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Chapter 1: General introduction

Cardiovascular diseases (CVD) are the leading cause of morbidity and the number one
cause of death worldwide." An estimated 17.3 million people died from CVDs in 2008,
including an estimated 7.3 million due to coronary heart disease (CHD) and 6.2 million
due to stroke. The number of people dying from CVDs is expected to increase to 23.3
million in 2030 if no improvements in prevention and treatment will be implemented.’
For many years, CVD was considered an inevitable consequence of aging and knowl-
edge about the pathophysiology was limited. In 1961, Kannel et al* were the first to
provide convincing evidence for age, sex (male), smoking, hypertension, diabetes and
dyslipidemia as important risk factors for CVD, laying the foundation for the successful
primary and secondary prevention programs that have been implemented. Despite
these successes, CVDs impose a major burden on human health and healthcare systems.

An increasing portion of CVD cases can be prevented by addressing the modifiable risk
factors, including type 2 diabetes (T2D) and dyslipidemia." Several studies have shown
that the relative risk for coronary deaths from diabetes is around 2.5 in women and
around 2 in men® and a meta-analysis showed that a T mmol/L decrease in low-density
lipoprotein cholesterol (LDL-C) level is associated with a 19% reduction in CHD mortal-
ity.* The high impact and frequency make T2D and dyslipidemia suitable candidates
for targeting preventive interventions, such as medication, weight loss, and increased
physical activity, which can prevent, slow, or even reverse the development of these risk
factors and thus reduce the burden of CVDs.>®

T2D is characterized by hyperglycemia due to insulin resistance in muscle and liver, caus-
ing impaired glucose uptake and impaired suppression of hepatic glucose production in
response to insulin, and progressive impairment of insulin secretion by the pancreatic
B-cells.”® An estimated 285 million people worldwide have diabetes and this number is
expected to increase by more than 50% in the next 20 years if no effective preventive
strategies are implemented.’ It is a multifactorial disease, caused by a complex interplay
between genetic and nongenetic factors. Important nongenetic factors in the etiology
of T2D are increasing age, higher body mass index, impaired fasting glucose, impaired
glucose tolerance, higher glycated hemoglobin (HbA1c) level, and metabolic syn-
drome.'*"® Heritability estimates are moderate to high, ranging from 26 to 69%.'®"” Over
the past few years, knowledge of the genetic variants underlying this heritability has
rapidly increased through collaborations in large genetic consortia for gene discovery.
These collaborative efforts have identified dozens of single nucleotide polymorphisms
(SNPs) associated with T2D and the related quantitative traits fasting glucose (FG) and
fasting insulin (FI) in the general population.’®' Together, the currently known SNPs
explain about 10% of the heritability of T2D.
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Dyslipidemia is a broad term encompassing several lipid disorders. In this thesis, the
criteria used are those that have been implemented by the Dutch College of General
Practitioners to identify individuals at increased CVD risk, based on both total cholesterol
(TC) and high-density lipoprotein cholesterol (HDL-C) (TC = 6.5 mmol/L when TC/HDL-C
ratio = 5, TC < 6.5 mmol/L when TC/HDL-C ratio > 8, or TC = 9 mmol/L independent
of TC/HDL-C ratio) and the criteria that are currently used based on TC alone (TC > 6.5
mmol/L or use of lipid lowering medication).?” The prevalence of dyslipidemia in the
general population is high. Data from nationally representative health examination sur-
veys from England, Germany, Japan, Jordan, Mexico, Scotland, Thailand and the United
States showed prevalences of elevated TC (TC = 6.2 mmol/L) in adults aged 40-79 years
from 19% in Mexico to 62% in Germany.” In individuals with T2D, levels of TC and LDL-C
are similar to those in non-diabetic individuals; however, HDL-C levels are typically de-
creased and triglyceride (TG) levels increased compared to non-diabetic individuals.** As
in the etiology of type 2 diabetes, genetic factors play an important role in the etiology
of dyslipidemia with heritability estimates ranging from 24 to 56% for blood lipid levels
(TC: h2=35%, LDL-C: h2=30%, HDL-C: h2=56%, TG: h2=24%).” Large numbers of SNPs
associated with blood lipid levels in the general population have been identified in the

26,27

past few years, explaining 25 to 30% of the heritability.

The identification of large numbers of SNPs has raised the question of whether this ge-
netic information can be used to identify individuals at high risk of T2D or dyslipidemia.
Genetic information can be attractive for early risk assessment following the successes
of phenylketonuria (PKU) prevention. Screening at birth for PKU has effectively pre-
vented mental retardation.”® Also, genetic screening of families with a history of familial
hypercholesterolemia (FH), an autosomal co-dominant genetic disorder associated with
increased levels of LDL-C, has proved useful in terms of sensitivity, quality adjusted life
years and cost effectiveness®®*°. Genotypes are invariant over time, which enables iden-
tification of individuals at high risk of developing morbidity at an early age and early
interventions before the pathogenesis of disease leads to irreversible damage. However,
the effect sizes of the variants associated with most complex traits and diseases, includ-
ing T2D and dyslipidemia in the general population, are very modest. Per allele odds
ratios (OR) for T2D are typically around 1.10."® Even the strongest susceptibility variant,
rs7903146 in the TCF7L2 gene (OR=1.39)"?, is a weaker predictor of T2D risk than most
nongenetic risk factors. The variants associated with lipid levels typically result in a
change of about 0.03 standard deviation (SD) in lipid value per copy of the effect allele.”
The variants with the largest effects on TC, LDL-C, HDL-C and TG (these are variants in the
LDLR, APOE, CETP and APOAT loci) are associated with changes of about 0.2 SD in lipid
value per copy of the effect allele. Evidently, the low effect sizes make single genetic
risk factors unsuitable for identifying individuals at high risk of T2D or dyslipidemia,

16



Chapter 1: General introduction

but there has been increasing interest in investigating the extent to which genetic risk
factors combined can improve the prediction of disease. This approach was outlined
by Fisher in the previous century, who predicted that multiple risk alleles, following a
Gaussian distribution in the population, account for the phenotypic variability observed
in the population.”

In addition to identification of high risk individuals, findings from large genome-wide
association studies can improve the understanding of disease etiology, which can lead
to identification of novel targets for therapeutic interventions. Several approaches have
been applied to the currently well-established common T2D and lipid SNPs to identify
the biological processes they might be involved in. These approaches have identified
cell cycle regulation, adipocytokine signalling and CREBBP-related transcription factor
activity as key processes involved in the pathogenesis of T2D." For lipid levels, many of
the identified loci harbor genes involved in lipid metabolism, which has been validated
in mouse models.” In addition, large numbers of genes have been suggested on the
basis of literature review, pathway analysis, regulation of mRNA expression levels, and
protein altering variants, as interesting candidates to take forward to functional stud-
ies.”

Despite the large numbers of SNPs influencing lipid levels and T2D risk that have
been identified, a large portion of the estimated heritability is still unexplained. Both
for identification of individuals at increased risk of disease and to further improve the
understanding of disease etiology, which can lead to better prevention, diagnosis and
treatment, it is important to find the explanation for this “missing heritability”. Because
efforts have largely focused on common genetic variants (minor allele frequency (MAF)
> 5%), one hypothesis is that low frequency (defined in this thesis as MAF 1-5%) and rare
(defined in this thesis as MAF <1%) variants could explain part of the missing heritabil-
ity.**** This is supported by recent large-scale sequencing studies that have reported
that rapid expansions in the human population have introduced a substantial number of

34,35

rare genetic variants™, with purifying selection having had little time to act, which may

harbor larger effects on complex traits than those observed for common variants.***

AIMS OF THIS THESIS

In this thesis | aim to improve our understanding of the etiology of T2D and dyslipidemia
and to investigate the extent to which genetic risk factors combined can improve their
prediction. Chapter 2 includes genetic studies of T2D and diabetes related quantitative
traits. In Chapter 2.1, | give an overview of published genetic risk prediction studies for
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T2D from a methodological perspective. In Chapter 2.2, | study the association of the
IGF1 gene with fasting insulin levels to obtain more insight into GWAS findings near this
gene and to identify and characterize novel genetic variants at the locus. In Chaper 2.3,
| describe exome-wide association analyses to identify rare and low-frequency variants,
with potentially larger effect sizes, associated with FG, Fl and T2D. Chapter 3 focuses
on risk scores comprised of the known common genetic lipid variants. In Chapter 3.1, |
investigate their ability to identify individuals at high risk of dyslipidemia through old
age and, in Chapter 3.2, their association with subclinical atherosclerosis and incident
coronary heart disease. In Chapter 4, | explore the influence of the lipid gene risk scores
on lipid levels and dyslipidemia in the context of T2D. Ultimately, in Chapter 5, | discuss
the findings of this thesis and their implications for future research.
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ABSTRACT

Fueled by the successes of genome-wide association studies, numerous studies have
investigated the predictive ability of genetic risk models in type 2 diabetes. In this paper,
we review these studies from a methodological perspective, focusing on the variables
included in the risk models as well as the study designs and populations investigated.
We argue and show that differences in study design and characteristics of the study
population have an impact on the observed predictive ability of risk models. This ob-
servation emphasizes that genetic risk prediction studies should be conducted in those
populations in which the prediction models will ultimately be applied, if proven useful.
Of all genetic risk prediction studies to date, only a few were conducted in populations
that might be relevant for targeting preventive interventions.
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Chapter 2.1: Genetic risk prediction in type 2 diabetes
INTRODUCTION

Type 2 diabetes (T2D) is a multifactorial disease, caused by a complex interplay between
genetic and nongenetic risk factors. Compelling evidence has identified increasing age,
higher body mass index (BMI), impaired fasting glucose, impaired glucose tolerance,
higher glycated hemoglobin (HbA1c) level, and metabolic syndrome as important T2D
risk factors (Table 1)'"'°. These nongenetic factors have a substantial impact on disease
risk and are frequent. For example, metabolic syndrome poses an eight times higher T2D
risk and is present in more than 40% of the individuals over 50 years of age. The high
impact and frequency make these risk factors suitable candidates for targeting preven-
tive interventions, such as medication, weight loss, and increased physical activity that
can slow down or even reverse the disease process'"'%,

In the past 5 years, genome-wide association studies have identified and replicated
over 40 single nucleotide polymorphisms (SNPs) that predispose to T2D "*'*. However,
the effect sizes of the associated variants are very modest, with per allele odds ratios
ranging from 1.05 to 1.35". Even the strongest susceptibility variant, rs7903146 in
the TCF7L2 gene, is a weaker predictor of T2D risk than most nongenetic risk factors.
Evidently, the low effect sizes make single genetic risk factors unsuitable for targeting
preventive interventions, but there is increasing interest in investigating the extent to
which genetic risk factors combined can improve the prediction of the disease.

An improvement in the early identification of high-risk groups is warranted because
T2D imposes a great burden on human health and health care systems''®, An estimated
285 million people worldwide have diabetes'® and this number is expected to increase
by more than 50% in the next 20 years if no preventive strategies are implemented'®. To
identify high-risk individuals, many risk prediction models have been proposed.

Guidelines for T2D prevention advocate the use of clinical risk scores as primary
screening tools, followed by blood glucose measurements to detect individuals with im-
paired fasting glucose, impaired glucose tolerance, or metabolic syndrome'’. Examples
of commonly used risk scores include the FINDRISC (Finnish Diabetes Risk Score) and
the Diabetes Risk Calculator'®'. The FINDRISC score is based on age, BMI, waist circum-
ference, use of antihypertensive medication, history of elevated blood glucose, daily
physical activity and daily intake of fruits or vegetables, and the Diabetes Risk Calculator
on age, waist circumference, gestational diabetes, height, race/ethnicity, hypertension,
family history of diabetes, and exercise.

The predictive ability of these clinical risk scores is modest, but satisfactory. The area
under the receiver operating characteristic curve (AUC) is a commonly used measure to
indicate the predictive ability; the AUC indicates the discriminative accuracy of a predic-
tion model. To generate the curve, on the x-axis 1-specificity is plotted, and on the y-axis
sensitivity is plotted. The AUC value represents the probability that the predicted risk of
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Table 1. Risk factors for type 2 diabetes

Risk factor Population Frequency (%) Diabetes risk (%)* RR?
Age (years)

0-44 General US population 61.3[1] 1.7 2] 1

45-64 259 12.2 7.2

65-74 6.8 19.9 1.7

75+ 6.1 179 10.5
Sex

Female General US population 50.7 [1] 5.91(3] 1

Male 493 6.6 1.1
BMI (kg/m?)

<25 US adults aged = 20 years 32.0[4,5] 8 6] 1

25-<30 34.2 15 1.9

30-<35 19.5 23 29

35-<40 8.6 33 4.1

=40 5.7 43 54
IFG/IGT

Normoglycemic Nondiabetic US adults aged  65.4 [7] NA [8] 1718]

IGT only 2 18 years (Frequency) 54 44-64 5,57

Global cohorts (Diabetes risk

IFG only and RR) 19.4 6.1-92" 75"

IFG +IGT 9.8 10-15" 12.1°
HbA1c (%)

<5.0 Nondiabetic middle- 8.6[9] 6°[9] 0.57[9]

50-<5.5 aged adults from four US 44.6 12° 1

5.5-<6.0 communities 332 21° 1.9°

6.0-<6.5% 9.3 44° 45

26.5 43 79° 16.5”
Metabolic Syndrome

No US adults aged > 50 years 56.5[10] 4.11010] 1

Yes 435 34.0 8.3

*values reported are prevalences unless otherwise indicated, “unless referenced, values are calculated from
the values depicted in the column “Diabetes risk” “annualized incidence of diabetes, ‘annualized relative
risk, ‘cumulative 15-year incidence of diagnosed diabetes, >multivariable adjusted hazard ratio of 15-year

risk for each absolute increase in 1 percentage point of glycated hemoglobin

BMI, body mass index; HbA1c, glycated hemoglobin; IFG, impaired fasting glucose; IGT, impaired glucose

tolerance; NA, not available; RR, relative risk

arandom “patient”is higher than that of a random “nonpatient.”When predicted risks of
individuals who will develop the disease are always higher than the risks of those who
will not develop the disease, the AUC is 1.0. When their risks are higher for 50% of the
random pairs, the AUC is 0.50, equaling the predictive performance of tossing a coin®.
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The AUC was 0.65 in men and 0.66 in women for the FINDRISC score predicting
impaired fasting glucose, impaired glucose tolerance, or undiagnosed diabetes, and
0.72 and 0.75 for detecting metabolic syndrome'®. The AUC of the Diabetes Risk Cal-
culator was 0.70 for detecting impaired fasting glucose, impaired glucose tolerance, or
undiagnosed diabetes'®. These modest AUC values indicate that many people who will
develop T2D are not identified as being at increased risk by these risk scores, and that
many that will not develop the disease are labeled as increased risk. Although offer-
ing lifestyle modification programs to individuals who will not develop T2D may do no
harm and may even provide other benefits by reducing the risk of other diseases, not
recognizing the many who will develop diabetes would clearly be missed opportunities
to reduce the serious burden of disease'”. Some clinical risk models that include invasive
measurements showed higher AUC values for detecting individuals who will develop
T2D. An example is the Framingham Risk Score including age, sex, obesity, hypertension,
parental history of diabetes, low levels of high-density lipoprotein cholesterol, elevated
triglyceride levels, and impaired fasting glucose®'. The AUC of this risk model was 0.85
for predicting T2D in middle-aged adults®'. However, inclusion of invasive measure-
ments that can change over time in clinical risk models might be inconvenient at the
population level and these models still leave room for improvement.

Recent studies have investigated the predictive ability of risk models that include ge-
netic variants only or genetic variants added to clinical risk factors. A study that investi-
gated a genetic risk score based on 34 diabetes-associated variants showed a significant
association of the risk score with risk of developing diabetes®”. This risk was attenuated
by lifestyle interventions, also in individuals in the highest genetic risk quartile, suggest-
ing that detecting individuals at high risk of developing T2D based on genetic variants
and offering them lifestyle modification programs is useful. In this paper, we review
genetic risk prediction studies from a methodologic perspective by focusing on factors
in the choice of study design and population that may have impacted the observed
predictive ability.

GENETIC RISK PREDICTION STUDIES

The number of studies that investigate the predictive ability of genetic variants in T2D
has increased rapidly (Table 2; 2*2-383940-4243) Thase studies assessed risk models that
were based on genetic variants only or on a combination of both genetic and nonge-
netic variants. The table shows that the number of SNPs included in the genetic models
has increased from 3 in 2005 to 40 in 2011. The models show considerable overlap in
the genetic variants that were considered, but there also are many differences. Since
its discovery, all but one of the studies had included TCF7L2 and the majority addition-
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ally investigated PPARG, CDKN2A/B, KCNJ11, IGF2BP2, SLC30A8, and HHEX-IDE-KIF11. Yet,
most other SNPs were included in one or two models only*". The same was observed
for the clinical models. Most clinical models included at least age, sex, and BMI, but they
differed in the other factors that were added, such as blood pressure, family history of
T2D, and fasting plasma glucose level.

Table 2 shows that, almost without exception, the genetic risk models had lower AUC
values than the clinical models. The AUC values for the genetic models ranged from 0.55
to 0.68 and for the clinical models from 0.61 to 0.92. Table 2 also shows that the addition
of genetic factors either did not or only marginally improved the AUC beyond that of the
clinical risk models.

PREDICTIVE ABILITY OF CLINICAL RISK MODELS

The differences in the predictive ability of clinical risk models are explained by how many
and which risk factors are included in the model and by differences in study design and
study population. This is nicely illustrated by three studies that had investigated largely
the same 18 genetic variants. The AUCs of the genetic risks models in these studies were
similar (0.58-0.60), but the AUCs of the clinical models were 0.66, 0.78, and 0.90°*7%.
The clinical models with AUC values of 0.66 and 0.78 included age, sex, and BMI, but
the model with an AUC value of 0.90 also included T2D family history, fasting plasma
glucose, systolic blood pressure, high-density lipoprotein cholesterol, and triglycerides.
The excellent predictive ability was likely due to the inclusion of fasting plasma glucose,
as individuals with impaired fasting glucose have a very high risk of developing T2D
(Table 1). Table 2 shows that AUC values tend to be higher when more risk factors are
included in the model, particularly when fasting plasma glucose was included.

Yet, also the two studies that both investigated age, sex, and BMI in the clinical model
had markedly different AUC values (0.66 and 0.78). The difference in these AUC values
was likely explained by differences in the study design and population. The AUC of 0.66
was obtained in a prospective cohort study, the Rotterdam Study, and the AUC of 0.78 in
a case—control study, consisting of case and control subjects from the GoDARTS (Genet-
ics of Diabetes Audit and Research Tayside Study). Participants in the Rotterdam Study
were older and less often men (Table 2), but the two populations predominantly differed
in BMI. The mean BMI of the cases in the GODARTS study was higher than the mean BMI
of cases in the Rotterdam Study (31.5 vs 28.0 kg/m2). Also, the difference in mean BMI
between cases and controls was much larger in the GoDARTS study compared with the
Rotterdam Study (4.6 vs 2.0 kg/m?). In general and by definition, the predictive ability
of risk models is higher when there are larger differences between cases and controls
on the risk factors included in the risk model. Along the same lines, study design and
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population characteristics may have influenced the observed AUC values of the other
clinical models, and also of AUC values of the genetic risk models.

PREDICTIVE ABILITY OF GENETIC RISK MODELS

The AUC values of the genetic risk models ranged from 0.55 to 0.68, a range that was
much smaller than that of the clinical models. Similar as for the clinical risk models and
given that all SNPs approximately have the same low effect size, one would expect better
predictive ability for models that included a higher number of SNPs, but Figure 1 shows
that this was not observed for the studies listed in Table 2. The differences in the AUC
values of the genetic risk scores cannot be explained by the number of polymorphisms
included in the risk models. In fact, the highest genetic AUC (0.68) was found for a model
thatincluded 11 SNPs, and the lowest for a model that included these exact 11 SNPs plus
an additional 8 others. The explanation for the absence of this relationship is likely in the
low effect sizes of the genetic variants. A higher number of SNPs only yields a slightly
higher AUC, a combined effect that could easily be outweighed by the influence of other
factors, such as study design and study population.

Genetic risk prediction models have been investigated in prospective cohort studies,
in case-control studies and in cross-sectional studies, and in study populations that
differed in age, sex, and BMI (Table 2). These methodologic aspects may have impacted
the observed AUC values in a similar way as they impact the AUC values of the clinical
models. First, clinical and demographic characteristics of the study population may

0.70

AUC
0.65
1

0.60
I

0.55
1

0.50
I

T T T T T

0 10 20 30 40
Number of polymorphisms

Figure 1. The area under the receiver operating characteristic curve (AUC) versus the number of sin-
gle nucleotide polymorphisms included in the genetic risk models
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have influenced the observed predictive ability of the genetic risk models. There are two
ways in which these characteristics may impact the predictive ability: the clinical and
demographic characteristics of the study population itself and the differences in these
characteristics between patients and nonpatients.

Table 2 describes mean age and BMI and the percentage of men in published genetic
risk prediction studies for T2D. Mean age varied from 42.1 to 68.9 years, mean BMI from
23.41029.1 kg/m?, and the percentage of men from 0% to 100%. It is often hypothesized
that genetic risk factors may be more predictive in populations in which nongenetic T2D
risk factors are not yet present (eg, in younger or normal weight cohorts), but AUC values
of the genetic models were not markedly higher when populations were younger, had
lower BMI, or had a lower percentage of men. However, because of the heterogeneity
between the studies and their relatively small number, conclusions must be drawn with
caution. Moreover, one study that had investigated the predictive performance in two
age categories (< 50 years vs > 50 years) did find higher AUC values for the genetic risk
score in younger people (AUC 0.66 vs 0.59)*. The observation that a stratified analysis
within a single study did show differences in predictive ability suggests that the absence
of a clear relation of age, BMI, and sex with AUC values across studies is likely explained
by the presence of other differences between the studies.

The other way in which clinical and demographic characteristics of the study popula-
tion impact the predictive ability of risk models is through differences in these charac-
teristics between patients and nonpatients. This specifically holds for characteristics that
are included as risk factors in the prediction models, and for characteristics that are asso-
ciated with these risk factors. Evidently and by definition, the presence of risk factors will
differ between patients and nonpatients, but the difference can also be enlarged as a re-
sult of selection procedures. For example, patients who are recruited through hospitals
may have more unfavorable risk profiles than patients randomly selected from the total
patient population. Consequently, differences in risk factors between hospital-based
cases and population-based controls will be larger and the impact of these risk factors
on the predictive ability higher. For the studies listed in Table 2, differences in mean age
ranged from —6.2 to 16.9 years, in mean BMI from 0.3 to 5.5 kg/m? and differences in the
percentage of men from —0.1% to 21.8%. Figure 2 shows that larger differences in mean
age and BMI between patients and nonpatients were associated with higher AUC values
for the clinical risk models, and, although less apparent, lower AUC values for the genetic
models. No relation was observed between clinical AUC values and the percentage of
men included in the studies, but this may be because male sex only marginally increases
T2D risk compared with age and BMI (Table 1).

A second methodological aspect that may impact the predictive ability of risk models
is study design. Genetic risk prediction studies are preferably conducted in prospective
follow-up studies, but cross-sectional and case-control studies have been used as well
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(Table 2). The impact of study design on AUC values of T2D risk prediction models is in
part related to the impact of population characteristics. Selection procedures for cases
and controls may affect differences in clinical and demographic characteristics between
patients and nonpatients. Case—control studies may demonstrate AUC values that devi-
ate from those observed in prospective cohort and cross-sectional studies when cases
and controls are recruited from different sources.

Another way in which study design may impact the predictive ability of risk models is
length of follow-up in prospective cohort studies. Longer follow-up increases the likeli-
hood that clinical T2D risk factors change over time, and that as a result their baseline
values will be less predictive for the development of disease, resulting in prediction
models with lower AUC. The length of follow-up of the studies listed in Table 2 varied
from 6 to 25 years. Again, the number of prospective cohort studies was too small to
investigate the impact of follow-up duration, but one study investigated the predictive
ability in quintiles of follow-up time. This study demonstrated that the AUC of the clini-
cal risk model decreased with increasing duration of follow-up, whereas the AUC of the
genetic risk model increased®. From the first to the fifth quintile, the clinical AUC value
decreased from 0.75 to 0.67 and the genetic AUC value increased from 0.57 to 0.62%.

CONCLUSIONS

In this review, we showed that study design and population characteristics may have af-
fected the observed predictive performance of risk models. AUC values of the clinical risk
models were higher and, although weaker, AUC values of the genetic risk models were
lower when there were larger differences in age and BMI between cases and controls.
This observation has important implications for the design and health care relevance of
genetic risk prediction studies.

The predictive ability of risk models is preferably investigated in prospective cohort
studies, but in practice often only case-control or cross-sectional designs are available.
Because clinical risk factors, particularly the difference in risk factors between cases
and controls, impact AUC values, it is expected that AUC values for genetic risk models
obtained in case-control or cross-sectional studies may be valid when the distribution
of these risk factors does not differ from prospective studies. For case-control studies,
this means that the selection of cases and controls is not affected by these risk factors.
In case of selection, transparency about the methods is important to enable a correct
interpretation of the scientific and health care relevance of the results. For this reason,
the GRIPS (Genetic Risk Prediction Studies) statement, a recently published guideline
for the reporting of genetic risk prediction studies, recommends to describe eligibility
criteria for participants, and sources and methods of selection of participants**.
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The observed impact of population characteristics implies that it is important to as-
sess the predictive ability of risk scores in representative samples of the population in
which the model is ultimately applied to get valid estimates of their performance in
that population. The question then is: which populations do we want to target for the
prevention of T2D? Evidently, these may include individuals with metabolic syndrome or
overweight, but for genetic prediction this may particularly concern young individuals
who have not developed clinical risk factors. To date none of the T2D risk prediction
studies have been conducted in younger populations; all studies were conducted in
populations who on average were older than 40 years of age, two even in populations
over 60 years of age®*'. The study that best approximates the desired study population
has been conducted in a population with a mean age of 42 years, a mean BMI of 25.6 kg/
m?, and an almost equal number of men and women®. Given the observed differences in
AUC values, we must conclude that we do not know whether genetic variants are useful
in predicting T2D risk in younger populations. None of the studies so far has started from
a health care perspective when investigating the predictive ability of T2D risk models.

There is increasing interest in investigating the value of genetic risk factors in the
prediction of T2D risk. In this review, we demonstrated that the choice of study design
and predominantly the choice of study population impact the observed predictive abil-
ity of risk models. For this reason it is important that the planning of future genetic
risk prediction studies in T2D starts from a health care perspective by asking in which
population we want to predict T2D risk. It is the answer to this question that determines
the population in which the predictive ability should be assessed and that determines
whether the results of the study ultimately can be informative and change health care
practice.
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ABSTRACT

Objective: Insulin-like growth factor-1 (IGF-I) has been inversely associated with insulin
resistance. Genome-wide association studies (GWAS) of fasting insulin (Fl) identified
single nucleotide variants (SNVs) near the IGF1 gene, raising the hypotheses that asso-
ciations of SNVs near IGF1 with Fl are mediated by IGF-I levels and that these non-coding
GWAS variants either tag other functional variants in the IGF1 region or are directly
functional.

Methods: To test the first hypothesis, we performed mediation analyses using imputed
genotyping array data in 5,141 non-diabetic individuals from three population-based
cohort studies (CHS n=1,717; FHS n=3,293; RS n=140) with circulating IGF-l and Fl levels
available and to test the second hypothesis we performed single variant analyses and
the Sequence Kernel Association Test (SKAT) using targeted sequencing data around
IGF1 in 3,539 non-diabetic individuals (ARIC n=1,761; CHS n=967; FHS n=811) that were
part of the CHARGE Targeted Sequencing Study. In addition, we examined regulatory
annotation using ENCODE data to generate hypotheses about a direct functional impact
of non-coding Fl associated GWAS variants.

Results: Mediation analyses suggest that GWAS associations of SNVs near IGF1 with Fl
were not mediated by IGF-I levels. Targeted sequence data reveal a large number of
novel rare variants at the IGFT locus. SKAT analyses show a significant Fl association
with a subset of rare nonsynonymous variants (P = 5.7x10™%). Conditioning on the GWAS
variants suggested that the GWAS signal explains part of the rare variant signal and the
presence of a residual independent rare variant effect (Peongitionat = 0.019). Annotation of
nearby non-coding genomic functional and regulatory elements suggest that the GWAS
variants may have a direct functional role in insulin biology.

Conclusion: Our analyses suggest that association of SNVs near IGF1 with Fl is not medi-
ated by circulating IGF-I levels. Our study provides insight into variation present at the
IGF1 locus and into the genetic architecture underlying Fl levels, suggesting a role for
both rare non-synonymous and common functional variants in insulin biology.
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INTRODUCTION

The IGF1 gene encodes insulin-like growth factor-1 (IGF-I). This hormone has many
biological functions involving cell growth, proliferation and apoptosis'. Circulating IGF-I
concentrations have been associated with several human diseases, including cardiovas-
cular mortality and cardiovascular risk factors such as age, body mass index, total cho-
lesterol, the presence of diabetes, glomerular filtration rate, and alcohol consumption?>.
IGF-I levels are inversely correlated with insulin resistance®, which may be explained by
the insulin-like effects of IGF-I on glucose-uptake. IGF-I is structurally comparable to
insulin and they both cross react with the other’s receptor.

Genome wide association studies (GWAS) of fasting insulin (FI) levels revealed single
nucleotide variants (SNVs) near the IGF1 gene*’. SNV rs35767 located 1.2 kb upstream of
IGF1, was associated with a 0.010 pmol/L per (G) allele increase in Fl level (P =3.3x107%) in
a large GWAS meta-analysis®. Another large GWAS meta-analysis, in largely overlapping
samples, revealed rs2114912 as the variant most strongly associated with Fl in the IGF1
region®. This variant is located 54.7 kb upstream of the IGF1 gene and is associated with
a0.024 pmol/L increase in Fl per copy of the T allele. These findings have inspired further
assessment of the role that the IGFT gene plays in insulin biology.

In this paper we hypothesize that the associations of SNVs near the IGF1 gene with FI
(hence insulin resistance) are mediated by circulating IGF-I levels, and that the GWAS
variants tag other common or rare functional variants in the /GF1 region associated with
Fl levels. To test the first hypothesis, we performed mediation analyses using imputed
genotyping array data and to test the second hypothesis we performed association
analyses using deep, high throughput next generation targeted sequencing data
around IGF1. We also examined ENCODE Consortium datasets® of regulatory elements
by viewing the IGF1 region in the UCSC Genome Browser’ in order to generate testable
hypotheses about direct functional roles and mechanisms of the non-coding Fl associ-
ated GWAS variants.

MATERIALS AND METHODS

Study Populations

Individuals of European ancestry from four cohorts of the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium were included in this study:
the Atherosclerosis Risk in Communities (ARIC) study, Cardiovascular Health Study (CHS),
Framingham Heart Study (FHS) and the Rotterdam Study (RS).?
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Mediation Cohorts

5,141 non-diabetic individuals of CHS (n=1,717), FHS (n=3,293) and RS (n=140) were
available to contribute to mediation analyses. Genotypic data and both Fl and circulat-
ing IGF-I levels were available on the participants included in these analyses.

Sequencing Cohorts

3,539 non-diabetic individuals (ARIC n=1,761; CHS n=967; FHS n=811) that were part of
the CHARGE Targeted Sequencing Study with successful sequencing and measured trait
levels were available for analyses of targeted sequence data with the outcome Fl. 567 of
the CHS and 78 of the FHS participants included in these analyses were also included in
the mediation analyses. The design of the CHARGE Targeted Sequencing Study, includ-
ing the cohort sampling design, has been described in detail in Lumley et al’ and Lin
et al'®. To set up the analytic sample a case-cohort design was used in which both a
cohort random sample and participants with extreme phenotypes for each of 14 related
cardiometabolic traits were included. This included a sample of 200 participants (100
ARIC, 50 CHS, 50 FHS) from the high tail of the FI (= 8 hour fast) distribution in individuals
without diabetes, defined as either being diagnosed by a physician (ARIC), treated for
diabetes or having a fasting glucose (FG) > 7 mmol/L (ARIC, FHS and CHS). Three FHS
participants with type 1 diabetes were excluded from selection. Men and women were
selected equally from each cohort.

Quantitative Trait Measurement

Fl was measured from fasting plasma (FHS) or fasting serum (CHS, ARIC). In FHS, plasma
was collected after a = 8 hour overnight fast and FI was measured on frozen specimen
using the DPC Coat-A-Count RIA (total immunoreactive insulin) assay (assay sensitivity
1.2 uU/mL). In CHS (= 12 hour fast), Fl was measured using a competitive RIA (Diagnostic
Products Corp., Malvern, PA). In ARIC (= 8 hour fast), Fl was measured by radioimmunoas-
say (125Insulin kit; Cambridge Medical Diagnosis, Bilerica, MA) (assay sensitivity 2uU/
mL). BMI, a covariate in the models that we analyzed, was measured using standard
methods as previously described®. In CHS circulating IGF-I levels were measured by
ELISA ( Immunodiagnostic Systems Ltd , Boldon Business Park, Boldon, Tyne & Wear,
England) and in RS by a radioimmunoassay (Medgenix Diagnostics, Brussels, Belgium).

Genotyping in Mediation Cohorts

In CHS, genotyping was performed at the General Clinical Research Center’s Phenotyp-
ing/Genotyping Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip system.
Genotypes were called using the Illumina BeadStudio software. The following exclusions
were applied to identify a final set of 306,655 autosomal SNPs: call rate < 97%, HWE P-
value < 107°, > 2 duplicate errors or Mendelian inconsistencies (for reference CEPH trios),
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heterozygote frequency = 0, SNP not found in HapMap. Samples were excluded from
analysis for sex mismatch, discordance with prior genotyping, or call rate < 95%. Imputa-
tion was performed using BIMBAM v0.99 with reference to HapMap CEU using release
22, build 36 using one round of imputations and the default expectation-maximization
warm-ups and runs. In the FHS, genotyping was conducted using the Affymetrix 500K
SNP arrays supplemented with the MIPS 50K array. Samples with call rate < 97%, excess
Mendelian errors (= 1000) or average heterozygosity outside of 5 SD of mean (< 5.758%
or > 29.958%) were excluded. A subset of 378,163 SNPs with minor allele frequency
(MAF) = 1%, call rate > 97%, differential missingness P-value > 10~° and < 100 Mendelian
errors were used for imputation based on the haplotypes of the HapMap CEU release
22 using the MACH software. In the Rotterdam Study, genomic DNA was extracted from
venous blood samples obtained at baseline. DNA was extracted using the salting out
method''. Genotyping was performed using 550 and 610K lllumina arrays. Exclusion
criteria for individuals were excess autosomal heterozygosity, mismatches between
called and phenotypic gender, and outliers identified by an IBS clustering analysis. SNVs
were excluded for Hardy-Weinberg equilibrium P-value < 107° or SNP call rate < 98%.
Genotypes with minor allele frequencies > 1% were used to impute about 2.5 million
autosomal SNPs using HapMap CEU release 22 as a reference panel. Imputation was
performed using MaCH'. Imputed genotypes were coded as dosages. These are values
between 0 and 2 indicating the estimated number of copies of a given allele for each
individual.

Targeted Next Generation Deep Sequencing

Target selection in the CHARGE Targeted Sequencing Study included regions that had
been associated with one of 14 cardiometabolic traits by previous GWAS and regions that
had been shown to exhibit pleiotropy, and included the IGF1 gene'. Four regions in or
near the IGFT gene were sequenced at a mean depth of 50X, including 1kb downstream,
all 5 exons plus flanking regions, and 5 SNPs upstream that were associated with Fl in
GWAS*: rs35767, rs860598, rs855213, rs35747 and rs2114912 (Supplementary Figure
1). A total of 57.5kb per copy of the IGFT region was sequenced. Sequencing methods
were described in detail in Lin et al."’. An extensive quality control (QC) pipeline was
implemented, consisting of preliminary QC procedures in the sequencing laboratory
followed by a series of variant-level filtering steps. These included the exclusion of vari-
ants that mapped more than 100 base pairs from the requested target capture region,
exclusion of variants with a Phred-scaled base quality score™ less than 30, with less than
two reads of the alternate alleles, and variants with a depth of coverage of less than 10
total reads. Heterozygote genotypes were removed if their alternate to reference allele
ratio was disproportionate (< 0.2 or > 0.8 for one allele). For strand bias, only variants
with alternate allele reads obtained from both the positive and negative strands were
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kept. Finally, SNPs that had > 20% missingness across all samples, more than 2 observed
alleles, or were part of an overly dense SNP cluster (> 3 variants in a 10 bp window)
were removed. Using only samples from the cohort random sample subjects, SNPs
with HWE P-value < 1x107° were filtered. This criterion was not applied in the samples
selected based on extreme phenotypes, potentially enriched for rare variants, to pre-
vent filtering out interesting rare variants with a possible role in disease etiology. To
validate sequence-based genotypes, cross-validation was performed with data from the
Affymetrix Gene Chip 500K Array Set & 50K Human Gene Focused Panel in 1,096 FHS
samples. A total of 558 SNPs were shared between the two platforms. After excluding
missing genotypes, 98.0% of genotypes were concordant between the two platforms,
suggesting high accuracy of the sequenced genotypes.

Variant Classification and Annotation

Variants identified by sequencing of the IGF1 locus were classified as common if the MAF
was = 1% and rare if the MAF was < 1%. Novel variants were those not found in dbSNP,
the 1000 Genomes Project or ESP 6500 (Exome Sequencing Project)'*". Variants were
annotated using several bioinformatics sources. ANNOVAR'® was used to determine
whether a variant was synonymous, non-synonymous, intergenic, upstream (within
1kb upstream of a transcription start site), downstream (within 1kb downstream of
a transcription end site), intronic, in a three prime untranslated region (3'UTR) or in a
5’UTR. Non-coding variants were predicted to be functional if they were predicted to
be highly conserved across species using phastCons", predicted to lie in transcription
factor binding sites extracted from the HMR Conserved Transcription Factor Binding
Site track of the UCSC Genome Browser’, in DNAse | hypersensitive sites or transcription
factor binding sites identified by the ENCODE Project® or predicted to be functional us-
ing the ORegAnno database'®. In addition to this functional annotation of the variants
present in the targeted sequencing data, we examined ENCODE Consortium regulatory
element datasets (including DNAsel hypersensitive sites and histone modifications as
well as TFBS Chip-seq) and public transcriptome data in the UCSC Genome Browser to
determine whether the known common non-coding Fl associated GWAS variants might
be directly functional.

Follow-up Genotyping in FHS and lookup of Select Rare Variants

To verify the influence of variant rs151098426 on Fl levels, the variant was genotyped in
1,745 FHS offspring and 3,372 FHS generation 3 participants with Fl levels available that
did not overlap with the FHS participants included in the targeted sequencing analyses.
Genotyping was performed using TagMan (ABI PRISM 7700 HT Sequence Detection Sys-
tem, Applied Biosystems, Foster City, California) at the Joslin Diabetes Center Advanced
Genomics and Genetics Core. We also did a lookup of the variant in Fl exome chip meta-
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analysis results from the CHARGE diabetes-glycemia working group, including 38,528
samples.

Statistical Analyses

All analyses were adjusted for age, sex, BMI and study design variables (i.e. clinic site for
CHS and ARIC and recruitment cohort for FHS). Fl, in pmol/L, was natural log transformed
prior to analyses to improve normality.

Mediation Analyses

To test whether association of FI with GWAS variants in the IGFT region (rs35767,
rs860598, rs855213, rs35747 and rs2114912, pairwise r* 0.272-1.00 in HapMap2 CEU (see
Supplementary Table 1)) is mediated by IGF-I levels, in each cohort (CHS, FHS, RS) two
linear regression models per SNP were fitted, assuming an additive allelic effect. In both
models, In(Fl) was the outcome variable. Results from the three cohorts were combined
using inverse variance weighted fixed effects meta-analysis as implemented in the R
package rmeta'. In the first model, age, sex and BMI were included as covariates and
in the second model IGF-l was added as a covariate. From the models a ratio Bsye_model2
/ Bsne_moden < 1 would suggest that IGF-I levels explained part of the SNP-Fl association.

Analyses of Targeted Sequence Data
The analytic strategy of the targeted sequence data, described briefly below, followed
the approach outlined in Lumley et al.’ and Lin et al.™.

Four subsets based on functional annotation of rare variants within the IGF1 locus were
tested for association with In(Fl) using the Sequence Kernel Association Test (SKAT)®.
The subsets included 1) nonsynonymous variants, 2) novel nonsynonymous variants,
3) noncoding variants that were predicted to be functional and 4) novel noncoding
variants that were predicted to be functional. FHS used a SKAT test that accounted for
family structure®'. SKAT tests were conducted within the three cohorts (CHS, FHS, ARIC)
and meta-analyzed using a weighted sum of squares of z-statistics from single-variant
score tests. These variant scores were squared, weighted based on combined allele
frequencies across all studies, and summed to create a Q statistic. The significance of
the Q statistics was determined using an asymptotic distribution, as described in Wu et
al.*®. The weighted squared z-score for each variant divided by the total Q statistic can be
used to identify variants contributing most to the signal. To control type 1 error for this
part of the analysis a P-value < 0.05/4 = 0.0125 (corrected for four tests: 1 trait x 4 subsets
of variants) was used to define statistical significance for the SKAT tests.
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To test whether rare variant associations were independent of the known FI GWAS hits
near the IGF1 gene, conditional analysis was performed by additionally adjusting for
the two common variants rs35767 (Fl top hit Dupuis et al*) and rs2114912 (Fl top hit
Manning et al’) (r* = 0.272 in HapMap2 CEU) in the rare variant analysis. Since these
two variants were not present in the targeted sequence data, rs2162679 was used as
a proxy for rs35767 (r* = 0.915 in HapMap2 CEU) and rs2607988 was used as a proxy
for rs2114912 (r* = 0.882 in HapMap2 CEU). Conditional SKAT analyses were performed
in each cohort seperately and then meta-analyzed. Similar P-values in unconditional
and conditional analyses suggest that rare variant associations are independent of the
known common variant signals.

Although tests of rare variation were the primary aim of the targeted regional sequenc-
ing study, we also tested association of all variants with minor allele count (MAC) = 50
identified by sequencing with In(Fl). In ARIC and CHS standard additive genetic linear
regression models were used, while in FHS mixed effects models were used to account
for familial correlation. Results from each cohort were meta-analyzed using standard
fixed-effect inverse-variance weighted meta-analysis®. P-values were obtained from
unweighted regression models. Analyses weighted by the inverse of the sampling prob-
ability were used to obtain unbiased estimates of effect size’. The significance treshold
for common variant analyses was set at P-value < 1.0x107* (0.05/49 effective number of
independent variants calculated using the Li and Ji approach®)

For analyses of follow-up genotyping data in FHS, we used linear mixed effect model to
compare the average trait values by genotype category. Since we performed two tests
(offspring and generation 3 cohorts separately), we considered a P-value < 0.025 (0.05/2)
as significant.

RESULTS

Descriptions of the CHARGE cohort characteristics are depicted in Table 1. Both in the
individuals contributing GWAS data and in the targeted sequence samples, women
were slightly overrepresented. The mean age ranged from 39 to 71 in the GWAS samples
and from 54 to 72 in the targeted sequence samples. BMI was in the overweight range
in all cohorts. As previously observed, Fl values varied widely across studies®. The same
was observed for the IGF-I levels in the GWAS samples.
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Table 1. Descriptions of the study populations

GWAS samples Targeted sequence samples

CHS FHS RS ARIC CHS FHS
n 1717 3293 140 1761 967 811
Men (n,%) 630 (36.7) 1558 (47.3) 68 (48.6) 875 (49.7) 432 (44.7) 392 (48.3)
Age (y) 71.6 (4.8) 39.9(8.8) 66.2 (5.7) 54.7 (5.7) 72.5(5.4) 54.1(10.7)
BMI (kg/m?) 26.1(4.3) 27.0 (5.4) 26.4 (4.0) 27.2(5.7) 26.4(5.0) 27.9 (6.5)
FI (pmol/l) 72.2 (42.7) 30.9 (20.1) 90.1 (53.0) 83.1(73.2) 103.1(63.9) 32.6(21.3)
IGF1 (ng/ml) 96 (32.7) 131.1(42.8) 136.7 (53.3) NA NA NA

Values are mean (SD) unless otherwise indicated. ARIC: Atherosclerosis Risk in Communities Study,
CHS: Cardiovascular Health Study, FHS: Framingham Heart Study, RS: Rotterdam Study,
n: number, BMI: body mass index, Fl: fasting insulin, IGF 1:insulin-like growth factor-1

Mediation Analyses

Mediation analyses results are depicted in Table 2. Meta-analyses P-values were nominal
to borderline significant for each SNV in both models (P = 0.05-0.15). However, effect
estimates were similar to the effect estimates in up to 51,750 samples in the discovery
meta-analysis® and in FHS, the largest contributing cohort, P-values were significant
for each SNV in both models (Table 2). Both in the meta-analysis and in FHS alone, ef-
fect estimates were similar between model 1 (In(FI)~SNP+age+sex+BMI) and model 2

Table 2. Association of known fasting insulin GWAS SNPs in the IGF 1 region with fasting insulin levels
without and with IGF1 levels as covariate in the model

CHS FHS RS Meta Discovery paper*
B SE P B SE. P B SE. P B SE. P B S.E. P
Model1: In(FI)~SNP+age+sex+BMI
rs2114912 0.020 0.024 0.41 —-0.039 0.015 0.011 0.002 0.093 0.98 —0.021 0.013 0.09 —0.024 0.004 3.4x107"
rs860598 0.007 0.020 0.72 —0.032 0.014 0.022 -0.072 0.076 0.34 —0.020 0.011 0.07 —0.021 0.003 6.9x107"°
rs35747  0.005 0.019 0.81 —-0.032 0.014 0.022 -0.079 0.079 0.32 —0.021 0.011 0.06 —0.021 0.004 8.9x107"°
rs855213 0.005 0.020 0.81 —0.032 0.014 0.022 —0.072 0.076 0.34 —0.021 0.011 0.06 —0.021 0.004 1.0x10°°
rs35767  0.013 0.020 0.50 —0.031 0.015 0.042 —0.127 0.080 0.11 —0.017 0.012 0.15 —0.022 0.004 2.4x10°°
Model2: In(FI)~SNP+age+sex+BMI+IGF1

rs2114912 0.018 0.024 0.45 —0.039 0.015 0.011 0.004 0.094 0.97 —0.022 0.013 0.08 NA NA NA
rs860598 0.004 0.020 0.85 —0.032 0.014 0.021 -0.071 0.077 0.36 —0.020 0.011 0.07 NA NA NA
rs35747  0.001 0.019 0.95 —0.033 0.014 0.020 —-0.078 0.080 0.33 —0.022 0.011 0.05 NA NA NA
rs855213 0.002 0.020 0.94 —0.032 0.014 0.021 -0.071 0.077 0.36 —0.023 0.011 0.05 NA NA NA
rs35767  0.010 0.020 0.61 —0.031 0.015 0.041 -0.125 0.081 0.12 —-0.018 0.012 0.13 NA NA NA

CHS: Cardiovascular Health Study (n=1,717), FHS: Framingham Heart Study (n=3,293), RS: Rotterdam Study
(n=140), S.E.: standard error, *Manning et al.” (n up to 51,750)
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(In(F1)~SNP+age+sex+BMI+IGF-I). This is consistent with an effect of the variants near
IGF1 on Fl levels that is not mediated by circulating IGF-I levels.

Analyses of Targeted Sequence Data

Table 3 and Supplementary Table 2 show descriptions of known and novel variants
identified by targeted sequencing of the IGFT locus. Deep (mean read depth 50x) se-
quencing across the locus identified 1,393 variants, 1,143 (82.1%) of which were rare
and novel. A total of 11 coding non-synonymous variants were present, including 6 that
were novel. Of the 1,376 non-coding variants, 188 (14%) were predicted to be functional,
including 156 that were novel. The large majority of the variants at the IGFT locus had
MAF < 0.1% (Supplementary Figure 2). 64% of the variants were only observed one time
in our samples.

Meta-analyzed SKAT results (Table 4) showed that the subset of 11 rare coding non-
synonymous variants was significantly associated with In(Fl) (P = 5.7x107%). One rare
variant (chr12:101337467 (position hg18), rs151098426, MAF = 0.1%) accounted for
92.16% of the overall SKAT Q statistic (Supplementary Table 3 and Supplementary Figure
3). This variant resulted in an alanine to threonine substitution and was predicted to be
damaging by PolyPhen-2**, LRT* and MutationTaster”. In contrast to the positive effect
estimate for the rare T allele of rs151098426 in the SKAT targeted sequencing analysis

Table 3. Descriptions of known and novel SNPs in the IGF1 region in the CHARGE Targeted Sequenc-
ing Study cohorts combined

known novel* total
no. SNPs 248 1145 1393
no. rare SNPs 133 1143 1276

coding variants (n=17)
synonymous 2 4 6
nonsynonymous 5 6 11

non-coding variants (n=1376)

intergenic 165 793 958
upstream 7 24 31
downstream 5 20 25
intronic 39 148 187
UTR3 24 146 170
UTR5 1 4 5
predicted functional” 32 156 188

Values are frequencies. *not known in dbSNP, 1000 genomes project or ESP 6500, *predicted transcrip-
tion factor binding site (ENCODE ChipSeq, HMR) and/or DNAse hypersensitive site (ENCODE DHS) and/or
ORegAnno regulatory variant and/or highly conserved (PhastCons)
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Table 4. SKAT meta-analyses results for fasting insulin (BMI adjusted) from different subsets of rare
(MAF < 1%) SNPs in the IGF1 region

subset of rare SNVs n SNVs in subset P
coding nonsynonymous 11 5.7x107*
conditioned on GWAS variants* 0.019
coding nonsynonymous novel* 6 0.38
noncoding predicted functional** 188 0.38
noncoding predicted functional novel* 156 0.16

* conditioned on proxies of rs2114912 and rs35767, *not known in dbSNP, 1000 genomes project or ESP
6500, **predicted transcription factor binding site (ENCODE ChipSeq, HMR) or DNAse hypersensitive site
(ENCODE DHS) or ORegAnno regulatory variant or highly conserved (PhastCons)

(Supplementary Table 3), 3 of the 1,745 FHS offspring participants and 11 of the 3,372
FHS generation 3 participants with follow-up genotyping of rs151098426 carrying the
rare allele had lower Fl levels than the non-carriers (offspring: 8 = —0.05; generation 3: 3
= —0.15). These differences between carriers and non-carriers were non-significant (off-
spring: P = 0.734; generation 3: P = 0.313). The geometric means and the corresponding
confidence intervals in carriers and non-carriers are shown in Supplementary Figure 4.
Lookup of the variant in CHARGE exome chip results revealed a positive, but also non-
significant effect of rs151098426 on Fl levels (MAF = 0.14%, 3= 0.02, P = 0.471).

Conditioning on proxies of the known FI GWAS variants rs2114912 and rs35767 attenu-
ated the significant SKAT result to a nominal significant P-value (Ponditioned = 0.019, Table
4), suggesting that the GWAS signal explains part of the rare variant signal and the pres-
ence of a residual independent rare variant effect. Examination of ENCODE Consortium
regulatory element datasets and public transcriptome data in the UCSC Genome Browser
suggested that GWAS variants in the vicinity of IGFT might have a direct functional role.
In particular, rs35767 is approximately 1.2kb upstream of the IGFT promoter and merely
a few bases away from a strong FOXAT1 binding site that is observed in ENCODE ChIP-seq
data across a variety of human cell lines. Similarly, rs2114912 is approximately 1.7kb
away from a major multi cell line, including pancreatic islets, ENCODE DNAsel hyper-
sensitive site that overlaps an ENCODE transcription factor binding site ChlP-seq cluster
for several transcription factors, including FOXA1. This combination of open chromatin
as delineated by the DNAse | hypersensitive site with transcription factor binding in
ChIP-seq data constitutes a regulatory element signature that warrants experimental
validation. Rs2607988, a SNP in high LD with rs2114912 (r* = 0.882 in HapMap2 CEU) is
located in a ChIP-seq site for FOXA1 and alters a motif for FOXA.

Single variant analyses did not reveal significant associations with Fl for any of the com-
mon variants present in the targeted sequence data (Supplementary Figure 5), includ-
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ing the proxies of the known FI GWAS hits rs35767 (Pyeta = 0.69) and rs2114912 (Ppeta =
0.54) (Supplementary Table 4), most likely due to the much smaller sample size in these
targeted sequence data compared with the original, very large discovery sample sizes.

DISCUSSION

This study suggests that previously observed associations between SNVs near IGF1
with Fl levels were not mediated by circulating IGF-I levels. Further investigation of
the IGF1 gene, using deep sequencing data, revealed a large number of rare variants
at the locus that had not been previously described, the large majority of which was
very rare. A subset of rare coding non-synonymous variants, including 6 novel variants
and 5 variants that had been previously identified, was significantly associated with Fl
levels. Conditional analysis suggested that the common non-coding variants near IGF1
that were identified in GWAS*® explain part of the rare variant signal and the presence of
a residual independent rare variant effect. Examination of regulatory element catalogs
constructed through genome wide experimental efforts of the ENCODE Consortium
showed that the GWAS variants were located in the proximity of FOXA1 binding sites
and DNAsel hypersensitive sites, suggesting that they might have a direct functional
role. This finding is noteworthy because FOXAT is a key transcriptional regulator im-
plicated in glucose metabolism and insulin secretion”’?®, Studies in human cell culture
and animal models will be needed to interrogate and validate the function of these
non-coding variants in insulin biology.

Onevariant, rs151098426, resulting in an alanine to threonine substitution and predicted
to be damaging by several annotation tools, seemed to drive the rare variant association.
However, follow-up genotyping of rs151098426 in an independent set of samples and
lookup of the variant in CHARGE exome chip results did not reveal significant differences
in Fl levels between carriers and non-carriers of the rare allele, suggesting the absence
of a single variant effect for rs151098426 on Fl levels. Several recently published studies
have demonstrated the need for large sample sizes to robustly identify associations of
low frequency variants with complex traits***. Because of the low MAF of rs151098426
and thus the relatively small number of carriers, analyzing the variant in large numbers
of additional samples will be required to definitively conclude whether this variant is
associated with Fl levels.

We did not find a mediation effect of circulating IGF-I levels on the association of SNVs
near IGF1 with Fl levels. However, measurement errors in IGF-I levels might be respon-
sible for the absent observation of a mediation effect. Circulating IGF-I levels measured
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with an imperfect assay and at a single point in time may not sufficiently characterize
the biologically relevant levels. On the other hand, in 3,977 FHS participants circulating
IGF-I levels correlated negatively with insulin resistance, diabetes and metabolic syn-
drome?, suggesting that these measures do represent biologically relevant levels and
thus making measurement errors a less likely cause for not observing a mediation effect
of IGF-1 in our study.

The identification of variants at the IGFT locus that had not been previously described
has increased our insight in the variation present at the locus. In line with previous

sequencing studies®****

, we identified a large number of very rare variants, the majority
(64%) even observed only one time in our samples. The presence of large numbers of
very rare variants in the human genome is likely explained by recent explosive human
population growth®”?, It has been hypothesized that these variants might harbor larger
effects than those observed for common variants, since selection can have influenced
only the most deleterious variants®’. However, even for rare variants with larger effects,
large sample sizes are needed to definitely conclude whether they influence complex

traits due to the low MAF.

Strengths of this study in the CHARGE Targeted Sequencing framework include the high
average sequence depth combined with stringent QC applied across the three cohorts,
increasing confidence that even the rarest observed variation is real variation and not
a technical artifact. Further, we genotyped variant rs151098426 in non-overlapping
samples serving as replication cohort and as further evidence that the variant is real. A
limitation of this study is type 2 error, both in mediation and targeted sequence analy-
ses, where limited sample sizes have limited power to detect common and rare variant
associations. The targeted sequence samples included only 7 heterozygous carriers of
variant of interest rs151098426. Further, because of the limited number of individuals
with both targeted sequence data and IGF-I levels available in our study, it was not pos-
sible to test whether association of the subset of rare non-synonymous variants with
Fl was mediated by IGF-I levels. Mean BMI was in the overweight range in all cohorts.
However, evidence exists that effect sizes of known glycemic trait associated variants
do not differ between BMI strata’. As previously observed, Fl values varied widely across
studies, likely because of limited standardization across assays. Previous gene discovery
studies, however, despite the same observation were successful in identifying FI-
associated variants*®. Finally, our study only included individuals of European ancestry,
which might limit the generalizability to other ancestries of the observed IGF1 variants
and variant associations in this study.
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In conclusion, our analyses suggest that association of SNVs near the IGFT gene with
Fl is not mediated by circulating IGF-I levels. Further, our study increased insight into
variation present at the IGF1 locus and thus into the specific local coding as well as
non-coding genetic architecture underlying Fl levels, showing a large number of novel
rare variants present at the locus and suggesting association of both rare coding non-
synonymous variants and a potential direct functional effect of common non-coding
GWAS SNVs in the region on Fl levels.
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ABSTRACT

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore
the role of coding variation on these traits by analysis of variants on the HumanExome
BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 con-
trols. We identify a novel association of a low-frequency nonsynonymous SNV in GLPTR
(A316T;rs10305492; MAF=1.4%) with lower FG (8=—0.09+0.01 mmol/L, P=3.4x10"'), T2D
risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (3=—0.07+0.035 pmo-
linsutin/MMOlgiucose, P=0.048), but higher 2-h glucose (8=0.16+0.05 mmol/L, P=4.3x107%.
We identify a gene-based association with FG at G6PC2 (Psx=6.8x10°) driven by four
rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007
(MAF=20%) in the first intron of ABO at the putative promoter of an antisense IncRNA,
associating with higher FG (8=0.02+0.004 mmol/L, P=1.3x10"%). Our approach identifies
novel coding variant associations and extends the allelic spectrum of variation underly-
ing diabetes-related quantitative traits and T2D susceptibility.
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INTRODUCTION

Genome-wide association studies (GWAS) highlight the role of common genetic varia-
tion in quantitative glycemic traits and susceptibility to type 2 diabetes (T2D)"*. However,
recent large-scale sequencing studies report that rapid expansions in the human popu-
lation have introduced a substantial number of rare genetic variants®*, with purifying
selection having had little time to act, which may harbor larger effects on complex traits
than those observed for common variants**°. Recent efforts have identified the role of

7-1ol and

low frequency and rare coding variation in complex diseases and related traits
highlight the need for large sample sizes to robustly identify such associations'". Thus,
the Illumina HumanExome BeadChip (or exome chip) has been designed to allow the
capture of rare (MAF<1%), low frequency (MAF=1-5%) and common (MAF=5%) exonic
single nucleotide variants (SNVs) in large sample sizes.

To identify novel coding SNVs and genes influencing quantitative glycemic traits and
T2D, we perform meta-analyses of studies participating in the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE'®) T2D-Glycemia Exome Consor-
tium'. Our results show a novel association of a low frequency coding variant in GLPIR,
a gene encoding a drug target in T2D therapy (the incretin mimetics), with FG and T2D.
The minor allele is associated with lower FG, lower T2D risk, lower insulin response to
a glucose challenge and higher 2-h glucose, pointing to physiological effects on the
incretin system. Analyses of non-synonymous variants also enable us to identify par-
ticular genes likely to underlie previously identified associations at 6 loci associated
with FG and/or FI (G6PC2, GPSM1, SLC2A2, SLC30A8, RREB1, and COBLL1) and 5 with T2D
(ARAP1, GIPR, KCNJ11, SLC30A8 and WFST1). Further, we found non-coding variants whose
putative functions in epigenetic and post-transcriptional regulation of ABO and G6PC2
are supported by experimental ENCODE Consortium, GTEx and transcriptome data from
islets. In conclusion, our approach identifies novel coding and non-coding variants and
extends the allelic and functional spectrum of genetic variation underlying diabetes-
related quantitative traits and T2D susceptibility.

MATERIALS AND METHODS

Study cohorts

The CHARGE consortium was created to facilitate large-scale genomic meta-analyses
and replication opportunities among multiple large population-based cohort stud-
ies'>. The CHARGE T2D-Glycemia Exome Consortium was formed by cohorts within the
CHARGE consortium as well as collaborating non-CHARGE studies to examine rare and
common functional variation contributing to glycemic traits and T2D susceptibility.
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Up to 23 cohorts participated in this effort representing a maximum total sample size
of 60,564 (FG) and 48,118 (Fl) participants without T2D for quantitative trait analyses.
Individuals were of European (84%) and African (16%) ancestry. Full study characteristics
are shown in Supplementary Data 1. Of the 23 studies contributing to quantitative trait
analysis, 16 also contributed data on T2D status. These studies were combined with 6
additional cohorts with T2D case-control status for follow-up analyses of the variants
observed to influence FG and Fl and analysis of known T2D loci in up to 16,491 T2D
cases and 81,877 controls across 4 ancestries combined (African, Asian, European and
Hispanic; see Supplementary Data 2 for T2D case-control sample sizes by cohort and
ancestry). All studies were approved by their local institutional review boards and writ-
ten informed consent was obtained from all study participants.

Quantitative traits and phenotypes

FG (mmol/L) and FI (pmol/L) were analyzed in individuals free of T2D. FI was log trans-
formed for genetic association tests. Study-specific sample exclusions and detailed
descriptions of glycemic measurements are given in Supplementary Data 1. For consis-
tency with previous glycemic genetic analyses, T2D was defined by cohort and included
one or more of the following criteria: a physician diagnosis of diabetes, on anti-diabetic
treatment, fasting plasma glucose = 7 mmol/L, random plasma glucose > 11.1 mmol/L,
or hemoglobin A1C = 6.5% (Supplementary Data 2).

Exome chip

The lllumina HumanExome BeadChip is a genotyping array containing 247,870 variants
discovered through exome sequencing in ~12,000 individuals, with ~75% of the vari-
ants with a MAF < 0.5%. The main content of the chip is comprised of protein-altering
variants (nonsynonymous coding, splice-site and stop gain or loss codons) seen at least
3 times in a study and in at least 2 studies providing information to the chip design.
Additional variants on the chip included common variants found through GWAS, an-
cestry informative markers (for African and Native Americans), mitochondrial variants,
randomly selected synonymous variants, HLA tag variants and Y chromosome variants.
In the present study we analyzed association of the autosomal variants with glycemic
traits and T2D. See Supplementary Fig. 1 for study design and analysis flow.

Exome array genotyping and quality control

Genotyping was performed with the lllumina HumanExome BeadChip v1.0 (N =
247,870 SNVs) or v1.1 (N = 242,901 SNVs). lllumina’s GenTrain version 2.0 clustering
algorithm in GenomeStudio or zCall* was used for genotype calling. Details regard-
ing genotyping and QC for each study are summarized in Supplementary Data 1. To
improve accurate calling of rare variants ten studies comprising N = 62,666 samples
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participated in joint calling centrally, which has been described in detail elsewhere.
In brief, all samples were combined and genotypes were initially auto-called with the
Illumina GenomeStudio v2011.1 software and the GenTrain2.0 clustering algorithm.
SNVs meeting best practices criteria'® based on call rates, genotyping quality score,
reproducibility, heritability and sample statistics were then visually inspected and
manually re-clustered when possible. The performance of the joint calling and best
practices approach (CHARGE clustering method) was evaluated by comparing exome
chip data to available whole exome sequencing data (N=530 in ARIC). The CHARGE
clustering method performed better compared to other calling methods and showed
99.8% concordance between the exome chip and exome sequence data. 8,994 SNVs
failed QC across joint calling of studies and were omitted from all analyses. Additional
studies used the CHARGE cluster files to call genotypes or used a combination of

gencall and zCall*®

. The quality control criteria performed by each study for filter-
ing of poorly genotyped individuals and of low-quality SNVs included a call rate of
<0.95, gender mismatch, excess autosomal heterozygosity, and SNV effect estimate
standard error >10°%. Concordance rates of genotyping across the exome chip and
GWAS platforms was checked in ARIC and FHS and was > 99%. After SNV-level and
sample-level quality control, 197,481 variants were available for analyses. The minor
allele frequency spectrums of the exome chip SNVs by annotation category are de-
picted in Supplementary Table 22. Cluster plots of GLPTR and ABO variants are shown

in Supplementary Fig. 9.

Whole exome sequencing

For exome sequencing analyses we had data from up to 14,118 individuals of European
ancestry from 7 studies, including 4 studies contributing exome sequence samples
that also participated in the exome chip analyses (Atherosclerosis Risk in Communities
Study (ARIC, N = 2,905), Cardiovascular Health Study (CHS, N = 645), Framingham Heart
Study (FHS, N = 666) and Rotterdam Study (RS, N = 702)) and three additional studies,
Erasmus Rucphen Family Study (ERF, N = 1,196), the Exome Sequencing Project (ESP, N
= 1,338), and the GlaxoSmithKline discovery sequence project® (GSK, N = 6,666). The
GlaxoSmithKline (GSK) discovery sequence project provided summary level statistics
combining data from GEMS, Colaus and LOLIPOP collections that added additional
exome sequence data at GLP1R, including N=3,602 samples with imputed genotypes.
In all studies sequencing was performed using the Illumina HiSeq 2000 platform. The
reads were mapped to the GRCh37 Human reference genome (http://www.ncbi.nlm.
nih.gov/projects/genome/assembly/grc/human/) using the Burrows-Wheeler aligner
(BWA®, http://bio-bwa.sourceforge.net/), producing a BAM*® (binary alignment/map)
file. In ERF, the NARWHAL pipeline®' was used for this purpose as well. In GSK paired-end
short reads were aligned with SOAP®. GATK® (http://www.broadinstitute.org/gatk/)
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and Picard (http://picard.sourceforge.net) were used to remove systematic biases and
to do quality recalibration. In ARIC, CHS and FHS the Atlas2>* suite (Atlas-SNP and Atlas-
indel) was used to call variants and produce a variant call file (VCF>). In ERF and RS
genetic variants were called using the Unified Genotyper Tool from GATK, for ESP the
University of Michigan’s multisample SNP calling pipeline UMAKE was used (H.M. Kang
and G. Jun, unpublished data) and in GSK variants were called using SOAPsnp°®. In ARIC,
CHS and FHS variants were excluded if SNV posterior probability was < 0.95 (QUAL<22),
number of variant reads were < 3, variant read ratio was < 0.1, > 99% variant reads were
in a single strand direction, or total coverage was < 6. Samples that met a minimum of
70% of the targeted bases at 20X or greater coverage were submitted for subsequent
analysis and QC in the three cohorts. SNVs with > 20% missingness, > 2 observed alleles,
monomorphic, mean depth at the site of > 500-fold or HWE P < 5x107° were removed.
After variant-level QC, a quality assessment of the final sequence data was performed in
ARIC, CHS and FHS based on a number of measures, and all samples with a missingness
rate of > 20% were removed. In RS, samples with low concordance to genotyping array
(< 95%), low transition/transversion ratio (< 2.3) and high heterozygote to homozygote
ratio (> 2.0) were removed from the data. In ERF, low quality variants were removed
using a QUAL < 150 filter. Details of variant and sample exclusion criteria in ESP and
GSK have been described before®**’. In brief, in ESP these were based on allelic balance
(the proportional representation of each allele in likely heterozygotes), base quality
distribution for sites supporting the reference and alternate alleles, relatedness between
individuals and mismatch between called and phenotypic gender. In GSK these were
based on sequence depth, consensus quality and concordance with genome-wide
panel genotypes, amongst others.

Phenotyping glycemic physiologic traits in additional cohorts

We tested association of the lead signal rs10305492 at GLP1R with glycemic traits in
the post absorptive state because it has a putative role in the incretin effect. Cohorts
with measurements of glucose and/or insulin levels post 759 oral glucose tolerance test
(OGTT) were included in the analysis (see Supplementary Table 2 for list of participat-
ing cohorts and sample sizes included for each trait). We used linear regression models
under the assumption of an additive genetic effect for each physiologic trait tested.

Ten cohorts (ARIC, Colaus, Ely, Fenland, FHS, GLACIER, Health2008, Inter99, METSIM,
RISC, Supplementary Table 2) provided data for the 2-h glucose levels for a total sample
size of 37,080 individuals. We collected results for 2-h insulin levels in a total of 19,362
individuals and for 30min-insulin levels in 16,601 individuals. Analyses of 2-h glucose,
2-h insulin, and 30min-insulin were adjusted using 3 models: 1) age, sex and center;
2) age, sex, center and BMI; and 3) age, sex, center, BMI, and FG. The main results in
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the manuscript are presented using model 3. We opted for the model that included FG
because these traits are dependent on baseline FG"*®. Adjusting for baseline FG assures
the effect of a variant on these glycemic physiologic traits are independent of FG.

We calculated the insulinogenic index using the standard formula: [insulin 30 min - in-
sulin baseline] / [glucose 30min - glucose baseline] and collected data from 5 cohorts
with appropriate samples (total N = 16,203 individuals). Models were adjusted for age,
sex, center, then additionally for BMI. In individuals with > 3 points measured during
OGTT, we calculated the area under the curve (AUC) for insulin and glucose excursion
over the course of OGTT using the trapezoid method®. For the analysis of AUCins (N =
16,126 individuals) we used 3 models as discussed above. For the analysis of AUCins /
AUCgluc (N = 16,015 individuals) we only used models 1 and 2 for adjustment.

To calculate the incretin effect, we used data derived from paired OGTT and intra-venous
glucose tolerance test (IVGTT) performed in the same individuals using the formula:
[AUCins OGTT-AUCins IVGTT] / [AUCins OGTT] in RISC (N = 738). We used models 1 and
2 (as discussed above) for adjustment.

We were also able to obtain lookups for estimates of insulin sensitivity from euglycemic-
hyperinsulinemic clamps and from frequently sampled IVGTT from up to 2,170 and
1,208 individuals, respectively (Supplementary Table 3).

All outcome variables except 2-h glucose were log transformed. Effect sizes were re-
ported as standard deviations using standard deviations of each trait in the Fenland
study®, the Ely study®' for insulinogenic index and the RISC study® for incretin effects to
allow for comparison of effect sizes across phenotypes.

Statistical analyses

The R package seqMeta was used for single variant, conditional and gene-based as-
sociation analyses® (http://cran.r-project.org/web/packages/seqMeta/). We performed
linear regression for the analysis of quantitative traits and logistic regression for the
analysis of binary traits. For family-based cohorts linear mixed effects models were used
for quantitative traits and related individuals were removed before logistic regression
was performed. All studies used an additive coding of variants to the minor allele ob-
served in the jointly called data set'. All analyses were adjusted for age, sex, principal
components calculated from genome-wide or exome chip genotypes and study specific
covariates (when applicable) (Supplementary Data 1). Models testing Fl were further ad-
justed for BMI*?. Each study analyzed ancestral groups separately. At the meta-analysis
level ancestral groups were analyzed both separately and combined. Meta-analyses
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were performed by two independent analysts and compared for consistency. Overall
quantile-quantile plots are shown in Supplementary Fig. 10.

Bonferroni correction was used to determine the threshold of significance. In single
variant analyses, for FG and Fl, all variants with a MAF > 0.02% (equivalent to a MAC >
20; Nsyvs = 150,558) were included in single variant association tests; the significance
threshold was set to P < 3 x1077 (P = 0.05/150,558), corrected for the number of variants
tested. For T2D, all variants with a MAF > 0.01% in T2D cases (equivalent to a MAC > 20
in cases; Ngwvs = 111,347) were included in single variant tests; the significance threshold
was setto P<4.5x 107 (P=0.05/111,347).

We used two gene-based tests: the Sequence Kernel Association Test (SKAT) and the
Weighted Sum Test (WST) using Madsen Browning weights to analyze variants with MAF
< 1% in genes with a cumulative MAC > 20 for quantitative traits and cumulative MAC
> 40 for binary traits. These analyses were limited to stop gain/loss, nonsynonymous, or
splice-site variants as defined by dbNSFP v2.0*'. We considered a Bonferroni corrected
significance threshold of P < 1.6x107° (0.05/30,520 tests (15,260 genes x 2 gene-based
tests)) in the analysis of FG and Fl and P < 1.7x107° (0.05/29,732 tests (14,866 genes x 2
gene-based tests)) in the analysis of T2D. Due to the association of multiple rare variants
with FG at G6PC2 from both single and gene-based analyses, we removed 1 variant at a
time and repeated the SKAT test to determine the impact of each variant on the gene-
based association effects (Wu weight) and statistical significance.

We performed conditional analyses to control for the effects of known or newly dis-
covered loci. The adjustment command in seqMeta was used to perform conditional
analysis on SNVs within 500kb of the most significant SNV. For ABO we used the most
significant SNV, rs651007. For G6PC2 we used the previously reported GWAS variants,
rs563694 and rs560887, which were also the most significant SNV(s) in the data analyzed
here.

The threshold of significance for known FG and Fl loci was set at P < 1.5x107* and Py
< 2.9x107% (= 0.05/34 known FG loci and = 0.05/17 known FI loci). For FG, Fl and T2D
functional variant analyses the threshold of significance was computed as P = 1.1x10™
(= 0.05/4,513 protein affecting SNVs at 38 known FG susceptibility loci), P = 3.9x107°
(= 0.05/1,281 protein affecting SNVs at 20 known FI susceptibility loci), P = 1.3x107* (=
0.05/412 protein affecting SNVs at 72 known T2D susceptibility loci); P = 3.5x107* (0.05/

:2,34

(72x2)) for the gene-based analysis of 72 known T2D susceptibility loci“*. We assessed
the associations of glycemic'**** and T2D*** variants identified by previous GWAS in our

population.
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We developed a novel meta-analysis approach for haplotype results based on an exten-
sion of Zaykin's method®. We incorporated family structure into the basic model, mak-
ing it applicable to both unrelated and related samples. All analyses were performed in
R.We developed an R function to implement the association test at the cohort level. The
general model formula for K observed haplotypes (with the most frequent haplotype
used as the reference) is

Y= p+ Xy+B; hot+---+ Bet+b+e

where Y is the trait; X is the covariates matrix; h,(m = 2,..., K) is the expected haplo-
type dosage: if the haplotype is observed, the value is 0 or 1; otherwise, the posterior
probability is inferred from the genotypes; b is the random intercept accounting for the
family structure (if it exists), and is 0 for unrelated samples; € is the random error.

For meta-analysis, we adapted a multiple parameter meta-analysis method to sum-
marize the findings from each cohort®. One primary advantage is that this approach
allows variation in the haplotype set provided by each cohort. In other words, each
cohort could contribute uniquely observed haplotypes in addition to those observed
by multiple cohorts.

Associations of ABO variants with cardiometabolic traits

Variants in the ABO region have been associated with a number of cardiovascular and
metabolic traits in other studies (Supplementary Table 8), suggesting a broad role for
the locus in cardiometabolic risk. For significantly associated SNVs in this novel glycemic
trait locus, we further investigated their association with other metabolic traits, including
systolic blood pressure (SBP, in mmHg), diastolic blood pressure (DBP, in mmHg), body
mass index (BMI, in kg/m?), waist hip ratio (WHR) adjusted for BMI, high-density lipopro-
tein cholesterol (HDL-C, in mg/dl), low-density lipoprotein cholesterol (LDL-C, in mg/
dl), triglycerides (TG, natural log transformed, in % change units) and total cholesterol
(TC, in mg/dl). These traits were examined in single variant exome chip analysis results
in collaboration with other CHARGE working groups. All analyses were conducted using
the R packages skatMeta or seqMeta®. Analyses were either sex stratified (BMI and WHR
analyses) or adjusted for sex. Other covariates in the models were age, principal compo-
nents and study specific covariates. BMI, WHR, SBP and DBP analyses were additionally
adjusted for age squared; WHR, SBP and DBP were BMI adjusted. For all individuals tak-
ing any blood pressure lowering medication, 15 mmHg was added to their measured
SBP value and 10 mmHg to the measured DBP value. As described in detail previously®
in selected individuals using lipid lowering medication, the untreated lipid levels were
estimated and used in the analyses. All genetic variants were coded additively. Maxi-
mum sample sizes were 64,965 in adiposity analyses, 56,538 in lipid analyses and 92,615
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in blood pressure analyses. Threshold of significance was P = 6.2x107* (P = 0.05/8, where
8 is the number of traits tested).

Pathway analyses of GLPTR

To examine whether biological pathways curated into gene sets in several publicly
available databases harbored exome chip signals below the threshold of exome-wide
significance for FG or Fl, we applied the MAGENTA gene-set enrichment analysis (GSEA)
software as previously described using all pathways in the Kyoto Encyclopedia of Genes
and Genomes (KEGG), Gene Ontology (GO), Reactome, Panther, BioCarta, and Ingenu-
ity pathway databases®”. Genes in each pathway were scored based on unconditional
meta-analysis P-values for SNVs falling within 40 kb upstream and 110 kb downstream
of gene boundaries; we used a 95th percentile enrichment cutoff in MAGENTA, mean-
ing pathways (gene sets) were evaluated for enrichment with genes harboring signals
exceeding the 95th percentile of all genes. As we tested a total of 3,216 pathways in the
analysis, we used a Bonferroni corrected significance threshold of P < 1.6x107° in this
unbiased examination of pathways. To limit the GSEA analysis to pathways that might
be implicated in glucose or insulin metabolism, we selected gene sets from the above
databases whose names contained the terms “gluco,” “glycol,” “insulin,” or “metabo.” We
ran MAGENTA with FG and FI datasets on these “glucometabolic” gene sets using the
same gene boundary definitions and 95th percentile enrichment cutoff as described
above; as this analysis involved 250 gene sets, we specified a Bonferroni corrected
significance threshold of P < 2.0x107*. Similarly, to examine whether genes associated
with incretin signaling harbored exome chip signals, we applied MAGENTA software
to a gene-set that we defined comprised of genes with putative biologic functions in
pathways common to GLP1R activation and insulin secretion, using the same gene
boundaries and 95th percentile enrichment cutoff described above (Supplementary
Table 4).To select genes for inclusion in the incretin pathway gene set, we examined the
“Insulin secretion” and “Glucagon-like peptide-1 regulates insulin secretion” pathways
in KEGG and Reactome, respectively. From these two online resources, genes encoding
proteins implicated in GLP1 production and degradation (namely glucagon and DPP4),
acting in direct pathways common to GLP1R and insulin transcription, or involved in
signaling pathways shared by GLP1R and other incretin family members were included
in our incretin signaling pathway gene set; however, we did not include genes encoding
proteins in the insulin secretory pathway or encoding cell membrane ion channels as
these processes likely have broad implications for insulin secretion independent from
GLP1R signaling. As this pathway included genes known to be associated with FG, we
repeated the MAGENTA analysis excluding genes with known association from our gene
set - PDX1, ADCY5, GIPR and GLP1R itself.
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Protein conformation simulations

The A316T receptor mutant structure was modeled based on the WT receptor structure
published previously?. First, the Threonine residue is introduced in place of Alanine at
position 316. Then, this receptor structure is inserted back into the relaxed membrane-
water system from the WT structure. T316 residue and other residues within 5A of itself
are minimized using the CHARMM force field® in the NAMD® molecular dynamics (MD)
program. This is followed by heating the full receptor-membrane-water to 310K and
running MD simulation for 50 nanoseconds using the NAMD program. Electrostatics
are treated by E-wald summation and a time step of 1 femtosecond is used during the
simulation. The structure snapshots are saved every 1ps and the fluctuation analysis
(Supplementary Fig. 3) used snapshots every 100ps. The final snapshot is shown in all
the structural figures.

Annotation and functional prediction of variants

Variants were annotated using dbNSFP v2.0*'. GTEx (Genotype-Tissue Expression Proj-
ect) results were used to identify variants associated with gene expression levels using
all available tissue types'. The Encyclopedia of DNA Elements (ENCODE) Consortium
results' were used to identify non-coding regulatory regions, including but not limited
to transcription factor binding sites (ChIP-seq), chromatin state signatures, DNAse |
hypersensitive sites, and specific histone modifications (ChlP-seq) across the human
cell lines and tissues profiled by ENCODE. We used the UCSC Genome Browser'>”° to
visualize these datasets, along with the public transcriptome data contained in the
browser’s “Genbank mRNA” (cDNA) and “Human ESTs” (Expressed Sequence Tags)
tracks, on the hg19 human genome assembly. LncRNA and antisense transcription
were inferred by manual annotation of these public transcriptome tracks at UCSC. All
relevant track groups were displayed in Pack or Full mode and the Experimental Matrix
for each subtrack was configured to display all extant intersections of these regulatory
and transcriptional states with a selection of cell or tissue types comprised of ENCODE
Tier 1 and Tier 2 human cell line panels, as well as all cells and tissues (including but not
limited to pancreatic beta cells) of interest to glycemic regulation. We visually scanned
large genomic regions containing genes and SNVs of interest and selected trends by
manual annotation (this is a standard operating procedure in locus-specific in-depth
analyses utilizing ENCODE and the UCSC Browser). Only a subset of tracks displaying
gene structure, transcriptional and epigenetic datasets from or relevant to T2D, and
SNVs in each region of interest was chosen for inclusion in each UCSC Genome Browser-
based figure. Uninformative tracks (those not showing positional differences in signals
relevant to SNVs or genes of interest) were not displayed in the figures. ENCODE and
transcriptome datasets were accessed via UCSC in February and March 2014. In order
to investigate the possible significant overlap between the ABO locus SNPs of interest
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and ENCODE feature annotations we performed the following analysis. The following
datasets were retrieved from the UCSC genome browser: wgEncodeRegTfbsClusteredV3
(TFBS); wgEncodeRegDnaseClusteredV2 (DNase); all H3K27ac peaks (all: wgEncodeBroa
dHistone*H3k27acStdAlIn.bed files); and all H3K4me1 peaks (all: wgEncodeBroadHiston
e*H3k4me1StdAln.bed files). The histone mark files were merged and the maximal score
was taken at each base over all cell lines. These features were then overlapped with
all SNPs on the exome chip from this study using bedtools (v2.20.1). GWAS SNPs were
determined using the NHGRI GWAS catalog with P < 51072, LD values were obtained
by the PLINK program based on the Rotterdam Study for SNPs within 100 kB with an r2
threshold of 0.7. Analysis of these files was completed with a custom R script to produce
the fractions of non-GWAS SNPs with stronger feature overlap than the ABO SNPs as well
as the supplementary figure.

RESULTS

An overview of the study design is shown in Supplementary Fig. 1, and participating
studies and their characteristics are detailed in Supplementary Data 1. We conducted
single variant and gene-based analyses for fasting glucose (FG) and fasting insulin
(FI), by combining data from 23 studies comprising up to 60,564 (FG) and 48,118 (Fl)
non-diabetic individuals of European and African ancestry. We followed up associated
variants at novel and known glycemic loci by tests of association with T2D, additional
physiological quantitative traits (including post-absorptive glucose and insulin dynamic
measures), pathway analyses, protein conformation modelling, comparison with whole
exome sequence data, and interrogation of functional annotation resources including
ENCODE™" and GTEx'®. We performed single variant analyses using additive genetic
models of 150,558 SNVs (P-value for significance < 3 x107) restricted to MAF > 0.02%
(equivalent to a minor allele count (MAC) > 20); and gene based tests using Sequence
Kernel Association (SKAT) and Weighted Sum Tests (WST) restricted to variants with MAF
< 1% in a total of 15,260 genes (P-value for significance < 2x107%, based on number of
gene tests performed). T2D case/control analyses included 16,491 individuals with T2D
and 81,877 controls from 22 studies (Supplementary Data 2).

We identified a novel association of a nonsynonymous SNV (nsSNV) (A316T, rs10305492,
MAF=1.4%) in the gene encoding the receptor for glucagon-like peptide 1 (GLP1R), with
the minor (A) allele associated with lower FG (8 =—-0.09+0.01 mmol/L (equivalent to 0.14
SDs in FG), P = 3.4x107"?, variance explained = 0.03%, Table 1 and Fig. 1), but not with
FI (P = 0.67, Supplementary Table 1). GLP-1 is secreted by intestinal L-cells in response
to oral feeding and accounts for a major proportion of the so-called “incretin effect”, i.e.
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Table 1. Novel SNPs associated with fasting glucose in African and European ancestries combined

Gene  Variation Chr Build37  dbSNPID Alleles African and European Proportion
type position Effect Other EAF Beta SE p of.trait

variance

explained

GLPIR A316T 6 39046794 rs10305492 A G 001 -0.09 0013 34x10™">  0.0003
ABO  intergenic 9 136153875 rs651007 A G 020 002 0004 1.3x10°° 0.0002

Fasting glucose concentrations were adjusted for sex, age, cohort effects and up to 10 principal compo-
nents in up to 60,564 (AF N=9,664 and EU N=50,900) non-diabetic individuals. Effects are reported per copy
of the minor allele. Beta coefficient units are in mmol L™". EAF = effect allele frequency

the augmentation of insulin secretion following an oral glucose challenge relative to
an intravenous glucose challenge. GLP-1 has a range of downstream actions including
glucose-dependent stimulation of insulin release, inhibition of glucagon secretion from
the islet alpha-cells, appetite suppression and slowing of gastrointestinal motility'”'®.
In follow-up analyses, the FG-lowering minor A allele was associated with lower T2D
risk (OR [95%CI] = 0.86 [0.76-0.96], P = 0.010, Supplementary Data 3). Given the role
of incretin hormones in post-prandial glucose regulation, we further investigated the
association of A316T with measures of post-challenge glycemia, including 2-h glucose,

and 30min-insulin and glucose responses expressed as the insulinogenic index'® in up to

Phenotype N Covariates Beta (95% CI) ]
Fasting glucose 59,748 Age, sex, BMI —— -0.14 (-0.18,-0.10) 3.4x10-"2
Fasting insulin 47,388 Age, sex, BMI —— 0.01(-0.03,0.04) 0.67

37,080  Age, sex, BMI ——— 0.04(-0.02,0.10)  0.19
2h-glucose
37,068  + fasting glucose —— 0.10 (0.04,0.16)  4.3x10*
Insulinogenic index 16,203 Age, sex, BMI ———) -0.09 (-0.19,-0.00) 0.048
Incretin response 738 Age, sex, BMI ) 0.24 (-0.20,0.68) 0.28
T T T T T T
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Beta (SDs) - per minor-allele

Figure 1. Glycemic associations with rs10305492 (GLP1R A316T).

Glycemic phenotypes were tested for association with rs10305492 in GLP1R (A316T). Each phenotype,
sample size (N), covariates in each model, beta per standard deviation, 95% confidence interval (95%Cl)
and p-values (p) are reported. Analyses were performed on native distributions and scaled to SDs from the
Fenland or Ely studies to allow comparisons of effect sizes across phenotypes.
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37,080 individuals from 10 studies (Supplementary Table 2). The FG-lowering allele was
associated with higher 2-h glucose levels (8 in SDs per-minor allele [95%Cl]: 0.10 [0.04,
0.16], P = 43x107%, N = 37,068) and lower insulinogenic index (—0.09 [-0.19, —0.00], P
=0.048, N = 16,203), indicating lower early insulin secretion (Fig. 1). Given the smaller
sample size, these associations are less statistically compelling; however, the directions
of effect indicated by their beta values are comparable to those observed for fasting
glucose. We did not find a significant association between A316T and the measure of
“incretin effect”, but this was only available in a small sample size of 738 non-diabetic in-
dividuals with both oral and intravenous glucose tolerance test data (8 in SDs per-minor
allele [95%Cl]: 0.24 [-0.20-0.68], P = 0.28, Fig. 1 and Supplementary Table 2). We did not
see any association with insulin sensitivity estimated by euglycemic-hyperinsulinemic
clamp or frequently sampled IVGTT (Supplementary Table 3). While stimulation of the
GLP-1 receptor has been suggested to reduce appetite®® and treatment with GLP1R

agonists can result in reductions in BMI*'

, these potential effects are unlikely to influence
our results, which were adjusted for BMI.

In an effort to examine the potential functional consequence of the GLPT1R A316T vari-
ant, we modeled the A316T receptor mutant structure based on the recently published?
structural model of the full length human GLP-1 receptor bound to exendin-4 (an exog-
enous GLP-1 agonist). The mutant structural model was then relaxed in the membrane
environment using molecular dynamics simulations. We found that the T316 variant (in
transmembrane (TM) domain 5) disrupts hydrogen bonding between N320 (in TM5) and
E364 (TM6) (Supplementary Fig. 2). In the mutant receptor, T316 displaces N320 and
engages in a stable interaction with E364, resulting in slight shifts of TM5 towards the
cytoplasm and TM6 away from the cytoplasm (Supplementary Figs. 3 and 4). This alters
the conformation of the third intracellular loop, which connects TM5 and TM6 within
the cell, potentially affecting downstream signaling through altered interaction with
effectors such as G proteins.

A targeted Gene Set Enrichment Analysis (Supplementary Table 4) identified enrich-
ment of genes biologically related to GLPIR in the incretin signaling pathway (P =
2x10-4); after excluding GLPTR and previously known loci PDX1, GIPR and ADCY35, the
association was attenuated (P = 0.072). Gene-based tests at GLPTR did not identify
significant associations with glycemic traits or T2D susceptibility, further supported by
Fig. 2, which indicates only one variant in the GLP1R region on the exome chip showing
association with FG.

To more fully characterize the extent of local sequence variation and its associa-
tion with FG at GLPTR, we investigated 150 GLPTR SNVs identified from whole exome
sequencing in up to 14,118 individuals available in CHARGE and the GlaxoSmithKline
discovery sequence project (Supplementary Table 5). Single variant analysis identified
association of 12 other SNVs with FG (P < 0.05; Supplementary Data 4) suggesting that
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additional variants at this locus may influence FG, including two variants (rs10305457
and rs761386) in close proximity to splice sites that raise the possibility that their func-
tional impact is exerted via effects on GLPTR pre-mRNA splicing. However, the smaller
sample size of the sequence data limits power for firm conclusions.

We also newly identified that the minor allele A at rs651007 near the ABO gene was
associated with higher FG (8 = 0.02+0.004 mmol/L, MAF = 20%, P = 1.3x107®, variance
explained = 0.02%, Table 1). Three other associated common variants in strong linkage
disequilibrium (LD) (r* = 0.95-1) were also located in this region; conditional analyses
suggested that these four variants reflect one association signal (Supplementary
Table 6). The FG-raising allele of rs651007 was nominally associated with increased Fl
(8=0.008+0.003, P=0.02, Supplementary Table 1) and T2D risk (OR [95%CI] = 1.05 [1.01-
1.08], P=0.01, Supplementary Data 3). Further, we independently replicated the associa-
tion at this locus with FG in non-overlapping data from MAGIC' using rs579459, a variant
in LD with rs651007 and genotyped on the Illumina CardioMetabochip (8 = 0.008+0.003
mmol/L, P =5.0x107%; Nuacic = 88,287). The FG-associated SNV at ABO was in low LD with
the three variants® that distinguish between the four major blood groups O, A1, A2 and
B (rs8176719 r* = 0.18, rs8176749 r* = 0.01 and rs8176750 r* = 0.01). The blood group
variants (or their proxies) were not associated with FG levels (Supplementary Table 7).
Variants in the ABO region have been associated with a number of cardiovascular
and metabolic traits in other studies (Supplementary Table 8), suggesting a broad role
for this locus in cardiometabolic risk. A search of the four FG-associated variants and
their associations with metabolic traits using data available through other CHARGE
working groups (Supplementary Table 9) revealed a significant association of rs651007
with BMI in women (8 = 0.025+0.01 kg/m?, P = 3.4x10™*) but not in men. As previously
reported®?, the FG increasing allele of rs651007 was associated with increased LDL
and TC (LDL: B = 2.340.28 mg/dl, P = 6.1x107'%; TC: 8 = 2.4+0.33 mg/dl, P = 3.4x107").
Because the FG-associated ABO variants were located in non-coding regions (intron 1 or
intergenic) we interrogated public regulatory annotation datasets, GTEx'® (http://www.
gtexportal.org/home/) and the ENCODE Consortium resources'* in the UCSC Genome
Browser" (http://genome.ucsc.edu/) and identified a number of genomic features
coincident with each of the four FG-associated variants. Three of these SNPs, upstream
of the ABO promoter, reside in a DNase | hypersensitive site with canonical enhancer
marks in ENCODE Consortium data: H3K4Me1 and H3K27Ac (Supplementary Fig. 5).
We analyzed all SNPs with similar annotations, and find that these three are coincident
with DNase, H3K4Me1 and H3K27Ac values each near the genome-wide mode of these
assays (Supplementary Fig. 6). Indeed, in hematopoietic model K562 cells, the ENCODE
Consortium has identified the region overlapping these SNPs as a putative enhancer'.
Interrogating the GTEx database (N = 156), we found that rs651007 (P = 5.9x10™°) and
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rs579459 (P = 6.7 x10™°) are eQTLs for ABO, and rs635634 (P = 1.1x107%) is an eQTL for
SLC2A6 in whole blood (Supplementary Table 10). The fourth SNP, rs507666, resides near
the transcription start site of a long non-coding RNA that is antisense to exon 1 of ABO
and expressed in pancreatic islets (Supplementary Fig. 5). rs507666 was also an eQTL for
the glucose transporter SLC2A6 (P = 1.1x10"*) (Supplementary Fig. 5 and Supplementary
Table 10). SLC2A6 codes for a glucose transporter whose relevance to glycemia and T2D
is largely unknown, but expression is increased in rodent models of diabetes®. Gene-
based analyses did not reveal significant quantitative trait associations with rare coding
variation in ABO.

At the known glycemic locus G6PC2, gene-based analyses of 15 rare predicted protein-
altering variants (MAF < 1%) present on the exome chip revealed a significant associa-
tion of this gene with FG (cumulative MAF of 1.6%, Psx=8.2x107"%, Pysr=4.1x107°; Table
2). The combination of 15 rare SNVs remained associated with FG after conditioning on
two known common SNVs in LD”” with each other (rs560887 in intron 1 of G6PC2 and
rs563694 located in the intergenic region between G6PC2 and ABCB11) (conditional Psgar
=5.2x107%, Pysr = 3.1x107%; Table 2 and Fig. 3), suggesting that the observed rare vari-
ant associations were distinct from known common variant signals. While ABCBT11 has
been proposed to be the causal gene at this locus®, identification of rare and putatively
functional variants implicates G6PC2 as the much more likely causal candidate. Since
rare alleles that increase risk for common disease may be obscured by rare, neutral
mutations’, we tested the contribution of each G6PC2 variant by removing one SNV
at a time and re-calculating the evidence for association across the gene. Four SNVs,
rs138726309 (H177Y), rs2232323 (Y207S), rs146779637 (R283X) and rs2232326 (S324P),
each contributed to the association with FG (Fig. 3c and Supplementary Table 11). Each

Table 2. Gene-based associations of G6PC2 with fasting glucose in African and European ancestries
combined

Gene Chr:Build37 cMAF® SNVs Sequence Kernel Association Test
Weighted Sum Test (WST
position n)® 9 (WST) (SKAT)
p pe P’ p° p pe P’ p°
2:169757930- S - » - s - S S
G6PC2 169764491 0.016 15 4.1x107° 2.6x107 2.3x10™" 3.1x10™ 8.2x10 4.8x107° 6.8x10™ 5.2x10

Fasting glucose concentrations were adjusted for sex, age, cohort effects and up to 10 principal compo-
nents in up to 60,564 non-diabetic individuals.

*cMAF=combined minor allele frequency of all variants included in the analysis.

PSNVs(n)=number of variants included in the analysis; variants were restricted to those with MAF<0.01 and
annotated as nonsynonymous, splice-site, or stop loss/gain variants.

‘p value for gene-based test after conditioning on rs563694.

dp value for gene-based test after conditioning on rs560887.

°p value for gene-based test after conditioning on rs563694 and rs560887.
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Figure 3. G6PC2

(a) Regional association results (-log,op) for fasting glucose of the G6PC2 locus on chromosome 2. Minor al-
lele frequencies (MAF) of common and rare G6PC2 SNVs from single variant analyses are shown. P values for
rs560887, rs563694 and rs552976 were artificially trimmed for the figure. Linkage disequilibrium (r?) indi-
cated by color scale legend. Y-axis scaled to show associations for variant rs560887 (purple dot, MAF=43%,
p=4.2x10""). Triangle symbols indicate variants with MAF>5%, square symbols indicate variants with MAF
1-5%, and circle symbols indicate variants with MAF <1%.

(b) Regional association results (-log,op) for fasting glucose conditioned on rs560887 of G6PC2. After ad-
justment for rs560887, both rare SNVs rs2232326 (S324P) and rs146779637 (R283X), and common SNV
rs492594 remain significantly associated with FG indicating the presence of multiple independent associa-
tions with FG at the G6PC2 locus.

(c) Inset of G6PC2 gene with depiction of exon locations, amino acid substitutions, and MAFs of the 15
SNVs included in gene-based analysis (MAF<1% and nonsynonymous, splice-site and gain/loss-of-function
variation types as annotated by dbNSFPv2.0).

(d) The contribution of each variant on significance and effect on the SKAT test when one variant is re-
moved the test. Gene-based SKAT p-values (blue line) and test statistic (red line) of G6PC2 after removing
one SNV at a time and re-calculating the association.

(e) Haplotypes and haplotype association statistics and p-values generated from the 15 rare SNVs from
gene-based analysis of G6PC2 from 18 cohorts and listed in panel (c). Global haplotype association,
p=1.1x10"". Haplotypes ordered by decreasing frequency with haplotype 1 as the reference. Orange high-
lighting indicates the minor allele of the SNV on the haplotype.

of these SNVs also showed association with FG of larger effect size in unconditional
single variant analyses (Supplementary Data 5), consistent with a recent report in which
H177Y was associated with lower FG levels in Finnish cohorts®. We developed a novel
haplotype meta-analysis method to examine the opposing direction of effects of each
SNV. Meta-analysis of haplotypes with the 15 rare SNVs showed a significant global test
of association with FG (Pgiobal test = 1.1x107") (Supplementary Table 12), and supported
the findings from the gene-based tests. Individual haplotype tests showed that the most
significantly associated haplotypes were those carrying a single rare allele at R283X (P
= 2.8x107"°), S324P (P = 1.4x1077) or Y207S (P = 1.5x107°) compared to the most com-
mon haplotype. Addition of the known common intronic variant (rs560887) resulted
in a stronger global haplotype association test (Pglobal test=1.5x10""), with the most
strongly associated haplotype carrying the minor allele at rs560887 (Supplementary
Table 13). Evaluation of regulatory annotation found that this intronic SNV is near the
splice acceptor of intron 3 (RefSeq: NM_021176.2) and has been implicated in G6PC2
pre-mRNA splicing®; it is also near the transcription start site of the expressed sequence
tag (EST) DB031634, a potential cryptic minor isoform of G6PC2 mRNA (Supplementary
Fig. 7). No associations were observed in gene-based analysis of G6PC2 with Fl or T2D
(Supplementary Tables 14 and 15).

Further characterization of exonic variation in G6PC2 by exome sequencing in up to
7,452 individuals identified 68 SNVs (Supplementary Table 5), of which 4 were individually
associated with FG levels and are on the exome chip (H177Y, MAF = 0.3%, P = 9.6 x107%;
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R283X, MAF = 0.2%, P = 8.4x10%; S324P, MAF = 0.1%, P = 1.7x107%; rs560887, intronic,
MAF = 40%; P = 7x107°) (Supplementary Data 6). 36 SNVs met criteria for entering into
gene-based analyses (each MAF < 1%). This combination of 36 coding variants was asso-
ciated with FG (cumulative MAF = 2.7%, Psr = 1.4x1073, Pyst = 5.4x107%, Supplementary
Table 16). Ten of these SNVs had been included in the exome chip gene-based analyses.
Analyses indicated that the 10 variants included on the exome chip data had a stronger
association with FG (Psgar = 1.3x1073, Pyst = 3.2x107° vs. Pegar = 0.6, Pwst = 0.04 using the
10 exome chip or the 26 variants not captured on the chip, respectively, Supplementary
Table 16).

In agnostic pathway analysis applying MAGENTA (http://www.broadinstitute.org/mpg/
magenta/) to all curated biological pathways in KEGG (http://www.genome.jp/kegg/),
GO (http://www.geneontology.org), Reactome (http://www.reactome.org), Panther
(http://www.pantherdb.org), Biocarta (http://www.biocarta.com), and Ingenuity (http://
www.ingenuity.com/) databases, no pathways achieved our Bonferroni-corrected
threshold for significance of P < 1.6x10°® for gene set enrichment in either Fl or FG
datasets (Supplementary Tables 17 and 18). The pathway P-values were further attenu-
ated when loci known to be associated with either trait were excluded from the analysis.
Similarly, even after narrowing the MAGENTA analysis to gene sets in curated databases
with names suggestive of roles in glucose, insulin, or broader metabolic pathways, we
did not identify any pathways that met our Bonferroni-corrected threshold for signifi-
cance of P < 2x107* (Supplementary Table 19).

Due to the expected functional effects of protein-altering variants, we tested SNVs
(4,513 for FG and 1,281 for Fl) annotated as nonsynonymous, splice-site or stop gain/
loss by dbNSFP*' in genes within 500kb of known glycemic variants'?’*? for association
with FG and Fl to identify associated coding variants which may implicate causal genes
at these loci (Supplementary Table 20). At the DNLZ-GPSM1 locus, a common nsSNV
(rs60980157; S391L) in the GPSM1 gene was significantly associated with FG (Bonferroni
corrected P < 1.1x107° = 0.05/4513 SNVs for FG), and had previously been associated
with insulinogenic index’. The GPSM1 variant is common and in LD with the intronic
index variant in the DNLZ gene (rs3829109) from previous FG GWAS' (r’;, = 0.68; 1000
Genomes EU). The association of rs3829109 with FG was previously identified using
data from the Illumina CardioMetabochip, which poorly captured exonic variation in
the region'. Our results implicate GPSM1 as the most likely causal gene at this locus
(Supplementary Fig. 8a). We also observed significant associations with FG for eight
other potentially protein-altering variants in five known FG loci, implicating three genes
(SLC30A8, SLC2A2, and RREBT) as potentially causal, but still undetermined for two loci
(MADD and IKBKAP) (Supplementary Figs. 8b-f). At the GRB14/COBLL1 locus, the known
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GWAS'** nsSNV rs7607980 in the COBLL T gene was significantly associated with FI (Bon-
ferroni corrected P < 3.9x107° = 0.05/1281 SNVs for FI), further suggesting COBLLT as
the causal gene, despite prior functional evidence that GRB14 may represent the causal
gene at the locus® (Supplementary Fig. 8g).

Similarly, we performed analyses for loci previously identified by GWAS of T2D, but only
focusing on the 412 protein-altering variants within the exonic coding region of the

annotated gene(s) at 72 known T2D loci***

on the exome chip. In combined ancestry
analysis, three nsSNVs were associated with T2D (Bonferroni corrected p value threshold
(P < 0.05/412 = 1.3x107) (Supplementary Data 8). At WFS1, SLC30A8 and KCNJ11, the
associated exome chip variants were all common and in LD with the index variant from
previous T2D GWAS in our population (r’y: 0.6-1.0; 1000 Genomes), indicating these
coding variants might be the functional variants that were tagged by GWAS SNVs. In
ancestry stratified analysis, three additional nsSNVs in SLC30A8, ARAP1 and GIPR were
significantly associated with T2D exclusively in African ancestry cohorts among the
same 412 protein-altering variants (Supplementary Data 9), all with MAF > 0.5% in the
African ancestry cohorts, but MAF < 0.02% in the European ancestry cohorts. The three
nsSNVs were in incomplete LD with the index variants at each locus (1’4 = 0, D'ar = 1;
1000 Genomes). SNV rs1552224 at ARAP1 was recently shown to increase ARAPT mRNA
expression in pancreatic islets® which further supports ARAPT as the causal gene un-
derlying the common GWAS signal®. The association for nsSNV rs73317647 in SLC30A8
(ORAr[95%Cl]: 0.45[0.31-0.65], Par = 2.4x107°, MAF,; = 0.6%) is consistent with the recent
report that rare or low frequency protein-altering variants at this locus are associated
with protection against T2D'’. The protein-coding effects of the identified variants indi-
cate all five genes are excellent causal candidates for T2D risk. We did not observe any
other single variant nor gene-based associations with T2D that met chip-wide Bonfer-
roni significance thresholds (P < 4.5x1077 and P < 1.7x107%, respectively).

For the previous reported GWAS loci we tested the known FG and Fl SNVs on the exome
chip. Overall, 34 of the 38 known FG GWAS index SNVs and 17 of the 20 known FI GWAS
SNVs (or proxies, r* = 0.8 1000 Genomes) were present on the exome chip. 26 of the FG
and 15 of the FI SNVs met the threshold for significance (P < 1.5x107% (0.05/34 FG SNVs),
Pr < 2.9x107%(0.05/17 FI SNVs)) and were in the direction consistent with previous GWAS
publications. In total, the direction of effect was consistent with previous GWAS publica-
tions for 33 of the 34 FG SNVs and for 16 of the 17 FI SNVs (binomial probability: P =
2.0x107%, Py = 1.4x107%, Supplementary Data 10). Of the known 72 T2D susceptibility loci,
we identified 59 index variants (or proxies r* = 0.8 1000 Genomes) on the exome chip;
57 were in the direction consistent with previous publications (binomial probability: P
= 3.1x107", see Supplementary Data 11). Additionally, two of the known MODY vari-
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ants were on the exome chip. Only HNF4A showed nominal significance with FG levels
(rs139591750, P = 3x107%, Supplementary Table 21).

DISCUSSION

Our large-scale exome chip-wide analyses identified a novel association of a low fre-
quency coding variant in GLPTR with FG and T2D. The minor allele, which lowered FG
and T2D risk, was associated with a lower early insulin response to a glucose challenge
and higher 2-h glucose. While the effect size on FG is slightly larger than for most loci
reported to date, our findings suggest that few low frequency variants have a very large
effect on glycemic traits and further demonstrate the need for large sample sizes to
identify associations of low frequency variation with complex traits. However, by directly
genotyping low frequency coding variants that are poorly captured through imputation,
we were able to identify particular genes likely to underlie previously identified associa-
tions. Using this approach, we implicate causal genes at 6 loci associated with FG and/
or FI (G6PC2, GPSM1, SLC2A2, SLC30A8, RREB1, and COBLL1) and 5 with T2D (ARAP1, GIPR,
KCNJ11,SLC30A8 and WFST). For example, via gene-based analyses, we identified 15 rare
variants in G6PC2 (Pskar = 8.2x107'%), which are independent of the common non-coding
signals at this locus and implicate this gene as underlying previously identified asso-
ciations. We also revealed non-coding variants whose putative functions in epigenetic
and post-transcriptional regulation of ABO and G6PC2 are supported by experimental
ENCODE Consortium, GTEx and transcriptome data from islets and for which future
focused investigations using human cell culture and animal models will be needed to
clarify their functional influence on glycemic regulation.

The seemingly paradoxical observation that the minor allele at GLP1R is associated
with opposite effects on FG and 2-h glucose is not unique to this locus, and is also ob-
served at the GIPR locus, which encodes the receptor for gastric inhibitory peptide (GIP),
the other major incretin hormone. However, for GLP1R, we observe that the FG-lowering
allele is associated with lower risk of T2D, while at GIPR, the FG-lowering allele is associ-
ated with higher risk of T2D (and higher 2-h glucose)'. The observation that variation in
both major incretin receptors is associated with opposite effects on FG and 2-h glucose
is a finding whose functional elucidation will yield new insights into incretin biology.
An example where apparently paradoxical findings prompted cellular physiologic ex-
perimentation that yielded new knowledge is the GCKR variant P446L associated with
opposing effects on FG and triglycerides®*, The GCKR variant was found to increase
active cytosolic GCK, promoting glycolysis and hepatic glucose uptake while increasing

substrate for lipid synthesis**.
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Two studies have characterized the GLPTR A316T variant in vitro. The first study found
no effect of this variant on cAMP response to full length GLP-1 or exendin-4 (endogenous
and exogenous agonists)*'. The second study corroborated these findings, but docu-
mented as much as 75% reduced cell surface expression of T316 compared to wild-type,
with no alteration in agonist binding affinity. While this reduced expression had little
impact on agonist-induced cAMP response or ERK1/2 activation, receptors with T316
had greatly reduced intracellular calcium mobilization in response to GLP-1(7-36NH,)
and exendin-4*. Given that GLP-1 induced calcium mobilization is a key factor in the in-
cretin response, the in vitro functional data on T316 is consistent with the reduced early
insulin response we observed for this variant, further supported by the Glp1r knockout
mouse, which shows lower early insulin secretion relative to wild type mice43.

The associations of GLPTR variation with lower FG and T2D risk are more challenging
to explain, and highlight the diverse and complex roles of GLP1R in glycemic regulation.
While future experiments will be needed, here we offer the following hypothesis. Given
fasting hyperglycemia observed in Glp1r knockout mice®, A316T may be a gain-of-
function allele that activates the receptor in a constitutive fashion, causing beta cells
to secrete insulin at a lower ambient glucose level, thereby maintaining a lower FG;
this could in turn cause down-regulation of GLP1 receptors over time, causing incretin
resistance and a higher 2-h glucose after an oral carbohydrate load. Other variants in G
protein-coupled receptors central to endocrine function such as the TSH receptor (TSHR),
often in the transmembrane domains* (like A316T, which is in a transmembrane helix
(TM5) of the receptor peptide), have been associated with increased constitutive activ-
ity alongside reduced cell surface expression**, but blunted or lost ligand-dependent
signaling®®¥.

The association of variation in GLPTR with FG and T2D represents another instance
wherein genetic epidemiology has identified a gene that codes for a direct drug target
in T2D therapy (incretin mimetics), other examples including ABCC8/KCNJ11 (encoding
the targets of sulfonylureas) and PPARG (encoding the target of thiazolidinediones). In
these examples, the drug preceded the genetic discovery. Today, there are over 100
loci showing association with T2D and glycemic traits. Given that at least three of these
loci code for potent antihyperglycemic targets, these genetic discoveries represent a
promising long-term source of potential targets for future diabetes therapies.

In conclusion, our study has shown the use of analyzing the variants present on the
exome chip, followed-up with exome sequencing, regulatory annotation and additional
phenotypic characterization, in revealing novel genetic effects on glycemic homeostasis
and has extended the allelic and functional spectrum of genetic variation underlying
diabetes-related quantitative traits and T2D susceptibility.
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ABSTRACT

Objective: In recent decades, there has been major progress in elucidating the genet-
ics of lipid metabolism. Currently, genetic screening targets early life and is limited to
rare Mendelian forms of dyslipidemia. A question that remains is the extent to which
common variants can be effective in the identification of individuals at increased risk of
dyslipidemia in the general population across the age range, including old age.
Methods: A risk score was computed for each individual from total cholesterol (TC) al-
tering single nucleotide polymorphisms (SNPs) in the Rotterdam Study (n=10,072) and
Erasmus Rucphen Family Study (n=2,715). Association of the risk score with prevalent
dyslipidemia was analyzed using regression models. In the Rotterdam Study, Kaplan
Meier survival analyses were performed to assess age-specific penetrance of incident
dyslipidemia stratified by TC gene risk score quartiles. To test the ability of the risk scores
to predictincident dyslipidemia, areas under the receiver operating characteristic curves
(AUCs) were calculated.

Results: TC gene risk score quartiles were strongly associated with dyslipidemia. Overall,
odds ratios increased from 1.61[1.44-1.80] in quartile 2 to 3.55[3.18-3.97] in the highest
quartile. In normal weight and overweight individuals, age-specific penetrance of dys-
lipidemia increased per risk score quartile. The TC gene risk score discriminated incident
dyslipidemia significantly better (AUC=0.61[0.58-0.64]) than a model including age, sex
and BMI (AUC=0.53[0.50-0.56]) and combining both models did not improve the AUC
compared to the genetic risk score alone.

Conclusions: Our results suggest that common genetic variants play a strong role in
determining the development of dyslipidemia throughout the age range. These find-
ings suggest that common genetic variants can be effective in the identification of indi-
viduals at increased risk of dyslipidemia in the general population across ages, including
old age.
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INTRODUCTION

Over the past decade, there has been major progress in elucidating the genetics of
lipid metabolism. Genome-wide association studies (GWAS) have identified many com-
mon genetic variants contributing to inter-individual differences in circulating lipid
levels in the general population'™. Two large meta-analyses performed by the Global
Lipid Genetics Consortium (GLGC) reported 157 genetic loci containing common single
nucleotide polymorphisms associated with circulating levels of total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-

)5,6

Q) or triglycerides (TG)>". The currently known common TC variants jointly explain ~15%
of the variance in TC. In addition to these common polymorphisms, large numbers of
rare variants underlying familial hypercholesterolemia (FH), an autosomal co-dominant
genetic disorder associated with increased levels of LDL-C, have been identified in pa-

tients with extreme hypercholesterolemia’.

In a number of countries, including the Netherlands, genetic screening of families with
a family history of FH is performed to diagnose FH at a young age’. Comprehensive
genetic testing of rare variants with large effects is useful in terms of sensitivity, quality
adjusted life years and cost-effectiveness®. Thus far, genetic screening targets early life
and is limited to rare Mendelian forms of dyslipidemia. In contrast to the rapid transla-
tion from discovery to implementation in the clinic of the rare variants, common variants
have not been taken to prevention or clinical care despite the fact that the currently dis-
covered lipid loci jointly explain substantial percentages of the variance in lipid traits>®.
Whereas the effects of the rare Mendelian variants are seen at early age’®, the common
variants were identified in a heterogeneous population spanning the full age range. A
question that remains is the extent to which common variants can be effective in the
identification of individuals at increased risk of dyslipidemia in the general population
over all ages.

In this study, we assessed the combined effect of the 75 genetic loci associated with
TC levels from the GLGC meta-analyses on dyslipidemia risk®®. We calculated a genetic
risk score based on the top SNPs from these 75 loci and tested association of this risk
score with prevalent dyslipidemia; analyzed age-specific penetrance of incident dyslip-
idemia stratified by risk score quartiles; and assessed the discriminative ability of the risk
score for incident dyslipidemia. To evaluate the added value of the genetic risk score
compared to age, sex and BMI, we analyzed the discriminative ability of the genetic risk
score, a score with these non-genetic factors and a combination of both.
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MATERIALS AND METHODS

Study Populations

This study was embedded in the Rotterdam Study and the Erasmus Rucphen Family
Study (ERF)'*'?. The Rotterdam Study is a single-center prospective cohort study com-
prised of elderly individuals living in Ommoord, a district in the city of Rotterdam, the
Netherlands. Participants were recruited into the study at three points in time: 1990
- 1993 (RS-I, n = 7,983, age at baseline > 55 years), 2000 - 2001 (RS-Il, n = 3,011, age at
baseline = 55 years) and 2006 — 2008 (RS-Ill, n = 3,932, age at baseline = 45 years). ERF is
a family-based cohort study composed of individuals living in a contiguous geographic
region in the southwest of the Netherlands. All living descendants aged 18 years or
above, of twenty-two couples that had a large number of children baptized in the com-
munity church between 1850 and 1900 were invited to participate in the study. Their
spouses were invited as well. Approximately 3,200 individuals participated. Examina-
tions took place between June 2002 and February 2005. Participants in both the Rotter-
dam Study and ERF filled out questionnaires and underwent extensive interviews and
examinations at dedicated research centers. In the current analyses, 10,072 individuals
from RS-l (n = 5,866), RS-1l (n = 2,134) and RS-l (n = 2,072) for whom both clinical and
genotypic information was available were included. In ERF, 2,715 individuals for whom
clinical and genotypic information was available were included. Participants from both
studies, or their legal guardians, provided written informed consent. Both studies were
approved by the Medical Ethics board of the Erasmus Medical Center Rotterdam, the
Netherlands.

Clinical and laboratory assessment

For both the Rotterdam Study and ERF, a broad range of examinations were conducted
according to a standardized research protocol. At the research centers, height and weight
were assessed and from these BMI was defined as weight in kilograms divided by the
square of height in meters. In both studies, venous blood samples were obtained from
study participants. In the RS-l cohort, TC was measured using enzymatic colorimetric
methods (Kone Specific Analyzer, Kone Instruments). In RS-Il and RS-IIl, TC was measured
using comparable enzymatic procedures (Hitachi Analyzer, Roche Diagnostics). In ERF,
TC was measured using a Synchron LX 20 Systems analyzer (Beckman Coulter, Fullerton,
CA, USA). In both the Rotterdam Study and ERF, participants were asked to present the
medications they used, including lipid-lowering medications, during their visit to the
research center. Dyslipidemia was defined as TC > 6.5 mmol/L or use of lipid lowering
medication13.In the Dutch cardiovascular risk management guidelines for general prac-
titioners, this criterion is used to identify individuals at increased cardiovascular disease
(CVD) risk. In RS-l and RS-Il, incident dyslipidemia was studied, which was defined as
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free of dyslipidemia at baseline and development of dyslipidemia during follow-up. This
included three follow-up visits for RS- and two follow-up visits for RS-II; the last follow-
up visit for the cohorts took place between 2009-2011 and 2011-2012, respectively.

Genotyping

Genomic DNA was extracted from venous blood samples obtained at baseline in both
the Rotterdam Study and ERF. DNA was extracted using the salting out method'. Geno-
typing in the Rotterdam Study was performed using the 550 and 610 K Illlumina arrays
and in the ERF cohort using lllumina 318 and 370K arrays. Exclusion criteria for individu-
als were excess autosomal heterozygosity, mismatches between called and phenotypic
gender and outliers identified by an IBS clustering analysis. Single nucleotide polymor-
phisms (SNPs) were excluded for Hardy-Weinberg equilibrium P-value < 10-6 or SNP call
rate < 98%. Genotypes with minor allele frequencies > 1% were used to impute about
2.5 million autosomal SNPs using HapMap CEU release 22 samples as a reference panel.
Imputation was performed using MaCH15. Imputed genotypes were coded as dosages.
These are values between 0 and 2 indicating the estimated number of copies of a given
allele for each individual.

Genotype Scores

A genetic risk score for TC was calculated, per individual, based on the lead SNPs in the
75 loci from the large lipid GWAS meta-analyses by Teslovich et al. and Willer et al.>®. The
risk score was calculated per individual as:

n

(, (Gi*Bi))/n

1

where n is the number of SNPs comprising the score, Gi is the number of TC increasing
alleles at the ith genotype, and (i is the per allele effect estimate for the ith SNP as
obtained in the GLGC lipid GWAS meta-analyses®®.

Statistical Analyses

TC outliers of more than four standard deviations were excluded from the analyses. The
percentage of the heritability explained by the TC genes combined in the family-based
ERF cohort was assessed by calculating the polygenic heritability as implemented in
the SOLAR software package'®. To assess the relationship of quartiles of the genetic risk
score with prevalent dyslipidemia in the Rotterdam Study, logistic regression adjusting
for age, sex and BMI was performed using R". A variable indicating the sub-cohort (RS-I,
RS-l or RS-1Il) was added to all models. In ERF, to account for relatedness in the family-
based cohort, generalized estimating equations, as implemented in the R package gee,
were used'®. Results from the Rotterdam Study and ERF were combined using inverse
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variance weighted random effects meta-analysis as implemented in the R package
rmeta'®. Age-specific penetrance of dyslipidemia in the Rotterdam Study, overall and
in BMI subgroups, was estimated using Kaplan Meier survival analyses as implemented

in the R package survival®®

. Age, sex and a variable indicating the sub-cohort were
included as covariates in these analyses and individuals were censored at age 90 years
because of the small number of individuals per TC gene risk score quartile above that
age. Age-specific penetrance of dyslipidemia and mortality stratified by BMI group were
assessed in the same manner as described above. The R package PredictABEL*' was
used to calculate the area under the receiver operating characteristic curves (AUC) for
prediction of incident dyslipidemia in the RS-l and RS-Il cohorts. The predictive ability
of the genetic risk score, an epidemiological model including age, sex and BMI, and a
combination of both was assessed. Results from RS-l and RS-Il were combined using

random effects meta-analysis as implemented in the R package rmeta'®.

RESULTS

A total of 2,715 ERF participants and 10,072 Rotterdam Study participants were included
in the study. Descriptions of the cohorts’ baseline characteristics are presented in Table
1. A total of 870 ERF participants (32.0%) and 4,641 Rotterdam Study participants (46.1%)
were dyslipidemic upon inclusion, which included those receiving treatment and those
with a total cholesterol > 6.5 mmol/L. As expected, the ERF participants were on average
younger, spanning an age range from 17 to 86 years. In the RS-l and RS-l sub-cohorts,
the elderly were oversampled (age range 55 - 99 years), offering the opportunity to
obtain reliable estimates in the oldest people.

Table 1. Description of the study populations

ERF RS
n 2,715 10,072
Age (years) 48.9(14.3) 65.7 (9.8)
Male (n, %) 1,216 (44.8) 4,280 (42.3)
BMI (kg/m?) 26.9 (4.7) 26.8 (4.0)
TC (mmol/l) 5.6(1.1) 6.2 (1.2)
LLT (n, %) 347 (12.8) 875(8.7)
Prevalent dyslipidemia (n, %) 870 (32.0) 4,641 (46.1)
Incident dyslipidemia (n, %)* NA 483 (6.0)

Mean (SD) unless otherwise indicated, ERF: Erasmus Rucphen Family Study, RS: Rotterdam Study, n: num-
ber, BMI: body mass index, TC: total cholesterol, LLT: lipid lowering therapy

*The percentage is calculated based on the 8000 individuals from the RS-l and RS-Il cohorts, because fol-
low-up data was only available for those cohorts.
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Jointly, the TC genes explained 27.3% of the heritability of TC levels in ERF. The TC gene
risk score was divided into quartiles and these were tested for association with dyslip-

idemia both in the total sample and stratified according to age (Table 2), using those in

the lowest risk score quartile as reference. The risk score was strongly associated with

dyslipidemia in the total sample in both the Rotterdam Study and ERF. The meta-analysis
of the cohorts yielded odds ratios increasing from 1.61 [95% Cl 1.44 - 1.80; P = 2.2x1 0"
in quartile 2 to 2.26 [2.02 - 2.52; P = 7.5x10™*] in quartile 3 and 3.55 [3.18 - 3.97; P =
4.4x107""’] in quartile 4. A similar significant effect was seen in all age groups (Table 2),

except for quartile 3 in the age 65-74 years subgroup (P = 0.110) and quartile 2 in the

Table 2. Association of TC genes risk score quartiles with prevalent dyslipidemia in the total sample
and stratified according to age subgroups

Risk score ERF RS Meta
quartile OR[95% Cl] P OR[95% ClI] P OR[95% Cl] P
all (n=12,215)

2 1.68[1.25-2.26]  5.1x10™* 1.60[1.42-1.80] 9.4x107" 1.61[1.44-1.80] 2.2x107"

3 255[1.90-341]  3.3x107°  2.21[1.97-249]  2.13x10°* 2.26[2.02-252] 7.5x107*

4 4.02[3.04-533]  29x10®  3.47[3.08-391] 8.6x10™ 3.55[3.18-3.97] 4.4x107'"

subgroup age < 45 years (n=949)

2 1.36[0.68-2.71] 0380 NA NA NA NA

3 3.00(1.61,5.58]  5.1x107* NA NA NA NA

4 3.28[1.79-6.011  1.2x107* NA NA NA NA
subgroup age 45-54 years (n=1,416)

2 234[1.29-422]  0.005 1.82[1.16-2.85]  0.009 1.99[1.39-2.85]  1.6x10™*

3 3.80[2.13-6.79]  6.2x10°° 2.22[1.43-345] 4.0x10™* 2.81[1.66-4.74] 1.2x10™*

4 6.11[3.43-10.88] 7.6x107"°  243[157-3.77] 7.3x10°° 3.78[1.53-9.32]  0.004
subgroup age 55-64 years (n=5,212)

2 1.85[1.13-3.03]  0.014 1.71[1.44-2.02] 8.7x107"° 1.72[1.47-2.02] 4.2x10™"

3 264[1.58-442]  2.1x107" 2.19[1.84-2.60]  3.1x107" 2.23[1.90-2.62] 3.7x107%

4 443[2.62-749]  27x10°° 3.65[3.06-4.34]  2.7x107* 3.72[3.15-438]  6.2x10°*°
subgroup age 65-74 years (n=2,798)

2 1.09[0.53-2.22]  0.817 1.75[1.39-221]  2.2x10°° 1.56[1.05-2.33]  0.027

3 1.13[0.56-2.28]  0.731 233[1.84-2.94] 1.1x107" 1.76[0.88-3.50]  0.110

4 2.65[1.29-5.44]  0.008 4.02[3.16-5.11]  1.0x107* 3.77[2.80-5.06] 1.3x107"®
subgroup age = 75 years (n=1,840)

2 0.76[0.12-4.86]  0.768 1.12[0.84-1.50]  0.423 1.11[0.84-1.48]  0.455

3 1.33[0.29-6.05]  0.713 221[1.66-2.93] 4.3x10® 2.17[1.64-2.87] 4.9x10°°

4 2.13[0.41-11.07]  0.367 293[221-3.90] 1.2x107" 2.91[2.20-3.85] 8.7x107™"

ERF: Erasmus Rucphen Family Study, RS: Rotterdam Study, OR: odds ratio, Cl: confidence interval, P: P-value,

Q: quartile
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Figure 1. Prevalence of dyslipidemia in the total sample and in different age subgroups stratified
according to TC genes risk score quartile
Q: TC gene risk score quartile

highest age subgroup (= 75 years; P = 0.455). Figure 1 plots the prevalence of dyslipid-
emia according to TC gene risk score quartiles. The prevalence increased from 20% to
46% in the overall analyses in ERF and from 32% to 60% in the Rotterdam Study. P-values
for trend across the risk score quartiles were significant for all age subgroups in both
studies (P = 1.3x10™% - 0.002), except for the highest age subgroup in ERF (P = 0.431).

Data on incident dyslipidemia were available for the RS-l and RS-Il cohorts. 483 of the
4,149 individuals in these cohorts who were free of dyslipidemia at baseline developed
this outcome. Age-specific penetrance curves of incident dyslipidemia, stratified by TC
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Figure 2. Age-specific penetrance of dyslipidemia stratified by TC gene risk score quartile

gene risk score are shown in Figure 2. The risk increased according to risk score quartile
up until age 85 years. By this age, 12% of the individuals in the lowest risk score quartile
and 25% in the highest quartile developed dyslipidemia. Of note is the low risk in the
lowest quartile as compared to the other three quartiles until age 90. Figure 3 shows
age-specific penetrance curves for incident dyslipidemia stratified by BMI (normal, over-
weight and obese). There was not a consistent increased risk according to BMI. Although
overweight individuals were at increased risk of dyslipidemia at all ages compared to
those with a normal weight, obese participants were not at the highest risk compared
to these two weight groups over all ages. Between the ages of 55 and 83 years, dyslip-
idemia risk was similar in the obese and normal weight groups. After age 83 years, there
was a steep increase in dyslipidemia risk in the obese group and, at age 90 years, the risk
was highest in the obese compared to the normal weight and overweight individuals.
In line with these findings, the TC gene risk score (meta-analysis AUC = 0.61 [0.58-0.64])
discriminated incident dyslipidemia significantly better than an epidemiological risk
model including age, sex and BMI (AUC = 0.53 [0.50 — 0.56]) (Table 3). The discriminative
ability of the TC gene risk score alone was similar to that of the risk score, age, sex and
BMI combined (AUC = 0.61 [0.59 - 0.64]) suggesting that the addition of BMI to the ge-
netic risk score has no additive value. Figure 4 shows that, at least in those with normal
or overweight, the genetic risk score does have utility over BMI. In the normal weight
group, by the age of 85 years, 8% of the individuals in the lowest TC gene risk score
quartile and 25% in the highest quartile developed dyslipidemia. These percentages
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Figure 3. Age-specific penetrance of dyslipidemia stratified by BMI
BMI: body mass index

Table 3. Discriminative ability of clinical and genetic models for incident dyslipidemia

Predictor AUC[95% CI]

RS- RS-l Meta
Age, sex, BMI 0.52[0.48-0.56] 0.54[0.50-0.58] 0.53[0.50-0.56]
TC gene risk score 0.60 [0.56-0.64] 0.62 [0.58-0.66] 0.61[0.58-0.64]
TC gene risk score, age, sex, BMI 0.60 [0.56-0.64] 0.62 [0.59-0.66] 0.61[0.59-0.64]

AUC: area under the receiver operating characteristic curve, Cl: confidence interval, RS: Rotterdam Study,
BMI: body mass index, TC: total cholesterol

were 12% and 32%, respectively, in the overweight individuals. In obese individuals, the
genetic risk score was not informative. Up to the age of 85 years, those in the lowest
risk score quartile still seemed to have a protective effect, but being in either one of the
other three quartiles was not informative. Above the age of 85 years, the genetic risk
score was not informative in determining dyslipidemia risk in obese individuals.
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Figure 4. Age-specific penetrance of dyslipidemia in different BMI groups stratified by TC gene risk
score quartile
TC: total cholesterol, BMI: body mass index

DISCUSSION

This study shows strong association of a TC gene risk score with dyslipidemia in the gen-
eral population. Comparing those in the lowest and highest quartile of the genetic risk
score, the prevalence of dyslipidemia doubled in two independent studies. This trend
was seen over a wide age range. In the Rotterdam Study, the follow-up data showed
that age-specific incidence of dyslipidemia increased through old age (90+ years). Fur-
ther, in this study, age, sex and BMI did not improve the discrimination of the genetic
model. In contrast, common genetic variants played an important role in determining



who develops dyslipidemia between the ages of 55 and 90 years in normal weight and
overweight individuals.

Associations of genetic risk scores comprised of common lipid-altering gene variants
with their corresponding lipid levels, extreme lipid values and intervention thresholds
for blood lipids have been previously described*******. To our knowledge, however, this
is the first study extensively assessing to what extent all currently known common TC-
altering gene variants can be effective in the identification of individuals at increased
risk of dyslipidemia in the general population across ages, including old age, and to
what extent the genetic risk score has additive utility over BMI and vice versa. The pres-
ent study includes all 75 currently known common TC-altering gene variants, including
recently discovered loci®. A further strength of our study is that it jointly analyses the
data of two large population-based studies that were not selected on the basis of the
phenotypes. Since both ERF and the Rotterdam Study were part of the discovery GWAS
meta-analyses, a possible limitation of this study might be that the risk score is not
completely independent from the GWAS results. Because of the very large number of
individuals included in the discovery meta-analyses (>188,000), this effect should be
limited. Despite the large difference in mean age between the Rotterdam Study and ERF,
study heterogeneity was limited.

Our results show that common genetic variants play an important role in determining
who develops dyslipidemia from the age of 55 years through age 90 in normal weight
and overweight individuals, underscoring the value of the genome wide association
studies for age-related diseases. Despite the small effects of the genes identified to
date, when combined into a risk score the effects are substantial and discriminate future
patients with dyslipidemia better than an established epidemiological risk factor such as
BMI. Although we used the latest common variants identified, the genetic risk score is far
from complete, explaining 27% of the heritability of TC levels. Further gene discovery ef-
forts could improve the identification of those individuals likely to develop dyslipidemia.

The age-specific penetrance of dyslipidemia stratified by BMI and age-specific pen-
etrance of dyslipidemia stratified by TC gene risk score in different BMI groups showed
inconsistent patterns in those with obesity (BMI > 30 kg/m?). Through 83 years of age,
the risk of dyslipidemia for the obese participants of the Rotterdam Study is similar to
that of normal weight individuals. There may be several explanations for these findings.
First, selection may have taken place: those with obesity may have developed second-
ary dyslipidemia early as a consequence of dietary habits and resistance to insulin and
therefore are in the analyses of prevalent but not of incident dyslipidemia or obese
participants with comorbidities are least likely to participate in our study resulting in
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a selection of relatively healthy obese participants. Second, there could be differential
mortality in those with obesity. However, our results did not provide evidence for this
explanation (Supplemental Figure 1).

A next step after finding that common genetic variants play an important role in deter-
mining who develops dyslipidemia through old age is to determine whether screening
for these variants to identify individuals at increased risk of dyslipidemia in the general
population would be useful. Genetic screening has proven useful in FH8, but despite the
large role of genes in both conditions, there are important differences between FH and
dyslipidemia in the general population. FH is an autosomal co-dominant disorder with
nearly complete penetrance’, with a prevalence of 1:500 in most Western countries. Left
untreated, men that are heterozygous for the mutation experience clinical symptoms
of CVD typically in their fourth decade and women in their fifth decade of life’. Statin
therapy lowers CVD risk substantially in these individuals®. Although the prevalence
of dyslipidemia in the general population is high, even in individuals in the highest TC
gene risk score quartile penetrance is not complete. Yet in this high risk group preva-
lence approaches 70% between the ages of 65 and 74 years. However, controversy exists
about the effect of total cholesterol on total- and cardiovascular mortality in elderly
people, questioning the validity of identifying individuals with dyslipidemia in high
age groups”®”. To determine whether screening would be useful, and in which age
groups, age-specific penetrance of dyslipidemia over a wider age range than assessed
in our study should be investigated, including the clinical consequences. Corresponding
morbidity and mortality might be prevented by early identification and treatment of in-
dividuals at high polygenic risk of dyslipidemia. Health economic evaluation is required,
as extrapolations from the quickly deleterious FH to a late onset polygenic situation may
not be accurate.

In conclusion, our results show a strong role of common genetic variants in determining
who develops dyslipidemia throughout the age range. These findings suggest that com-
mon genetic variants can be effective in the identification of individuals at increased risk
of dyslipidemia in the general population across ages, including old age.
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ABSTRACT

Objective: Circulating levels of total cholesterol, low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol, and triglycerides are recognized risk fac-
tors for cardiovascular disease. We tested the hypothesis that the cumulative effects of
common genetic variants for lipids are collectively associated with subclinical athero-
sclerosis and incident coronary heart disease.

Methods and Results: Participants were drawn from the Erasmus Rucphen Family Study
(n = 2,269) and the Rotterdam Study (n = 8,130). Linear regression and Cox propor-
tional hazards models were applied to assess the influence of 4 risk scores derived from
common genetic variants for lipids (total cholesterol, LDL-C, high-density lipoprotein
cholesterol, and triglycerides) on carotid plaque, intima-media thickness, incident myo-
cardial infarction, and coronary heart disease. Adjusted for age and sex, all 4 risk scores
were associated with carotid plaque. This relationship was the strongest for the LDL-C
score, which increased plaque score by 0.102 per SD increase in genetic risk score (P =
3.2x107%). The LDL-C score was also nominally associated with intima-media thickness,
which increased 0.006 mm per SD increase in score (P = 0.05). Both the total cholesterol
and LDL-C scores were associated with incident myocardial infarction and coronary
heart disease with hazard ratios between 1.10 and 1.13 per SD increase in score. Inclu-
sion of additional risk factors as covariates minimally affected these results.
Conclusions: Common genetic variants with small effects on lipid levels are, in com-
bination, significantly associated with subclinical and clinical cardiovascular outcomes.
As knowledge of genetic variation increases, preclinical genetic screening tools might
enhance the prediction and prevention of clinical events.
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INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide.'
Increased serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol
(LDL-C) are among the most important risk facto