disease-modifying osteoarthritic drugs (DMOADs) 

that may target early disease progression are unavailable for clinical use. Therefore, a large need 

exists for testing the potential of DMOADs in animal OA models.

OA research in small animals using in vivo µCT has mainly been limited to subchondral 

bone changes29, since µCT is not suited for soft tissue imaging. However, µCT-arthrography 

(µCTa) can accurately measure changes within cartilage tissue. Similar to delayed gadolinium 

enhanced magnetic resonance imaging (dGEMRIC)98, 101, cartilage can be imaged and its 

sulfated glycosaminoglycan (sGAG) determined using a suitable X-ray contrast agent113, 136. As 

sGAG forms the main component of the negative fixed charge density (FCD) in cartilage, the 

influx of a negative charged contrast agent is inversely related to the sGAG content. With OA 

progression, the FCD diminishes due to sGAG depletion and consequently more contrast agent 

will penetrate, which can be measured as a surrogate for cartilage quality. 

Previous publications described an in vitro technique where cartilage samples were saturated 

in ioxaglate until an equilibrium between both the negative charge of the sGAG and the 

contrast was reached113, 114, 116. This resulted in an excellent correlation between sGAG content 

and contrast inside the cartilage, which could be accurately quantified from μCT-images. Further 

characterization of contrast-enhanced μCT showed that before equilibrium, contrast diffusion 

strongly correlated with the inverse of the sGAG content137, 138. A similar relationship between 

OA progression and contrast diffusion into cartilage was reported in vivo115.

Ideally, µCTa can be used to measure both volume (quantity) and sGAG content (quality) of 

cartilage. However, severely sGAG depleted cartilage will contain high amounts of contrast, 

making it difficult to distinguish from free contrast in the joint. Therefore, accurate segmentation 

is necessary to obtain a correct structural representation of the tissue139. We present methods 

to optimally represent both quantity and quality in one micro-CT scan. We gathered 24 week 

longitudinal reference data for three models each representing a different etiology140: the 

intra-articular mono-iodeacetate (MIA) injection model that induces chondrocyte apoptosis91, 

the groove model that simulates OA after local trauma26, and the running model that mimics 

physical overloading84. 
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METHODS

Animal care
The Animal Ethic Committee of Erasmus Medical Center approved all conducted procedures. 

Eighteen 16-week-old male Wistar rats (Harlan Netherlands BV, Horst, the Netherlands) were 

housed in the Center’s animal facility, with a 12-h light-dark regimen, at 21oC. Animals received 

standard food pellets and water ad libitum.

μCTa-procedure
The same μCTa technique as described by Piscaer et al115 was used. Briefly, under isoflurane 

anesthesia, the rat knee was shaved and injected with 70μl non-diluted Hexabrix320 

(Mallinckrodt, Hazelwood, MO, USA) using a 27G needle (Sherwood-Davis & Geck, Gosport, 

UK). Epinephrine (Centrafarm, Etten-Leur, the Netherlands) (10μg/ml) was mixed with the 

contrast agent and to prevent loss of ioxaglate from the joint cavity. 

After transfer to a holder with the rat in supine position and the hind leg fixed in extension, a 

µCTa was made using the Skyscan 1076 in vivo μCT scanner (Skyscan, Kontich, Belgium). Fifteen 

minutes of scan time was required at an isotropic voxel size of 35μm, at a voltage of 55kV, a 

current of 181mA, field of view of 35mm, and a 0.5mm aluminum filter, over 198o with a 1 

degree rotation step. All scans were performed using these same settings, and all scan data was 

reconstructed in an identical way. 

Optimal segmentation of cartilage
Six male Wistar rats received a single injection with 1 milligram MIA (Sigma-Aldrich, St. 

Louis, MO) dissolved in 50 μl saline under isoflurane anesthesia. MIA inhibits glyceraldehydes-

3-phosphate dehydrogenase activity and directly acts on cartilage metabolism resulting in OA-

like pathology91. All contralateral knee joints were injected with a similar volume of saline and 

served as a control.

Three weeks after OA induction76, both knee joints of each rat were scanned with µCTa115. 

After euthanasia, all patellas were isolated for ex vivo analysis. All soft tissue were removed 

without damaging the cartilage. All patellas were incubated in saline diluted 40% Hexabrix320 

for 30 minutes and all contrast saturated patellas were re-scanned ex vivo (Figure 1A1). This 

protocol (exclusive of epinephrine) accurately measures both sGAG content113 and volumetric 

parameters116 of cartilage samples.
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Figure 1:  A: CT scan segmentation for four different techniques. Original gray value and segmented images are shown, 

coloured fields represent studied regions of interest. A1: Gold standard ex vivo CT scan of cartilage that is fully saturated 

with contrast. Accurate segmentation is possible due to the sharp transition of attenuation values between cartilage and 

(background) air. A2: Structural appearance of three different global thresholds. A3: Segmentation of in vivo CT scans via 

a local threshold. B: Anatomical regions of cartilage analyzed with microCT arthrography. 

All generated in vivo datasets were stored as images with pixels of different gray-values that 

resemble X-ray attenuation of the material density, ranging from zero to 255 (from black to 

white). To segment cartilage, 3 fixed (global) threshold were used, 85, 95 and 105 (Figure 

1A2), set below bone and intra-cavital contrast but well above soft tissue attenuation. All µCT-

datasets were also segmented using a local thresholds algorithm (3D Calculator software can 

be requested via: http://www.erasmusmc.nl/orthopaedie/research/labor/downloads) introduced 

by Waarsing et al141. This segmentation method maximized the structural representation of 

trabecular bone in original μCT datasets. In summary, to find transitions between either bone 

and cartilage or contrast and cartilage, this local segmentation algorithm uses a standard 

edge-detection algorithm that is extended to 3D. µCTa datasets are segmented into binary 

images, which serve as a mask that is laid over the original gray value images (Figure 1A3) using 

freeware software (ImageJ software, National Institutes of Health, Bethesda, MD). Cartilage 

attenuation could be measured from the resulting images. Using Skyscan software, regions 

of interest (ROI) were drawn and in these ROIs, mean cartilage thickness, cartilage volumes 

and mean attenuation were calculated. Healthy cartilage has a high sGAG content, and little 

ionic contrast agent diffuses into the tissue, resulting in low CT attenuation numbers, and vice 

versa115. All measures were compared with the outcome from ex vivo µCT113, 116.

µCTa characterization of three in vivo OA models
Numerous OA models exist for small animals89. Three different OA-models were selected for 

monitoring cartilage changes during a 24 week follow-up using µCTa. As a chemical model, we 

selected the MIA model. Previous work with 1mg of MIA demonstrated severe cartilage lesions 

after 3 weeks91. Due to the longer follow-up time, the amount of MIA in this group of six Wistar 

rats was reduced to a single 300μgr dose76, 91. All contralateral knee joints received a saline 
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control injection. In our second model, OA develops from surgically applied chondral defects 

(grooves) in the cartilage25, 26, 73. Surgery was conducted on six rats under isoflurane anesthesia. 

A small medial incision was made through the patellar tendon. With an average thickness of 

trochlear cartilage being ~200-250μm, the tip of our surgical tool generated grooves with a 

depth of 100-150μm leaving the subchondral bone unharmed (Figure 2). All contralateral knee 

joints were sham operated and served as a control. After surgery, all animals were allowed to 

move freely in their cages on all limbs. Thirdly, we selected an exercise model in which rats 

develop OA during strenuous running using a treadmill. After 30 kilometers of running during a 

6 week protocol (Figure 3), moderate to severe OA lesions develop84. Six rats were trained for 

one week on a treadmill (LE-8700; Panlab Harvard Apparatus, Barcelona, Spain) as follows: day 

1, 10 minutes at 16.7 cm/sec; day 2, 15 minutes at 20 cm/sec; day 3, 20 minutes at 25 cm/sec; 

day 4, 30 minutes at 30 cm/sec and day 5, 35 minutes at 33.3 cm/sec. The following 5 weeks, 

the rats ran for 5 days/week, the first 10 minutes at 20 cm/sec to warm-up and the following 

50 minutes at 33,3 cm/sec142.

        

Figure 2: Histology after groove-surgery. Arrows point 

out to three grooves, note that the subchondral bone is 

not impaired. (Safranin-O stain; magnification = 100×)

Figure 3: Distance covered in the strenuous running 

protocol. 

All animals (n = 18) from the three OA models were µCTa scanned before OA induction (t = 

0) and after 1, 3, 6, 12, 18 and 24 weeks of follow-up. Mean attenuation and cartilage volume 

were calculated for three anatomical locations: condylar, patellar and trochlear cartilage (Figure 

1B). However, with OA progression, sGAG loss was extensive, and contrast influx increased 

severely; thus severely degraded cartilage region were excluded by the segmentation algorithm. 

As a result, severe sGAG depleted cartilage did not contribute to the mean attenuation. Instead, 

the cartilage volume was reduced. Therefore, we provided an additional measure that combines 

the volume loss and the mean attenuation increase to one single score that expressing the total 

change in attenuation in the cartilage ROI. This measure can be considered a surrogate measure 

for cartilage degradation:
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Cartilage degradation 
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in which (Ax× Vx) represents the contribution of the visible, segmented cartilage and Am(V0 – 

Vx) represents the contribution of the lost volume of cartilage. The summed contributions were 

normalized using the average attenuation at baseline (A0× V0).

Histology assessment
Animals were euthanized directly after the last µCTa scan at 24 weeks; hind legs were 

harvested and fixed in paraformaldehyde for 1 week. Knees were decalcified with formic acid 

for 3 weeks and embedded in paraffin. Coronal sections were made at 300 μm intervals and 

stained with Safranin-O to image the amount and distribution of sGAG. Sections were stained 

all at once, to minimize measurement artifacts. OA severity was graded using a modified 

Mankin scoring system for sGAG staining (0=normal cartilage; 1=slight reduction; 2=moderate 

reduction; 3=severe reduction; 4=no dye noted)1 combined with a modified Pritzker score for 

structure composition (0=surface intact; 1=surface discontinuity; 2=vertical fissures; 3=erosions; 

4=denudation; 5=deformation)143. Decolourization and structure grading were multiplied with 

a separately assigned score, indicating the extent of decolourization or structural damage. The 

stage score was defined as follows:  1 = >0-25%; 2 = 25-50%; 3 = 50-75%; 4 = 75-100% 

of cartilage surface affected. When grading and staging scores were multiplied a maximum 

decolourization score of 16 and a maximum score for structural damage of 20 could be 

obtained. Scoring was applied for condylar, patellar and trochlear cartilage.

Statistical analysis
Differences between means of OA induced knees and sham treated contra-lateral knee from 

µCTa data were evaluated for all parameters using unpaired t-tests. Histology averages were 

compared using non-parametric Mann-Whitney-tests (GraphPad Software, San Diego, CA). For 

all tests, p values < 0.05 were considered significant.

RESULTS

Optimal segmentation of cartilage
Our first goal was to investigate which method of cartilage segmentation method is most 

accurate in quantifying cartilage quantity (thickness, volume) and quality (sGAG content). We 

selected three global thresholds and the local threshold technique (Figure 1A2-3). Higher global 

thresholds resulted in larger differences for thickness and volume measurements compared to 

ex vivo reference data (Figure 4A-B). Segmentation by local thresholds resulted in slightly more 

cartilage tissue for both control and MIA knee joints, but compared to using global thresholds 

this method showed less error in quantified thickness and volume. 
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Figure 4: Cartilage quantity (thickness, volume) and quality (attenuation related to sGAG content) representation: 

in vivo versus ex vivo (gold standard) comparison of four microCT arthrography segmentation methods: three global 

segmentations at thresholds 85, 95 and 105 and the local threshold algorithm. A-B: Higher global thresholds resulted in 

larger differences with the gold standard, local thresholds showed less error in quantified thickness and volume. C: Average 

of mean patellar cartilage attenuation which is a representative measure for the sGAG content. In all cases the osteoarthritis 

induced knee joints (by MIA) had higher attenuation (less sGAG) compared to controls. Similar to the ex vivo gold standard, 

local thresholds detected the most significant difference between osteoarthritic and healthy cartilage *: p < 0.05. 

Figure 5: In vivo microCT-arthrography results showing osteoarthritic progression for all animals injected with MIA: 

attenuation (A,E,I), cartilage volume (B,F,J) and total GAG-loss (C,G,K); results of specific histology scores for  GAG (reduced 

safraninO-staining) and structural architecture (D,H,L) for condylar cartilage (A-D), patellar cartilage (E-H) and trochlear 

cartilage (I-L). All asterisks indicate a difference between control and OA knee joints. *: p < 0.05 
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Figure 6: In vivo microCT-arthrography results showing osteoarthritic progression after surgically applied chondral 

defects (groove) in the trochlear cartilage: attenuation (A,E,I), cartilage volume (B,F,J) and total GAG-loss (C,G,K); results 

of specific histology scores for  GAG (reduced safraninO-staining) and structural architecture (D,H,L) for condylar cartilage 

(A-D), patellar cartilage (E-H) and trochlear cartilage (I-L). All asterisks indicate a difference between control and OA knee 

joints. *: p < 0.05

Quality measurements also showed a strong relationship between the degree of attenuation 

and the selected global threshold (Figure 4C). The pattern between healthy and OA cartilage 

was the same for each threshold method, but was significant only in both the local threshold 

analyzed in vivo datasets (p = 0.02 ; meansaline =  69.14 95%CIsaline 63.93 to 74.36 ; meanMIA = 

76.47 95%CIMIA 71.60 to 81.34) and the ex vivo reference-test (p = 0.008 ; meansaline =  77.47 

95%CIsaline 76.09 to 78.84 ; meanMIA = 82.15 95%CIMIA 78.76 to 85.54). As the local threshold 

algorithm performed better, we used this method to sequentially image the three OA rat models. 

µCTa characterization of three in vivo OA models
Three weeks after MIA injections, a significant loss of sGAG from the cartilage was seen at all 

locations between MIA and control knees (Figure 5). Although cartilage volume was reduced 

in the MIA model throughout the study, histology showed only a clear loss of sGAG from the 

cartilage by reduced safranin-O staining. Structural changes in cartilage composition (fissures, 

erosion or denudation) were minor (Figure 5D,H,L, Figure 8E-H and Figure 9). 
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In the second model, the trochlear cartilage was grooved (Figure 2), resulting in mild 

changes in mean attenuation and volume. With histology a homogeneous discoloration was 

seen in sections of all grooved knee joints (Figure 6 and Figure 8I-L). Condylar and trochlear 

compartments showed no signs of OA compared to the sham operated control knees (Figure 

6 and Figure 9). 

In the running model, signs of OA were detected throughout the study (Figure 7). The most 

severe µCTa-based change in mean attenuation and loss of volume was found in trochlear 

cartilage (Figure 7I-L, Figure 8I-L and Figure 9), while in patellar cartilage only the volume 

reduced significantly (Figure 7E-H). In the weight-bearing condylar cartilage only minor and 

very local changes were seen with both µCTa and histology (Figure 7A-D).

Figure 7: In vivo microCT-arthrography results showing osteoarthritic progression for rats during the running protocol 

and when exercise was stopped: attenuation (A,E,I), cartilage volume (B,F,J) and total GAG-loss (C,G,K); results of specific 

histology scores for  GAG (reduced safraninO-staining) and structural architecture (D,H,L) for condylar cartilage (A-D), 

patellar cartilage (E-H) and trochlear cartilage (I-L) The running model is a bilateral model, all knees are included in the 

calculations and compared with baseline measurement. *: p < 0.05
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Figure 8: Histology stained with safranin-O (A-B,E-F,I-J) showing sGAG distribution and μCT arthrography images (C-D,G-

H,K-L) for condylar cartilage in running animals (A-D), patellar cartilage in MIA injected animals (E-H) and in animals with 

grooved trochlear cartilage (I-L). The red arrows point towards the small and focal osteoarthritic lesions in the running 

model seen on histology and detected with μCT arthrography. Also the surgically grooved cartilage is pointed out with 

arrows. The tipped point of the surgical tool made focal lesions and comparable osteoarthritic changes were seen on μCT 

scans.

Figure 9: Histology for the running, MIA and groove-model  (Safranin-O stain; magnification = 40×).
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DISCUSSION

Optimal segmentation is important for assessment of quantifiable parameters using CT139. 

Previously, the use of local thresholds improved the quantified outcome of bone parameters141. 

The current study demonstrates this for cartilage measurements using µCTa (Figure 4A-

B). Global thresholds elicit large segmentation errors and will include non-cartilage regions. 

Mean attenuation values determined with these segmentation techniques, therefore, do not 

accurately represent the sGAG content of cartilage. Besides accurate volumetric representation, 

the local threshold method also showed a significant increase of attenuation (less sGAG) in MIA 

injected knees (Figure 4C). We used this methodology to characterize (early) OA progression in 

three animal models over 24 weeks (Figures 5-7). 

Injection with MIA quickly leads to sGAG depletion91. Patellar cartilage degenerated directly 

after treatment  and OA developed throughout the joint (Figure 5). Therefore, the MIA model 

is suitable as a quick, homogenous model to screen whether DMOADs could benefit cartilage 

metabolism.  It has been reported that the MIA model has little similarity with human OA gene 

expression and therefore discrepancies might occur between effects in animals and humans144. 

However, for other (surgical) OA models that are widely used for testing DMOADs, these 

transcriptional differences also occur145. 

In the groove model, surgically applied grooves disrupt the collagen network, and sGAG 

depletion occurs, showing a close histological and biochemical resemblance with human OA73. 

In comparison with other surgical models as ACL transection66, the groove model does not have 

persistent knee instability that will counteract possible positive effects of studied treatments25.    

We showed that sGAG were severely depleted in grooved trochlear cartilage (Figure 8I-L), 

but OA did not progress throughout the entire joint (Figure 6). Our findings indicate that 

OA progression is slow and local, which makes the groove model suitable to test treatment 

strategies designed to repair cartilage lesions from local trauma. However, extensive training 

is needed to perform the complex microsurgery. Also factors such as inflammation or cartilage 

dehydration could influence the outcome. More research is required to validate the groove 

model.

Strenuously running rats showed signs of OA onset already after three weeks. Trochlear 

cartilage showed most pronounced signs of OA progression on both µCTa and histology 

(Figures 7-9). OA progressed even though rats did not continue to run, indicating an ongoing 

cascade of OA processes exceeding the ability for spontaneous cartilage repair. This model does 

not rely on any chemical or surgical manipulation, making it suitable for use in OA research. 

Further characterization on a molecular level is needed to confirm its similarity with human OA. 
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µCTa proves to be an excellent tool to monitor cartilage changes in vivo. However, a limitation 

of µCTa is the ionizing radiation load and injection of contrast agent into the joint, both of 

which could potentially impact cartilage tissue and cause degeneration. Other longitudinal 

studies using µCT did not show effects of radiation and contrast agent leading to OA146. The 

scanning regiment used in our study resulted in a radiation dose of similar magnitude, ~0.5Gy 

per μCT scan147, and a similar contrast dose115. Therefore, we assume neither factor affected 

cartilage metabolism. 

Another limitation is the interpretation of the µCTa data.  Ioxaglate diffusion into cartilage 

tissue is negatively related to the amount of sGAG (Figures 5-7)113, 115. With severe sGAG loss, 

however, attenuation increases to values close to the free contrast agent in the joint. Hence, 

in the severely diseased situation, complete loss of volume or severe sGAG loss only, cannot be 

differentiated, as demonstrated in our study by the large volume of sGAG depleted cartilage 

lost through segmentation.  Also, when our µCTa data are compared to histology scores, a large 

volume of cartilage was measured even though the cartilage was severely depleted of sGAG 

(Figure 7L). 

µCTa scans lack equilibrium between GAGs and contrast-agent, and diffusion properties of 

the cartilage matrix influence the quantified volume measures147, 148 as well. This likely led to 

the plateau seen in the degradation score (~0.25-0.30 for all severe sGAG depleted cartilage 

regions). With OA progression, more matrix degradation will occur, likely further increasing 

sGAG scores. Therefore, the cartilage degradation score represents sGAG loss (early OA onset) 

and matrix degradation (severe OA progression).

Previous work with µCT in in vivo OA animal models demonstrated bone29 and cartilage 

changes115 independently. We believe cartilage and bone parameters can be analyzed in one 

single in vivo µCT scan, but further research is needed to develop accurate scanning protocols. 

Recent in vitro studies indicated that X-ray attenuation of tissue can predict its biomechanical 

properties (e.g. like compressive stiffness or dynamic modulus)149, 150. More work could enhance 

knowledge about bone and cartilage interaction and their relation to biomechanical properties 

of healthy and OA knee joint.

 In conclusion, we showed that µCTa is a sensitive tool to detect early OA progression in 

small animal experimental models. Cartilage segmented from µCTa scans with a local threshold 

resulted in more accurate sequential measurements for cartilage quality (sGAG) and quantity 

(thickness/volume). Use of µCTa seriously enhances the ability to detect small changes that result 

from potential intervention techniques, even with a small number of animals. The models tested 

(MIA, groove and running) have specific advantages and disadvantages. The OA progression 

demonstrated by these models may serve as a reference for testing new treatment strategies. 
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ABSTRACT

Introduction
Articular cartilage needs sulfated-glycosaminoglycans (sGAG) to withstand high pressures 

while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive 

forces. Moderate physical exercise is known to improve cartilage sGAG content and might 

protect for osteoarthritis. This study investigated whether rat knee joints with sGAG depleted 

articular through papain injections might benefit from moderate exercise, or whether this 

increases the susceptibility for cartilage degeneration.

Methods
sGAG were depleted from cartilage through intra-articular papain injections in left knee joints 

of 40 Wistar rats, their contralateral joints served as healthy controls. Twenty rats remained 

sedentary, another twenty rats were subjected to a moderately intense running protocol. 

Animals were longitudinally monitored for 12 weeks with in vivo μCT to measure subchondral 

bone changes and SPECT/CT to determine synovial macrophage activation. Articular cartilage 

was analyzed at 6 and 12 weeks with ex vivo contrast enhanced μCT and histology to measure 

sGAG content and cartilage thickness.

Results
All outcome measures were unaffected by moderate exercise in healthy control joints of 

running animals compared to healthy control joints of sedentary animals. Papain injections in 

sedentary animals resulted in severe sGAG depleted cartilage, slight loss of subchondral cortical 

bone, increased macrophage activation and osteophyte formation. In running animals, papain 

induced sGAG depleted cartilage showed increased cartilage matrix degradation, sclerotic bone 

formation, increased macrophage activation and more osteophytes formation.

Conclusion
Moderate exercise enhanced OA progression in papain injected joints and did not protect 

against development of the disease. This was not restricted to more extensive cartilage damage, 

but also resulted in pronounced subchondral sclerosis, synovial macrophage activation and 

osteophyte formation.
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INTRODUCTION

Articular cartilage is evolutionary designed to facilitate joint motion. Cartilage extra-cellular 

matrix (ECM) is composed of a collagen matrix in which chondrocytes reside. These cells 

produce high concentrations of sulfated-glycosaminoglycans (sGAG), which contain negatively 

charged sulphate groups that sets the cartilage fixed charged density. Due to this fixed charged 

density large amounts of cations and water enter the cartilage ECM, expanding the collagen 

network and creating a high hydrostatic pressure. Cartilage daily endures high-peak mechanical 

loading including shear, compression and tension (contact) stresses. During physical activity, it 

is estimated that compressive stresses can rise up to 10-20MPa 8. The high internal hydrostatic 

pressure allows articular cartilage to absorb these stresses and facilitates the dissipation and 

distribution of external forces during joint mobilization9-11. 

The amount and type of external mechanical loading are important factors that regulates 

development and long-term maintenance of cartilage. This is because chondrocytes closely 

regulate sGAG levels dependent on the level of physical activity132. For example, in hamsters 

a sedentary lifestyle is known to reduce cartilage sGAG content, whereas daily exercise 

prevents this loss151. Galois et al investigated whether different running intensities influenced 

osteoarthritis (OA) progression and found that moderate running protected against OA 

development in anterior cruciate ligament transected knee joints152. In another experiment with 

mono-iodoacetate (MIA) induced OA, exercise also prevented cartilage damage. MIA inhibits 

glyceraldehydes-3-phosphate dehydrogenase activity, resulting in chondrocyte apoptosis and 

sGAG loss91. When MIA injected rats were subjected to treadmill running, the superficial and 

intermediate areas of the joint showed a better preservation of sGAG content83. These studies 

support the idea that a mild biomechanical stressor on cartilage enhances chondrocytes ability 

to sustain sGAG levels and protect cartilage against OA onset. 

Kiviranta et al also showed that moderate running augments sGAG in articular cartilage 

of Beagle dogs153. However, later on they found that a strenuous exercise protocol induced 

marked sGAG depletion from superficial cartilage zones154. Since then, strenuous exercise 

has been shown to reduce chondrocyte metabolism and sGAG synthesis155. Besides inhibited 

sGAG production during strenuous exercise, chondrocytes also start to actively deplete sGAG 

from cartilage which is facilitated through increased matrix metalloproteinase-13 (MMP-13) 

production93. So, cartilage loading through strenuous running seems to elicit an imbalanced 

ratio of sGAG synthesis and sGAG depletion. Reduced sGAG content eventually results in 

reduced hydrostatic pressure, compromising cartilage’s ability to absorb compressive forces. This 

could be the reason why acute or chronic high-intensity loads are described to cause cartilage 

ECM damage156, and may explain why healthy rats subjected to strenuous running protocols 

develop cartilage damage that is closely related to OA onset84, 157. 
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In summary, moderate biomechanical loads on cartilage can stimulate chondrocyte sGAG 

synthesis, improve cartilage quality and can protect against OA152, 158, whereas cartilage loading 

through strenuous running induces OA. In early OA sGAG levels in cartilage are reduced, 

making the tissue more vulnerable for damage by mechanical loading. This study investigated 

whether rat knee joints with sGAG depleted articular through papain injections might benefit 

from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. 

OA is a disease not limited to articular cartilage. OA is considered a ‘whole joint disease’ with 

involvement of subchondral bone, synovium and articular cartilage changes17, 159 (Figure 

1). All of these changes are most likely to play an important role in the complex cascade of 

pathological changes during OA development. Therefore besides measurements on articular 

cartilage degradation, we also measured subchondral bone changes with µCT and macrophage 

activation with SPECT/CT. Our results demonstrate that moderate exercise, that does not have 

an effect on healthy joints, exerts detrimental effects on sGAG depleted cartilage and also on 

subchondral bone and synovial macrophage activation.

 
Figure 1: Hypothetical model that shows in what manner changes of cartilage, subchondral bone and synovial 

macrophages all contribute to osteoarthritis development. A: schematically depicted healthy joint with chondrocytes in 

cartilage extra-cellular matrix, bone and inactive osteoclasts, and resting synovial macrophages. B: chondrocytes suffering 

from a pathological strain produce cytokines and growth factors that diffuse towards the underlying bone marrow and 

synovium. There these products stimulate osteoclastogenesis and can activate macrophages. C: progressive phase of 

OA. Chondrocytes become hypertrophic and produce less sulphated-glycosaminoglycans (sGAG) to sustain the cartilage, 

making the ECM more susceptible for compressive forces. Osteoclasts start tunneling through the subchondral bone which 

compromises plate stability and changing its supportive function for the overlying cartilage. Activated synovial macrophages 

produce growth-factors of their own that promote synovial fibrosis, osteophyte formation and may stimulate ECM 

degradation. D: Eventually, cartilage is severely sGAG depleted and becomes structurally deprived. Activated macrophages 

stimulate fibrotic remodeling of the synovium and induce osteophyte growth. Osteoclast activity extends into the calcified 

cartilage, up to the border with the deep zone of the cartilage. Through subchondral pores there is vascular ingrowth into 

the cartilage. Later on, osteoblasts infiltrate and start to deposit bone that results in end-stage sclerosis. 
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METHODS

Study design
Forty 16-week-old male Wistar rats (Charles River Netherlands BV, Maastricht, the 

Netherlands) were housed in the animal facility of the Erasmus Medical Centre, with a 12-h 

light-dark regimen, at 21oC during the experimental period. Animals received standard food 

pellets and water ad libitum. 

Intra-articular papain injections were used to reduce cartilage sGAG content in Wistar rat 

knee joints in vivo74, 81, 82. Previous studies reported three intra-articular injections to induce 

OA on day 1, 4 and 781, 160. However, after one single papain injection, weight bearing of 

the injected joint restores to normal one week after the injection77. Therefore, we injected 

our animals on day 8, 15, and 22. After they were adapted to the treadmill, with intervals 

of 1 week in order to have the rats restore their gait. All animals were injected intra-articular 

in their let knee joint with 30µl papain/L-cystein solution. This solution consisted of 2% w/v 

papain solution (type IV, double cristallized, 15 units/mg, Sigma-Aldrich, St. Louis, MO, USA) 

and 0.015M L-cystein (Sigma-Aldrich) in saline81. Epinephrine (10μg/ml, Centrafarm, Etten-Leur, 

the Netherlands) was added to induce vasoconstriction and prevent fast leakage from the knee 

joint 115, 157, 161. All right knee joints were not injected and served as healthy controls. Rats were 

divided over two groups: twenty rats remained sedentary, and twenty rats were forced to run 

on a motorized treadmill. All running rats were trained to run on a motorized rodent treadmill 

during the first week (LE-8700; Panlab Harvard Apparatus, Barcelona, Spain)157. The following 

5 weeks, rats were forced to run for five days a week, the first 5 minutes at 20 cm/sec in order 

to warm-up and the following 25 minutes at 35 cm/sec. The pace and duration of this protocol 

are equal to about 25% of a total exhaustion protocol for rats162. In total, running rats covered 

a total distance of 15 km over the total six week period, which is a protocol known to protect 

from cartilage degradation in both MIA and surgical models for OA83, 152.

During the study all animals were longitudinally monitored with μCT to measure subchondral 

bone changes. At six and twelve weeks, ten rats in both groups were randomly selected for a 

full analysis sequence. This sequence consisted of SPECT/CT to quantify macrophage activation 

in vivo, and ex vivo EPIC-μCT and histology to measure cartilage quality. A detailed planning 

scheme of all groups and conducted tests is given in Figure 2. The Animal Ethic Committee of 

the Erasmus Medical Center, Rotterdam, the Netherlands, approved all conducted procedures.

In vivo μCT to measure subchondral bone changes and osteophyte growth
All animals were µCT scanned before start of the running protocol (t = 0) and after six and 

twelve weeks of follow-up. In short, under isoflurane anesthesia, after transfer to a holder with 

the rat in supine position and the hind leg fixed in extension, µCT scans were made using a Skyscan 
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1176 in vivo μCT scanner (Skyscan, Kontich, Belgium). 10 minutes of scan time were required 

per knee at an isotropic voxel size of 18μm, at a voltage of 65kV, a current of 385mA, field of 

view of 35mm, using a 1.0mm aluminum filter, over 198o with a 0.5 degree rotation step, and a 

270 msec exposure time. All scans were performed using these same settings, all scan data was 

reconstructed in an identical way, and post-processing was done as described previously28, 29, 35. 

Shortly, all datasets were segmented with a local threshold algorithm. This algorithm is ideal for 

accurate bone analysis (3D Calculator software can be requested via email)141. Using Skyscan 

analysis software, the tibial epiphysis was selected in the CT scans and analyzed for changes 

in cortical and trabecular bone. Cortical and trabecular bone were automatically separated 

using in-house software28. Both subchondral plate thickness (Sb. Pl. Th. in μm) and subchondral 

plate porosity (Sb. Pl. Por. in mm3) of the medial and lateral compartment of the tibial plateau 

were measured35. In the tibial epiphysis, the trabecular thickness (Tb. Th. in μm) and trabecular 

bone volume fraction (BV/TV), representing the ratio of trabecular bone volume (BV, in mm3) to 

endocortical tissue volume (TV, in mm3). Ectopic bone formation (mm3) on both lateral borders of 

the patella was also quantified as a measure for osteophyte growth in these longitudinal µCT scans. 

 

Figure 2: Experiment design indicating analytical time points and methods for each experimental group. Forty 16-week-

old male Wistar rats received three intra-articular papain injections (P.I.) and divided over two different groups: a sedentary 

group (n=20) and a running group (n=20). All running rats  were subjected to a six week moderate running protocol earlier 

reported to protect against OA. During the experiment three μCT scans were made to measure longitudinal subchondral 

bone changes. At six and twelve weeks a full analysis sequence was done in ten animals per group (n†), consisting of: 

determination of activated macrophages using SPECT/CT in vivo; and cartilage analysis with equilibrium partitioning of an 

ionic contrast agent using (EPIC-)μCT and histology ex vivo.
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Determination of activated macrophages by SPECT/CT using 111In-EC0800
Activated macrophages express the folate-receptor-β163. Targeting this folate receptor 

with folate radioconjugates can be used to monitor activated macrophages in vivo by non-

invasive nuclear imaging130, 164. This technique was previously introduced for OA research in a 

rat model131. Briefly, phosphate saline-buffered (PBS, pH 6.5) DOTA-Bz-folate (DOTA-Bz-Folate, 

EC0800, kindly provided by Endocyte Inc., West Lafayette, USA) was incubated with 111InCl3 

(Covedien, Petten, The Netherlands) in mixture of quenchers and sodium acetate (final pH 3.5-

4) for 15 minutes at 80oC as described earlier165. Quality control was performed with instant thin 

layer chromatography medium-using a silica gel (ITLC-SG)166, 167 and revealed a radiochemical 

yield of ~93% at a specific activity of 50 MBq/μg. After radiolabelling, Diethylenetriamine-

pentaacetic acid (DTPA) was added for complexation of non-incorporated  111In. The solution 

was further diluted in phosphate buffered saline (PBS) and administered via the tail vein twenty 

hours prior to scanning. Each animal received ~55MBq of 111In-DOTA-Bz-folate under isoflurane 

anesthesia. SPECT/CT scans were performed with a 4-head multiplex multi-pinhole small animal 

SPECT/CT camera (NanoSPECT/CT TM, Bioscan Inc., Washington DC, USA). Each detector head 

was fitted with a tungsten-based collimator of nine 2.5mm diameter pinholes, the field of view 

was 24mm in width and energy peaks were set at 170keV and 240keV (±10%). All knee joints 

were scanned with both helical μCT (acquisition time 5min) and SPECT (acquisition time 30min). 

After scanning, all datasets were reconstructed at an isotropic CT voxel size of 200µm and an 

isotropic SPECT voxel size 600µm using HiSPECT software (Scivis, Göttingen, Germany). All 

scans were analyzed using InVivoScope processing software (Bioscan Inc.). A cylindrical region of 

interest (ROI), based on the CT scan but blinded for the radioactivity, was manually determined 

for quantification of the radioactivity around and in the knee joint. In order to correct for the 

size of the drawn ROI, all data is presented as measured activity (kBq) per mm3. To reduce inter-

individual variation, the absolute difference in measured radioactivity (kBq/mm3) of the OA knee 

joint compared to their internal control joint was calculated. This absolute difference was used 

when comparing means of papain only and papain combined with running animals.

Cartilage measurements with EPIC-µCT
Equilibrium partitioning of an ionic contrast agent using μCT (EPIC-μCT) has a strong 

correlation with cartilage sulfated-glycosaminoglycan (sGAG) content113. sGAG is a key-molecule 

of cartilage and its content is an indicator of cartilage health103. In EPIC-μCT an equilibrium-state 

exists between sGAG and contrast agent after an 24 hours incubation period. Resulting cartilage 

X-ray attenuation in these scans are inversely related to sGAG content and thereby represent 

cartilage quality. This technique is suited for quantitative analysis of cartilage  degradation for 

preclinical evaluation of OA117.

Animals were euthanized directly after the last SPECT/CT scan and both knee joints were 

harvested for EPIC-μCT analysis. The proximal tibial bone was isolated and soft tissue was 
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removed to a maximal extent, without harming cartilage integrity. Next, all specimens were 

incubated in 40% solution of ioxaglate (Hexabrix320, Mallinckrodt, Hazelwood, MO, USA) which 

was diluted in 60% phosphate buffered saline for 24 hours at room temperature, together with 

inhibitors of proteolytic enzymes (5 mM of ethylenediamine tetraacetic acid disodium salt, VWR 

International, Fontenay, France; and 5 mM of benzamidine

hydrochloride hydrate, Sigma-Aldrich Inc., St. Louis, MO, USA)138. EPIC-μCT was performed 

on the 1176 in vivo μCT scanner (Skyscan), using the following scan settings: isotropic voxel size 

of 18μm, a voltage of 65kV, a current of 385mA, field of view 35mm, a 0.5 mm aluminum filter, 

198o with a 0.5 degree rotation step, and a 235 msec exposure time. All scans were performed 

using the same settings and all data were reconstructed identically. 

Using Skyscan analysis software, these datasets were segmented using a fixed attenuation 

threshold between air (30) and subchondral bone (120), that was selected visually for the best 

segmentation result in all datasets. In all segmented μCT datasets, ROIs were drawn manually 

around the cartilage of the medial and lateral plateau of the tibia separately. From these ROIs, 

the X-ray attenuation (gray values related to sGAG content ranging from 0 to 255) and cartilage 

thickness (μm) was calculated.

Histopathological examination of the knee joint
After EPIC-μCT, the separated parts of the knee joints were fixed in 3.7% phosphate buffered 

formaldehyde, decalcified with formic acid and embedded in paraffin. Sagittal sections of 

6μm thickness were made at 300μm intervals and stained with Safranin-O with a fast green 

counterstain to image the amount and distribution of the GAGs. Sections were stained all at 

once, to minimize artifacts in between different samples. 

Statistical analysis
Differences between means of papain injected and healthy knee joints within the same 

animal were tested using paired t-tests at each time point for all outcome parameters, except 

when testing differences for osteophyte formation (GraphPad Software, San Diego, California, 

USA). Osteophytes did not develop in non-papain injected control joints in both experimental 

groups, therefore we used a one-sample t-test and tested whether the outcome of the papain 

injected joints differed from zero (GraphPad Software). When comparing differences between 

means of sedentary animals and running animals, unpaired t-tests were used at each time point 

for all outcome parameters (GraphPad Software). For all tests, p values < 0.05 were considered 

statistically significant.
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RESULTS

All sedentary rats increased in weight from 404.3g (398.8 – 409.6g) to 454.0g (445.6 – 

462.4g) after six weeks, and further increased to 488.0g (475.2 – 500.8g) after twelve weeks. 

Bodyweight of all running rats at baseline was 416.4g (411.3 – 421.5g), during the six weeks 

of treadmill running this did not increase (mean weight 408.3g; 398.2 – 418.3g) and was 

significantly lower compared to sedentary rats (p < 0.0001). However during the subsequent six 

weeks of rest, all running rats increased in bodyweight (mean weight 485.5; 473.0 – 498.0g) to 

levels similar to sedentary rats (Figure 3).

Figure 3: Increase in rat bodyweight (gram) during the experiment of sedentary (white circles) and running (gray 

squares) animals. **: p<0.01, error bars indicate 95% confidence intervals.

Osteoarthritic changes of articular cartilage
As measured with EPIC-µCT, intra-articular injections with papain resulted in sGAG loss from 

medial and lateral cartilage compartments of the tibia plateau in sedentary animals compared 

to their control joints (p < 0.0001) (Figure 4A,E). Running increased sGAG depletion from 

cartilage of the medial compartment of papain injected joints at six weeks compared to 

sedentary papain joints (p < 0.0001). At twelve weeks of follow-up, this difference slightly 

reduced but attenuation values were still significantly higher in running animals (p = 0.03). 

Running had no effect on sGAG content in healthy joints. After six weeks of running, the 

thickness of the medial cartilage was slightly lower in the papain injected compared to their 

contralateral joint (p = 0.007), and compared to sedentary papain joints (p = 0.008). Only after 

twelve weeks, the cartilage in sedentary papain joints slightly degraded and became thinner 

compared to the contralateral control joint (p = 0.004) (Figure 4C,E). The running papain joints, 

however, showed clear progression of cartilage degradation and at 12 weeks remained thinner 

compared to sedentary papain joints (p < 0.0001). 
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Attenuation values of lateral compartment cartilage were lower in running papain joints 

compared to papain joints of sedentary animals, indicating a higher sGAG content (p = 0.03) 

(Figure 4B). The lateral cartilage, however, was thinner in running animals (Figure 4D) and 

showed pronounced denudation of subchondral bone (Figure 4E). 

Figure 4: Cartilage quality and quantity was determined from samples of sedentary (round boxes) and running (square 

boxes) rats with equilibrium partitioning of a ionic contrast agent using (EPIC-)μCT (A-D). The amount of sulphated-

glycosaminoglycans (sGAG) (arbitrary gray values; A,B) and cartilage thickness (μm; C,D) were measured of medial (A,C) 

and lateral (B,D) cartilage compartments of the tibia plateau harvested from control (blank boxes) and sGAG depleted 

joints (gray boxes). Attenuation values from EPIC-μCT scans are inversely related to the sGAG content, meaning that a high 

attenuation corresponds to low sGAG content. Coronal images from representative EPIC-μCT scans of the tibia plateau 

show the amount of cartilage (erosions indicated with ▲ and dashed lines) and sGAG content (displayed in color). *: 

p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals. 

A similar result was seen on histology sections (Figure 5). These images show that only 

calcified cartilage remained intact in the lateral compartment of papain injected joints subjected 

to running.

Subchondral bone changes
In vivoμCT showed that subchondral bone of the medial tibia plateau increased in thickness 

during the experiment in all rats. Subchondral bone thickness in sedentary papain joints (p 

= 0.01) and running papain joints (p = 0.01) was slightly lower after six weeks of follow-up 

compared to sedentary control joints (Figure 6A). At six weeks, subchondral bone plate pores 

were only detected in sedentary papain joints (p = 0.003 compared to its contralateral joint, p = 
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0.02 compared to running papain joints). In some animals these pores became larger, but there 

was no significant difference between sedentary and running animals at twelve weeks (Figure 

6B,G-H).

 

Figure 5: Histology of safranin-O stained sagittal sections of medial and lateral tibia plateau cartilage after six weeks 

and twelve weeks of follow up. Both in sedentary as in running animals, cartilage of papain injected joints was severely 

sulphated-glycosaminoglycan depleted at six weeks and twelve weeks. But in running animals the extra-cellular matrix 

showed clear signs of erosion in the medial compartment and even denudation of bone in the lateral compartment.

In sedentary animals lateral subchondral bone thickness showed a response similar to the 

medial compartment: subchondral bone of sedentary papain joints was thinner compared to 

its contralateral knee joint (p = 0.004 at six weeks, and p = 0.003 at twelve weeks). However, 

in papain injected and running joints, lateral subchondral bone showed a completely different 

response compared to its medial component. Here severe subchondral sclerosis developed after 

six weeks compared to its contralateral knee joint (p < 0.0001) and this sclerotic appearance 

persisted after subsequent six weeks of rest (p < 0.0001) (Figure 6C,G-H). In running animals 

there was a clear increase in subchondral plate porosity at six weeks compared to their healthy 

knee joint (p = 0.02) and compared to sedentary papain joints (p = 0.02). Plate porosity seemed 
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to further increase at twelve weeks but this was not significant anymore. Which is probably due 

to the loss of power, since our group size was reduced to 10 animals at 12 weeks compared to 

20 at six weeks.

Figure 6: Subchondral bone changes analyzed with longitudinal in vivo μCT in control (white circles) and papain injected 

(gray squares) knee joints. Data points were nudged from analyzed time points 0,6 and 12 weeks for clearer representation 

of results. Subchondral plate thickness (Sb. Pl. Th.; A, C) and porosity (Sb. Pl. Por.; B, D) were measured in the medial (A,B) 

and lateral (C,D) compartment of the tibial epiphysis. Changes in trabecular thickness (Tb. Th.; E) and trabecular bone 

volume fraction (BV/TV; F) were measured in tibial epiphysis bone marrow. G: shows representative sagittal images from 

binary μCT scans to show most prominent subchondral bone changes, which is pore development in medial subchondral 

bone of papain injected animals (indicated with ▲), and development of subchondral sclerosis (indicated with dashed 

line and *) in lateral subchondral bone of papain injected and running animals. Three-dimensional top views of the tibial 

plateau at different time points (H) show subchondral pore (red color) development in papain animals and papain plus 

running animals. *: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals.
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Trabecular bone underlying the subchondral bone plate was thinner in sedentary papain 

joints compared to its contralateral joint at six weeks (p < 0.0001), and was still thinner at the 

end of the experiment (p = 0.01). The BV/TV in papain joints of sedentary and running animals 

showed a clear loss of bone mass throughout the experiment.

Control joints of all animals in both experimental groups showed no sign of patellar 

osteophyte formation. In sedentary papain joints and running papain joints there was evident 

patellar ectopic bone formation at six (p < 0.0001) and twelve weeks (p < 0.0001). We also 

measured a larger volume of ectopic bone formation in papain running joints compared to the 

sedentary papain joints at both six (p < 0.0001) and twelve weeks (p = 0.03) (Figure 7B,C).

Figure 7: Macrophage activation determined in sedentary (round boxes) and running (square boxes) rats by injection of 

111In-DOTA-Bz-folate using SPECT/CT. A: Quantitative outcome of measured radioactivity in the control (blank boxes) and 

papain injected (gray boxes) knee joints normalized to the size of the cylindrical region of interest (kBq/mm3). Absolute 

differences per animal were calculated (kBq/mm3) to reduce inter-individual variation (black boxes). A high radioactivity is 

related to more macrophage activation. B: Ectopic bone formation (mm3) as a measure for osteophyte development was 

quantified on longitudinal bone μCT scans. C: Sagittal SPECT/CT images of knee joints from representative animals. CT 

images shown in black and white were used for anatomical reference, the SPECT images are shown in color. Transaxial 

images from patellar bone extracted from binary μCT images show ectopic bone formation (red color). *: p<0.05, **: 

p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals.
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Macrophage activation
Animals in both groups received 55 ± 2 MBq (mean ± SD) of 111In-DOTA-Bz-folate, there was 

no significant difference between both experimental groups. Papain joints of sedentary rats 

showed more macrophage activation measured with DOTA-Bz-Folate SPECT/CT compared to 

their control knees at six weeks (p < 0.0001). There was still increased macrophage activation at 

twelve weeks of follow-up (p = 0.02), but the effect was less pronounced. In running animals, 

macrophage activation was also higher in their papain injected joints at six (p < 0.0001) and 

twelve weeks (p = 0.004), but running did not increase macrophage activation in healthy knee 

joints. We calculated absolute differences between non-papain injected and papain injected 

joints and compared these values between both experimental groups. Both at six (p = 0.03) and 

twelve weeks (p = 0.03) macrophage activation was higher in papain injected joints of running 

than in joints of sedentary animals (Figure 7A,C).

DISCUSSION

Papain is a proteolytic enzyme that causes chondroitin sulphate release from the cartilage168. 

We confirmed the known effect of intra-articular injections that papain injections in knee joints 

of sedentary animals induced sGAG depletion (Figure 4 and 5)74.  Besides these known changes 

in cartilage, in vivo μCT showed that papain injections induced a loss of medial subchondral plate 

thickness, formation of subchondral plate pores, and loss of trabecular bone (Figure 6). These 

aspects were previously related to early OA development28, 35. Additionally, with in vivo folate-

receptor-β targeted SPECT/CT, we found an increased level of activated synovial macrophages 

in papain injected joints of sedentary animals (Figure 7). Cytokine producing activated synovial 

macrophages are thought to play a prominent role in osteophyte development 59, 60. Papain 

injected joints of sedentary animals also showed clear increased osteophyte formation. In 

conclusion, papain injections induced prominent sGAG loss from cartilage and showed 

development of pathological features in bone and synovium related to early OA progression. 

However, more tissues in the joint besides articular cartilage might have suffered damage due 

to repetitive papain injections. Meniscal cartilage is composed of collagen matrix as well as 

chondroitin sulfate as its dominant sGAG70. And synovium also has sGAG present within its 

extracellular matrix of the synovial intima and within the interfibrous matrix169. Papain injections 

might also have compromised these structures, but we did not investigate this any further.

In line with other published data, our current study found no negative effects of exercise on 

healthy joints of running animals compared to healthy joints of sedentary animals (Figure 4)83, 

152. Thus, this exercise protocol can be considered a physiological exposure for healthy sGAG-

rich cartilage. Earlier studies reported beneficial effects of moderate physical exercise on healthy 

cartilage and prevention of osteoarthritis83, 152, 153, 158. However, sGAG depleted cartilage appears 

highly susceptible for OA progression when exposed to moderate exercise. In running animals 
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sGAG depletion and cartilage thinning was extensive compared to sedentary controls and no 

protective effect of moderate exercise was found. As mentioned before, articular cartilage is 

likely not the only tissue that suffered a loss of sGAG due to papain injections. It can be expected 

that papain induced degradation of meniscal cartilage, ligaments and synovium as well. 

Possibly, papain induced changes in several joint tissues and may explain why moderate exercise 

did not protect against articular cartilage degradation and OA progressed severely in those 

joints. Strikingly, there was a big difference in response between medial and lateral cartilage. 

Medial cartilage showed a clear loss of sGAG and approximate ~25% loss of medial cartilage 

thickness. Whereas within the lateral compartment, subchondral bone was completely denuded 

of articular cartilage. Healthy cartilage though, also shows a difference between medial and 

lateral cartilage and attenuation values of medial cartilage was ~10% lower compared to lateral 

cartilage for both sedentary and running animals. This means that medial cartilage is likely to 

have more sGAG in the medial tibia compartment, which we also have found in another study 

described previously170. Rats are known to put more weight on their medial compartment86. In 

order to withstand these enhanced loads, Chondrocytes within the medial compartment might 

produce higher levels of sGAG. This might be the reason, that after papain injections more 

sGAG remained within this compartment compared to lateral tibia cartilage. As a consequence, 

lateral cartilage was more susceptible for ECM damage, which might have been the reason that 

lateral cartilage totally eroded. 

The enhanced effects of OA in running animals was not limited to cartilage. OA related 

pathology in bone and macrophage activation was also enhanced in those joints. Moderate 

running induce marked changes within the subchondral bone. In the lateral compartment, the 

subchondral bone plate increased in thickness and led to a sclerotic bone phenotype (Figure 

6). We believe that the complete loss of cartilage in this compartment changed the force 

propagation through the subchondral bone. The sclerosis formation might be an attempt to 

restore subchondral biomechanical stress levels during the physically active phase, with activation 

of osteoblasts that increase the subchondral bone mass in order to adapt to increased physical 

load exposure171, 172. Intriguingly, compared to sedentary animals, moderate exercise protected 

against a loss of trabecular subchondral bone (Figure 6). It is suggested that loss of trabecular 

bone might be due to unloading of the OA induced joint because of pain and discomfort for 

the animals, since gait alterations have been reported in animals with experimentally induced 

OA173, 174. Exercise plays an important role in the development and maintenance of bone mass 

and strength and is known to prevent against bone loss in human patients suffering from 

osteoporosis175, 176. We believe that exercise was able to exert a similar effect on trabecular 

subchondral bone maintenance in our experiments. 

As mentioned before, during OA development the macrophages within the synovium become 

activated131 and can produce cytokines that enhance osteophyte growth60 and mediate cartilage 
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destruction177. In contrast to joints in sedentary animals, papain injected joints of running 

animals had more pronounced macrophage activation and also larger osteophytes (Figure 7). 

These results imply that macrophage activation and osteophyte formation are associated. This 

was previously suggested to be mediated by TGF-β and BMP-2 produced by activated synovial 

macrophages59, 60. Depending on stimuli in the environment macrophages can be activated 

in different ways. Grossly they can be subdivided into a pro-inflammatory (M1), wound-

healing (M2a) and regulatory (M2b) phenotype, with each subtype characterized by secretion 

of different cytokines and growth factors178. The folate-receptor-β is highly associated with 

activated macrophages163, 164. Although this receptor has a slightly higher predisposition on M2 

macrophages, both M1 and M2 subtypes do express folate-receptor-β179. As a consequence, 

DOTA-Bz-Folate SPECT/CT cannot address specific subtype macrophage activation. Further in 

vivo studies that modulate macrophage activation and potentially influence folate targeted 

SPECT signal are required to provide more insight in the role of macrophage activation and their 

cytokine production related to OA development.  

There are numerous animal models for OA. Instability models like the anterior cruciate 

ligament transection (ACLT) model66, groove model25, 157, the destabilized meniscus model67, 

or meniscectomy model71) are currently most popular. In our opinion, these models represent 

an OA etiology related to joint trauma and allows for investigation of early changes during 

OA development. The results from papain injected and running animals in our study closely 

resembles end-stage OA-like pathology with pronounced cartilage degradation and subchondral 

sclerosis. This aspect of severe OA progression in papain injected joints of running animals might 

be suited to investigate new treatment strategies designated for regeneration of cartilage in 

OA joints. This type of OA induction proved to be simple and in combination with exercise 

induced OA in a very reproducible manner with involvement of cartilage, subchondral bone 

and synovial macrophages. Additionally, previous reports show that exposure of rat knee 

joints to low-dose papain induce a reversible sGAG loss from the cartilage168 and a transient 

pain response after injection77. This suggests that papain does not directly impair chondrocyte 

viability compared to other chemical induced OA models, like the mono-iodoacetate model that 

can lead to chondrocyte death shortly after injection75. Unimpaired cell viability allows future 

intervention studies to therapeutically target chondrocytes in an attempt to repair damaged 

articular cartilage. Although this study did not investigated chondrocytes viability and more 

research is necessary to elucidate this feature, experimental induced OA via papain injections 

might be a worthwhile contributing model for OA research. 

Using animal models for OA research does not allow for direct translation towards human 

patients. It is known that skeletal growth in rats is related to changing cartilage matrix biology 

and phenotypic characteristics of chondrocytes180, 181. Therefore, many choices (for example 

species, strain, age) related to the study design might have a distinct influence on experimental 
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outcome. With this in mind, our results might still be interesting from a clinical perspective. 

sGAG is a key-molecule for proper cartilage functioning and the amount of sGAG content is 

an indicator of cartilage health103. Loss of sGAG from articular cartilage is a hallmark of early 

OA and it was hypothesized that this occurs well before OA is detected radiographically182. For 

unknown reasons until now, there is a subgroup of OA patients that show signs of rapid OA 

progression. With radiologic evaluation such as e.g. dGEMRIC to determine cartilage sGAG 

content, we can investigate whether sGAG depletion and physical exercise may co-induce 

severe progression in human patients as well. More knowledge about cartilage sGAG content 

and patient activity level might guide or improve therapeutic interventions as well. Although 

physical exercise can be beneficial for OA patients183, 184, it might prove to be important that 

the amount of physical exercise exposure and the intensity level of their activities are carefully 

balanced in light of their cartilage sGAG status.

Conclusion
Severe sGAG depleted cartilage through papain injections is vulnerable for cartilage damage. 

Moderate physical exercise induced not only rapid OA progression in articular cartilage of papain 

injected joints, but involved the whole joint with pronounced subchondral bone adaptation and 

activation of synovial macrophages.
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ABSTRACT

Introduction
In the past years, the canonical Wnt/β-catenin signaling pathway has emerged as a critical 

regulator of cartilage development and homeostasis. In this pathway, glycogen synthase kinase-

3β (GSK3β) down-regulates transduction of the canonical Wnt signal by promoting degradation 

of β-catenin. In this study we wanted to further investigate the role of Gsk3β in cartilage 

maintenance.

Methods
Therefore, we have treated chondrocytes ex vivo and in vivo with GIN, a selective GSK3β 

inhibitor.

Results
In E17.5 fetal mouse metatarsals, GIN treatment resulted in loss of expression of cartilage 

markers and decreased chondrocyte proliferation from day 1 onward. Late (3 days) effects of 

GIN included cartilage matrix degradation and increased apoptosis. Prolonged (7  days) GIN 

treatment resulted in resorption of the metatarsal. These changes were confirmed by microarray 

analysis showing a decrease in expression of typical chondrocyte markers and induction of 

expression of proteinases involved in cartilage matrix degradation. An intra-articular injection 

of GIN in rat knee joints induced nuclear accumulation of β-catenin in chondrocytes 72 h later. 

Three intra-articular GIN injections with a 2 days interval were associated with surface fibrillation, 

a decrease in glycosaminoglycan expression and chondrocyte hypocellularity 6 weeks later.

Conclusion
These results suggest that, by down-regulating β-catenin, Gsk3β preserves the chondrocytic 

phenotype, and is involved in maintenance of the cartilage extracellular matrix. Short term 

β-catenin up-regulation in cartilage secondary to Gsk3β inhibition may be sufficient to induce 

osteoarthritis-like features in vivo.
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INTRODUCTION

Differentiated chondrocytes maintain their phenotype via synthesis of cartilage-specific 

extracellular matrix (ECM) molecules including collagen type II and sulfated proteoglycans, like 

aggrecan185. Chondrocytes easily lose essential characteristics when they are removed from 

their natural environment and cultured in vitro or expanded for the purpose of cartilage tissue 

engineering185, 186. Chondrocyte dedifferentiation also occurs in the presence of retinoic acid, 

nitric oxide, or proinflammatory cytokines like interleukin (IL)-1β and Tumor necrosis factor 

(TNF)-α, as well as in osteoarthritis (OA)186.

We and others have shown that both constitutive up- or down-regulation of the canonical 

Wnt pathway negatively influences cartilage development and maintenance resulting in OA-like 

features. This suggests that a tight regulation of this signaling cascade is crucial throughout the 

chondrocyte life cycle133-135, 187. In this pathway, in the absence of a Wnt signal, a destruction 

complex comprising Axin (Conductin) and Adenomatous polyposis coli (APC) mediates 

the phosphorylation of β-catenin by glycogen synthase kinase-3β (GSK3β), which induces 

degradation of cytosolic β-catenin in the proteasome. Binding of Wnt to its transmembrane 

receptor Frizzled results in activation of Dishevelled. This is followed by reduction of GSK3β 

activity and accumulation of cytoplasmic β-catenin. Upon its nuclear translocation, β-catenin 

will function as a co-factor of TCF/LEF transcription factors to induce expression of Wnt target 

genes134. GSK3β is constitutively active and, unlike many kinases that are activated following 

stimulus-dependent phosphorylation, it becomes inactive following phosphorylation188. Studies 

reported so far indicate that Gsk3β activity is required for both chondrocyte and osteoblast 

differentiation and thus for endochondral bone development189. However, no data is available 

regarding the role of GSK3β in maintenance of the chondrocytic phenotype.

To better understand the role of Gsk3  in regulation of the chondrocyte life cycle, we 

inactivated this kinase ex vivo and in vivo by using 3-[9-Fluoro-2-(piperidine-1-carbonyl)-1,2,3,4-

tetrahydro-[1,4]diazepino[6,7,1-hi]indol-7-yl]-4-imidazo[1,2-a]pyridin-3-yl-pyrrole-2,5-dione, a 

selective and potent GSK3β inhibitor, in this manuscript further referred to as GIN190. Our results 

imply that Gsk3β activity is crucial for maintenance of the chondrocytic phenotype and for the 

integrity of cartilage ECM, mainly by down-regulating the canonical Wnt signaling pathway. The 

cartilage phenotypic changes induced by GIN bear similarities to some of the clinical features 

commonly observed in OA.
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MATERIALS AND METHODS

KS483 cell culture, immunofluorescence for β-catenin, transient transfection 
assays

Routine culture of KS483 cells, immunofluorescence for β-catenin and transient transfection 

assays were performed as previously described191.

Ex vivo experiments
The three middle metatarsals were dissected from E17.5 Swiss Albino mouse embryos. 

Explants isolated from different animals were randomly distributed and individually cultured in 

500 μl α-Minimum Essential Medium (MEM) (Invitrogen) medium containing 10% Fetal Calf 

Serum (FCS) (Invitrogen), 100 U Pen/Strep (Invitrogen) and 1% GlutaMax (Invitrogen). After an 

equilibration period of 48 h, metatarsals were challenged with vehicle or GIN as described in the 

results section. All ex vivo experiments were approved by the ethical committee of the Leiden 

University Medical Center and complied with national laws relating to the conduct of animal 

experiments.

Proliferation and apoptosis assays
Chondrocyte proliferation was assessed by immunohistochemistry (IHC) for proliferating 

cell nuclear antigen (PCNA) according to manufacturer’s protocol (Santa Cruz Biotechnology). 

Chondrocyte apoptosis was determined by the Terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) reaction (Promega), as previously described192. For statistical analysis a 

number of N = 3 independent samples were used and each experiment was repeated at least 

once.

Histology, IHC, in situ hybridization (ISH)
Histology, IHC, and ISH were performed as previously described133.

Quantification of Glycosaminoglycans (GAGs)
The GAG content in N = 3 whole metatarsals per condition was quantified related to the 

amount of DNA using the Blyscan Sulfated GAG Assay kit (Biocolor) according to manufacturer’s 

protocol. Experiments were repeated at least once.

Gene expression profiling
For each condition, RNA was isolated from N = 15 whole metatarsals, checked for quality, 

amplified and labeled as previously described193. Labeled cRNA was further used for the 

hybridization to Affymetrix GeneChip® Mouse Genome 430A 2.0 Array according to the 

manufacturer’s protocol. The raw and normalized data are deposited on the website of the 

Department of Tissue Regeneration of the Twente University Institute for Biomedical Technology 

(http://tr.tnw.utwente.nl).
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Microarray data analysis
To evaluate the large number of genes and to find gene expression trends and noteworthy 

signaling pathways that are involved in the GIN-mediated effects, we used principal component 

analysis194. Using a cut-off value of 2 for the expression fold change, a list of 316 differentially 

expressed genes (225 down- and 91 up-regulated) was generated and used for subsequent 

analysis (Tables SI and SII).

Functional annotation of the differentially expressed genes identified by the principal 

component analysis (PCA) analysis was performed using the DAVID bioinformatics database 

and the Gene Ontology (GO) terms to describe their (extra)cellular location (GO_CC), molecular 

functions (GO_MF), and the biological processes (GO_BP) in which they are involved55, 195, 196. 

Enrichment of GO functional groups was determined to be meaningful when the number of 

probe sets in our list that mapped to a specific GO term was greater than 2 with a P-value ≤ 0.001.

Validation of the microarray analysis was performed by real-time quantitative polymerase 

chain reaction (PCR) as previously described193.

In vivo experiments
All in vivo experiments were approved by the ethical committee of the Erasmus University 

Medical Center and complied with national laws relating to the conduct of animal experiments. 

Thirteen-week-old male Wistar rats (400-450  g) were housed under standard laboratory 

conditions (temperature 24°C, 12-h light-dark cycle) with food and water ad libitum. The 

animals were acclimatized to the laboratory environment for 3 weeks before the start of the 

experiments.

GIN treatment
In a dose-finding study (N = 4), the effect of an intra-articular injection of 100 μl GIN dissolved 

in phosphate buffered saline (PBS) at concentrations of 3 × 10−7 M, 10−6 M, 3 × 10−6 M, and 

10−5 M in the knee joint was investigated.

In a second experiment, eight rats were injected intra-articular at day 1, 3 and 5 with 100 μl 

10−5 M GIN. Four rats were injected with GIN in the left knee, the remaining four were injected 

in the right knee. Contralateral joints served as controls and were injected with vehicle. All 

animals were scanned using contrast-enhanced µCT (CECT) before GIN injection (t = 0) and 

during follow up as previously described113. Rats were sacrificed at the times indicated in the 

text.

Microscopical analysis and quantification
IHC for β-catenin coupled with Alcian Blue (AB) counterstaining for GAGs was carried out as 
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previously described133. Quantification of the AB staining was performed using Image-Pro Plus 

software, version 7.0.

Statistical analysis
All values represent median and range for experiments when N ≤ 4 and mean and 95% 

confidence interval (CI) when N ≥ 5. The paired t-test, the univariate general linear model using 

simple contrasts and parameter estimates and one-way analysis of variance (ANOVA) were used 

to assess the data, as appropriate. P values less than 0.05 were considered significant. Statistical 

analysis was performed using SPSS v16.0 (SPSS).

RESULTS

Inhibition of Gsk3β through GIN results in activation of the canonical Wnt 
signaling pathway in vitro and ex vivo

We first performed transient transfection experiments in mesenchymal-like KS483 cells using 

the Wnt-responsive BAT-Luc reporter vector191, 197. As expected, GIN induced a dose-dependent 

increase in luciferase activity, with a maximum response at 10−7 M (Figure 1A). At higher 

concentrations, the luciferase activity decreased, presumably due to toxic effects (Figure 1A) 

and data not shown]. Furthermore, GIN was significantly more potent in inducing the Wnt 

reporter construct than LiCl, another established inhibitor of GSK3β. Activation of the Wnt 

reporter construct by 10−7 M GIN was accompanied by β-catenin accumulation and nuclear 

translocation as confirmed by immunofluorescence (Figure 1B). The overall level of β-catenin 

was notably increased in cells treated with GIN when compared to LiCl (50 mM) or Wnt3a 

(50 ng/ml) (Figure 1B).

We next investigated the effect of GIN on fetal mouse metatarsals, which represent an 

established model for studying the chondrocyte life cycle ex  vivo198. After incubation for 

3 days, GIN dose-dependently increased the levels of β-catenin as revealed by IHC (Figure 1C). 

Metatarsals treated with either 10−7 M or 10−6 M GIN displayed β-catenin staining mainly in 

the nuclei, indicating an efficient activation of the canonical Wnt signal. The latter concentration 

resulted in immunohistochemically detectable nuclear β-catenin expression in almost all 

chondrocytes. Strikingly, metatarsals treated with 10−6 M GIN displayed a much fainter AB 

counterstaining in comparison to controls, indicative for loss of GAGs. Additional morphological 

analysis revealed no evidence of cell death, cell shrinkage, picnotic nuclei, blebbing of the 

cytoplasm or necrosis. Subsequent experiments using the fetal mouse metatarsal ex vivo culture 

model were performed with 10−6 M GIN.
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Figure 1.  GIN activates the canonical Wnt signaling pathway via β-catenin. (A) GIN activated a transiently transfected 

Wnt reporter construct in KS483 cells dose-dependently. Values represent the mean and 95% CI (error bars) of N = 9 

luciferase observations corrected for renilla luciferase. (B) Representative images showing the effect of GIN (10−7 M), LiCl 

(50 mM) and Wnt3A (50 ng/ml) on β-catenin localization in KS483 cells as revealed by immunofluorescence. Out of the 

three Wnt activators, GIN was most effective in stabilizing and inducing nuclear translocation of β-catenin. Scale bar = 10 

μm. (C) Representative images showing β-catenin IHC combined with AB staining on longitudinal sections of E17.5 murine 

metatarsals treated for 3 days with the indicated concentrations of GIN. In this experimental set-up, 10−6 M GIN induces 

nuclear β-catenin translocation in almost all cells without any sign of toxicity. Note the progressive decrease in the intensity 

of the AB staining. The boxed regions in the upper row pictures are magnified in the lower row pictures. Scale bars = 100 

μm (upper row), 25 μm (lower row).

GIN inhibits chondrocyte proliferation and increases cartilage apoptosis
We assessed the effect of GIN on chondrocyte proliferation using IHC for PCNA. The 

percentage of proliferating cells was smaller in the GIN-treated group compared to controls at 

all time points examined (Figure 2A-E). Chondrocyte proliferation was significantly inhibited 

both at d1 (11.3% vs 25.9%, P = 0.048) and at d3 (7.6% vs 27.8%, P = 0.014). TUNEL staining 

in combination with histological evaluation was used to assess chondrocyte apoptosis. GIN did 

not have an effect on TUNEL positivity at 6h, d1 and d3 (Figure 2F-J). Only after prolonged GIN 

treatment (d7), TUNEL staining was significantly increased (22.9% vs 6.0%, P = 0.043). At d7, 

TUNEL-positive cells were predominantly identified among the hypertrophic chondrocytes in 

controls. In contrast, TUNEL-positive cells were also observed among the resting and proliferative 
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chondrocytes in the GIN-treated group. Based on histological evaluation, TUNEL-positive cells 

underwent apoptosis.

Figure 2. GIN inhibits chondrocyte proliferation and augments cartilage apoptosis. (A–D) Representative images 

showing PCNA IHC on metatarsals treated with vehicle (A, C) or GIN (B, D) for 1 day. Note that the number of the 

PCNA-positive nuclei (brown) is decreased in the GIN-treated metatarsal. (E) Quantification in N = 3 independent samples 

of the PCNA-positive nuclei (examples indicated by black arrows in C, D) indicates significant inhibition of chondrocyte 

proliferation upon GIN treatment at d1 and d3. PCNA-positive cells were counted on a mid sagital tissue section. Each 

field contained at least 500 cells and data are expressed as median (range) % of PCNA-positive cells from total number of 

cells. (F–I) Representatives pictures of metatarsals cultured in control (F, H) or GIN-enriched (G, I) medium for 7 days after 

TUNEL staining. Note that the number of the TUNEL-positive nuclei (brown) is increased in the GIN-treated metatarsal. 

(J) Quantification in N = 3 independent samples of the TUNEL-positive nuclei (examples indicated by black arrows in H, I) 

indicates significantly more chondrocyte apoptosis upon prolonged GIN treatment (d7). Quantification and data expression 

as in (E). (C, D, H, I) High magnification pictures of the boxed regions in A, B, F, and G, respectively. Scale bars: 100 μm (A, 

B, F, G), 25 μm (C, D, H, I).

Inhibition of Gsk3β induces degradation of cartilage matrix and loss of the 
chondrocytic phenotype ex vivo

We investigated the effect of GIN at the cellular level by IHC analysis for β-catenin, collagen 

type II and X, and ISH analysis for Col2a1 and Col10a1. No microscopic differences between 

vehicle- and GIN-treated metatarsals were observed at 6 h (data not shown). β-catenin expression 

at the start of the experiment and in the control metatarsals at d1, d3 and d7 was restricted 

to the cytoplasm of a minority of perichondrial and periosteal cells (Figure 3A, Ai, Aiiiand Av). 
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We first noticed a clear increase in the level of nuclear β-catenin after 1 day of GIN treatment 

(Figure 3Aii). β-catenin accumulation was observed at d3 and d7 as well (Figure 3 Aiv-Avi). The 

level of nuclear β-catenin was inversely correlated with the intensity of the AB counterstaining 

(Figure 3A-Avi). GIN treatment progressively decreased the GAG content in the ECM, with a 

near complete loss of GAGs at d7 (Figure 3F). GIN did not have an effect on mineral deposition 

and ossification of the metatarsals (data not shown).

Figure 3. GIN induces loss of the chondrocytic phenotype ex vivo. Representative pictures of (A–Avi) β-catenin 

immunostaining combined with AB staining, (B–Bvi) Col2a1 mRNA expression, (C–Cvi) Collagen type II immunostaining, 

(D–Dvi) Col10a1 mRNA expression, and (E–Evi) Collagen type X immunostaining, on consecutive longitudinal sections of 

E17.5 mouse metatarsals (N = 3 independent samples) isolated at the indicated time points. β-catenin-positive chondrocytes 

lose Col2a1 expression upon GIN treatment already at d1. Chondrocyte marker expression at the mRNA level is inhibited 

after 3-day-long GIN treatment. Chondrocytes exposed to GIN for 7 days fail to express specific markers at both mRNA and 

protein level. Scale bar: 100 μm. (F) Quantification of GAGs corrected for DNA (N = 3 independent samples) validates the 

microscopical findings. *P = 0.023 (d1), *P = 0.016 (d3), **P = 0.008 (d7), all GIN vs same time point untreated. Data are 

expressed in arbitrary GAG/DNA units (black triangles – controls, gray triangles – GIN-treated samples).
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Additional microscopic analysis revealed Col2a1 mRNA and collagen type II protein expression 

in the resting, proliferative and prehypertrophic chondrocytes, and their matrix, respectively, 

at all time points in the controls (Figure 3B, Bi, Biii, Bv, C, Ci, Ciii and Cv). GIN treatment for 

1 day resulted in a considerable inhibition of the mRNA expression of this chondrocyte marker, 

whereas its protein expression was not changed (Figure 3Bii and Cii)]. At d3, most of the 

chondrocytes in the GIN-treated metatarsals, although surrounded by a matrix rich in collagen 

type II, failed to express Col2a1 (Figure 3Biv and Civ). At d7, neither Col2a1 nor collagen type II 

expression was found in the GIN-treated metatarsals (Figure 3Bvi and Cvi).

Furthermore, control metatarsals displayed Col10a1 and collagen type X expression in the 

hypertrophic zone (Figure 3D, Di, Diii, Dv, E, Ei, Eiii and Ev). At d1, there were no differences 

in the expression of this mature chondrocyte marker between the control and the GIN-treated 

group, neither at the mRNA nor at the protein level (Figure 3Diii and Eii). At d3, GIN-treated 

explants displayed no Col10a1 expression, whereas collagen type X was still present in the ECM 

(Figure 3Div and Eiv). Ultimately, at d7, GIN induced a complete absence of both Col10a1 and 

collagen type X (Figure 3Dvi and Evi).

Microarray analysis confirms GIN’s proteolytic effects on cartilage
To further examine the effects of GIN on gene expression patterns in the fetal mouse 

metatarsal model, we performed cDNA microarray analysis on mRNA isolated from GIN-treated 

and control explants at T0, 6h, d1 and d3. We particularly designed our microarray analysis as 

such since GIN-treated metatarsals at d7 showed only aggravated features of the ones observed 

at d3. Furthermore, the increased apoptosis at d7 would have jeopardized the specificity of the 

results and mainly revealed differentially expressed genes related to cell death, an indirect effect 

of GIN treatment.

According to GO_CC terms, the vast majority of the 316 differentially expressed genes 

(225 down- and 91 up-regulated) encoded proteins that are active in the ECM (Figure 4A). 

Classification according to GO_MF and GO_BP terms is represented in Figure 4B-C, respectively. 

The large number of up-regulated genes and the fact that they did not categorize under any 

GO terms related to cell death suggested that our microarray data efficiently revealed biological 

effects caused by GIN treatment and not by toxicity.
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Figure 4. Functional annotation of the GIN-modulated genes according to GO terms. Functional annotation according 

to GO_CC (A), GO_MF (B) and GO_BP (C) terms was used to determine the enrichment of the differentially expressed 

transcripts indicated by PC1. 

In consistence with the microscopical findings indicating significant cartilage matrix 

degradation, we found among the 91 up-regulated genes numerous transcripts encoding 

established proteinases: Matrix metallopeptidase 9 (Mmp9), Mmp10, Mmp11, and HtrA serine 

peptidase 1 (Htra1). Given the role of GSK3β in canonical Wnt signaling, the microarray data 

showed evidence for a Wnt/β-catenin signature as evidenced by the up-regulation of established 

direct targets of the β-catenin/TCF4 complex, like Axin2 and adenomatosis polyposis coli down-

regulated 1 (Apcdd1). Microarray and pathway analysis did not reveal clear signatures of 

changes in other signaling pathways, such as Hedgehog (Hh) and Fibroblast growth factor (FGF). 

Furthermore, several cartilage ECM proteins were identified among the 225 down-regulated 

genes: unique cartilage matrix-associated protein (Ucma), matrilin 1 (Matn1), Matn3, Matn4, 

hyaluronan and proteoglycan link protein 1 (Hapln1), collagen, type XI, alpha 1 (Col11a1), 

epiphycan (Epyc), fibromodulin (Fmod), matrix Gla protein (Mgp), Col14a1, and (Col9a3). In 

the list of repressed genes, we also found transcripts known to encode non-cartilaginous matrix 

proteins like osteomodulin (Omd), osteoglycin (Ogn), microfibrillar-associated protein 4 (Mfap4), 

tenomodulin (Tnmd), asporin (Aspn), and fibulin7 (Fbln7), suggesting a more complex effect of 

the GIN treatment on the ECM.
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To independently validate the results of the microarray analysis, 16 genes were selected 

for confirmation by quantitative real-time RT-PCR analysis. For the transcriptional analysis we 

therefore isolated RNA from a separate experiment that mirrored the one used to generate the 

microarray data. Four of these 16 genes are known to be involved in chondrocyte differentiation 

and cartilage maintenance (Sox9, Col2a1, Acan and Col10a1), four are members of the canonical 

Wnt signaling pathway (Axin1, Axin2, Gsk3b and Ctnnb1), and eight encode proteinases 

known to regulate maintenance and degradation of the ECM (Mmp2, Mmp3, Mmp9, Mmp13, 

Adamts4, Adamts5, Hyal1 and CtsK). We found a similar expression pattern of the analyzed 

genes, indicating that our microarray data specifically corresponded to actual gene expression 

patterns (Figure 5).

Figure 5. Quantitative Real-Time RT-PCR validates the microarray data. Correlation between qPCR and microarray results 

for Sox9, Col2a1, Acan, Col10a1, Axin1, Axin2, Gsk3b, Ctnnb1, Mmp2, Mmp3, Mmp9, Mmp13, Adamts4, Adamts5, 

Hyal1, and CtsK. The primary y-axis (left) indicates the RT-PCR results as normalized fold change on a log-scale. The 

secondary y-axis (right) indicates the microarray results as the log-differential expression ratios (M). Data are expressed as 

the mean of N = 6 metatarsals (qPCR) and N = 15 metatarsals (microarray).

We next investigated whether GIN can induce the same biological effects in an in  vivo 

experimental model. In an initial experiment, we observed 72  h after GIN injection nuclear 

translocation of β-catenin in a dose-dependent fashion in rat knee articular chondrocytes, 
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whereas vehicle treatment did not induce a change in β-catenin expression in the control joints 

(Figure 6A, Ai, B, Bi and data not shown). Virtually all articular chondrocytes treated with the 

highest GIN concentration (10−5 M) showed nuclear β-catenin expression, yet they did not 

display any morphological changes or alterations of their ECM. We did not detect β-catenin 

up-regulation in other tissues such as synovium, tendons, or bone at the examined time point, 

nor evidence of inflammation.

Figure 6. GIN induces OA-like effects in rat articular cartilage. (A, B) Representative pictures of β-catenin IHC combined 

with AB staining on longitudinal mid sagital sections of tibial plateaus 72 h after injection with vehicle (A) or 10−5 M GIN 

(B). Seventy-two hours after GIN injection there is β-catenin up-regulation (arrows in Bi). (C, D) Representative pictures of 

AB staining on longitudinal mid-sagital sections of proximal tibias 10 days after injection with vehicle (C) or 10−5 M GIN 
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(D) indicate massive ECM degradation only in the GIN-treated articular cartilage (arrowheads). GP cartilage is unaffected in 

both conditions (arrows). (E, F) Representative pictures of β-catenin IHC combined with AB staining on longitudinal mid-

sagital sections of tibial plateaus 6 weeks after injection with vehicle (E) or 10−5 M GIN (F). Short term GIN treatment does 

not lead to β-catenin up-regulation 6 weeks later, but induces OA-like morphological changes of the articular cartilage. 

(Ai, Bi, Ci, Di, Ei, Fi) High magnification pictures of the boxed regions in A, B, C, D, E and F, respectively. (G) Quantification 

of the intensity of the AB staining, at 6 weeks, in the control and GIN-treated knees (N = 4 independent samples) showing 

less GAGs in the treated samples. Data are expressed as median (range) AB arbitrary units, P = 0.050. (H, I) Quantification 

of volume and attenuation measurements from CECT-data (N = 4 independent samples) (black triangles – controls, gray 

triangles – GIN-treated samples). Scale bars: 200 μm (A, B, Ci, Di, E, F), 20 μm (Ai, Bi, Ei, Fi), 300 μm (C, D).

In a second experiment, we injected 10−5  M GIN on day 1, 3 and 5. Four rats (“early” 

group) displayed signs of severe acute inflammation of the GIN-treated knee beginning at day 

7 and these animals were therefore sacrificed already at day 10. No difference in β-catenin 

expression was observed between the GIN-treated and control knees of these animals (data 

not shown). In the vehicle-injected knee, the surface of the articular cartilage (AC) was smooth, 

the matrix was densely stained with AB and showed no signs of degeneration (Figure 6C, Ci). 

Besides displaying histological signs of inflammation (intra-articular infiltration of neutrophils 

and macrophages, synoviocyte hyperplasia, fibrin exudation etc.), the GIN-treated knees in the 

“early” group displayed intensely degraded AC, containing almost no GAGs, as indicated by 

absence of AB staining (Figure 6D, Diand data not shown) in each of the four animals.

The other four rats (“late“ group) from this experiment were sacrificed after 6 weeks and 

again showed no difference in the β-catenin expression pattern between the GIN-treated knee 

and controls (Figure 6E, Ei, F, Fi). Whereas no morphological changes were observed in the 

control knees of the “late“ group, GIN-treated samples from all four rats displayed superficial 

fibrillation of AC, focal hypocellularity of chondrocytes, and reduced AB staining. Quantification 

of the intensity of the AB staining revealed significantly less staining in the cartilage of GIN-

treated knees in comparison to contralateral control knees (Figure 6G, P = 0.05).

Although not statistically significant, CECT analysis of condylar cartilage revealed a trend in 

reduction of cartilage volume as well as GAG-depletion (expressed by increased attenuation) in 

the GIN-treated knee joints in comparison to control knees (Figure 6H-I).

DISCUSSION

Here we show that Gsk3β, by controlling the canonical Wnt signaling pathway, is critical for 

maintenance of the chondrocytic phenotype. Inhibition of Gsk3β in chondrocytes ex vivo leads 

to loss of cartilage markers expression, induces matrix degradation by stimulating the expression 

of Mmps, inhibits chondrocyte proliferation and, most likely as a consequence of these effects, 
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induces chondrocyte apoptosis. In addition, we demonstrate that transient inhibition of 

Gsk3β, following three intra-articular injections of GIN in rat knees during 1 week is associated 

with the appearance of OA-like features 6 weeks later. In agreement with our results, recent 

findings suggest that up-regulation of β-catenin through induction of proteasomal degradation 

of Gsk3β in chondrocytes initiates early  events of OA, while inhibition of Gsk3β may block 

chondrogenesis199, 200.

Besides the canonical Wnt pathway, GSK3β also regulates signal transduction of the Hh and 

Fibroblast growth factor (Fgf) family of secreted proteins201, 202. Given that both Hh and Fgf 

growth factors play important roles in the chondrocyte life cycle, we searched in our microarray 

results for possible target genes of these proteins among the list of transcripts differentially 

regulated by GIN203, 204. Only PR domain containing 1, with zinc finger (ZNF) domain (Prdm1) 

matched this criterion, acting downstream of a sequential Wnt and Fgf signaling cascade205. 

Our microarray expression data indicated that GIN treatment up-regulated the canonical Wnt 

target genes Axin2 and Apcdd1, transcripts that have previously been shown to be induced 

only by Wnt and not by Fgf signaling206-208. The protein products of Axin2 and Naked cuticle 

homolog 2, both of which are up-regulated in the microarray, are both renowned antagonists of 

the canonical Wnt signal. They have been shown to participate in negative feedback regulation 

of β-catenin activity209-211. Taken together, these findings suggest that the intense cartilage 

matrix degeneration as well as the loss of the chondrocytic phenotype following GIN treatment 

occurred, at least in our experimental set-up, mainly due and can be explained by the activation 

of the Wnt/β-catenin pathway, although we cannot exclude minor roles of other signaling 

pathways in which GSK3β is known to be implicated nor of minor off-target effects of GIN.

Previously, we and others have reported that continuous exposure of chondrocytes to 

extensive levels of β-catenin in vivo induces loss of the chondrocytic phenotype as evidenced by 

the loss in expression of typical chondrocyte markers133, 134. Microarray analysis of GIN-treated 

metatarsals confirmed and extended this observation. Furthermore, our microscopic analysis 

suggests that GIN not only induced an enhanced degradation of the ECM, but also inhibited 

the expression of several ECM constituents in a time-dependent manner. Noteworthy, in the 

metatarsal experiments the loss of expression of typical cartilage markers at the mRNA level was 

observed before protein degradation was noticeable. GIN treatment inhibited the expression 

of genes encoding collagenous (Col9a3, Col11a1, and Col14a1), and non-collagenous ECM 

proteins (Ucma, Matn1, Matn3, Matn4, Hapln1, Fmod, Mgp), as well as proteoglycans (Epyc). 

In addition, GIN stimulated the expression of proteinases Mmp9, Mmp10, Mmp11, and Htra1, 

which promote ECM degradation, suggesting that the loss of tissue integrity observed in the 

treated metatarsals is due not only to a loss of the links between the collagenous and the non-

collagenous proteins in the matrix, but also to active matrix degradation.
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Decreased chondrocyte proliferation, augmented apoptosis, loss of the chondrocytic 

phenotype and degradation of ECM together characterize the “degradative phase” of OA, 

the most common form of arthritis212. These pathological phenomena were observed after up-

regulated canonical Wnt signaling by GIN treatment in our experimental set-ups ex vivo and 

in vivo, in agreement with recent data suggesting a link between excess signaling through the 

Wnt/β-catenin pathway and OA134. Moreover, many genes reportedly induced in OA cartilage 

were up-regulated by GIN treatment: Mmp9, Mmp10, Mmp11, Axin2, Htra1, angiopoietin-like 

2 (Angptl2), and met proto-oncogene (Met)186, 213-217. Htra1, which is increased several-fold in 

joint cartilage of OA patients, promotes degeneration of cartilage216, 218, while Met, besides 

contributing to the altered metabolism during OA, also stimulates osteophyte development219. 

Serping1, previously reported to be repressed in OA, and Matn3, whose inactivation leads 

to higher incidence of OA, were both down-regulated by GIN220, 221. In addition, inactivation 

of Frzb, another transcript repressed by GIN treatment, renders joints more susceptible for 

osteoarthritic changes222.

Our results suggest that treatment with GIN can induce cartilage degeneration of rat AC after 

three intra-articular injections of GIN with 2 days interval. We observed two distinct phenotypes, 

most likely explained by a difference in retention time of GIN in the knee joint: a severe form 

with acute inflammation associated with resorption already 10 days after the first injection and 

a milder phenotype. The potent catabolic effects of GIN on cartilage may have caused rapid 

and excessive cartilage degradation. These degradation products may have triggered an acute 

form of inflammation through the release of for example collagen type II fragments. In animals 

with the milder phenotype, microscopic analysis demonstrated the presence of the first signs of 

OA-like changes such as surface fibrillation, focal chondrocyte hypocellularity and a decrease in 

GAG staining in GIN-treated knees but not in the contralateral control knees 6 weeks after the 

last GIN injection. CECT analysis revealed a trend of less cartilage volume and more attenuation, 

indicative for GAG loss in the GIN-treated animals; however this observation did not reach 

significance. In contrast to the increased β-catenin expression in AC present 3 days after GIN 

injection, we did not detect increased β-catenin staining 6 weeks after GIN injection nor did we 

found evidence for nuclear β-catenin accumulation in the synovium, tendons or bone at each of 

the analyzed time points. This suggests that a transient rise in β-catenin in AC may be sufficient 

to trigger development of OA-like features, an observation that extends findings in conditional 

constitutive mice carrying a stabilized, oncogenic variant of β-catenin, which also develop OA135. 

Although we did not find evidence for increased β-catenin accumulation in other joint tissues 

besides cartilage at the examined time points, we cannot exclude that GIN injection has resulted 

in a more rapid and transient rise of β-catenin in these tissues which was normalized 72 h 

after the injection. This may have also contributed to the observed pathology. Furthermore, we 

cannot exclude that the mild cartilage phenotype was due to a milder form of inflammation in 

the first weeks after injection. However, given the clear evidence of increased nuclear β-catenin 
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accumulation in AC 72 h after GIN injection and the consistency of the in vivo findings with 

the phenotypic changes and effects on gene expression of GIN in our ex vivo cartilage explant 

model, we favor the hypothesis that these first indications of cartilage degeneration were 

due to a transient rise in β-catenin in AC triggering cartilage catabolism and changes in the 

chondrocyte phenotype.

Abnormally regulated GSK3β has been associated with many pathological conditions like 

Alzheimer’s disease, mood disorders, diabetes and cancer188. However, a direct link between 

GSK3β and the pathophysiology of OA has not yet been reported. Since in our experimental 

set-ups the GIN-induced effects reflect some of the pathological findings normally seen in 

osteoarthritic chondrocytes, we speculate that Gsk3β plays a role in the pathophysiology of this 

degenerative cartilage disease as well, most likely by regulating the levels of β-catenin. Whether 

pharmacological modulation of Gsk3β might represent a potential novel therapeutic approach 

for the management of OA remains to be elucidated.
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ABSTRACT

Introduction
Articular cartilage is evolutionary designed to facilitate joint mobilization. However, severe 

loading can induce chondrocyte apoptosis, which is related to osteoarthritis progression. In 

order to avoid apoptosis, chondrocytes synthesize heat shock proteins (Hsp). Here we report on 

the role of Hsp70 and Hsp90 in biomechanically induced osteoarthritis, and the possibility for 

Hsp90 inhibition (Hsp90i) as an intervention strategy for osteoarthritis management.

Methods
Osteoarthritis was biomechanically induced in rats through strenuous running. Disease 

progression was compared between running rats treated with Hsp90i and untreated running 

controls. From articular cartilage of both groups, Hsp70 and Hsp90 protein levels were 

determined using Western blots. Osteoarthritis progression was monitored with contrast-

enhanced µCT to measure cartilage degradation and subchondral bone changes, with SPECT/

CT to determine synovial macrophage activation, and histology. 

Results
Chronic cartilage loading led to early osteoarthritis development, characterized by 

degeneration of cartilage ECM. In vivo Hsp90i resulted in increased Hsp70 synthesis, which 

suggests that Hsp90 activity limits Hsp70 production. Hsp90i treatment improved cartilage sGAG 

levels to concentrations even beyond baseline and (1) protected against cartilage degradation, 

(2) stimulated subchondral bone thickness, and (3) suppressed macrophage activation. 

Conclusion
Hsp90 plays a pivotal role in biomechanically induced chondrocyte stress responses, and 

intervention strategies that inhibit Hsp90 can protect or improve cartilage health and might 

prevent osteoarthritis development.
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INTRODUCTION

Osteoarthritis (OA) is a progressive disease affecting synovium, ligaments,  subchondral bone, 

and lead to articular cartilage degradation1. About 30% of persons aged 65 and older are 

affected in either the hip or knee joint by this severely disabling disease4. Besides costly and 

invasive joint replacement surgery, treatment options are limited. Therefore, more detailed 

knowledge of the underlying pathogenesis of OA is essential for the development of novel 

disease modifying drugs.

Chondrocytes are the single cell type responsible for maintaining the extra-cellular matrix 

(ECM) of articular cartilage and repair of any inflicted damage. Being daily exposed to high-

peak forces during physical activity, this cell type is sensitive to mechanical stimuli132. Acute or 

chronic high-intensity loads can cause cartilage damage156, and chondrocytes in damaged or 

eroded cartilage show morphological features of apoptosis, suggesting that chondrocytes from 

OA patients die by active (programmed) cell death223. Cells can avoid apoptosis by expression of 

heat shock proteins (Hsp). Hsp are molecular chaperones that assist in protein folding to sustain 

cellular homeostasis under stressed conditions224. 

Hsp70 and Hsp90 are two of the major classes of heat shock proteins involved in regulation 

of cell stress225. From in vitro experiments, it is known that HSP70 inhibits nitric oxide-induced 

apoptosis in chondrocytes through reduction of caspase 3 activity 226. Galois et al. reported 

similar findings in an in vivo study in rats and showed that mild running (7.5km in 28days) 

and moderate running (15km in 28days) stimulated Hsp70 production152. These schedules 

protected chondrocytes from caspase 3 induced apoptosis and reduced OA progression. 

Other studies further support the finding that Hsp70 has the potential to prevent cartilage 

damage in arthritic joints227, 228. Thus, Hsp70 is thought to play a protective role in early stages 

of chondrocyte adaptation to biomechanical joint constraints, which otherwise would lead to 

OA229. However, intense running (30km in 28days) reduced Hsp70 expression back to non-

running control levels152 and supraphysiological loading therefore seems to exceed the intrinsic 

Hsp70-mediated capacity for cellular damage control, ultimately still resulting in apoptosis. This 

corroborates with findings, that intense or strenuous running protocols are known to induce 

OA84, 157. It is hypothesized that with persistent stress on cartilage: (1) increased levels of Hsp70 

are insufficient to protect chondrocytes230, or, (2) the co-expression of other Hsp counteract the 

effect of Hsp70152. 

The second part of this hypothesis could be explained through Hsp90 function. Where 

HSP70 inhibits NF-κB formation, Hsp90 has an antagonistic function and activates the NF-κB 

pathway224. NF-κB plays an essential role in normal physiology, but inappropriate regulation 

of NF-κB is related to the pathogenesis of both OA and rheumatoid arthritis231. In an in vivo 
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model for rheumatoid arthritis, Hsp90 inhibition (Hsp90i) reduced the inflammatory response, 

prevented cartilage damage and limited bone resorption232. It has been shown that Hsp90 may 

restrict Hsp70 regulation233 and therefore Hsp90 upregulation in chondrocytes may counteract 

the beneficial Hsp70-mediated responses and facilitate OA progression. Hsp90i could positively 

affect the level of Hsp70 upregulation necessary and through this mechanism promote cartilage 

health. 

Figure 1: Hypothetical representation of Hsp70 and Hsp90 in osteoarthritis (OA). A: Healthy cartilage. Normal 

chondrocytes reside in a sulphated-glycosaminoglycan (sGAG) rich extra-cellular matrix (ECM). Subchondral bone is intact 

and supportive, inactive macrophages are present within the synovium. B: Stressed cartilage during strenuous running 

results in slight sGAG loss from the ECM. Due loss of cartilage hydrostatic pressure, chondrocytes become biomechanically 

stressed. In order to cope, chondrocytes upregulate Hsp70. C: Persisting biomechanical stress. Diminished biosynthetic 

capacity of stressed chondrocyte produce less sGAG and Hsp90 is upregulated. Activated osteoclasts penetrate the 

subchondral plate impairing its supportive function. Macrophages produce pro-inflammatory cytokines and growth factors.  

D: Osteoarthritis. Eventually, a vicious circle of events as described for panel C, culminates in chondrocytes ultimately dying 

from apoptosis. ECM integrity becomes compromised and its biomechanical properties deteriorates. Osteoclasts tunnel 

their way through the subchondral bone making space for osteoblast and vascular infiltration, which will eventually lead to 

development of a sclerotic bone phenotype. Continuous macrophage cytokine and growth factor production has thickened 

the synovium and result in fibrosis, reducing the patients’ range of motion and causing pain.

In summary, Hsp70 and Hsp90 related chondrocyte stress responses might play an important 

role in biomechanically induced cartilage stress that develops into OA (Figure 1). Increased 

physical activity in a strenuous running model for OA, exposes chondrocytes in healthy cartilage 

to chronic impact from joint loading (Figure 1A). In order to cope with this increased load, 

chondrocytes may upregulate Hsp70 to promote cell metabolism to sustain the ECM with 

sufficient sGAG (Figure 1B). But persisting cartilage stress through strenuous running could 

stimulate Hsp90 production, which counteracts the positive effects of Hsp70 and thus promotes 

OA development (sGAG loss, degradation of ECM, loss of subchondral bone, macrophage 

activation; Figure 1C). When cartilage ECM is damaged, OA progression will further develop 

and in time progress into severe joint degeneration (Figure 1D). In this study, we investigated 

the role of Hsp70 and Hsp90 in a strenuous running rat model for OA. We hypothesize that 

running induced loading of articular cartilage upregulates Hsp90 expression in chondrocytes 
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and limits Hsp70 expression, which results in a loss of Hsp70 mediated protective effect against 

OA progression in the knee joint. Therefore inhibition of Hsp90 might revert the degeneration 

effects on cartilage after strenuous running of rats.

METHODS

Study design
Thirty-eight 16-week-old male Wistar rats (Charles River Netherlands BV, Maastricht, the 

Netherlands) were housed with a 12-h light-dark regimen, at 21oC during the experimental 

period. Male rats were used in this study, since estrogen is known to influence Hsp expression 

234 and OA development235. Animals received standard food pellets and water ad libitum. Five 

different groups were used for this study: a baseline group (n=6), two control OA groups with 

follow up of six weeks (n=6) and twelve weeks (n=6), and two treatment (Hsp90i via BIIB021) 

groups with follow up of six weeks (n=10) and twelve weeks (n=10). 

Figure 2: Experimental overview scheme indicating analytical time points and methods for each group of animals. 

Thirty-eight 16-week-old male Wistar rats were divided over three different groups: a baseline group (n=6), two untreated 

OA groups (n=12), and two Hsp90i groups (n=20). Hsp90 was inhibited through oral administration of BIIB021. All rats, 

with exception of the baseline group,  were subjected to a six week strenuous running protocol to induce OA [13]. At the 

end of the experiment a full analysis sequence was done, consisting of in vivo: measurement of activated macrophages 

using 111In-DTPA-folate SPECT/CT; and ex vivo: bone and cartilage analysis using EPIC-microCT, histology, Hsp70 and 

Hsp90 quantification using Western blotting. 

All rats (except the baseline group) were forced to run on a motorized rodent treadmill 

(LE-8700; Panlab Harvard Apparatus, Barcelona, Spain). Strenuous running induces the 

development of OA through chronically mechanical loading of articular cartilage in Wistar rats84. 

After an initial trainings week to get used to treadmill exercise, rats are forced to run one hour 

per day, five days per week (not on weekends). In order to warm-up rats start running at 20 

cm/sec (0.72 km/h) during the first 10 minutes, followed by 50 minutes of running at 33,3 
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cm/sec (1.20 km/h). The pace and durance of this protocol equals approximately 50% of a 

total exhaustion protocol162. After completion of the six week protocol, rats have covered 30 

kilometers of strenuous running and moderate OA develops in their knee joints that does not heal 

spontaneously157.We measured HSP70 and HSP90 changes in articular cartilage to characterize 

chondrocyte stress responses and relate this to OA development. OA is characterized by sGAG 

loss from cartilage ECM, loss of cartilage ECM, bone resorption and macrophage activation. At 

the end of the experiment for each group, an analysis sequence of μCT and μSPECT/CT was 

performed to measure changes of these different aspects of OA. This sequence consisted of: 

(1) in vivo111In-DTPA-FA SPECT/CT to measure macrophage activation and (2) ex vivo EPIC-μCT 

to measure bone and cartilaginous tissue changes, (3) Hsp90 and Hsp70 Western blotting from 

articular cartilage, and (4) histology to analyze cartilaginous tissue quality. A detailed planning 

scheme of all groups and conducted tests is given in Figure 2. The Animal Ethic Committee of 

the Erasmus Medical Centre, Rotterdam, the Netherlands, approved all conducted procedures.

HSP90 inhibition via orally administered BIIB021
All animals in both treatment groups were treated orally with the fully syntethic Hsp90 

inhibitor BIIB021 (Selleck Chem., Houston, Texas, USA), that competitively binds in the ATP-

binding pocket of Hsp90 similar to other geldanmycin-derived Hsp90 inhibitors236. Previous 

work with HSP90 inhibitors have shown not to interfere with Hsp70 functioning237. BIIB021 

was dissolved in DMSO and further diluted in saline to a 0.02% DMSO solution with a BIIB021 

concentration 14mg/ml. During the entire study, each animal received 0.5 ml of this solution via 

oral probing. High doses of other types of Hsp90 inhibitors like geldanamycin derivatives, result 

in drug-related gastrointestinal, bone marrow or hepatic toxicities238. Therefore, per animal 7mg 

of BIIB021 was given three times per week, every other day (not on weekends) in order for cells 

in the gastrointestinal tract and bone marrow to recover from Hsp90 inhibition.

Determination of activated macrophages by SPECT/CT using 111In-DTPA-FA
Activated macrophages express the folate-receptor-β allowing to monitor macrophages in 

vivo using folate radioconjugates130. This technique was recently introduced for OA research 

in a rat model 131. Briefly, DTPA-folate (DTPA-FA; the conjugate was kindly provided by prof. R. 

Schibli, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Switzerland) was incubated with 
111InCl3(Mallinckrodt-Tyco, Petten, the Netherlands) in phosphate buffered saline (PBS, pH 6.5) 

for one hour at room temperature. Quality control performed by HPLC revealed a radiochemical 

yield of ~92% at a specific activity of >16 MBq/μg. After addition of a solution of DTPA for 

complexation of traces of free 111In(III), the solution was further diluted in PBS and administered 

via the tail vein twenty hours prior to scanning. 

SPECT/CT scans were performed with a 4-head multiplex multi-pinhole small animal SPECT/

CT camera (NanoSPECT/CT TM, Bioscan Inc., Washington DC, USA). Each detector head was 
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fitted with a tungsten-based collimator of nine 2.5mm diameter pinholes, the field of view was 

24mm in width and energy peaks were set at 170keV and 240keV (±10%). All knee joints were 

scanned with both helical μCT (acquisition time 5min) and SPECT (acquisition time 30min). 

After scanning, all datasets were reconstructed at an isotropic CT voxel size of 0.2mm3 and 

an isotropic SPECT voxel size 0.6mm3 using HiSPECT software (Scivis, Göttingen, Germany). All 

scans were analyzed using InVivoScope processing software (Bioscan Inc.). A cylindrical region 

of interest (ROI) was manually determined for quantification of the radioactivity around the 

knee joint, all data is presented as measured activity per mm3. 

Bone, cartilage and growth plate measurements with EPIC-µCT
OA is characterized by loss of sGAG from the cartilage ECM, followed by cartilage 

degradation. Cartilage and growth plate X-ray attenuation from contrast (ioxaglate) enhanced 

μCT scans (EPIC-μCT) is inversely related to the sulfated-glycosaminoglycan (sGAG) content of 

cartilage 113 and indicative of tissue quality157. With EPIC-μCT it is possible to accurately quantify 

morphometric parameters of cartilaginous tissue, as well as the subchondral bone149.

Animals were euthanized directly after the SPECT/CT scan. Both knee joints were harvested 

and randomly designated to EPIC-µCT or protein analysis with Western blotting. All knee 

joints selected for EPIC-µCT were carefully deprived of soft tissue to a maximal extent, without 

harming cartilage integrity. Next, all specimens were incubated in 40% solution of ioxaglate, 

for 24 hours at room temperature138. EPIC-μCT was performed on a Skyscan 1076 in vivo μCT 

scanner (Skyscan, Kontich, Belgium), using the following scan settings: isotropic voxel size of 35 

μm; a voltage of 55 kV; a current of 181 mA; field of view 68 mm; a 0.5 mm aluminum filter; 

over 198o with a 0.4 degree rotation step. All scans were performed using the same settings 

and all data were reconstructed identically. Using CT analysis software (Skyscan), these datasets 

were segmented using a fixed attenuation threshold between air (25) and subchondral bone 

(100)157. In all segmented μCT datasets, ROIs were drawn around the cartilage of the medial 

and lateral plateau of the tibia to calculate X-ray attenuation (arbitrary gray values), which is 

inversely related to sGAG content (cartilage quality), and cartilage thickness (µm). Tibia plateau 

cartilage was analyzed since it is predominantly affected during strenuous exercise induced 

osteoarthritis93.

Bone was accurately segmented from all EPIC-µCT datasets with a local threshold algorithm141. 

Cortical and trabecular bone were automatically separated using in-house software35(both 3D 

Calculator software and separation software can be requested via email). Using the CT analysis 

software (Skyscan), the tibial epiphysis was selected in the segmented CT scans and analyzed for 

changes in cortical and trabecular bone. Both medial and lateral thickness of the subchondral 

plate (sub. chond. plate th.) were measured.
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Histopathological examination of the knee joint
After EPIC-μCT, the separated parts of the knee joints were fixed in paraformaldehyde, 

decalcified with formic acid and embedded in paraffin. Saggital sections were made at 300 μm 

intervals and stained with Safranin-O to image the amount and distribution of the GAGs. All 

sections were stained in parallel, to minimize staining bias between different samples. The mid-

section of both medial and lateral tibial plateau were digitalized with the NanoZoomer Digital 

Pathology program (Hamamatsu Photonics, Ammersee, Germany). From these digital images, 

the cartilage was isolated in silico and the staining intensity quantified with graphical software 

(Adobe Photoshop, San Jose, CA, USA). Cartilage thickness was measured at seven different 

locations using NanoZoomer (Hammamatsu), and the mean thickness was recorded as averaged 

histological cartilage thickness239. Additionally, medial and lateral tibia plateau histology sections 

were scored according to the OARSI histopathology initiative 240.

Protein extraction and Western blotting 
From all knee joints selected for protein analysis, the articular cartilage (both medial and 

lateral) of the tibial plateau was harvested, rinsed in physiological saline, immediately snap-

frozen in liquid nitrogen and stored at -80°C until further use. The samples were pulverized 

for 2min at 30Hz in a TissueLyser II (Qiagen GmbH, Hilden, Germany) using chromium steel 

grinding balls and custom-made polytetrafluoroethylene vials. Samples were resuspended in 

lysis buffer241 and purified as previously described242. Protein quantification, loading of SDS-

polyacrylamide gels, blotting and signal quantification was performed as previously described243 

with Hsp70 and Hsp90 antigen detection as described by Xing et al.244 and Hirano et al.245, 

respectively, using recommended antibody dilutions. Visualization was performed on an Odyssey 

infrared imaging system with IRDye 680RD and IRDye 800CW secondary antibodies (1:15,000; 

both LI-COR Biosciences, Lincoln, Nebraska, USA), respectively. Replicate data per animal were 

averaged and normalized to α-tubulin (1:1,000; Cell Signaling Technology Inc., Danvers, MA, 

USA) as a loading control. Signal intensities were quantified using ImageJ software (ImageJ 

software, National Institutes of Health, Bethesda, MD).

Geldanamycin-like inhibitors that compete for the N-terminal nucleotide-binding pocket 

are most potently interacting with the cytoplasmic isoforms Hsp90αand Hsp90β246, 247, both 

isoforms were measured by Western Blot. BIIB021 interferes with ATPase activity of Hsp90, this 

described method is not able to distinguish between activation stage of the Hsp. The presented 

data therefore represents total Hsp content (either inactive or active).

Statistical analysis
Differences between means of baseline animals and both groups of untreated OA controls 

were tested using a one-way ANOVA with Bonferroni correction (Western blot, EPIC-μCT and 

quantitative histology analysis;  SPSS, SPSS Inc., Chicago, USA). Differences between baseline 
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animals and both groups of untreated OA controls in semi-quantitative histology scores were 

analyzed using a Kruskal-Wallis one-way ANOVA. When comparing means of quantitative 

outcome measurements (Western blot, EPIC-μCT and quantitative histology analysis) between 

untreated OA animals and HSP90i treated animals at six or at 12 weeks, an unpaired t-test was 

used. A Mann-Whitney test was used when comparing means of semi-quantitative histology 

scores between untreated OA controls and Hsp90i treated animals. The amount of injected 

radioactivity per animal can influence DTPA-folate SPECT/CT macrophage measurements. In 

order to correct for this possible influence when comparing differences between groups, the 

amount of injected activity was added as covariable in a linear regression model using SPSS. For 

all tests, p values < 0.05 were considered significant.

RESULTS

Hsp70 and Hsp90 regulation in OA and Hsp90i
After a six week running regime, Hsp90 protein levels increased 2.1 fold in running but not 

in untreated OA control rats (Figure 3A). After six weeks of subsequent rest Hsp90 levels in 

untreated OA controls were still higher compared to baseline animals (~1.7 fold increase, Figure 

3A). However, both effects were not significant (p=0.12). Hsp70 levels did not change at six 

weeks and twelve weeks compared to baseline values (p=0.55) (Figure 3B).

Figure 3: Changes in heat shock protein (Hsp) abundance during chronic loading and after Hsp90 inhibition in articular 

chondrocytes of knee cartilage. A: Hsp90 B: Hsp70 C: representative Western blots of Hsp90 and Hsp70, α-tubulin served 

as loading control. *: p<0.05, **: p<0.01. 
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Chondrocytes of HSP90i treated animals showed a different Hsp response to biomechanical 

stress exposure via running. Compared to untreated OA controls, Hsp90i animals produced 

higher amounts of Hsp90 at the end of the running protocol (~1.9 fold increase; p=0.02), which 

remained increased after the subsequent six weeks of rest (~2.2 fold increase; p=0.001, Figure 

3A). The increased levels of Hsp90 are in line with a functional inactivation of Hsp90 by BIIB021, 

as earlier studies demonstrated a positive feedback regulation of this Hsp236. Further supportive 

evidence in favour of a functional  Hsp90 inactivation can be derived from the subsequent  

Hsp70 induction233, 236, 248, as observed in articular cartilage after running (p=0.04, Figure 3B). 

At week twelve, Hsp70 protein levels were still increased ~2.2 fold compared to non-running 

baseline animals (p=0.04), but this was not significantly different compared to untreated OA 

controls (p=0.10, Figure 3B). Representative images from the Western blots are shown in 

Figure 3C. 

Adaptation of cartilaginous tissue
OA is characterized by a loss of sGAG from the cartilage ECM, followed by cartilage 

degradation. Strenuous running in untreated OA controls did not induce clear changes in 

articular cartilage of the medial tibia plateau (Figure 4A-B), while at the lateral side, cartilage 

did show a reduction in ECM thickness (p=0.02) (Figure 4D). Hsp90i treated animals had lower 

attenuation values of both medial (p=0.04) and lateral (p=.002) plateau cartilage (Figure 4A). 

This indicates that HSP90i treated rats had higher levels of sGAG to sustain the cartilage during 

running. Not only was the sGAG content in both medial and lateral compartments higher 

compared to the untreated OA controls, Hsp90i treated animals had even higher amounts of 

sGAG compared to healthy baseline animals. After six weeks of rest, medial cartilage still had 

higher sGAG levels (p=0.04), while lateral cartilage showed no difference in sGAG content 

(p=0.88). However, whereas the lateral cartilage of untreated OA controls was degraded, 

Hsp90i treated animals did not show any sign of decreased cartilage thickness and was thicker 

compared to the OA controls (p=0.009) (Figure 4D). In order to further validate these findings, 

we quantitatively evaluated the sGAG content of cartilage and cartilage thickness in histological 

sections. These measurements showed similar patterns between untreated OA controls and 

Hsp90i treated animals and confirmed our EPIC-μCT results (Figure 4F-I). Additional semi-

quantitative scores according to the OARSI histopathology initiative showed increased medial 

(p = 0.002) and lateral (p = 0.012) cartilage degeneration in untreated OA controls. In contrast, 

Hsp90i treated animals showed less cartilage degeneration in both anatomical regions (Figure 

4L-M). Representative histology images from cartilage are shown in Figure 4K.

The growth plate is a cartilaginous tissue in which bone is formed via endochondral 

ossification. In rats the growth plate never closes and remains highly chondral throughout their 

lifespan. Increased activity through treadmill running showed that the growth plate is sensitive 

to high impact from joint loading. EPIC-μCT and histology revealed that after strenuous running, 
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the growth plate was severely depleted from sGAG (Figure 4E,J). However, Hsp90i was able 

to prevent this sGAG loss. Representative histology images of the growth plate are shown in 

Figure 4K.

Figure 4: Differences in cartilaginous tissue between untreated OA controls and animals receiving a Hsp90-inhibitor. 

Cartilage and the epiphyseal growth plate were analyzed with equilibrium partitioning of a ionic contrast agent using (EPIC-)

μCT (A-E) and histology (F-J). With both techniques the amount of sulphated-glycosaminoglycans (sGAG; A,C,E,F,H,J) and 

cartilage extra-cellular matrix thickness (ECM; B,D,G,I) was measured. Attenuation values from EPIC-μCT scans are inversely 

related to the sGAG content. *: p<0.05, **: p<0.01, ***: p<0.001. Representative images of safranin-O stained histology 

sections are shown of medial and lateral tibial plateau cartilage and the medial and lateral growth plate on baseline, 

after six weeks of running and after an extra six weeks of rest (K). Cartilage and growth plate showed loss of sulphated-

glycosaminoglycans at six weeks in untreated animals. In contrast, increased sGAG content was observed in Hsp90i treated 

animals. At twelve weeks, cartilage damage becomes evident in untreated animals (matrix damage is indicated with a black 

arrow), this damage was less in Hsp90i treated animals (L-M). During the six weeks of rest, untreated animals were able to 

restore the sGAG content of their growth plates.
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Subchondral bone changes
OA is also characterized by periarticular bone changes which we evaluated with EPIC-μCT 

scans. In untreated OA rats the medial subchondral plate thickness slowly increased during 

the study (~10% increase after 12 weeks, p=0.007). Hsp90i treated animals showed a faster 

response. Their subchondral bone was already thicker than that of untreated OA controls at six 

weeks (p=0.04) (Figure 5A). This increase did not progress in time and Hsp90i treated animals 

had a similar subchondral bone thickness compared to untreated OA controls at twelve weeks. 

At this time point, the lateral subchondral bone of untreated OA controls showed a different 

response and was ~7% thinner compared to Hsp90i treated animals (p=0.04, Figure 5B). 

Figure 5: Subchondral bone thickness (Sub. Chond. Plate Th.) measured on μCT of the medial (A) and lateral (B) plate. 

*: p<0.05

Macrophage activation
Osteoarthritis related macrophage activation was measured in vivo with 111In-DTPA-folate 

(111In-DTPA-FA) SPECT/CT. Animals in all groups received 82 ± 5 MBq of 111In-DTPA-FA. There 

was a only slight trend in macrophage activation in untreated OA control animals after six weeks 

of running, relative to baseline animals (p=0.1). The amount of activated macrophages present 

in Hsp90i treated animals after six weeks of strenuous running was significantly lower compared 

to untreated OA controls (p=0.008, Figure 6). In Hsp90i animals, macrophage activation levels 

clearly increased from six to twelve weeks (p<0.0001).
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Figure 6: Macrophage activation determined after injection of 111In-DTPA-folate using SPECT/CT. A: Quantitative 

outcome of measured radioactivity in the knee joint. Measurements were corrected for analyzed volume (mm3). A high 

radioactivity is related to more macrophage activation. B: Representative sagittal SPECT/CT images of knee joints from 

representative animals of each experimental group. CT images shown in black and white were used for anatomical 

reference, the SPECT images are shown in color. **: p<0.01 

DISCUSSION

Hsps evolved to protect cells against physiological stress, but this system may become 

overwhelmed under high-end stresses and then tissue homeostasis is lost249. In the present 

study, we used strenuous running as an established method157 to induce a mild OA phenotype 

(Figure 4). Running caused a trend towards Hsp90 accumulation in the articular cartilage, while 

Hsp70 levels were unaltered (Figure 3). In contrast to previous reports of increased Hsp70 levels 

after 28 days of exercise152, we only measured Hsp70 and Hsp90 after 42 and 84 days. Possibly 

more pronounced differences in chondrocyte Hsp expression can be found at earlier time 

points. We used BIIB021 treatment in this model to evaluate potential OA modifying aspects of 

pharmalogical Hsp90 inhibition. Systemically introduced Hsp90i may be toxic238. However, our 

treatment regime did not result in weight or hair loss in our treated animals that could have 

suggested Hsp90i related toxicity. 

Hsp90i resulted in elevated Hsp90 protein levels as well as higher Hsp70 levels. Previous 

work with BIIB021 and other Hsp90 inhibitors clearly illustrated a concentration-dependent 

relation of Hsp90i on both the induction of Hsp90 and Hsp70. Although elevated Hsp90 levels 

seem to be a counterintuitive result of Hsp90i, it is a well known response from different 

Hsp90 inhibitors, such as geldanamycin, 17-allylamino-17-demethoxygeldanamycin (17-AAG) 

and BIIB021. Through binding in the ATP-binding pocket of Hsp90 they prevent activation of 

Hsp90, which results in reduced Hsp90 activity with degradation downstream client proteins 

like HER-2, AKT and Raf-1236, 250. A functional inactivation of Hsp90 by BIIB021 also induces 
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Hsp70 which can be explained through heat shock factor-1 (HSF-1). HSF-1 plays an established 

role in regulation of Hsp70 levels, it is kept in a latent state by a stress-protein complex and is 

activated upon proteotoxic insults (over loading) in order to activate Hsp70 gene expression251. 

Hsp90 is a major repressor of HSF-1 gene expression and retains HSF-1 in an inactive nontrimeric 

state252. When mechanical loading goes up, Hsp90 production is increased which reduces HSF-

1 activity and Hsp70 upregulation is prevented. This inversed regulation of Hsp70 and Hsp90 

through HSF-1 may explain why Hsp70 is known to be less responsive to increased loads253 and 

why the protective effect of Hsp70 for maintaining ECM homeostasis and cartilage protection is 

compromised in our running model. Hsp90i treated animals in our study showed increased Hsp70 

protein levels. As one can expect, Hsp90i strongly induces HSF-1 in human chondrocytes254. This 

explains why diminished Hsp90 activity shifts the balance in favor of Hsp70 synthesis233, 236, 248 

and stimulates the Hsp70 protective effect on cartilage. It is due this feedback loop that Hsp70 

is used as a standard pharmacodynamic biomarker for analysis of Hsp90 inhibitors functioning 

in both preclinical and clinical studies255. But Hsp90i can also directly influence cellular processes 

that reduce OA progression. Hsp90i on in vitro cultured human articular chondrocytes selectively 

inhibit interleukine-1β (IL-1β) induced extracellular signal-regulated kinase (ERK) activation and 

resulted in reduced matrix metalloproteinase-13 (MMP-13) production256. Since excessive MMP-

13 activity results in articular cartilage degradation, reduced MMP-13 production might prevent 

OA257. Our study results do not distinguish between whether Hsp90i reduced OA progression 

directly or indirectly via increased Hsp70. However, the final outcome HSP90i shows markedly 

reduced cartilage degradation, decreased subchondral bone remodeling conserving the 

subchondral plate, and reduced synovial macrophage  activation. 

Articular cartilage of Hsp90i treated animals in our study had higher amounts of sGAG 

(Figure 4), which likely gives cartilage the necessary hydrostatic stiffness to absorb impact during 

running and protect chondrocytes from increased mechanical stress. Hsp90i treatment also 

resulted in a prompter increase of medial subchondral bone thickness compared to untreated 

OA controls, and Hsp90i prevented subchondral bone plate thinning in the lateral compartment 

(Figure 5). Biomechanically stressed chondrocytes are known to upregulate their vascular 

endothelial growth factor (VEGF) synthesis, which may then act as an autocrine factor to trigger 

osteoclast activity and subchondral bone destruction in OA42. In addition, Hsp90i can reduce 

VEGF signaling through reduced activation of HIF-1α258 which may explain why the integrity 

of the bone-cartilage interface was protected in our study. Strenuous running did not induce 

macrophage activation in untreated animals. However, Hsp90i animals did show reduced levels 

of macrophage activation after six weeks of running (Figure 6). This effect may be attributed to 

a diminished cytokine production in macrophages and other cell types as a result of Hsp90i259. 

Furthermore, Hsp90i mediated Hsp70 upregulation can have general anti-inflammatory effects 

too260. However, despite continuous Hsp90i treatment, macrophage activation increased again 

during the subsequent six weeks of rest (Figure 6) and may suggest that Hsp90i did not directly 

modulate macrophage responses. 
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A direct translation of our results towards a clinical treatment for OA patients may not 

be possible. BIIB021 and other geldanamycin-derived Hsp90 inhibitors are currently already 

used in cancer trials. Treatment of life-threatening diseases might justify higher risks of Hsp90 

associated dose-limiting toxicities238, but they can never be accepted in OA patients. Therefore, 

a more detailed knowledge of the downstream targets that are modulated by Hsp90i is 

needed. Perhaps, specific induction of HSF-1 may result in effects similar to Hsp90i-mediated 

OA prevention in biomechanical strained cartilage. Another way to reduce systemic side-effects 

would be to investigate whether a local treatment via intra-articular injections with Hsp90i is 

feasible and beneficial.

Hyaline articular cartilage evolved to absorb forces that develop during joint mobilization. From 

this perspective, it is obvious to suspect a balance between biomechanical loads and chondrocyte 

functioning and an imbalance is likely to result in cartilage failure and OA development. When 

stress on cartilage is increased either via increased loading or due to changed joint biomechanics 

(e.g. as a result of ligament tears)152, chondrocytes upregulate Hsps, which suggests a pivotal role 

in OA onset. Yet, only few studies report Hsp production by chondrocytes as possible regulators 

of cartilage homeostasis under stressed conditions. More research on this topic will lead to a more 

accurate explanatory model for pathological joint loading induced OA. This will enable physicians 

to provide patients with better instructions or life-style advices concerning OA development. 

Ambivalent effects of training on cartilage are well known in clinical patient care183. Possibly, a 

combined approach of regulated physical exercise and therapeutic intervention on Hsp production 

could stimulate chondrocytes in OA patients in the right direction, and slow down OA progression 

or perhaps even restore cartilage quality.

Conclusion
The results of our in vivo study strongly suggest that chondrocyte stress induced Hsp90 

synthesis plays an important role in the onset of OA. Strenuous running induced biomechanical 

stress tended to increase Hsp90 protein levels in rat articular cartilage. Hsp90 inhibition and 

subsequently increased Hsp70 levels enabled chondrocytes to maintain cartilage homeostasis 

by increasing sGAG amounts above baseline in order to protect the ECM from increasing 

biomechanical impacts during physical activity. Hsp90 inhibition further improved subchondral 

bone thickness and reduced synovial macrophage activation. Specific modulation of 

chondrocyte Hsp90 activity could be an attractive novel therapeutic intervention therapy to 

prevent osteoarthritis. 
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ABSTRACT

Introduction
Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive 

degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone 

remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin 

activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on 

ECM marker expression. This study therefore investigated the effects of FK506 on anabolic 

and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its 

therapeutic effects in an in vivo rat model of osteoarthritis.

Methods
Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic 

(QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes 

(explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain 

injections in combination with a moderate running protocol. Twenty rats were treated with 

FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular 

bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. 

Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology.

Results
FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) 

and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly 

protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development 

of subchondral pores, depletion of synovial macrophage activation and lower osteophyte 

growth.

Conclusion
FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment 

in vivo reduced osteoarthritis-like responses in different articular joint tissues and thereby makes 

calcineurin an interesting target for therapeutic intervention of osteoarthritis.
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INTRODUCTION

FK506 (Tacrolimus, Prograf) is an immunosuppressive drug discovered by Kino et al. in the 

1980s261. Since then, it has been used clinically for an increasing number of immunological 

disorders. FK506 exerts its therapeutic effects by suppression of T-cell activation, without 

markedly affecting bone marrow cell differentiation and proliferation262. Through binding 

to FK506-binding proteins (FKBPs), FK506 inhibits the activity of ubiquitously expressed 

calcium/calmodulin dependent calcineurin (Cn). As a consequence, the calcineurin mediated 

dephosphorylation of transcription factors of the nuclear factor of activated T-cells (NFATs) 

family (NFAT1-4) is inhibited. 

Besides their role in T-cell activation, Cn and NFATs are now also known to play a role in 

physiological processes in many other cell and tissue types and pathological conditions like 

cancer, degenerative brain diseases and cardiac hypertrophy263. FK506 has proven to be useful 

in reducing inflammation and alleviating symptoms in patients with inflammatory (rheumatoid) 

arthritis264, 265. Interestingly, the Cn/NFAT signalling cascade is also reported to play a role in 

bone remodeling266 and chondrogenesis267. FK506 has been shown to induce chondrogenic 

differentiation of murine chondroprogenitor cells268. This suggests that patients with non-

inflammatory joint diseases, like osteoarthritis (OA), also might benefit from a treatment with 

Cn inhibitors. 

OA is a complex progressive disease and a disturbed balance between anabolic and catabolic 

activity of chondrocytes is an early pathophysiological event leading to matrix degradation. 

Progression of OA finally results in severe deterioration of articular cartilage and involves 

pathological changes throughout the joint, like extensive subchondral bone remodeling17 and 

activation of synovial macrophages269. We reported earlier that FK506 treatment of monolayer 

cultured osteoarthritic cells enhanced expression of anabolic markers like collagen type II (COL2), 

but suppressed relevant catabolic, hypertrophy and mineralization markers270, 271. Another Cn 

inhibitor, cyclosporine A (CsA) showed similar effects on anabolic and catabolic activity of OA 

chondrocytes and reduced cartilage damage in a collagenase induced OA mouse model272. 

However, this study only measured macroscopical and microscopical cartilage damage ex vivo 

and did not investigate possible effects of Cn inhibition on other tissues of the joint, like bone 

and synovium.

Recently, we established a novel rat OA model using a combination of papain injections with 

a running protocol to induce severe knee joint articular cartilage degradation together with 

prominent involvement of subchondral bone and synovial macrophages273. The current study 

aimed to elucidate the effects of systemic FK506 treatment in this OA animal model. We first 

characterized whether both low and high concentrations of FK506 modulate anabolic markers 
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in OA chondrocytes in monolayer cultures. Since chondrocytes reside in an extra-cellular matrix 

in vivo, we additionally investigated whether low dose FK506 treatment remains beneficial for 

extracellular matrix-embedded chondrocytes in ex vivo explants and pellet cultures. Finally, we 

tested modulating effects of FK506 in an animal model for severe cartilage degradation and 

analyzed articular cartilage (ex vivo μCT and histology), subchondral bone (in vivo μCT) and 

synovial macrophages activation (in vivo SPECT/CT) six and twelve weeks after induction of 

cartilage damage. 

METHODS

FK506 effects on osteoarthritic chondrocytes in vitro
 Human articular cartilage was explanted from macroscopically normal areas of femoral 

condyles and tibial plateaus of patients (N=9, between 55-82 years old) undergoing total 

knee replacement surgery for OA (MEC2004-322). Isolation of primary osteoarthritic human 

articular chondrocytes from cartilage tissue under standard conditions (cytokine-free Dulbecco’s 

modified Eagle’s medium (DMEM) with 4.5 g/L glucose, 10% fetal calf serum (FCS), 50 µg/

mL gentamycine and 1.5 µg/mL fungizone; all Invitrogen, Paisley, Scotland, UK, adjusted to 

380 mOsm by adding sterile sodium chloride) and monolayer experiments were performed as 

described earlier270. In short, passage 1 cells were seeded in 2D monolayer, stimulated with 0, 

62 or 620 nM FK506 after 24 hours and harvested for RNA analysis (quantitative RT-PCR) six 

days later. Experiments were performed at least in technical duplicates from four OA donors. In 

addition to 2D cultures, passage 2 cells from four OA donors were cultured as 3D pellets (2x105 

cells/pellet) for 21 days in medium (380 mOsm) with or without addition of 62 nM FK506270. 

To investigate the effects of FK506 on OA chondrocytes embedded in their extracellular 

matrix, six mm diameter full-thickness explants from femoral condyles and tibial plateaus of five 

OA donors were cultured as described before270 and cultured in medium (380 mOsm) with or 

without 62 nM FK506 for 7 days.

RNA and protein analysis by RT-QPCR and histology
RNA from monolayer and explant cultures was extracted, purified and quantified, and cDNA 

was synthesized and quantified by RT-QPCR reactions as described earlier271, 274. RNA abundance 

was normalized to an index of the three most stable reference genes (GAPDH, HPRT1, 18sRNA 

or UBC) replicate values were averaged per condition per patient and gene expression was 

calculated as fold change of control condition (0 nM FK506)270. Primer sequences for COL2, 

ACAN, MMP1, MMP13, MMP13, ADAMTS4 and ADAMTS5 were adopted from Uitterlinden et 

al274, for COL1 from Das et al275, and for VCAN/CSPG2 from Martin et al276. To quantify expression 

of COL9 and COL11, the following primers were tested for similar amplification efficiency 

and specificity275 , and were used as respectively 20 μl Taqman and SYBR® Green I reactions: 
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HsCOL9A1_F GCAGCTCATGGCAAGTTTCTCT, COL9A1_R GCTTTGCTGTGCTGGGAAAA 

and COL9A1_FAM TGAAGTTCAAATGGAACAGAAACTTGAGGATTATCTG; HsCOL11a1_Fw 

AGGAGAGTTGAGAATTGGGAATC, COL11A1_Rv TGGTGATCAGAATCAGAAGTTCG. 

The expression data are presented as 2-ΔΔCt values based on publication by Livak & 

Schmittgen277. The cDNA abundances of each gene of interest were normalized to an index 

of three stable expressed reference genes to generate a normalized, so-called 2-ΔCt, value. 

Replicate values were averaged per condition, per patient, and finally expressed as fold change 

difference relative to the control condition (i.e. without FK506 treatment) and representing a 

2-ΔΔCt value. The Col2/Col1 ratio, like the VCAN/CSPG2 ratio, relates the expression levels of 

both genes to one another. Relative higher Col2 expression, as compared to Col1, is indicative 

of a relatively better preserved chondrocyte-specific gene expression. This also holds for VCAN/

CSPG2 ratios, and was used earlier as a measure of de-differentiation of chondrocytes278, 279. 

 (Immuno)histochemical staining for COL2 and GAG on 3D pellet cultures was performed as 

described before280. Staining intensities of pellets were quantified using ImageJ 1.42 software 

(http://rsb.info.nih.gov/ij/download.html).

Figure 1: Experiment design indicating analytical time points and methods for each experimental group. Forty 16-week-

old male Wistar rats were injected with three papain intra-articular injections (P.I.) and forced to run 15km on a motorized 

treadmill. Animals were divided over two different groups: an untreated osteoarthritis (OA) group (n=20) and a FK506 

treated group (n=20). During the experiment three longitudinal μCT scans were made to measure subchondral bone 

changes [24]. At six and twelve weeks a full analysis sequence was done in ten animals per group (n†=10), consisting of: 

determination of activated macrophages using SPECT/CT in vivo [25]; and cartilage analysis with equilibrium partitioning of 

an ionic contrast agent using (EPIC-)μCT [26] and histology ex vivo. 
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FK506 therapeutic effects in a rat model for severe osteoarthritis 
Forty 16-week-old male Wistar rats (Charles River Netherlands BV, Maastricht, the 

Netherlands) were housed in the animal facility of the Erasmus Medical Centre, with a 12-h 

light-dark regimen, at 21oC during the experimental period, and received standard food pellets 

and water ad libitum. OA-like articular destruction was induced in all animals, which were then 

divided over two groups: twenty rats served as untreated controls and twenty rats were treated 

during the experiment with FK506. FK506 treated animals received FK506 suspension (1 mg/

kg)281 through oral probing, five days a week, not on weekends. 

Figure 2: RNA abundance of anabolic and catabolic markers was determined in samples from human osteoarthritic 

monolayer (A) and explant (B) cultures. Relative changes by FK506 (grey and black bars) as compared to control (no FK506) 

are shown, each bar represents the fold-change compared to the control condition. Error bars indicate standard deviations. 

Representative images of 21-day 3D pellet cultures (C) show collagen type II immunostaining (on top, in red) and sGAG 

staining (thionin; on bottom, in blue) of pellets cultured with or without 62 nM FK506. Staining intensity in FK506 pellets 

is expressed as mean percentage (standard deviation) of that in control pellets *: p<0.05, **: p<0.01 

Severe cartilage damage was induced using intra-articular papain injections in the left knee 

joints combined with exposure to a moderate exercise protocol as described before273. In 

short, all animals received three intra-articular injection that consisted of 15μl 4% (w/v) papain 

solution (type IV, double crystallized, 15 units/mg, Sigma-Aldrich, St. Louis, MO, USA) with 15μl 

0.03M L-cystein (Sigma-Aldrich)81. Their contralateral knee joint served as an internal healthy 

control. All rats were forced to run on a motorized rodent treadmill (LE-8700; Panlab Harvard 

Apparatus, Barcelona, Spain) for six weeks covering a total distance of 15km273. During the 
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study all animals were longitudinally monitored at baseline, 6 weeks and 12 weeks with μCT to 

measure subchondral bone changes35. At six and twelve weeks, ten rats in both groups were 

selected for a full analysis sequence. This sequence consisted of SPECT/CT to quantify in vivo 

macrophage activation131, and ex vivo EPIC-μCT and histology to measure cartilage quality113. 

The details of these procedures were described earlier273. The animal ethic committee of the 

Erasmus Medical Center, Rotterdam, the Netherlands, approved all conducted procedures. A 

detailed planning scheme of all groups and conducted tests is given in Figure 1.

Subchondral bone measurements on μCT scans
Both knees of all animals were µCT scanned under isoflurane anaesthesia, using a Skyscan 

1176 in vivo μCT scanner (Skyscan, Kontich, Belgium). Ten minutes of scan time was required 

per knee at an isotropic voxelsize of 18μm, at a voltage of 65kV, a current of 385mA, field of 

view of 35mm, using a 1.0mm aluminum filter, over 198o with a 0.5 degree rotation step, and 

a 270 msec exposure time. All datasets were segmented with a local threshold algorithm141. 

Cortical and trabecular bone were automatically separated using in-house software282. Using 

Skyscan software, both subchondral plate thickness (Sb. Pl. Th. in μm) and subchondral plate 

porosity (Sb. Pl. Por. in mm3) of the medial and lateral compartment of the tibial plateau were 

measured35. In the tibial epiphysis, the trabecular thickness (Tb. Th. in μm) and trabecular bone 

volume fraction (BV/TV), representing the ratio of trabecular bone volume (BV, in mm3) to 

endocortical tissue volume (TV, in mm3) were measured. Ectopic bone formation (mm3) was also 

quantified as a measure for osteophyte growth in these longitudinal µCT scans.

Figure 3: Increase in rat bodyweight (gram) during the experiment of OA control (white circles) and FK506 treated (gray 

squares) animals. **: p<0.01, error bars indicate 95% confidence intervals.

Determination of activated macrophages by SPECT/CT using 111In-EC0800
Activated macrophages express the folate receptor-β allowing monitoring macrophages in 

vivo using folate-based radiotracers130, 164. Phosphate buffered saline (PBS, pH 6.5) DOTA-Bz-
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folate (EC0800, kindly provided by Endocyte Inc., West Lafayette, USA)283 was labeled with 

111InCl3 (Covedien, Petten, The Netherlands) as described previously273. Quality control was 

performed with ITLC-SG and revealed a radiochemical yield of ~91% at a specific activity of 

50 MBq/μg. 111In-EC0800 (55MBq) was administered via the tail vein twenty hours prior to 

scanning. SPECT/CT scans were performed with a 4-head multiplex multi-pinhole small animal 

SPECT/CT camera (NanoSPECT/CT TM, Bioscan Inc., Washington DC, USA). All knee joints were 

scanned with both helical μCT (acquisition time 5min) and SPECT (acquisition time 30min). 

All scans were analyzed using InVivoScope processing software (Bioscan Inc.). To reduce inter-

individual variation, the absolute difference in measured radioactivity (kBq/mm3) of the OA knee 

joint compared to their internal control joint was calculated. This absolute difference was used 

when comparing means of untreated animals with FK506 treated animals.

Cartilage evaluation with contrast enhanced µCT and histology
Equilibrium partitioning of a contrast agent using μCT (EPIC-μCT) has a strong correlation 

with cartilage sulfated-glycosaminoglycan (sGAG) content113. Animals were euthanized directly 

after the last SPECT/CT scan and both knee joints were harvested for EPIC-μCT analysis. All 

specimens were incubated in 40% solution of ioxaglate (Hexabrix320, Mallinckrodt, Hazelwood, 

MO, USA) for 24 hours at room temperature138. EPIC-μCT was performed on the 1176 in vivo 

μCT scanner (Skyscan), using the following scan settings: isotropic voxel size of 18μm, a voltage 

of 65kV, a current of 385mA, field of view 35mm, a 0.5 mm aluminum filter, 198o with a 0.5 

degree rotation step, and a 235 msec exposure time. In all EPIC-μCT datasets, X-ray attenuation 

(arbitrary gray values inversely related to sGAG content) and cartilage thickness (μm) was 

calculated for cartilage of the medial and lateral plateau of the tibia273.

After EPIC-μCT, the separated parts of the knee joints were fixed in 3.7% phosphate buffered 

formaldehyde, decalcified with formic acid and embedded in paraffin. Sagittal sections were 

made at 300 μm intervals and stained with Safranin-O with a fast green counterstain to image 

the distribution of the GAGs. Sections were stained all at once, to minimize artifacts between 

different samples. 

Statistical analysis
Statistical analysis of vitro studies was performed as described before 270. Briefly, replicate raw 

expression data of multiple donors was tested for the effect of FK506 using Linear Mixed Model 

regression and ‘donor’ was incorporated as a random effect to correct for basal differences in 

expression between donors (SPSS Inc., Chicago, USA).

For the in vivo study, differences between means of OA induced and healthy knee joints 

within the same animal were tested using paired t-tests at each time point for all outcome 

parameters (GraphPad Software, San Diego, California, USA). When comparing differences 
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between means of untreated animals and FK506 treated animals, an unpaired t-test was used 

at each time point for all outcome parameters (GraphPad Software). Longitudinal data from in 

vivo µCT were additionally analyzed using generalized estimating equations (SPSS). For all tests, 

p values ≤ 0.05 were considered significant.

RESULTS

In vitro effects of FK506 on human osteoarthritic chondrocytes
Inhibition of calcineurin activity by FK506 in monolayer cultured passage 1 osteoarthritic 

chondrocytes increased expressions of cartilage specific collagens. Both low and high 

concentrations of FK506 positively stimulated COL2/COL1 ratio (62 nM FK506 by ± 2-fold, 

p = 0.067; 620 nM by ± 3-fold, p = 0.001) and COL9 expression (62 nM FK506 by ± 1.8-

fold, p= 0.037), while no effects were found on the ACAN/VCAN ratio or COL11 expression 

(Figure 2A). In cartilage explants, the osteoarthritic chondrocytes are embedded in a matrix, 

which might limit chondrocyte exposure to FK506. Despite the large standard deviations in 

the explants cultures, we found clear matrix-protective trends after FK506 treatment.  A low 

dose of FK506 was enough to induce a similar trend of increased anabolic marker expression in 

explants as seen in monolayer cultured chondrocytes (Figure 2B). Moreover, the FK506 induced 

changes in chondrogenic marker expression seem to be even higher in the explants. In line with 

our previous work on monolayer chondrocytes 270, FK506 also reduced the expression of the 

catabolic MMPs and important aggrecanases in the explant cultures (Figure 2B). 

The FK506 induced increase in collagen expression was confirmed by immunohistology on 3D 

pellets cultures of osteoarthritic chondrocytes. FK506 clearly increased COL2 protein expression 

(to 121.4% of control, p = 0.009) in chondrocyte pellet cultures, while no clear effect was seen 

on GAG staining (Figure 2C).

In vivo effects of FK506 treatment
Bodyweight of all untreated rats at baseline was 416.4g (411.3 – 421.5g), during six weeks of 

treadmill running this decreased non-significantly to a mean weight of 408.3g (398.2 – 418.3g). 

During subsequent six weeks of rest, all rats increased in their mean bodyweight to 485.5g 

(473.0 – 498.0g). FK506 treated animals (mean weight at baseline was 413.6g; 409.4 – 417.8g) 

also did not increase in bodyweight during induction of OA-like articular destruction (mean 

weight after six weeks was 418.5g; 412.9 – 424.1g). After twelve weeks their mean bodyweight 

was 507.1g (498.8 – 515.4g), which was significantly higher compared to untreated controls 

(p = 0.004) (supplementary Figure 1 online). During the course of the experiment, none of the 

animals showed signs of FK506-induced cytotoxicity, like weight or hair loss.   
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Figure 4: Cartilage quality and quantity was determined from untreated OA (circles) and FK506 treated (squares) rats with 

equilibrium partitioning of an ionic contrast agent using (EPIC-)μCT (A-D). The amount of sulphated glycosaminoglycans 

(sGAG) (arbitrary gray values; A,B) and cartilage thickness (μm; C,D) were measured of medial (A,C) and lateral (B,D) 

cartilage compartments of the tibia plateau harvested from healthy  joints (blank boxes) and OA induced joints (gray 

boxes). Attenuation values from EPIC-μCT scans are inversely related to the sGAG content, meaning that a high attenuation 

corresponds to low sGAG content. Coronal images from EPIC-μCT scans of the tibia plateau show the amount of cartilage 

(erosions indicated with ▲ and dashed lines) and sGAG content (displayed in color). *: p<0.05, **: p<0.01, ***: p<0.001, 

error bars indicate 95% confidence intervals.

Osteoarthritic changes of articular cartilage
Intra-articular papain injections combined with moderate exercise in untreated controls 

induced severe sGAG depletion from both medial and lateral cartilage compartments of the 

tibia plateau. This sGAG depleted state persisted throughout the experiment (Figure 3A-B). 

After the running protocol at six weeks, cartilage of the medial compartment was slightly 

reduced in thickness (Figure 3C). Lateral cartilage thickness was severely degraded (Figure 3D) 

and resulted in almost completely denuded subchondral bone (Figure 3E). During subsequent 

six weeks of rest medial cartilage continued to degrade, in the lateral compartment an ongoing 

decline in cartilage thickness was absent (Figure 3C). Representative medial and lateral cartilage 

images from safranin-O stained histology from untreated controls at six and twelve weeks are 

shown in Figure 4.

Compared to untreated controls, FK506 treated animals had similar sGAG depleted cartilage 

in medial and lateral compartments of the tibia plateau (Figure 3A-B). Lateral cartilage was 

reduced in thickness to similar extent as untreated controls (Figure 3D). However, medial 
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cartilage showed a trend towards thicker ECM compared to untreated control at six weeks, 

although this was not significant (p = 0.15). In contrast to the progressive degradation of medial 

cartilage as seen in untreated controls at twelve weeks, medial cartilage thickness of FK506 

treated animals remained constant and was significantly thicker at twelve weeks compared to 

untreated controls (p = 0.02) (Figure 3C). 

Figure 5: Safranin-O stained histology sections of medial and lateral tibial plateau cartilage after six weeks and twelve 

weeks of follow up. Medial cartilage of untreated OA knee joints with depleted sulphated-glycosaminoglycan at six 

weeks and twelve weeks, and only mildly degraded extra-cellular matrix (ECM). Lateral cartilage ECM was almost totally 

eroded, only the calcified cartilage layer remained present and showed ECM denudation of cartilage ECM. Much less ECM 

degradation occurred in FK506 treated animals. The lateral compartment cartilage was severely eroded, however 4/10 rats 

showed focal regions with complete sGAG depleted but partially intact ECM.

Although lateral cartilage did not differ significantly in sGAG content or thickness between 

untreated and FK506 treated rats, we did observe a small difference between both groups. In 

four FK506 treated rats, but in none of the untreated rats, there were small and focal regions of 

lateral tibia cartilage that showed intact but totally sGAG depleted ECM (Figure 3E). A difference 

that was also found on safranin-O stained histology sections as shown in Figure 4.
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Figure 6: Subchondral bone changes analyzed with longitudinal in vivo μCT in untreated OA (circles) and FK506 treated 

(squares) animals. Subchondral plate thickness (Sb. Pl. Th.; A, C) and porosity (Sb. Pl. Por.; B, D) were measured in the medial 

(A,B) and lateral (C,D) compartment of the tibial epiphysis. Changes in trabecular thickness (Tb. Th.; E) and trabecular bone 

volume fraction (BV/TV; F) were measured in tibial epiphyseal bone marrow. Representative sagittal images from binary μCT 

scans (G) show pore development (indicated with ▲) and development of subchondral sclerosis (indicated with dashed line 

and *). Three-dimensional top views of the tibial plateau at different time points (H) show subchondral pore (red color) 

development. *: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals.

Subchondral bone changes
Subchondral bone plate thickness of medial tibia compartment in untreated controls and 

FK506 treated rats was slightly reduced after six and twelve weeks of follow up (Figure 5A), 

but did not differ between both groups (p = 0.83). Medial plate porosity did not increase in both 

experimental groups throughout the experiment (Figure 5B). Lateral compartment subchondral 

bone thickness of untreated OA joints was clearly increased compared to their healthy control 

joint at six weeks (p < 0.0001), and there was also more subchondral plate porosity (p = 0.02) 

(Figure 5C,G,H). Subchondral plate thickness further increased during subsequent six weeks of 

rest (p < 0.0001). Plate porosity also seemed to increase further, but there was no significant 

difference compared to internal healthy control joints. FK506 treated animals also had a thicker 
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subchondral bone plate at six (p < 0.0001) and twelve (p < 0.0001) weeks compared to their 

internal healthy control joints. When longitudinal subchondral bone changes in OA joints of 

both groups were analyzed with generalized estimating equations, FK506 treated rats had 

thinner lateral subchondral bone plates compared to untreated controls (p = 0.03) (Figure 

5C,G). FK506 rats did not develop subchondral plate porosity. This was significantly lower at six 

weeks (p = 0.02), but not at twelve weeks anymore (Figure 5D,H). After six weeks of treadmill 

exercise-mediated trabecular bone thickness (p = 0.05) and BV/TV (p = 0.03) was lower in FK506 

treated animals compared to untreated controls (Figure 5E,F). Reduced trabecular thickness 

normalized during subsequent six weeks of rest, while the BV/TV ratio increased compared to 

untreated controls (p = 0.02). 

 
Figure 7: Macrophage activation determined in untreated OA animals (circles) and FK506 treated animals (squares) by 

injection of 111In-EC0800 using SPECT/CT. A: Quantified radioactivity in healthy joints (blank boxes) and OA joints (gray 

boxes) normalized to the size of the analyzed cylindrical region of interest (kBq/mm3). Absolute differences per animal were 

calculated (kBq/mm3) to reduce inter-individual variation (black boxes). A high radioactivity is related to more macrophage 

activation. B: Ectopic bone formation (mm3) as a measure for osteophyte development was quantified on longitudinal bone 

μCT scans. C: Sagittal SPECT/CT images of knee joints from representative animals. CT images shown in black and white 

were used for anatomical reference, the SPECT images are shown in color. Transaxial images from patellar bone extracted 

from binary μCT images show ectopic bone formation (red color). *: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 

95% confidence intervals.
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During six weeks of moderate running, FK506 treated animals formed less ectopic bone 

formation compared to untreated animals (p = 0.007) (Figure 6B,C). This difference in ectopic 

bone formation between FK506 treated animals and untreated controls was still measured after 

the subsequent six weeks of rest (p = 0.04) (Figure 6B,C).  

Macrophage activation and osteophytes
Each animal received 54 ± 2 MBq of 111In-EC0800 under isoflurane anaesthesia. There were 

no significant differences of injected activity between experimental groups. After completion 

of the running protocol, both untreated and FK506 treated rats revealed similarly increased 

radioactive uptake in their papain injected knee joints compared to their internal healthy control 

joints (Figure 6A,C). After six subsequent weeks of rest, radioactive uptake in OA induced 

joints of FK506 treated animals dropped to control levels. The absolute difference in radioactive 

uptake between OA induced and healthy control joints in FK506 treated animals was lower 

compared to the absolute differences measured in untreated controls (Figure 6A,C). 

DISCUSSION

Osteoarthritis is characterized by a loss of cartilage matrix, because chondrocytes cannot 

maintain tissue homeostasis due to a disturbed balance between anabolic and catabolic activities. 

Inhibiting calcineurin activity with immunosuppressive agents like cyclosporin A272 or FK506270, 271 

increases the anabolic, while suppressing the catabolic, activity of osteoarthritic chondrocytes. 

In this study, we found that both high and low concentrations of FK506 improved the COL2/

COL1 ratio and COL9 expression in monolayer cultured human osteoarthritic chondrocytes 

(Figure 2A). Then, in 3D chondrocyte pellet cultures, FK506 clearly increased COL2 content, 

while no effect was seen on sGAG staining (Figure 2C). These data indicate that calcineurin 

inhibition through FK506 may protect the structural integrity of the ECM. Next, we studied the 

effects of low dose FK506 treatment in cartilage explants, in which the chondrocytes are still 

embedded in their native extracellular matrix. The explants were harvested from macroscopically 

‘healthy’ cartilage areas of the degenerated side. However, on microscopic level there might be 

still big differences in grade of degeneration between explants of the same donor. To limit the 

effects of these differences, explants were first pooled before assigning them to a certain culture 

condition. Despite the large standard deviations, we found a clear trend towards stimulated 

anabolic but reduced catabolic activities after FK506 treatment (Figure 2B). 

Finally, we evaluated whether FK506 also exerts similar favorable effects in a severe OA in vivo 

model with a different response in medial and lateral compartments of tibia plateau cartilage273. 

Six weeks of OA-like damage induction severely erodes lateral compartment cartilage and 

results in complete denudation of subchondral bone. Medial cartilage becomes sGAG-depleted 

with a slightly degraded ECM, a process that continued progressively during the course of the 
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experiment (Figure 3 and 4). FK506 treatment in vivo did not increase sGAG levels nor did 

it protect against sGAG loss (Figure 3A-B). However, it did protect against structural matrix 

degradation (Figure 3C), which was in line with our in vitro results (Figure 2). Loss of lateral 

cartilage matrix could not be prevented with FK506 treatment (Figure 3D). Longitudinal μCT 

analysis showed reduced sclerotic bone formation in the lateral compartment of FK506 treated 

animals (Figure 5C). Previous experiments with this severe OA model suggest that subchondral 

sclerosis might develop when cartilage is completely lost and subchondral bone is denuded273. 

In some FK506 treated animals we found focal regions of cartilage on the lateral tibia plateau 

that showed totally sGAG depleted but partially intact ECM. This suggest, that FK506 might 

have delayed lateral cartilage matrix degradation and thus reduced formation of subchondral 

sclerosis. However, calcineurin inhibition is also known to modulate bone turnover284 and 

therefore may have reduced sclerosis through direct modulation of osteoclast and osteoblast 

activity. CsA and FK506 have both been described to induce osteopenia through anti-anabolic 

effects on osteoblastic cells285 and to reduce bone formation through inhibition of osteoblast 

differentiation286, 287. This could be another explanation for the reduced development of 

subchondral sclerosis in the lateral compartment, but has to be further investigated.

Another cell type that is modulated by FK506 are macrophages178. We determined activated 

macrophages using 111In-EC0800 and quantitative SPECT/CT (Figure 6A). During OA 

progression, macrophages become activated131 and their TGFβ/BMP-2 production has previously 

been related to osteophyte development59, 60. In our in vivo experiment, animals developed clear 

osteophytes at the margins of the patella (Figure 6B). FK506 treatment reduced osteophyte 

development while the total amount of activated macrophages was equal after six weeks of 

follow up. This may suggest that FK506 treatment limits cytokine production by activated 

synovial macrophages and previous reports on calcineurin inhibition in macrophages showed 

reduced cytokine production288-290. FK506 may initially activate Toll-like receptors (TLR) pathways 

in activated macrophages, which can enhance NFκβ activity290 and stimulate expression of 

cytokines, like TNFα, IL1α, IL1β, IL12 and iNOS288. However, prolonged exposure to calcineurin 

inhibitors has been shown to also secondarily inactivate this TLR induced pro-inflammatory 

cytokine expression by negative feedback loops289. As such, continuous FK506 exposure may 

eventually suppress NFκβ pathways, but activate caspases 3 and 9 to enhance macrophage 

apoptosis290. Possibly, FK506 induced macrophage apoptosis may explain why radioactive folate 

uptake in our experiments was restored to levels comparable to healthy control joints (Figure 

6A). 

Osteoclasts are large multinucleated cells of the monocyte-macrophage hematopoietic lineage 

and are also influenced by FK506. During osteoclastogenesis macrophage colonoy-stimulating 

factor (M-CSF) and receptor activator of nuclear factor-κβ ligand (RANKL) stimulate precursor 

cells to acquire osteoclast characteristics291. NFATc1 is an essential terminal differentiation 
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factor of osteoclastogenesis and can be blocked in a dose-dependent fashion using CsA or 

FK506292. CsA and FK506 treatment suppress RANKL stimulated osteoclastogenesis 293-295, and 

especially inhibits late stages of the osteoclast life cycle296. By this mechanism Cn inhibition can 

diminish the activity of mature osteoclasts and reduce bone resorption297-299. FK506 mediated 

suppression of osteoclast maturation and subsequently hindered subchondral bone resorption 

may therefore explain why less subchondral pores were measured in FK506 animals. 

Figure 8: Toxicity analysis. Blood samples did not differ between experimental groups and gave no indication of liver or 

kidney toxicity (A). Liver (B) and kidney (C) histology showed no indication of FK506 induced toxicity.

Systemic FK506 treatment is known to induce toxic side effects300. Throughout the experiment 

our animals gained weight (Figure 3), and FK506 animals increased more in weight from 6 to 

12 weeks of follow-up. However, this result could not clearly be related to side-effect of FK506, 

which usually results in a loss of weight. At the end of the twelve week experiment liver function 

(AST, ALT, alkaline phosphatase) and kidney function (creatinin and urea) were normal (Figure 

8). Liver and kidney histology gave no indication that FK506 induced liver or kidney fibrosis 

(Figure 8). Despite these promising findings, systemic FK506 treatment cannot be translated 
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towards clinical OA care directly. FK506 induced side effects are well described in patients after 

long term use and is unacceptable for a therapeutic strategy in human OA patients. To reduce 

toxicity, local intra-articular treatment may be used, but repetitive intra-articular injections also 

increase the risk of iatrogenically arthritis and should be avoided. FK506-coupled biodegradable 

delivery systems might be able to prolong intra-articular FK506 exposure and sustain long term 

therapeutic action301, hopefully without systemic adverse effects.

Conclusion
Inhibition of calcineurin activity with FK506 stimulated anabolic activity, while reducing 

catabolic productivity of osteoarthritic human chondrocytes. Systemic treatment with FK506 

in a rat model for severe osteoarthritis also protected against cartilage extra-cellular matrix 

degradation. Additionally, there was also less development of subchondral sclerosis, macrophage 

activation and osteophyte formation. Altogether, our data suggests that calcineurin inhibition 

with FK506 proves to be a promising candidate for therapeutic management of osteoarthritis.
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ABSTRACT

Introduction
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration 

of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte 

formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone 

resorption and results in reduced bone remodeling. This study investigated the effects of pre-

emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat 

model for severe OA.

Methods
Using multi-modality imaging we measured effects of ALN treatment within cartilage 

and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in 

combination with a moderate running protocol. Twenty rats were treated with subcutaneous 

ALN injections and compared to twenty untreated controls. Animals were longitudinally 

monitored for 12 weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT 

to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage 

was analyzed at 6 and 12 weeks with ex vivo contrast enhanced μCT and histology to measure 

sulfated-glycosaminoglycan (sGAG) content and cartilage thickness.

Results
ALN treatment successfully inhibited subchondral bone remodeling. As a result we found 

less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce 

subchondral sclerosis. However, after the OA induction phase, ALN treatment protected 

cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN 

treatment also improved sGAG content of tibia cartilage in healthy joints.

Conclusion
Our data was consistent with the hypothesis that  osteoclastic bone resorption might play 

an important role in OA and may be a driving force for progression of the disease. However, 

our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN 

treatment also influenced macrophage functioning. Additionally, ALN treatment and physical 

activity exercised a positive effect in healthy control joints, which increased cartilage sGAG 

content. More research on this topic might lead to novel insights as to improve cartilage quality.
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INTRODUCTION

Osteoarthritis (OA) is characterized by articular cartilage degradation and has long been seen 

as primarily a cartilage disorder. However, nowadays OA is considered as a ‘whole joint disease’ 

and it is thought that pathological changes in one joint tissue might compromise structure and 

function of other joint tissues. Changes within the subchondral bone have been known for a 

long time to play a role within OA development17. 

Within a healthy joint, the thin dome-like shaped subchondral plate is supported by vertical 

oriented trabeculae and plays an important role to evenly distribute forces from weight-

bearing. Healthy subchondral bone protects cartilage from high peak stresses and possible 

matrix damage. Animal studies showed that during early OA there is a marked reduction in 

subchondral bone thickness26, 73 and there are increased numbers of subchondral pores44, 47.  

On TRAP-stained histology sections, bone resorption and pore formation as a consequence 

of increased osteoclast activity302, result in loss of integrity and plasticity at the osteochondral 

junction. This compromises its biomechanical function and could promote cartilage damage. 

Due to all the evidence that subchondral bone remodeling is involved in disease progression, 

bisphosphonates were suggested to be useful as an interesting intervention strategy to treat 

OA. 

Alendronate (ALN), risedronate and zoledronate are all nitrogen-containing bisphosphonates 

and potent inhibitors of osteoclastic resorption used clinically for the treatment of osteoporosis 
303. Both alendronate and zoledronate have demonstrated positive results when used as an OA 

modifying agent in preclinical animal studies46, 304-307. It is suggested that osteoclast-mediated 

resorption of mineralized cartilage at the subchondral bone-cartilage interface is an early 

initiating event in OA pathobiology and that only early bisphosphonates use after OA induction 

will result in the observed positive effect on cartilage health307. If in fact osteoclast activation 

during OA is time-dependent and reduces with ongoing OA stages, this might explain the 

disappointing results from large clinical trials on the role of bisphosphonates as treatment for 

OA. These trials included a very heterogeneous patient population, in which a large portion of 

patients had already severely progressed OA. Therefore, it is less likely that these patients benefit 

from osteoclast inhibition through bisphosphonates308-313. 

Late or progressive OA shows a different type of subchondral bone remodeling. Several 

animal studies showed that an initial thinning of the subchondral bone plate28, 314 is followed by 

a recovery phase leading to subsequent thickening of the subchondral plate due to enhanced 

osteoblast activity27-29. During this un-physiological high bone turnover in OA joints, there is an 

altered phenotypic expression of osteoblasts, which results in the production of sclerotic bone 

together with cyst formation and osteophyte development44-46. It has been hypothesized that as 
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a result of the functional coupling between osteoclasts and osteoblasts, increased osteoclastic 

bone resorption induces a rise in osteoblast activity leading to increased subchondral bone 

thickness and sclerosis35. If true, bisphosphonate intervention to inhibit osteoclastic bone 

resorption might intervene with eventual formation of subchondral sclerosis by osteoblasts.

Recently, we established a novel rat OA model using a combination of papain injections with 

a running protocol which induces severe knee joint articular cartilage degradation together with 

activation of synovial macrophages and prominent involvement of subchondral bone273. In this 

particular study we found that papain injection alone induced  moderate OA features, like sGAG 

and slight cartilage matrix loss, enhanced loss of the subchondral cortical plate. As a result of 

OA induction through papain injections and running, there was a complete different response 

and rats develop a pronounced sclerotic bone phenotype within the lateral compartment of 

the proximal tibia plateau combined with severe loss of cartilage matrix. In the current study, 

we investigated whether pre-emptive inhibition of osteoclast function through bisphosphonate 

treatment could prevent the development bone sclerosis, and possibly could prevent or reduce 

the development of OA. We used longitudinal in vivo microCT scans to measure effects of ALN 

treatment on subchondral sclerosis development and ex vivo microCT on cartilage samples to 

see if cartilage was protected against degradation. Besides marked changes of articular cartilage 

and subchondral bone in this model for OA, we know there is also abundant activation of 

synovial macrophages273. Therefore, we also measured whether ALN treatment had an effect on 

synovial macrophage activation using a folate-based radiotracer for in vivo SPECT/CT imaging315.

METHODS

Effect of systemic alendronate treatment on severe osteoarthritis progression
Forty 16-week-old male Wistar rats (Charles River Netherlands BV, Maastricht, the Netherlands) 

were housed in the animal facility of the Erasmus University Medical Centre, with a 12-h light-

dark regimen, at 21oC during the experimental period, and received standard food pellets and 

water ad libitum. Severe osteoarthritis was induced in all animals using intra-articular papain 

injections in their left knee joints combined with exposure to a moderate exercise protocol as 

described before273. In short, all animals received three intra-articular injections in their left knee 

joints with 30µl papain/L-cystein solution81. Their right knee joint served as an internal healthy 

control. All rats were forced to run on a motorized rodent treadmill (LE-8700; Panlab Harvard 

Apparatus, Barcelona, Spain) 500m/day during 5 days/week, for six weeks covering a distance 

of 15km in total273.  

Animals were divided over two groups: twenty rats served as untreated controls and twenty 

rats were treated during the experiment with three times weekly subcutaneous ALN injections 

(2.4μg/kg) (alendronate, Sigma-Aldrich, St. Louis, MO, USA) to inhibit osteoclast bone resorption, 
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a dose previously reported to be comparable to the clinical dose of 10 mg/day prescribed for the 

treatment of postmenopausal osteoporosis316 (Figure 1). Sterile water was used as the vehicle 

for dissolving ALN. Untreated animals did not receive placebo injections.

During the study all animals were longitudinally monitored with microCT to measure 

subchondral bone changes. At six and twelve weeks, ten rats in both groups were selected for 

a full analysis sequence. This sequence consisted of a SPECT/CT using a folate-based radiotracer 

to quantify macrophage activation in vivo316, and ex vivo EPIC-μCT and histology to measure 

cartilage quality113. For all procedures, the exact same procedures were followed as described 

earlier273. The animal ethic committee of the Erasmus University Medical Center, Rotterdam, the 

Netherlands, approved all conducted procedures. A detailed planning scheme of all groups and 

conducted tests is given in Figure 1.

Figure 1: Experiment design indicating analytical time points and methods for each experimental group. Forty 16-week-

old male Wistar rats were injected with three papain intra-articular injections (P.I.) and forced to run 15km on a motorized 

treadmill. Animals were divided over two different groups: an untreated group (n=20) and a group treated with alendronate 

(n=20). Treated animals received subcutaneous alendronate injections (2.4μg/kg), indicated with * in the scheme. During 

the experiment three longitudinal microCT scans were made to measure subchondral bone changes. At six and twelve 

weeks a full analysis sequence was done in ten animals per group (n†), consisting of in vivo: determination of activated 

macrophages using SPECT/CT; and ex vivo: cartilage analysis with equilibrium partitioning of an ionic contrast agent using 

(EPIC-)microCT and histology.

Subchondral bone measurements on μCT scans
Both knees of all animals were µCT scanned under isoflurane anesthesia, using a Skyscan 

1176 in vivo μCT scanner (Skyscan, Kontich, Belgium). 10 min of scan time was required per 
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knee at an isotropic voxel size of 18μm, at a voltage of 65kV, a current of 385mA, field of 

view of 35mm, using a 1.0mm aluminum filter, over 198o with a 0.5o rotation step, and a 270 

msec exposure time. All datasets were segmented with a local threshold algorithm141. Cortical 

and trabecular bone were automatically separated using in-house software282. Using Skyscan 

software, both subchondral plate thickness (Sb. Pl. Th. in μm) and subchondral plate porosity 

(Sb. Pl. Por. in mm3) of the medial and lateral compartment of the tibial plateau were measured35. 

In the tibial epiphysis, the trabecular thickness (Tb. Th. in μm) and trabecular bone volume 

fraction (BV/TV), representing the ratio of trabecular bone volume (BV, in mm3) to endocortical 

tissue volume (TV, in mm3). We additionally quantified the amount of ectopic bone formation as 

a measure for osteophyte growth (mm3) on longitudinal µCT scans.

Determination of activated macrophages by SPECT/CT using 111In-EC0800
Activated macrophages express the folate receptor-β allowing monitoring macrophages in 

vivo using folate-based radiotracers130, 163, 164. Phosphate saline-buffered (PBS, pH 6.5) DOTA-

Bz-folate (EC0800, kindly provided by Endocyte Inc., West Lafayette, USA)283 was labeled with 

111InCl3 (Covidien, Petten, The Netherlands) as described previously273 . Quality control was 

performed with ITLC-SG and revealed a radiochemical yield of >95% at a specific activity of 

50 MBq/μg. 111In-EC0800 (55 MBq) was administered via the tail vein 20h prior to scanning. 

SPECT/CT scans were performed with a 4-head multiplex multi-pinhole small-animal SPECT/CT 

camera (NanoSPECT/CTTM, Bioscan Inc., Washington DC, USA). All knee joints were scanned 

with both helical μCT (acquisition time 5min) and SPECT (acquisition time 30min). All scans were 

analyzed using InVivoScope post-processing software (Bioscan Inc.). To reduce inter-individual 

variation, the absolute difference in measured radioactivity (kBq/mm3) of the OA knee joint 

compared to the contralateral control joint was calculated. This absolute difference was used 

when comparing mean values of untreated animals with ALN treated animals. 

Cartilage evaluation with contrast enhanced µCT and histology
Equilibrium partitioning of a contrast agent using microCT (EPIC-μCT) has a strong correlation 

with cartilage sulfated-glycosaminoglycan (sGAG) content113. In EPIC-μCT an equilibrium-state 

exists between sGAG and contrast agent after a 24 hour incubation period. Resulting cartilage 

X-ray attenuation in these scans is inversely related to sGAG content and thereby represent 

cartilage quality. This technique is suited for quantitative analysis of cartilage  degradation for 

preclinical evaluation of OA117.

Animals were euthanized directly after the last SPECT/CT scan and both knee joints were 

harvested for EPIC-μCT analysis. All specimens were incubated in 40% solution of ioxaglate 

for 24h at room temperature138. EPIC-μCT was performed on the same μCT scanner, using the 

following scan settings: isotropic voxel size of 18μm, a voltage of 65kV, a current of 385mA, 

field of view 35mm, a 0.5 mm aluminum filter, 198o with a 0.5 degree rotation step, and a 
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235ms exposure time. In all EPIC-μCT datasets, X-ray attenuation (arbitrary gray values related 

to sGAG content) and cartilage thickness (μm) was calculated for cartilage of the medial and 

lateral plateau of the tibia273.

After EPIC-μCT, the separated parts of the knee joints were fixed in paraformaldehyde, 

decalcified with formic acid and embedded in paraffin. Sagittal sections were made at 300 μm 

intervals and stained with Safranin-O to image the amount and distribution of the GAGs. 

Sections were stained all at once, to minimize protocol differences between different samples. 

Figure 2: Increase of bodyweight (gram) of untreated control rats (white circles) and alendronate treated rats (gray 

squares).

Statistical analysis
All measurements were consistent with a normal distribution according to D’Agostino and 

Pearson omnibus normality tests. Differences between means of OA induced and healthy knee 

joints within the same animal were tested using paired t-tests at each time point for all outcome 

parameters (GraphPad Software, San Diego, California, USA). When comparing differences 

between means of untreated OA animals and ALN treated OA animals, an unpaired t-test 

was used at each time point for all outcome parameters (GraphPad Prism Software). When 

osteophytes and subchondral pores do not develop, this was scored as zero. Therefore, we 

used a one-sample t-test and tested whether the outcome of OA induced joints differed from 

zero (GraphPad Software). Longitudinal data from in vivo µCT were additionally analyzed using 

generalized estimating equations (GEE) (SPSS Inc., Chicago, USA). For all tests, p values ≤ 0.05 

were considered significant.
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RESULTS

Effects of systemic alendronate treatment
All untreated (non-alendronate) rats did not increase in weight from 416.4g (411.3 – 421.5g) 

to 408.3g (398.2 – 418.3g) after six weeks of treadmill running. During subsequent six weeks of 

rest, all untreated rats increased in bodyweight to 485.5g (473.0 – 498.0g). ALN treated animals 

showed the same patterns, with no increase in weight during the first six weeks, from 419.4g 

at the start of the experiment (413.8 – 425.0g) to 416.9g (408.4 – 425.4g), and an increase in 

weight to 500.2g at twelve weeks (483.9 – 516.5g) (Figure 2).

Subchondral bone changes
During the experiment, healthy knee joints of untreated animals showed increased 

subchondral trabecular thickness (p < 0.001) and decreased BV/TV (p < 0.001) (Figure 3A-B). 

Due to OA induction there was a reduction in BV/TV (p < 0.001) compared to the contralateral 

healthy knee joint in untreated animals, while trabecular thickness was not different from the 

healthy control (p = 0.29). Both healthy and OA joints of ALN treated animals showed a reduced 

increase of trabecular thickness during the 6 weeks running and subsequent period to 12 weeks 

(p < 0.001) and higher BV/TV (p < 0.001) compared to untreated animals at 12 weeks but not 

at 6 weeks (Figure 3A-B).

Figure 3: Subchondral bone changes analyzed with longitudinal in vivo μCT in untreated animals (circles) and 

alendronate treated animals (squares).  Changes in trabecular thickness (Tb. Th.; A) and trabecular bone volume fraction 

(BV/TV; B) were measured in tibial epiphysis bone marrow. Subchondral plate thickness (Sb. Pl. Th.; C, E) and porosity (Sb. 

Pl. Por.; D, F) were measured in the medial (C,D) and lateral (E,F) compartment of the tibial epiphysis. *: p<0.05, **: p<0.01, 

***: p<0.001, error bars indicate 95% confidence intervals.
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Figure 4: Cartilage quality and quantity was determined from samples of untreated (circles) and alendronate treated 

(squares) rats with equilibrium partitioning of a ionic contrast agent using (EPIC-)μCT (A-D). The amount of sulphated-

glycosaminoglycans (sGAG) (arbitrary gray values; A,B) and cartilage thickness (μm; C,D) were measured of medial (A,C) 

and lateral (B,D) cartilage compartments of the tibia plateau harvested from healthy  joints (blank boxes) and OA induced 

joints (gray boxes). Attenuation values from EPIC-μCT scans are inversely related to the sGAG content, meaning that a 

high attenuation corresponds to low sGAG content. (E) Coronal images from representative EPIC-μCT scans of the tibia 

plateau show the amount of cartilage (erosions indicated with ▲ and dashed lines) and sGAG content (displayed in color). 

*: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals.

GEE analysis of medial subchondral plate thickness of untreated animals showed that the 

subchondral bone plate of OA joints increased less in thickness compared to healthy joints (p = 

0.008), where in ALN treated animals there was no difference between healthy and OA joints (p 

= 0.26) (Figure 3C). However, there was no significant difference in medial subchondral plate 

thickness of OA joints between untreated and ALN treated animals (p = 0.12). There was also 

no increased porosity of the medial subchondral bone plate for untreated and ALN treated rats.

At the lateral side after six weeks of running subchondral sclerosis developed in the OA 

joints of untreated animals compared to its contralateral healthy knee joint (p < 0.0001), which 

persisted after six weeks of rest (p < 0.0001) (Figure 3E). In ALN treated animals sclerosis did 

also develop in OA induced joints. GEE analysis between OA joints of untreated and ALN treated 

animals did not find a significant difference in the development of subchondral sclerosis (p = 

0.12) (Figure 3E). 
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ALN treated animals totally lacked subchondral plate porosity at 6 weeks (p = 0.02) (Figure 

3F). At twelve weeks, this effect was however not significant anymore (p = 0.24). This was 

predominantly due to the rather large variation in subchondral porosity in untreated animals. 

This variation resulted from the reduction in number of animals at 12 weeks and some of them 

not showing any porosity.

Osteoarthritic changes of articular cartilage
OA induction in untreated animals induced severe sGAG depletion from both medial 

and lateral cartilage compartments of the tibia plateau. This sGAG depleted state persisted 

throughout the experiment (Figure 4A). Although there was significant sGAG loss in OA joints 

of ALN treated rats compared to their healthy joints at both six (p < 0.0001) and twelve weeks 

(p < 0.0001), ALN treated animals had more sGAG in cartilage of the medial plateau at twelve 

weeks compared to OA joints of untreated rats (p = 0.02) (Figure 4A). After the running 

protocol at six weeks, cartilage of the medial compartment was reduced in thickness compared 

to healthy knee joints in untreated rats (p = 0.007) and ALN treated rats (p = 0.003) (Figure 4C). 

Compared to healthy joints this matrix degradation persisted during the following six weeks 

of rest in untreated rats (p = 0.0005). However, medial cartilage thickness of OA joints in ALN 

treated animals was thicker compared to OA joints of untreated  animals (p = 0.003) (Figure 4C). 

Lateral cartilage thickness was degraded (Figure 4D) and resulted in almost completely denuded 

subchondral bone (Figure 4E) in both untreated an ALN treated animals. Representative medial 

and lateral cartilage images from safranin-O stained histology from untreated OA controls at six 

and twelve weeks are shown in Figure 5.

Interestingly, after the six week running phase in both medial (p = 0.03) and lateral (p = 0.01) 

cartilage of healthy joints in ALN treated animals, there was a reduced sGAG content compared 

to healthy cartilage of untreated animals (Figure 4A-B). During the next six weeks of rest, 

untreated animals showed a ~3% improvement in sGAG content of medial tibia cartilage and 

0.1% of the lateral tibia cartilage. Interestingly, after these six weeks of rest, the medial tibia 

cartilage improved ~13% and the lateral tibia cartilage ~7% in ALN treated animals and was 

significantly higher in both the medial (p = 0.01) and lateral cartilages (p = 0.005) compared to 

untreated animals (Figure 4A-B). 

In Figure 4E representative images from EPIC-µCT scans are depicted. These Figures clearly 

show the loss of sGAG from the articular cartilage due to the OA induction, as well as the loss 

of cartilage matrix on the lateral tibia plateau. At twelve weeks, ALN treated animals show less 

irregularity of medial tibia plateau cartilage matrix, which is also thicker compared to untreated 

animals.
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Figure 5: Safranin-O stained histology sections of medial and lateral tibial plateau cartilage after six weeks and twelve 

weeks of follow up. Untreated animals show severely sulphated-glycosaminoglycan (sGAG) depleted medial tibia cartilage 

at six and twelve weeks. Cartilage extra-cellular matrix (ECM) was slightly degraded at six weeks, but progressive loss of 

cartilage ECM was found at twelve weeks. ALN treated animals showed a similar loss of sGAG and loss of ECM at six weeks, 

however, after twelve weeks more sGAG was present and the ECM was less degraded compared to untreated animals. In 

both untreated and ALN treated animals, lateral cartilage ECM was almost totally eroded with only the calcified cartilage 

layer that remained.

Effect of systemic alendronate treatment on synovial macrophage activation
At both 6 weeks and 12 weeks each animal received 55 ± 5 MBq of 111In-EC0800 with 

no significant differences of injected activity between experimental groups. At six weeks, 

untreated rats (~40%) and ALN treated rats (~28%) had increased radioactive uptake in their 

OA-induced knee joints compared to their contralateral healthy control joints (Figure 6A,C). 

However, a comparison between both groups showed no significant difference in radioactive 

uptake. During this period of moderate running, ALN treated animals formed less mineralized 

osteophyte formation compared to untreated animals, but this effect was not significantly 

different (p = 0.07) (Figure 6B,C). 
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Figure 6: Macrophage activation determined in untreated animals (circles) and alendronate treated animals (squares) 

after injection of 111In-EC0800 using SPECT/CT. A: Quantitative outcome of measured radioactivity in the healthy joints 

(blank boxes) and OA joints (gray boxes) normalized to the size of the analyzed cylindrical region of interest (kBq/mm3). 

Absolute differences per animal were calculated (kBq/mm3) to correct for differences in biodistribution of 111In-EC0800 

(black boxes). A high radioactivity is related to more macrophage activation. B: Ectopic bone formation (mm3) as a measure 

for osteophyte development was quantified on longitudinal bone μCT scans. C: Sagittal SPECT/CT images of knee joints 

from representative animals. CT images shown in black and white were used for anatomical reference, the SPECT images 

are shown in color. Micro-SPECT images show radioactivity accumulation, one fixed threshold used for all images. Transaxial 

images from patellar bone extracted from binary μCT images show ectopic bone formation (red color). *: p<0.05, **: 

p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals. 

After six subsequent weeks of rest untreated animals still had ~23% increased radioactivity 

uptake in their OA-induced knee joints. In ALN treated animals this amount dropped to an 

~8% increase, however it was still significantly more compared to their healthy control joint 

(p = 0.02). The absolute difference in radioactive uptake between OA induced and healthy 

control joints in ALN treated animals was lower compared to the absolute differences measured 

in untreated controls (p = 0.003) (Figure 6A,C). At twelve weeks there was again a tendency 

of reduced osteophyte formation in ALN treated animals as compared to untreated controls, 

but again these data were not significantly different (p = 0.09) (Figure 6B,C). However, GEE 
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analysis showed that during the entire experiment, ALN treated animals developed significantly 

less ectopic bone formation compared to untreated controls (p = 0.008).

DISCUSSION

Inhibiting osteoclastic bone resorption through bisphosphonate treatment has shown 

beneficial effects in pre-clinical animal OA studies, but these reporting studies made use of 

OA models that are relatively mild in nature46, 306, 307. Osteoclast activation is suggested to be 

time-dependent and reduces with ongoing OA stages, and might explain the disappointing 

results from large clinical trials on the role of bisphosphonates as treatment for OA308-313. In 

this study we investigated whether a preemptive start of alendronate could reduce the severe 

OA progression known to develop after papain injections combined with moderate running 

exercise273. 

This study demonstrates that healthy knee joints of untreated (but running) animals showed 

~5% subchondral bone loss while trabecular thickness increased ~5%. This has previously been 

described to occur during normal bone remodeling as a consequence of aging and increased 

physical activity317. OA induced knee joints of untreated animals showed an enhanced loss of 

BV/TV, which can be related to increased trabecular bone remodeling in OA joints of rodents 
29. In contrast to untreated animals, our results show that ALN treatment resulted in functional 

impaired bone remodeling in both healthy and OA knee joints, which can be related to inhibited 

osteoclast bone resorption316. It has been suggested that a functional coupling between 

osteoclasts and osteoblasts eventually induces subchondral sclerosis35, but ALN treatment in 

our study did not reduce subchondral sclerosis formation (Figure 3). This suggests that a direct 

influence of osteoclastic function on the formation of subchondral sclerosis is rather unlikely. 

This sclerotic bone phenotype only developed at sites where there was a total loss of articular 

cartilage. Due to this loss of cartilage, force dissipation through the subchondral bone must 

have changed severely. We hypothesize that subsequent increased mechanical stimuli within 

the underlying subchondral bone, might have triggered the mechanosensory response of 

osteocytes318 and subsequently induced sclerosis. In OA patients osteocytes become more 

elongated319 and produce less sclerostin320. Sclerostin is known for its anti-anabolic effect on 

osteoblasts through an antagonist function on the Wnt signaling pathway. Normally, Wnt 

signaling induces osteoblast maturation and prevents osteoblast apoptosis, which subsequently 

stimulates bone formation321. When sclerostin production by osteocytes is reduced, Wnt is 

promoted and osteoblasts are stimulated to form bone, which in this case, might result in 

increased or sclerotic bone formation. No direct evidence for this specific relation was found in 

this study, and validation of such a theory would require more research. 
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ALN treatment did not prevent the deleterious erosion of lateral tibia cartilage. However, 

medial compartment cartilage was protected from further degradation of cartilage extra-cellular 

matrix due to ALN treatment. This suggests that in this model, osteoclastic activity somehow fuels 

an ongoing process of cartilage degradation. Besides this protective effect on cartilage matrix in 

OA induced joints, ALN treatment improved sGAG content in healthy joints of treated animals. 

Our results do not explain why ALN has this effect on cartilage. However, one hypothesis could 

be that through inhibition of osteoclast bone resorption by ALN, the supportive function of 

subchondral bone is not reduced and remains stiff during running exercise. As a consequence, 

chondrocytes are exposed to increased mechanical stress and produce less sGAG84. However 

when stress levels are relieved in the period between 6 and 12 weeks, chondrocytes recover and 

increase sGAG production. Possibly due to the stiffer subchondral cortical bone plate and higher 

stress levels, chondrocytes in ALN treated animals produced more sGAG to further enhance 

cartilage quality. The effects of training on cartilage are already well known in clinical patient 

care183, possibly this effect might be enhanced with pre-emptive ALN treatment.  However, more 

research is necessary to establish a relationship between osteoclast activity, chondrocyte sGAG 

production, and the role of biomechanical impact due to physical exercise. 

Analysis of macrophage activation using folate receptor targeted SPECT/CT also showed 

interesting results. After six weeks of OA induction both groups showed no difference in 

macrophage activation, however, after 12 weeks macrophage activation was significantly 

reduced in ALN treated animals compared to untreated animals. Recently, bisphosphonates 

have been reported to significantly reduce pain in patients with clinical and radiographic 

knee osteoarthritis322. Synovitis and activation of synovial macrophages are related to patient 

complaints, like joint dysfunction and pain159, and has been related to the progression of 

cartilage erosion323, 324. Possibly, a loss of macrophage activation in ALN treated animals reflected 

the reduced amount of articular cartilage degradation. But, bisphosphonates are known to 

influence macrophage responses as well25 and ALN treatment could directly have reduced 

macrophage activation. Then again, the finding that pre-emptive use of ALN did not reduce 

macrophage activation after six weeks does not support this explanation. 

Although we found some promising results in this study, it is important to point out that using 

animal models for OA research does not allow for direct translation towards clinical care. There 

are simply too many factors related to the study design that might have a distinct influence 

on experimental outcome (for example, species, strain, age). Additionally, this study has two 

major limitations. First, we did not used a saline injection as a control in untreated animals. 

Hypothetically, handling of animals during subcutaneous injections might have caused some 

form of stress that might have caused a bias in our study. And second, we lacked a pure 

control without exercise and without OA induction, this may cause a bias in our study. From a 

biological point of view, it is known that skeletal growth in rats is related to changing cartilage 
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matrix biology and phenotypic characteristics of chondrocytes180, 181. And from a biomechanical 

point of view, the way rats run can never be compared to the way humans do. In light of 

biomechanics, pain is also an important aspect that is likely to have influenced our outcome. 

Rats that suffer pain from OA induction are known to change their weight-bearing behavior77. 

Unfortunately, we were not able to record their discomfort using an incapacitance test or pain 

measurement. Therefore, we are unable to discuss to what extent pain might have influenced 

our outcome. 

Conclusion
Reduced subchondral bone loss and reduced osteophyte formation was found after OA 

induction in ALN treated compared to non-ALN treated rats. ALN treatment also reduced 

cartilage degradation and suggests that osteoclastic activity is a driving force behind ongoing 

OA articular cartilage degradation. However, this effect might not be solely due to osteoclastic 

activity, since the results of our study showed clear interaction of ALN treatment in macrophage 

activation. Furthermore, ALN treatment during moderate exercise influenced sGAG production 

in healthy cartilage and after a period of rest, resulted in increased cartilage sGAG content. 

More studies on the mechanisms of ALN treatment in healthy joints together with physical 

exercise training could provide more insight and potentially lead to new treatment strategies 

that can improve cartilage quality. 
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ABSTRACT

Introduction
Triamcinolone acetonide (TA) is commonly used in osteoarthritis management to reduce pain. 

Possibly, TA limits cartilage degradation and osteophyte formation. Interestingly, macrophage 

activation is strongly associated with osteophyte formation during osteoarthritis progression. 

This study investigated the effect of TA injections on in vivo macrophage activation, which was 

related to osteophyte development and joint degeneration. The mechanism through which TA 

exerts this effect could be explained from in vitro macrophage differentiation experiments.

Methods
Osteoarthritis was induced in rat knees using papain injections and a running protocol. 

Untreated and TA treated animals were longitudinally monitored for 12 weeks with in vivo μCT 

to measure subchondral bone changes. Synovial macrophage activation was measured in vivo 

using folate receptor β (FRβ) targeted SPECT/CT. Articular cartilage was analysed at 6 and 12 

weeks with ex vivo contrast enhanced μCT and histology. Effects of TA on macrophages were 

also studied in vitro through fluorescence-activated cell sorting for CD163 and FRβ expression, 

and mRNA expression of IL10. 

Results
In contrast to untreated control animals, intra-articular injections with TA strongly enhanced 

FRβ+ macrophage activation and fully prevented osteophyte formation. There were no beneficial 

effects of TA against cartilage degradation or subchondral bone sclerosis. In in vitro cultures, TA 

strongly induced monocytes differentiation CD163+ and FRβ+ macrophages. Addition of TA to 

M-CSF stimulated M2 macrophages showed enhanced IL10 expression on mRNA level.

Conclusion
TA injections potently induce a CD163+ and FRβ+ subtype of activated macrophage with 

anti-inflammatory characteristics, like reduced IL10 production in vitro and lack of osteophytosis 

in vivo.
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INTRODUCTION

Osteoarthritis (OA) is characterized by deterioration of articular cartilage and extensive 

subchondral bone remodeling326, 327, but there is also an inflammation within the synovial lining 

of the osteoarthritic joint159. During OA progression, synovial macrophages become activated 

and secrete many pro-inflammatory cytokines and growth factors. These cytokines and growth 

factors are thought to detrimentally change the articular joint. 

First, activated synovial macrophages have been proposed to enhance transforming growth 

factor beta (TGFβ) production. Due to TGFβ, synoviocytes increase their production of bone 

morphogenetic protein (BMP) 2 and BMP4, as a consequence, osteophytes develop within the 

OA joint59, 60. Secondly, it is thought that enhanced growth factors and cytokines production by 

activated macrophages facilitates cartilage extra-cellular matrix (ECM) degradation, contributes 

to synovial fibrosis328, and induces pain329. The latter is of special interest, since pain management 

plays a pivotal role in clinical management of OA. 

Pain management for OApatients can be achieved through analgesia like paracetamol or 

non-steroid anti-inflammatory drugs (NSAIDs), or with intra-articular injection of corticosteroids. 

Intra-articular injections with corticosteroids provide excellent results against OA related 

pain330, and is an advocated treatment for individuals suffering knee OA331. More specific, 

triamcinolone acetonide (TA) injections are even more effective in pain reduction compared to 

other corticosteroids332. 

In 1985 Williams et al reported that TA quite effectively protects against osteophyte 

development in an pre-clinical model for OA333. This finding suggests that TA somehow intervenes 

with synovial macrophage activation and might prevent subsequent TGFβ induced osteophyte 

development. More recently in 2014, this finding was reproduced in a post-traumatic model 

of OA using intra-articular injections of dexamethasone334. These authors additionally showed 

that corticosteroid therapy reduced cartilage destruction. It remains unclear through which 

mechanisms corticosteroids exert this positive effect on macrophages and other joint tissues 

within the joint during OA development. This effect might result from the marked influence of 

corticosteroids on macrophage differentiation. 

Inactive macrophages are able to differentiate into different active subtypes. First, the classically 

(or M1) activated macrophages are activated through a cell-mediated immune response. 

Especially interferon-γ (IFNγ), lipopolysaccharides (LPS), or tumour-necrosis factor (TNF) are 

known inducers of M1 macrophages335, 336. Alternatively (or M2) activated are macrophages 

related to humoral immunity tissue repair337. Interleukin (IL) 4 is known to induce a wound 

healing M2 activated macrophage whose activity is related to tissue repair338. Interestingly, in 
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response to corticosteroids yet another activated macrophage subtype develops, known as 

regulatory macrophages339. Regulatory macrophages are considered anti-inflammatory and 

produce large amounts of IL10340. Possibly, intra-articular injection of TA polarizes macrophage 

activations towards this M2b phenotype with subsequent beneficial effects on osteophyte 

formation and cartilage degradation.

Recently, we established an in vivo model for severe OA that shows severe degradation 

of articular cartilage, enhanced subchondral bone sclerosis formation, and pronounced 

osteophyte formation273. Using folate receptor (FR) β targeted single photon emission computed 

tomography (SPECT/CT) to quantitatively measure macrophage activation130, 164, we  also found 

abundant activation of synovial macrophages within knee joints of this rat model for OA273. In 

this rat model for severe OA, we investigated the in vivo effect of intra-articular TA injections 

on macrophage activation using FRβ targeted SPECT/CT. We hypothesized that intra-articular 

treatment with TA reduces the amount of macrophage activation, and therefore diminishes 

osteophyte formation as described by Williams et al333. Furthermore, using longitudinally applied 

μCT for in vivo bone analysis and ex vivo equilibrium partitioning of a contrast agent using μCT 

(EPIC-μCT), we also analyzed whether intra-articular TA injections might have a beneficial effect 

on OA related subchondral sclerosis and cartilage degradation as well. In order to explain our in 

vivo results, we performed several in vitro experiments. In these experiments, we characterized 

M1 and M2 differentiated macrophages by their cell-surface receptor expression. We analyzed 

whether the addition of TA was able polarize macrophages towards a certain subtype, and 

whether TA influenced FRβ expression.

METHODS

Effects of intra-articular injections of triamcinolone on severe osteoarthritis 
progression

Forty 16-week-old male Wistar rats (Charles River Netherlands BV, Maastricht, the Netherlands) 

were housed in the animal facility of the Erasmus Medical Centre, with a 12-h light-dark 

regimen, at 21oC during the experimental period, and received standard food pellets and water 

ad libitum. Animals were divided over two groups: twenty rats served as untreated OA controls 

and twenty rats were treated during the experiment with weakly intra-articular injections of 

TA. TA (Kenacort, Bristol-Myers Squibb, Woerden, the Netherlands) was diluted with saline to a 

concentration of 1.43 mg/ml. Animals were injected weekly with 70μl of this solution (100μg 

TA) in their OA induced knee joint using a 27G needle (Sherwood-Davis & Geck, Gosport, UK). 

TA was chosen due its superior function on pain reduction in human patients compared to 

another corticosteroid330.
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In all animals from both experimental groups, severe osteoarthritis was induced using intra-

articular papain injections in their left knee joints combined with exposure to a moderate 

exercise protocol as described before273. In short, all animals received three intra-articular 

injection that consisted of 15μl 4% (w/v) papain solution (type IV, double crystallized, 15 units/

mg, Sigma-Aldrich, St. Louis, MO, USA) with 15μl 0.03M L-cystein (Sigma-Aldrich)81. Their 

contralateral knee joint served as an internal healthy control. All rats were forced to run on a 

motorized rodent treadmill (LE-8700; Panlab Harvard Apparatus, Barcelona, Spain) for six weeks 

covering a distance of 15km (500meter/day, 5 days a week)273. During the study all animals 

were longitudinally monitored with μCT to measure subchondral bone changes. At six and 

twelve weeks, ten rats in both groups were selected for a full analysis sequence. This sequence 

consisted of SPECT/CT to quantify in vivo macrophage activation341, and ex vivo EPIC-μCT and 

histology to measure cartilage quality113. For all procedures, the exact same procedures were 

followed as described earlier273. The animal ethic committee of the Erasmus Medical Center, 

Rotterdam, the Netherlands, approved all conducted procedures. A detailed planning scheme 

of all groups and conducted tests is given in Figure 1.

Figure 1: Experiment design indicating analytical time points and methods for each experimental group. Forty 16-week-

old male Wistar rats were injected with three papain intra-articular injections (P.I.) and forced to run 15km on a motorized 

treadmill. Animals were divided over two different groups: an untreated osteoarthritis (OA) group (n=20) and a group 

treated with intra-articular triamcinolone injections (n=20). Triamcinolone animals were treated with weakly intra-articular 

triamcinolone injections (100μg/injection), indicated with * in the scheme. During the experiment three longitudinal μCT 

scans were made to measure subchondral bone changes. At six and twelve weeks a full analysis sequence was done in ten 

animals per group (n†=10), consisting of in vivo: determination of activated macrophages using SPECT/CT; and ex vivo: 

cartilage analysis with equilibrium partitioning of an ionic contrast agent using (EPIC-)μCT and histology.
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Subchondral bone measurements on μCT scans
Both knees of all animals were µCT scanned under isoflurane anaesthesia, using a Skyscan 

1176 in vivo μCT scanner (Skyscan, Kontich, Belgium). Ten minutes of scan time was required 

per knee at an isotropic voxelsize of 18μm, at a voltage of 65kV, a current of 385mA, field of 

view of 35mm, using a 1.0mm aluminium filter, over 198o with a 0.5 degree rotation step, and 

a 270 msec exposure time. All datasets were segmented with a local threshold algorithm141. 

Cortical and trabecular bone were automatically separated using in-house software282. Using 

Skyscan software, both subchondral plate thickness (Sb. Pl. Th. in μm) and subchondral plate 

porosity (Sb. Pl. Por. in mm3) of the medial and lateral compartment of the tibial plateau were 

measured35. In the tibial epiphysis, the trabecular thickness (Tb. Th. in μm) and trabecular bone 

volume fraction (BV/TV), representing the ratio of trabecular bone volume (BV, in mm3) to 

endocortical tissue volume (TV, in mm3). We additionally quantified the amount of ectopic bone 

formation as a measure for osteophyte growth (mm3) on longitudinal µCT scans.

Determination of activated macrophages by SPECT/CT using 111In-EC0800
Activated macrophages express the folate receptor-β allowing monitoring macrophages in 

vivo using folate-based radiotracers130, 163, 164. Phosphate saline-buffered (PBS, pH 6.5) DOTA-

Bz-folate (DOTA-Bz-Folate, EC0800, kindly provided by Endocyte Inc., West Lafayette, USA)269, 

326 was labelled with 111InCl3 (Covedien, Petten, The Netherlands) as described previously273. 

Quality control was performed with ITLC-SG and revealed a radiochemical yield of ~91% at a 

specific activity of 50 MBq/μg. 111In-EC0800 (55MBq) was administered via the tail vein twenty 

hours prior to scanning. SPECT/CT scans were performed with a 4-head multiplex multi-pinhole 

small animal SPECT/CT camera (NanoSPECT/CT TM, Bioscan Inc., Washington DC, USA). All 

knee joints were scanned with both helical μCT (acquisition time 5min) and SPECT (acquisition 

time 30min). All scans were analyzed using InVivoScope processing software (Bioscan Inc.). To 

reduce inter-individual variation, the absolute difference in measured radioactivity (kBq/mm3) 

of the OA knee joint compared to their internal control joint was calculated. This absolute 

difference was used when comparing means of untreated animals with TA treated animals.

Cartilage evaluation with contrast enhanced µCT and histology
Equilibrium partitioning of a contrast agent using μCT (EPIC-μCT) has a strong correlation with 

cartilage sulphated-glycosaminoglycan (sGAG) content113. Animals were euthanized directly 

after the last SPECT/CT scan and both knee joints were harvested for EPIC-μCT analysis. All 

specimens were incubated in 40% solution of ioxaglate, for 24 hours at room temperature138. 

EPIC-μCT was performed on the same μCT scanner, using the following scan settings: isotropic 

voxel size of 18μm, a voltage of 65kV, a current of 385mA, field of view 35mm, a 0.5 mm 

aluminium filter, 198o with a 0.5 degree rotation step, and a 235 msec exposure time. In 

all EPIC-μCT datasets, X-ray attenuation (arbitrary gray values related to sGAG content) and 

cartilage thickness (in μm) was calculated separately for cartilage of the medial and lateral 

plateau of the tibia273.
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After EPIC-μCT, the separated parts of the knee joints were fixed in paraformaldehyde, 

decalcified with formic acid and embedded in paraffin. Sagittal sections were made at 300 μm 

intervals and stained with Safranin-O to image the amount and distribution of the GAGs. 

Sections were stained all at once, to minimize artefacts in between different samples. 

Surface receptor expression on monocyte-derived macrophages in vitro
Monocytes were isolated from peripheral blood of healthy human donors using sequential 

Ficoll-Hypaque and Percoll density gradients (GE Healthcare, Uppsala, Sweden) and cultured 

in RPMI/glutamax (Gibco BRL, Life Technologies, Belgium) with additional penicillin (100 U/

ml), streptomycin (100 µg/ml), and 10% fetal calf serum (FCS, Gibco BRL). Monocyte-derived 

macrophages were generated by culturing monocytes for 7 days in the presence of 800 U/

ml human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF; for M1 

subtype differentiation) or 25ng/ml human recombinant macrophage colony-stimulating factor 

(M-CSF; for M2 subtype differentiation) (GM-CSF and M-CSF were both acquired from R&D 

Systems, Minneapolis). To study the influence of TA on macrophage differentiation 100nM TA 

(Kenacort, Bristol-Myers Squibb, Woerden, the Netherlands) was added to the culture medium 

during these 7 days. The culture medium was refreshed after 3-4 days.

Flow cytometry
The expression of membrane receptors was evaluated by incubating the cells with specific 

fluorescent antibodies. First, the cells were incubated with a rabbit anti-human FOLR2 antibody 

(Thermo Fisher Scientific, Rockford, USA) at 4°C for 30 minutes in the presence of rabbit serum. 

This was followed by incubation with a fluorescein (FITC) labelled goat anti-rabbit antibody 

(Thermo Fisher Scientific), CD80-PE (Clone  L307.4, BD Biosciences, San Jose, USA), CD163-

PERCP-CY5.5 (clone GHI/61, Biolegend, San Diego, USA), CD14 APC-AF750 (clone RMO52, 

Beckman Coulter, Brea, USA), CD206-PC-7 (clone 3.29B1.10, Beckman Coulter) and CD16-

APC (clone 3G8, Life technologies, Frederick, USA). Flow cytometry was performed on a FACS 

Canto II cytometer (Becton Dickinson) according to the manufacturer’s protocols. Fluorescence 

minus one controls were used to identify gating boundaries. Values were expressed as mean 

fluorescent intensity (MFI) ratio compared to an unstained control (fold change).

Detection of IL10 mRNA levels by real-time quantitative (RQ)-PCR
Messenger RNA was isolated using RNeasy Mini Kit (Qiagen, Venlo, the Netherlands) 

After on-column DNase-I treatment (QiagenRNAse-free DNase kit), RNA was quantified 

using Nanodrop ND-1000 (Isogen Life Science, De Meern, theNetherlands)and reverse 

transcribed into cDNA using the iScript cDNA Synthesis Kit (Biorad, Veenendaal, 

theNetherlands.).Gene expression was analysed using the CFX384 Real-Time PCR Detection 

System (Biorad). The qPCR reactions were performed in duplicate in 384-well plates 

in a final volume of 10 μl, using IQ SYBR Green Supermix (Biorad).IL10 mRNA levels were 

normalised to those of the reference genes TBPandHPRT. Primers used were: IL10 forward 
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5′-GACTTTAAGGGTTACCTGGGTTG-‘3, reverse 5′-TCACATGCGCCTTGATGTCTG-‘3, TBP 

forward 5’-TGCACAGGAGCCAAGAGTGAA-‘3, reverse5’-5’-CACATCACAGCTCCCCACCA-‘3. 

HPRTforward 5’-TATTGTAATGACCAGTCAACAG-‘3, reverse5’-GGTCCTTTTCACCAGCAAG-‘3.

Statistical analysis
For the in vivo study, differences between means of OA induced and healthy knee joints 

within the same animal were tested using paired t-tests at each time point for all outcome 

parameters (GraphPad Software, San Diego, California, USA). When comparing differences 

between means of untreated OA animals and TA treated animals an unpaired t-test was used at 

each time point for all outcome parameters (GraphPad Software). Statistical significance among 

the different cell treatments was assessed using one-way ANOVA with Bonferroni’s correction 

(SPSS Inc., Chicago, USA). Longitudinal data from in vivo µCT were additionally analyzed using 

generalized estimating equations (SPSS Inc., Chicago, USA). For all tests, p values ≤ 0.05 were 

considered significant.

RESULTS

Effects of intra-articular triamcinolone treatment
Bodyweight of all untreated rats at baseline was 416.4g (411.3 – 421.5g), during six weeks 

of treadmill running this did not increase (mean weight 408.3g; 398.2 – 418.3g). During 

subsequent six weeks of rest, all rats increased in bodyweight (mean weight 485.5; 473.0 

– 498.0g). TA treated animals (mean weight at baseline was 423.6g; 417.3 – 429.9g) lost 

bodyweight during OA induction (mean weight after six weeks was 391.2g; 385.1 – 397.2g) 

and was lower compared to untreated OA animals (p = 0.004). After twelve weeks their mean 

bodyweight increased to 434.6 (422.2 – 446.9), but was still significantly lower compared to 

untreated OA controls (p < 0.0001) (Figure 2).

 

Figure 2: Increase of bodyweight (gram) of untreated control rats (white circles) and triamcinolone treated rats (gray 

squares).
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Figure 3: Macrophage activation determined in untreated OA animals (circles) and triamcinolone treated animals 

(squares) after injection of 111In-EC0800 using SPECT/CT. A: Quantitative outcome of measured radioactivity in the healthy 

joints (blank boxes) and OA joints (gray boxes) normalized to the size of the analyzed cylindrical region of interest (kBq/

mm3). Absolute differences per animal were calculated (kBq/mm3) to correct for differences in biodistribution of 111In-

EC0800 (black boxes). A high radioactivity is related to more macrophage activation. B: Ectopic bone formation (mm3) as a 

measure for osteophyte development was quantified on longitudinal bone μCT scans. C: Sagittal SPECT/CT images of knee 

joints from representative animals. CT images shown in black and white were used for anatomical reference, the SPECT 

images are shown in color. Transaxial images from patellar bone extracted from binary μCT images show ectopic bone 

formation (red color). *: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals. 

Effect of intra-articular triamcinolone treatment on synovial macrophage 
activation

Each animal received 54 ± 2 MBq of 111In-EC0800 under isoflurane anesthesia, there were no 

significant differences of injected activity between experimental groups. Untreated OA control 

animals showed more macrophage activation in their OA induced joints at six (p < 0.0001) and 

twelve weeks (p < 0.0001). TA injected knee joints also showed more macrophage activation 

compared to their non-injected healthy knee joint (p < 0.0001 at six and twelve weeks). In order 

to correct for differences in biodistribution, we calculated paired absolute differences between 

healthy control joints and OA induced joints for all untreated rats and TA treated animals. Both 

at six (p = 0.008) and twelve weeks (p = 0.04) this analysis suggest more macrophage activation 
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in TA injected joints (Figure 3A,C). In line with macrophage activation in untreated animals, OA 

induced knee joints showed evident ectopic bone formation in untreated animals compared to 

their healthy control joints at six (p < 0.0001) and twelve weeks (p < 0.0001). TA injected joints 

showed only minimal or no osteophyte formation compared to their healthy control joints (p = 

0.02 at six weeks, p = 0.11 at twelve weeks) and compared to untreated OA joints (p < 0.0001 

at six and twelve weeks) (Figure 3B,C).

Effect of intra-articular saline injections on macrophage activation
In order to test whether the amount of macrophage activation in TA did not result from the 

intra articular injection, we tested in a small experiment whether saline injections also induced 

macrophage activation. Therefore, we injected five Wistar rats with a saline injection into a 

healthy knee joint. Subsequently, we SPECT/CT scanned these animals using 111In-EC0800 

as described before. In these animals, we found that there was no difference in measured 

radioactivity between non-injected and saline-injected knee joints (Figure 4). This suggests that 

an intra-articular injection does not induce macrophage activation that explains the additional 

measured activity in the TA treated animals in the first experiment.

Figure 4: Effect of intra-articular injection on macrophage activation determined with 111In-EC0800 SPECT/CT. There 

was no difference between knee joints without intra-articular injection (white column) and knee joints injected with saline 

(light gray column) one day before SPECT/CT scanning. Knees injected with triamcinolone injected one day before SPECT/

CT showed clearly increased radioactive uptake, which means increased macrophage activation. 
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Figure 5: Cartilage quality and quantity was determined from samples of untreated (circles) and triamcinolone treated 

(squares) rats with equilibrium partitioning of a ionic contrast agent using (EPIC-)μCT (A-D). The amount of sulphated-

glycosaminoglycans (sGAG) (arbitrary gray values; A,B) and cartilage thickness (μm; C,D) were measured of medial (A,C) 

and lateral (B,D) cartilage compartments of the tibia plateau harvested from healthy  joints (blank boxes) and OA induced 

joints (gray boxes). Attenuation values from EPIC-μCT scans are inversely related to the sGAG content, meaning that a high 

attenuation corresponds to low sGAG content. Coronal images from representative EPIC-μCT scans of the tibia plateau 

show the amount of cartilage (erosions indicated with ▲ and dashed lines) and sGAG content (displayed in color). *: 

p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals. 

Osteoarthritic changes of articular cartilage
Both medial and lateral cartilage compartments of the tibia plateau were severely sGAG 

depleted in untreated controls at six and twelve weeks (Figure 5A). After the running protocol 

at six weeks, cartilage of the medial compartment was slightly reduced in thickness (Figure 5C). 

Lateral cartilage thickness was severely degraded (Figure 5D) and resulted in almost completely 

denuded subchondral bone (Figure 5E). During subsequent six weeks of rest medial cartilage 

continued to degrade, in the lateral compartment an ongoing decline in cartilage thickness was 

not seen (Figure 5C-E). sGAG loss and cartilage degradation in triamcinolone treated animals 

followed the same pattern as in untreated animals. Only at six weeks medial cartilage showed 

slightly decreased attenuation values (p = 0.04), and at twelve weeks we measured lower 

attenuation values in lateral cartilage (p = 0.02). Representative medial and lateral cartilage 

images from safranin-O stained histology from untreated controls and triamcinolone treated 

animals at six and twelve weeks are shown in Figure 6. 
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Figure 6: Safranin-O stained histology sections showing representative images of medial and lateral tibial plateau 

cartilage after six weeks and twelve weeks of follow up of untreated and triamcinolone treated animals.

Subchondral bone changes
Compared to their healthy control joints, medial subchondral plates in OA induced joints 

of untreated controls tended to decrease in thickness from six to twelve weeks, but was not 

significantly different (p = 0.16). Medial subchondral plate thickness in triamcinolone treated rats 

followed the same pattern as its healthy control joint (Figure 7A), but compared to untreated 

controls their subchondral plate was slightly thicker at twelve weeks (p = 0.01). Generalized 

estimating equations showed that medial subchondral bone plates of triamcinolone treated 

animals were thicker during the experiment compared to untreated controls (p = 0.02). Sagittal 

μCT images show that this increase in subchondral plate thickness was not homogeneously 

distributed like in healthy controls knees, but more focal and indicative of a sclerotic phenotype 

(Figure 7G). Medial plate porosity did not increase in both experimental groups throughout 

the experiment (Figure 7B). Lateral compartment subchondral bone thickness of untreated OA 

joints was clearly increased compared to their healthy control joint at six weeks (p < 0.0001) and 

twelve weeks (p < 0.0001) (Figure 7C,H). Longitudinal measured subchondral bone thickness 

analyzed using generalized estimating equations showed that triamcinolone treated animals 
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developed more lateral subchondral sclerosis in their OA induced joints during the experiment 

compared to untreated controls (p < 0.0001). Although untreated animals developed minimal 

subchondral plate porosity at six weeks, no differences were found compared to triamcinolone 

treated animals (Figure 7D,H). Trabecular thickness did not differ between both experimental 

groups during the experiment (Figure 7E). BV/TV ratios were lower in OA induced joints of 

both groups compared to their healthy knee joints (Figure 7F), no differences were found 

between OA joints of untreated controls or triamcinolone treated animals. However, healthy 

control joints of triamcinolone treated animals had higher BV/TV ratios compared to healthy 

control joints of untreated animals (p = 0.003).

Effects of TA treatment on in vitro cultured M1 and M2 macrophages
Monocyte-derived macrophages differentiated in the presence of GM-CSF showed enhanced 

expression of CD80, while CD163 expression was absent (Figure 8A-B). When monocytes 

were exposed to TA in addition to GM-CSF, both CD163 receptor and FRβ expression increased 

significantly (Figure 8C). Interestingly, TA strongly decreased survival in GM-CSF stimulated 

monocytes, but not in M-CSF stimulated monocytes.  Monocyte-derived macrophages cultured 

in the presence of M-CSF showed enhanced expression of CD163 and CD16, but absence of 

CD80 (Figure 8A-B). FRβ expression in these cells was increased compared to untreated GM-

CSF cells, but was not enhanced through the addition of TA (Figure 8C). Representative images 

from FACS experiments are shown in Figure 8D. Additionally, TA treated M-CSF macrophages 

showed significantly increased levels of IL10 mRNA expression (Figure 8E).

In this study we investigated the effects of TA injections on in vivo macrophage activation 

during OA progression. In untreated animals, there was a marked increase of activated 

macrophages measured with in vivo FRβ targeted SPECT/CT imaging (Figure 3). It is thought 

that activated macrophages in OA produce TGFβ which induces BMP production in synoviocytes, 

which subsequently triggers osteophyte development59, 60. Therefore, it was expected to see 

progressive growth of patellar osteophytes in untreated animals. In treated animals, however, 

intra-articular TA injections completely prevented osteophyte development. Interestingly, TA 

injections severely induced macrophage activation (Figure 3). Since saline injections did not 

reproduce this enhanced SPECT/CT signal, we can exclude the injection itself to be the cause 

for macrophage activation (Figure 4). We hypothesized that this combination of enhanced 

macrophage activation and prevented osteophytosis might be explained through different 

subtypes into which macrophages can differentiate. 

Therefore, we performed in vitro experiments using GM-CSF and M-CSF cultured monocytes. 

GM-CSF cultured monocytes were CD80+ and CD163- typical for classical (M1) activated 

macrophages342. Whereas M-CSF cultured monocytes were CD163+ and lacked CD80, which is 
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typical for alternatively (M2) activated macrophages343, 344. It is known that FRβ is predominantly 

co-expressed in CD163+ macrophages345. Our experiments confirm this finding, since FRβ 

was especially elevated in M-CSF cultured M2 macrophages (Figure 8C). However, adding TA 

during GM-CSF driven macrophage differentiation, these M1 activated macrophages start to 

co-express FRβ. Interestingly, these cells stop CD80 expression and increase CD163 expression, 

suggesting that TA stimulates macrophages towards an activated M2 phenotype. Although this 

TA induced FRβ+ M2 activated phenotype explains the increased SPECT/CT signal in TA treated 

animals, this does not explain why TA treated animals lacked osteophyte formation. 

Figure 7: Subchondral bone changes analyzed with longitudinal in vivo μCT in untreated animals (circles) and 

triamcinolone treated animals (squares).  Subchondral plate thickness (Sb. Pl. Th.; A, C) and porosity (Sb. Pl. Por.; B, D) 

were measured in the medial (A,B) and lateral (C,D) compartment of the tibial epiphysis. Changes in trabecular thickness 

(Tb. Th.; E) and trabecular bone volume fraction (BV/TV; F) were measured in tibial epiphysis bone marrow. Representative 

sagittal images from binary μCT scans show pore development (indicated with ▲) and development of subchondral sclerosis 

(indicated with dashed line and *) in the medial (G) and lateral (H) compartment of the tibial epiphysis. *: p<0.05, 

**: p<0.01, ***: p<0.001, error bars indicate 95% confidence intervals.
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Glucocorticoids are known inducers of a specific macrophage subtype, known as regulatory 

macrophages. These are a specific form of M2 activated macrophage which is considered 

anti-inflammatory. Through interaction with transcription factors, glucocorticoids regulate 

macrophage gene expression levels346. By induction of Iκβ, glucocorticoids inhibit NFκB347 that 

results in decreased production of pro-inflammatory cytokines (such as IL1, IL6 and TNF)348. 

Furthermore, the regulatory macrophage can be characterized by enhanced IL10 production178. 

Therefore, we analyzed our in vitro cultured M2 macrophages for mRNA expression of IL10, and 

found that TA strongly increased IL10 expression levels in M-CSF cultured monocytes (Figure 

8E). We believe that this underlines that TA strongly polarizes macrophage activation towards 

a specific anti-inflammatory macrophage subtype that does not promote osteophyte growth in 

our in vivo model for OA. 

Figure 8: Expression of CD80, CD163 and folate receptor analyzed using FACS in monocyte-derived macrophages with 

or without triamcinolon Data shown are representative of three independent experiments. (A-C). Representative flow-

cytometry plots are shown in D. Relative IL10 mRNA expression in monocyte-derived M2 macrophages with or without 

triamcinolon (E). Data represent two independent experiments.*: p<0.05, **: p<0.01, ***: p<0.001, error bars indicate 

SEM.Discussion

Besides the effects of TA on macrophages, we also investigated whether TA could be 

beneficial for either articular cartilage or subchondral bone. In a previous reported study using 

a preclinical animal model for traumatic OA, intra-articular injections with dexamethasone led 
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to less cartilage damage334. This study could not reproduce this result. Our cartilage results 

showed no protection against cartilage erosion of the lateral tibia plateau, or against loss of 

cartilage matrix of the medial plateau (Figure 4-5). There were also no beneficial effects of TA 

against pathological changes within the subchondral bone. In fact, GEE analysis of the medial 

subchondral plate showed that more subchondral sclerosis developed in TA treated animals. 

From repeated intra-articular injections of TA, it is known that cartilage matrix metabolism 

is changed as measured by biomarkers within synovial fluid349. Furthermore, corticosteroid 

treatment is known to induce chondrocyte apoptosis in chondrocyte cultures and in vivo350.

These data suggests that TA treatment could very well have induced direct toxic effect for 

chondrocytes. Subsequently, more chondrocytes death could have enhanced cartilage damage, 

and therefore more subchondral sclerosis developed. 

More studies using SPECT/CT imaging techniques are needed to gain more knowledge related 

to macrophage activation and their manipulation through therapeutic strategies in all kinds of 

disease. Other studies already showed the possibility to image (M1) polarization of microglia (a 

group of macrophages within the brain) in animal models for psychiatric disorders351. Different 

tracers enable us to differentiate between M1 and M2 activated macrophages352, hopefully in 

the near future it will be possible to also use tracers in order to differentiate between different 

subtypes (e.g. wound-healing and regulatory) of M2 macrophages. These techniques would 

allow monitoring of specific in vivo activated macrophage subtypes in pre-symptomatic stages 

of OA and measure effects of pre-emptive intervention strategies dedicated to interfere with 

macrophage polarization. Eventually, these studies will answer questions how macrophages 

and related immune cells might be manipulated more specifically in order to prevent or delay 

disease progression.

Conclusion
Pre-emptive treatment with intra-articular TA injections showed enhanced FRβ related 

macrophage activation in an in vivo model for OA, and fully prevented osteophyte development. 

TA strongly induced monocyte differentiation towards an M2 and anti-inflammatory macrophage 

phenotype. TA leads to increased IL10 mRNA levels in vitro and reduced osteophytosis in 

vivo, which indicates that TA potently induced an CD163+ and FRβ+ regulatory macrophage. 

Unfortunately, FRβ cannot be used to differentiate between wound-healing and regulatory 

M2 subtypes. Future studies should aim to identify specific surface markers for each of these 

subtypes, in order to enable in vivo identification using imaging techniques like SPECT/CT. 

Future fine tuning of their anti-inflammatory and anti-pain capabilities, might prove beneficial 

against disease progression and reduce patient complaints.
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ABSTRACT

Introduction
Mesenchymal stem cells (MSCs) are promising candidates for osteoarthritis (OA) therapies. 

Evaluation and optimization of the effects of these therapies on multiple outcome measures 

is required before translation into clinical application. The purpose was to study the effects of 

intra-articular injected  bone marrow derived MSCs, as well as freshly isolated bone marrow 

mononuclear cells (BMMNCs), on pain, cartilage damage, bone changes and inflammation in a 

rat OA model in vivo.

Methods
OA was induced unilaterally by injection of mono-iodoacetate (MIA). After three weeks, the 

24 animals were randomly divided into three groups: 1. saline control, 2. MSCs, 3. BMMNCs. 

Four weeks after treatment, pain was assessed with an incapitance tester, subchondral bone 

alterations were measured with µCT and cartilage quality and joint inflammation were analyzed 

with histology.

Results
Both therapies were well tolerated by the animals. Animals treated with MSCs distributed 

significantly more weight to the affected limb after treatment than before treatment, which was 

not observed in the other groups. MIA injected knees displayed significant cartilage damage, 

subchondral bone alterations and synovial inflammation compared to contralateral knees. No 

statistically significant differences between treatment groups regarding any of these outcome 

measures were observed.

Conclusion
In our OA model, injected MSCs were able to reduce MIA induced pain, as measured by 

an increased weight distribution to the affected limb. No statistically significant effects of the 

cellular therapies on structural damage and synovial inflammation were found. This is the first 

study evaluating the effect of cell therapy on pain, as well as structural changes and synovial 

inflammation in a small animal OA model. Pain is the most relevant clinical outcome measure; 

thereby the results of our study underline the potential of MSCs as an OA therapy. Additional 

studies should focus on more pain aspects as well as the relation with structural damage to 

further optimize cellular therapies for OA treatment.
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INTRODUCTION 

Osteoarthritis (OA) is a degenerative joint disease characterized by inflammation and catabolic 

processes, leading to progressive cartilage degeneration. Cartilage has limited intrinsic repair 

capacity and so far no drugs are available to structurally modify OA processes353.Mesenchymal 

stem cells (MSCs) are promising candidates for cartilage regeneration and OA therapies since 

they have chondrogenic potential and the ability to form extracellular matrix354. Additionally, 

MSCs have immunomodulatory and trophic capacities by secreting anti-inflammatory factors 

and growth factors355, which could possibly encounter inflammatory and catabolic aspects of 

OA. Therefore, MSCs have been injected intra-articular in pre-clinical and some initial clinical 

studies as a treatment for cartilage damage and OA, showing promising results356-364. Animal 

studies using cell tracking after cell injection showed only limited cartilage formation by 

chondrogenic differentiation ofthese MSCs356, 359, 360, 362-364. Instead, injected cells were mostly 

found in other parts of the joint, such as the synovium. Furthermore, decreased levels of 

inflammatory cytokines in synovial fluid were found in MSC-treated OA joints365. These findings 

underline the potential dual role of MSCs as an OA modifying drug, not only able to regenerate 

damaged cartilage but also positively contributing to joint homeostasis.

The effects of MSC therapy on pain or other clinical outcome measures are difficult to assess 

in animal studies, and therefore they are not extensively documented. Nevertheless, pain is the 

main reason to proceed to joint replacement in OA patients366. As structural joint damage and 

pain in patients are not well correlated366, 367, separate evaluation of these outcome measures is 

essential to assess the efficacy of cell therapies. The mono-iodoacetate (MIA) model has been 

extensively studied as a pain model for OA in animals368-370.

Although MSCs appear promising for OA therapy, several practical issues hinder broad 

clinical translation. Extensive culture procedures are necessary to obtain MSCs, a costly and 

time consuming procedure requiring special facilities. Bone marrow mononuclear cells 

(BMMNCs) on the other hand, can be harvested in a one-step procedure. These cells contain 

various progenitors371 which could also attenuate degenerative OA processes. In order to 

evaluate multiple aspects of OA pathology and to explore potential options to enhance clinical 

translatability, we studied the effects of intra-articular injected cultured rat MSCs, as well as rat 

BMMNCs, on pain, cartilage damage, bone changes and inflammation in a MIA rat OA model 

in vivo. 

METHODS

Ethical approval
All animal experiments were performed after approval of the animal ethical committee 

(protocol # EMC116-10-07 and EMC 116-11-03). 
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Preparation and colony forming capacity of bone marrow derived cells
Rat MSCs were isolated by flushing morselized femurs and tibiae from four week old male 

Wistar rats. The harvested cells were cultured in MSC culture medium, consisting of DMEM 

containing 10% fetal calf serum (FCS, Lonza,Verviers,Belgium,),50 μg/ml gentamicin, 1.5 

μg/ml fungizone (both Invitrogen,Carlsbad, CA, USA), 1ng/ml fibroblast growth factor-2 

(InstruchemieB.V.,Delfzijl,The Netherlands),and (0.1 mM l-ascorbic acid 2-phosphate Sigma,St.

Louis,MO,USA).All media were renewed twice a week. Passage 2-3 cells were used for intra-

articular injection. 

Rat bone marrow mononuclear cells (BMMNCs) were obtained by cell separation of the 

harvested bone marrow using a Ficoll gradient (Ficoll-Paque™ PLUS, d = 1,077, GE Healthcare, 

Vienna, Austria) at 1,000 G. BMMNCs were removed from the gradient interface, washed in 

physiological saline and subsequently injected. To assess the presence of MSCs in BMMNCs, 

aliquots of these cells were seeded at a density of 12 x 104 cells/cm2 and cultured in MSC culture 

medium. After 10 days, colonies consisting of more than 50 cells were counted to determine the 

percentage of colony forming cells. It was demonstrated that these isolated BMMNCs had an 

average of one colony forming cell per 84,000 ± 20,000 mononuclear cells, confirming previous 

studies describing one cell in 10,000 - 250,000 BMMNCs to have MSC characteristics372, 373. 

Induction and treatment of osteoarthritis
Osteoarthritis was induced unilaterally in 24 male Wistar rats (Harlan Netherlands BV, Horst, 

the Netherlands) of 16 weeks old. OA induction was performed by an intra-articular injection 

of 300µg mono-iodoacetate (MIA). Contralateral control knees were not injected with any 

substance. Rats were randomly divided into three treatment groups: 1. Control; 2. MSCs and 3. 

BMMNCs. Saline was used as a control and as vehicle for all other injections; all injections were 

applied under isoflurane anesthesia in a volume of 50 µl using a 27G needle (Sherwood-Davis & 

Geck, Gosport, UK). Treatments were given three weeks after OA induction to allow the initial 

inflammatory phase after MIA injection to cease and structural damage to occur. MSCs were 

given at a dose of 1 x 106 cells per joint, BMMNCs were given at a dose of 10 x 106 cells per 

joint. Viability of all cells was assessed before injection and after injection, on the remainder of 

the cells in the syringe, by means of trypan blue exclusion tests. Overall cell viability for both 

cell types was 96.0 ± 3.9% before injection and 95.4 ± 1.1% (mean ± SD) for the remainder 

of the cells after injection. Rats were euthanized four weeks after treatment, knee joints were 

harvested for further analyses.

Hind limb weight distribution measurements 
Hind limb weight distribution was measured using an incapacitance tester (Linton 

Instrumentation, Norfolk, UK) as an index of joint discomfort as described previously368. Animals 

were habituated to the apparatus starting two weeks prior to experiments. Rats were positioned 
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on the incapitance tester with each hind limb resting on a separate force plate. The force 

exerted by each hind limb was measured in grams and averaged over a 3 second period. Each 

rat was measured for 5 subsequent times per day on 2 consecutive days by an observer blinded 

to the given treatment. The average of 10 obtained readings was used to calculate the weight 

on the affected limb as a percentage of total weight distributed by both hind limbs. Rats were 

measured before inducing OA, three weeks after inducing OA (before treatment) and two and 

four weeks after treatment. 

µCT procedure and analysis 
To evaluate cartilage damage before cell treatment a µCT arthrography (µCTa)was performed 

as described previously115. Briefly, rat knees were injected with 50 µl non-diluted ioxaglate 320 

(Hexabrix, Hazelwood, MO), mixed with epinephrine 10 μg/ml (Centrafarm, Etten-Leur, the 

Netherlands) to induce vasoconstriction and to prevent loss of intra-articular ioxaglate. AµCTa 

was made using the Skyscan 1076 µCT scanner (Skyscan, Kontich, Belgium). Scan time was 

fifteen minutes at anisotropic voxel size of 35 µm, voltage of 55 kV, current of 181 mA, field 

of view 35 mm and a 0.5 mm aluminum filter, over 198° with a 1° rotation step. All scans 

were reconstructed identically. Patellar cartilage volume was measured in 3D using data analysis 

software (CT Analyzer, Skyscan)157. 

For subchondral bone analysis, fixated knee joints were scanned four weeks after treatment 

ex vivo. Scan time was 30 minutes at an isotropic voxel size of 18 µm, voltage of 60 kV, current 

of 167 mA, field of view 35 mm and a 0.5mm filter over 198° with a 0.4° rotation step. Ex vivo 

µCT scans were segmented into binary datasets using an automated thresholding algorithm141. 

The subchondral bone part of the distal femur epiphysis was separated from other bone 

structures using in-house software. Subchondral plate thickness, plate volume and total pore 

volume was measured in the cortical bone of the femoral trochlea35. Subchondral plateporosity 

was expressed as a percentage of the subchondral plate volume.

All MIA injected knees and two contralateral control knees per treatment group were used for 

analyses, leading to a total of 8 knees per group.

Tissue harvest and histologic evaluations
After euthanasia, all rat knees were excised and fixed in formalin 4% (v/v) for one week. After 

µCT scanning, joints were decalcified with formic acid 10%(v/v) for3 weeks and embedded in 

paraffin. Coronal sections were stained with Safranin O to evaluate structural cartilage damage 

and Thionin to visualize the amount and distribution of GAG. Thionin was used to evaluate GAG 

distribution due to a low sensitivity of Safranin O in the case of severe GAG loss374. Cartilage 

quality was evaluated with a score ranging from 0-6 for structure using previously described 

stages by Pritzker et al.143, and a score ranging from 0-4 for GAG staining intensity. GAG 
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staining intensity and structure grading were multiplied with a previously described staging 

score: 1. 0–25%; 2. 25–50%;3. 50–75%; 4. 75–100% of cartilage surface affected157. This 

way, a maximum score of 16 for GAG staining intensity and 24 for structural damage could 

be obtained for each cartilage structure, where a high score represents severe GAG loss or 

structural damage. Scoring was performed on the patella, trochlea, tibial plateau and femoral 

condyles at three different positions. An average score for GAG and structure was calculated 

for each joint compartment. 

Synovial inflammation was assessed using a hematoxylin eosine staining. Synovial thickness 

was measured from the bone margin to the capsule in the parapatellar recesses at the location 

where the synovium folds from the capsule over the femoral bone, based on a previously 

described method375. Synovial thickness was determined at the medial and the lateral side at 

three positions and averaged to obtain a single value per knee. Measurements were performed 

using the NanoZoomer Digital Pathology program (Hamamatsu Photonics, Ammersee, 

Germany). Synovial inflammation was assessed by ranking the knees in an order from minimum 

to maximum (score 1 - 40) based on synovial fibrillation and cellular infiltration in the subsynovial 

tissue. 

All MIA injected knees and two contralateral control knees per treatment group were used for 

analysis by an observer blinded to the given treatment, leading to a total of 8 knees per group.

Cell tracking experiments
To evaluate adequate injection of cells in the joint and to assess longitudinal cell viability, 

we performed a  cell tracking experiment using bioluminescence imaging (BLI) and magnetic 

resonance imaging (MRI). 

A self-inactivating luciferase lentivirus was prepared by transient transfection of HEK293T 

cells as mentioned before376.{Guenoun, 2013 #49} Rat mesenchymal stem cells (Millipore, 

Billerica, MA, USA) were grown to 50% confluency in a 24 well plate in DMEM/F10, 10% Fetal 

Calf Serum (FCS), penicillin/streptomycin (P/S) and infected with 50 µl lenti-viral stock, resulting 

in luciferase-expressing MSCs.

One day prior to injection, Fluc-MSCs were labelled using superparamagnetic iron oxides. SPIO 

labelling was performed using ferumoxides (Endorem®, Guerbet S.A., Paris, France) complexed 

to protamine sulfate (LEO Pharma N.V., Wilrijk, Belgium) as described earlier377. For removal of 

extracellular iron, cells were washed with PBS containing heparin 10 U/ml (LEO Pharma B.V., 

Breda, the Netherlands).

One million cells were injected, suspended in 50 μl saline, bilaterally in the knees of 3 male 



151

MESENCHYMAL STEM CELLS REDUCE OA RELATED PAIN

9

Wistar rats. These rats had OA induced unilaterally,  identical to the procedure previously 

described, to study whether there would be a difference in cell survival dependent on the 

damaged joint environment. MR imaging was performed once, immediately after cell injection, 

to confirm intra-articular localisation of the cells. Scanning was performed on a preclinical 7.0T 

MR 901 Discovery MRI scanner (General Electric Healthcare, Milwaukee, Wisconsin) equipped 

with a 150mm bodycoil for transmission, and a 4 channel cardiac coil (Rapid Biomed GmbH, 

Rimpar, Germany) for signal reception. A 3D FSPGR sequence was used to scan rat knees 

injected with SPIO-Fluc-MSCs (TE/TR=10.0/30.0 ms, NEX=2, FOV=6.00 x 4.50 cm2, acquisition 

matrix 512 x 512, Slice thickness = 0.50 mm, Bandwidth = 31.25 kHz, Flip angle = 16°).

To evaluate the presence of living cells over time, luciferase activity of injected SPIO-Fluc-MSCs 

was measured using the Xenogen IVIS Spectrum (Caliper LS, Hopkington, MA,USA) 5 min after 

the intra-peritoneal injection of D-luciferine (Promega). Animals were scanned repeatedly until 

the signal became below detection limit,  resulting in data at days 1, 3, 7, 14 and 21.  Optical 

intensity is reported as arbitrary units. Data were analyzed using the software Living Image 

version 3.2 (Caliper LS).

Statistical analysis 
The effect of treatment on the difference between weight distribution on the hind limbs before 

and after MIA and between the cellular treatments were analyzed using a repeated measures 

ANOVA test for all groups, followed by a paired t-test for the treatment groups separately. 

Quantitative µCT and histology data was analyzed by means of unpaired t-tests to evaluate MIA 

induced effects and one-way ANOVA tests for treatment effects. Semi-quantitative histology 

scores were compared using non-parametric Mann-Whitney tests to assess MIA induced effects 

and Kruskal Wallis-tests for treatment effects (SPSS, SPSS Inc, Chicago, USA). For all tests, P 

values<0.05 were considered statistically significant.

RESULTS 

All cell injections were well tolerated by the animals without any macroscopic sign of 

inflammation. 

Hind limb weight distribution
To evaluate pain, we determined weight distribution over the hind limbs (Figure 1, top row). 

Rats loaded both hind limbs equally at the start of the experiments: the limbs that later received 

MIA bore 50.6 ± 1.6 % of the weight and the contralateral limbs 49.4 ± 1.6 % (mean ± SD). 

Three weeks after MIA injection, weight distributed to the affected leg was significantly reduced 

compared to baseline (45.9 ± 6.1 % vs 50.6 ± 1.8 %, P=0.002, mean ± SD) (Figure 1A), 

indicating pain sensation. No differences were observed between the treatment groups at this 
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timepoint (P = 0.937), pointing towards a random distribution of MIA induced pain. Two weeks 

after treatment, no significant differences in weight distribution were observed in any of the 

treatment groups (data not shown). Four weeks after treatment, the group treated with MSCs 

was the only group that had significantly more weight distributed to the affected limb after 

treatment than pre-treatment (51.2 ± 5.0 % vs 46.5 ± 4.1 %, P = 0.003, mean ± SD) (Figure 

1B-D). 

Figure 1: Assessment of hind limb weight distribution. Hind limb weight distribution was determined as an index of 

joint discomfort (upper row). MIA caused a reduction of weight distributed to the affected limb (A). Rat MSC injection was 

the only treatment that caused a significant increase in weight distributed on the OA limb (B-D), *** P < 0.001.

Structural integrity: cartilage quality, subchondral bone alterations and 
synovial inflammation

µCT arthrography was used to assess loss of cartilage volume elicited by the MIA injection 

as a measure of cartilage quality before cell therapy. MIA injected knees displayed a smaller 
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cartilage volume than control knees (0.48 ± 0.15 mm3 vs 0.82 ± 0.17 mm3, P < 0.001, mean ± 

SD, data not shown). This volume depletion as measured by uCT arthrography is a combination 

of cartilage matrix loss as well as GAG depletion, thereby representing both these aspects of 

cartilage damage 157. Cartilage volume did not differ between the MIA injected knees of the 

different treatment groups (P = 0.929), indicating a random distribution of cartilage damage 

before application of the treatment.

Cartilage damage at the end of the experiments was measured on histology with a 

semiquantitive score for GAG loss and structural damage. Cartilage damage was most 

pronounced in the patellofemoral region and all presented data reflect this compartment. For 

this compartment the scores of the patella and the trochlea were summed up, leading to a score 

range for GAG loss from 0 to a maximum loss of 32 and a score range for structural damage 

from 0 to a maximum damage of 48. MIA injected knees showed more GAG loss than non-MIA 

injected knees (24.0 (0.0 – 32.0) vs 1.5(0.0 – 2.0), P < 0.001, range (95 % CI)) (Figure 2A-B, 

top row). No significant differences were observed between the treatment groups (P= 0.393). 

Structural cartilage damage was significantly present in MIA injected knees versus control knees 

(4.4 (0.0 - 8.5) vs 1.3 (0.0 - 2.2), P < 0.001, range (95 % CI)) (Figure 2C). Between the different 

treatment groups, no statistically significant differences were found (P = 0.959). 

Ex vivo µCT was used to evaluate trochlear subchondral bone porosity and thickness after 

treatment. Overall, MIA injected knees had a significantly more porous (6.3 ± 6.2 % vs 2.0 ± 0.8 

%, P < 0.001, mean ± SD) and thinner (221.1 ± 29.4 µm vs 253.8 ± 19.1 µm, P = 0.005, mean 

± SD) subchondral plate than control knees (Figure 2D-F, middle row), which is in concordance 

with previously reported early OA related changes 29, 35, 378. No statistically significant differences 

between treatment groups were observed regarding porosity (P = 0.208) or subchondral plate 

thickness (P = 0.607).

Synovial inflammation was evaluated by measuring synovial thickness at the parapatellar 

recesses and ranking the samples based on synovial fibrillation and cellular infiltration (Fig 2G-I 

(lower row)). MIA injected knees had a thicker synovium (730.4 ± 94.8 µm vs 601.6 ± 32.6 

µm, P < 0.001, mean ± SD) and inflammation was ranked higher (24.5 (5.0 – 40.0) vs 5.0 (1.0 

–12.0), P < 0.001, range (95 % CI)) than control knees without MIA. No significant differences 

were observed between treatment groups for synovial thickness (P = 0.115) or inflammation 

ranking (P = 0.111). 
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Figure 2: Structural integrity: cartilage quality, subchondral bone alterations and synovial inflammation. Thionin staining 

demonstrated evident GAG loss and mild structural cartilage damage in MIA injected knees compared to contralateral 

control knees (A-C, upper row). No significant differences between treatment groups were found. µCT analyses displayed 

increased porosity and thinning of trochlear subchondral bone plates in MIA injected animals compared to contralateral 

control knees (D-F, middle row). Between the treatment groups, no significant differences were observed.  Hematoxylin 

eosine staining illustrating increased synovial thickness, fibrillation and subsynovial cellular infiltration in MIA injected knees 

compared to contralateral control knees (G-I, lower row). No significant differences between treatment groups were found.. 

*** P < 0.001. Magnification A and G upper row 25 x, magnification G lower row 100x, ** P < 0.005, *** P < 0.001. 

Cell tracking experiments
MR images confirmed intra-articular localisation of injected SPIO-Fluc MSCs by the presence 

of signal voids in the joint space (Figure 3A).  BLI signal of injected MSCs could be clearly 

observed in the knee joints (Figure 3B), and increased up to three days to a 5.3-fold increase in 

OA knees and a 5.7 fold increase in healthy knees (Figure 3C). From day 3 onwards, a gradual 

decrease of the BLI signal occurred and after three weeks the signal became undetactable in 

three of the six knees and was near detection limit in the other three knees. None of the time-

points displayed a clear difference in OA and healthy joints.
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Figure 3: Cell tracking experiments. Injected SPIO-Fluc MSCs were found in the joint space by MRI (A).  BLI signal 

of injected MSCs showed the presence of viable cells in the knee joints (B). This signal increased up to three days and 

thereafter gradually decreased till the end of the study period (C). None of the time-points indicated a clear difference in 

OA and healthy joints.

DISCUSSION

MSCs are promising candidates for OA treatment since they have chondrogenic potential, 

as well as a function in immunomodulation and tissue regeneration by the secretion of soluble 

factors379. We compared the effects of intra-articular injected cultured rat MSCs and BMMNCs 

on pain, in addition to inflammation and structural damage in a rat OA model in vivo.  The MSC 

treated group, but not the BMMNC or the saline treated group, significantly increased loading 

of the affected limb after treatment, indicating a decrease in pain sensation. Nevertheless, no 

significant difference between the different treatment groups on any of the structural outcome 

measures were found.

The effects of MSC therapy on pain or other clinical outcome measures are difficult to assess 

in animal OA studies, and therefore they are not extensively documented. To date, two studies 

describe the influence of MSCs on pain and range of motion in large animal OA models, with 

conflicting results. Black et al. reported an improvement in lameness, pain on manipulation and 

range of motion in dogs treated with adipose derived MSCs compared to placebo for naturally 

developed hip380. Frisbie et al. on the other hand, found no improvement in pain and range of 

motion after bone marrow derived MSC treatment in a horse OA model of the middle carpal 

joint365. These different findings could be due to many causes, including differences in used cell 

types, cell culture protocols or OA models. Additionally, pain is a complicated phenomenon 

because of the existence of different pain phenotypes and their different mechanisms, including 

inflammatory and neuropathic pain381. In animal studies, pain can be evaluated indirectly, 

using for instance weight bearing or gait analyses, or directly by assessing for instance paw 
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withdrawal threshold in response to mechanical or thermal stimuli382. Our findings show a 

significant decrease in pain, as measured by an increased weight bearing of the affected limb, 

after intra-articular application of MSCs. Further evaluation on multiple pain aspects is needed 

to assess the efficacy of MSC as a therapy to alleviate pain in clinical OA.

One of the goals of our study was to compare the efficacy of cultured MSCs and freshly 

isolated BMMNCs in their OA modifying capacity. No severe adverse effects were observed in 

our study after intra-articular application of allogeneic rat MSCs or allogeneic rat BMMNCs. 

Albeit MSCs have been previously described to be immune privileged379, 383, more recent reports 

show that MSCs maintain a degree of immunogenicity that may limit their longevity and 

attenuate their advantageous effects384-386. This could also explain the limited cell survival we 

observed three weeks after injection in our BLI experiments. We found no macroscopic signs of 

inflammatory responses in the (sub)acute phase after cell injections, indicating that they did not 

induce a substantial immune response. Nevertheless, we cannot rule out that the MSCs used in 

this study elicited a mild immunological reaction given their non-autologous origin. This might 

counteract possible favorable effects of these cells, resulting in mild overall treatment effects or 

the fact that the pain reduction was only observed at the four week time point.

We used a mild OA model since we hypothesized that a fully degenerated joint would be 

beyond the repair capacity of cellular therapies. A disadvantage of this approach is that at 

the moment of cell injections, not all animals had developed evident OA-like characteristics 

on µCTa. After excluding animals without MIA-induced cartilage damage at the moment of 

treatment (four animals in total), the possible beneficial effects of MSC compared to saline 

became more pronounced for all outcome measures, albeit they still did not reach statistical 

significance, possibly due to the reduced power (data not shown). 

Previous studies have shown positive effects of intra-articular injected MSCs on cartilage 

quality in various animal models356, 363, 387. These studies used surgical OA models with a joint 

instability component. Two of these reports used cell tracking and showed homing of the cells 

mainly to the damaged structure and the synovium356, 363. This indicates an indirect protective 

effect of the MSCs and does not point towards actual regeneration of cartilage. The fact that 

there was no joint instability component in our model which could have been attenuated by 

MSCs, could explain the modest effects on joint structures of our cellular treatments. This is 

in accordance with Frisbie et al., who found no effect of MSCs on cartilage quality in a horse 

osteochondral defect OA model365. In addition, Matsumoto et al. found just a trend towards 

improved cartilage quality after injection of muscle-derived stem cells (MDSCs) in a rat MIA 

OA model 362. The effects of MDSCs became only clear after they were transduced with bone 

morphogenetic protein 4 and sFlt-1, a vascular endothelial growth factor antagonist. We used 

an OA model affecting the entire joint without mechanical instability, in that way resembling the 
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majority of clinical OA patients. The fact that in such models repeatedly modest effects of stem 

cell therapies on joint structures are reported and that the effects are increased after genetic cell 

manipulation indicates that further optimization is required before large scale clinical application 

can be considered. 

Another factor influencing the effect of MSCs could be the time of injection. We injected our 

cell preparations three weeks after induction of OA, after the inflammatory phase of the MIA 

model had ceased. Although MSCs are known to have immunosuppressive capacities379, MSCs 

need stimulation in order to exert their immunosuppressive role388, 389. Possibly, the amount 

of inflammation in our model did not elicit an immunomodulatory MSC function, thereby 

minimizing potential beneficial effects.  

 The capacity of intra-articular injected MSCs to regenerate cartilage in defects or to 

limit cartilage damage in surgical OA models with a joint instability component has been 

demonstrated by others356, 359-361, 363, 364, 387, 390, 391, indicating the potential of this strategy for joint 

diseases. In the current study, animals treated with MSCs significantly increased loading of their 

affected limb 4 weeks after cell injections, indicating a reduced pain sensation. The fact that 

we did not observe clear effects on the other outcome measures in our study could have many 

causes including the use of a mild OA model, the absence of apparent inflammation upon time 

of injection or the fact that we used non-autologous cells. Further optimization could make use 

of selection or pre-treatment of MSCs392 to generate subpopulations which are most suitable for 

modifying OA processes. Since OA is a multifactorial disease consisting of many simultaneous 

processes, assessment of the effect of cellular therapies on various pain aspects, as well as 

structural joint aspects and joint inflammation in multiple OA models is essential in reaching 

these goals. 
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ABSTRACT

Objective
Similar to delayed gadolinium enhanced MRI of cartilage, it might be possible to image cartilage 

quality using CT arthrography (CTa). This study assessed the potential of CT arthrography as a 

clinically applicable tool to evaluate cartilage quality in terms of sulfated glycosaminoglycan 

content (sGAG) and structural composition of the extra-cellular matrix (ECM).

Methods
Eleven human cadaveric knee joints were scanned on a clinical CT scanner. Of each knee 

joint, a regular non-contrast CT (ncCT) and a ioxaglate injected CTa scan were performed. Mean 

X-ray attenuation of both scans were compared to identify contrast influx in seven anatomical 

regions of interest (ROI). All ROIs were rescanned with contrast-enhanced μCT, which served 

as the reference standard for sGAG content. Mean X-ray attenuation from both ncCT and 

CTa were correlated with μCT results and analyzed with linear regression. Additionally, residual 

values from the linear fit between ncCT and μCT were used as a covariate measure to identify 

the influence of structural composition of cartilage ECM on contrast diffusion into cartilage in 

CTa scans.

Results
CTa resulted in higher X-ray attenuation in cartilage compared to ncCT scans for all 

anatomical regions. Furthermore, CTa correlated excellent with reference μCT values (sGAG) 

(R=0.86; R2=0.73; p<0.0001). When corrected for structural composition of cartilage ECM, this 

correlation improved substantially (R=0.95; R2= 0.90; p<0.0001).

Conclusions
Contrast diffusion into articular cartilage detected with CTa correlates with sulfated 

glycosaminoglycan content and to a lesser extent with structural composition of cartilage ECM. 

CTa may be clinically applicable to quantitatively measure the quality of articular cartilage.
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INTRODUCTION

The current reference standard for osteoarthritis (OA) staging is the Kellgren and Lawrence 

score based on knee radiography94. However, this technique is not sensitive enough to detect 

OA at an early stage. Sulfated glycosaminoglycan (sGAG) is a key molecule in articular cartilage 

and its content is an indicator of cartilage health103. Loss of sGAG from the articular cartilage is 

a hallmark of early OA and occurs well before OA is detected radiographically182, 393. 

Micro computed tomography (μCT) used together with a negatively charged contrast agent 

(ioxaglate) is a well established technique to image sGAG-distribution in cartilage113, 116, 394. 

The technique is comparable to delayed gadolinium enhanced magnetic resonance imaging 

of cartilage (dGEMRIC) 98-101. Previous in vitro work has shown that there is a clear inverse 

relationship between the amount of ioxaglate in the cartilage measured with μCT and the 

negatively charged sGAG content of the cartilage measured with biochemical essays (R2 = 91-

94%) 113, 394, and histology (R2 = 77%)114. In vivo research in small animals has also demonstrated 

that µCT arthrography is able to accurately measure changes in cartilage quality115, 157. 

In humans, CT arthrography (CTa) using intra-articular injected contrast agent is an 

established clinical technique for imaging of knee abnormalities395, 396. However, it is solely used 

for detection of morphologic derangements rather than assessment of cartilage sGAG content. 

In this cadaver study we determined whether it is possible to quantitatively measure the sGAG 

content of human articular cartilage with a clinical CT system, after intra-articular injection 

of a contrast agent. We also investigated to what extent the contrast influx into cartilage is 

influenced by the structural composition of the extra-cellular matrix (ECM). 

METHODS

Cadaver specimens
Thirteen cadaveric lower extremities from eleven individuals who had donated their bodies to 

science (seven female, four male; mean age at death 74 years, age range at death 30 - 96 years) 

were available. All extremities were freshly frozen at -20ºC until start of the experiment. Prior to 

first imaging, all specimens were slowly defrosted in a cooled environment (7ºC) for 5 days. All 

extremities were at room temperature during imaging.

Acquisition and post-processing of non-contrast CT and CT arthrography data
Non-contrast CT (ncCT) was performed of all knee joints using a second generation dual 

source multidetector spiral CT scanner (SOMATOM Definition Flash, Siemens Healthcare AG, 

Erlangen, Germany) with a tube voltage of 80kV and an effective mAs-value of 3140. Scan time 

per ncCT was approximately 30 seconds per scan. All specimens were scanned in the standard 



162

CHAPTER 10

anatomic axial plane. All scans were reconstructed with an effective slice thickness of 0.75 mm 

and a sharp reconstruction kernel (B75s). Multiplanar reconstruction was performed (image 

pixel size 0.265mm) (Figure 1A-C).

Immediately after ncCT, 20ml of 30% ioxaglate solution (diluted in saline) (Hexabrix 320, 

Mallinckrodt, Hazelwood, MO, USA)396was injected intra-articularlyusing a 18 gauge needle. 

All knees were flexed (~120°) and extended (~0°) for 5 minutes in order to achieve optimal 

distribution of the contrast agent throughout the joint. Ten minutes after contrast injection, all 

knees were rescanned using the same CT scanner, scanning parameters (30 seconds/scan), and 

reconstruction methods (Figure 1D-F).

Figure 1: Representative sagittally reconstructed images of a knee joint from non-contrast CT (ncCT) (A-C) and after 

intra-articular contrast injection for CT arthrography (CTa) (D-F), after segmentation into a binary dataset showing the 

definition of the regions of interest. (G-I), and a 3D representation of all seven analyzed ROIs (J-M): weight-bearing medial 

and lateral condyle (wbMC/wbLC; posterior medial and lateral condyle of the femur (pMC/pLC); weight-bearing medial and 

lateral plateau of the tibia (wbMP/wbLP); mid portion of patellar cartilage (mpP). 

All scans were converted into binary datasets using one fixed attenuation threshold (430 

Hounsfield units) that was selected visually to render the best possible segmentation of cartilage 

in all datasets (Figure 1G-I and Figure 2)115. Using analysis software (Skyscan, Kontich, Belgium), 
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per knee seven regions of interest (ROIs) were manually defined. Each cartilage ROI extended 

over 40 contiguous sagittal slices. These cartilage ROIs consisted of the central weight-bearing 

area of both medial and lateral femoral condyles (wbMC and wbLC), the posterior non-weight 

bearing area of both femoral condyles (pMC and pLC), both weight-bearing medial and lateral 

tibial plateaus (wbMP and wbLP) and the mid-portion of patellar cartilage (mpP) (Figure 1G-M). 

Anterior margins of the weight-bearing femoral condyles and tibial plateaus were defined at the 

level of the posterior aspect of the anterior meniscal horn. The posterior margins were defined 

at the level of the anterior aspect of the posterior meniscal horn. The posterior non-weight 

bearing femoral condyle ROI extended backward from the level of the dorsal margin of the 

posterior meniscal horn. We calculated the mean X-ray attenuation of cartilage in these ROIs on 

non-contrast and contrast-enhanced clinical CT scans.

Figure 2: Profile line through different structures (red line in insert) of both CT arthrography (A) and EPIC-microCT (B). 

On the x-axis subsequent pixels in the profile line are represented, the y-axis indicates the attenuation values of these pixels. 

With the red dotted line, we have visualized the level of our selected thresholds per technique (CT arthrography <430 

Hounsfield units; EPIC-microCT >25 and <125 gray values). 

Equilibrium partitioning of an ionic contrast agent using (EPIC-)µCT
Because EPIC-μCT has shown strong correlation with cartilage sGAG content, we selected this 

as our reference test for sGAG content of cartilage113, 114, 394. In EPIC-μCT an equilibrium-state 

exists between sGAG and contrast agent after a long incubation period. Due to the equilibrium, 

structural composition of the cartilage ECM397  does not influence the interaction between 

contrast and sGAG content of cartilage114. 

After CTa, the knee joints were dissected into five parts: both medial and lateral femoral 

condyles, both medial and lateral tibial plateaus and the patella. Soft tissue was removed to a 

maximal extent, without harming cartilage integrity. In order to achieve equilibrium between the 

contrast agent and sGAG in cartilage, all dissected specimens were incubated in an ioxaglate 

contrast solution for 24 hours at room temperature137, 138, 398. It is advocated to use the highest 



164

CHAPTER 10

possible concentration of contrast, allowing best cartilage segmentation to achieve highest 

sensitivity for changes in sGAG content114, 116. We used a 20% solution of ioxaglate, which 

resulted in the best cartilage segmentation at the air/cartilage and bone/cartilage interfaces.

EPIC-μCT was performed on a μCT scanner (Skyscan1076, Skyscan, Kontich, Belgium). The 

following scan settings were used: isotropic voxel size of 35 μm; a voltage of 55 kV; a current of 

181 mA; field of view 68 mm; a 0.5 mm aluminum filter; 198o with a 0.4 degree rotation step. 

Scanning time per specimen was 6 - 10 hours, depending on the size of the specimen (condyle, 

plateau or patella) which was scanned. A plastic foil was wrapped around the specimen to avoid 

dehydration. All scans were performed using the same settings and all data were reconstructed 

identically. 

Using Skyscan analysis software, these datasets were segmented using a fixed attenuation 

threshold between air (25 gray value) and subchondral bone (120 gray value) that was selected 

visually for the best segmentation result in all datasets. In all segmented μCT datasets, similar 

ROIs of the cartilage regions corresponding with ROIs of the clinical CTa were drawn and the 

mean X-ray attenuation was calculated again. These μCT based mean attenuation values were 

used as the reference for sGAG content against which the attenuation values on ncCT and CTa 

were compared.

Contrast diffusion influenced by structural composition of cartilage ECM
An important difference between the μCT and CTa scans is that with μCT scanning, the 

contrast agent and sGAG are partitioned at equilibrium. However, the principle of CTa is 

dependent on a diffusion process before equilibrium, which is influenced by the electrostatic 

interaction between sGAG and ioxaglate157. Therefore, measurements from non-equilibrium 

CTa are also influenced by other factors than sGAG content alone137, 138, 398. In particular, so-

called tissue dragging influences the interaction between contrast and sGAG147, 148. A high tissue 

drag results from an intact collagen network and is predominantly present in the top layers of 

healthy cartilage where collagen is densely packed parallel to the cartilage surface and acts as a 

barrier membrane399, 400. Consequently, contrast diffusion goes slowly in regions with high tissue 

drag. When collagen is structurally impaired, e.g. in OA, tissue dragging diminishes and more 

contrast penetrates in comparison to healthy cartilage due to a higher diffusion rate. 

In non-contrast CT, X-ray attenuation of cartilage results only from initial dissimilarities in 

cartilage composition (e.g. collagen, sGAG and water content). Together with the information 

on sGAG content from μCT, the influence of this structural composition of the cartilage on CTa 

outcome was further investigated using statistical models. 
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Statistical analysis
To assess if the influx of contrast agent into the cartilage could be detected, we compared 

the attenuation values per anatomical region between ncCT and CTa scans with paired student’s 

t-tests. To evaluate to what extent the attenuation values represented sGAG content, we 

fitted linear regression models of the mean X-ray attenuation values of both the ncCT and 

CTa to the results of μCT scans for each knee compartment, of which we report the Pearson’s 

correlation coefficients. To test if the correlation with μCT was different between ncCT and 

CTa, we compared the slopes of both models. These analyses were performed using GraphPad 

(Graphpad Software Inc., San Diego, USA). 

In this study we used thirteen knees from eleven individuals. The use of two knees from one 

individual could potentially lead to an overestimation of the correlation between μCT and CTa 

measurements401, 402. Exclusion of either one of the knees in the two patients that were scanned 

bilaterally did, however, not influence the results of our study. Therefore, we did not apply a 

statistical correction.

Next, we investigated to what extent the influx of contrast was influenced by structural 

composition of cartilage ECM itself. The spatial variation in X-ray attenuation inside cartilage 

from ncCT scans is related to both structural composition of cartilage ECM and its sGAG content. 

Thus, when ncCT attenuation values are fitted to μCT values (representing sGAG content) using 

linear regression, the residuals, which is that part of the ncCT values which is not explained by 

μCT, contain information on structural composition independent of sGAG content. When these 

residuals are subsequently added as a covariable to the linear regression model that relates CTa 

to μCT values, the contribution of these residuals to the model represent the extent to which the 

influx of the contrast is influenced by structural composition of the cartilage ECM, independent 

of sGAG content. These analyses were performed using SPSS (SPSS Inc., Chicago, USA). All 

p-values < 0.05 were considered to be statistically significant.

RESULTS

Cadaver subjects
After CT scanning, three extremities were excluded from the study due to clearly visible 

calcifications inside the cartilage. Thus, a total of ten cadaveric knee joints from nine individuals 

were included in the analysis (six female, three male; mean age at death 69 years; age range at 

death 30 – 94 years). ). Furthermore, 12 cartilage ROIs were not included in our data analysis 

because of (motion) artefacts during µCT scanning and segmentation errors because of severe 

cartilage loss157.
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sGAG correlation in ncCT and CTa
Mean X-ray attenuation results showed clear differences between the anatomical cartilage 

locations and between ncCT and CTa outcomes. In all locations, cartilage attenuation increased 

significantly after injection of contrast agent (Figure 3A). 

Cartilage X-ray attenuation in ncCT correlated moderately with μCT (n=57, R=0.45; R2=0.20; 

p=0.0003). The correlation between cartilage X-ray attenuation from CTa scans and μCT was 

strong (n=57, R=0.86; R2=0.73; p<0.0001) (Figure 3B). The slopes of both regression lines were 

significantly different (p < 0.0001). 

Figure 3: Contrast diffusion into cartilage. Comparison of cartilage attenuation between non-contrast CT (ncCT) and CT 

arthrography (CTa) scans. A: Box plot of mean attenuation in cartilage from CT and CTa scans per anatomical region. Boxes 

range from 25th to 75th percentile, whiskers run from min to max, the horizontal line in the box represents the median 

and the plus sign shows the mean. B: Correlated results of mean attenuation from EPIC-μCT and clinical CT scans with and 

without injected contrast for all anatomical regions combined (n = 57). ***: p < 0.0001

sGAG content per anatomical location 
The cartilage attenuation derived from CTa for all separate anatomical compartments 

correlated strongly with attenuation from μCT (wbMP, wbLP: n=17, R=0.89, R2=0.79, p<0.0001; 

wbMC, wbLC, pMC, pLC: n=33, R=0.87, R2=0.75, p<0.0001; patella: n=8, R=0.89 R2=0.7P, 

p=0.003; Figure 4A-C). There was a clear trend for all posterior condyle regions to have lower 

mean attenuation values, indicating that less contrast penetrated this less weight-bearing 

cartilage. The patellar values were clustered in a different location than the values for the other 

anatomical regions. When the data was analyzed for the tibio-femoral cartilage, the correlation 

coefficient was 0.92 (n=49, R2=0.85, p<0.0001, Figure 3D). When all regions (including mpP 

cartilage) were pooled, the correlation diminished slightly (n=57, R=0.86, R2=0.73, p<0.0001, 

Figure 4E). 
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To display the spatial agreement of both techniques, Figure 5 shows representative images 

for cartilage attenuation for both CTa and μCT. 

Figure 4: Correlation plots of mean attenuation from EPIC-μCT and CT arthrography. A: weight-bearing cartilage of 

medial and lateral plateaus (n=17). B: weight-bearing and posterior cartilage of medial and lateral condyles (n=17). C: mid-

portion of patellar cartilage (n=8). D: pooled results for both tibial and femoral compartments (n=49). E: pooled results for 

all regions of interest (n=57). The dashed lines indicate the 95% confidence interval of the best fit regression line. wbMP: 

weight-bearing medial plateau, wbMC: weight-bearing medial condyle, pMC: posterior medial condyle, mpP: mid-portion 

patella, wbLP: weight-bearing lateral plateau, wbLC: weight-bearing lateral condyle, pLC: posterior lateral condyle.

CTa corrected for structural composition of cartilage ECM
Figure 5 shows the results of the additional analysis into the role of structural composition 

of cartilage ECM for non-equilibrium CTa scans. When residual values from the model that fits 

μCT to ncCT, which represents structural composition of the ECM independent of sGAG, were 

added as a covariate to the model that fits μCT to CTa, the correlation coefficient was 0.95 

(n=57, R2=0.90; p<0.0001). 
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Figure 5: Images of both EPIC-μCT and CT arthrography. The attenuation of cartilage regions is visualized in colour and 

representative for sGAG content. High levels of attenuation represent a low sGAG-distribution. 

Figure 6: Predictive CT arthrography value (horizontal axis) based best fitted model from EPIC-μCT (sGAG) and non-

contrast CT residuals (cartilage ECM composition) correlated with mean attenuation of CT arthrography (vertical axis) 

(n=57). The dashed lines indicate the 95% confidence interval of the best fit regression line. wbMP: weight-bearing medial 

plateau, wbMC: weight-bearing medial condyle, pMC: posterior medial condyle, mpP: mid-portion patella, wbLP: weight-

bearing lateral plateau, wbLC: weight-bearing lateral condyle, pLC: posterior lateral condyle.
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DISCUSSION

Quantitative imaging techniques are of the utmost necessity for development and monitoring 

of treatment strategies targeted at early OA. Therefore, imaging techniques (e.g. like dGEMRIC) 

are extensively studied for their capability to measure sGAG content. This cadaver study 

demonstrates that cartilage attenuation from CTa is influenced by ioxaglate diffusion. And intra-

articular injection of ionic ioxaglate significantly improved the correlation with the outcome 

of μCT. These results are similar to previous non-clinical reports113, 138, 150, supporting our 

hypothesis that CTa can be used as a quantitative surrogate measure of the cartilage sulfated-

glycosaminoglycan content.

Patellar cartilage is known to have a different structural ECM composition403, 404. In the μCT 

and CTa scatter plot the patellar values were located differently than the other anatomical 

locations. Exclusion of patellar cartilage from our analysis improved the predictive value of CTa 

for sGAG content (R2 from 73% to 85%), indicating that structural composition of cartilage 

ECM influences the outcome of non-equilibrium CTa. When residual ncCT values representing 

structural composition of cartilage ECM were combined with μCT (sGAG content) as a 

predictive value for CTa, the R2 values from the model fit to CTa increased from 73% to 90%. 

This improvement indicates to what extent contrast diffusion into cartilage is influenced by 

structural composition of cartilage ECM. In clinical practice, a correction for different contrast 

diffusion rates cannot be calculated, since a reference standard for sGAG like EPIC-μCT is not 

available in clinical practice. Therefore, cartilage X-ray attenuation from CTa does not solely 

resemble sGAG content, but reflects a quality measure of cartilage which also concerns the 

structural integrity of the ECM.

Despite these encouraging results, there are limitations of CTa that need to be addressed. 

For example, the intra-articular injection introduces the risk of infection and also increases the 

risk of patient complaint of knee pain after injection. Furthermore, the high concentrations of 

ioxaglate used in this study, could influence cartilage electro-mechanical properties405. 

CTa is best applied in early stages of OA, because with severe sGAG loss in advanced stages 

of OA segmentation errors will occur157. Usually, early OA progression develops in relatively 

young patients and obviously the main concern with (repetitive) CT scans at a younger age is 

radiation exposure. The total dose of the scanning protocol in this study (~2 mSv)406 was ten 

times higher in comparison to previously defined radiation doses of routine knee CT scans (~0.2 

mSv). More research is needed to determine whether the same correlation with sGAG content 

can be measured if radiation dose is reduced.
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MRI uses no ionizing radiation and during the last years, has seen a rapid improvement 

with several newly developed MR-based imaging techniques to measure articular cartilage 

quality (e.g. dGEMRIC, Na23 mapping, T2 mapping, and T1rho104, 105). Thanks to the more 

widespread availability of 3.0 Tesla MR systems and the development of novel MRI sequences 

(e.g. Ultrashort TE106, SSFP107, UTE T2*108, and DENSE-FSE109), relatively fast MR scans can be 

acquired with high in plane resolution for (semi)quantitative cartilage imaging in OA research. 

However, these techniques still have several limitations: relative (e.g. claustrophobia) or absolute 

(e.g. pacemaker) contraindications for patients to undergo MRI, relatively low spatial resolution, 

and costs407. 

Given our results in relation to previously reported outcomes of in vivoμCT arthrography 

studies in small animals with an intact circulation115, 157, we believe that CTa may be able to 

measure cartilage quality in human patients in a clinical setting. CT has a short scanning time 

(~30 seconds), generates images with a high isotropic resolution. Therefore, CT techniques may 

be a valuable alternative to MR techniques, but more research is needed for this technique to 

find its place in clinics and research.

In our opinion, research should first focus on optimizing the CTa protocol for clinical use. The 

reproducibility of CTa measurements should be evaluated in an in vivo environment in which all 

factors that influence CTa outcomes are present (intact circulation, muscle tension, joint capsule 

strength, etc). Future studies could also focus on the fact that recent in vitro studies indicate that 

X-ray attenuation of cartilage can predict certain biomechanical properties such as compressive 

stiffness150. Our finding that CTa outcome is influenced by sGAG and structural composition of 

cartilage ECM could be used to predict the biomechanical function of articular cartilage with CT.

In conclusion, the results of this cadaver study demonstrate the proof-of-principle that 

CTa is able to measure cartilage quality in human knee joints. A wide implementation of this 

quantitative analysis of articular cartilage may detect early changes in OA patients and may 

contribute to the development of new treatment strategies.
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ABSTRACT

Objective
Recently, CT arthrography (CTa) was introduced as a possible technique to quantitatively 

measure cartilage quality in human knees. This study investigated whether this is also possible 

using lower radiation dose CT protocols. Furthermore, we studied the ability of (lower radiation) 

CTa to distinguish between local sGAG content differences. 

Design
Of ten human cadaveric knee joints, six CT scans using different radiation doses (81.33-

8.13mGy) were acquired after intra-articular ioxaglate injection. The capability of CTa to 

measure overall cartilage quality was determined in seven anatomical regions of interest (ROIs), 

using EPIC-μCT as reference standard for sGAG content. To test the capability of CTa to spatially 

distinguish between local differences in sGAG content, we calculated the percentage of pixels 

incorrectly predicted as having high or low sGAG content by the different CTa protocols.  

Results
Low radiation dose CTa correlated well with EPIC-μCT in large ROIs (R=0.78;R2=0.61;p<0.0001). 

CTa can also distinguish between high and low sGAG content within a single slice. However, 

the percentage of incorrectly predicted quality pixels increases (from 35% to 41%) when 

less radiation is used. This makes is hard or even impossible to differentiate between spatial 

differences in sGAG content in the lowest radiation scans.   

Conclusions
CTa acquired using low radiation exposure, comparable to a regular knee CT, is able to 

measure overall cartilage quality. Spatial sGAG distribution can also be determined using CTa, 

however for this purpose a higher radiation dose is necessary. Nevertheless, radiation dose 

reduction makes CTa suitable for quantitative analysis of cartilage in clinical research.
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INTRODUCTION

The current reference standard for grading the severity of osteoarthritis (OA) in the knee is 

the radiography based Kellgren and Lawrence score94. This technique is, however, not sensitive 

enough to detect or follow OA at an early stage of the disease because it only indirectly visualizes 

the cartilage and is not able to (semi)quantitatively measure cartilage quality408. Therefore, 

sophisticated magnetic resonance imaging (MRI) imaging techniques have been developed 

which can qualitatively measure cartilage quality in terms of the sulfated glycosaminoglycan 

(sGAG), collagen or sodium content of articular cartilage104, 182, 409. 

Recently, it has been shown that CT arthrography of the knee (CTa) is able to measure overall 

cartilage quality in large anatomical cartilage regions in human cadaveric knees410. Similar 

to µCT (µCT) arthrography in small animals115, 157 and delayed gadolinium enhanced MRI of 

cartilage (dGEMRIC) in humans98, 411, 412, this technique uses the inversed relationship between a 

negatively charged contrast agent (ioxaglate) and the sGAG content of cartilage.

The reported CTa protocol has a CT-Dose Index (CTDIvol) of 81.33 mGy per CTa scan, which 

poses a limitation on this technique406. Therefore, the radiation dose must be reduced before 

CTa can be used in clinical research. The use of less radiation to acquire CT scans results however, 

in an increase of noise in the reconstructed CT images. This increase of noise may influence the 

measured X-ray attenuation values and therefore interfere with the capability of measuring 

quality of cartilage using CTa.

Therefore, we designed a cadaver study with the purpose to investigate the effect of radiation 

dose reduction of CTa on its ability to measure articular cartilage quality in large cartilage 

regions. We also assessed the capability of CTa to distinguish between spatial high and low 

sGAG content of cartilage on a single slice and the influence of radiation dose reduction on this 

capability. The latter is of interest because it could enable the use of CTa as a tool to diagnose 

(focal) cartilage defects and follow the repair in these defects over time.

METHODS

Cadaveric knee joints
For this study, we used ten randomly selected cadaveric lower extremities from eight 

individuals who had donated their bodies to science. All extremities were frozen at -20ºC 

directly after death. Before the start of the experiment, the specimens were defrosted slowly 

in a cooled environment (7ºC) for five days. All extremities were at room temperature during 

imaging procedures. 
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Acquisition and post-processing of CT arthrography data
We injected 20 milliliters of 30% ioxaglate dilution (Hexabrix 320, Mallinckrodt, Hazelwood, 

MO, USA and saline)intra-articularly in all knee joints, using an 18 gauge needle. After the 

injection, we flexed (~120°) and extended (~0°) the knee joints for five minutes in order to 

achieve optimal distribution of the contrast agent throughout the joint cavity. Ten minutes after 

contrast injection, CTa scans of all knee joints were acquired using a second generation dual 

source multidetector spiral CT scanner (SOMATOM Definition Flash, Siemens Healthcare AG, 

Erlangen, Germany) with a tube voltage of 80 kV, an effective mAs value of 3140 mAs, a pitch 

of 0.35 and a collimation of 32 x 0.6 mm, resulting in a CTDIvol of 81.33 mGy410. This protocol 

will be referred to as maximum dose in this paper. Directly after the first scan, five additional 

scans were acquired using the same tube voltage (80kV), but with reduced radiation exposures: 

1570 mAs (50%), 1256 mAs (40%), 942 mAs (30%), 628 mAs (20%) and 314 mAs (10%) per 

scan. All knee joints were scanned in the axial plane with a scanning time of 30 seconds per 

scan. All CT datasets were reconstructed with an effective slice thickness of 0.75 mm and a sharp 

reconstruction kernel. Multiplanar reconstruction was performed (image pixel size 0.265mm). 

Using Skyscan analysis software (Skyscan, Kontich, Belgium), we segmented all CT datasets 

into binary datasets using one fixed attenuation threshold of 500 Hounsfield units (HU) 

that was selected because it resulted in the best segmentation of the cartilage410. Next, we 

manually defined seven anatomical cartilage regions of interest (ROIs) in all CT datasets based 

on the nomenclature and scheme as suggested by Eckstein et al.413. Each ROI consisted of 40 

consecutive slices covering the central weight bearing area of the cartilage of both the medial 

and lateral femoral condyles (wbMC and wbLC), the posterior non-weight bearing cartilage 

area of both femoral condyles (pMC and pLC), both weight bearing medial and lateral tibial 

plateaus (wbMP and wbLP) and the mid-portion of the patellar cartilage (mpP) (Figure 1A-C). 

After defining all ROIs, we calculated the mean X-ray attenuation per cartilage ROI on the CTa 

scans.

Figure 1: 3D representation of the seven analyzed large cartilage ROIs per knee joint: (A) posterior medial and lateral 

condyle of the femur (pMC/pLC); (B) weight-bearing medial and lateral femoral condyle (wbMC/wbLC); (C) weight-bearing 

medial and lateral plateau of the tibia (wbMP/wbLP) and mid portion of patellar cartilage (mpP). 
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Equilibrium partitioning of an ionic contrast agent using µCT
Mean X-ray attenuation values of equilibrium partitioning of an ionic contrast agent using 

(EPIC)-μCT have a good correlation with the sGAG content of articular cartilage measured 

with a dimethylmethylene blue essay or quantified with optical density measurements113, 114, 

394. Therefore, we selected the outcomes of EPIC-μCT in mean X-ray attenuation values as our 

reference test of sGAG content of articular cartilage.

Figure 2: EPIC-µCT datasets are used as reference for the spatial sGAG distribution of cartilage (A). Using a fixed X-ray 

attenuation threshold of 150 Hounsfield Units in all CTa datasets (B, only maximum radiation dose shown), a mask for 

high and low sGAG content was created (C-D). The masks were used as an overlay of EPIC-µCT cartilage (E-F). Within the 

masked EPIC-µCT images, the number of pixels correctly and incorrectly predicted as having a high and low sGAG content 

by CTa was calculated (G-H). #: high sGAG content. *: low sGAG content.

After CTa, all knee joints were dissected into five parts: the medial and lateral femoral 

condyles, the medial and lateral tibial plateaus and the patella. Soft tissue was removed to a 

maximal extent, without harming the integrity of the cartilage. In order to achieve equilibrium 

between the contrast agent and the sGAG content of the cartilage, all dissected specimens 

were incubated in an ioxaglate dilution (Hexabrix 320, Mallinckrodt, Hazelwood, MO, USA and 

saline)for 24 hours at room temperature137, 138, 398. We used a 20% dilution of ioxaglate, which 

resulted in the best cartilage segmentation at the air/cartilage and bone/cartilage interfaces410.
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μCT scans were performed on a Skyscan 1076 in vivo μCT scanner (Skyscan, Kontich, 

Belgium). The following scan settings were used: isotropic voxel size of 35 μm; a voltage of 

55 kV; a current of 181 mA; field of view 68 mm; a 0.5 mm aluminum filter; 198o with a 0.4 

degree rotation step410. Scanning time per specimen was 6 - 10 hours, depending on the size 

of the specimen (patella, plateau or condyle). A plastic foil was wrapped around the specimen 

to avoid dehydration during scanning. All scans were performed using the same settings and all 

data were reconstructed identically. 

Using Skyscan analysis software, we segmented the μCT datasets using a fixed attenuation 

threshold between air and subchondral bone that was selected visually for the best segmentation 

result in all datasets410. In all segmented μCT datasets, seven anatomical ROIs of the cartilage 

corresponding with ROIs of the CTa were drawn manually and the mean X-ray attenuation per 

ROI was calculated.

Spatial analysis of cartilage quality
Using commercially available software (Matlab version 7.1, MathWorks, Natick, MA, USA 

and Multimodality Image Registration using Information Theory (MIRIT), Laboratory for Medical 

Imaging Research, Leuven, Belgium414), all CTa (50%, 40%, 30%, 20% and 10%) and EPIC-μCT 

datasets were registered using the dataset that was acquired at the maximum dose as reference. 

Registration of the datasets enabled comparison of corresponding cartilage regions (femoral 

condyles, tibial plateaus and patellar cartilage) in all CTa scans per knee.

To study the capability of CTa to analyze the spatial distribution of high and low sGAG content 

in cartilage and the influence of radiation dose reduction on this capability, we used the EPIC-

µCT as reference standard for spatial sGAG distribution in cartilage (Figure 2A)113, 114, 394. Using 

Skyscan analysis software, we defined an area of high and low sGAG content in the cartilage 

within a central slice through the medial and lateral tibiofemoral joint and on a central slice of 

the mid-potion of the patellar cartilage in all CTa datasets (maximum dose, 50%, 40%, etc.)

(Figure 2B-D). To define these areas (which we will refer to as masks from now on), we used 

150 HU as cut-off point between high and low sGAG content of cartilage. We used this number 

based on the point where the cumulative histogram of all cartilage ROIs used in the spatial 

analysis of cartilage reaches 50% (Figure 3). Next, both masks for sGAG distribution were used 

as an overlay for cartilage on the registered corresponding EPIC-µCT images (Figure 2E-F). 

Within the masked EPIC-µCT images, we calculated the number of pixels defined as having high 

or low sGAG content by CTa, using a threshold of 70 gray values for EPIC-µCT. This was again 

based on the cumulative histogram of all cartilage ROIs on the EPIC-µCT images (Figure 3). 

Finally, we calculated the number of pixels which were incorrectly defined as high or low quality 

by CTa by adding the number of incorrectly defined pixels in both masks, dividing them by the 

total number of pixels in both masks together and then multiplying them by 100 to obtain the 

percentage of incorrectly defined pixels (Figure 2G-H).
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Figure 3: Cumulative histograms for clinical CTa (A) and EPIC-microCT (B).

Statistical analysis
In this study we used ten knees from eight individuals. The use of two knees from one 

individual could potentially lead to an overestimation of the correlation between μCT and CTa 

measurements401, 402. Exclusion of either one of the knees in the two patients that were scanned 

bilaterally did not influence the results of our study. Therefore, we decided to exclude the 

bilaterally scanned knees from the analysis.

The correlation between the mean X-ray attenuation values of CTa and the mean X-ray 

attenuation values of EPIC-μCT was calculated per radiation dose for all cartilage ROIs pooled. 

Because of the fact that we analyzed seven cartilage ROIs per knee joint and the potential 

correlation which might already exist within all knee joints itself, we used a linear mixed model 

to analyze if the correlation coefficients between, CTa outcomes and EPIC-μCT outcomes were 

statistically significant.  

All analyses were performed using GraphPad (Graphpad Software Inc., San Diego, USA) 

and SPSS version 17.0 (SPSS Inc., Chicago, USA). All p-values < 0.05 were considered to be 

statistically significant.

RESULTS

Cadaveric knee joints
After CT scanning, four knees were excluded from the study due to clearly visible calcifications 

in the cartilage and due to the fact that from two individuals two knees were scanned. Thus, a 

total of six cadaveric knee joints from six individuals were included in the analysis (three female, 

three male; mean age at death 72 years; age range at death 30 – 94 years). Furthermore, 12 

cartilage ROIs were not included in our data analysis because of motion artifacts during µCT 

scanning and segmentation errors due to severe cartilage loss157.
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Correlation of CTa with sGAG content in large anatomical ROIs
Mean X-ray attenuation values of the CTa scans acquired with maximum radiation correlated 

strongly with the sGAG content of cartilage expressed by EPIC-μCT attenuation values (n=33; 

R=0.81; R2=0.66; p<0.0001) (Figure 4A). In the analysis of the additional CTa scans with reduced 

radiation dose, this correlation remained strong when radiation dose was reduced; 50% of the 

maximum radiation dose (n=33; R=0.78; R2=0.60; p<0.0001), 40% of the maximum radiation 

dose (n=33; R=0.76; R2=0.58; p<0.0001), 30% of the maximum radiation dose (n=33; R=0.76; 

R2=0.59; p<0.0001), 20% of the maximum radiation dose (n=33; R=0.77; R2=0.59; p<0.0001), 

and 10% of the maximum radiation dose (n=33; R=0.78; R2=0.61; p<0.0001) radiation dose 

per scan was used (Figure 4B-F).

Figure 4: Correlation plots of mean attenuation from EPIC-μCT and CT arthrography acquired using six different 

radiation doses. A: maximum radiation dose (n=33); B: 50% of the maximum radiation dose (n=33); C: 40% of the 

maximum radiation dose (n=33); D: 30% of the maximum radiation dose (n=33); E: 20% of the maximum radiation dose 

(n=33); F: 10% of the maximum radiation dose (n=33). The dashed lines indicate the 95% confidence interval of the 

best fit regression line. wbMP: weight-bearing medial plateau; wbMC: weight-bearing medial condyle; pMC: posterior 

medial condyle; mpP: mid-portion patella; wbLP: weight-bearing lateral plateau; wbLC: weight-bearing lateral condyle; 

pLC: posterior lateral condyle.
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Spatial analysis of cartilage quality
The number of pixels that were incorrectly defined as having high or low sGAG content 

by CTa was lowest in the CTa scan acquired using the maximum radiation dose (35% ± 9%) 

(Figure 5). When less radiation was used to obtain CTa, the number of pixels which were 

incorrectly defined as high and low quality cartilage increased (50% radiation: 37% ± 9%, 40% 

radiation: 38% ± 9%, 30% radiation: 38% ± 9%, 20% radiation: 39% ± 9%, 10% radiation: 

40% ± 9%) (Figure 5). The effect of this increase in incorrectly defined pixels on the capability 

of CTa to distinguish between the spatial distribution of high and low sGAG content of cartilage 

within a single slice is clearly visible in Figure 6. 

Figure 5: Bar graphs showing the percentage of pixels incorrectly predicted as high and low sGAG content by the 

different radiation doses (maximum, 50%, 40%, 30%, 20% and 10% of the maximum dose) used in this study. Whiskers 

show the 95% confidence interval of the mean.
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Figure 6: Registered images of both EPIC-μCT and CT arthrography acquired using different radiation doses (maximum 

radiation dose, 50%, 40%, 30%, 20% and 10% of the maximum radiation dose) per scan. The attenuation of cartilage 

regions is visualized in color and representative for the sGAG content of the cartilage. High attenuation values represent 

low sGAG content and low attenuation values represent high sGAG content.
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DISCUSSION

Recently, CTa was introduced as a non-destructive method to measure cartilage quality in 

human cadaveric knees410. The main aim of the present cadaver study was to assess whether 

radiation dose reduction influences the ability of CTa to measure cartilage quality. Lowering 

the ionizing radiation dose of the acquisition protocol is necessary to make CTa suitable and 

acceptable for use in clinical research in humans. The results of this study demonstrate that 

mean attenuation values in large anatomical ROIs in CTa acquired with different radiation 

doses are strongly correlated with the sGAG content of articular cartilage measured with EPIC-

μCT. This correlation was similar to previous reported results in cadavers410 and also similar to 

previously published in vitro results113, 138, 150. When the radiation dose used to acquire CT scans 

was decreased, the correlation between CTa X-ray attenuation values and the sGAG content 

of cartilage only slightly decreased, but remained good, even if the radiation dose was reduced 

to approximately 10% of the original dose. The correlation between X-ray attenuation and the 

reference test for sGAG content remains relatively good because of the fact that the noise in 

the CT images averages out when calculating the mean X-ray attenuation values in relatively 

large cartilage ROIs.  

The second aim of this study was to assess the capability of CTa to detect local differences in 

the sGAG content of articular cartilage and to study the effect of radiation dose reduction on 

this differentiation of cartilage quality within a single slice. The ability to detect local differences 

in cartilage sGAG content could make CTa applicable as a diagnostic tool for focal cartilage 

damage instead of a diagnostic arthroscopy. Additionally, it would enable the use of CTa as 

an imaging tool to measure the effect of cartilage repair therapies (e.g. microfracturing and 

autologous chondrocyte implantation415, 416) similar to MRI based techniques like dGEMRIC417, 

418. Our results demonstrate that, using CTa acquired using the maximum radiation dose, high 

and low sGAG distribution can be clearly distinguished. An important remark is that the choice 

of the used thresholds for defining high and low sGAG content within the cartilage based on 

the pooled cumulative histograms has an arbitrary component. This might introduce an over or 

underestimation of the capability of CTa to determine local sGAG differences. The increase of 

noise in the CT image obtained using lowered radiation doses, however, causes an increased 

percentage of incorrectly defined pixels with high and low sGAG content. In the lowest radiation 

dose used to obtain CTa, the increased noise even makes it impossible to distinguish differences 

in sGAG distribution from noise in the CT images. 

Based on the results of this study, we suggest using a CTa protocol with a low radiation dose 

if overall cartilage quality is of interest in clinical research. The lowest radiation dose we used 

(CTDIvol of 8.13 mGy per scan) is comparable to the dose of a regular CT scan of the knee 

(CTDIvol of approximately 8 mGy406). In addition to cartilage quality, morphological abnormalities 
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can also be diagnosed using CTa with accuracy comparable to conventional MRI sequences. This 

was demonstrated in previous research by De Filippo et al. 395and Vande Berg et al.419, however, 

we did not investigate this in the present study.  If the spatial distribution of sGAG on a single 

slice is of interest, we recommend using a higher radiation dose than for overall cartilage quality 

measurements since decrease in CNR increases the number of incorrectly predicted quality pixels 

and makes it hard or impossible to differentiate high from low quality cartilage at low radiation 

dose scans. 

Despite the promising results, a limitation of CTa will remain the use of ionizing radiation, 

because of the risk of predisposing patients to the development of certain cancers by using 

(repetitive) CT scans406. Therefore, MRI based techniques which quantitatively measure cartilage 

quality (e.g. dGEMRIC, Na23 mapping, T2 mapping, and T1rho104, 409) remain favorable in a 

clinical research setting in large cohorts in humans. However, we think that by using a relatively 

low radiation dose protocol, subgroups of patients in which CTa is favorable of MRI can be 

identified (e.g. patients with contra-indications to undergo MRI). In addition, CT has also some 

advantages over MRI (e.g., relative short acquisition time and low costs). Therefore, we expect 

that low radiation dose CTa can become a complementary technique to MRI based techniques 

to quantitatively measure cartilage quality in clinical research. In addition to ionizing radiation, 

other potential limitations of CTa when applied in humans are: the risk of infection and pain 

due to the intra-articular injection with contrast agent, and the risk of an (allergic) reaction to 

the contrast agent.

Future research using CTa should focus on implementing and validating CTa in a clinical 

research setting in humans in vivo using a low radiation dose protocol. Filtering the CT data 

using a low-pass image processing filter will diminish the amount of noise in CT images and 

might enable the use of even less radiation than suggested in our study. A drawback of using 

such a filter is, however, the decrease in spatial resolution of the CT images. Another method to 

lower the radiation dose is the use of an iterative reconstruction algorithm420, 421 instead of the 

standard filtered back projection image reconstruction algorithm as used in this study. Because 

of the high in plane resolution of CT images acquired with multidetector CT scanners, future 

research could also focus on investigating the potential of CTa to detect subchondral bone 

changes and changes in cartilage quality simultaneously. Recently, the feasibility of contrast-

enhanced peripheral quantitative CT to analyze cartilage and subchondral bone status on a 

single scan in vitro was described149 and therefore it is of interest to test this as well as in vivo 

using CTa. 

In conclusion, CTa acquired using a low radiation dose is able to measure overall articular 

cartilage quality throughout the whole human knee with a radiation dose comparable to a 

regular CT scan of the knee. Spatial sGAG distribution assessment is also possible using CTa, 
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however for this purpose a higher radiation dose is necessary. Nevertheless, due to the reduction 

in radiation dose, CTa might be implemented as a non-destructive tool to quantitatively measure 

articular cartilage in clinical research.
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OSTEOARTHRITIS (OA): A DISEASE CONCEPT

Articular cartilage does not repair spontaneously, cell-based strategies are far from successful 

clinical application422, and therapeutic results from physical therapy and weight-loss are rather 

modest184. Without disease modifying agents/therapies for OA (DMOADs) available, patients 

are nowadays treated with invasive and costly joint replacement surgery. Due to the increasingly 

ageing population, the incidence of OA is expected to rise and push (inter)national healthcare 

costs423. This urges the need for new and effective therapeutic strategies for OA, but so 

far, DMOADs have not been developed successfully yet. This may be explained by complex 

interactions between the biological composition of articular joints and the biomechanical 

demands which they are exposed to (Figure 1). In this section, we will discuss a hypothesis that 

explains the multi-cellular and multi-tissue aspects of OA development.

Physiological joint functioning and joint remodeling
All joints in the human body are formed according to a relative similar (genetic) blueprint 

and they all share a comparable biological composition (BC in Figure 1A). Thebiological 

compositionof an articular joint is composed by different tissues, and each tissue is inhabited 

with distinct cell types. The goal of these cells and tissues is to cope with biomechanical 

demands (BD in Figure 1B) during locomotion and physiological joint functioning (Figure 

1C). Biomechanical demands, however, differ highly between joints. For example due to the 

anatomical location in the body, where some joints are weight-bearing (e.g. knee or hip), 

whereas others are not (e.g. shoulder or elbow). Besides its anatomical location, articular joints 

also experience different biomechanical demands, simply due to the fact that humans exert 

periods of high and low activity levels during daily life. In order to cope with these different 

biomechanical demands, articular joints are in need of a dynamic adaptive mechanism which 

allows joints to properly adjust its tissues. The existence of such a mechanism can be illustrated 

by two examples. 

The first example involves remodeling of trabecular bone in rats. While aging, healthy Wistar 

rats are known to experience a loss of trabecular bone424-426 related to enhanced osteoblast 

and osteoclast activity427. During this process, subchondral trabecular bone is lost and thickness 

of remaining trabeculae increases317. In Chapter 3 we found a similar result in control joints 

of sedentary Wistar rats. These rats showed a~5% reduction in bone trabecular fraction (BV/

TV), whilst trabecular thickness increased ~5%. However, when biomechanical demands were 

increased through six weeks of moderate running on a motorized treadmill, control joints of 

running rats did not show a loss of BV/TV. This means that increased exercise levels prevents a 

loss of trabecular bone stock that sedentary rats lose due to ageing. However, this positive effect 

was lost when these running rats were given a subsequent period of six week of rest (Chapter 

3), which suggest the necessity of a biomechanical demand to sustain a certain biological 

composition.
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Secondly, in contrast to bone remodeling, cartilage has only recently been identified as a tissue 

that adapts itself to different biomechanical demands. In 2004, Tiderius et al used dGEMRIC 

in a cross-sectional study to evaluate sGAG content in healthy volunteers with different levels 

of activity. They found that human knee cartilage adapts to exercise by increasing its sGAG 

content428. In a study by van Ginckel et al in 2010, asymptomatic untrained human female 

volunteers participated in a start to running (STR) program. They compared dGEMRIC changes 

between sedentary and STR volunteers. As a result of increased physical exercise, the sGAG 

content of cartilage in these volunteers significantly increased429. These results imply that, next 

to bone, cartilage composition also changes when biomechanical demands increase. 

So, cells within the joint can initiate adaptation processes that functionally improve joint 

tissues’ ability to withstand biomechanical impact. However, it is important to realise that joint 

remodeling does not solely involve an upgrade intissue quality when biomechanical demands 

increase.In case of a strong reduction in biomechanical demand (e.g. due to long term inactivity 

or loss of gravity during spaceflight or severe inactivity), cartilage430 and bone431 are known 

to experience a severe downgrade in tissue quality as well. This suggests that articular joints 

strave to absorb biomechanical demands in a way that is most energy or metabolic efficient.As 

mentioned before, articular jointsface biomechanical demands that differ highly during (daily) 

life. One can imagine that due to these fluctuating demands,it is almost impossible for the joint 

to actually achieve a perfect state of balance as depicted in Figure 1C. Therefore, joint tissues 

are likely to undergo continuous adaptationin an ongoing attempt to meet with biomechanical 

demands (Figure 1D). 

This process is not limited to a response of one single cell-type within one specific tissue.

Complex interaction between different compartments of the joint have been described to be 

enhanced during remodeling432. So, cells within one tissue can interact with other cells within 

the same tissue (black arrows in Figure 1A), but they are similary likely to interact with other 

cells inother joint tissues (blue arrows in Figure 1A). Together all cells contribute to joint 

remodeling as they seek a renewed balance between biological composition and biomechanical 

demand that allows for physiological joint functioning (Figure 1C). Whether these interactions 

occur directly through growth-factors and/or cytokine production, or indirectly through changes 

in force dissepation as a result of changing quality of the joint tissues, still needs to be further 

investigated. 

Osteoarthritic remodeling of joint tissues
Several known riskfactors, like age2, sex433, obesity434 and genetics435, 436 are related to increased 

risk of OA development. These risk factors are likely to induce degenerative change injoint 

tissues,which results in a loss of tissue quality (Figure 1E). A loss of tissue quality would force 

cells to start joint remodeling,  or normal daily activity levels may become a pathological stressor. 
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In Chapter 2 we investigated different preclinical models that each represent a different etiology 

for OA (Chapter 1 - Table 1). Through intra-articular MIA injections increased chondrocyte 

apoptosis was induced which also can be seen in OA cartilage223. In the groove model, we 

damaged the articular cartilage ECM through surgically applied grooves25 which served as a 

cartilage trauma model. For both models, we found an ongoing degradation of cartilage tissue 

progressed and development of clear OA features (Chapter 2). These results suggest that a loss 

of biological composition cannot always be compensated for through physiological remodeling, 

and eventually leads to OA (Figure 1F). 

Figure 1: Schematic representation of joint functioning and joint remodeling. The biological composition of joint (A) 

is daily exposed to different levels of biomechanical demands (B). When both are in balance, there is a physiological 

form of joint functioning (C). However, it is likely this balance never exists and due to an imbalance between biological 

composition and biomechanical demand, joint remodeling processes are necessary to restore the balance (D). During aging 

of men, certain predisposition factors for OA induce changes to the biological composition of the joint (E). These changes 

will provoke an imbalance with the biomechanical demand and when remodeling processes do not restore the balance, 

vicious circles of osteoarthritic remodeling processes is initiated. Due to these continuous changes, eventually osteoarthritis 

will develop with cartilage degradation, subchondral sclerosis, synovitis and osteophytosis (F). OA intervention might be 

targeted at correcting the balance due to a change in biomechanical demand through either physical therapy (G), through 

surgical correction osteotomies (H), or weight reduction (I). Future studies should investigate the possibility for quality 

improvement of joint tissues in order to delay OA onset (J), delaying OA progression through intervention with OA related 

remodeling (K), or through dedicated manipulation of joint tissues (L).
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If a change in biological composition is able to induce OA remodeling, according to our 

hypothetical scheme in Figure 1, a severe increase of biomechanical demand should also be 

able to exceed the physiological compensating mechanism and elicit OA related remodeling. 

From literature it is known that a change in knee biokinetics can be pathologically changed 

through traumatic induced joint instability. Joint instability may either result from traumatic 

(anterior cruciate) ligament rupture and can be reproduced through surgical transection in 

animal models. Both clinical studies437and studies with preclinical animal models66, 67 have 

underlined that joint instability and changed knee biomechanics is related to OA progression. In 

order to test whether our hypothesis is also true for stable joints, we investigated the effects of 

strenuous exercise through treadmill running on articular cartilage of Wistar rats (Chapter 2).  

Strenuous running induced clear sGAG loss from the cartilage and when rats were not forced 

to run anymore, there was still an ongoing loss of sGAG from the cartilage. This suggests that 

increased biomechanical demand may exceed the capacity of sGAG production by chondrocytes 

necessary to increase cartilage hydrostatic strength, and triggers OA progression. 

In order to further investigate our hypothesis that physiological joint functioning depends on 

a balance between biological composition and biomechanical demand, we exposed a joint with 

reduced biological composition to a form of exercise that is known to be non-pathological for a 

healthy uncompromised joint. According to our hypothesis presented in Figure 1, this exercise 

would have become a pathological stress for a joint with compromised biological composition. 

In Chapter 3 we describe that, as expected, moderate exercise induced a normal physiological 

adaptation in healthy joints of Wistar rats. However, after sGAG depletion through intra-

articular injections with papain81, moderate exercise induced severe OA progression in these 

cartilage quality compromised joints. Papain injected joints of moderate running rats showed 

more extensive sGAG loss, severe damage to the ECM with total erosion of the lateral tibia 

plateau cartilage (Chapter 3). Even after the exercise protocol, when the rats were given rest, 

the severity of OA features progressed. This involved marked changes throughout the joint, 

with development of a sclerotic bone phenotype, increased osteophyte growth, and enhanced 

macrophage activation within the synovium (Chapter 3). 

The results from these experiments illustrate that joint functioning can be compromised 

through a change in biological composition, through supraphysiological increased biomechanical 

demand, and a combination of both. When either form of imbalance persists long enough or 

is intens enough, a threshold seems to be exceeded after which no spontaneous restoration 

of joint tissue quality is possible. From here on, an imbalance between biological composition 

and biomechanical demand will persist. As a result, an ongoing cascade of inadequate joint 

adaptation will start; the vicious circle of OA that eventually will impair all cells and tissues of 

the joint (Figure 1F).  With involvement of all tissues in the joint, other cells like periosteal cells, 

osteocytes438, synoviocytes159 and other immune cells439 will most likely play a role in facilitating 

OA progression, but the importance of their roles still need to be elucidated. 
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THERAPEUTICAL INTERVENTIONS FOR OSTEOARTHRITIS

When discussing possible treatment options for OA in relation to our proposed disease model 

(Figure 1), different strategies can be considered. An obvious approach is to restore balance 

through a reduction of the biomechanical demand, which can be achieved in various ways. 

First, this might achieved through adjustment of life style and physical therapy (Figure 1G). 

Physical therapy is one of the few interventions available in clinics known to be beneficial for OA 

patients 183. Second, biomechanical demands can be changed within through surgical correction 

osteotomies (e.g. of the hip440 or knee441) (Figure 1H). For example, a patient with pronounced 

varus osteoarthritis of his/her knee can be treated with a high tibial osteotomy. Through this 

procedure there is a load transfer towards the unaffected compartment of the knee joint and 

known to relieve pain and reduce disease progression442. And finally, also obesity  is a known 

risk factor for osteoarthritis and this extra-weight could pose a higher biomechanical demand 

through increased load and changed biomechanics of weight-bearing joints443. A reduction in 

weight could therefore lead to a reduction of biomechanical loads in articular joints (Figure 1I). 

Although these approaches seem straightforward, their therapeutic effects have only modest 

effects on OA progression. Clinical effects of physical therapy and weight loss remain rather 

modest184. Although results for osteotomies on pain and knee function are rather good444, they  

rely on specific preoperative diagnosis and cannot be applied in a generalized fashion. Targeting 

OA only through a reduction in biomechanical demands is likely not sufficient in managing this 

disease. Therefore, new therapeutic strategies are necessary to manage OA. In the next sections 

we will describe interventions strategies that prevent OA onset through improvement of joints 

tissues biological composition (Figure 1J), or attempt to reduce the effects of pathological OA 

remodeling (Figure 1K).

Improvingquality of biological composition in joint tissues
Biomechanical induced stress responses in articular chondrocytes

Chondrocytes are responsible for maintaining the extracellular matrix (ECM) of articular 

cartilage and repair of any inflicted damage. Due to their location within the cartilage ECM, 

they are daily exposed to high-peak forces during physical activity. Chondrocytes are sensitive 

to mechanical stimuli and they are known to adopt a hypertrophic morphologic state when 

biomechanical stress levels increase132. If this stressed condition persists, chondrocytes may even 

die through apoptosis223. Heat shock proteins (Hsp) are proteins that help to sustain cellular 

homeostasis under stressed conditions and are regulators of the apoptic pathways224. Galois et al 

demonstrated exercise to induce upregulation of Hsp70, protecting the cartilage from instability 

induced OA degradation152. This protective effect from Hsp70 proved to be dependent on the 

degree of exercise exposure. Galois et al hypothesized that co-expression of other Hsps could 

limit the protective effect of Hsp70. 
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In Chapter 5, we investigated whether increased stress levels induces Hsp90 upregulation 

in articular chondrocytes, which might reduce the protective effect of Hsp70. Again, we found 

that supraphysiological joint loading induces sGAG depletion and ECM damage of articular 

cartilage. BIIB021 treatment successfully inhibited Hsp90 function and further stimulated 

Hsp70 upregulation. Interestingly, through Hsp90 inhibition chondrocytes were even able to 

improve cartilage sGAG content well above baseline levels, whereas untreated animals showed 

clear cartilage sGAG loss (Chapter 5). Hsp90 inhibition seemed to protect against a loss of 

subchondral bone and reduced synovial macrophage activation. Our results showed that 

Hsp90 inhibition extended chondrocytes’ capability to withstand pathological stress induced by 

increased biomechanical demand. As a result, when stress levels were relieved, chondrocytes 

recuperated and adapted the cartilage through increased sGAG production without signs of OA 

progression.  In other words, Hsp90 inhibition protected against increased cellular stress and 

was subsequently able to increase cartilage and subchondral bone quality (Figure 1J). 

These results suggest that Hsp70 production in chondrocytes favors physiological joint 

remodeling (Figure 1D), whereas increased Hsp90 production could serve as a marker that 

indicates pathological joint functioning related to OA remodeling (Figure 1F). More research on 

Hsp production and their downstream targets as regulators of cartilage homeostasis is needed 

to clarify chondrocytes responses towards biomechanical loads. More data on this topic may 

provide us with a more accurate explanatory model for pathologic joint loading–induced OA 

and lead to more sensitive predictors for early OA progression. Moreover, we might be able to 

develop more selective drugs that intervene with chondrocyte stress regulation, with less toxicity 

compared to Hsp90 inhibition238. Furthermore, we found that when BIIB021 treated animals 

were given a six-week period of rest, cartilage sGAG content decreased again (Chapter 5). 

Again, this suggests that the biological composition of a joint is closely regulated according to 

the biomechanical demand it faces (Figure 1C). Possibly, when therapeutic management of 

chondrocyte stress responses becomes clinically available, beneficial effects of physical exercise 

might be enhanced. We would hypothesize that early protection against chondrocyte stress 

to protect against OA progression, would be most efficient in pre-symptomatic or early-OA 

patients.

Physical exercise and inhibited osteoclast functioning

Alendronate (ALN) is a nitrogen-containing bisphosphonate and a potent inhibitor of 

osteoclastic bone resorption used clinically for the treatment of osteoporosis303. It is suggested 

that osteoclast-mediated resorption of mineralized cartilage at the subchondral bone-cartilage 

interface is an early initiating event in OA pathobiology, and that early bisphosphonate use 

might result in positive effect on cartilage health307.



194

CHAPTER 12

In our experiment, ALN treatment resulted in more sGAG loss from healthy articular cartilage 

after a six-week period of exercise. In Chapter 7, we discuss that through inhibited osteoclastic 

bone resorption by ALN the supportive function of subchondral bone is not reduced and remains 

stiff during running exercise. Due to this stiff subchondral bone plate, the compressive and shear 

forces that act upon the cartilage increase more compared to those in untreated animals. As a 

result, the biomechanical demand (which is non-pathological for untreated animals) becomes 

a pathological stressor for articular chondrocytes in treated animals. This type of biomechanical 

stress might induce (Hsp) stress responses in articular chondrocytes, as shown in Chapter 5. 

Consequently, chondrocyte reduce sGAG synthesis and first need to survive during this stressed 

condition. But when animals are given rest and do not need to run anymore, articular cartilage 

in ALN treated rats show a significant increase in sGAG content compared to untreated animals. 

This indicates that chondrocytes are able to recuperate and upregulate sGAG production. 

Through enhanced sGAG content energy diverting capacities of cartilage are enhanced, which 

allows cartilage to withstand more biomechanical demand. Therefore, we conclude that ALN 

inhibited osteoclast functioning contributes to enhanced cartilage adaptation in a stressed 

situation. 

This effect might be translated towards clinical care and help to prevent or delay OA 

development in patients at risk for OA. In this case, a combination of preemptive ALN 

treatment combined with physical exercise might prove to be beneficial for clinical patient care. 

ALN treatment has the major advantage that it is already widely used for clinical treatment 

of osteoporosis, so application of ALN treatment as means to enhance the effect of physical 

therapy on articular cartilage could be investigated within the near future rather easily.

Therapeutic strategies targeted to reduce OA remodeling
Nowadays there are only a few treatment options for OA available, which can be summarized 

to analgesics, physical therapy and joint replacement arthroplasty. Within the past decade, there 

has been a tremendous effort within the scientific field to generate new therapeutic strategies 

for OA. So far, the outcome has been rather disappointing and no real advances have been 

made. The experiments with different therapeutic strategies in this thesis also do not provide ‘a 

giant leap for mankind’. It is fair to say that OA is not likely treated through one single DMOAD. 

Our results do indicate certain indicate specific cell-cell interactions during OA progression. 

These mechanisms might explain a part of OA pathology and could prove worthwhile when 

simultaneously targeted for treatment of OA.

Chondrocyte hypertrophy and osteoclastic recruitment

The bone-cartilage subunit has been under investigation for quite some time, and has been 

proposed as the key-unit for OA progression326. As stated in our introduction, chondrocytes 

show features of reactivation of endochondral ossification during OA progression. Normally 
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chondrocytes are able to endure constant deforming forces during joint movement445, and 

triggers them to produce anabolic factors that enhance cartilage quality446. As demonstrated 

in Chapter 3, a pathological biomechanical trigger through strenuous running induces sGAG 

loss and cartilage ECM damage. Interestingly, near the cartilage-bone interface, there were 

increased numbers of large chondrocytes on histology sections (Figure 2)447. This specific 

cellular morphology is likely for chondrocyte hypertrophy. Previous studies already showed that 

a pathological joint strain induces chondrocyte dedifferentiation towards a hypertrophic state132.

Figure 2: Rat knee joint showing the cartilage and subchondral bone of a normal (healthy) control (A) and of a rat that 

underwent a running protocol of 5 kilometers per week for a period of 6 weeks. A striking difference in sGAG staining in 

cartilage and clear hypertrophy of chondrocytes in the deep cartilage zone can be seen between both samples.

In Chapter 4 we show that GSK3β activity plays a critical role for preservation of a 

chondrogenic phenotype. Normally, the canonical Wnt/β-catenin signaling pathway is a critical 

regulator of chondrocyte phenotype and cartilage homeostasis. In this pathway, GSK3β down-

regulates transduction of the canonical Wnt signal by promoting degradation of β-catenin. 

GSK3β inhibition leads to accumulation of β-catenin and resulted in a loss of cartilage marker 

expression, matrix degradation through MMP production. It is a known feature that hypertrophic 

chondrocytes secrete catabolic factors and degrade cartilage quality448, 449. Furthermore, GSK3β 

inhibition reduced chondrocyte proliferation and induced chondrocyte apoptosis. Since the 

apoptotic pathways are regulated by Hsps, one can imagine that stress responses also play a 

role during this process (Chapter 5). 

But what is evident, is that the preservation of a chondrogenic phenotype is crucial for 

maintenance of healthy cartilage. A way to preserve a healthy chondrocyte phenotype might 

be through calcineurin (Cn) activity. Cn has been associated with dedifferentiation of cultured 

chondrocytes towards a hypertrophic phenotype271. In Chapter 6, we inhibited Cn activity using 

FK506. In vitro cultured chondrocytes and cartilage explants with FK506 showed increased 
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anabolic and reduced catabolic ECM marker expression, and FK506 also protected against 

progressive ECM degradation in vivo. This suggests that FK506 was able to induce cartilage 

ECM favorable responses within chondrocytes. However, we also tested the effect of osteoclast 

inhibition through alendronate (ALN) on OA progression in the same in vivo model for OA 

(Chapter 7). Surprisingly, ALN treatment showed quite similar results compared to FK506 use. 

This raises the question whether FK506 indeed protected cartilage ECM through preservation 

of the chondrogenic phenotype of chondrocytes.

As during endochondral ossification, chondrocytes dedifferentiate and adopt a hypertrophic 

state during OA progression. In vitro cultured chondrocytes are known to increase VEGF 

production when biomechanically triggered towards hypertrophy40, 42. This effect was reproduced 

in an in vivo study. Chondrocytes in the deep layers of cartilage also increase VEGF production 

due to surgical induced knee instability450. Besides its effect on angiogenesis, VEGF has a strong 

chemotaxic effect on osteoclasts41, 451, 452. Osteoclasts are large multinucleated cells that derive 

from monocyte-macrophage hematopoietic lineage. During osteoclastogenesis macrophage 

colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κβ ligand (RANKL) 

stimulate precursor cells to acquire osteoclast characteristics291. This results in expression of 

tartrate-resistant acid phosphatase (TRAP) in differentiating cells and is followed by fusion into 

multinucleated cells capable of resorbing mineralized matrix. 

Bisphosphonates, like ALN, are potent inhibitors of osteoclastic resorption and are clinically 

used for the treatment of osteoporosis303. ALN markedly inhibited osteoclast bone resorption 

and as a consequence reduced subchondral sclerosis and subchondral plate porosity (Chapter 

7). Furthermore, ALN also prevented progressive ECM degradation. Interestingly, osteoclast 

maturation is known to be influenced by FK506. FK506 treatment influences RANKL stimulated 

osteoclastogenesis293, 294, and especially inhibit late stages of the osteoclast life cycle through 

predominant induction of apoptosis in TRAP-positive multinucleated osteoclasts296. Through this 

mechanism inhibited calcineurin activity diminishes activity of mature osteoclasts and reduces 

bone resorption297-299. Since FK506 was introduced orally and its effect relied on systemic 

distribution, it is possible that FK506 never reached the cartilage and was not therapeutically 

active on chondrocytes directly. Since FK506 treatment also reduced subchondral porosity in 

OA induced knee joints (Chapter 6 - Figure 5D), the beneficial effect on cartilage could have 

resulted from an effect on osteoclast activity. However, this explanation remains a hypothesis and 

should be further investigated. But based on our results from both ALN and FK506 treatment, it 

is reasonable to suggest a specific interaction between biomechanically stressed (hypertrophic) 

chondrocytes and osteoclast activation that facilitates OA progression and poses an important 

target for development of future treatment.
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Osteocyte and osteoblast induced subchondral sclerosis

In our model for severe OA there is also a marked development of subchondral sclerosis 

(Chapter 3). Botter et al hypothesized that as a result of the functional coupling between 

osteoclasts and osteoblasts, increased osteoclastic bone resorption induces a rise in osteoblast 

activity leading to increased subchondral bone thickness and sclerosis35. If true, sclerotic bone 

formation might be prevented through inhibition of osteoclastic bone resorption. We tested 

this hypothesis in Chapter 7 and although ALN treatment functionally inhibited osteoclastic 

bone resorption, there was still a transient increase in subchondral sclerosis. This indicates that 

a functional coupling between osteoclasts and osteoblast is not the (main) reason for formation 

of this specific bone phenotype.

Interestingly, CT analysis of subchondral bone in our experiments of Chapter 6-8 showed 

that sclerotic bone especially developed at sites where there was either a complete loss of 

sGAG or a complete denudation of bone (Chapter 7). Interestingly, animals treated with 

IAI triamcinolone injections developed more sclerosis within the medial compartment of the 

tibia plateau (Chapter 8). As clinically observed during this experiment, animals treated with 

triamcinolone better endured running on the motorized treadmill. Since triamcinolone is known 

for its effect on pain330 and improves gait453, these animals might have put more weight on their 

OA induced knee joint. However, we did not objectify this, for example by using an incapitance 

tester as described in Chapter 9, therefore this remains an assumption. But the observation that 

sGAG loss, degradation of cartilage ECM, and amount of biomechanical impact all play a role in 

subchondral sclerosis formation, raises the idea that a mechanical stimuli triggers subchondral 

sclerosis.

A cell within the (subchondral) bone that could perceive these biomechanical changes is the 

osteocyte454. The osteocyte resides within lacunae of bone matrix and is a mechanosensory cell, 

sensitive to changes of load-transfer from the overlying cartilage. Bone samples of OA patients 

have shown that osteocytes change their morphology and become more elongated319. Besides 

this change in cellular shape, osteocytes produce less sclerostin during OA progression320, 321. 

Increased sclerostin production by osteocytes is known to reduce bone formation through an 

anti-anabolic effect, which is currently under scientific attention within the field of osteoporosis 

research455. Normally Wnt signaling stimulates bone formation through osteoblasts, but sclerostin 

inhibits Wnt signaling and reduces bone formation by osteoblasts456. Through reduced sclerostin 

production in OA, the anti-anabolic effect of sclerostin on osteoblasts is lost and bone formation 

might be increased. This sclerostin-hypothesis for OA, in which increased mechanical stimuli 

is sensed by osteocytes and subsequently stimulates osteoblasts to deposit bone via reduced 

sclerostin production, might explain how sclerosis develops independently from osteoclast 

activity. Currently, the monoclonal antibody romosozumab is used in osteoporosis research 

as means to increase bone stock in these patients through binding of sclerostin 457. Possibly, 
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therapeutic intervention in the osteocyte-osteoblast relation through stimulation of sclerostin 

might help to prevent against subchondral sclerosis development and preserve a physiological 

form of subchondral bone in OA patients.

Synovial macrophage activation induced osteophytosis, synovitis and pain

OA is characterized by an inflammatory response that induces synovial hyperplasia, stimulates 

macrophage infiltration, neoangiogenesis, and fibrosis159. Due to the transient rise of activated 

macrophages within the synovium, synoviocytes produce BMPs that lead to osteophytosis within 

the joint59, 60. Recent research efforts investigated this low-grade synovitis and related it to pain, 

joint dysfunction, and it might even promote rapid cartilage degradation333, 334. 

In our experiments we analyzed macrophage activation using FRβ targeted SPECT/CT. When 

examining our results more closely, a pattern of macrophage activation in our different studies 

can be identified. When comparing the data presented in Chapters 5-8, most macrophage 

activation was found directly after completion of a running protocol. Cartilage analysis using 

EPIC-µCT showed sGAG loss and ECM degradation was most severe during this phase. When 

animals were not forced to run anymore, the amount of macrophage activation reduced in 

all our studies, as was the degree of sGAG loss and ECM degradation. As discussed before, 

FK506 and ALN treatment protected against further ECM degradation in the non-running 

phase. In these two studies, the amount of macrophage declined even further equal to healthy 

control values (Chapter 6-7). This suggests that the amount of macrophage activation passively 

responds to the loss of sGAG and collagen fragments that are lost from articular cartilage. 

In order to support this finding, we studied the immunomodulatory effects of intra-articular 

triamcinolone injections on macrophage activation and whether this reduces sGAG loss and 

degradation of cartilage matrix (Chapter 8).

Corticosteroid therapy reduces synovitis and pain, and acts on macrophage activation. A few 

preclinical studies have shown that intra-articular corticosteroid injections might be beneficial 

for preservation of cartilage matrix333, 334. These results suggest that macrophage activation 

actively participates in the OA continuum and contributes to cartilage degradation. In our 

experiment, triamcinolone treatment efficiently reduced macrophage induced osteophytosis 

(Chapter 8). This contradictionary effect of increased macrophage activation in relation to a 

lack of osteophytosis, is likely to be explained due to a strong polarization effect towards a 

non-inflammatory subtype of activated macrophage178. But although triamcinolone treatment 

was started pre-emptively and induced a polarization towards a non-inflammatory macrophage 

subtype well before OA induction, it did not result in a beneficial effect for cartilage in this 

model for OA progression. In our opinion, this further emphasizes that macrophage activation 

is induced by a loss of sGAG and collagen fragments from cartilage, but does not actively 

contribute its degradation during OA progression. 
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Next to effects of triamcinolone on macrophage activation, mesenchymal stem cells (MSCs) are 

also known to have immunomodulatory and trophic capacities by secreting anti-inflammatory 

factors and growth factors355 and MSC-treated OA joints produce less inflammatory cytokines365. 

In Chapter 9, we studied the effect of intra-articular injected MSCs on pain, cartilage damage, 

bone changes, and inflammation in a rat OA model in vivo. The MIA model for OA was selected 

for this purpose, since this model was previously validated as a rat model for OA pain77 and is 

known for a transient inflammatory response91. This study provided one interesting finding, 

animals treated with MSCs distributed significantly more weight on their affected limb. This 

suggests that MSC treatment reduced pain perception in these animals, possibly resulting from 

an immunomodulatory effect of MSCs on synovitis.

In conclusion, macrophages seem to be activated due to cartilage debris and elicit an 

inflammatory response that induces osteophytosis, synovitis and pain. Subsequently, synovitis and 

pain result in a limited range of motion in OA affected joints458, 459. When macrophage activation 

and synovitis is effectively treated either through MSCs or triamcinolone, pain is reduced and 

weight-bearing upon the affected joint can be normalized. However, cartilage quality in these 

situations remained poor. According to our hypothesis depicted in Figure 1, less pain induces 

an increase in biomechanical demand upon an inferior biological composition. As stated before, 

the mechanosensory capabilities of the osteocytes could trigger osteoblasts increase bone 

deposition and form sclerosis. This hypothesis might explain why triamcinolone animals showed 

slightly increased subchondral sclerosis in the medial tibia compartment (Chapter 8 – Figure 

7). Future studies should try to incorporate the possible effects of macrophage activation on 

synovitis, pain, weight-bearing and mobility. Besides the development of a more complete 

picture of OA as a whole joint disease, more knowledge could lead therapeutic manipulation of 

macrophage activation that does contribute to a joint’s health.

CT BASED IMAGING TECHNIQUES

The term early OA is gaining much attention in the OA literature, with the idea that earlier 

detection might give better options for treatment. This is a very reasonable assumption, since 

a completely deteriorated joint would require not only cartilage regeneration, but a drastic 

restoration of the deformed bone as well. This drives the need for a more sensitive imaging 

technology that recognizes early OA. Some argue that lack of such an imaging technique is the 

major impediment why new DMOADs have not been developed yet. However, new imaging 

techniques will not solely help to identify early OA in our patients. Osteoarthritis should be 

considered a group of overlapping diseases460. Like CAM impingement induced hip OA, future 

research using modern imaging techniques will unravel more and more of these different 

subtypes of OA. With this identification, patients can be selected according to their subtype 

and allow for more specific development of new DMOADs per subtype. 
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Cartilage evaluation using computed tomography
Through intra-articular injection of an ionic contrast, CT arthrography (CTa) scans can 

accurately measure sGAG115. We performed two studies in order to translate CTa based sGAG 

analysis from preclinical use towards clinical applications in humans (Chapter 10 and 11). 

Both studies showed that ionic contrast influx into cartilage measured with CTa is an excellent 

measure of sGAG content and composition of cartilage ECM. Of course, scanning with CT based 

techniques poses a radiation issue for patients. In Chapter 11 we show that using less radiation 

exposure increased noise within CTa scans and reduced spatial analysis of sGAG distribution. 

But analysis of larger volumes of cartilage from low radiation dose CTa scans still correlated well 

with EPIC-µCT, which makes this technique suitable as a quantitative cartilage analysis method 

ready for use in clinical research.

Further ongoing improvements in CT (detector) technology and newer software will provide 

scans with detailed high resolution images, even using low amounts of radiation exposure. A 

new technique that sensitively measures changes in bone and cartilage would enable us to 

identify patients suffering from early OA. Consequently, this will allow for quicker and more 

sensitive testing of new therapeutic interventions for OA. However, nowadays there is no clear 

definition that indicates which sGAG content should be considered healthy or diseased. Up till 

now, quantitative analysis of cartilage using dGEMRIC has not provided us with a clear answer 

yet. It would be meaningful to generate reference data with normal ranges of such variation 

in a broad population. As such, we would be able to depict thresholds for a potential diseased 

status, or think about odds ratios for developing OA. Most important, we would learn whether 

or not we should put the label “early OA” to some of these cartilage changes we can pick up 

with our modern imaging techniques. Still, using radiation based techniques like CT to generate 

this type of data remains debatable. 

Imaging of joint functioning
As mentioned many times before, sGAG production is dependent on mechanical loading in 

humans428. Quantitatively cartilage analysis using dGEMRIC  showed that moderate exercise 

improved sGAG content in patients at risk for OA461. These results show that OA intervention 

should somehow be related to physical exercise as means to improve cartilage quality. One can 

imagine that between individual patients, there are large differences in biological composition. 

Physical therapy, as it is currently applied in clinics, should be considered a rather ‘one-size-

fits-all’ approach and likely to be insufficient for many OA patients. The next challenge for 

quantitative imaging techniques will be to provide a scientifically funded approach with regards 

to physical therapy. CT based scanning modalities could prove to be very suited for this type of 

OA research. 
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CT allows for simultaneous subchondral bone and cartilage analysis149, providing more 

comprehensive data that can be translated towards biomechanical joint functioning.  For 

example, from CT scans it is possible to generate images that allow for 3D quantification of 

morphological abnormalities462. Currently, there already exist new motion simulation techniques 

that can evaluate joint dynamics based on CT scans. This type of motion analysis can indicate 

whether morphological joint changes might induce pathological joint functioning and identify 

whether this possibly induces OA463. Furthermore, using finite element models464, we are be 

able to convert CT parameters for cartilage and bone quality towards a load-taking capacity 

outcome465. Using these techniques might enable us to relate the, through CT measured, 

biological composition of different tissues (Figure 1A) to a certain level of biomechanical 

demand (Figure 1B). Applying these imaging techniques and new analysis tools might enable 

physicians to define a specific type of physical activity with proper intensity that meets the 

capabilities of the diseased OA joint in one specific human patient (Figure 1G). Through such 

an approach, unique conditions in each individual can be coupled to specific therapeutic actions, 

generating a more personalized medicine mindset.
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The articular joint is a complex structure in the human body that allows movement under 

high mechanical loading during daily activities. Osteoarthritis (OA) is a degenerative disease 

of articular joints that involves pathologic changes in articular cartilage, subchondral bone, 

synovium, menisci, ligaments, and probably even other structures as well. In this thesis, we 

studied different aspect of progressing OA pathology in different animal models using multi-

modality imaging techniques (like µCT and µSPECT/CT) dedicated for small laboratory animal 

research. Furthermore, we investigated several therapeutic strategies that might be beneficial 

for OA management.

First, we longitudinally analyzed OA progression in different OA models using µCT-

arthrography (µCTa) scans. In Chapter 2, we describe a new approach to more accurately 

segment cartilage from µCTa scans, enabling more detailed analysis of cartilage degradation in 

time. When applied for analysis of OA progression during a 24 week follow-up time in three 

different OA models, each model showed distinct patterns of disease progression. In particular, 

the strenuous running model showed a marked loss of sulphated glycosaminoglycans (sGAG) 

from articular cartilage during treadmill running. Unexpectedly, when rats did not run anymore, 

this sGAG loss progressed during follow-up. This finding suggests that increased biomechanical 

exposure through strenuous running initiates an ongoing cascade of OA processes that likely 

exceeds the ability for spontaneous cartilage repair. 

In contrast to our finding in Chapter 2, from literature it is known that physiological joint 

loading through exercise can stimulate cartilage quality and enhance cartilage sGAG content in 

healthy joints. In Chapter 3, we investigated whether physical exercise exerts a similar effect on 

sGAG depleted cartilage. In this chapter we show that moderate exercise is harmless for healthy 

cartilage, but is detrimental for articular joints in rats with severely sGAG depleted cartilage. 

Not only cartilage degraded to a far more severe extent, there was also more formation of 

subchondral sclerosis, fulminant activation of macrophages, and increased osteophytosis.

Next, we performed experiments that target chondrocytes in order to intervene with OA 

progression. The canonical Wnt/β-catenin signaling pathway is a critical regulator of cartilage 

homeostasis and development and influences cell death through apoptosis mechanisms. In this 

pathway, glycogen synthase kinase-3β (GSK3β) down-regulates transduction of the canonical 

Wnt signal by promoting degradation of β-catenin. In Chapter 4, we show that inhibition of 

GSK3β leads to chondrocyte apoptosis and induces OA.

Another interesting regulator of cartilage homeostatis are heat shock proteins (Hsp). Hsp70 

can be upregulated in chondrocytes through exercise, which protects chondrocytes against 
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apoptotic cell death. However, this effect is limited due to suspected upregulation of Hsp90, 

which has an antagonistic function on Hsp70. In Chapter 5, we tested whether Hsp90 inhibition 

might prevent degenerative effects from strenuous running on articular cartilage. We found that 

Hsp90 inhibition upregulated Hsp70 in articular chondrocytes and stimulated sGAG production, 

which ultimately prevented cartilage ECM damage in the rat running model. 

A loss of chondrogenic phenotype due to OA induced chondrocyte hypertrophy is associated 

with calcineurin (Cn) activity. In Chapter 6 we studied whether Cn inhibition through FK506 

treatment improves chondrocyte phenotype in vitro and whether FK506 might prevent OA in 

vivo. In vitro monolayer and 3D pellet cultures of chondrocytes treated with FK506 showed both 

induced anabolic and reduced catabolic extracellular matrix (ECM) marker expression. When 

FK506 was applied in vivo, it prevented degradation of ECM, reduced subchondral sclerosis, and 

synovial macrophage activation. Our data suggest that FK506 induces an anabolic response in 

articular chondrocytes that protects cartilage ECM. 

The cartilage-bone interface is long suspected to be the key-region in OA development. It has 

been hypothesized that a functional coupling between osteoclasts and osteoblasts exists that 

eventually will lead to sclerosis formation during OA progression. In Chapter 7, we investigated 

whether inhibited osteoclastic bone resorption through alendronate treatment intervened with 

formation of subchondral sclerosis formation and its effect on OA progression. Alendronate 

treatment functionally inhibited osteoclastic bone resorption, but the formation of sclerosis 

was not prevented. This suggests that other cells, like osteocytes, might play an important role 

in the formation of sclerosis. However, alendronate treatments did (somewhat) protect against 

ECM degradation, indicating that increased osteoclastic activity does contribute to during OA 

progression.

Within the synovium reside macrophages that become activated during OA progression. It 

is known that these activated macrophages produce transforming growth factor (TGF) β. Due 

to enhanced TGFβ production, the synoviocytes enhance bone morphogenetic protein (BMP) 

production. Consequently, these BMPs stimulate development of osteophytes. It is also known, 

that intra-articular use of corticosteroids inhibits osteophytosis. However, the mechanisms 

through which this effect is generated are still unknown. In Chapter 8 we studied what effect 

intra-articular injections of triamcinolone have on synovial macrophage activation. Triamcinolone 

was able to prevent osteophyte formation in a severe model for OA. Interestingly, triamcinolone 

injections severely enhanced macrophage activation. Unfortunately, we did not find an effect 

on cartilage quality or quantity. In fact, triamcinolone proved to enhance subchondral sclerosis 

in this model for OA. 

Mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration. MSCs 
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also have immunomodulatory and trophic capacities by secreting anti-inflammatory factors and 

growth factors. Cell tracking experiments showed that MSCs are able to survive up to two 

weeks after injection into the knee joint (Chapter 9). Although we found that MSCs exerted a 

favorable effect on pain in the mono-iodoacetate (MIA) model for OA, both MSC and freshly 

isolated bone marrow mononuclear cells (BMMNCs) did not modify any of the MIA induced OA 

changes in bone, cartilage and synovium. Further evaluation on multiple pain aspects is needed 

to assess the efficacy of MSC as a therapy to alleviate pain in clinical OA.

Current imaging modalities used in clinical practice (e.g. radiographs, MRI), are not likely to 

give us the necessary knowledge about OA pathogenesis. µCT-arthrography is a pre-clinical 

technique that enables us to detect early OA events before our laboratory animals develop any 

clinical symptoms of disease progression. Therefore, we conducted experiments in order to 

translate this technique towards a clinical setting. In Chapter 10, CT-arthography (CTa) scans 

made using a clinical CT system and compared to outcomes from EPIC-µCT scans.  CTa had 

an excellent correlation with cartilage sGAG content. This correlation even further improved 

when we combined information on sGAG content with data that reflected the cartilage ECM 

composition. This indicates that cartilage analysis using CTa serves as an accurate measure for 

cartilage quality. 

In order to use a radiation based technique (like CT) in clinical practice, it is necessary to 

investigate whether CTa scan protocols using a lower radiation dose are still able to measure 

cartilage quality. In Chapter 11 we report that CTa scans made with radiation doses ranging 

from 8.13 mGy to 81.33mGy, were all able to measure overall cartilage quality. CTa is therefore 

suitable for quantitative analysis of cartilage in clinical research. However, spatial analysis of 

cartilage quality on a single CT slice was highly affected by lowering the radiation dose. So, 

for new studies that require a high spatial resolution, will need to use a higher radiation dose. 

To conclude, the results of this thesis support that OA is a ‘whole joint disease’. Our data 

suggest that there is a dedicated balance within joint tissues to cope with the daily biomechanical 

demands it faces. Physiological joint functioning is impaired through loss of tissue quality, 

increased biomechanical demands, or a combination of both. When physiological functioning 

is disturbed, OA is likely to develop. We have shown that targeted interventions at different 

cells in the joint enable preservation of tissue quality, through which OA might be prevented. 

New imaging techniques for quantitative cartilage analysis (e.g. CT-arthrography) and emerging 

techniques that visualize cellular and molecular aspects of OA (e.g. SPECT/CT) will enhance our 

knowledge of OA. With these techniques, we will be able to more accurately select patients all 

suffering from a similar etiology of OA. The fewer the variables within OA study populations, 

the higher the chances in developing disease modifying agents that successfully target OA can 

be identified.
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Een gewricht is een complexe structuur in het menselijk lichaam dat beweging mogelijk 

maakt. Artrose is een ziekte van een gewricht waarbij pathologische veranderingen plaatsvinden 

in kraakbeen, subchondraal bot, gewrichtskapsel, menisci, ligamenten en tal van andere 

structuren. Het is vooralsnog onduidelijk waarom artrose in de ene patiënt snel progressief is en 

in anderen tientallen jaren stabiel blijft. Om meer inzicht te krijgen in de pathogenese van artrose 

en de effecten van therapeutische interventies hebben we in dit proefschrift diverse beschikbare 

diermodellen gebruikt. Monitoren van het ziekteproces vond plaats middels beeldvormende 

technieken zoals µCT en µSPECT/CT. 

In Hoofdstuk 2 beschrijven we een nieuwe analysemethode om accuraat kraakbeen uit scans 

van µCT-arthrogrammen (µCTa) te segmenteren. In de tijd hebben we drie ratmodellen voor 

artrose vervolgd met behulp van µCTa. Voor elk van deze drie modellen vonden wij een eigen 

patroon van verergering van artrose. Bij dieren die blootgesteld werden aan hardlopen, nam de 

concentratie van sulfide-glycosaminoglycanen (sGAGs) in het kraakbeen sterk af, leidend tot 

een sterk verminderde kwaliteit. Echter, ook wanneer deze dieren niet meer hoefden te rennen, 

bleef het artrose proces onverminderd doorgaan. Dit wekt de suggestie, dat een toename van 

de biomechanische prikkel een cascade van gebeurtenissen in het kraakbeen initieert waarbij 

het natuurlijke herstelmechanisme overschreden wordt. 

In Hoofdstuk 3 presenteren we hoe in een ratmodel hoe een milder hardloopschema geen 

negatief effect heeft op de kwaliteit van het kraakbeen in gezonde knieën van ratten. Wanneer 

wij door middel van papaine injecties in deze knie de  hoeveelheid sGAGs in het kraakbeen lieten 

doen afnemen, leidde dit milde hardloopschema echter tot een sterke toename van artrose met 

erosie van kraakbeen, sclerose in het subchondrale bot, ontsteking in het gewrichtskapsel en 

een forse toename van osteofyten.

Het is bekend dat tijdens progressie van artrose chondrocyten in het kraakbeen tekenen 

van hypertrofie aannemen en uiteindelijk sterven via een mechanisme dat apoptose heet. Het 

canonieke Wnt/β-catenine systeem is een belangrijke regulator van kraakbeen homeostase en 

heeft daarnaast invloed op de celdood via apoptose Glycogeen synthase kinase-3β (GSK3β) 

reguleert in dit systeem transductie van het canonieke Wnt signaal door de afbraak van β-catenin 

te stimuleren. In Hoofdstuk 4 laten we zien dat remming van GSK3β leidt tot een toename 

van celdood van de chondrocyt door apoptose, gepaard gaande met een toename van artrose. 

Een ander eiwit van invloed op apoptose is heat shock protein 70 (Hsp70), geproduceerd 

door chondrocyten. Een toename van Hsp70 leidt tot minder celdood en stimuleert kraakbeen 

kwaliteit door toename van sGAG productie. Hsp70 productie kan gestimuleerd worden door 
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belasting van kraakbeen middels hardlopen. Echter, dit gunstige effect blijkt gelimiteerd. 

Mogelijk leidt co-inductie van een ander stresseiwit, Hsp90, tot een tenietdoening van het 

gunstige effect van Hsp70. In Hoofdstuk 5 hebben we getest of remming van de werking 

van Hsp90 in staat was artrose te voorkomen. Het bleek inderdaad dat Hsp90 remming een 

stimulans is voor chondrocyten om meer Hsp70 te produceren, met als gevolg meer productie 

van sGAG en minder schade aan het kraakbeen ten opzicht van onbehandelde dieren. 

Zoals gezegd wordt atrose gekenmerkt door verandering van normaal fenotype van de 

chondrocyt naar een hypertrofe morfologie. Dit proces is geassocieerd met calcineurin (Cn) 

activiteit. In Hoofdstuk 6 hebben we bestudeerd of remming van Cn activiteit door behandeling 

met FK506 het normale fenotype van chondrocyten kan beschermen en middels die wijze artrose 

zou kunnen voorkomen. Onze in vitro studies lieten zien dat door behandeling met FK506 

een toename van anabolische, maar afname van catabolische activiteit door chondrocyten 

plaatsvond. In vivo experimenten lieten zien dat behandeling met FK506 leidde tot minder 

afbraak van kraakbeenmatrix en vermindering van progressie van artrose in andere weefsels 

van het gewricht.

De interface tussen kraakbeen en bot wordt al jaren onderzocht als mogelijke ontstaansplek 

van artrose. Tal van veranderingen in deze interface leiden uiteindelijk tot een toename van een 

sclerotisch botfenotype en artrose. Mogelijk ontstaat deze sclerose door een verstoorde balans 

tussen botresorberende osteoclasten en botmakende osteoblasten. In Hoofdstuk 7 hebben 

we getest of het remmen van botresorptie door osteoclasten leidt tot een vermindering van 

artrose. In dit experiment gebruikten we alendronaat om botresorptie door osteoclasten te 

stoppen. Hoewel door alendronaat botsclerose niet voorkomen werd, bleek sprake van minder 

afbraak van kraakbeenmatrix. Dit kan duiden op een centrale rol van pathologisch toegenomen 

osteoclast activiteit in progressie van artrose. 

Gedurende progressie van artrose worden macrofagen in het gewrichtskapsel geactiveerd. 

Van deze macrofagen is bekend dat zij transforming growth factor (TGF) β produceren. Dit 

groeihormoon induceert aanmaak van botgroei stimulerende eiwitten door synoviocyten in het 

gewrichtskapsel, leidend tot benige uitsteeksels (osteofyten) in een gewricht.  Het is bekend dat 

intra-articulair geïnjecteerde corticosteroïden eens sterk remmend effect hebben op de vorming 

van deze osteofyten. In Hoofdstuk 8 hebben we onderzocht op welke manier intra-articulaire 

injecties met een corticosteroïd (triamcinolon) invloed heeft op de activatie van macrofagen. 

Verrassend genoeg vonden wij dat triamcinolon leidt tot een forse toename van macrofaag 

activiteit. Deze behandeling wist wel de vorming van osteofyten volledig te voorkomen. Helaas 

zagen wij geen gunstige effecten op kraakbeenkwaliteit en zelfs een toename van sclerose in 

de behandelde dieren.
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Mononucleaire beenmergcellen (BMMNCs) en mesenchymale stamcellen (MSCs) zijn 

cellen die anti-inflammatoire stoffen en groeifactoren kunnen uitscheiden, met allerlei 

immunomodulatoire en trofische eigenschappen. In Hoofdstuk 9 hebben we onderzocht 

of BMMNCs en MSCs een gunstig effect op artrose kunnen hebben. Daarvoor werden MSC 

in artrotische knieën van ratten ingespoten. Door middel van fluorescentie hebben we de 

aanwezigheid van MSCs tot twee weken na injectie kunnen traceren. De MSCs hadden een 

minimaal gunstig effect op pijn die de ratten in hun artrotische knie ervaarden. Zowel MSCs 

als vers geïsoleerde mononucleaire beenmergcellen bleken echter geen therapeutisch effect te 

hebben op artrotische veranderingen in bot, kraakbeen en gewrichtskapsel. 

Conventionele afbeeldende technieken (zoals röntgenfoto’s en MRI) geven ons onvoldoende 

informatie om de pathologie van artrose te ontrafelen. Met nieuwe beeldvormende technieken, 

zoals µCTa, kunnen we mogelijk artrose in een veel vroeger stadium diagnosticeren. Om 

deze dierexperimentele CT techniek naar de kliniek te transleren hebben we een tweetal 

experimenten uitgevoerd. In Hoofdstuk 10 vergeleken we kraakbeen analyse van klinisch 

vervaardigde CT arthrogrammen (CTa) met ex vivo gemeten sGAG concentraties met EPIC-

µCTscans. Deze vertoonden een hoge correlatie, welke aanzienlijk verbeterde  wanneer naast 

data over sGAG, ook informatie werd toegevoegd met informatie over de collageen structuur 

van het kraakbeen. 

Omdat beeldvormende technieken zoals CT gebruik maken van röntgenstraling, is het 

noodzakelijk om te onderzoeken of CTa scans met een lagere stralingdosis nog steeds kraakbeen 

kwaliteit kunnen meten. In Hoofdstuk 11 beschrijven we dat 6 verschillende CTa scans met een 

stralingsdosis tussen de 81.33mGy en 8.13mGy betrouwbare informatie over de concentratie 

sGAG in kraakbeen genereerden. Deze uitkomst impliceert dat CTa laagdrempelig gebruikt 

kan worden bij het diagnosticeren van patiënten met artrose. Een beperking van de lagere 

stralingsdosis was, dat de spatiële analyse van de CTa scans minder nauwkeurig werd. Daarom 

is CTa met een lage stralingsdosis minder geschikt voor studies waarbij een accurate spatiële 

analyse noodzakelijk is. 

Concluderend onderstrepen de resultaten van dit proefschrift de hypothese dat artrose een 

ziekte van het hele gewricht is. Meermaals laten onze uitkomsten zien dat de verschillende weefsels 

in gewrichten zich continue aanpassen aan wisselende biomechanische omstandigheden. 

Wanneer de gewrichtweefsels in kwaliteit afnemen, of wanneer de biomechanische belasting 

sterk toeneemt, kan het fysiologisch functioneren van het gewricht ondermijnd worden, 

leidend tot activatie van cascades welke artrose induceren. Door middel van verschillende 

(medicamenteuze) interventies is het mogelijk om afzonderlijke cellen in het gewricht te 

beïnvloeden, waarmee de kwaliteit van weefsels wordt beschermd en artrose voorkomen. 

In de toekomst zullen beeldvormende technieken voor kraakbeen (zoals het gebruik van CT 
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arthrogrammen) en nieuwe moleculaire technieken (zoals SPECT/CT), een prominente rol gaan 

spelen om de pathogenese van artrose te ontrafelen. Het gebruik van dergelijke technieken 

stelt ons in staat specifieke artrose patiënten te selecteren die aan eenzelfde subtype van artrose 

lijden. Meer homogeniteit van patiëntgroepen zal leiden tot een toename van kansen om 

daadwerkelijk een nieuwe behandeling voor artrose te ontwikkelen.
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LIST OF ABBREVIATIONS 

(q)PCR (quantitative) Polymerase chain reaction

µCTa Micro-computed tomography arthrography

AB Alcian blue

AC Articular cartilage

ACAN Aggrecan

ADAMTS A Disintegrin And Metalloproteinase  with Thrombospondin Motifs

Angptl Angiopoietin-like

Apcdd1 Adenomatosis polyposis coli down-regulated 1

Aspn Asporin

Bq Becquerel

CECT Contrast enhanced (micro) computed tomography

CI Confidence interval

Cn Calcineurin

Col Collagen

CT Computed tomography

dGEMRIC Delayed gadolinium enhanced magnetic resonance imaging of cartilage

DMOADs Disease modifying osteoarthritic drugs

DNA Deoxyribonucleic acid

ECM Extra-cellular matrix

EPIC-µCT Equilibrium partitioning of an ionic contrast agent using  
micro-computed tomography

Epyc Epiphycan

Fbln Fibulin

FCD Fixed charge density

FGF Fibroblast growth factor

FKBPs FK506-binding proteins

Fmod Fibromodulin

FRβ Folate receptor β

GIN 3-[9-Fluoro-2-(piperidine-1-carbonyl)-1,2,3,4-tetrahydro-[1,4]

diazepino[6,7,1-hi]indol-7-yl]-4-imidazo[1,2-a]pyridin-3-yl-pyrrole-2,5-

dione

GO Gene ontology

GO_BP Gene ontology biological processes

GO_CC Gene ontology (extra)cellular location

GO_MF Gene ontology molecular functions

Gsk3β Glycogen synthase kinase-3β
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HA Hyaluronic acid

Hh Hedgehog

 HPLC High-performance liquid chromatography

Hsp Heat shock proteins

Hsp90i Hsp90 inhibition

IFN γ Interferon γ
IHC Immunohistochemistry

IL Interleukin

ISH In situ hybridezation

JSN Joint space narrowing

LMM Linear Mixed Model

Matn Matrilin

MEM Minimum essential medium

Met Met proto-oncogene

Mfap Microfibrillar-associated protein

Mgp Matrix Gla protein

MIA Mono-iodoacetate

MMP Matrix metlallopeptidase

NFAT Nuclear factor of activated T-cells

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

OA Osteoarthritis

Ogn Osteoglycin

Omd Osteomodulin

PBS Phosphate buffered saline

PCA Principal component analysis

PCNA Proliferating cell nuclear antigen

PET Positron emission tomography

PG Proteoglycans

RNA Ribonucleic acid

ROI Region of interest

sGAG Sulfated-glycosaminoglycans

SPECT Single-photon emission computed tomography

TNF α Tumor necrosis factor α
Tnmd Tenomodulin

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling

Ucma Unique cartilage matrix-associated protein

VCAN Versican

VEGF Vascular endothelial growth factor
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Summary of PhD training and teaching activities

Name PhD student:   Michiel Siebelt 

Erasmus MC Department:   Orthopedic surgery 

PhD period:    August 20008 – December 2013 

Promotors:    prof. dr. ir. H. Weinans

     prof. dr. ir. M. Hendriks-de Jong

     prof. dr. J.A.N. Verhaar

PhD training activities

General courses Year

Workload

(ECTS)

Animals science course, artikel 9 2009 3.0

‘Get out of your lab!’ – PhD instruction course 2009 2.0

AMIE: animal imaging workshop 2009 1.0

Stralingshygiëne 3B 2009 1.0

Biomedical English writing and communication 2012 4.0

Presentations

Various presentations at research meetings of the  

department of orthopedics

2008 - 

2012

4.0

Presentations (inter)national conferences

Nederlandse Vereniging voor Orthopedie, Utrecht, the Netherlands

‘Citation analysis of orthopaedic literature; 18 major orthopaedic 

journals compared for Impact Factor and SCImago’

2009 1.0

European Federation of National Associations of Orthopedics and 

Traumatology (EFORT) – Vienna, Austria 

‘Citation analysis of orthopaedic literature; 18 major orthopaedic 

journals compared for Impact Factor and SCImago’

2009 1.0

Nederlandse Vereniging voor Orthopedie, Utrecht 

‘Segmentation and analysis of in vivo contrast enhanced µCT-

data: a novel methodology for optimal quantification of cartilage 

degeneration’

2010 1.0
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European Orthopedic Research Society – Davos, Switserland 

‘Segmentation and analysis of in vivo contrast enhanced µCT-

data: a novel methodology for optimal quantification of cartilage 

degeneration’

2010 1.0

Orthopedic Research Society – Long Beach, Los Angeles, USA 

‘Accurate in vivo quantification of osteoarthritic cartilage changes 

using µCT-arthrography in three etiologically distinct rat models’

2010 1.0

Nordic Cartilage Imaging Group – Oulu, Finland 

‘Accurate in vivo quantification of osteoarthritic cartilage changes 

using µCT-arthrography in three etiologically distinct rat models’

2011 1.0

Annual BMM/TeRM meeting, Ermelo

‘Clinical application of CT-arthrography as a measure of cartilage 

sulfated glycosaminoglycan content’ Oral presentation award

2011 1.0

European Orthopedic Research Society – Amsterdam, the 

Netherlands 

‘Heat shock proteins 70 and 90 in osteoarthritis progression’

2012 1.0

 

Poster presentations

Annual BMM/TeRM meeting, Ermelo

‘Segmentation and analysis of in vivo contrast enhanced µCT-

data: a novel methodology for optimal quantification of cartilage 

degeneration’

2010 1.0

Osteoarthritis Research Society International (OARSI) – Brussels, 

Belgium

‘Segmentation and analysis of in vivo contrast enhanced µCT-

data: a novel methodology for optimal quantification of cartilage 

degeneration’

2010 1.0

Osteoarthritis Research Society International (OARSI) – Brussels, 

Belgium

‘Strenuous running as a model for osteoarthritis in rats: analyzed 

using contrast enhanced µCT’

2010 1.0

Osteoarthritis Research Society International (OARSI) – San Diego, 

USA

‘Clinical application of CT-arthrography as a measure of cartilage 

sulfated glycosaminoglycan content’

2011 1.0
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Osteoarthritis Research Society International (OARSI) – San Diego, 

USA

‘CT arthrography of the knee to measure cartilage quality with low 

radiation exposure’

2011 1.0

 

Teaching

Biomedical research techniques, presentation on ‘Computed 

Tomography’

2009 1.0

AMIE workshop, presentation and practical demonstration on 

‘Computed Tompography’

2010 1.0

Biomedical research techniques, presentation on ‘Computed 

Tomography’

2010 1.0

Weakly workgroups of Tutor first year medical students 2010 2.0

Tutoring first year medical students 2010 2.0

AMIE workshop, presentation and practical demonstration on 

‘Computed Tompography’

2011 1.0

Biomedical research techniques, presentation on ‘Computed 

Tomography’

2011 1.0

AMIE workshop, presentation and practical demonstration on 

‘Computed Tompography’

2012 1.0

Supervision of medical students –writing of an systematic review 2012 2.0

Supervision of medical students – scientific internship, 3 students 2009 – 

2013

9.0

Grant proposals

‘Sodium iodine symporter for cell tracing cell therapy’ – Jan Dekker 

stichting en dr Ludgardine Bouwman stichting

2010 1.0

‘Osteoarthritis: training is gaining’ - Reumafonds 2011 1.0

‘Stress in established OA: time to treat the whole joint?’ - 

Reumafonds

2012 1.0

‘Macrophage imaging: can we show both sides of the medal?’ – 

Mrace, Erasmus MC grant; Awarded

2012 1.0
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Bij deze wil ik iedereen bedanken die een bijdrage heeft geleverd aan het tot stand komen 

van dit proefschrift. Een aantal mensen wil ik in het bijzonder noemen.

Professor H. H. Weinans, dat was volgens mij het eerste wat je me afleerde op het lab. 

Geen professor, gewoon Harrie. En de tweede les volgde niet lang daarna. In mijn eerste 

maanden had ik geen flauw benul waar of waarmee ik eigenlijk moest beginnen. En zo trof je 

me eens vroeg in de middag aan op weg naar huis. Je concludeerde dat het toch vooral een 

goed idee zou zijn als we met wekelijkse regelmaat elkaar op jouw kamer zouden treffen. 

En eigenlijk is het vanaf dat moment echt in gang gekomen. En wat was het gedurende vier 

promotiejaren ontzettend prettig om met je samen te werken. Je open houding, laagdrempelige 

benaderbaarheid, enthousiasme en voorliefde voor gezelligheid, die zelfs tot laat in Boudewijn 

kon eindigen. Als ik iets mis van mijn promotietijd, zijn het de wetenschappelijk discussies 

waarvan het enthousiasme zich rechtevenredig uitte met de nodige decibellen vanuit jouw 

kamertje. We hebben veel voor elkaar gekregen, en ik hoop dat we in toekomst nog een mooie 

aanvulling kunnen maken!

Beste professor M. de Jong, beste Marion, bij u stond de deur ook altijd open. In de laatste 

fase van mijn promotie had ik besloten nog een project op te starten waarbij ik veelvuldig van 

de SPECT/CT gebruik wilde maken. En na overleg met u, gaf u direct te kennen dat dit geen 

probleem was. Met uw goedkeuren hebben Harald, Stuart, Erik en Wout veelvuldig geholpen 

met het labellen van folaat en scannen van proefdieren. Zonder deze opbouwende instelling en 

ondersteunende bijdrage van alle collega’s van de nucleaire geneeskunde was mijn promotie 

nooit zo’n succes geworden. Dank daarvoor!

Beste professor J.A.N. Verhaar, allereerst veel dank voor de kans om op uw afdeling aan een 

promotieonderzoek te mogen werken. Daarnaast heeft uw begeleiding mijn proefschrift veel 

goed gedaan. Keer op keer als ik mijn manuscripten voor beoordeling instuurde, wist u mij te 

verrassen met scherpe kanttekeningen van grote bijdrage voor mijn werk. Op dit moment heeft 

u in de kliniek eenzelfde positieve bijdrage aan mijn ontwikkeling tot orthopedisch chirurg.

Beste Erwin! Wat ben ik nog steeds dankbaar dat ik het plekje tegenover jouw bureau wist te 

bemachtigen. Absoluut de beste plek van het lab! Daar zittend ben jij een van mijn belangrijkste 

mentoren geworden. Ik bedenk me nog regelmatig hoe vaak jij diep hebt moeten zuchten als je 

weer eens iets aan mijn verstand probeerde te peuteren. Als gevolg van die gesprekken, moest 

ik dan toch mijn scans voor een tweede of derde keer opnieuw analyseren, waarvan ik de data 

dan keurig uitgeprint weer aan je voorlegde. En na al dat werk moest je soms uitleggen, dat 

wat ik daar deed, wetenschappelijk absoluut onjuist was. Juist onder deze begeleiding leerde ik 
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kritisch naar mijn data te kijken! En,…. dat data eigenlijk altijd minstens vier keer moet worden 

uitgewerkt, voordat je er überhaupt iets zinnigs over kan zeggen. Goed om je nog steeds 

regelmatig tegen te komen in het Hs-gebouw. Ik ga er stiekem van uit dat je tijdens mijn tweede 

stage in het EMC er nog steeds bent!

Beste Holger, ook jij bedankt voor al je hulp bij mijn promotie. Het begon met een succesvol 

sollicitatiegesprek met je, deels in het Duits, deels in het Engels, en volgens mij ook nog in het 

Nederlands. Maar het zou niet het laatste gesprek zijn wat we hebben gevoerd. Bij ieder idee 

van me deelde je altijd volop in enthousiasme. Vanuit je biologische achtergrond wist je altijd 

nog een achterliggende pathway te vinden, waarvan ik uiteraard nog nooit van gehoord had. 

Je bijdrage aan het Hsp-paper is van onschatbare waarde geweest. Niet alleen voerde je een 

eiwit-analyse uit, ook nam  je direct het volledige protocol onder handen om de efficiëntie van 

toekomstige analyses te verbeteren. Blijf volharden in deze Deutsche Gründlichkeiten! Succes 

zal jouw kant vanzelf opkomen! Heel veel succes in Aken!

Beste professor G.J. Kleinrensink en dr. E.H.G. Oei, beste Edwin, ook voor jullie speciale dank. 

Na een middag brainstormen met Jasper van Tiel, boden jullie ons direct alle mogelijkheden om 

onze ideeën voor de kliniek verder uit te werken. En zie wat het resultaat is geworden! Twee 

artikelen geaccepteerd en onderdeel van dit boekje, en wat ik van Jasper heb gehoord, komen 

daar nog een aantal in zijn boekje bij. 

Veel dank aan alle collega’s van de 16e, beste Sander, Olav, Tom, Robert-Jan, Yvonne Sniekers, 

Ruud, Johan, Marjan, Marianne, Gerjo, Anna, Gerben, Stefan, Roberto, Mieke, Nienke, Wu, 

Maarten, Mairead, Job, Belle, Vincent. Beste Nicole, Wendy, Esther en Sandra, zonder jullie had 

ik het eerste half jaar nooit overleefd!

Mijn paranimfen! 

Beste Rintje! Wat mooi dat jij besloot door te gaan met een promotietraject bij ons op het 

lab. Het was even aanpoten, maar uiteindelijk lukte het ons om samen je eerste publicatie op 

PubMed te krijgen. Te gek! Wel irritant dat je daarna niet te stoppen was, en vervolgens als 

eerste van ons drieën je promotie afgerond had. Nooit zal ik vergeten hoe we ons in de nesten 

hadden gewerkt op een verlaten rots midden in de woestijn in de USA. En hoe goed het bier 

smaakte, toen we daar heelhuids weg zijn gekomen. Over een paar jaar werken we even samen 

in de kliniek, ik kijk er nu al naar uit!
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Beste Jasper! Ontzettend veel succes hebben wij gehad. Na een middag koffie drinken, het 

plan opgepakt om klinisch CT arthrografie te gaan toepassen. Zie hier, twee hoofdstukken 

van mijn promotie, en bij jou zullen er nog een paar meer worden bijgevoegd. Daarnaast 

hebben we onwijs veel moeten lachen en lol gehad! Schitterend hoe wij in de Finse sauna in 

Oulu hebben gezeten, waar skinny dipping in de sneeuw best mannelijk is. Natuurlijk ook het 

borreltje muntwodka tijdens het diner met Harrie, Gyula en Edwin. Of hoe je besloot om bij 

-35ºC een stukje af te snijden, waarbij je tot je middel in de sneeuw kwam te staan. Maar zo 

gaat het bij Jasper, als je A zegt… Zodoende liep je onverstoorbaar lachend door. Precies zo, ga 

jij een fantastisch proefschrift afronden!

Jongens, je bent pas vrienden, als je tot veel te laat met elkaar in de kroeg hebt gezeten. Ik 

hoop daarom nog veel jaren aan onze vriendschap te blijven werken. H4L!

Lieve papa en mama, ik houd ontzettend veel van jullie allebei. Bedankt voor de 

onvoorwaardelijke steun die ik krijg. Bij alles wat ik doe, weet ik dat jullie er zijn. Niets is meer 

belangrijk dan dat.

En natuurlijk ook de rest van de familie! Peter en Mieke, bedankt voor de oprechte interesse 

in mijn werk. Nog meer dank voor al jullie steun en support wanneer dat meer dan nodig was. 

Jullie kennen mij als geen ander. Lieve zus en lieve broer! Allebei baas over jullie eigen toko, 

respect! Wat fijn als we samen bij elkaar komen! Samen met Rob, Annechien, Guus, Pien, Leen, 

Fiene en Jikke. Altijd heerlijk om iedereen te zien, helemaal nu ook wij een gezinnetje hebben. 

Dank voor al jullie begrip en geduld tijdens die moeilijke periode. 

Lieve Bregje! Zonder jou was er geen proefschrift geweest. Zonder jou had ik mijn eerste 

dagen in de kliniek nooit overleefd. Wat is het soms moeilijk geweest in de jaren dat alleen wij 

er waren. Hoe heerlijk is het nu ons kleine ventje erbij is! Helemaal compleet met zijn grote 

handen en nu al eigenzinnige willetje. Wat een genot om samen met jou te glunderen bij zijn 

lach waarmee hij ons volledig inpakt. Samen zijn we super-trotse ouders, en het is een enorm 

gevoel van geluk om zijn dagelijkse flesje te geven. In zo’n ver level zijn we nog nooit geweest! 

Ik hou van jullie!
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