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PROPOSITIONS

Propositions accompanying this thesis.

1. Patient heterogeneity and parameter uncertainty should both be considered in cost-

effectiveness Markov models, but separately (this thesis).

2. When only direct evidence is available, evidence from different sources is best syn-

thesized using a frequentist random effects model (this thesis).

3. When indirect evidence is also available, combining direct and indirect evidence is 

preferred over only using direct evidence (this thesis).

4. Transferability factors can be ordered by their impact on the cost-effectiveness (this 

thesis).

5. The national threshold value of a QALY has wrongly been disregarded as an impor-

tant transferability factor (this thesis).

6. Several advanced statistical methods exist to calculate country-specific cost-effec-

tiveness results based on multinational trials, but they have not been used on a wider 

scale yet, while simpler, naïve methods are still routinely employed (this thesis).

7. Mathematical formulas, even making no sense within the presented context, may 

add credibility when added to your abstract. (Eriksson K. The nonsense math effect. 

Judgment and Decision Making, 2012;7(6):746-9)

8. Although a good presentation can never save bad research, a bad presentation can 

certainly ruin good research.

9. Scientific discovery doesn’t begin with “Eureka!”, but rather with “Huh. That’s funny. 

That can’t be right.” (Paraphrased from Isaac Asimov)

10. Inequality can never be overcome by more inequality.

11. The societal impact of donating half a liter of blood every ten weeks during the past 

six years, is higher than that of this thesis.
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Introduction
A simple concept; many complications
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1.1 A SIMPLE CONCEPT

At its heart, health technology assessment (HTA) is very simple. It compares two or more 

alternative courses of action, often pharmaceutical interventions, in terms of both their 

costs and health outcomes.1 One of the interventions will have better health outcomes, 

for example fewer number of exacerbations, longer survival or a better quality of life. This 

usually comes at an extra cost, often in the way of a higher price for the intervention. HTA 

makes this exchange between costs and effects explicit. 

The idea that costs are an important element to take into account, does not come 

naturally to many health care workers. Doctors, nurses, and other health care workers do 

everything they can to help patients improve their lives. The interventions these patients 

need are provided in a large part by companies developing and producing the necessary 

drugs and devices. Health care scientists and epidemiologists try to make sense of what 

constitutes health, what illness is and how disease is spread. Their focus is purely on 

the patient: what does he or she need? Choices between treatment options are usually a 

consideration between availability, possible side effects, and patient characteristics. If a 

new medication comes on the market, doctors are often eager to treat patients with this 

newest treatment option. 

With the focus on the patient in front of them, health care workers usually do not look 

beyond the operating room or treatment room. An oncologist wants to treat all patients to 

the best of his or her ability, no matter the costs of the intervention. Budgetary constraints 

are not, and should not, be part of the decision making process of a health care worker 

when dealing with an individual patient. Cost considerations should be taken into account 

at a more aggregate level in the clinical guidelines, written by their organizations. In this 

way, HTA separates health care workers from these concerns in their daily practice, which 

are in the public and political domain. 

1.2 SCARCITY

Where health care workers are trained to focus on the patient in front of them, it is the task 

of policy makers and politicians to look beyond individual concerns. Health care workers 

may want access to the newest treatment option, but the money that will be used to pay for 

the latest treatment may very well have a better use somewhere else. As the then chairman 

of the National Institute for Health and Clinical Excellence (NICE) Professor Sir Michael 

Rawlins said in an interview in 2008: ‘We have a finite amount of money for healthcare, 

and if you spend money one way you can’t spend it in another.’2 This could very well be 

within the health care sector, where the money could be put to use for another patient. It 
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could also be used for a public campaign to quit smoking or to build a new hospital wing, 

to maintain forests or to build a new museum. 

The fact that we need to make a choice between all these options, is due to the basic no-

tion of scarcity in economics. Money, like any other good, is finite and can only be spend 

once. In health care, the money is usually paid by the general public in the form of taxes 

(the UK’s National Health Service for example) or insurance premiums (The Netherlands). 

As such, “society” (that is: all of us) pays for health care and we may expect doctors to be 

careful in how they spend it. This scarcity asks for an explicit valuation of all treatment 

options and their costs. In other words: HTA. 

1.3 HEALTH TECHNOLOGY ASSESSMENT

HTA as a field is intended to provide a bridge between the world of research and the 

world of decision-making.3 HTA is the toolbox which helps to keep a societal perspective 

when making decisions about new treatments, without intervening with the day-to-day 

decision that health care workers have to make. Using the tool box of HTA, the outcomes 

are often presented as an incremental cost-effectiveness ratio (ICER) or the incremental net 

monetary benefit (INMB). The ICER is the ratio between the additional health outcomes 

of one treatment option over another (the comparator), divided by the difference in costs. 

By comparing this ICER to an (implicit or explicit) threshold, policy makers can deem 

the intervention to be cost-effective compared to the comparator when the ICER is below 

this threshold. If the ICER is above the threshold, the intervention cannot be considered 

cost-effective compared to the comparator. The height of this threshold should be a public 

choice. The INMB is the difference in health outcomes, valued in monetary terms, minus 

the monetary costs. For the valuation of health outcomes the threshold value mentioned 

above is used. If the INMB is positive, the new intervention has more value to society 

than costs, and can thus be considered cost-effective compared to the comparator. If the 

INMB is negative, the new intervention will cost more than the societal benefits, and the 

intervention cannot be considered cost-effective compared to the comparator.

Health outcome measures that are often used are the number of years that a patient lives, 

or the number of events (heart attacks, hospitalizations) a patient experiences. Often, one 

would want to also include quality in life, leading to a measure called the quality adjusted 

life year (QALY). With several interventions, the difference between these outcomes can 

then be used to say which one is “better”. Costs are commonly categorized in costs that 

are directly related to the intervention or disease, and indirect societal costs or savings.4 

Direct medical costs include for example the costs of medication. Direct non-medical 

costs include for example travel, informal care and patient time. Indirect non-medical 

costs may include productivity losses and consumption changes. Finally, indirect medical 
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costs are medical costs that may be incurred by living longer.5 Including these costs in 

life years gained make cost estimates more conservative and accurate, but are not used in 

most published CE-studies. 

HTA is an active field internationally and has seen continued growth fostered by the 

need to support management, clinical, reimbursement and other policy decisions. It has 

also been advanced by the evolution of evaluative methods in the social and applied 

sciences, including clinical epidemiology and health economics.6 Health policy deci-

sions are becoming increasingly important as the opportunity costs from making wrong 

decisions continue to grow, both in the number of in terms of wasted resources and op-

portunities for health gain forgone.7

In recent years, the field of HTA has seen rapid advances in the field of statistical tech-

niques, which allow more realistic and complex healthcare models to be simulated more 

rapidly.8 Some of these advances have helped in the calculation of parameter estimates 

and measurement of uncertainty. Techniques have also arisen to identify, quantify and 

handle differences between groups of patients, data sources and countries. This has led to 

an increased interest in these differences. This thesis focuses on some of these techniques.

1.4 THIS THESIS

At its heart, health technology assessment is very simple. However, HTA is facing many 

methodological challenges calling for more complexity in the analyses. Several of these 

challenges are addressed in this thesis, all revolving around the use of HE decision models. 

We start with an example of such a HE decision model in chapter 2, which calculates the 

long term health economic effects of the reimbursement of smoking cessation treatments.

The first methodological issue we approach is what happens when there are different 

populations for which we need to make a decision. In chapter 3, we show that heterogene-

ity, caused by differences in patient characteristics, can and should be analyzed separately 

from the measures of uncertainty used in HE models. Unfortunately, heterogeneity is often 

either ignored completely in practice, or analyzed together with parameter uncertainty, 

without taking into account the fundamental difference between the two. We show that 

this may lead to the wrong policy decision.

Next, we turn to the issue of different data sources. Often, parameters in a HE model 

come from a variety of sources, for example several trials. Each individual estimate is 

usually different from the estimate from the other sources, which may be due to either 

sampling error, or genuine differences between the trials. In order for this information to 

be useful, these estimates need to be combined into a single estimate for each parameter. 

The way to do this is called meta-analysis. In chapters 4 and 5, we compare several 

different forms of meta-analysis, using a simulation study. The methods are compared 
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with respect to their effect on the HE outcomes. When only information is used from 

a head-to-head comparison between the interventions under investigation, the methods 

used are called direct meta-analysis. Four methods of direct meta-analysis are compared 

in chapter 4. When the relative efficacy between two interventions is obtained through 

a common comparator, there is an indirect comparison. Evidence from both direct and 

indirect comparisons can also be included in a network meta-analysis.  Four methods of 

mixed treatment comparison are compared in chapter 5.

In the next three chapters we turn to the methodological issues that arise from differ-

ences between countries. The field of health economics that deals with these issues is 

called transferability. In chapter 6 we show how the outcome for a single model can be 

different, depending on the country for which the model’s parameters have been used. We 

investigate how much of the differences can be explained by different sets of parameters. 

In chapter 7, we show that the country-specific willingness-to-pay for a QALY is often 

ignored in the transferability discussion, although it does have a large influence on the 

transferability of the outcomes. Transferability issues are best dealt with as early as pos-

sible. It is possible, and in fact advantageous, to deal with differences between countries 

alongside a randomized controlled trial (RCT). In chapter 8, we compared how recent, 

large RCTs dealt with these differences in practice and showed that several advanced 

statistical techniques have been available for some time to calculate country-specific CE 

results. However, they have not been used on a wide scale yet, while simpler, naïve 

methods are still routinely employed. 

We finish with a discussion in chapter 9, of some of the outcomes from the research 

presented in this thesis, and some further issues within HTA.
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ABSTRACT

Background Smoking cessation can be encouraged by reimbursing the costs of smok-

ing cessation support (SCS). The short-term efficiency of reimbursement has been 

evaluated previously. However, a thorough estimate of the long-term cost–utility is 

lacking.

Objectives To evaluate long-term effects of reimbursement of SCS.

Methods Results from a randomized controlled trial were extrapolated to long-term 

outcomes in terms of health care costs and (quality adjusted) life years (QALY) gained, 

using the Chronic Disease Model. Our first scenario was no reimbursement. In a 

second scenario, the short-term cessation rates from the trial were extrapolated di-

rectly. Sensitivity analyses were based on the trial’s confidence intervals. In the third 

scenario the additional use of SCS as found in the trial was combined with cessation 

rates from international meta-analyses.

Results Intervention costs per QALY gained compared to the reference scenario 

were approximately € 1,200 extrapolating the trial effects directly, and € 4,200 when 

combining the trial’s use of SCS with the cessation rates from the literature. Taking all 

health care effects into account, even costs in life years gained, resulted in an esti-

mated incremental cost–utility of € 4,500 and € 7,400, respectively. In both scenarios 

costs per QALY remained below € 16,000 in sensitivity analyses using a life-time 

horizon.

Conclusions Extrapolating the higher use of SCS due to reimbursement led to more 

successful quitters and a gain in life years and QALYs. Accounting for overheads, 

administration costs and the costs of SCS, these health gains could be obtained at 

relatively low cost, even when including costs in life years gained. Hence, reimburse-

ment of SCS seems to be cost-effective from a health care perspective.



21

2
2.1 INTRODUCTION

The World Health Organization Framework Convention on Tobacco Control is the first 

negotiated global health treaty1; most countries in the world have implemented some 

sort of smoking cessation policy. On a European level, the European Union (EU) has 

developed a policy to decrease tobacco use based on legislative policies, support for 

smoking prevention and cessation activities, mainstreaming tobacco control into other 

policies and ensuring that achievements also have an impact outside the EU region.2 These 

international efforts notwithstanding, smoking policies still remain largely a national mat-

ter.

The United Kingdom has an elaborate programme of free cessation support in special-

ized cessation clinics within the setting of the National Health Service (NHS).3,4 Other 

countries that reimburse some form of cessation support include New Zealand, Australia 

and the United States.5 However, the reimbursement is often incomplete. For instance, 

in Australia, bupropion is reimbursed, but nicotine replacement therapy (NRT) is not.5 In 

the United States, a small majority of states includes reimbursement of smoking cessation 

therapy in the Medicaid package, but Medicare does not usually cover smoking cessation 

support (SCS). Private insurances vary in their coverage.6 France and Germany do not 

reimburse SCS7, while Italy provides partial reimbursement.

Tobacco control policy in The Netherlands aims to reduce smoking prevalence to 20% 

in 2010.8 Smoking prevalence is declining in The Netherlands, but the decline has slowed 

recently and in 2007 28% of the Dutch population still smoked. Additional efforts are 

required to reach the goal. A new policy might be the broad reimbursement of SCS via 

the obligatory health care insurance. A Cochrane review from 2005 on the effects of re-

imbursement of SCS concluded that there is some evidence that complete reimbursement 

leads to higher quit rates than partial or no reimbursement, but also that more research 

was necessary.9 The Cochrane review by Reda and colleagues summarizes studies on 

financial incentives, among others full reimbursement of the costs of SCS to smokers.10 

They concluded that full financial interventions directed at smokers could increase the 

proportion quitting, quit attempts and utilization of pharmacotherapy by smokers.

In The Netherlands, SCS is reimbursed only partly at present and pharmacological SCS 

is not reimbursed at all. The health insurance board (CVZ) has advised the Dutch Ministry 

of Health to reimburse an integrated smoking cessation programme, consisting of a com-

bination of behavioural counselling and pharmacotherapy.11 Following this advice, the 

Ministry of Health intends to start reimbursement of integrated smoking cessation support 

in 2011.12

A randomized controlled trial was performed to investigate the effects of such a reim-

bursement policy in the Dutch region of Friesland13,14 in May 2002. The trial included 

smokers above the age of 18 who were representative of the Dutch population with respect 
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to age (40 in the trial and 43 in the general population) and gender (55% male, both in the 

trial and in the general Dutch population).15,16 Smokers were assigned randomly to either 

an intervention or a control group. For a period of 6 months, smokers in the intervention 

group were offered reimbursement for NRT, bupropion and behavioural counselling. They 

received a leaflet with a description of the type of SCS for which reimbursement was 

available, and information on how to receive the reimbursement. No reimbursement was 

offered to the control group. The trial was designed as a naturalistic implementation study.

The trial found that the number of participants using SCS was higher in the intervention 

group than in the control group. The difference was 6.7 percentage points (%pt), with a 

95% confidence interval (CI) of 3.8–9.5. The total number of smokers attempting to quit 

was also higher, but this difference of 2.6%pt (95% CI -2.0 to 5.0) was not significant. 

The self-reported abstinence rate after 12 months was again significantly higher in the 

intervention group than in the control group (difference = 2.7%pt, 95% CI 0.5–4.9). These 

results are in line with international studies, as reviewed recently.10

Recently, a pilot study was carried out in The Netherlands to investigate the feasibility 

of large-scale implementation of reimbursement.17 The results of that study showed that 

reimbursement improves the use of cessation support. For example, 24.8% of respondents 

used bupropion compared to 4.1% in the general population: a six-fold increase. Use 

of varenicline was nine times higher and nicotine patches 2.7 times. At the end of the 

6-month test period, one-third of the participants who were interviewed indicated that 

they had stopped smoking. The 6-month self-reported abstinence rate as found in the 

Friesland trial was substantially lower than that measured in the pilot study; this may be 

explained by the lack of randomization and selection of participants in the pilot. Partici-

pants indicated that they wanted to quit at the start of the pilot study and the abstinence 

rate was calculated as a percentage of these respondents. Therefore, the current study was 

based upon the cessation rates in the Friesland trial.

The following research question was addressed: what is the long-term cost–utility 

of reimbursing smoking cessation strategies? We aimed to answer this question by ex-

trapolating the above-mentioned trial data using a dynamic population model. The model 

calculated the effect of increased quit rates on the number of smokers, quality adjusted life 

years (QALYs) and costs, and the long-term cost–utility, accounting for relapse rates and 

delays in health effects among former smokers. Moreover, the cost–utility ratios included 

costs in life years gained (LYG) to provide a complete estimate of all health care related 

consequences of implementing reimbursement.
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2.2 METHODS

2.2.1 Three policy scenarios

We simulated the long-term outcomes for three scenarios using the Chronic Disease Model 

(CDM), with the reimbursement policy in place for half a year, as was the case in the 

original trial. Three policy scenarios were defined. The first scenario, denoted as the refer-

ence scenario, considers current practice without reimbursement of cessation support. 

The initial distribution over all smoking classes and the 1-year smoking class transition 

probabilities were estimated from survey data from the Dutch Foundation on Smoking and 

Health (STIVORO).18 This is a yearly representative national survey on smoking, including 

questions on current and past smoking status. Initiation rates of never smokers, quit rates 

of current smokers and rates of relapse for former smokers were estimated using the 2001, 

2002 and 2003 surveys.19

Scenarios 2 and 3 are different versions of what would happen if SCS were being reim-

bursed by the obligatory basic health care insurance. As was the case in the original trial, 

smokers pay for the SCS themselves and will receive the money back from their insurers. 

The scenarios were defined by changes in costs and in quit rates; that is, the number of 

people moving from a state of ‘current smoker’ to ‘former smoker’ in one 12-month cycle 

of our model. Scenario 2 will be referred to as the trial-based reimbursement scenario, 

and it remained close to the original empirical data on quit rates and costs.13,14 Because 

the CIs around the prices and effects of SCS from the original trial were relatively wide, 

we also included a third scenario. This scenario combined the use of SCS as observed in 

the trial with estimates of the effectiveness and costs of SCS from published literature.20-22 

It has higher intervention costs and lower effectiveness. This scenario will be referred to as 

the literature-based reimbursement scenario.

Year 1 of our model run, starting with 6 months of the reimbursement policy, cor-

responds to 2006. The outcomes were estimated after 20 years and for a life-time horizon. 

All input prices were in 2005 Euros, using the internationally accepted harmonized 

index of consumer prices—all items.23 All outcomes have been discounted back to 2005. 

Costs were discounted at 4% and effects were discounted at 1.5%, according to Dutch 

guidelines for pharmacoeconomic evaluations.24 We adopted a health care perspective. 

Sensitivity analyses were carried out to analyse the effect of different discount rates, the 

length of the period that the reimbursement policy will be in place and the uncertainty 

around the costs and effects of reimbursement.

2.2.2 Intervention effects

Two main effects are to be expected from reimbursement of SCS: more quit attempts 

and a higher use of cessation aids. As a result we expect more successful quitters. Yearly 

quit rates in the ‘reference scenario’ were defined by gender and 5-year age classes and 
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ranged from 4.4% for men aged 15–19 years to 11% for women older than 85 years.25 

For the ‘trial-based reimbursement scenario’, the higher quit rate was based directly on 

the original trial data (table 2.1). Six months after the end of the reimbursement period, at 

the 12-month assessment, 2.8% of the control group and 5.5% of the intervention group 

reported being abstinent for at least 6 months. This difference was statistically significant. 

In the trial-based reimbursement scenario, we calculated the additional number of suc-

cessful quitters by adding the absolute difference in quit rates, +2.7%pt, to the quit rates 

of the reference scenario. The 95% CI around this difference was used in the sensitivity 

analyses.

To calculate a quit rate, in the ‘literature-based reimbursement scenario’ the increased 

use of SCS that was observed in the trial was multiplied with efficacy estimates for these 

interventions based on meta-analyses from published Cochrane reviews (table 2.2). 

For instance, of 634 smokers in the control group, five (0.8%) used NRT only, while 

of the 632 smokers in the intervention group 15 (2.4%) used NRT only. The additional 

use of NRT is therefore 2.4 - 0.8% = 1.6%. The abstinence rate after 12 months from 

using NRT is 13.5%20, which means that the extra use of NRT will cause, on average, 

13.5 x 1.6% = 0.2% additional successful quitters. The total expected increase in success-

ful quitters over all interventions is 1.1%, which is added to the quit rates of the reference 

scenario. Alternative treatments such as homeopathy or acupuncture were not included in 

the reimbursement scheme, and were used less frequently in the trial intervention group 

than in the control group. Because there is no evidence-based effect of these treatments, 

we used the efficacy of ‘intensive counselling’ for ‘intensive counselling plus alternative 

SCS’ and the effect of ‘placebo’ for ‘alternative SCS’. Using the 95% CIs of the published 

abstinence rates and of the estimated additional numbers of users, we calculated a 95% 

CI for the effect in the literature-based reimbursement scenario, which was used in the 

sensitivity analyses.

Table 2.1: Costs per smoker and quit rates used in the trial-based reimbursement scenario. [13,14].a

Control 
group

Intervention
group

Difference (95% CI)

Costs of SCS € 3.87 € 14.06 € 10.19

Overhead costs

Application for reimbursement € 1.20 € 1.20

Identifying smokers and informing them about the 
reimbursement policy 

€ 7.32 € 7.32

Total costs per smoker in the trial-based 
reimbursement scenario 

€ 3.87 € 22.58 € 18.71 (8.82–33.90)

Quit rates

12-month assessment, prolonged abstinence, 
self-reported 

2.8% 5.5% 2.7%pt (0.5–4.9%pt)

a CI: confidence interval; SCS: smoking cessation support; %pt: percentage point.
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2.2.3 Intervention costs 

For the trial-based reimbursement scenario, costs per smoker and the corresponding 

CI were calculated bottom-up based on the resource use observed during the trial (see 

table 2.1). We included the costs of counseling and use of pharmacotherapy. Overhead 

costs consisted of the costs of identifying the smokers, sending all eligible smokers a letter 

and leaflet describing the SCS for which reimbursement were available and the way in 

which they could apply for reimbursement, plus administration costs of reimbursement. 

The costs of SCS that were used in the literature-based reimbursement scenario are given 

in table 2.2. These costs were estimated bottom-up based on recommended resource use 

and unit costs.20,25 Costs per quit attempt were multiplied by the additional use of the SCS 

to calculate the additional cost per smoker. Returning to the earlier NRT example, 1.6% 

additional users multiplied with the costs of a quit attempt using NRT (€ 186) results in a 

cost of € 2.98 per smoker. The same overhead costs as in the trial-based reimbursement 

Table 2.2: Use of smoking cessation support (SCS) in the Friesland trial and the predicted increase in successful 
quitters and costs in the literature-based reimbursement scenario.a

Additional 
use (% 

smokers) 
[13,14]

Abstinence 
rates 

[13,14,20–22,39]

Price per 
user [20,39]

Cost per 
smoker 

(95% CI)

% Increase in 
the number 
of successful 

quitters 
(95% CI)

NRT 1.6% 13.5% € 186 € 2.98 0.2%

NRT + IC 0.9% 22.0% € 394 € 3.55 0.2%

NRT + bupropion + IC 0.2% 18.4% € 573 € 1.15 0.0%

Bupropion 1.1% 13.3% € 180 € 1.98 0.2%

Bupropion + IC 2.1% 18.4% € 377 € 7.92 0.4%

IC 1.0% 13.9% € 198 € 1.98 0.1%

IC + alternative SCS -0.2% 13.9% € 253 -€ 0.50 -0.0%

Alternative SCS -0.2% 9.3% € 55 -€ 0.11 -0.0%

Overhead costs € 18.94

Application for reimbursement € 1.20

Identifying smokers and informing them about the 
reimbursement policy 

€ 7.32

Additional total costs per smoker in the 
literature-based reimbursement scenario 

€ 27.46 
(9.11–61.45)

Increase in quit rate per smoker in the 
literature-based reimbursement scenario 

1.1%pt
(0.6%–1.5%pt)

a CI: confidence interval; SCS: smoking cessation support; NRT: nicotine replacement therapy; IC: intensive 
counselling; %pt: percentage point.
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scenario were included. A CI was based upon the uncertainty surrounding additional use 

of SCS and minimum and maximum estimates for resource use.20,25

2.2.4 The CDM

To estimate the long-term effects of smoking cessation, the RIVM (National Institute for 

Public Health and the Environment) CDM was used. This model has been described 

extensively by Hoogenveen and colleagues.26 The CDM is a Markov-type state-transition 

model that describes the effects of epidemiological risk factors on morbidity and mortality 

from 28 chronic diseases in the Dutch population, and several risk factors, including 

smoking. It is a population-based, dynamic model that accounts for changes over time in 

the demographics of the population and the prevalence of risk factors. It includes realistic 

time-lags between the moment of smoking cessation and effects on the incidence of 

smoking-related disease and takes into account the fact that successful quitters can relapse 

into smoking. The CDM has been used in relation to smoking for future projections of risk 

factor and disease prevalence numbers15,27,28, cost–effectiveness analyses29 and estimates 

of healthy life expectancy.30 The CDM relates smoking to increased incidence rates of 14 

smoking related chronic diseases, including coronary heart disease, chronic obstructive 

pulmonary diseases (COPD) and several types of cancer. The incidence rates of smoking-

related diseases are increased in current smokers as well as in former smokers, with the 

relative risks of former smokers declining as a function of time since cessation.19 More 

details on the model and model inputs are presented in16,19,30 which are freely available on 

the internet and in Appendix A2.

2.3 RESULTS

2.3.1 Effects on smoking prevalence

In year 1 of our projections (2006), the percentage of smokers in The Netherlands was ap-

proximately 28.2%, which amounts to 3.8 million smokers.31 This percentage diminishes 

slowly over time. Due to the reimbursement policy, the number of smokers decreases 

faster. At the end of the first year, the number of smokers in the trial-based reimburse-

ment scenario is 0.7%pt lower than in the reference scenario and after 20 years (2025) is 

0.18%pt. In the literature-based reimbursement scenario the percentage of smokers was 

0.3%pt lower than in the reference scenario after 1 year and 0.08%pt lower after 20 years. 

Differences in the reference scenario diminish over time, as reimbursement was assumed 

to finish after half a year.
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2.3.2 QALYs gained

Figure 2.1 shows the difference in QALYs per year in the different scenarios compared to 

the reference scenario. The trial-based reimbursement scenario raised the number of QALYs 

with a maximum of 24,00 per year in 2036. At this time-point, the largest proportion of the 

smokers who quit during the intervention were reaching an age where they would have 

developed one of the smoking-related diseases included in the CDM. The smokers who 

lived at the time of the reimbursement policy die consecutively and the health benefits of 

the intervention were mainly gone by the year 2095. In the literature-based reimburse-

ment scenario, health benefits were lower than in the trial-based reimbursement scenario. 

The number of QALYs gained reached a peak in 2036 at 1,000 QALYs per year.

2.3.3 Effects on health care costs

The effects on health care costs are shown in figure 2.2 for the trial-based scenario. The 

annual costs of smoking-related diseases were lower in the intervention scenarios than 

in the reference scenario during the first decades. The difference between the trial-based 

reimbursement scenario and the reference scenario reached a peak in 2029, with annual 

smoking-related costs being € 12.0 million lower in the trial-based reimbursement scenar-

Figure 2.1: Difference in QALYs per year in the trial-based and literature-based reimbursement scenarios 
compared to the reference scenario.a

a QALY: Quality adjusted life year
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io; savings decreased thereafter. From 2059 onwards the annual smoking-related health 

care costs were higher in the trial-based reimbursement scenario than in the reference 

scenario. This can be explained by a greater number of people in the cohort still alive in 

the trial-based reimbursement scenario. The same pattern was seen for the literature-based 

reimbursement scenario, with maximum cost savings of € 4.9 million in 2029.

In the extra life years gained by successful quitters, additional costs are generated 

for diseases unrelated to smoking, such as dementia or hip fractures in old age.29 This 

increases the costs of all scenarios (figure 2.2). In the trial-based reimbursement scenario, 

annual total health care costs, including these unrelated health care costs, were lower in 

the first years than in the reference scenario, up to a maximum of -€ 3.4 million in 2018. 

From 2026 onwards, the total health care costs in the trial-based reimbursement scenario 

were higher than in the reference scenario, with a maximum cost-difference of € 32.6 

million in 2051. The literature-based reimbursement scenario showed a similar pattern, 

with cost savings up to -€ 1.4 million in 2018 and higher costs from 2026 onwards, with 

a maximum of € 13.3 million in 2051.

Figure 2.2: Difference in smoking-related, unrelated and total health care costs per year in the trial-based 
scenario compared to the reference scenario
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2.3.4 Cost–utility

Two different incremental cost–utility ratios (ICUR) were computed (table 2.3). The first 

ratio is the intervention costs per QALY gained; the second ratio relates total costs from a 

health care perspective to QALYs gained.

2.3.5 Sensitivity analysis

In our main analysis we discounted costs at 4% and outcomes at 1.5%.24 When using a 

discount rate of 0% for both costs and outcomes, the life-time ICUR was € 13,300 per 

QALY for the trial-based reimbursement scenario and € 15,100 per QALY for the literature-

based reimbursement scenario, relating total costs to QALYs gained. The respective ICURs 

after 20 years of the two reimbursement scenarios were € 2,200 and € 13,900 per QALY. 

Discounting both costs and outcomes at 4% decreases the net present value of the number 

of QALYs compared to the base analyses. Because the effects of reimbursement are found 

mainly far in the future, the LYG and QALYs gained are reduced considerably when us-

ing this higher discount rate, leading to less favourable ICURs. The life-time ICUR was 

€ 9,100 per QALY for the trial-based reimbursement scenario and € 15,100 per QALY for 

the literature based reimbursement scenario. The respective ICURs after 20 years were 

€ 5,500 and € 25,700 per QALY.

From a policy viewpoint, it is more realistic to assume that the policy will be in place 

for a longer period than the trial’s implementation period of 6 months. Therefore, we have 

Table 2.3: Difference in costs, LYs gained, QALYs gained and ICUR after 20 years and 100 years, as com-
pared to the reference scenario.a,b

Trial-based reimbursement 
scenario

Literature-based 
reimbursement scenario

Time horizon 20 100 20 100

Costs (x € 1 million)

   Smoking-related health care costs -62.2 -130.7 -25.3 -53.3

   Unrelated health care costs 37.9 305.4 15.4 124.4

   Intervention costs 68.1 68.1 93.5 93.5

Total costs 43.9 242.9 83.6 164.6

Life years (LY) gained (x 1,000) 9.2 67.7 3.7 27.6

   ICUR: intervention costs per LYG 7,450 1,010 25,080 3,390

   ICUR: total costs per LYG 4,790 3,590 22,420 5,970

QALYs gained (x 1,000) 11.2 54.6 4.6 22.2

   ICUR: intervention costs per QALY gained 6,100 1,250 20,530 4,200

   ICUR: total costs per QALY gained 3,930 4,450 18,360 7,400

a LY: life year; QALY: Quality adjusted LY; ICUR: Incremental cost-utility ratio
b Costs discounted at 4%, LYs and QALYs discounted at 1.5%.
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also calculated the outcomes for a scenario where the intervention is in place for 4 years, 

assuming the quit rates to remain constant over this period. Four years were considered an 

appropriate period because it is the time span between elections for the Dutch parliament. 

With the intervention in place for a 4-year period, the difference in total costs between 

the reference scenario and our trial-based scenario was € 823 million. The total number of 

QALYs gained was 204,000. Dividing both, the resulting ICUR of € 4,040 per QALY was 

slightly better than in the main analysis. In our literature-based scenario the difference in 

total costs amounted to € 540 million, with 84,000 QALYs gained, resulting in an ICUR 

of € 6,400 per QALY, which was also slightly better than in the main analysis. At the 

end of the reimbursement period, the number of smokers in the trial-based reimburse-

ment scenario was 1.7%pt lower than in the reference scenario. In the literature-based 

reimbursement scenario the number of smokers was 0.7%pt lower than in the reference 

scenario, using a 4-year reimbursement period.

Based on the confidence ranges presented in tables 2.1 and 2.2, the effect of uncertainty 

on intervention costs was analysed. Using a life-time horizon, the ICUR in the trial based 

scenario varied between € 3,800 and € 5,500 per QALY and the ICUR in the literature-

based reimbursement trial varied between € 4,600 and € 12,600 per QALY. Uncertainty 

about the effectiveness of the intervention was also analysed based on the 95% CIs (see 

Figure 2.3: CE-plane that shows the sensitivity of the trial-based and literature-based reimbursement scenarios 
for changes in costs and effectivity.a

a CE: Cost-effectiveness; QALY: Quality adjusted life year.
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tables 2.1 and 2.2). The ICUR of the trial-based reimbursement scenario varied between 

€ 3,900 (maximum effectiveness) and € 9,900 (minimum effectiveness) per QALY using 

a life-time horizon. The ICUR of the literature-based reimbursement scenario varied be-

tween € 6,300 and € 10,900 per QALY using a life-time horizon.

Figure 2.3 shows the cost–utility plane (CU-plane) with the results of the sensitivity 

analyses of intervention costs and effectivity. The lines show by how much the minimum 

and maximum estimates of total effects on health care costs and QALYs differed. Uncer-

tainty in effectiveness affected the estimates of both costs and QALYs, and therefore these 

lines were not horizontal.

2.4 DISCUSSION

This study showed that full reimbursement of the costs of smoking cessation support to 

smokers is a cost-effective way to contribute to a reduction in the percentage of smokers. 

Reimbursement for a period of half a year led to a decrease in the percentage of smok-

ers between 0.3%pt and 0.7%pt, compared to no reimbursement. Having the policy in 

place for 4 years would lower the percentage of smokers at the end of the reimbursement 

period between 0.7%pt and 1.7%pt. This is a contribution towards the goal of the Dutch 

government of reducing the percentage of smokers to 20%. The findings support the ad-

vice by the health insurance board CVZ to the Dutch Ministry of Health to reimburse an 

integrated smoking-cessation programme.11 However, reimbursement alone will probably 

not suffice, even if in reality this will be in place for a longer period of time, given that 

the smoking rate in the first year of our model (2006) was still 28%. In 2008 the Dutch 

smoking rate was 27%.31 The Ministry of Health intends to begin reimbursement by 2011.

The number of life years that can be gained with a reimbursement scheme that is avail-

able for half a year was 68,000 in our trial-based scenario and 28,000 in our literature-

based reimbursement scenario. When life years are adjusted for health-related quality 

of life, total gains were 55,000 and 22,000 QALYs, respectively. Because of extra health 

care costs in these life years gained, total costs of reimbursement exceed the total cost of 

no reimbursement after an initial period of savings in health care costs.32 Relating costs 

to health gains, the costs per QALY gained for a life-time horizon were found to be about 

€ 4,500 in our trial-based estimate and € 7,400 in our literature-based estimate. These 

low ratios reflect the large health gains thatmay be obtained from smoking cessation. Our 

results were robust to uncertainty in intervention costs and in effectiveness showing that, 

like most smoking cessation policies, reimbursement was a cost-effective intervention.10,33

Other evaluations of reimbursement or free supply of cessation support exist5,34-36, but 

none of them was based directly on a randomized controlled trial allowing free choice of 

support methods and showing the actual increase in the use of cessation support. Also, 
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none of these evaluations included overhead costs related to reimbursement. Our study 

showed that these additional costs are well balanced by the health gains obtained from 

more successful quit attempts.

The analyses included costs in life years gained. Compared to estimates that account 

only for savings in costs of care for smoking-related diseases (e.g.22,37), our current estimates 

are more conservative and complete. Excluding the costs in the life years gained, as is 

performed frequently in other studies, and focusing upon intervention costs minus savings 

in costs of smoking-related diseases, the intervention was cost saving in the trial-based 

reimbursement scenario and had an ICUR of less than € 2,000 in the literature-based 

reimbursement scenario (data not shown).

Sensitivity analyses showed that the time horizon and discount factors used had a con-

siderable influence on the outcomes. The health effects of cessation need some time to 

become apparent, implying that for a time horizon of 20 years, the incremental cost–util-

ity ratios (ICURs) were less favourable than for the main estimates, which used a life-time 

horizon so that all health effects were included.

The reimbursement period in our study was only 6 months, following the actual trial. Of 

course, when a reimbursement policy is implemented, it will usually remain available for 

a longer time-period. Because the trial had only 6 months of reimbursement, we do not 

have empirical data on what will happen when the policy remains in place. International 

trials all had a follow-up time of less than 12 months.10 The smokers most eager to quit 

may have tried to quit first, resulting in a decline in the number of quit attempts over time. 

Smokers and medical professionals may also become more familiar with the policy, which 

might lead to an increase in quit attempts over time. With no reliable data available, in our 

sensitivity analysis on the length of reimbursement period we have assumed no change in 

quit rates compared to the first 6 months.

A longer implementation period had only a small effect on cost-effectiveness ratios, 

even though the total number of QALYs gained and the difference in total costs were much 

larger. This is because both costs and health effects increased proportionally. The small 

changes observed were due to a difference in discounting between costs and outcomes, 

which is the current Dutch standard for cost-effectiveness analyses.

The clinical trial by Kaper et al. focused upon short term costs and effects. It found 

that if society was willing to pay € 1,000 (€ 10,000) for an additional 12-month quitter, 

the probability that reimbursement for SCS would be cost-effective was 50% (95%). The 

study also included a quick extrapolation to long-term effects, based on American data. 

They estimated an effect of 10.6 QALYs gained in the control group, amounting to 62.000 

QALYs for all smokers in The Netherlands. This is close to, but higher than, our estimate 

of the trial-based reimbursement scenario. The intervention costs per QALY gained as 

estimated by Kaper et al. were € 1,802, using discount rates of 4% for both costs and 

outcomes, which was lower than our estimates of the cost–utility of the two scenarios. 
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They concluded that if society was willing to pay € 18,000 per QALY, an accepted Dutch 

cut-off point for preventive interventions38, the probability that reimbursement for SCS 

was cost-effective was 95%. Our current estimates, based on a much more sophisticated 

model, confirmed the cost–utility of reimbursement.

A recently performed pilot study investigated the feasibility of large-scale implemen-

tation of reimbursement in The Netherlands.17 It estimated the costs of implementing 

reimbursement for a 6-month period in the whole of The Netherlands. The estimate varied 

between € 14.0 million and € 22.7 million, based upon the pilot study costs per participant 

and the number of Dutch smokers who indicated that they wanted to quit smoking within 

6 or 12 months. This is substantially lower than our calculation of the intervention costs. 

Part of this difference is explained because the pilot study ignored the overhead costs of 

reimbursement.

In the trial-based scenario we used the self-reported quit rates after 12 months. The 

biochemically validated abstinence rates after 12 months were also significantly higher 

in the intervention group compared to the control group. We based our scenario on self-

reported quit rates, as the parameter estimates on smoking in the CDM were also based 

on questionnaires. Risk differences based on the biochemically validated cessation rates 

were very similar, with a somewhat narrower CI.

The main limitation of this study is that we used the results of a single trial. The number 

of quit attempts per type of SCS was relatively limited, as was the geographical coverage. 

In order to assess the degree of certainty around the outcomes we performed sensitivity 

analyses using the CIs around costs and quit rates, and simulated an alternative scenario 

based on systematic reviews and meta-analyses for costs and effectiveness of smoking ces-

sation. Because of the small regional differences regarding smoking in The Netherlands, 

we feel that the outcomes of this study are applicable to the whole of the Netherlands. 

Even though the outcomes of the original trial were in line with those of other similar stud-

ies10, the results may, however, not be applicable to countries with different health care 

systems or at different stages of the smoking epidemic. For instance, the important role of 

general practitioners (GPs) in the Dutch health care system was reflected by the success 

of smoking cessation support delivered by primary care. This may be less applicable to 

countries with a less prominent role for GPs. Also, a country with much higher smoking 

prevalence might gain a larger reaction from the intervention than in our study. Similarly, 

a country with much lower prevalence might notice a smaller impact on quit rates.

However, the advantage of using a trial is that effects on quit rates could be estimated 

with a comparable control group over a 12-month follow-up time. Such an experimental 

setting is usually unavailable for evaluation of policy measures.
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2.5 CONCLUSION

Reimbursement of smoking cessation support via the obligatory health care insurance in 

the Netherlands will result in fewer smokers and more QALYs. Reimbursement seems a 

cost-effective way to contribute to a reduction in the percentage of smokers.
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A2 APPENDIX

A2.1 The Chronic Disease Model

To estimate the long term effects of smoking cessation, the RIVM Chronic Disease Model 

(CDM) was used. This model has been extensively described by Hoogenveen and col-

leagues.1 The CDM is a state-transition Markov-type model that was designed to describe 

the effects of epidemiological risk factors on morbidity and mortality from several chronic 

diseases in the Dutch population. It includes 28 chronic diseases and several risk factors 

amongst which smoking, Body Mass Index, and physical inactivity. In modeling diseases 

explicitly, the structure of the model is similar to the Prevent model2 and the Quit Ben-

efits model.3,4 An important difference with the Prevent model is that different risk factor 

classes are modeled. In comparison with the Quit Benefits Model the CDM includes more 

diseases and a finer structure of age categories, allows for co-morbidity and has the abil-

ity to track health effects over a longer period. The CDM has been used in relation to 

smoking for future projections of risk factor and disease prevalence numbers prevalence 

numbers5-7, cost effectiveness analyses8 and estimates of healthy life expectancy.9

The model describes the life course of cohorts in terms of transitions between risk factor 

classes and transitions between disease states over time. Risk factors and diseases are 

linked through relative risks of disease incidence.10 The parameters used in the model are 

the 1-year probabilities of each transition between model states. The main model outcome 

variables are numbers of incident and prevalent cases and numbers of deaths, specified 

by disease, age and gender.

Demographic data such as all cause mortality rates and initial population numbers were 

available from Statistics Netherlands.11 To estimate incidence, prevalence and mortality 

rates in the general population, three types of data sources were used: general practitioner 

registrations for non-cancer diseases, national cancer registries, and cohort studies for 

diabetes.12,13 To compute health effects in terms of quality-adjusted life years (QALYs), the 

CDM used quality of life weights derived from the Dutch Burden of Disease Study9,14,15, 

to adjust life years lived with a disease, with 1 reflecting full health and 0 a quality of life 

equal to death. Health care costs per patient per year are based on the Dutch Costs of 

Illness study.8,16

The CDM relates smoking to increased incidence rates of 13 smoking-related chronic 

diseases, i.e. coronary heart disease (acute myocardial infarction (AMI) and other coronary 

heart disease), congestive heart failure, stroke, chronic obstructive pulmonary diseases 

(COPD), diabetes, and cancer of the lung, stomach, larynx, oral cavity, esophagus, pan-

creas, bladder and kidney. The incidence rates of smoking-related diseases are increased 

in current smokers as well as in former smokers, with the relative risks of former smokers 

declining from the risk of a smoker immediately after stopping smoking to that of a never 

smoker as a function of time since cessation.17 Smoking specific all cause mortality rates 
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were used in the model in combination with the disease specific excess mortality rates. 

More details on model inputs are presented by Van Baal et al.9
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ABSTRACT

In cost-effectiveness (CE) Markov models, heterogeneity in the patient population 

is not automatically taken into account. We aimed to compare methods of dealing 

with heterogeneity on estimates of CE, using a case study in COPD. We first present 

a probabilistic sensitivity analysis (PSA) in which we sampled only from distribu-

tions representing parameter uncertainty. This ignores any heterogeneity. Next, we 

explored heterogeneity by presenting results for subgroups. The next method samples 

parameter uncertainty simultaneously with heterogeneity in a Single Loop PSA. 

Finally, we distinguish parameter uncertainty from heterogeneity in a Double Loop 

PSA, by performing a nested simulation within each PSA iteration. Point estimates 

and uncertainty differed substantially between methods. The incremental CE ratio 

(ICER) ranged from € 4,900 to € 13,800. The Single Loop PSA led to a substantially 

different shape of the CE-plane and an overestimation of the uncertainty compared 

with the other three methods. The CE-plane for the Double Loop PSA showed sub-

stantially less uncertainty and a stronger negative correlation between the difference 

in costs and the difference in effects than the other methods. This comes at the cost 

of higher calculation times. Not accounting for heterogeneity, Subgroup Analysis and 

the Double Loop PSA, can all be viable options, depending on the decision makers’ 

information need. The Single Loop PSA should not be used in CE research. It disre-

gards the fundamental differences between heterogeneity and sampling uncertainty 

and overestimates uncertainty as a result.
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3.1 INTRODUCTION

Heterogeneity in cost-effectiveness (CE) models refers to true differences in outcomes be-

tween patients, which can be explained by differences in patient characteristics. Examples 

can be disease severity, age, presence of different biomarkers and many more.1 To date, 

only limited attention is paid to patient heterogeneity and pharmacoeconomic guidelines 

provide hardly any methodological guidance on the subject.2 CE models that follow 

individual patients, such as discrete event simulation or micro-simulation, automatically 

account for patient heterogeneity, as each individual patient can be modelled with its 

unique characteristics. However, in the case of Markov models, which follow a cohort of 

patients over time, heterogeneity is not automatically taken into account.

Patients in Markov models are often assumed to be homogeneous, with parameter 

estimates obtained from aggregated data. The probabilistic sensitivity analysis (PSA) is 

performed by drawing from distributions which represent the uncertainty about the popu-

lation average of parameters, like transition probabilities or utilities. If the model contains 

any variables representing patient characteristics, such as the starting age of the cohort, 

the models use a single point estimate. The CE outcomes for this “average patient” are then 

assumed to represent the entire patient population.

However, with non-linearity being the rule rather than the exception in Markov model-

ling3, the incremental costs and effects for the average patient are not equal to the average 

over all patients.4,5 This makes it incorrect to assume that these outcomes are applicable 

for heterogeneous populations. In order to obtain a correct CE estimate over the hetero-

geneous population as a whole, heterogeneity should be taken into account explicitly. 

Heterogeneity has been handled in Markov models in three different ways. The first is 

to calculate outcomes for several different combinations of patient characteristics in sub-

group analyses.4 The comparison of subgroups allows for the exploration of the effect that 

differences between patients have on CE outcomes. For example, Bolin et al. calculated 

CE for smoking-cessation interventions for men and women separately.6 These subgroups 

may provide useful insights. However, policy and reimbursement decisions are commonly 

made for an entire patient population, not subgroups. It is, for example, inconceivable 

that a policy maker concerned with the reimbursement of smoking cessation treatment 

will make a different decision for male and female smokers. Such a distinction is usually 

made only between disease severity classes, but this is only a part of the total existing 

heterogeneity. In addition, it is often difficult to determine in practice whether a difference 

between subgroups is genuine or simply reflects noise in the data.3 Furthermore, even if 

subgroups are a viable option in decision making, an average patient will have to be used 

to represent these subgroups. Here too, as above, the CE outcomes may not be representa-

tive for all patients in the subgroup. 
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A second approach is to perform a PSA, which draws from all available distributions at 

the same time: probability distributions that reflect parameter uncertainty and frequency 

distributions of patient characteristics. The expected outcomes of this analysis reflects 

parameter uncertainty and patient heterogeneity in a heterogeneous population5, but 

ignores the fundamental difference between the two.1 This PSA does not correctly provide 

the distribution of the expected outcome reflecting parameter uncertainty, for a heteroge-

neous population. 

In order to correctly separate parameter uncertainty and heterogeneity, the analysis re-

quires a nested Monte Carlo simulation.5 We called this method the Double Loop PSA and 

draw a number of individual patients within each PSA iteration. In this way we investigate 

sampling uncertainty, while still accounting for patient heterogeneity. The results of this 

analysis reflects parameter uncertainty in a heterogeneous population and will therefore 

lead to the required outcome.5 In essence, this “Double Loop PSA” uses the existing 

Expected Value of Partial Perfect Information (EVPPI) methodology with a different goal.7

In this paper, we discuss the value of each of the methods for decision makers. We 

illustrate the differences between the approaches by applying them to a Markov model, 

used to assess the CE of a new treatment option for patients with Severe and Very Severe 

Chronic Obstructive Pulmonary Disease (COPD). 

3.2 METHODS

3.2.1 Case Study

To illustrate the different ways of handling heterogeneity, we chose to use a case study in 

COPD. COPD is characterized by airflow limitation that is preventable and treatable but 

not fully reversible,8 often accompanied by periods of increasing symptoms, called exac-

erbations. Patients are often treated with a long-acting β2-agonist (LABA]. A relatively new 

treatment option is roflumilast (Daxas®, Takeda Pharmaceuticals International GmbH). In 

our case study, we compared patients who used roflumilast in combination with LABA 

(ROFLU + LABA) with patients who used LABA alone.

This study was performed using a published Markov model, which was used to sup-

port reimbursement decision making on roflumilast in for example the United Kingdom 

(UK)9-11, Switzerland12, and Germany13 The model was built in TreeAge Pro 2009 (TreeAge 

Software, Inc., Williamstown MA, USA) and adapted to the Netherlands. Where possible, 

the parameter estimates and frequency distribution of patient characteristics were obtained 

from the subgroup of patients in two one-year clinical trials of roflumilast (ROFLU) versus 

placebo, that had concomitant treatment with a long-acting β2-agonist (LABA subgroup).14 

The benefits of adding ROFLU to LABA were modelled by a reduction in exacerbations 

that require medical intervention, and by an initial improvement in lung function. The re-
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duction of exacerbations was expressed as a risk ratio of 0.800 (95% confidence interval: 

0,700-0,914).14 Benefits of ROFLU were further modelled as a temporality improvement 

in FEV1 of 46 ml (28-64). This improvement was assumed to last for five years, after which 

the lung function in the LABA + ROFLU treatment arm was assumed to be the same as that 

in the LABA alone treatment arm. 

The Markov model had a cycle length of 1 month and comprised three health states, 

each with different rates of exacerbations: Severe COPD, Very Severe COPD and Death 

(figure 3.1). COPD severity was based on the amount of air which can be forcibly exhaled 

from the lungs in the first second of forced exhalation, expressed as a percentage of the 

predicted normal value for a given patient’s height, gender and age, the FEV1%pred.8 

Severe COPD was defined as 30% ≤ FEV1%pred < 50% and Very Severe COPD as 

FEV1%pred < 30%. Each cycle, patients could either stay in their current state, progress 

from Severe to Very Severe COPD or die. Transitions to less severe states were impossible. 

All patients started in the Severe COPD stage. During each cycle, patients could have a 

COPD exacerbation, which was either community-treated or required a hospital admis-

sion. 

The background mortality is taken from Dutch life tables15, which was adjusted with 

standardised mortality ratios (SMR) to reflect the expected increased mortality in the 

COPD population.16 These SMR were obtained from comparing the mortality in the gen-

eral population with the mortality among COPD patients in the Dutch population-based 

COPD policy model.17,18 The case fatality rate (CFR) for hospital admissions was 7.7%.19

Costs (price level 2009) and utilities were assigned to the two COPD severity states. 

Costs and utility decrements were assigned to the exacerbations. Half cycle correction 

Figure 3.1: Markov model structure.a

a COPD = Chronic obstructive pulmonary disorder; EXA = exacerbation
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was applied. A time horizon of 20 years was used. In accordance with Dutch guidelines, 

costs were discounted at 4% and health outcomes were discounted at 1.5%.20 The CE 

analysis was performed from a societal perspective20, which included all direct health care 

costs, the cost of productivity loss due to absence from work and the direct non-health 

care costs, in this case the travel and parking costs borne by patients and their families 

when visiting a health care provider. 

3.2.2 Patient heterogeneity and sampling uncertainty

The model parameters that represent patient heterogeneity were gender, height, age at the 

start of treatment and the starting value for FEV1%pred (table 3.1). Parameter estimates 

and distributional assumptions were based on the trial data of the LABA subgroup, utiliz-

ing only patients who started with Severe COPD.14 The proportion of males / females in the 

cohort was taken to be equal to the Dutch COPD patient population and was not sampled 

from a distribution.21 

Gender was not considered part of the patient heterogeneity discussed here, as the 

model is calculated separately for male and female patients and the results are combined 

into a single CE outcome. As such heterogeneity due to gender is accounted for. Patient 

height was used, together with gender and age, to calculate the absolute FEV1, based 

on the cohort’s FEV1%pred.22 This is necessary, since the yearly lung function decline is 

modelled in absolute terms (52 ml).23 Age at the start of treatment is measured in years, 

and influences the productivity costs, background mortality and the calculation of the 

absolute FEV1. The starting value of FEV1%pred impacts the progression of the cohort to 

Table 3.1: Parameter estimates and distributional assumptions for patient heterogeneity

Starting Length in centimeters

Agea FEV1%predb Female patients Male patients

Disregard Heterogeneity 64 39.2% 161.7 171.3

Subgroup analyses

 Age 64, FEV1%pred 39% Same as “Disregard Heterogeneity”

 Age 55, FEV1%pred 39% 55 39.2% 161.7 171.3

 Age 73, FEV1%pred 39% 73 39.2% 161.7 171.3

 FEV1%pred 31%, Age 64 64 31.0% 161.7 171.3

 FEV1%pred 50%, Age 64 64 50.0% 161.7 171.3

Single Loop PSA N(64, 9.1) Trial data N(161.7, 7.0) N(171.3, 7.4)

Double Loop PSA Same as “Single Loop PSA”

a Based on average and standard error in the LABA subgroup.14

b  Based on average in the long-acting β2-agonist (LABA) subgroup14 and the inner boundaries for the Severe 
COPD stage. 
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a more severe stage. This in turn influences the probability to experience an exacerbation, 

and the resulting costs and mortality.

The model parameters for which we defined sampling uncertainty are mortality (uni-

form distributions), the probability that an exacerbation is treated in a hospital and utilities 

(beta distributions) and lung function decline, COPD exacerbation rates, utility reduction 

due to an exacerbation and cost parameters (all gamma distributions). An overview of all 

parameters can be found in the online appendix, including more detailed information on 

distributional assumptions.

3.2.3 Strategies to account for heterogeneity

First, we disregarded heterogeneity (“Disregard Heterogeneity”) and performed a standard 

PSA with 2,000 random draws from the probability distribution of the model param-

eters. For the three patient characteristics investigated, height, age at start and starting 

FEV1%pred, we used the mean values of the cohort as a point estimate (table 3.1). 

Next, we performed five subgroup analyses. The subgroups were cohorts defined by 

age, height and FEV1%pred and can be found in table 3.1. Since the effect of height on 

the outcomes is small, it is not used to define subgroups. For each of five subgroups of 

patients, we ran a PSA of 2,000 iterations. Younger patients live longer and will have more 

time to experience benefits, for example a higher number of future exacerbations which 

can be prevented. They will also experience the benefit of prevented productivity losses, 

until the Dutch pension age of 65. Because the exacerbation rate is higher in patients with 

Very Severe COPD than in patients with Severe COPD, patients with Very Severe COPD 

benefit more from the exacerbation-reducing effect of LABA + ROFL. It takes patients with 

a relatively high FEV1%pred more cycles to reach this stage, and thus experience these 

benefits, than the average group. In addition, LABA + ROFLU temporarily improves lung 

function in the intervention group, which means that patients in the intervention group 

stay on average about a year longer in the Severe COPD state than the patients in the 

control group. 

The next approach was to perform a PSA with 2000 iterations, where we sampled from 

both the probability distributions representing sampling uncertainty and the frequency 

distributions representing heterogeneity at the same time (“Single Loop PSA”). Table 3.1 

shows the distributional assumptions for the patient characteristics.

Finally, we performed a PSA, using a two-level sampling algorithm (“Double Loop 

PSA”). We used two nested levels of Monte Carlo sampling. First we drew values from 

probability distributions to reflect parameter uncertainty (outer loop). This set of values 

was kept constant when we drew values from frequency distributions (inner loop) to 

reflect heterogeneity in patients’ height, age and FEV1%pred at start. Each of these draws 

within the inner loop can be interpreted as a patient with certain characteristics; the 

average over all patients in an inner loop as a “trial”. We repeated the outer loop 2,000 
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times. Within each outer loop, we repeated the inner loop 30 times. In this way, we could 

account for both the patient heterogeneity and sampling uncertainty separately, yet at the 

same time. The result of this analysis is the average cost-effectiveness over all trials, for 

2,000 draws from the distribution of the model parameters. It gives the distribution of the 

expected outcome in the heterogeneous population, reflecting the parameter uncertainty. 

To investigate the impact of the size of the inner and outer loop, we also performed a 

Double Loop PSA with an outer loop size of 300 and an inner loop size of 2,000.

3.2.4 Comparison of methods

We first compared the strategies with respect to the point estimates and 95% confidence 

intervals (CIs) of the outcomes. The point estimates and CIs of the difference in costs and 

quality adjusted life years (QALYs) were calculated as the average and the 2.5th and the 

97.5th percentile from the PSA iterations. The point estimate for the incremental CE ratio 

(ICER) was calculated as the ratio of the two point estimates. Next, we visually compared 

the CE planes and described the differences. We then summarized the uncertainty from 

the CE planes in CE acceptability curves (CEAC). Finally, we discussed differences in 

calculation time, which was expected to differ greatly.

3.3 RESULTS

3.3.1 Point estimates of CE outcomes

Table 3.2 shows the point estimates of the results of the CE analysis for LABA + ROFLU 

versus LABA. It is clear that the CE results differ between methods. Disregard Heteroge-

neity produces an ICER of € 10,700. Subgroup analyses show considerable differences 

between subgroups with lower ICERs in patients with more severe COPD and in younger 

patients. The ICERs range from € 4,900 in the subgroup with FEV1%pred 31% and age 64, 

to € 13,800 in the subgroup with FEV1%pred 50% and age 64. Both the Single Loop PSA 

and Double Loop PSA yield an ICER of € 7,800 per QALY. 
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3.3.2 Confidence intervals

Table 3.2 also shows that the width of the 95% confidence intervals (CIs) differs consider-

ably. The most uncertainty was found around both the difference in costs and QALYs 

for the subgroup with age 55 and FEV1%pred 39%, and the least uncertainty for the 

subgroup with age 73 and FEV1%pred 39%. There is considerably less uncertainty around 

the estimates in the Double Loop PSA, than in the Single Loop PSA.

3.3.3 Cost-effectiveness planes

The CE-planes in figure 3.2 show that disregarding heterogeneity (graph 2A) led to a 

roughly cone shaped scatter plot, with a focal point towards the top left, and spreading 

outwards towards the bottom right. The relationship between the difference in costs and 

the difference in QALYs is negative, meaning that when LABA + ROFLU is relatively more 

effective (more exacerbations prevented, slower disease progression), the extra costs of 

roflumilast are also compensated more by lower other health care costs.

When performing subgroup analyses (graph 2B), all subgroups also roughly show a 

cone shape. They differ in terms of size and position in the CE plane. The subgroup with 

age 73 and FEV1%pred 39% lies closest to the origin shows the least uncertainty. In 

this subgroup, no productivity costs can be gained by using a new medication. Due to 

a shorter life expectancy the difference in QALYs that can be gained from preventing 

exacerbations and postponing death is also lower.

The subgroup with age 55 and FEV1%pred 39% has the highest uncertainty and is the 

only one including net cost savings, which are due to productivity gains in these younger 

patients. The reduced progression to Very Severe COPD leads to considerable QALY gains. 

The subgroup with FEV1%pred 50% and age 64 lies closer to the y-axis of the graph, with 

a greater proportion of simulations showing a small difference in QALYs. It also further to 

Table 3.2: CE results (average, 95% CI) of a long-acting β2-agonist (LABA) in combination with roflumilast 
versus LABA alone, using four different methods. 

Δ Costs (in €) Δ QALYs ICER

Disregard Heterogeneity 3,080 (1,760;3,940) 0.286 (0.147;0.438) € 10,700

Subgroup analysesa

 Age 64, FEV1%pred 39% 3,080 (1,760;3,940) 0.286 (0.147;0.438) € 10,700

 Age 55, FEV1%pred 39% 2,200 (-760;4,050) 0.394 (0.132;0.713) €     5,600

 Age 73, FEV1%pred 39% 2,100 (1,210;2,730) 0.165 (0.091;0.249) € 12,700

 FEV1%pred 31%, Age 64 2,110 (440;3,210) 0.427 (0.251;0.619) €     4,900

 FEV1%pred 50%, Age 64 3,370 (2,200;4,220) 0.245 (0.110;0.394) € 13,800

Single Loop PSA 2,350 (270;3,930) 0.299 (0.071;0.613) €     7,800

Double Loop PSA 2,330 (1,220;3,360) 0.300 (0.154;0.464) €    7,800

a Results for the subgroup “Age 64, FEV1%pred 39%” are by definition the same as for “Disregard 
Heterogeneity”.
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the top of the graph, with a greater proportion of simulations pointing to a high cost in-

crease. In this group it takes relatively long for the cohort to reach the Very Severe disease 

stage, where real differences in costs and QALYs between LABA+ROFLU and LABA occur. 

Consequently the difference in health care costs and health outcomes between the two 

interventions are more heavily affected by discounting. The subgroup with FEV1%pred 

31% and age 64 lies lower and more to the right, while the cohort defined by the average 

age and staring FEV1% predicted lies in the middle. 

The Single Loop PSA (graph 2C), resulted in a differently shaped CE plane compared 

with the other methods, and is also much larger in size. It has a rough arch shape, which 

is explained when looking at the subgroup analyses. In essence, the Single Loop PSA is a 

collection of 1,000 subgroups, each with their own patient characteristics and therefore 

different point estimates. The left side of the arch consists mostly of people with Severe 

COPD and an age higher than 65, with patients with a lower starting FEV1% closer to the 

origin and patients with a relatively higher starting FEV1% higher in the graph. The gains 

from reducing exacerbations are less than in Very Severe COPD and no productivity costs 

can be gained by using ROFLU. The average age rises going left in the graph towards the 

origin, diminishing the extra costs and gains for LABA + ROFLU, since patients die earlier. 

Moving towards the right in the graph, we find patients with a lower age on average and 
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Figure 3.2: CE-plane of a long-acting β2-agonist (LABA) in combination with roflumilast versus LABA alone, 
comparing incremental costs to incremental QALYs, using four different methods.a 
a A: Disregard Heterogeneity, 2,000 iterations; B: Subgroup analyses (approximations of 95% confidence 
regions shown for readability), 2,000 iterations for each subgroup; C: Single Loop PSA, 2,000 iterations; D: 
Double Loop PSA, outer loop 2,000, inner loop 30 iterations.
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a lower starting FEV1%. Younger patients result in more productivity gains due to ROFLU 

and patients with a worse lung function lead to a larger difference in health care costs 

between the two arms due to discounting. This may offset the extra medication costs for 

ROFLU.

Performing a Double Loop PSA (graph 2D) produced a cone shape, which is more 

compact than with Disregard Heterogeneity (2A). The CE plane from the Double Loop 

PSA was situated slightly lower in the graph (less difference in costs) and showed a more 

clear negative relationship between the difference in costs and the difference in effects. 

3.3.4 Double loop PSA: impact of loop size

To test whether a cohort size of 30 was appropriate, we have also performed a PSA with 

an outer loop size of 300 and an inner loop size of 2,000. The resulting point-estimate 

and shape of the CE-plane is shown in figure 3.3, with the original Double Loop PSA 

reproduced in figure 3.3A and the new cohort size in figure 3.3B. The shape and position 

of the two CE-planes are similar. The ICER with a lower cohort size is € 7,500, which is 

very close to the ICER of the original Double Loop PSA of € 7,800. 

3.3.5 Policy decisions

The difference in the amount of uncertainty shown in the CE planes is summarized in 

the CEACs in figure 3.4 which show the percentage of PSA draws, where LABA + ROFLU 

can be considered cost-effective, for different threshold values of a QALY. The Double 

Loop PSA is much more certain at the three thresholds shown in table 3.3 than when 

disregarding heterogeneity or performing a Single Loop PSA. This is a result of relatively 
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Figure 3.3: CE-plane of a long-acting β2-agonist (LABA) in combination with roflumilast versus LABA alone, 
comparing incremental costs to incremental QALYs, using the Double Loop PSA, with different inner and 
outer loop sizes.a

a A: Outer loop 2,000, inner loop 30 iterations; B: Outer loop 300, inner loop 2,000 iterations.
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low variation in incremental costs and effects compared to the Single Loop PSA and a 

lower point estimate of the ICER compared to Disregard Heterogeneity. If a policy maker 

would be interested in subgroup analyses it is clear the ROFLU has the highest probability 

to be considered cost-effective in the subgroup of very severe patients with a low FEV1% 

pred. and in patients with a longer life expectancy.

Disregard Heterogeneity (2,000 iterations) 

 

Subgroup analyses (2,000 iterations for each subgroup) 

 

Single Loop PSA (2,000 iterations) 

 

Double Loop PSA (outer loop 2,000, inner loop 30 iterations) 
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Figure 3.4: CEAC of a long-acting β2-agonist (LABA) in combination with roflumilast versus LABA alone, com-
paring incremental costs to incremental QALYs, using four different methods. 

Table 3.3: Percentage of PSA draws where a long-acting β2-agonist (LABA) in combination with roflumilast is 
deemed cost-effective versus LABA alone, at different threshold values for a QALY, using four different meth-
ods. 

€ 10,000 / QALY € 20,000 / QALY € 40,000 / QALY

Disregard Heterogeneity 41% 92% 100%

Subgroup Analysesa

 Age 64, FEV1%pred 39% 41% 92% 100%

 Age 55, FEV1%pred 39% 73% 97% 100%

 Age 73, FEV1%pred 39% 26% 87% 100%

 FEV1%pred 31%, Age 64 94% 100% 100%

 FEV1%pred 50%, Age 64 20% 80% 98%

Single loop PSA 56% 91% 99%

Double loop PSA 70% 97% 100%

a Results for the subgroup “Age 64, FEV1%pred 39%” are the same as for “Disregard Heterogeneity”.
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3.3.6 Calculation time

There were also differences in calculation times between the different methods. All calcu-

lations were done on the same dedicated computer. Both Disregard Heterogeneity and the 

Single Loop PSA took approximately 20 minutes to calculate, as did each of the subgroups 

in the subgroup analyses. With a total of five subgroups, the total analysis time is above 

1.5 hours, plus the extra time in processing and interpretation. The Double Loop PSA had 

a much longer calculation time, close to 9 hours. The run-time of the Double Loop PSA 

with an outer loop of 300 and an inner loop of 2,000, was approximately 5 days. 

3.4 DISCUSSION

Medical decision models are intended to inform physicians and policy makers, to aid in 

their choices in providing efficient health care. Since patients are by nature heterogeneous, 

these models should take this heterogeneity into account. In the case of Markov models, 

this is not straightforward. In this study, we have shown that there are several ways of deal-

ing with heterogeneity and that the outcomes, and thus the policy decision may change 

when heterogeneity is handled differently. In practice, heterogeneity is often ignored. An 

average value of the patient population will then be used for any variables representing 

patient characteristics in the model. In addition to ignoring available evidence, the results 

are difficult to interpret since the “average patient” does not exist. It is also argued that 

ignoring patient heterogeneity will be costly in both monetary terms and health gains.24,25 

An alternative is to define several subgroups of patients and to calculate the outcomes 

for each of these. This has been proposed as the best method for dealing with heterogene-

ity4, although no comparison with the Double Loop PSA was made. Subgroup analyses 

did lead to insight in the differences between the different types of patients, but not all 

outcomes were useful for decision makers. If a decision maker wants to use the subgroup 

analyses for decision regarding specific subgroups, equity concerns are always an issue.2,26 

Patient heterogeneity in clinical characteristics, such as starting FEV1% in our example, 

may be acceptable for sub-group specific recommendations. Other input parameters, such 

as gender, race or in this case age, are not.2 

Heterogeneity has sometimes been handled by combining it with parameter uncertainty 

in a PSA.27-29 Using the Single Loop PSA, one is able to consider many different types of 

patients, without a significant increase in calculation time. However, because of a larger 

number of parameters being sampled, the amount of uncertainty increases and the shape 

of the CE-plane also changes compared to disregarding heterogeneity. The outcomes from 

the Single Loop PSA reflect both parameter uncertainty and patient heterogeneity, but 

it ignores the fundamental difference between the two. The expected outcome for the 

Single Loop PSA is correct for the population and equals the expected outcome for the 
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Double Loop PSA.5 However, the distribution of the expected outcome, that reflects the 

uncertainty in which many decision makers are interested, is not correct. In order to 

correctly separate parameter uncertainty and heterogeneity, the analysis requires a nested 

Monte Carlo simulation.5 

In the Double Loop PSA we drew a number of individual patients for each of the PSA 

draws and calculate the average CE outcomes. This method accounts sufficiently for 

heterogeneity, is easily interpretable and can be performed using existing software. It was 

not our main goal to minimize uncertainty around our CE outcomes, but the Double Loop 

PSA did lead to the smaller CIs. They are a correct reflection of the parameter uncertainty 

around the expected outcome, for this heterogeneous populations. This reduction oc-

curred because each dot in the Double Loop PSA is an average of 30 patients. For each 

patient, the relationship between the difference in costs and the difference in effects is 

more of less the same, as we could see in the subgroup analyses, which all generally 

have a downward sloping cone shape. The Double Loop PSA is a combination of 2,000 

of these subgroups, which leads to a more defined relationship between the difference in 

costs and effects. In the Double Loop PSA, extreme values of heterogeneity parameters 

can be drawn, but are averaged out in the inner loop, while in the Single Loop PSA, these 

extremes are shown.

Calculation time may be a burden, even with the relatively small cohort size of 30. 

On the other hand, a calculation time of 9 hours (one overnight calculation) is not a 

huge obstacle, in our opinion. Another drawback is that this method cannot be used to 

directly inform subgroup-specific policy decisions. When a policy maker wants or needs 

to consider subgroups, for example defined by disease severity classes, one solution may 

be to perform a Double Loop PSA within each subgroup. This however, will increase the 

computational burden.

We have chosen for a small sample of 30, because larger sample sizes rapidly increases 

the computation time. This so-called “M by N problem”, where the calculation time 

increases due the number of inner calculations, is a major obstacle to performing PSAs 

in for example patient level models.3,30,31 We tested to see whether our cohort size of 

30 was appropriate for our needs, by also performing a Double Loop PSA with an outer 

loop size of 300 and an inner loop size of 2,000. The run-time of this model was ap-

proximately 5 days, which made it impractical in daily use. The resulting point-estimate 

and shape of the CE-plane were similar to Double Loop PSA with a smaller cohort size. 

We therefore concluded that 30 would be a good middle ground between accuracy and 

runtime. However, we acknowledge that a larger number of patients in the inner loop 

might improve results. Fortunately, since computational speed increases rapidly, it is likely 

that using faster, more modern computers would decrease the necessary time. Since the 

model was build, a newer version of TreeAge has also been released, which might also 
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increase computational speed. This means that a higher number of patients in the inner 

loop is becoming possible.

In the current model, the COPD health states were defined by lung function and the 

probability to get a COPD exacerbation was estimated for each state.8 The model was 

constructed before the revision of the GOLD strategy document in 2011, in which a clas-

sification of COPD based on three characteristics, symptoms, lung function and exacerba-

tion history, was proposed. The latter increases the number of variables used to describe 

the heterogeneity of a patient population and -when the possible combinations of these 

3 characteristics are taken- the number of subgroups. This reinforces the need to separate 

heterogeneity from parameter uncertainty. However, applying the latest classification is 

unlikely to have a big impact our point estimate of the ICER in the double loop PSA, 

because the sample as a whole does not change, only the way it is classified.

The uncertainty around the standardized mortality ratio and the case fatality ratio was 

modelled with a uniform distribution. It could be argued that a more natural choice might 

be a lognormal or a beta distribution, respectively. Since the model was built to support 

the reimbursement dossier in several countries, it was decided not to make any changes 

to the provided distributions, to preserve consistency with these dossiers. It was expected 

that these changes would not have impacted our study results.

3.5 CONCLUSION

To conclude, we think that three of the methods discussed can be useful in CE research, 

each in different circumstances. When little or no heterogeneity is expected, or when it 

is not expected to influence the CE results, disregarding heterogeneity may be correct. In 

our case study, heterogeneity did have an impact. Subgroup analyses may inform policy 

decisions on each subgroup, as long as they are well defined and the characteristics of the 

cohort that define a subgroup truly represent the patients within that subgroup. Despite 

the necessary calculation time, the Double Loop PSA is a viable alternative which leads 

to better results and better policy decisions, when accounting for heterogeneity in a Mar-

kov model. The Single Loop PSA can only be used to calculate the point estimate of the 

expected outcome. It disregards the fundamental differences between heterogeneity and 

sampling uncertainty and overestimates uncertainty as a result.
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A3 APPENDIX

A3.1 Input data used in the model

Information on epidemiological data as used in the model, and efficacy of roflumilast, can 

be found in table A3.1. 

A3.2 Utilities

EQ-5D utility weights for stable COPD, which can be found in table A3.2, were derived 

from the LABA-subgroup analysis.14 Utility decrements from experiencing either a 

community-treated or a hospital-treated exacerbation were obtained from a Dutch study 

in which one-year COPD health profiles were valued by the general population using 

the time trade-off method.32 The entire utility decrement is applied at the time of the 

exacerbation.

A3.3 Direct health care costs

Monthly costs of roflumilast were calculated using a daily price for the Netherlands 

provided by the manufacturer of € 1.38. The monthly costs of LABA was calculated 

as the weighted average of the monthly costs of long-acting β2-agonists and inhaled 

corticosteroids in separate devices and in fixed combinations, as published in the 

Pharmacotherapeutic Compass.33 In both calculations, IMS panel data on the number of 

prescriptions of the various medications among COPD patients in the Netherlands were 

used as weights.34, VAT of 6% and a Dutch mark-up on the price per prescription of € 7.28 

to cover pharmacy-expenses (receptregelvergoeding) was included in the calculation of 

all medication costs. It was assumed that each patient received four prescriptions per year.

Direct health care costs of maintenance treatment and COPD exacerbations were 

calculated using data from Oostenbrink et al. who reported the costs of maintenance 

treatment by GOLD stage and the costs of non-severe and severe COPD exacerbations.35 

These costs were updated to the price level of 2009 using consumer price indices.15 In 

addition, the length of hospital stay for a severe COPD exacerbation was adjusted from 

11 days as reported by Oostenbrink et al. to 9.5 days as obtained from the most recent 

LMR data, calculated as the weighted average of the length of stay for ICD-9 codes 490, 

491, 492, 494 and 496.36 Furthermore, the costs of maintenance treatment as reported by 

Oostenbrink et al were adjusted by excluding the costs of theophylline and corticoste-

roids, because both medications were not allowed during the trials.14

A3.4 Direct non-health care costs

Direct non-health care costs are made up of travel costs to and from health care providers. 

Severe and Very Severe COPD patients were assumed not to visit a GP for their regular 

control visits, but rather a pulmonary specialist in a hospital. For stable severe COPD, 
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we have used two outpatient visits per year to the pulmonary specialist, and four for very 

severe COPD. A community-treated exacerbations required 0.34 visits to the pulmonary 

specialist and 0.66 visits to the GP.35 Hospital-treated exacerbations required 1 inpatient 

admission, 0.82 visits to the pulmonary specialist and 0.70 visits to the GP.35 The average 

distance to the hospital in the Netherlands is 7 km and 1.1 km to the GP.37 Unit costs per 

kilometer of travel by car, public transportation and taxis, as well as starting tariffs for the 

taxi, were based on by standard tariffs.38 It was assumed that one third of the travel for 

control visits by patients with Severe COPD was done by car, one third by public transport 

and one third by taxi. For Very Severe COPD and all exacerbations, the mix was half 

car, half taxi. Family of patients who experienced a hospital-treated exacerbations, were 

assumed to visit the patient every other day, which amounted to 5.5 visits.35 Family was 

assumed to travel half of these visits by car and half by public transportation.

A3.5 Productivity costs

In the model it is assumed that 40% of the COPD patients younger than 55 years had paid 

employment. This is reduced to 20% at age 55 and to 0% at age 65. Given the age and 

gender distribution of the patients in the model this would lead to an overall percentage 

of COPD patients with paid employment of 14.1%.39 This percentage was close to the 

percentage observed in the INTERCOM trial (14%), a Dutch randomized trial on the ef-

fects of an interdisciplinary community-based COPD program for patients with impaired 

exercise capacity.40 

In the model productivity days were lost because of death or absenteeism during an 

exacerbation, among patient with paid employment. Death is caused by both back-

ground mortality and the case fatality of a hospital-treated exacerbation. Absenteeism 

was assumed to be either 7 days for a community-treated exacerbation and 21 days for 

a hospital-treated exacerbation.41 In accordance to Dutch guidelines, productivity costs 

were calculated using the friction cost method.20 This method accounts for the fact that 

almost all employees are replaceable in the work force.42 The length of the period it takes 

for a person to be replaced (i.e. the friction period) is dependent on the time it takes to fill 

job openings. This was estimated to be 156 days in the Netherlands.38 The productivity loss 

per day was calculated using the average productivity loss per hour for a male employee 

of € 31 and € 25.33 for a female employee.43 Using the gender distribution from the LABA 

subgroup, the weighted average productivity loss is € 29.55 per hour.14,38 We assumed a 

full work day of 8 hours. 



64

3
Table A3.1: Parameter estimates and distributional assumptions for treatment arms.a

Variable Point estimate Distribution Source

FEV1 decline per year in the COPD 
population in litres

0.052 Gamma(mean 0.052, se 0.001) 23

FEV1 improvement due to ROFLU in litres

LABA + ROFLU versus LABA 0.046 Normal(mean 0.046, s.e.0.009) 14

Estimated duration of FEV1 
improvement in years

5 - Assumption

Rate of COPD exacerbations per year

Severe COPD (LABA) 1.606 Gamma(mean 1.606, se 0.113) 14

Very Severe COPD (LABA) 1.910 Gamma(mean 1.910, se 0.235) 14

Relative risk for all COPD exacerbations due to ROFLU

LABA + ROFLU versus LABA 0.8 Lognormal(mean -0.223, s.e. 
0.068)

14

Standardised mortality ratio (SMR)

Severe COPD 2.779 Uniform(2.4-3.2) 17,18, 
Assumption 

uniform 85% - 
115% of mean

Very Severe state COPD 3.572 Uniform(3.0-4.1) 17,18,44, 
Assumption 

uniform 85% - 
115% of mean

Proportion of exacerbations that are hospitalized

Severe COPD 0.142 Beta(mean 0.142, se 0.011) 14

Very Severe COPD 0.226 Beta(mean 0.226, se 0.017) 14

Case fatality rate for hospital 
admissions

7.7% Uniform(0.054-0.100) 45, Assumption 
uniform 80% - 
120% of mean.

a ROFLU = roflumilast, LABA = long acting β2-agonist, se = standard error.



65

3
Table A3.2: Parameter estimates and distributional assumptions for utilities for stable COPD and utility decre-
ments for a COPD exacerbation.a

Variable Point estimate Distribution Source

Utility for stable COPD

Severe COPD 0.751 Beta(mean 0.751, se 0.007) 14

Very Severe COPD state 0.657 Beta(mean 0.657, se 0.011) 14

Annual utility reduction in case of 1 exacerbation per year

Community-treated exacerbation 0.01 Gamma(mean 0.010, se 0.007) 32

Hospital-treated exacerbation 0.042 Gamma(mean 0.042, se 0.009) 32

a se = standard error
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Table A3.3: Parameter estimates and distributional assumptions for direct healthcare and non-healthcare costs.a

Variable Point estimate Distribution Source

Drug costs

Monthly cost of LABA € 29.49 - 39,40

Monthly cost of roflumilast € 47.07 - Takeda

Cost of one month COPD maintenance treatment

Severe COPD € 33.78 Gamma(mean 33.78, se 3.1) 35

Very Severe COPD € 107.41 Gamma(mean 107.41, se 13.3) 35

Cost of COPD exacerbations

Community-treated COPD 
exacerbations

€ 83.07 Gamma(mean 83.07, se 6.8) 35

Hospital-treated COPD 
exacerbations

€ 2,997.07 Gamma(mean 2,997.07, se 802.1) 35

Length of stay in days for a 
hospital-treated exacerbationb

9.5 - 36

Travel costs

Per month for a patient with severe 
COPD.

€ 2.23 Gamma(mean 2.23, se 0.3) 37,43, 
assumption se 
15% of mean.

Per month for a patient with very 
Severe COPD.

€ 6.22 Gamma(mean 6.22, se 0.9) 37,43, 
assumption se 
15% of mean.

For a patient experiencing a 
community-treated exacerbation 

€ 7.90 Gamma(mean 7.90, se 1.2) 37,43, 
assumption se 
15% of mean.

For a patient experiencing a 
hospital-treated exacerbation

€ 35.71 Gamma(mean 35.71, se 5.4) 37,43, 
assumption se 
15% of mean.

For the family of a patient 
experiencing a hospital-treated 
exacerbation

€ 25.50 Gamma(mean 25.50, se 3.8) 37,43, 
assumption se 
15% of mean.

a ROFLU = roflumilast, LABA = long-acting β2-agonist, se = standard error
b Not a separate variable in the model, only used to calculate other cost variables
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ABSTRACT

Background Decision-analytic cost-effectiveness (CE) models combine many different 

parameters like transition probabilities, event probabilities, utilities and costs, which 

are often obtained after meta-analysis. The method of meta-analysis may affect the 

CE estimate.

Aim Our aim was to perform a simulation study that compares the performance of 

different methods of meta-analysis, especially with respect to model-based health 

economic (HE) outcomes.

Methods A reference patient population of 50,000 was simulated from which sets 

of samples were drawn. Each sample drawn represented a clinical trial comparing 

two fictitious interventions. In several scenarios, the heterogeneity between these 

trials was varied, by drawing one or more of the trials from predefined subpopula-

tions. Parameter estimates from these trials were combined using frequentist fixed 

(FFE) and random effects (FRE), and Bayesian fixed (BFE) and random effects (BRE) 

meta-analysis. The pooled parameter estimates were entered into a probabilistic cost-

effectiveness Markov model. The four methods of meta-analysis resulted in different 

parameter estimates and HE outcomes, which were compared with the true values in 

the reference population. Performance statistics were: (1) the percentage of repetitions 

that the confidence interval of the probabilistic sensitivity analysis covers the true 

value (coverage), (2) the difference between the estimated and true value (bias), (3) 

the mean absolute value of the bias (MAD) and (4) the percentage of repetitions that 

result in a statistically significant difference between the two interventions (statistical 

power). As the differences between methods could be due to chance, we repeated 

every step of the analysis 1,000 times to study whether differences were systematic.

Results FFE, FRE and BFE lead to different parameter estimates, but, when entered 

into the model, they do not lead to large differences in the point estimates of the 

HE outcomes, even in scenarios where we built in heterogeneity. Random effects 

methods do not necessarily reduce bias when heterogeneity is added to the trials, and 

may even increase bias in certain situations. BRE tends to overestimate uncertainty 

reflected in the CE acceptability curve.

Conclusion FFE, FRE and BFE lead to comparable HE outcomes. BRE tends to overes-

timate uncertainty. Based on this study, we recommend FRE as the preferred method 

of meta-analysis. 
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4.1 INTRODUCTION

In 2006, the Netherlands implemented a policy of conditional, temporary reimbursement 

of potentially innovative, but expensive hospital drugs.1 Additional hospital funding is 

provided on the condition that outcomes research is performed to show further evidence 

of the value of the new drugs. The final reimbursement decision is made based on all 

evidence available, after 4 years. A systematic approach to aid decision making is called 

comprehensive decision modelling, in which available evidence is structured in a proba-

bilistic decision-analytic model.2, 3 Meta-analysis is one step in this process, and is used to 

combine all available evidence in model parameters. A wide range of model parameters 

need to be estimated, from transition probabilities to costs and utility values.4

Many different methods of meta-analysis exist, and many authors have compared them 

(e.g. [5–8]). They have shown that the choice of method can considerably affect parameter 

estimates. These comparisons concentrated on the impact of the method of meta-analysis 

on the estimate of a single treatment effect, for example a risk ratio (RR). However, in the 

probabilistic models used in economic evaluations we need to estimate many different 

parameters, including the baseline value of each model parameter in the comparator 

group. Altogether, the method of meta-analysis to obtain these parameters may consider-

ably affect the final cost-effectiveness (CE) estimates.

Our group has previously investigated the effect of four different methods of meta-

analysis on model-based CE estimates.9 Although we found considerable differences, 

there was no way of knowing which of the methods was best, because we had no ‘truth’ 

to which we could compare our results. That is, we only had data from different samples 

of the total patient population, not of the population itself. To overcome this problem 

we performed a simulation study, in which we created a reference population, which 

reflected the value that should be obtained by the different methods. We then proceeded 

by drawing sets of samples from this population, mimicking sets of clinical trials, and 

combined these trial estimates. Each method of meta-analysis generated a separate set of 

pooled parameters. We filled a health economic (HE) model with these different sets of 

parameters and investigated whether there were systematic differences between the meta-

analysis methods by comparing the outcomes of the sets of samples with the outcomes of 

the reference population. We were especially interested in the impact on the differences 

in costs and quality-adjusted life years (QALYs), the incremental CE ratio and the CE 

acceptability curve.

The available methods of meta-analysis can be divided into two groups, namely direct 

and indirect methods. Direct methods of meta-analysis combine evidence from trials that 

compare the two interventions of interest directly. In the absence of head-to-head studies, 

or with the availability of both direct and indirect evidence, indirect methods of meta-
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analysis come into play. Methods of indirect meta-analysis are compared in chapter 5. We 

therefore focus here on direct meta-analysis methods.

4.2 METHODS

4.2.1 Simulation study

The simulation comprised several steps, shown in fi gure 4.1. In step 1 (Create reference 

population), we simulated a reference patient population (n = 50,000), including indi-

vidual patient-level disease progression using one of two fi ctitious treatments. The mean 

values of the parameters and HE outcomes, as calculated from the entire population, 

are reference values to which we compared the estimates of the meta-analyses. In other 

words, they represented the ‘truth’ and are referred to as reference parameters and refer-

ence outcomes. Parameters included transition probabilities, probabilities to experience 

an event, maintenance costs, utilities and costs and utility-decrements due to an event. HE 

outcomes included the total number of QALYs, life years (LY) and events, intervention and 

maintenance costs, and the incremental CE ratio (ICER). 

In step 2 (Trial selection), we sampled trials from the reference population, comparing 

the two treatments. For each of the trials we calculated the parameters that are needed 

as input for the HE model, called trial parameters. In step 3 (Meta-analysis), we pooled 

Figure 4.1: Design of the simulation study.
a HE: health-economic, CE: cost-effectiveness



73

4 
the trial parameters using several methods of meta-analysis. These methods are explained 

in detail in paragraph 4.2.4. The combined estimates are called model parameters. For 

each model parameter, both mean and appropriate dispersion measures were calculated. 

We used a disease progression model in step 4 (CE modeling), filled first with a set of 

model parameters obtained by the first method of meta-analysis. A probabilistic sensitivity 

analysis (PSA; 1,100 iterations) was run and the HE outcomes, called model outcomes, 

were collected. This process was repeated with model parameters obtained from each of 

the methods of meta-analysis.

Differences in model outcomes could be due to chance, i.e. the particular set of trials 

that was drawn. In order to study whether there was a systematic difference between the 

methods of meta-analysis, we repeated steps 2 to 4 in step 5 (Repeat), further referred to 

as 1,000 repetitions.

4.2.2. Disease and model structure

The modeled disease was a progressive, chronic disease (figure 4.2), with events during 

which symptoms worsen considerably. The disease was simulated using a Markov model 

with four stages: moderate, severe and very severe disease, and death. 

For each patient in the reference population, we simulated their disease progression. We 

did this by first defining the reference disease progression (RDP), which can be thought of 

as the disease progression of an untreated, base-case patient. It consists of a set of distribu-

tions for each reference parameter (table 4.1). Next, these distributions were modified 

 

Figure 4.2: Markov model of the chronic disease.
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based on individual patient characteristics—gender, age, developed/developing country, 

body-mass index (BMI) and smoking status and interventions. These characteristics made 

it possible for us to add heterogeneity to trials in relevant scenarios, by sampling from sub-

populations. In this manner we have simulated a heterogeneous population of individual 

patients.

How patient characteristics and interventions influenced the RDP is stated in appendix 

A4. In short, male patients have a higher probability to move to a worse disease stage 

than female patients. Older patients have a higher probability to move to a worse disease 

stage than younger patients; they have higher costs and a wider spread in quality-of-life 

weights. Patients from developing countries have lower maintenance costs than patients 

from developed countries. Patients with a higher BMI have a higher probability to move to 

a worse disease stage than patients with lower BMI; they also have a higher probability of 

an event, higher maintenance costs and lower quality of life. Patients who smoke have a 

higher probability to move to a worse disease stage and a higher probability of an event, 

than patients who do not smoke.

Interventions influence the RDP in the same manner as patient characteristics do. For 

each patient in the reference population, we simulated their disease progression twice: 

once receiving Usual Care and once receiving the New Intervention. Usual Care is a drug 

that decreases the probability of disease progression compared with the RDP, at € 60 per 

monthly cycle. New Intervention, the focus of the HE analysis, decreases the probability 

of disease progression, more so than Usual Care, plus it increases the probability of mov-

ing to a better disease stage and decreases the probability of an event. The costs were set 

at € 350 per monthly cycle. In the HE model, probabilities for the New Intervention are 

modeled as a RR, with the estimated probabilities for the Usual Care as a baseline.

Changes to reference parameters were additive across patient characteristics and inter-

ventions. For example, a female patient aged 35–64 years who used the New Intervention 

Table 4.1: Characteristics of the simulated patient population.

Size simulated cohort 50,000

Starting disease stage 5/8 in moderate, 2/8 in severe and 1/8 in very severe

Gender 50% male, 50% female

Age in years 18 – 34; 35 – 64; 65+

Determined by a random draw from a uniform distribution from 18 
to 75

Developed/developing country. 50% from developed countries, 50% developing countries

Body Mass Index (BMI) <25 (average or low); 25-30 (high); >30 (obese),

Determined by a random draw from a normal distribution with mean 
23 and standard deviation of 4.

Smoking status 30% smokers, 70% non-smokers
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had a monthly probability to die in the very severe disease stage of 10 % (the probability 

within the RDP) – 2 % (modification for gender) + 4 % (modification for age) - 3 % 

(modification for New Intervention) = 9%.

Table 4.2 shows the reference outcomes when applying the two interventions to the 

entire patient population. They represent the ‘truth’ with which the outcomes of the meta-

analyses were compared.

The structure of the HE model mirrors the disease progression in the reference popula-

tion; in other words, there was no structural uncertainty. The time horizon of the HE model 

was 1 year and the cycle length 1 month. We assumed that data in the trials were collected 

each month during 1 year. We have not applied discounting. Simulation and modelling 

were performed using SAS 9.2 and WinBUGS 1.4.3.

4.2.3. Scenarios

The number and size of the trials sampled in step 2: Trial selection was varied in scenarios, 

as well as the amount of heterogeneity between trials. Heterogeneity in the meta-analysis 

literature is any kind of variability between different studies.10 Trial heterogeneity is dif-

ferent from patient heterogeneity, which is the difference between patients that can be 

adequately explained by patient characteristics. Table 4.3 shows the different scenarios 

that were investigated. The last column of table 4.3 described the impact of the non-

randomly drawn trials on the trial parameters. We will focus mainly on the three scenarios 

Table 4.2: Reference outcomes, per patient per 12 cycles/months – Mean (Standard deviation).a

Variables Usual Care New Intervention Difference

QALYs 0.485 (0.232) 0.540 (0.231) 0.054

LYs 0.740 (0.328) 0.786 (0.313) 0.046

Intervention costs € 533 (€ 236.24) € 3,300 (€ 1,310) € 2,770

Maintenance costs € 3,260 (€ 2,080) € 3,070 (€ 1,810) - € 180

Event costs € 2,330 (€ 2,610) € 1,260 (€ 1,780) - € 1,070

Total costs € 6,120 (€ 4,340) € 7,630 (€ 3,830) € 1,520

Number of cycles in:

 Moderate disease 5.171 (3.750) 6.209 (3.965) 1.038

 Severe disease 2.477 (2.512) 2.313 (2.507) -0.164

 Very severe disease 1.238 (1.850) 0.911 (1.554) -0.327

 Death 3.114 (3.937) 2.567 (3.751) -0.547

Number of events 1.160 (1.259) 0.630 (0.856) -0.530

Proportion surviving 49.9% 58.3% 8.4%pt

ICER, total costs per QALY € 28,020

a LY: Life year; QALY: Quality adjusted LY; ICER = Incremental cost-effectiveness ratio; %pt: percentage 
points 
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in shaded rows, namely 1, 4 and 7. The other scenarios will be discussed in the discussion 

section of this paper.

4.2.4. Methods of meta-analysis

In our study, we compared four widely used methods of meta-analysis: frequentist fixed 

effects (FFE), frequentist random effects (FRE), Bayesian fixed effects (BFE) and Bayesian 

random effects (BRE). The FFE and FRE were based on the Inverse Variance method, which 

can be used for meta-analysis of both continuous and dichotomous data.11 The pooled 

effect estimate for the FFE is calculated as a weighted average of the individual study 

estimates, using the inverse of the squared standard error (s.e.) of the effect estimates as 

weights. Thus, studies with a smaller s.e., typically larger studies, are given more weight 

than studies with a larger s.e.. For the FRE, we used the DerSimonian-Laird method.11 It 

was developed for situations where there is heterogeneity between study results, caused 

for example by differences in patient population or study design. It incorporates an esti-

mate of the between-study heterogeneity into the weights. It is assumed that all studies 

are samples drawn from a pool of all possible studies, i.e. the population.10 The goal is to 

Table 4.3: Overview of different scenarios in the simulation study.a

Scenario Number 
of trials

Number of patients 
per treatment arm

Added heterogeneity with effect on disease progression

1 5 All trials 500 -

2 5 Trial 1 en 2: 500, 
trial 3: 100, trial 4: 
250, trial 5: 1,000

-

3 10 All trials 250 -

4 5 All trials 500 Trial 5 has relatively old patients, more smokers and 
more obese patients, which leads to more rapid disease 
deterioration, higher probability of events, higher maintenance 
costs, lower quality of life.

5 5 All trials 500 Trial 2 has relatively young patients, which leads to slower 
disease deterioration
Trial 4 has only patients from developing countries, which 
leads to lower maintenance costs
Trial 5: the same as in scenario 4

6 5 Trials have different 
sample sizes, the 
same as in scenario 
2

The same as in scenario 5

7 5 Trials have different 
sample sizes, the 
same as in scenario 
2

Trials 2, 4 and 5 has relatively old patients, more smokers 
and more obese patients, which leads to more rapid disease 
deterioration, higher probability of events, higher maintenance 
costs, lower quality of life.

a Scenarios in shaded rows are discussed in main text. The other four scenarios are discussed in the discus-
sion.
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estimate the mean of this population. The true parameter value may be study-specific and 

can vary across studies.

Both the FFE and FRE assume that the weights are known. With little or no heterogeneity 

among the studies, the FFE and FRE will give identical results.10 With heterogeneity pres-

ent, confidence intervals will be wider for the FRE and claims of statistical significance 

will be more conservative. The point estimate of the parameter might also be different. 

We report the I2-statistic as a measure of heterogeneity12, which can be interpreted as 

the proportion of the total variation in the pooled estimates that is due to heterogeneity 

between studies. When the amount of between-trial heterogeneity increases compared 

with the within-trial variance, then the I2 also increases. Higgins et al. provide a rough 

guide to the interpretation of I2.8 Above 30% “may represent moderate heterogeneity”; 

above 50% “may represent substantial heterogeneity”.

The BFE method requires the data from the different trials, the definition of a prior for 

the parameter to be synthesized and a likelihood linking both.9,13 We used a binomial 

likelihood function to model the total number of transitions, with a flat beta prior; and a 

normal likelihood function for all other parameters, with a flat normal prior centered on 

0 and a precision of 1.0E-6. When specifying the BRE method, prior distributions need 

also be defined for the between-trial heterogeneity.9,13,14 We used the inverse of a squared 

uniform distribution from 0 to 10. Other likelihoods and priors were as in the BFE. Before 

simulation started, we tested several priors and could find no meaningful differences.

Conceptually, confidence intervals in frequentist statistics and credibility intervals in 

Bayesian statistics have very different interpretations (see for example15,16). However, for 

convenience and legibility, we abbreviate both as CI. For each pooled parameter estimate, 

we report the mean and the 95% CI.

We performed meta-analysis on all baseline values (transition probabilities, utilities, etc) 

using data on the New Intervention. In addition, we performed meta-analysis on all effect 

measures (RR), using data on the difference between the New Intervention and Usual 

Care. Interested readers may request code on both the simulation study and the methods 

of meta-analysis from the corresponding author.

4.2.5. Comparing performance

When judging the performance of the methods of meta-analysis, we assumed that a re-

searcher doing a meta-analysis aims to estimate the CE of the New Intervention compared 

with Usual Care in the entire patient population, not a specific subgroup. We further 

assumed that a researcher is unaware of the fact that heterogeneity, when present, was 

caused by sampling from subgroups (i.e. they do not know we deliberately built in hetero-

geneity). To the researcher, the heterogeneity might either be caused by random sampling 

or unobserved differences between the trials in terms of patient characteristics, setting or 

other elements that could affect the parameter estimates. These assumptions are made 
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because, if these differences in design are known to the researcher, either the trials would 

not be synthesized at all, or a way has to be found to control for these differences. Hence, 

these assumptions made it possible to judge the performance of the different methods of 

meta-analysis by comparing model parameters and outcomes with the reference values.

The statistical performance of the different methods was judged by calculating the 

coverage, bias, mean absolute deviation (MAD) and statistical power. Coverage is the 

percentage of all repetitions that the simulated CI covered the ‘truth’. Since the coverage 

is based on 95% CIs, we expect that, if all trials are drawn randomly, the coverage should 

on average be close to 95%.5 The observed coverage was compared to this benchmark. As-

suming that we have an unbiased point estimate, if the coverage is below 95%, the model 

does not take into account all uncertainty. If the coverage is above 95%, it has accounted 

for too much uncertainty. In this study, if the coverage was smaller than 90%, we say the 

method underestimated uncertainty; if the coverage was higher than 98% the method 

overestimated uncertainty. Bias is expressed as the difference between the point estimate 

in the simulated data set and the true population value, averaged over all repetitions. 

The MAD is the average, over all repetitions, of the absolute value of the bias. The MAD 

indicates how far the estimated value was from the ‘truth’, regardless of whether it was 

too high or too low. For HE outcomes, we also calculated statistical power, expressed as 

the percentage of all repetitions where the simulated result yields a statistically significant 

difference between treatments.

4.3 RESULTS

4.3.1. Model parameters for one set of trials

Figure 4.3 compares the methods for scenarios 1, 4 and 7, using only the first repeti-

tion. From bottom to top, we compare the different meta-analysis models for the seven 

scenarios. Each dot represents the point estimate for the model parameter, in this case the 

transition probability from severe to very severe disease, and the bars the estimated CIs. 

At the bottom of the graph the ‘true’ reference parameter value, as found in the popula-

tion, is pictured, with which each of the estimates needs to be compared. The results are 

illustrative for the other parameters. When five equally sized, large trials are randomly 

drawn from the same population (scenario 1), all methods lead to similar point estimates 

of the model parameters, but the BRE model has a much wider CI and a higher coverage. 

The difference in point-estimate between FFE and BFE is due to the different distributional 

assumptions: BFE assumes a binomial model, whereas FFE (implicitly) assumes a normal 

distribution.

In scenario 4 we added heterogeneity by drawing one of the trials from a less healthy 

population. The point estimates from the random effects (RE) models are further from the 
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reference parameter. RE models assign a relatively greater weight to trials which outcomes 

differ from the rest. Due to the wider CIs, RE models are more likely to include the refer-

ence parameter value, but tend to overestimate uncertainty.

Varying trial sizes, with three trials from the same subgroup (scenario 7) leads to results 

comparable to scenario 4, where only one of the trials was drawn from this subgroup.

4.3.2. Model parameters for 1,000 repetitions

To investigate whether the results from the previous paragraph are due to chance, or if 

there are systematic differences, table 4.4 presents a summary of the performance indica-

tors over 1,000 repetitions. It reports the number of model parameters out of 33 for which 

the performance indicators are below or above certain threshold values. First we look at 

the I2, averaged over 1,000 repetitions. For many parameters and scenarios, the mean of 

the I2 statistic does not exceed 30%, indicating no heterogeneity, even in scenarios where 

heterogeneity is built in. Some parameters show substantial heterogeneity, even if all trials 

are randomly drawn from the same population. The number of parameters with a mean 

I2 below 30% decreases when the amount of heterogeneity increases and the number of 

parameters with a mean I2 above 50% increases slightly. 

Reference 
parameter, 

"Truth"

Scenario 1:
5 random trials, 

500 pts

Scenario 4:
5 trials, 500 pts, 
1 heterog trial 

(health)

Scenario 7:
5 trials, differing 

trial sizes,
3 heterog trials

7% 9% 11% 13% 15%

Bayesian
Random
Effects

Bayesian
Fixed
Effects

Frequentist
Random
Effects

Frequentist
Fixed
Effects

'Truth'

Figure 4.3: Meta-analysis on the transition from the severe to very severe disease stage, for three of the seven 
scenarios, for the Usual Care arm, for one repetition.a

a pts = number of patients per trial, equal in each arm. heterog = added heterogeneity by sampling from 
subpopulations
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When equally sized trials are randomly drawn from the same underlying population 

(scenario 1), the number of parameters with mean coverage below 90% or above 98% is 

comparable for FFE, FRE and BFE. BRE, on the other hand, shows no underestimation of 

uncertainty in any of the parameters, and an overestimation in 26 of the 33 parameters. 

FFE and BFE have a tendency to underestimate uncertainty when heterogeneity is added 

(scenarios 4 and 7), as is illustrated by the increasing number of parameters with a cover-

age lower than 90%. It should be noted that an increase in bias and MAD also contributes 

to a lower coverage. In scenario 7, even the FRE model underestimates uncertainty for 

several parameters and the number of parameters where the uncertainty is overestimated 

decreases. BRE never underestimates uncertainty, and overestimates uncertainty for nearly 

Table 4.4: Summary of the result of meta-analysis on all parameters of the health-economic model. Means 
over 1,000 repetitions.

Total number of parameters for which: Scenario 1 Scenario 4 Scenario 7

Total number of parameters 33 33 33

Parameters influenced by added heterogeneity 0 24 24

Mean I2 < 30%: heterogeneity might not be important 27 27 22

Mean I2 > 50%: substantial heterogeneity 4 6 6

Mean coverage < 90% (underestimation of uncertainty)

 Frequentist fixed effects method (FFE) 6 9 23

 Frequentist random effects method (FRE) 6 0 21

 Bayesian fixed effects method (BFE) 6 9 23

 Bayesian random effects method (BRE) 0 0 0

Mean coverage > 98% (overestimation of uncertainty)

 FFE 11 7 3

 FRE 12 13 4

 BFE 12 10 4

 BRE 26 32 24

Mean bias > 2%

 FFE 0 12 19

 FRE 0 13 19

 BFE 0 12 20

 BRE 0 13 21

Mean MADa > 5%

 FFE 0 3 16

 FRE 0 5 16

 BFE 3 6 17

 BRE 5 9 17

a MAD: Mean Absolute Deviation
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all of the parameters in all scenarios. In fact, the coverage is 100% in a large number of 

cases (not shown).

There are only small differences between methods in bias, with more bias in the 

scenarios with more added heterogeneity. There are, however, differences between the 

methods with respect to the MAD. The number of parameters where the MAD is larger 

than 5% is smaller for the FFE and FRE, than for the BFE and BRE methods, regardless of 

heterogeneity. The BRE method generally yields point-estimates that are further away from 

the true population value than the other methods. Using RE models in scenarios with 

heterogeneity does not necessarily reduce bias. They may even increase bias, especially 

when the trials that differ from the others all differ in the same direction (scenario 7).

Table 4.5: Health economic outcomes for three of the seven scenarios. Both intervention arms and the differ-
ence. Means and range from the 2.5th and 97.5th percentiles over 1,000 repetitions.a

Scenario Scenario 1 Scenario 4 Scenario 7

Five randomly drawn, equally 
sized trials

Five equally sized trials; one 
trial drawn from a less health 

population

Five equally sized trials; 
three trials drawn from a less 

health population

Intervention 
arm

New Int Usual Diff New Int Usual Diff New Int Usual Diff

Number of QALYs

Truth 0.540 0.485 0.054 0.540 0.485 0.054 0.540 0.485 0.054

FFE 0.542 0.488 0.054 0.533 0.480 0.053 0.515 0.464 0.051

FRE 0.541 0.487 0.054 0.532 0.479 0.053 0.514 0.463 0.051

BFE 0.541 0.486 0.054 0.531 0.478 0.053 0.513 0.461 0.052

BRE 0.540 0.487 0.054 0.531 0.478 0.052 0.513 0.462 0.051

Number of LYs

Truth 0.786 0.740 0.046 0.786 0.740 0.046 0.786 0.740 0.046

FFE 0.789 0.744 0.045 0.781 0.738 0.044 0.767 0.723 0.043

FRE 0.788 0.744 0.045 0.780 0.736 0.044 0.766 0.723 0.044

BFE 0.787 0.742 0.045 0.779 0.735 0.044 0.764 0.720 0.044

BRE 0.787 0.743 0.045 0.779 0.735 0.043 0.764 0.721 0.042

Total costs

Truth € 7,633 € 6,116 € 1,517 € 7,633 € 6,116 € 1,517 € 7,633 € 6,116 € 1,517

FFE € 7,657 € 6,140 € 1,517 € 7,652 € 6,158 € 1,494 € 7,643 € 6,167 € 1,476

FRE € 7,653 € 6,137 € 1,515 € 7,644 € 6,152 € 1,492 € 7,639 € 6,164 € 1,475

BFE € 7,639 € 6,126 € 1,513 € 7,627 € 6,136 € 1,490 € 7,615 € 6,139 € 1,476

BRE € 7,650 € 6,129 € 1,522 € 7,635 € 6,145 € 1,490 € 7,627 € 6,157 € 1,470

a FFE: Frequentist fixed effects method; FRE: Frequentist random effects method; BFE: Bayesian fixed ef-
fects method; BRE: Bayesian random effects method; New Int: New Intervention; Usual: Usual Care; Diff: 
Difference between two intervention arms 



82

4 
4.3.3. Health-economic outcomes for 1,000 repetitions

Differences in model parameters may also lead to differences in HE outcomes. In table 4.5, 

we show the mean HE outcomes over 1,000 repetitions, for both interventions and the 

difference between them. In scenario 1, all HE outcomes are very close to the true popula-

tion value. In scenario 7, we can see that the point-estimates are further from the truth 

than is the case in the other two scenarios, for all methods of meta-analysis. On average, 

the number of QALYs estimated in each of the treatment arms is around 5% below the 

true population value, and so is the difference in QALYs. In scenario 7, the fixed effects 

(FE) CIs (not shown) are comparable to those in scenario 1, but the RE CIs are much wider, 

especially for the BRE method. 

Table 4.6 shows the coverage, bias and MAD, for the difference between the two inter-

vention groups. In general we see that the coverage is larger in the RE methods, due to 

wider CIs which take heterogeneity into account. In addition, the Bayesian methods have 

higher coverage than the frequentist methods. Bias is generally low when no heterogene-

ity is included (scenario 1) and increases when it is (scenarios 4 and 7). The largest bias 

and MAD is found in the BRE method, for all outcomes in all scenarios. For the other three 

methods, bias and MAD are comparable. Despite the higher bias and MAD, the coverage 

of the BRE is still larger.

For the number of QALYs, events and total costs, statistical power (appendix A4) is 100% 

for all scenarios of FFE, FRE and BFE. It is slightly lower for the LYs for FFE, FRE and BFE, 

with a minimum of 96.7%. For the BRE method, the statistical power for LYs ranges from 

17.5% (scenario 6) to 100% (scenario 3). It is generally lower when there are more trials 

drawn from a subgroup of patients and when there is a difference in sample size between 

the trials.
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Figure 4.4 shows the CE acceptability curves (CEAC) for scenario 7. The four graphs 

represent the four methods of meta-analysis. In each graph, we show the CEAC for ten 

repetitions, the median, 2.5th and 97.5th percentile over 1,000 repetitions. It is clear that 

even in this scenario with a lot of heterogeneity, the graphs are very similar for FFE, FRE 

and BFE. At a ceiling ratio of € 30,000 per QALY, which is very close to the true population 

ICER of € 28,020 (dashed vertical line), the median probability of New Intervention being 

cost effective is between 60–70%, for these three methods. At a ceiling ratio of € 21,000, 

the median probability for all three methods is below 20% and the 97.5th percentile is 

below 30%. At € 39,000, the median probability is above 95% and the 2.5th percentile is 

above 65%, again for all three methods. Therefore, no great difference in policy decision 

would arise from using these three different methods of meta-analysis.

However, using BRE, the outcome would be different. Even at a ceiling ratio of € 

48,000, the 97.5th percentile is below 60%, and the median probability is below 90%. 

Using BRE, a policy maker would be much less certain of the cost-effectiveness of the new 

intervention.

Table 4.6: Health economic outcomes for three of the seven scenarios. Means of coverage, bias and mean 
absolute deviance (MAD) of the difference between two interventions, over 1,000 repetitions.a

Scenario Scenario 1 Scenario 4 Scenario 7

Five randomly drawn, equally 
sized trials

Five equally sized trials; one 
trial drawn from a less health 

population

Five equally sized trials; three 
trials drawn from a less health 

population

Coverage Bias MAD Coverage Bias MAD Coverage Bias MAD

Number of 
QALYs

 FFE 98.1% -0.2% 8.3% 97.4% -2.4% 8.5% 96.0% -5.1% 9.5%

 FRE 98.8% -0.1% 8.3% 99.5% -2.2% 8.5% 99.3% -5.0% 9.7%

 BFE 98.3% 0.2% 8.7% 98.6% -2.1% 8.8% 97.9% -5.0% 9.4%

 BRE 100.0% -1.0% 9.6% 100.0% -3.3% 10.7% 100.0% -6.6% 13.4%

Number of 
LYs

 FFE 98.2% -1.6% 13.9% 97.1% -3.8% 14.2% 97.5% -4.6% 15.0%

 FRE 99.3% -1.4% 14.0% 99.1% -3.4% 14.3% 98.9% -4.4% 15.5%

 BFE 98.6% -0.9% 14.5% 98.4% -3.1% 14.8% 99.2% -4.1% 15.0%

 BRE 100.0% -2.3% 16.1% 100.0% -4.9% 17.5% 100.0% -6.9% 20.8%

Total costs

 FFE 98.5% 0.0% 5.1% 98.2% -1.5% 5.5% 97.1% -2.7% 5.9%

 FRE 99.3% -0.1% 5.2% 99.5% -1.7% 5.6% 99.4% -2.8% 6.1%

 BFE 98.5% -0.3% 5.3% 98.5% -1.8% 5.7% 98.4% -3.2% 6.1%

 BRE 100.0% 0.3% 6.4% 100.0% -1.8% 6.8% 100.0% -3.1% 8.1%

a FFE: Frequentist fixed effects method; FRE: Frequentist random effects method; BFE: Bayesian fixed effects 
method; BRE: Bayesian random effects method; MAD: Mean Absolute Deviation 
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4.4 DISCUSSION

In this study, we compared four methods of meta-analysis. Using a simulation study we 

could compare the HE outcomes to a gold standard and judge their statistical perfor-

mance. In order to do this, we made a few crucial assumptions. First, we assumed that the 

researcher wants to estimate the parameter values of the entire population, not a subpopu-

lation. This allows us to compare the results to the outcomes for the entire population. We 

also assumed the researcher was unaware of the fact that any heterogeneity was caused 

by sampling from subgroups. A researcher might not have combined the trials at all, had 

they been aware of the differences, by seeing the patient characteristics or trial protocols. 

A researcher might also have tried to compensate using regression methods, which were 

not the focus of the paper, nor would they be feasible with only five to ten trials.

With almost no heterogeneity, we found that the results of the FFE, FRE and BFE meth-

ods were comparable. With heterogeneity added to the trials, we saw differences on a 

parameter level, but these did not translate into important differences in HE outcomes. 

That could be because the HE model combines all parameter estimates and their uncer-

tainties into one estimate of QALYs and total costs. All these uncertainties together may 
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Figure 4.4: CEACs for the four models in the heterogeneous scenario 7. Graphs depicts median, 2.5th and 
97.5th percentile CEACs over 1,000 repetitions, as well as the CEACs for the first 10 repetitions; horizontal line 
is the ‘true’ population ICER.a

a CEAC: Cost-effectiveness acceptability curve; ICER: incremental cost-effectiveness ratio
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hide the (subtle) differences we have seen between the methods. In addition, we did not 

take structural uncertainty into account, which may exceed any parameter uncertainty.

Using any of these three methods would not lead to differences in policy decisions. 

Using BRE would, as it has a tendency to overestimate uncertainty and yield a larger prob-

ability that a new treatment is rejected or that more research is asked for where it might 

not be necessary. Partly, this is due to the number of trials included in the meta-analysis. 

Generally speaking, sophisticated methods, such as RE, require more data than simple 

methods, because of the increased number of parameters. This is particularly important 

for BRE, as it estimates between-study heterogeneity and also takes the uncertainty around 

this estimate into account. This can be estimated more precisely from ten trials than from 

five. In scenario 3, where we have the same amount of patients in ten trials instead of 

five, we have seen that the CI around the BRE is still larger than those of the other three 

methods, but the difference is much smaller. We also saw that the coverage for the BRE is 

much closer to 95% and that uncertainty is overestimated in fewer parameters.

We speculate that with more than ten trials the differences might be even less pro-

nounced and the BRE method will yield almost the same results as the other three methods, 

although the amount of uncertainty will always exceed that of the other methods. We did 

not test this assumption as this situation is unlikely within the scope of the expensive drug 

programme. In addition, time and budget constraints did not permit the calculation time 

needed for a simulation of this many trials, especially in a number of different scenarios.

Based on this, we recommend not using the BRE when only few sources of evidence 

are available. Unfortunately, this is more the rule than the exception, especially in the 

expensive drugs programme which was the reason to initiate this study. With only a few 

differences between the other three methods, we would personally favor FRE, as it auto-

matically reduces to FFE in the absence of heterogeneity, is easy to implement and is more 

easily understood by physicians and policy makers who will be using the results.

By calculating outcomes for a number of scenarios, we have covered many of the differ-

ent situations that are likely to arise in meta-analysis. We have drawn a few larger trials, 

but more smaller trials, and trials with differences in trial sizes. We have drawn trials 

randomly from the same population, one trial from a subgroup of patients, several trials 

from different subgroups and several trials from the same subgroup. Because of this, we 

feel that the results of our study are generalizable to other studies that use meta-analysis 

to obtain pooled estimates of parameters to fill a HE model.

We have made sure that the difference between the two interventions is large. When 

two interventions are much closer to each other, it unlikely this will change our conclu-

sions regarding the methods of meta-analysis. The same is true for a longer time horizon, 

or including discounting.

Despite our feelings that the results are generalizable to other situations, there are sev-

eral limitations to our study. The first limitation is that we have assumed that all data comes 
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from the same set of trials. In practice, the data for transition probabilities will likely come 

from different sources than, for example, the RR for those transition probabilities or the 

utilities. The exact source of the evidence will not have an impact on the performance of 

the methods of meta-analysis. Therefore, we decided not to explore this extra complexity 

in this paper.

Another limitation is the choice of prior for the Bayesian models. The use and choice of 

priors is an important subject when discussing the Bayesian methodology. Any Bayesian 

calculation can be affected by the type of priors used. In the case of meta-analysis, a 

small number of studies is extra vulnerable to the type of prior.8, 17 As we did not assume 

the researcher to have prior information, we also used so called vague, or flat priors. 

Even though they are supposed to be ‘uninformative’, they may influence the outcomes, 

especially the posterior scale parameters.17 We tested several different specifications of 

the priors but did not find any differences in outcomes, likely from the relative simplicity 

of the models used. However, researchers using the BFE or BRE should keep these restric-

tions in mind and different priors may lead to different results.

Our results are not generalizable to network meta-analysis and should only be used in 

the case of a pair-wise comparison of two interventions. In the case that more than two 

comparators are available, other methods of meta-analysis are available, which make use 

of all the available evidence (see 18–21 and chapter 5).

We have seen that both the RE methods and the appropriate measure for heterogene-

ity, I2, have a tendency to detect heterogeneity, when trials have differences in number 

of patients, even with a large number of total patients, randomly drawn from the same 

underlying population. This is a very common occurrence in meta-analysis and may lead 

to too conservative CIs as none of the methods can make the distinction between sampling 

error and heterogeneity. Trials can therefore be considered heterogeneous, not only when 

one or more trials are drawn from a (different) subgroup of patients, but also when all 

trials are randomly drawn from the same population, but with differences in trial sizes. 

At the same time, with heterogeneity built in, many of the parameters show no important 

degree of heterogeneity. From this we can see that the I2 might be an imperfect measure 

for heterogeneity, at least with a relatively low number of trials.

In our simulation study, we have made sure that the reference parameters are not close 

to their natural limits; for example, probabilities or costs close to 0. In cases when the 

reference parameters are closer to these limits, we expect that the Bayesian methods will 

have model parameters that are closer to the true population value than the frequentist 

methods. First of all, frequentist methods usually need a correction term (continuity cor-

rection) if one of the trial parameters is 0, because it will not be possible to calculate 

the necessary standard errors otherwise. Bayesian methods do not. In addition, Bayesian 

methods may use a bounded likelihood function, while frequentist methods always im-
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plicitly use a normal distribution. This might be a valid reason to prefer Bayesian methods 

over frequentist methods.

The transition probabilities and probabilities to experience an event in the New Inter-

vention arm were calculated using the model parameter in the Usual Care arm, and the 

corresponding RR. Results using the risk difference were similar and therefore not shown.

In many HE models, many input parameters need to be estimated. When more than one 

input parameter is estimated from the same set of sources, we recommend heterogeneity 

is not checked for each parameter separately, but rather for the set of trials. If statistics 

indicate trials are homogeneous for one parameter, but heterogeneous for another, it is 

recommended that all parameters are calculated using the same type of model. The model 

type selection should be based on trial heterogeneity rather than parameter heterogeneity.

4.5 CONCLUSION

In conclusion, the FFE, FRE and BFE meta-analysis methods led to comparable HE out-

comes, even in scenarios where we built in heterogeneity. The differences that we see 

between the methods point towards a broader CI (which is translated in a higher cover-

age), a higher MAD and a lower statistical power for Bayesian methods compared with 

frequentist methods, and for RE methods compared with FE methods. RE methods do not 

necessarily reduce bias when heterogeneity is added to the trials, and may even increase 

bias in certain situations. BRE tends to overestimate uncertainty reflected in the shape of 

the CEAC. Based on this study, we recommend the FRE method as the preferred method 

of meta-analysis.
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A4 APPENDIX

Table A4.1: Monthly transition probabilities in the Reference Disease Progression and changes in probabilities 
due to patient characteristics or interventions.

From:/To: Moderate Severe Very severe Death

Reference disease progression (RDP)

1 – Moderate 80% 10% 6% 4%

2 – Severe 20% 65% 10% 5%

3 – Very Severe 10% 20% 60% 10%

4 – Death 0% 0% 0% 100%

Changes due to gender. RDP = male, changes applicable to female patients.

1 – Moderate +1% +1% -1% -1%

2 – Severe +1% +1% -1% -1%

3 – Very Severe +1% +1% -2%

Changes due to age class. RDP = 18-34, changes applicable to patients aged 35-64, double these changes 
applicable to patients aged 65+.

1 – Moderate -4% +2% +0% +2%

2 – Severe -4% +2% +2%

3 – Very Severe -4% +4%

No changes due to developed/developing country.

Changes due to BMI. RDP = low/average BMI, changes applicable to patients with high BMI, double these 
changes applicable to patients with double BMI.

1 – Moderate -1% +1% +0% +0%

2 – Severe -1% +1% +0%

3 – Very Severe -1% +1%

Changes due to smoking status. RDP = non-smokers, changes applicable smokers.

1 – Moderate -3% +1% +1% +1%

2 – Severe -3% +1% +2%

3 – Very Severe -3% +3%

Changes due to use of Usual Care.

1 – Moderate +5% -2% -2% -1%

2 – Severe +2% -1% -1%

3 – Very Severe +2% -2%

Changes due to use of New Intervention.

1 – Moderate +10% -5% -3% -2%

2 – Severe +3% +3% -4% -2%

3 – Very Severe +5% -2% -3%
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Table A4.2: Probability of an event per cycle for each disease stage in the Reference Disease Progression and 
changes in probabilities due to patient characteristics or interventions.

Disease stage Moderate Severe Very severe Death

Reference disease progression (RDP) 5% 10% 40% 0%

No changes due to gender.

No changes due to age class.

No changes due to developed/developing 
country.

Changes due to BMI. RDP = low/average BMI, 
changes applicable to patients with high BMI, 
double these changes applicable to patients 
with double BMI. +1% +2% +4%

Changes due to smoking status. RDP = non-
smokers, changes applicable smokers. +2% +5% +10%

No changes due to use of Usual Care.

Changes due to use of New Intervention. -2% -10% -20%

Table A4.3: Monthly costs per stage using a Gamma distribution in the Reference Disease Progression and 
changes in distributional parameters due to patient characteristics or interventions.

Disease stage Moderate Severe Very severe Death

Reference disease progression (RDP)

Alpha 4 5 10

Beta 50 80 100

No changes due to gender.

Changes due to age class. RDP = 18-34, changes applicable to patients aged 35-64, double these changes 
applicable to patients aged 65+.

Alpha

Beta +5 +5 +5

Changes due to developed/developing country. RDP = developed country, changes applicable to patients 
from developing country.

Alpha

Beta -10 -10 -10

Changes due to BMI. RDP = low/average BMI, changes applicable to patients with high BMI, double these 
changes applicable to patients with double BMI.

Alpha

Beta +2 +2 +2

No changes due to smoking status.

No changes due to use of Usual Care.

No changes due to use of New Intervention.
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Table A4.4: Quality of life weights using a Beta distribution in the Reference Disease Progression and changes 
in distributional parameters due to patient characteristics or interventions.

Disease stage Moderate Severe Very severe Death

Reference disease progression (RDP)

Alpha 64 35 20

Beta 16 15 20

No changes due to gender.

Changes due to age class. RDP = 18-34, changes applicable to patients aged 35-64, double these changes 
applicable to patients aged 65+.

Alpha +5 +5 +5

Beta +5 +5 +5

No changes due to developed/developing country.

Changes due to BMI. RDP = low/average BMI, changes applicable to patients with high BMI, double these 
changes applicable to patients with double BMI.

Alpha

Beta +5 +5 +5

No changes due to smoking status.

No changes due to use of Usual Care.

No changes due to use of New Intervention.

Table A4.5: Costs due to an event using a Gamma distribution in the Reference Disease Progression. No 
changes due to patient characteristics or interventions.

Disease stage Moderate Severe Very severe Death

Reference disease progression (RDP)

Alpha 10 10 10 0

Beta 200 200 200 0

Table A4.6: Quality of life decrement due to an event using a Beta distribution in the Reference Disease 
Progression No changes due to patient characteristics or interventions.

Disease stage 1 2 3 4

Reference disease progression (RDP)

Alpha 6 6 6 0

Beta 4 4 4 0



93

4 
Table A4.7: Summary of the result of meta-analysis on all parameters of the health-economic model for four of 
the seven scenarios. Means over 1,000 repetitions.

Total number of parameters for which: Scenario 2 Scenario 3 Scenario 4 Scenario 6

Total number of parameters 33 33 33 33

Parameters influenced by added heterogeneity 0 0 24 24

Mean I2 < 30%: heterogeneity might not be important 27 27 27 22

Mean I2 > 50%: substantial heterogeneity 4 6 6 6

Mean coverage < 90% (underestimation of 
uncertainty)

 Frequentist fixed effects method (FFE) 6 6 9 17

 Frequentist random effects method (FRE) 4 2 0 3

 Bayesian fixed effects method (BFE) 6 6 9 17

 Bayesian random effects method (BRE) 0 0 0 0

Mean coverage > 98% (overestimation of uncertainty)

 FFE 13 12 7 4

 FRE 13 13 13 10

 BFE 12 13 10 4

 BRE 31 14 32 32

Mean bias > 2%

 FFE 0 3 12 17

 FRE 0 0 13 16

 BFE 0 0 12 18

 BRE 3 0 13 17

Mean MADa > 5%

 FFE 2 1 3 11

 FRE 3 0 5 9

 BFE 3 3 6 13

 BRE 9 3 9 12

a MAD: Mean absolute deviation
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Table A4.8: Health economic outcomes for two of the seven scenarios. Both intervention arms and the differ-
ence. Means and range from the 2.5th and 97.5th percentiles over 1,000 repetitions.a

Scenario Scenario 2 Scenario 3

Intervention arm New Int Usual Diff New Int Usual Diff

Number of QALYs

Truth 0.540 0.485 0.054 0.540 0.485 0.054

FFE 0.542 0.488 0.054 0.543 0.489 0.053

FRE 0.541 0.488 0.054 0.542 0.489 0.053

BFE 0.541 0.486 0.054 0.540 0.487 0.054

BRE 0.540 0.487 0.053 0.540 0.486 0.054

Number of LYs

Truth 0.786 0.740 0.046 0.786 0.740 0.046

FFE 0.789 0.745 0.044 0.790 0.747 0.044

FRE 0.788 0.744 0.044 0.790 0.746 0.044

BFE 0.787 0.742 0.045 0.787 0.743 0.044

BRE 0.786 0.743 0.043 0.787 0.742 0.045

Total costs

Truth € 7,633 € 6,116 € 1,517 € 7,633 € 6,116 € 1,517

FFE € 7,652 € 6,142 € 1,510 € 7,667 € 6,151 € 1,516

FRE € 7,649 € 6,141 € 1,508 € 7,661 € 6,146 € 1,515

BFE € 7,636 € 6,125 € 1,511 € 7,629 € 6,117 € 1,512

BRE € 7,641 € 6,129 € 1,512 € 7,629 € 6,114 € 1,515

a LY: Life year; QALY: Quality Adjusted LY; FFE: Frequentist fixed effects method; FRE: Frequentist random 
effects method; BFE: Bayesian fixed effects method; BRE: Bayesian random effects method, New Int = New 
Intervention, Usual = Usual Care, Diff = Difference between two intervention arms
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Table A4.9: Health economic outcomes for two of the seven scenarios. Both intervention arms and the differ-
ence. Means and range from the 2.5th and 97.5th percentiles over 1,000 repetitions.a

Scenario Scenario 5 Scenario 6

Intervention arm New Int Usual Diff New Int Usual Diff

Number of QALYs

Truth 0.540 0.485 0.054 0.540 0.485 0.054

FFE 0.534 0.481 0.053 0.524 0.472 0.052

FRE 0.532 0.480 0.053 0.529 0.477 0.052

BFE 0.532 0.479 0.053 0.521 0.469 0.052

BRE 0.531 0.479 0.052 0.528 0.477 0.051

Number of LYs

Truth 0.786 0.740 0.046 0.786 0.740 0.046

FFE 0.782 0.739 0.044 0.774 0.731 0.043

FRE 0.781 0.737 0.044 0.777 0.733 0.043

BFE 0.780 0.736 0.044 0.771 0.727 0.044

BRE 0.780 0.736 0.043 0.776 0.733 0.042

Total costs

Truth € 7,633 € 6,116 € 1,517 € 7,633 € 6,116 € 1,517

FFE € 7,604 € 6,103 € 1,501 € 7,624 € 6,142 € 1,482

FRE € 7,604 € 6,105 € 1,499 € 7,597 € 6,111 € 1,486

BFE € 7,578 € 6,081 € 1,497 € 7,592 € 6,110 € 1,481

BRE € 7,596 € 6,099 € 1,497 € 7,622 € 6,099 € 1,523

a LY: Life year; QALY: Quality Adjusted LY; FFE: Frequentist fixed effects method; FRE: Frequentist random 
effects method; BFE: Bayesian fixed effects method; BRE: Bayesian random effects method, New Int = New 
Intervention, Usual = Usual Care, Diff = Difference between two intervention arms
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Table A4.10: Health economic outcomes for two of the seven scenarios. Means of coverage, bias and mean 
absolute deviance (MAD) of the difference between two interventions, over 1,000 repetitions.a

Scenario Scenario 2 Scenario 3

Intervention arm Coverage Bias MAD Coverage Bias MAD

Number of QALYs

 FFE 97.6% -0.9% 8.5% 97.9% -1.5% 8.1%

 FRE 98.7% -1.1% 8.8% 98.5% -1.3% 8.1%

 BFE 98.9% 0.2% 8.6% 99.1% -0.8% 8.5%

 BRE 100.0% -2.5% 11.4% 99.9% -0.8% 8.8%

Number of LYs

 FFE 98.2% -2.9% 14.5% 97.6% -4.0% 13.8%

 FRE 98.6% -3.3% 15.0% 98.3% -3.5% 13.8%

 BFE 99.1% -1.0% 14.6% 99.0% -2.5% 14.2%

 BRE 100.0% -5.1% 19.0% 99.8% -2.3% 14.8%

Total costs

 FFE 98.3% -0.5% 5.7% 98.9% -0.1% 5.4%

 FRE 99.0% -0.6% 5.9% 99.5% -0.2% 5.4%

 BFE 99.0% -0.4% 5.8% 99.5% -0.4% 5.5%

 BRE 100.0% -0.3% 7.8% 99.9% -0.2% 5.9%

a LY: Life year; QALY: Quality Adjusted LY; FFE: Frequentist fixed effects method; FRE: Frequentist random 
effects method; BFE: Bayesian fixed effects method; BRE: Bayesian random effects method

Table A4.11: Health economic outcomes for two of the seven scenarios. Means of coverage, bias and mean 
absolute deviance (MAD) of the difference between two interventions, over 1,000 repetitions.a

Scenario Scenario 5 Scenario 6

Intervention arm Coverage Bias MAD Coverage Bias MAD

Number of QALYs

 FFE 97.6% -3.0% 8.5% 96.7% -4.5% 9.1%

 FRE 99.2% -2.8% 8.5% 99.7% -3.9% 9.2%

 BFE 98.5% -2.6% 9.0% 98.0% -3.5% 9.1%

 BRE 100.0% -3.6% 11.2% 100.0% -5.8% 13.8%

Number of LYs

 FFE 97.6% -4.5% 14.1% 96.8% -5.4% 15.1%

 FRE 98.9% -4.0% 14.2% 99.3% -5.4% 15.5%

 BFE 98.2% -3.7% 15.0% 98.7% -3.4% 15.1%

 BRE 100.0% -5.1% 17.7% 100.0% -7.4% 21.2%

Total costs

 FFE 98.1% -1.1% 5.4% 97.6% -2.3% 6.2%

 FRE 99.7% -1.2% 5.5% 99.5% -2.1% 6.2%

 BFE 98.7% -1.4% 5.7% 98.6% -2.4% 6.4%

 BRE 100.0% -1.3% 6.8% 100.0% 0.4% 10.5%

a LY: Life year; QALY: Quality Adjusted LY; FFE: Frequentist fixed effects method; FRE: Frequentist random 
effects method; BFE: Bayesian fixed effects method; BRE: Bayesian random effects method
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Table A4.12: Statistical power for the health economic outcomes in all scenarios. Means over 1,000 repetitions.a

 Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Scen 6 Scen 7

Difference in number of QALY

 FFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 FRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BRE 98.8% 93.3% 100.0% 96.7% 96.9% 83.9% 81.9%

Difference in number of LY

 FFE 100.0% 99.7% 100.0% 99.9% 99.9% 99.9% 99.4%

 FRE 99.7% 98.7% 99.9% 99.3% 99.1% 96.9% 96.7%

 BFE 99.8% 99.8% 99.8% 99.6% 99.4% 99.7% 99.8%

 BRE 65.9% 37.4% 98.0% 49.7% 47.8% 17.5% 19.9%

Difference in total costs

 FFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 FRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BRE 98.4% 97.8% 100.0% 99.2% 99.4% 97.1% 97.9%

Total costs per QALY

 FFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 FRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BFE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

 BRE 99.7% 94.9% 100.0% 97.9% 97.7% 88.0% 83.7%

a LY: Life year; QALY: Quality Adjusted LY; FFE: Frequentist fixed effects method; FRE: Frequentist random 
effects method; BFE: Bayesian fixed effects method; BRE: Bayesian random effects method
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ABSTRACT

Background Decision-analytic cost-effectiveness (CE) models combine many param-

eters, often obtained after meta-analysis

Aim We compared different methods of mixed-treatment analysis (MTC), especially 

with respect to health-economic (HE) outcomes like (quality adjusted) life years and 

costs.

Methods Trials were drawn from a simulated reference population, comparing two of 

four fictitious interventions. The goal was to estimate the CE between two of these. 

The amount of heterogeneity between trials was varied in scenarios. Parameter esti-

mates were combined using direct comparison, MTC methods proposed by Song and 

Puhan, and Bayesian generalized linear fixed effects (GLMFE) and random effects 

models (GLMRE). Parameters were entered into a Markov model. Parameters and HE 

outcomes were compared with the reference population using coverage, statistical 

power, bias and mean absolute deviation (MAD) as performance indicators. Each 

analytical step was repeated 1,000 times.

Results The direct comparison was outperformed by the MTC methods on all indica-

tors, Song’s method yielded low bias and MAD, but uncertainty was overestimated. 

Puhan’s method had low bias and MAD and did not overestimate uncertainty. GLMFE 

generally had the lowest bias and MAD, regardless of the amount of heterogene-

ity, but uncertainty was overestimated. GLMRE showed large bias and MAD and 

overestimated uncertainty. Song’s and Puhan’s methods lead to the least amount of 

uncertainty, reflected in the shape of the CE acceptability curve. GLMFE showed 

slightly more uncertainty

Conclusion Combining direct and indirect evidence is superior to using only direct 

evidence. Puhan’s method and GLMFE are preferred.
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5.1 INTRODUCTION

In 2006, The Netherlands implemented conditional reimbursement of potentially inno-

vative, but expensive hospital drugs, on the condition that further real-life evidence is 

collected.1 After four years, a new reimbursement decision is made, based on all evidence 

available. Unfortunately, new drugs are often compared to placebo or standard care and 

the interventions of interest vary by country or over time. Trials incorporating all compet-

ing interventions are impractical at best, impossible at worst.2 Much of the evidence will 

therefore come from indirect comparisons. 

The simplest form is the indirect treatment comparison, where the relative efficacy be-

tween two interventions is obtained through a common comparator.3 With three or more 

interventions, there may be several direct and indirect comparisons, analyzed simultane-

ously using mixed treatment comparisons (MTC). 

To aid reimbursement decision making, a probabilistic decision-analytic cost-effective-

ness (CE) model is often used, using parameters that are calculated from evidence com-

bined using meta-analysis. The choice of meta-analysis method can considerably affect 

final CE estimates.4 Most studies comparing meta-analysis methods focused on a single 

treatment effect (e.g.5-8). However, in modeling studies a wide range of model parameters 

need to be estimated.9 In this study we aimed to compare the performance of standard 

methods of MTC when applied to different types of model parameters, especially with 

respect to their impact on health-economic (HE) outcomes. A similar comparison of direct 

meta-analysis methods is reported separately.10

5.2 METHODS

5.2.1 Simulation study

The simulation comprised several steps (figure 5.1). In step 1: Create reference population, 

we simulated a superpopulation11 containing 50,000 patients. The disease progression 

was simulated four times for each patient, once for each of four fictitious interventions. 

The mean values of parameters and HE outcomes within the superpopulation represent 

the ‘truth’ with which parameter estimates and HE outcomes were compared, referred 

to as reference parameters and reference outcomes. Parameters included transition and 

event probabilities, maintenance and event costs, utilities and utility-decrements due to 

an event. HE outcomes included (quality adjusted) life years (QALY/LY), intervention and 

maintenance costs, number of events, incremental CE ratio (ICER) and CE acceptability 

curves (CEAC). 

In step 2: Trial selection, we sampled trials comparing two treatments from the reference 

population. For each of the trials we calculated trial parameters. In step 3: Meta-analysis 
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we calculated model parameters, by pooling trial parameters using several methods of 

meta-analysis (paragraph 5.3.4). We used a CE model in step 4: CE modeling, which was 

fi lled with a set of model parameters obtained by each of the methods of meta-analysis. 

Probabilistic sensitivity analysis (PSA; 1,100 iterations) yielded model outcomes.

To study systematic differences between the methods of meta-analysis, we repeated 

steps 2 to 4 in step 5: Repeat in 1,000 repetitions. 

5.2.2. Disease and model structure

We modeled a progressive, chronic disease with events, during which symptoms tempo-

rarily worsen, simulated using a four-stage Markov model (fi gure 5.2). 

To simulate disease progression, we fi rst defi ned the Reference Disease Progression 

(RDP), which can be thought of as the disease progression of an untreated, base-case 

patient. The RDP was modifi ed based on individual patient characteristics and interven-

tions, to simulate a heterogeneous population of individual patients. Table 5.1 shows 

characteristics of the reference population. By sampling from sub-populations, it was 

possible to add heterogeneity to trials in relevant scenarios 

How patient characteristics and interventions infl uenced the RDP is stated in tables in 

the appendix A5.1-A5.6. 

Focusing on the interventions, “No Intervention” has no effects on the RDP. “Old Inter-

vention” decreases the probability of an event and has a positive effect on mortality, with a 

Figure 5.1: Design of the simulation study.
a HE: health-economic, CE: cost-effectiveness
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one-off cost of €250 at the beginning of treatment. “Usual Care” decreases the probability 

of disease progression at €60 per month. “New Intervention” costs €350 per month and 

decreases the probability of disease progression, increases the probability of moving to a 

better disease stage and decreases the probability of an event. The intervention effects are 

dependent on the disease stage of the patient.

Changes to parameters were additive across patient characteristics and interventions. 

For example, for a female patient aged 35-64 who gets New Intervention, the probability 

to move from the severe disease stage to death was 

10% (RDP) - 2% (modification for gender) + 4% (age) - 3% (intervention) = 9%.

 

Figure 5.2: Design of the chronic disease model.

Table 5.1: Characteristics of the simulated patient population.

Size simulated cohort 50,000

Starting disease stage 5/8 in moderate, 2/8 in severe and 1/8 in very severe

Gender 50% male, 50% female

Age in years 18 – 34; 35 – 64; 65+

Determined by a random draw from a uniform distribution from 18 
to 75

Developed/developing country. 50% from developed countries, 50% developing countries

Body Mass Index (BMI) <25 (average or low); 25-30 (high); >30 (obese),

Determined by a random draw from a normal distribution with mean 
23 and standard deviation of 4.

Smoking status 30% smokers, 70% non-smokers
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The comparison of interest is that between New Intervention and Usual Care. Table 5.2 

shows the reference outcomes when applying these interventions to the complete patient 

population. 

The structure of the HE model mirrors the disease progression. We assumed that trial 

data was collected each month during one year. Likewise, the time horizon of the HE 

model was 1 year, with monthly cycles. We did not apply discounting. Simulation and 

modeling was performed using SAS 9.2 and WinBUGS 1.4.3.

5.2.3. Scenarios

The amount of heterogeneity in the trials sampled in step 2: Trial selection was varied in 

eight scenarios. Heterogeneity in the meta-analysis literature is any kind of variability be-

tween different studies.12 All scenarios contained data from nine trials, with 500 patients 

in each of the two treatment arms. The comparisons made in each of the trials can be 

found in figure 5.3. It is clear from this graph that the nine trials provide evidence for all 

available contrasts. A similar structure can be found in Hasselblad13 and Lu and Ades.14

The heterogeneity in all eight scenarios is described in table 5.3. In scenario 8 we used 

heterogeneity definitions at extreme values. This scenario included as a stress test for the 

methods, with very high amounts of heterogeneity between trials. In practice, trials that 

display this amount of heterogeneity would (should) not be combined.

Table 5.2: Reference outcomes, per patient per 12 cycles/months – Mean (Standard deviation).a

Variables Usual Care New Intervention Difference

QALYs 0.485 (0.232) 0.540 (0.231) 0.054

LYs 0.740 (0.328) 0.786 (0.313) 0.046

Intervention costs € 533 (€ 236.24) € 3,300 (€ 1,310) € 2,770

Maintenance costs € 3,260 (€ 2,080) € 3,070 (€ 1,810) - € 180

Event costs € 2,330 (€ 2,610) € 1,260 (€ 1,780) - € 1,070

Total costs € 6,120 (€ 4,340) € 7,630 (€ 3,830) € 1,520

Number of cycles in:

 Moderate disease 5.171 (3.750) 6.209 (3.965) 1.038

 Severe disease 2.477 (2.512) 2.313 (2.507) -0.164

 Very severe disease 1.238 (1.850) 0.911 (1.554) -0.327

 Death 3.114 (3.937) 2.567 (3.751) -0.547

Number of events 1.160 (1.259) 0.630 (0.856) -0.530

Proportion surviving 49.9% 58.3% 8.4%pt

ICER, total costs per QALY € 28,020

a LY: Life year; QALY: Quality adjusted LY; ICER = Incremental cost-effectiveness ratio; %pt: percentage 
points 
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Usual Care 

No 

Intervention 

New 

Intervention 
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Intervention 

{1} {4} 

{2,3} 

{6,7} 

{5} {8,9} 

Figure 5.3: Evidence network for simulation studya

a The figures in curly brackets are the trial numbers making the corresponding comparisons, as described in 
the text. Trials 1, 6 and 8 are trials that may be drawn from a subpopulation in selected scenarios.

Table 5.3: Overview of different scenarios in the simulation study.

Scenario Added heterogeneity with effect on disease progression

1 9 randomly drawn trials, with 500 patients in each of the treatment arms.

2 8 randomly drawn trials
Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

3 8 randomly drawn trials
Non-random trial 6 (New Intervention versus No Intervention), with worse average health.a

4 8 randomly drawn trials
Non-random trial 8 (New Intervention versus Usual Care directly), with worse average health.a

5 7 randomly drawn trials
Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

Non-random trial 6 (New Intervention versus No Intervention), with lower average age.b

6 6 randomly drawn trials
Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

Non-random trial 6 (New Intervention versus No Intervention), with lower average age.b

Non-random trial 8 (New Intervention versus Usual Care directly), with higher average age.c

7 6 randomly drawn trials
Non-random trials 1 (Old Intervention versus No Intervention), 6 (New Intervention versus No 
Intervention) and 8 (New Intervention versus Usual Care), with worse average health.a

8 6 randomly drawn trials
Non-random trials 1 (Old Intervention versus No Intervention), 6 (New Intervention versus No 
Intervention) and 8 (New Intervention versus Usual Care), with worse average health.a

Extreme scenario

a Trial contains, on average, patients with a higher age, more smokers and more obesity; patients have there-
fore on average a more rapid disease deterioration, higher event probability, higher maintenance costs, lower 
quality of life.
b Trial contains, on average, patients with a lower age; patients have therefore on average a slower disease 
deterioration.
c Trial contains, on average, patients with a higher age; patients have therefore on average a more rapid 
disease deterioration.
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5.2.4. Methods of meta-analysis

In MTC, only measures of relative differences between treatments can be compared. De-

spite being used in many applications of MTC, the odds ratio (OR) is not commonly used 

in HE modeling. We have chosen to use the natural logarithm of the relative risk (ln(RR)) 

as relative measure of treatment benefit for the transition and event probabilities. For all 

non-relative variables in the model  costs, quality of life weights and baseline values for 

the comparator , we used estimates from standard direct methods.10,15 

As a baseline method, we combined all available direct evidence (DIRECT) on an ln(RR)-

scale using the DerSimonian-Laird random effects method (DL).15 The pooled estimate is 

calculated as a weighted average of individual study estimates, using the inverse of the 

within-study and between-study variance (heterogeneity) as weights. This is a relevant 

comparison, since it has been debated whether or not direct and indirect evidence can 

and should be combined, or even if indirect methods should be used at all. Since there 

is no reason not to use direct evidence when it is available, results on indirect treatment 

comparison methods were not reported separately in this paper.

The first MTC method is proposed by Song et al. (SONG).(17) They calculated a direct 

estimate using the DL method described above. Next, all possible indirect estimates are 

calculated. (18) The estimate of indirect association on a ln(RR)-scale between A and C, 

from the paired comparisons of A versus B and C versus B, is calculated as 

ln(RRAC)=ln(RRAB)−ln(RRCB) (1)

The variance of ln(RR)AC can be obtained from

Var[ln(RRAC)]=Var[ln(RRAB)]+Var[ln(RRCB)] (2)

The SONG estimate of the association between A and C is calculated by performing a 

DL meta-analysis using all direct and indirect estimates.15

Puhan et al. performed a logistic regression (PUHAN).18,19 A data set is first created 

based on summary tables from each included study. The number of data entries is equal to 

the number patients in each respective cell, with dummy variables for treatment as inde-

pendent variables and the presence of an event as dependent variable. Since PUHAN uses 

logistic regression, ln(OR) is the only relative measure possible. We estimated ln(RR) using 

the ln(OR) estimate that come from the model, and the treatment effect of the comparator.

The most widely used method of meta-analysis is the Bayesian generalized linear model 

(GLM), either in a fixed effect (GLMFE) or random effect (GLMRE) variant.20 The GLM 

is applicable for both direct meta-analysis and MTC. It allows the definition of many 

different possible link functions, depending on the nature of the data. GLMFE requires the 

trial data, the definition of a prior for the parameter of interest and a likelihood function 
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linking both. Defining rik as the number of events, out of the total number of patients in 

each arm nik, for arm k of trial i, we assumed that the data generation process follows a 

binomial likelihood:

rik~Binomial(pik,nik) (3)

where pik represents the probability of an event in arm k of trial i. We modeled the 

probabilities of success pik on the logit-scale, the most commonly used link function for a 

binomial likelihood20:

logit(pik)=μi+δi,1k*I(k≠1) (4)

where I(k≠1) takes the value 0 when intervention k is equal to comparator 1, and 1 oth-

erwise. The µi are trial-specific log-odds in the comparator arm, and δi,1k are trial-specific 

log-odds for the treatment group compared to control. For the GLMRE, we assumed

 

δi,1k~N(di,1k,σ2) (5)

where σ2 represents the between-trial heterogeneity. For the GLMFE, (4) reduces to 

logit(pik)=μi+di,1k*I(k≠1) (6)

which is equivalent to setting σ2 in (5) to zero, thus assuming homogeneity of the 

underlying treatment effects. Using ln(RR) is possible, but may run into computational 

problems.21 We therefore estimated ln(RR) using the ln(OR) estimate and the treatment 

effect of the comparator.

We used a flat beta prior Beta(0.5,0.5) for all baseline transitions, and a flat normal 

prior N(0,1E12) for all other baseline parameters. We used a flat normal prior centered 

on N(0,1E8) for all treatment effects of the comparator. For GLMRE we used the inverse 

of a squared uniform distribution U(0.001,10) for the between-trial heterogeneity. The 

minimum value of this prior was not 0, to avoid numerical problems. 

Conceptually, confidence intervals in frequentist statistics and credibility intervals in 

Bayesian statistics have very different interpretations (e.g.22,23). However, for convenience 

and legibility, we abbreviate both as CI. For each pooled parameter estimate, we report the 

mean and the 95% CI. Interested readers may request code on both the simulation study 

and the methods of meta-analysis from the corresponding author.
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5.2.5. Comparing performance

We assumed that a researcher doing a meta-analysis aims to estimate the CE of the New 

Intervention compared to Usual Care in the entire patient population, not a specific 

subgroup. Evidence on other interventions is solely used to provide extra evidence for 

this comparison. We further assumed that the researcher is unaware of the fact that het-

erogeneity, when present, was caused by sampling from subgroups. To the researcher, 

heterogeneity is either caused by random sampling or unobserved trial differences. These 

assumptions are made, because if these differences in design are known, either the trials 

would not be synthesized at all, or a way has to be found to control for these differences. 

These assumptions made it possible to judge the performance of the different methods of 

meta-analyses by comparing model parameters and HE outcomes with the reference val-

ues. Because the same patients were included to calculate HE outcomes for each method 

of meta-analysis, any difference between the methods can be attributed to the methods 

themselves (moderately dependent samples).11

Statistical performance is measured using coverage, statistical power, bias and mean 

absolute deviation (MAD). Coverage is the percentage of all repetitions, that the simulated 

CI covered the ‘truth’. Since the coverage is based on 95% CIs, we would expect that, 

if all trials are drawn randomly, the coverage should on average be close to 95%.5,11,24 

Over-coverage, where the CI are so wide that coverage rates are above 95 per cent, sug-

gests that the results are too conservative, thus leading to a loss of statistical power. In 

contrast, under-coverage, where the coverage rates are lower than 95 per cent, indicates 

over-confidence in the estimates. More simulations will incorrectly detect a significant 

result, leading to higher than expected type I errors.11 We said a method underestimated 

uncertainty if the coverage was smaller than 90%; and overestimated if the coverage was 

higher than 98%. 

Statistical power is the percentage of all repetitions where the simulated result yields 

a statistically significant difference between the two treatments. Bias is the difference 

between the point estimate in the simulated data set and the true population value, aver-

aged over all repetitions. MAD is the average, over all repetitions, of the absolute value of 

the bias. The MAD indicates how far the estimated value was from the ‘truth’, regardless 

of whether it was too high or too low.

5.3 RESULTS

5.3.1. Model parameters for one set of trials

Figure 5.4 compares the methods on one example parameter for each of the scenarios, 

using only the first repetition. From bottom to top, we compare the different meta-analysis 

models for the eight scenarios. Each dot represents the point estimate for the parameter, 
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in this case the transition probability from severe to very severe disease, and the bars the 

estimated CIs. The ‘true’ population value is displayed at the bottom. As can be seen, 

when all trials were drawn randomly (scenario 1), GLMRE had the broadest CI, followed 

by DIRECT, GLMFE and SONG. PUHAN had the smallest CI. All methods had the true pa-

rameter value in its CI and the point estimates were all very similar. In the other scenarios, 

each with a different amount of heterogeneity, we see a similar pattern as in scenario 1, 

except that in scenario 7 SONG had a relatively larger CI. The point estimate of SONG 

and PUHAN, and of GLMFE and GLMRE are very similar.

Based on similar patterns for other parameters (not shown), we can conclude that 

DIRECT and GLMRE yielded the widest CI. GLMFE had a point estimate that is generally 

closer to the true parameter value than DIRECT, with a smaller CI. The smallest CI was 

found for SONG and PUHAN. In all scenarios, for all methods, the true parameter value 

lay within the CI of the estimated parameters. 

5.3.2. Model parameters for 1,000 repetitions

The results from the previous paragraph might be due to chance. To see if there were sys-

tematic differences, we now discuss parameter estimates averaged over 1,000 repetitions. 

Reference, "Truth"

Scenario 1: 9 random 
trials with 500 patients 

in each arm

Scenario 2: Tr 1 (Old vs 
No Int) worse ave. 

health

Scenario 3: Tr 6 (New 
vs No Int) worse ave. 

health

Scenario 4: Tr 8 (New 
Int vs Usual Care) 
worse ave. Health

Scenario 5: Tr 1 worse 
ave. health, tr 6 lower 

ave. age

Scenario 6: Tr 1 worse 
ave. health, tr 6 lower 
ave. age, tr 8 higher 

ave. age

Scenario 7: Tr 1, 6 and 
8 worse ave. health

Scenario 8: Tr 1, 6 and 
8 worse ave. health 
(extreme scenario)

-1.0 -0.5 0.0 0.5

Bayesian GLM
Random Effects

Bayesian GLM
Fixed Effects

Puhan

Song

Direct comparison

'Truth'

Figure 5.4: Meta-analysis on the logarithm of the risk ratio of the transition from the severe to very severe dis-
ease stage, for the New Intervention arm compared to the Usual Care arm, for one repetition.a

a All scenarios have nine trials, each with 500 patients in both treatment arms
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Table 5.4 shows the number of parameters that correspond to several threshold values 

of coverage, bias and MAD. No parameter had an average coverage below 90%, which 

we defined as underestimation of uncertainty, except in the extreme scenario 8. In this 

scenario GLMFE and GLMRE had the least amount of parameters for which uncertainty 

is underestimated. The least overestimation of uncertainty could generally be found with 

DIRECT and PUHAN, regardless of the amount of heterogeneity.

GLMRE had a large number of parameters with an average bias larger than 1% or even 

2%. All methods had a large number of parameters with a large bias in scenario 4, where 

extra heterogeneity was added to trial 8, which directly compares the Usual Care with the 

New Intervention. In scenarios 6 to 8, where three out of nine trials have patients drawn 

from a subpopulation, all methods showed bias in several parameters. The lowest amount 

of bias was found in SONG and PUHAN, with a similar number of parameters in each 

category of bias.

For all methods, the estimated parameter value was quite far from the true population 

value. The minimum MAD, averaged over 1,000 estimates of the same parameters (not 

in graphs/tables), ranged from 2.6% for PUHAN to 4.2% for GLMRE. In other words, 

none of the methods estimated parameters with an average MAD lower than 2.6%. The 

maximum MAD, averaged over 1,000 estimates of the parameters, was 27.6% for GLMRE 

in the extreme scenario 8. This means that one of the parameters, in this case ln(RR) of 

the number of events in the severe disease stage, differed from the reference value by 

more than 27%, averaged over 1,000 repetitions. The discrepancy will therefore be much 

larger for individual repetitions. SONG and PUHAN generally had the lowest number of 

parameters in each of the categories of MAD.

Generally, SONG, GLMFE and GLMRE overestimated uncertainty for most parameters. 

PUHAN overestimated uncertainty for fewer parameters. Neither of these methods under-

estimated uncertainty, except in the extreme scenario. The bias and MAD was generally 

lowest for SONG and PUHAN, followed by GLMFE.

5.3.3. Health-economic outcomes for 1,000 repetitions

In table 5.5, we show the coverage, statistical power, bias and MAD for four scenarios. 

Information on other scenarios can be found in the appendix A5. It shows the range in 

values over the four types of HE outcomes, the difference in QALYs, LYs, number of events 

and total costs. PUHAN had a coverage closest to the benchmark of 95%. Only in case of 

heterogeneity (i.e. scenarios 7 and 8) did PUHAN overestimate uncertainty. Both GLMFE 

and GLMRE had a coverage above 99% for all methods, for all HE outcomes. No method 

underestimated uncertainty.

Regardless of heterogeneity, GLMRE had the lowest statistical power. For the difference 

in LYs, GLMRE had a statistical power below 10% in scenario 1, where all trials were 

drawn randomly, and even lower in scenarios with added heterogeneity. All methods had 
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Table 5.5: Coverage, statistical power, absolute value of the bias and mean absolute deviation (MAD) of health-
economic outcomes for four of the eight scenarios.

Direct 
comparison

Song’s 
method

Puhan’s 
method

GLM FE 
method

GLM RE 
method

Coverage, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn 
trials

>98% >98% 97.0%-97.3% >98% 100%

Scenario 4: Eight randomly drawn 
trials; one trial drawn from a less 
health population

97.1%-98.6% >98% 96.8%-97.9% >99% 100%

Scenario 7: Six randomly drawn 
trials; three trials drawn from a less 
healthy population

97.2%-99.1% 97.9%-99.3% 96.3%-98.2% >99% 100%

Scenario 8: Six randomly drawn 
trials; three trials drawn from a 
less healthy population (extreme 
scenario)

>98% >99% 90.0%-100% >99% 100%

Statistical power, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn 
trials

81.5%-100% 95.3%-100% >99% 73.4%-100% 5.8%-95.9%

Scenario 4: Eight randomly drawn 
trials; one trial drawn from a less 
healthy population

76.3%-100% 93.5%-100% >98% 56.8%-100% 4.1%-94.3%

Scenario 7: Six randomly drawn 
trials; three trials drawn from a less 
healthy population

79.3%-100% 91.9%-100% >98% 60.3%-100% 3.6%-93.5%

Scenario 8: Six randomly drawn 
trials; three trials drawn from a 
less healthy population (extreme 
scenario)

70.0%-100% 83.7%-100% 94.1%-100% 13.0%-100% 0.5%-83.2%

Bias, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn 
trials

0.4%-5.7% 0.2%-3.0% 0.2%-2.1% 0.3%-3.5% 0.3%-13.6%

Scenario 4: Eight randomly drawn 
trials; one trial drawn from a less 
healthy population

0.5%-11.8% 0.5%-5.5% 0.5%-5.4% 0.8%-9.3% 2.0%-6.3%

Scenario 7: Six randomly drawn 
trials; three trials drawn from a less 
healthy population

0.2%-10.1% 0.5%-9.7% 0.4%-8.1% 0.0%-7.7% 0.2%-17.8%

Scenario 8: Six randomly drawn 
trials; three trials drawn from a 
less healthy population (extreme 
scenario)

3.1%-11.9% 0.4%-11.9% 0.5%-9.8% 1.7%-10.5% 2.5%-17.5%
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a statistical power of 100% for the number of events and above 99% for total costs, in all 

scenarios. PUHAN generally had the lowest bias and MAD across all scenarios. GLMRE 

had the highest MAD for all HE outcomes in all scenarios. In the online tables A5.7 and 

A5.8, the results for the different HE outcomes are presented separately.

In figure 5.5 we show the CE acceptability curves (CEACs) for the heterogeneous scenario 

7. The five graphs represent the methods we compared. In each graph, we show the CEAC 

of ten repetitions, the median and 2.5th and 97.5th percentiles over 1,000 repetitions. 

The vertical line indicates the true population ICER. Graphs for other scenarios can be 

found in the online figures A5.1 to A5.3. In this scenario where three trials are drawn from 

a less healthy population (scenario 7), we can see that SONG and PUHAN displayed a 

steeper shape than the other methods. This indicates that they were more certain of the CE 

of the New Intervention than the other methods. At a WTP of € 30,000 per QALY, which 

is close, but slightly above the true population ICER, the median likelihood that the New 

Intervention was cost-effective was 45%-60% for all methods. At higher WTPs, GLMFE 

and GLMRE were less certain than the other methods. With less heterogeneity (scenario 

1 and 4), the CEACs express a higher certainty for all methods. Still, SONG and PUHAN 

seem to be the most certain of the CE, in these scenarios followed by GLMFE. With more 

heterogeneity (scenario 8) all methods displayed less certainty. SONG and PUHAN still 

had the most certainty around the CE. SONG had all the CEACs lying closest to each other.

Regardless of the amount of heterogeneity, SONG and PUHAN lead to the least amount 

of uncertainty. GLMFE model is slightly less certain. DIRECT and GLMRE have a lot of 

uncertainty, even at WTP values far from the true population ICER. They also display a lot 

of differences between the different repetitions.

Table 5.5: Coverage, statistical power, absolute value of the bias and mean absolute deviation (MAD) of health-
economic outcomes for four of the eight scenarios. (Continued)

Direct 
comparison

Song’s 
method

Puhan’s 
method

GLM FE 
method

GLM RE 
method

MAD, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn 
trials

6.0%-21.7% 5.1%-17.9% 4.9%-16.9% 6.2%-22.7% 6.9%-25.9%

Scenario 4: Eight randomly drawn 
trials; one trial drawn from a less 
healthy population

6.6%-23.5% 5.3%-18.4% 5.1%-17.4% 6.8%-25.1% 7.9%-29.9%

Scenario 7: Six randomly drawn 
trials; three trials drawn from a less 
healthy population

6.3%-22.8% 5.4%-19.2% 5.1%-18.0% 6.8%-24.1% 7.9%-28.5%

Scenario 8: Six randomly drawn 
trials; three trials drawn from a 
less healthy population (extreme 
scenario)

8.3%-22.5% 6.9%-19.9% 6.4%-18.0% 10.1%-27.6% 10.7%-31.0%

a MAD = Mean absolute deviation, the four health-economic outcomes are QALYs, LYs, number of events 
and total costs
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5.4 DISCUSSION

In this study, we compared four methods of indirect meta-analysis in a simulation study 

and judged their statistical performance by creating a gold standard. On a parameter level, 

Puhan’s method (PUHAN) showed the best performance, overestimating uncertainty for 

the fewest parameters with low bias and MAD. Song’s method (SONG) and the Bayesian 

fixed effect generalized linear model (GLMFE) also had generally low bias and MAD.
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Figure 5.5: Cost-effectiveness acceptability curves (CEACs) for the five meta-analysis methods in the hetero-
geneous scenario 7.a

a The vertical lines depicts median, 2.5th and 97.5th percentile of the likelihood that the New Intervention 
is cost-effective compared with Usual care, at various threshold values of a QALY (averaged over 1,000 repeti-
tions). The curves are the CEACs for the first 10 repetitions. The dotted vertical line is the ‘true’ population ICER.
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On HE outcomes, PUHAN showed a coverage closest to 95%, regardless of heterogene-

ity. Only with high heterogeneity did PUHAN overestimate uncertainty. Both PUHAN 

and GLMFE performed best on bias and MAD, followed by SONG. GLMFE had a very 

high coverage, which we defined as overestimating uncertainty. The same is true for the 

Bayesian random effect generalized linear model (GLMRE), which also had the lowest 

statistical power and the highest MAD for all HE outcomes.

The use of these methods would lead to differences in policy decisions. Using either 

only the direct evidence or GLMRE would lead to more rejections of new treatments 

compared to the other methods or more unnecessary research. Generally speaking, so-

phisticated methods require more data than simple methods, because of the increased 

number of parameters. It is possible that the GLMRE method, which requires the largest 

number of parameter to be estimated, may have more desirable properties when more 

trials have to be combined. Unfortunately, this situation is unlikely within the scope of the 

expensive drug program in the Netherlands. Based on this study, we would recommend 

either PUHAN or GLMFE. PUHAN is easier to implement and more easily understood by 

physicians and policy makers who will be using the results. GLMFE is the most widely 

used method, but requires advanced knowledge of statistical programming. 

In scenarios, we covered many likely situations. We have drawn all trials randomly, 

added heterogeneity on the different “legs” of the network, and changed the amount 

of heterogeneity. Compared to a few large trials, the effect of having more but smaller 

trials and trials with differences in trial sizes, on the performance of different methods 

is small.10 We therefore feel our study results are generalizable to many other situations 

where parameters for a HE model are obtained through MTC. 

However, the network is very “regular” with direct evidence for all treatment combina-

tions. This is often not the case. New interventions are usually only compared to the latest 

alternative, or to placebo. Other forms of the evidence network are routinely found in 

MTC research. It remains open to further research whether adding irregularity to such 

networks will change the results of this study.

Another limitation is the choice of prior for the Bayesian models. In the case of meta-

analysis, a small number of studies is extra vulnerable to the type of prior.8,25 As we did 

not assume the researcher to have prior information, we used vague priors. Even though 

they are supposed to be “uninformative”, they may influence outcomes, especially scale 

parameters.25 We tested several different prior specifications but did not find any differ-

ences in outcomes.

Bayesian statistics at its heart is ideally suited for meta-analysis, since the premise of 

both are the same: prior available information is updated with new data.26 However, 

Bayesian statistics is not ideally suited for a simulation study such as we have done. Bayes-

ian statistics starts with the available data, which is examined in detail. This will drive all 

subsequent modelling decisions. Additionally, Bayesian outcomes are meaningless when 
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the model itself does not converge. Checking for convergence requires visual examination 

of plots, and careful examination of other outcome measures. However, all this is impos-

sible in a simulation study, where many data sets are fitted one after the other. 

In practice, there is still a strong preference to use direct over indirect evidence. One of 

the main concerns is that indirect comparisons may be subject to greater biases than direct 

comparisons.17 They are essentially observational findings across trials, and may have 

similar biases. The Cochrane Handbook for Systematic Reviews of Interventions recom-

mends that direct and indirect evidence is considered separately and direct comparisons 

should take precedence as a basis for forming conclusions.8 In contrast, it has also been 

argued that it would be improper to exclude any evidence.27 Our study seems to support 

this second view: the direct comparison has a smaller statistical power, leading to new 

interventions not being found statistically different from older interventions. The biases 

and MAD are also higher than the MTC methods, except for the GLMRE method. 

5.5 CONCLUSION

In conclusion, when indirect evidence is available, regardless of the amount of hetero-

geneity present, combining all evidence is superior to using only the direct evidence. 

Puhan’s method and GLMFE showed similar results, with GLMFE having the tendency 

to overestimate uncertainty, but also having lower average bias and MAD. Based on 

this study, where we had to combine nine trials in a network that includes evidence for 

all treatment combinations, we would recommend PUHAN or GLMFE as the preferred 

method of indirect meta-analysis.
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Figure A5.1: Cost-effectiveness acceptability curves (CEACs) for the five meta-analysis methods in the hetero-
geneous scenario 1. Graphs depicts median, 2.5th and 97.5th percentile CEACs over 1,000 repetitions, as well 
as the CEACs for the first 10 repetitions; vertical line is the ‘true’ population ICER.
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Figure A5.2: Cost-effectiveness acceptability curves (CEACs) for the five meta-analysis methods in the hetero-
geneous scenario 4. Graphs depicts median, 2.5th and 97.5th percentile CEACs over 1,000 repetitions, as well 
as the CEACs for the first 10 repetitions; vertical line is the ‘true’ population ICER.
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Figure A5.3: Cost-effectiveness acceptability curves (CEACs) for the five meta-analysis methods in the hetero-
geneous scenario 8. Graphs depicts median, 2.5th and 97.5th percentile CEACs over 1,000 repetitions, as well 
as the CEACs for the first 10 repetitions; vertical line is the ‘true’ population ICER.
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ABSTRACT

Objectives Many different factors affect the transferability of cost-effectiveness results 

between countries. The objective is to quantify the impact of nine potential causes 

of variation in cost-effectiveness of pharmacological smoking cessation therapies 

(SCTs) between The Netherlands (reference case), Germany, Sweden, UK, Belgium, 

and France.

Methods The life-time benefits of smoking cessation were calculated using the Benefits 

of Smoking Cessation on Outcomes model, following a cohort of smokers making an 

unaided quit attempt, or using nicotine replacement therapy (NRT), bupropion, or 

varenicline. We investigated the impact of between-country differences in nine fac-

tors—demography, smoking prevalence, mortality, epidemiology and costs of smok-

ing related diseases, resource use and unit costs of SCTs, utility weights and discount 

rates—on the incremental net monetary benefit (INMB), using a willingness-to-pay 

(WTP) of € 20,000 per quality adjusted life year (QALY).

Results The INMB of 1000 quit attempts with NRT versus unaided, varies from €0.39 

million (Germany) to €1.47 million (France). The differences between the countries 

were primarily due to differences in discount rates, causing the INMB to change 

between -65% to +62%, incidence and mortality rates (epidemiology) of smoking-

related diseases (-43% to +35%) and utility weights. Impact also depended on the 

WTP for a QALY and time horizon: at a low WTP or a short time horizon, the resource 

use and unit costs of SCTs had the highest impact on INMB.

Conclusions Although all INMBs were positive, there were significant differences 

across countries. These were primarily related to choice of discount rate and epide-

miology of diseases.
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6.1 INTRODUCTION

An increasing number of regulatory agencies across the world require evidence on the 

cost-effectiveness of new pharmacotherapies. All these agencies need results that represent 

their own unique national or regional setting. Nevertheless, time and budget constraints 

limit the number of clinical trials and economic evaluations pharmaceutical companies 

can conduct in potential markets. In addition, there is increased acknowledgement of the 

limited external validity of country-specific cost-effectiveness data. In recognition of these 

difficulties, ISPOR initiated the Transferability of Economic Data Task Force. Their mission 

was to develop good research practices on the transferability of economic data in health 

technology assessment.1

The Task Force advocates the use of mathematical decision analytic models to assess 

setting-specific cost-effectiveness. These models synthesize and structure evidence from 

diverse sources, allow expanding the time horizon beyond that of a clinical trial, as well 

as adapting and transferring results from one setting to another.2,3 For these reasons, mod-

els have been developed to assess the long-term cost-effectiveness of smoking cessation 

interventions.

A recent example is the BENESCO (Benefits of Smoking Cessation on Outcomes) model4 

which was developed by Heron Evidence Development Ltd, to support the launch of var-

enicline in various countries, e.g., The Netherlands5, Sweden6, Belgium [Annemans et al., 

unpubl. ms.], Germany7, the UK8, the Czech Republic9, Korea10, Japan11, and Denmark.12 

Interesting differences in the cost-effectiveness of the various smoking cessation medica-

tions were observed13,14, which may relate to various sources of variation, for example the 

incidence and prevalence of smoking and smoking-related diseases, characteristics of the 

population of smokers, differences in absolute and relative unit costs of medications and 

health-care services and many other factors.

This study was designed to unravel the factors driving differences in cost-effectiveness 

of pharmacological smoking cessation therapies (SCTs) between six European countries. 

The countries included were The Netherlands, Belgium, Germany, Sweden, the UK, and 

France, countries for which, at the start of the study, country-specific input data of the 

model were available.

6.2 METHODS

6.2.1 The model

The projections of the effects of smoking cessation were based on the BENESCO model15, 

which is a probabilistic, updated, and improved version of the Health and Economic 

Consequences of Smoking model.16 The BENESCO model simulates the consequences 
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of smoking and the benefits of quitting in terms of smoking-related morbidity, mortality, 

and associated medical costs in a population. The model is structured as a Markov model 

(cycle length 1 year) and follows a hypothetical cohort of current smokers making a single 

attempt to quit smoking at the beginning of the simulation. The cohort is followed from 

the time of their quit attempt until all members of the cohort have died. Individuals are 

classified into one of three smoking states, i.e., smoker, recent quitter (abstinent 1 to 5 

years after successful quit attempt), or long-term quitter. Transition probabilities between 

smoking states in the first year depend on cessation rates of the interventions, while the 

probabilities after 1 year depend on relapse rates, which in turn depend on time since 

quitting. The model simulates the age, gender, and smoking status-specific incidence and 

mortality of four major diseases for which smoking is a well-established risk factor: chronic 

obstructive pulmonary disease (COPD), lung cancer, coronary heart disease (CHD), and 

stroke. Smoking state-specific incidence and mortality rates were calculated using relative 

risks.17,18 The incidence and mortality rates for recent quitters were calculated using the 

relative risks of former smokers versus nonsmokers, while the rates for long term quitters 

were assumed to be the same as those of never smokers. Because COPD and lung cancer 

are chronic progressive conditions, these diseases were given hierarchical prominence 

over the other conditions with acute recurrent events. This means that individuals with 

COPD or lung cancer remain in this state until they die and cannot move to a CHD or 

stroke state, whereas individuals with CHD or stroke can move to the COPD or lung 

cancer state. As in all Markov models, states are mutually exclusive, which means that a 

patient cannot have two diseases at the same time. The model calculates the total num-

ber of smokers and quitters that have one of the smoking-related diseases as well as the 

number of deaths (due to one of the smoking-related diseases and overall) over the time 

horizon of the simulation. Based on these numbers, the total health-care costs associated 

with the different disease states and the total number of (quality adjusted) life years is 

calculated. The model uses three age bands: 18 to 34 years, 35 to 64 years, and 65 years 

and older. Subjects alive in the model at age 99 years are all assumed to die in the next 

cycle. It is assumed that there is no smoking-related morbidity or mortality in the 18 to 34 

years age class.

6.2.2 Smoking cessation therapies

We calculate the cost-effectiveness of three frequently used pharmacological SCTs— 

nicotine replacement therapy (NRT), bupropion, and varenicline—and unaided cessation. 

NRT is the generic term for any form of smoking cessation aid which delivers a measured 

dose of nicotine to the person using it. Examples include the nicotine patch or nicotine 

gum. Bupropion is an antidepressant used to support smoking cessation.19 Varenicline 

is designed to relieve symptoms of nicotine withdrawal including cigarette craving and 

block the reinforcing effects of continued nicotine use.20 The 12-month continuous ab-
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stinence rates were based on a meta-analysis of available randomized controlled trials, 

where the SCTs were always given in combination with counselling.5 They were 5.0% for 

unaided cessation, 14.8% for NRT, 17.0% for bupropion, and 22.4% for varenicline. In 

all analyses, we assumed that 25% of smokers undertake a single quit attempt, using one 

of the smoking cessation interventions, or unaided. It is this cohort that is followed over 

lifetime.

6.2.3 Factors affecting transferability

A total of nine factors that could potentially cause differences in cost-effectiveness be-

tween countries were investigated. Each factor consists of a group of country-specific 

input parameters which are varied simultaneously. Table 6.1 gives the most important 

input parameters of each of the nine factors. The nine country-specific factors include:

F1: Demography. This includes the total number of people older than 18 years of age 

and the break-downs of the population by gender and age-classes.

F2: Smoking Prevalence. This refers to the percentage of smokers, nonsmokers, and 

former smokers in each age/gender class.

Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

F1: Demography

Males, 18 to 34 years 14.1% 13.9% 13.6% 15.4% 14.4% 14.6%

Males, 35 to 64 years 27.3% 25.5% 26.5% 24.7% 25.4% 24.6%

Males, 65+ years 7.6% 8.9% 7.9% 9.0% 8.7% 8.6%

Females, 18 to 34 years 13.8% 13.7% 13.5% 14.9% 14.3% 14.4%

Females, 35 to 64 years 26.8% 25.3% 25.8% 24.0% 26.1% 25.3%

Females, 65+ years 10.4% 12.7% 12.6% 12.0% 11.1% 12.4%

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Source 21 22 23 24 25 26
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Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a (Continued)

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

F2: Smoking prevalence

Males, 18 to 34 years 32.3% 34.6% 38.7% 15.0% 32.6% 39.4%

Males, 35 to 64 years 34.1% 35.4% 36.0% 22.4% 27.7% 29.3%

Males, 65+ years 15.6% 19.2% 13.3% 15.4% 12.7% 10.2%

Females, 18 to 34 years 27.4% 26.1% 29.7% 23.0% 28.0% 31.2%

Females, 35 to 64 years 28.8% 27.8% 27.2% 26.8% 28.5% 21.8%

Females, 65+ years 12.3% 8.9% 6.4% 12.8% 26.7% 6.2%

Source 27 28 29 24 25 30,31

F3: All-cause mortality

Males, 18 to 34 years 0.06% 0.12% 0.08% 0.07% 0.09% 0.09%

Males, 35 to 64 years 0.40% 0.54% 0.58% 0.39% 0.47% 0.55%

Males, 65+ years 5.48% 4.89% 4.14% 4.88% 4.72%

Females, 18 to 34 years 0.03% 0.04% 0.03% 0.03% 0.04% 0.04%

Females, 35 to 64 years 0.28% 0.29% 0.29% 0.25% 0.30% 0.25%

Females, 65+ years 4.57% 4.48% 4.67% 2.85% 3.87% 3.65%

Source 21 22 23 24 32 26

F4: Epidemiology: annual incidence rate of COPD per 1,000 inhabitants

Males, 18 to 34 years 0.17 0.16 0 0.02 0 0.03

Males, 35 to 64 years 2.08 2.31 0.1 0.74 0.15 0.17

Males, 65+ years 9.68 12.77 3.26 15.22 3.82 1.73

Females, 18 to 34 years 0.17 0.17 0 0.02 0 0.01

Females, 35 to 64 years 2.13 2.63 0.06 0.97 0.11 0.09

Females, 65+ years 6.46 12.17 2.25 9.58 1.95 2.05

Source 33 33 29 34 35,36 37–42
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Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a (Continued)

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

F4: Epidemiology: annual incidence rate of lung cancer per 1,000 inhabitants

Males, 18 to 34 years 0.01 0.01 0.01 0.01 0 0.01

Males, 35 to 64 years 0.56 0.61 0.69 0.69 0.56 1

Males, 65+ years 4.24 5.15 5.38 4.95 4.84 4.25

Females, 18 to 34 years 0.01 0.01 0 0.01 0.01 0.01

Females, 35 to 64 years 0.42 0.48 0.39 0.56 0.36 0.2

Females, 65+ years 1.07 1.71 1.43 1.88 1.63 0.82

Source 43 43 29,44–47 34 25 48

F4: Epidemiology: annual incidence rate of CHD per 1,000 inhabitants, all events

Males, 18 to 34 years 0.35 0.33 0.8 0.05 0.04 0

Males, 35 to 64 years 7.6 7.95 8.36 6.97 2.32 4.27

Males, 65+ years 24.35 26.26 33.15 33.84 25.58 33.42

Females, 18 to 34 years 0.06 0.05 0.6 0.02 0.01 0

Females, 35 to 64 years 2.37 2.54 5.29 2.32 0.53 1.21

Females, 65+ years 15.29 17.44 25.76 20.84 15.48 15.45

Source 49 49 29,50 34 25,51 52

F4: Epidemiology: annual incidence rate of CHD per 1,000 inhabitants, first event only

Males, 18 to 34 years 0.33 0.32 0.46 0.04 0.04 0

Males, 35 to 64 years 5.69 5.95 4.86 4.39 1.6 3.8

Males, 65+ years 17.5 18.87 19.25 17.24 14.93 26.27

Females, 18 to 34 years 0.06 0.05 0.35 0.02 0.01 0

Females, 35 to 64 years 1.81 1.94 3.07 1.57 0.46 1.12

Females, 65+ years 11.42 13.04 14.96 12.11 11.27 13.42

Source 49 49 29,50 34 25,51,53 52
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Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a (Continued)

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

F4: Epidemiology: annual incidence rate of stroke per 1,000 inhabitants, all stroke events

Males, 18 to 34 years 0.03 0.03 0.12 0.06 0.08 0.14

Males, 35 to 64 years 1.31 1.39 1.89 1.69 2.29 0.79

Males, 65+ years 11.69 12.61 17.8 14.67 13.25 9.07

Females, 18 to 34 years 0.1 0.1 0.03 0.05 0.07 0.13

Females, 35 to 64 years 0.88 1 1.34 0.93 1.58 0.73

Females, 65+ years 11.43 12.71 11.95 13.23 12.28 6.19

Source 54 54 29 34 25 55

F4: Epidemiology: annual incidence rate of stroke per 1,000 inhabitants, first event only

Males, 18 to 34 years 0.03 0.03 0.06 0.05 0.06 0

Males, 35 to 64 years 1.19 1.25 0.99 1.44 1.73 0.43

Males, 65+ years 10.53 11.36 9.29 11.29 8.74 8.15

Females, 18 to 34 years 0.1 0.1 0.02 0.04 0.05 0

Females, 35 to 64 years 0.8 0.91 1.07 0.8 1.17 0.43

Females, 65+ years 10.52 11.7 9.51 10.66 8.03 5.07

Source 54 54 29 34 25 55

F5:Annual costsb per patient with a smoking-related disease

COPD 1,036 1,928 2,245 2,907 1,127 2,220

Lung Cancer

First year 13,236 13,505 33,983 10,355 5,132 17,629

After first year 13,236 13,505 33,983 5,502 5,132 17,629

CHD

First year 4,841 4,867 1,969 4,795 1,348 5,721

After first year 2,949 796 985 1,374 1,348 5,721

Stroke

First year 23,119 7,685 10,741 7,056 22,006 9,641

After first year 5,229 5,439 4,618 1,884 22,006 9,641

Source 56–59 57,60–63 29,64 65,66c 67–70 71
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Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a (Continued)

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

F6: Resource use: intervention costs using different resource use across countries, but equal unit costsb

Varenicline 391.79 304.79 294.59 391.79 381.59 294.59

Bupropion 327.81 244.81 226.60 335.51 160.30 230.61

NRT 323.35 213.94 207.00 298.79 234.56 231.05

Unaided cessation   0.00   0.00 0.00 0.00 0.00 0.00

Source 20,72 73,74 75 19,76,77 78

F7: Unit costs: intervention costs using different unit costs across countries, but equal resource useb

Varenicline 391.79 391.78 337.28 401.90 290.62 390.60

Bupropion 327.81 277.42 292.22 350.92 285.02 327.15

NRT 323.35 311.05 317.13 365.76 213.15 387.03

Unaided cessation 0.00 0.00 0.00 0.00 0.00 0.00

Source 79,80 73,74 75 19,76,77 81

F8: General population utility weights

Males, 18 to 34 years 0.91 0.91 0.93 0.93 0.93 0.93

Males, 35 to 64 years 0.91 0.91 0.877 0.877 0.877 0.877

Males, 65+ years 0.82 0.82 0.8 0.8 0.8 0.8

Females, 18 to 34 years 0.92 0.92 0.91 0.91 0.91 0.91

Females, 35 to 64 years 0.89 0.89 0.853 0.853 0.853 0.853

Females, 65+ years 0.76 0.76 0.77 0.77 0.77 0.77

Source 82–90

F8: Disease-specific utility weights

COPD 0.69 0.76 0.76 0.76 0.76 0.76
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F3: All-cause mortality. Mortality in the general population is expressed as the all-

cause mortality rate, which is the percentage of the total number of people in each age/

gender class that dies during a single year.

F4: Epidemiology of smoking-related diseases. The epidemiology of smoking-related 

diseases consists of three elements: the incidence rates, prevalence rates, and annual 

cause-specific mortality rates by age/gender class. We applied the disease definitions that 

were actually used in each country at the time of writing the reimbursement dossiers for 

varenicline. To identify COPD, all countries used ICD-10 codes J40–44, UK and Sweden 

also used J47. To identify lung cancer, all countries used C33–34, except Sweden that 

defined lung cancer as C34. CHD is identified in all countries as I20–25. Stroke in The 

Netherlands and Belgium is identified as I60–I69 plus G45, in Sweden as I61 and I63, in 

Germany as I60, I61, I63 and I64, and in the UK and France as I60–I64.

Table 6.1: Main country-specific input parameters for each factor potentially contributing to between-country 
variation in cost-effectiveness of smoking cessation interventions.a (Continued)

The 
Netherlands

Belgium Germany Sweden United 
Kingdom

France

Population characteristics (age 18+, x mln)

Population size 12.7 8.2 67.1 7.3 46.6 46.8

Number of smokers 3.54 2.25 18.61 1.51 12.70 11.53

As % of adult 
population 

28% 27% 28% 21% 27% 25%

Cohort size: smokers 
making a quit attempt 

0.88 0.56 4.65 0.38 3.17 2.88

Lung Cancer first year 0.61 0.61 0.61 0.61 0.61 0.61

Following years 0.5 0.5 0.5 0.5 0.5 0.5

CHD 0.71 0.76 0.76 0.76 0.76 0.76

Stroke first year 0.54 0.74 0.74 0.74 0.74 0.74

Following years 0.29 0.15 0.15 0.15 0.15 0.15

Source 83–93

F9: Discount rates

Costs 4.00% 3.00% 5.00% 3.00% 3.50% 3.00%

Outcomes 1.50% 1.50% 5.00% 3.00% 3.50% 0.00%

Source 94 95 96 97 98 99

a COPD: chronic obstructive pulmonary disease; CHD, coronary heart disease; NRT, nicotine replacement 
therapy 
b In 2006 Euros, accounting for differences in purchasing power
c Bolin K, Dozet A, unpublished data. 
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Given the causal relationship, there is a strong association between smoking prevalence 

and the epidemiology of smoking related diseases. To enter these two factors as inde-

pendent factors in the univariate analysis, we calculated the country-specific incidence, 

prevalence, and mortality of smoking-related diseases among nonsmokers, i.e., the 

country-specific baseline risk. This was done using the country-specific epidemiology and 

smoking prevalence, and the relative risks for smokers, former smokers, and nonsmokers 

used within the model. When studying the impact of the factor “epidemiology” in the 

univariate analysis, the Dutch baseline-risk was replaced by the country-specific baseline 

risk, which was then combined with the relative risks and the Dutch smoking prevalence 

to estimate the incidence (or prevalence or mortality) of smoking-related diseases among 

smokers and ex-smokers.

F5: Costs of smoking-related diseases. The model makes a distinction between the 

first-year costs and subsequent-year costs for lung cancer, CHD, and stroke, diseases for 

which high initial costs are generally followed by lower maintenance costs. As COPD 

does not have (much) higher initial costs, this distinction is not relevant for COPD.

F6: Resource use and F7: Unit costs of SCTs. The intervention costs of SCTs are 

separated into two components: the amount of resource use (i.e., medication and counsel-

ling) associated with the SCTs and the unit costs of these resources. We have investigated 

both these factors separately.

F8: Utility weights. The BENESCO model requires two categories of utility inputs: 

utility weights for the general, disease-free (developed no smoking-related disease) popu-

lation, which vary by age, and the disease-specific utility weights, which vary by type of 

smoking-related disease. The Netherlands is the only country in our sample for which 

country-specific utility weights for both categories were provided. Germany, Sweden, the 

UK, and France all have used the provided default values within the model. Belgium has 

used the general population utility weights from The Netherlands and the default disease-

specific utility values.

F9: Discount rates. All costs and outcomes are discounted using the country-specific 

values that are recommended in the national guidelines for economic evaluations. In the 

reference case, costs are discounted at 4%, outcomes at 1.5%.

We adopted a health-care perspective and included healthcare costs that are either 

covered from the health-care budgets or paid for by patients. All prices and costs were 

inflated to 2006, using the Harmonised Indices of Consumer Prices—all items.100 We also 

compensated for differences in purchasing power, using the average exchange rates on 

January 2, July 3, and December 31, 2006, and 2006 purchasing power parities.100

6.2.4 Analyses

The starting point of all between-country comparisons were the results of the BENESCO 

model populated with Dutch input data. Hence, The Netherlands was the reference case. 
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In a series of univariate analyses we replaced the group of input parameters belonging 

to the same factor by its country-specific estimates. We changed one factor at a time; all 

other factors were kept constant at the reference values. We compared the impact of each 

factor on the outcomes. In the subsequent multivariate analysis, we consecutively enter 

parameters from the highest to the lowest impact. Eventually, this results in models that 

are filled completely with country-specific parameters. In all analyses, the time horizon 

is lifetime. Sensitivity analyses were done using different time horizons and different 

threshold values of the willingness-to-pay (WTP) for a quality adjusted life year (QALY).

6.2.5 Outcomes

Outcomes were presented as incremental costs, QALYs gained, incremental cost-

effectiveness ratios (ICERs), and incremental net monetary benefits (INMBs). The ICER 

is the difference in total costs between two smoking cessation interventions, divided by 

the difference in total QALYs. The percentage change in the INMB of the reference case 

caused by each factor was our primary measure of interest. The INMB was calculated 

as the difference in QALYs between two interventions, times societies’ WTP, for a QALY 

(threshold value) minus the difference in costs. The INMB was calculated with a relatively 

low threshold value of € 20,000 per QALY. For each country,we have ranked all country-

specific input parameters according to the percentage of change in INMB compared with 

the reference case. A rank order of 1 indicates that this factor caused the INMB to change 

most; a rank order of 9 indicates that this factor had the least impact on the INMB. We 

present the outcomes according to a hierarchy of effectiveness of the interventions: NRT 

versus unaided cessation, bupropion versus NRT, and varenicline versus bupropion. The 

ranking was averaged over these three pair-wise comparisons.

6.3 RESULTS

6.3.1 Reference case

In table 6.2, the outcomes of the reference case are given. The ICER of NRT compared 

with unaided cessation was about € 1,600 per QALY. Bupropion dominated NRT, and 

varenicline dominated bupropion. Using a WTP of € 20,000 per QALY, the INMBs of all 

three comparisons were positive.

6.3.2 Univariate analysis

F1: Demography. Demography influences the age and gender distribution of the cohort 

of smokers that is followed over lifetime. If the cohort of smokers that attempts to quit 

becomes older than in the reference case, the INMB and ICER worsen, for all three pair-

wise comparisons of smoking-cessation interventions. This is primarily due to a decrease 
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Table 6.2: Lifetime outcomes of the Benefits of Smoking Cessation on Outcomes model filled with Dutch input 
data, expressed per 1000 smokers making a quit attempt.a

NRT versus 
unaided 
cessation

Bupropion 
versus NRT

Varenicline 
versus 

bupropion

Difference in total costs (€ 1000)b 126.7 -40.4 -44.7

Difference in QALYs 77.4 17.7 42.8

Incremental net monetary benefit (INMB) (€1 mln)c 1.42 0.39 0.90

Incremental cost-effectiveness ratio (ICER) 1636.7 Dominant Dominant

a Outcomes differ from 5 because all cost inputs were updated to 2006 prices, Harmonised Indices of 
Consumer Prices were used, asthma exacerbations were excluded and the price of varenicline was updated. 
NRT: nicotine replacement therapy; QALYs: quality adjusted life years; WTP: willingness-to-pay.
b Intervention costs plus total costs of smoking-related diseases.
c WTP is € 20,000.

Table 6.3: Effect of changing the reference case input values to the country-specific input values on cost-
effectiveness outcomes compared with the reference case.a

Effect on INMB and 
ICER compared with the 

reference case

F1: Demography

Older cohort Worsens

F2: Smoking prevalence

Higher smoking prevalence among elderly Worsens

F3: All-cause mortality

Lower mortality Improves

F4: Smoking-related disease epidemiology

Higher incidence Improves

Higher mortality Improves

F5: Costs of smoking-related diseases

Higher costs Improves

F6: Resources used for SCTs

Resource use of a more effective SCT increases more than the resource use of 
a less effective SCT 

Worsens

F7: Unit costs of SCTs

Unit cost of a more effective SCT increases more than the unit costs a less 
effective SCT 

Worsens

F8: Utility weights

Higher disease-specific utility weights Worsens

Lower general population utility weights Worsens

F9: Discount rates

Higher discount rates on costs Worsens

Higher discount rates on outcomes Worsens

a INMB: incremental net monetary benefit; ICER: incremental cost-effectiveness ratio; SCTs: smoking cessa-
tion therapies.
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in QALYs that is greater for the more effective intervention because the number of people 

who remain disease free and survive to old age is greater for this intervention. Table 6.3 

summarizes these effects. Replacing the age and gender distribution in the reference case 

by the country-specific age and gender distribution caused the INMB of NRT versus un-

aided cessation to change between -2.1% in Belgium and -0.4% in Sweden. The change 

in INMB of bupropion versus NRT varies from -1.7% in Belgium to -0.4% in Sweden. The 

change in INMB of varenicline versus bupropion varies from -1.8% in Belgium to -0.4% 

in Sweden (figure 6.1).

Figure 6.1: Relative change in incremental net monetary benefits of nicotine replacement therapy versus un-
aided cessation of the reference case, caused by applying each country-specific factor univariately.



143

6
F2: Smoking prevalence. Like demography, smoking prevalence primarily influences 

the age and gender distribution of the cohort of smokers attempting to quit. When smok-

ing prevalence among the elderly gets higher, the cohort of smokers attempting to quit 

becomes older and the INMB and the ICER worsen. Compared with the reference case, 

the change in INMB for NRT versus unaided cessation that is due to a change towards 

country-specific smoking prevalence varies from -6.2% in Sweden to +7.6% in France. 

The change in INMB for bupropion versus NRT varies from -5.1% in Sweden to +6.3% 

in France. The change in INMB for varenicline versus bupropion varies from -5.4% in 

Sweden to +6.6% in France (figure 6.1).

F3: All-cause mortality. In countries where the all-cause mortality rate is lower (i.e., the 

life expectancy is higher) than in the reference case, the INMBs of the smoking cessation 

interventions are higher and the ICERs improve, primarily because of higher QALY gains. 

The increase in QALYs that result from a lower mortality rate is largest for the most effec-

tive treatment, because the number of people who stop smoking and remain disease free 

is highest for this intervention. The change in INMB for NRT versus unaided cessation 

because of a change in all-cause mortality varies from -1.9% in Belgium to +12.9% in 

Sweden. The change in INMB for bupropion versus NRT varies from -1.6% in Belgium 

to +10.6% in Sweden. The change in INMB for varenicline versus bupropion varies from 

-1.7% in Belgium to +11.3% in Sweden (figure 6.1).

F4: Epidemiology of smoking-related diseases. In countries where the incidence of 

all smoking-related diseases is higher than in the reference case, the INMBs and ICERs 

improve, because preventing more diseases results in higher QALY gains and greater cost 

savings. The same holds for countries where the mortality due to smoking-related diseases 

is higher. Change in prevalence has only a limited effect on the INMB. The change in 

INMB for NRT versus unaided cessation because of a change in epidemiology varies from 

-43.2% in France to +34.5% in Sweden. The change in INMB for bupropion versus NRT 

varies from -35.6% in France to +28.5% in Sweden. The change in INMB for varenicline 

versus bupropion varies from -37.7% in France to +30.1% in Sweden (Figure 6.1).

F5: Costs of smoking-related diseases. In countries where the health-care costs of 

smoking-related diseases are higher than in the reference case, the INMBs are higher 

and the ICERs improve, because the savings from preventing these diseases increase. 

This increase gets greater when the effectiveness of the smoking cessation intervention 

improves. The change in INMB for NRT versus unaided cessation because of a change in 

costs per patient with a smoking-related disease varies from -0.7% in Belgium to +9.2% 

in France. The change in INMB for bupropion versus NRT varies from -0.6% in Belgium to 

+7.6% in France. The change in INMB for varenicline versus bupropion varies from -0.6% 

in Belgium to +8.0% in France (figure 6.1).

F6: Resource use and F7: Unit costs of SCTs. When the intervention costs of a more 

effective SCT increase relatively more than the intervention costs of a less effective treat-
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ment, the INMB will go down and the cost-effectiveness will worsen. The change in INMB 

for NRT versus unaided cessation because of a change in the resource use component of 

the intervention costs varies from +1.7% in Sweden to +8.2% in Germany. The change in 

INMB for bupropion versus NRT varies from -8.2% in Sweden to +20.0% in the UK. The 

change in INMB for varenicline versus bupropion varies from -17.5% in the UK to +0.9% 

in Sweden. The change in INMB for NRT versus unaided cessation because of a change 

in the unit cost component of the intervention costs varies from -4.5% in France to +7.7% 

in the UK. The change in INMB for bupropion versus NRT varies from -17.1% in the UK 

to +16.3% in France. The change in INMB for varenicline versus bupropion varies from 

-5.6% in Belgium to +6.5% in the UK (figure 6.1).

F8: Utilities. In countries where the utility weights of the smoking-related diseases are 

higher than in the reference case, the QALY gains from preventing these diseases are lower. 

The reduction in QALY gain is greatest for the intervention with the highest effectiveness. 

Thus, higher disease-specific utility weights lead to lower INMBs and a worsening of the 

cost-effectiveness. This applies to all five countries in our analysis, because the reference 

case represents the only country that has changed the model’s default utility values. If 

the utility weights for the general, disease-free population of a country are lower than in 

the reference case, the QALY gains from preventing a smoking-related disease are lower. 

Again, the reduction in QALY gains is greater if the treatment is more effective because 

more people stay disease free and their live years are thus weighted with the lower utility 

weights. This causes the INMBs to go down and the ICERs to worsen. The change in 

INMB for NRT versus unaided cessation because of a change in utility weights varies from 

-18.1% in Germany, Sweden, the UK, and France, to -13.7% in Belgium. The change in 

INMB for bupropion versus NRT varies from -14.9% in Germany, Sweden, the UK and 

France, to -11.3% in Belgium. The change in INMB for varenicline versus bupropion varies 

from -15.8% in Germany, Sweden, the UK, and France, to -12.0% in Belgium (figure 6.1).

F9: Discount rates. In countries where the costs and outcomes are discounted more 

than in the reference case, the INMBs and the ICERs worsen because the cost savings and 

QALY gains of smoking cessation that occur far into the future are reduced. The change 

in INMB for NRT versus unaided cessation because of a change towards country-specific 

discount rates varies from -65.2% in Germany to +62.0% in Sweden. The change in INMB 

for bupropion versus NRT varies from -53.7% in Germany to +51.1% in Sweden. The 

change in INMB for varenicline versus bupropion varies from -56.9% in Germany to 

+54.1% in Sweden (figure 6.1).
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6.3.3 Ranking of impact on INMB

The ranking of factors according to their impact on the INMB of NRT versus unaided 

cessation is largely similar for the comparisons bupropion versus NRT and varenicline 

versus bupropion. Table 6.4 shows the rank order when averaged over all three pairwise 

treatment comparisons. The first row shows the rank orders after averaging the impact of 

each factor over all countries. When substituting the reference case input univariately by 

country-specific input, F9: discount rates had the biggest impact on the cost-effectiveness. 

This is followed by F4: epidemiology and F8: utility weights. The least important factor in 

Table 6.4: Univariate ranking of factors according to the percentage change in incremental net monetary 
benefit, averaged over the three pair-wise comparisons of smoking cessation therapies, using a threshold value 
€20,000 per quality adjusted life year and a lifetime horizon, unless otherwise stated.

F9 
Discount 

rates

F4 
Epidemi-

ology

F8 
Utility 

weights

F6 
Resource 

use

F7 
Unit 
costs

F2 
Smoking 

prevalence

F3 
All-

cause 
mortality

F5 
Costs of 
smoking-
related 
diseases

F1 
Demog-
raphy

Rank order 
averaged 
over all 
countries

1 2 3 4 5 6 7 8 9

Rank order for each country

Belgium 5 1 2 4 3 8 7 9 6

Germany 1 3 2 5 6 4 9 7 8

Sweden 2 1 3 6 7 5 4 8 9

United 
Kingdom 

1 5 2 3 4 6 8 7 9

France 1 2 3 8 5 6 7 4 9

Rank order averaged over all countries at different time 
horizons

2 years 7 4 5 2 1 6 9 3 8

10 years 5 3 4 1 2 7 9 6 8

Lifetime 1 2 3 4 5 6 7 8 9

Rank order averaged over all countries at different 
threshold values

€ 100 4 5 9 1 2 6 7 3 8

€ 500 4 5 7 1 2 6 8 3 9

€ 1,000 4 5 6 1 2 7 8 3 9

€ 5,000 1 2 5 3 4 7 8 6 9

€ 10,000 1 2 3 4 5 7 8 6 9

€ 20,000 1 2 3 4 5 6 7 8 9

€ 50,000 1 2 3 6 7 4 5 8 9

€ 100,000 1 2 3 7 6 5 4 9 8
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terms of its effect on the INMB is F1: demography, i.e., the age/gender distribution of the 

cohort of smokers making a quit attempt. 

6.3.4 Sensitivity analysis: impact of using a different time horizon

A shorter time horizon changes the importance of the various causes of variability in 

cost-effectiveness between countries. The importance of the three factors with the largest 

long-term mpact, i.e., F9: discount rates, F8: utility weights, and F3: all-cause mortality 

decreases. Using a time span of 2 or 10 years, the two most important factors become 

the two factors determining the costs of smoking cessation treatment: F6: resources used 

and F7: unit costs. These factors become so important because a time horizon of 2 and 10 

years is insufficient to capture the full gains in QALYs and savings in costs that result from 

the prevention of smoking-related diseases. In other words, time has been insufficient to 

fully get the returns on the investments in SCT.

6.3.5 Sensitivity analysis: impact of using a different threshold value

Using different threshold values to calculate the NMB also changes the rank order of 

the factors. When the threshold value increases, the factors with a large influence on 

the QALYs, i.e. all-cause mortality, smoking prevalence, and demography, become more 

important. When the threshold value decreases, factors with a large influence on costs be-

come more important. This includes resources used for the smoking cessation treatments, 

unit costs, and costs of smoking-related diseases. The discount rates remain important, 

irrespective of the threshold value. For threshold values of € 5,000 or higher, discount-

ing is the single most important factor. Using a threshold value of € 1,000 or lower, the 

discount rate becomes the fourth most important factor. For a threshold value of € 1,000 

or lower, the most important factor is the resources used to deliver SCT, followed by costs 

of smoking-related disease.

6.3.6 Multivariate analysis

In the multivariate analysis, we enter all country-specific input parameters at the same 

time. Table 6.5 shows how the INMB differs between countries when fully accounting for 

all known between-country differences. In Belgium, the decrease in INMB due to higher 

disease-specific utilities is offset by an increase in the INMB because of a higher incidence 

of all smoking-related diseases. As a result, the INMBs increase, except for varenicline 

versus buproprion because the difference in unit costs between the two SCTs is greater 

than in The Netherlands. 

In Germany, the INMBs of all three pair-wise comparisons decrease primarily because 

of the relatively high discount rate for costs and outcomes. Other causes are a lower 

incidence of COPD, higher disease-specific utility values and lower general population 

utility values.
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In Sweden, the INMB is also lower than in the reference case for all pair-wise com-

parisons, because of higher utility weights for the smoking-related diseases and because 

QALYs were discounted at 3.5% instead of 1.5%. This decrease offsets the increase in 

INMB caused by lower all-cause mortality rates and higher incidence rates for all smoking-

related diseases in most age/gender classes.

In the UK, the INMB of all three pair-wise comparisons is lower than in the reference 

case, primarily because of a higher discount rate (3%) for outcomes, higher utility weights 

for the smoking-related diseases and a lower incidence of COPD.

In France, lower smoking-related disease mortality, higher disease-specific utility val-

ues, and lower general population utility values cause the INMB of all three pair-wise 

comparisons to decrease. Nevertheless, the effect of no discounting (0%) on outcomes has 

such a large effect that the INMB is higher than in the reference case.

Figure 6.2 shows the differences between countries in terms of ICERs for NRT versus 

unaided cessation. Incremental costs per QALYs gained in the reference case were esti-

mated to be € 1,600, represented by the dotted line. This ICER improved for Belgium (BE), 

Sweden (SE), and the UK; it worsened for Germany (DE) and France (FR). Note that the 

ICER in Sweden and the UK improved whereas the INMB decreased. In France, the ICER 

worsened whereas the INMB improved. This is due to the valuation of the QALY gains with 

€ 20,000 per QALY, as a result of which a decrease in QALYs, as in the UK, has a much 

greater impact on the INMB than on the ICER.

Table 6.5: Incremental Net Monetary Benefit (INMB) per 1000 smokers undertaking a quit attempt, using a 
threshold of €20,000 per quality adjusted life year, for three pair-wise smoking cessation therapy comparisons, 
influenced by all nine identified factors.a

INMB (x€1 mln)

NRT versus 
unaided cessation

Bupropion versus 
NRT

Varenicline versus 
bupropion

The Netherlands 1.42 0.39 0.90

Belgium 1.46 0.45 0.86

Germany 0.39 0.17 0.32

Sweden 1.29 0.22 0.82

UK 0.95 0.25 0.54

France 1.47 0.64 1.01

a NRT, nicotine replacement therapy.
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6.4 DISCUSSION

Many factors should be taken into account when transferring cost-effectiveness results 

across countries and settings and there are many interactions between these factors. This 

stresses the importance of carefully considering whether foreign results can be applied 

and adapted to its own setting. In this paper, we systematically investigated the impact 

of nine groups of country-specific model input parameters (factors) on the cross-country 

variability in long-term cost-effectiveness of pharmacological smoking cessation inter-

ventions. An earlier article13 has already shown that outcomes from cost-effectiveness 

studies on SCTs differ considerably between countries, but causes were not unravelled. 

Among the factors that we have investigated, the choice of discount rate was the factor 

contributing the most to the between-country differences in cost-effectiveness, followed 

by the incidence and mortality of smoking-related diseases and the utility values used to 

calculate QALYs.

It is important to note that the importance of a factor in terms of its impact on the 

INMB depends on the WTP for a QALY. At a WTP of € 20,000 per QALY, the impact of 

between-country differences in the cost parameters is relatively low, because the changes 

in the INMB are largely driven by factors affecting the QALYs. At lower values of the WTP 

Figure 6.2: Cost effectiveness per 1,000 smokers with a quit attempt of nicotine replacement therapy versus un-
aided cessation influenced by all nine identified factors. Dotted line shows all points with the same ICER as NL 
(€ 1,637 / QALY). ICERs: BE = € 207 / QALY; GE = € 5,184 / QALY; SE = € 495 / QALY; UK = -/- € 6,566 / QALY; 
FR = € 2,125 / QALY.a

a ICER: Incremental cost-effectiveness ratio
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for a QALY, the costs of SCTs, in terms of both the unit costs and resource use, as well 

as the costs of smoking-related diseases, become much more important. Irrespective of 

the WTP for a QALY, the impact of differences between countries in demography and 

all-cause mortality in the INMBs is small, because the differences between the countries 

investigated were relatively small and do not greatly alter the cohort of smokers undertak-

ing a quit attempt.

Despite the differences between countries, all pair-wise treatment comparisons in our 

study showed that the more effective smoking cessation treatments were also cost-effec-

tive, and in some case even cost-saving. INMBs were positive and ICERs were consistently 

below € 5,300 per QALY gained. Hence, there are strong health economic arguments to 

support these treatments across all countries.

It is further relevant to note the differences between the changes in the ICERs and the 

changes in the INMBs compared with the reference case, which stresses the importance 

of the threshold value for a QALY in decision-making. Using the change in INMB instead 

of the change in ICER as a measure of the importance of a country-specific factor gives 

relatively greater weight to changes in QALYs. We have seen that the larger emphasis on 

QALYs in the INMB also affects the relative importance of a factor. For example, applying 

the Swedish discount rates (3% for costs and outcomes) causes both the incremental costs 

and QALYs gained to decrease. This leads to a change in ICER of -3% and thus a slight 

improvement of cost-effectiveness, whereas the INMB is a significant 32% lower.

In each country, we have used the same base-case estimates of the 12-month continuous 

abstinence rates.5 This is based on the assumption that the pure biological effect of a drug 

can be expected to be the same, irrespective of the country. Otherwise we have used as 

many country-specific estimates of model input parameters as available. Some of the input 

data were very difficult to compare across countries. For example, smoking prevalence 

data may differ, because countries use different definitions and methods to determine the 

number of current smokers, like including only daily smokers or also including irregular 

smokers. In The Netherlands for example, a smoker is defined as somebody that has 

smoked in the 7 days before being asked101, while in Belgium, people are asked whether 

they have smoked 100 cigarettes during their lives and whether they consider themselves 

a smoker or not.102 In addition, the epidemiological data on smoking-related diseases 

are difficult to compare across countries. Different countries also used different defini-

tions of the four diseases included in the model, especially with respect to COPD and 

CHD. For example, COPD was identified with ICD-10 code J40–44 in The Netherlands, 

but as J40-44 plus J47 in Sweden. Such a difference in definition could potentially be 

a source of the difference in reported epidemiology and its associated costs between 

countries. Furthermore, not all countries distinguish between the first-year costs of lung 

cancer, CHD and stroke and the costs of these diseases in later years, often because these 

data are not available. Such differences complicate the comparison of cost-effectiveness 
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between countries. Nevertheless, we have deliberately chosen to use the definitions of the 

smoking-related diseases and the associated cost that were actually applied at the time 

of writing the country-specific reimbursement dossiers for varenicline. By doing so, we 

highlight best the differences between countries and the influence of these differences on 

cost-effectiveness and cost-benefit estimates as they drive actual decision-making.

Despite its large influence on the outcomes, in only one of our six countries, The 

Netherlands, country-specific utility weights were available. This lack of country-specific 

utility data is probably due to the difficulty to collect these data and the assumption that 

utility values for a specific health state will probably not differ much between countries. 

Nevertheless, as this study shows, it is worthwhile to invest more time and resources 

in finding country-specific utility weights, because their impact on the INMB is large, 

especially at higher levels of the threshold value of a QALY.

6.5 CONCLUSION

The Transferability of Economic Data Task Force from ISPOR states on their webpage103 

that one of the most important questions to be answered with regard to transferability is 

“[w]hich elements of economic data vary most from setting to setting?” The results from 

this study suggest that it is not only important to see which factors vary, but also how 

much this variation in factors causes variation in cost-effectiveness. The factors that cause 

the most variation in cost-effectiveness do not necessarily have to be the same as the 

factors that vary most themselves. For example, the unit costs of the smoking cessation 

drugs differ considerably between countries, but the impact on the cost-effectiveness is 

limited when adopting a lifetime time horizon. We spent considerable time and effort on 

identifying data sources, adjusting input data to fit into the model and especially assessing 

the comparability of input parameters between countries. Based on this observation, we 

wholeheartedly agree with the concluding remark of the Task Force that “those developing 

national guidelines for economic evaluations should think carefully about the need for 

local data or methods, since this increases the burden on those undertaking studies in 

multiple jurisdictions.” The results of our study underline that, when studying the cost-

effectiveness of smoking cessation, there is a need for local data even for countries within 

a similar region of the world.
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ABSTRACT

Recently, several checklists systematically assessed factors that affect the transferabil-

ity of cost-effectiveness (CE) studies between jurisdictions. The role of the threshold 

value for a QALY has been given little consideration in these checklists, even though 

the importance of a factor as a cause of between country differences in CE depends 

on this threshold.

In this paper, we study the impact of the willingness-to-pay (WTP) per QALY on the 

importance of transferability factors in the case of smoking cessation support (SCS). 

We investigated, for several values of the WTP, how differences between six countries 

affect the incremental net monetary benefit (INMB) of SCS. The investigated factors 

were demography, smoking prevalence, mortality, epidemiology and costs of smoking-

related diseases, resource use and unit costs of SCS, utility weights and discount rates.

We found that when the WTP decreased, factors that mainly affect health outcomes 

became less important and factors that mainly effect costs became more important. 

With a WTP below €1,000, the factors most responsible for between country differ-

ences in INMB were resource use and unit costs of SCS and the costs of smoking-re-

lated diseases. Utility values had little impact. At a threshold above €10,000, between 

country differences were primarily due to different discount rates, utility weights and 

epidemiology of smoking-related diseases. Costs of smoking-related diseases had 

little impact. At all thresholds, demography had little impact. 

We concluded that, when judging the transferability of a CE study, we should consider 

the between country differences in WTP threshold values.
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7.1 INTRODUCTION

Transferability has been defined as the degree to which the results of a cost-effectiveness 

study performed in one jurisdiction are representative for another jurisdiction, frequently 

another country. The term is also used to express the amount of adaptation that is neces-

sary to make the results applicable to another jurisdiction.1 A study that requires just a few 

simple adaptations, like a change in unit costs or discount rate, is more easily transferable 

than a study that requires many complicated adaptations, like a change in resource use 

pattern or a change in the case mix of the study population.

The question arises to what extent we can assess transferability. Recently, several check-

lists have been developed which systematically check the transferability of CE studies 

between jurisdictions [2–4]. Such checklists contain a list of issues which must be satisfied 

before a study is considered transferable. Examples of such issues are whether the per-

spective and comparators are relevant for the country of interest, whether the disease 

epidemiology is comparable in the country of interest and whether discount rates were 

specified. Some of the checklists generate a summary transferability score, assigning either 

equal importance to each issue2 or weighting the importance of each issue.3

The advantage of such checklists is that they force the user to systematically think about 

transferability. The disadvantage is that the transferability scores are difficult to interpret. 

What does a particular transferability score really say? Moreover, in all of these checklists, 

there is one aspect that has been given little consideration, namely the threshold value for 

a QALY. Although some checklists encourage the user to discuss the generalizability of the 

results in the light of country-specific decision criteria, the checklists ignore the fact that 

the importance of a transferability issue depends on the threshold value for a QALY. Issues 

that are important contributors to between country differences in CE at a low threshold 

need not be of equal importance at a higher threshold. For example, a difference in the 

incidence of an infectious disease between two countries, which causes the incremental 

cost-effectiveness ratio (ICER) of a vaccination program to double from € 12,000 in coun-

try A to € 24,000 in country B, is less important when the threshold value is € 50,000 per 

QALY but highly important when the threshold value is € 20,000.

As we will discuss later in this paper, no country has an explicit threshold value for 

a QALY. However, this does not mean that there is no threshold. Since no country has 

infinite resources available for health care, decisions have to be made which interventions 

to reimburse and which not. At the same time, although heavily criticized, the QALY is 

widely regarded as a relevant outcome for decision-makers. Assuming both the existence 

of a country-specific threshold and the acceptance of QALYs as an outcome measures that 

is relevant to the decision-makers in our countries of interest, country-specific INMBs can 

be calculated for all relevant countries.
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The aim of this paper is to assess whether the extent to which between country differ-

ences influence the country-specific INMB depends on the threshold value for a QALY. 

We ranked several possible causes (in this paper ‘‘transferability factors’’ or ‘‘factors’’) 

of between country differences in CE of smoking cessation support, according to their 

impact on the INMB. By doing this for different levels of the threshold value for a QALY, 

we studied how the importance of a transferability factor depends on this threshold value. 

In an earlier study, we found that at a threshold value of € 20,000, discount rates and 

the epidemiology of smoking-related diseases were important drivers of between country 

differences in INMB of smoking cessation interventions.5

7.2 METHODS

7.2.1 The BENESCO model

The economic evaluation of smoking cessation support was based on the Benefits of Smok-

ing Cessation on Outcomes (BENESCO) model, using a lifetime horizon and a healthcare 

sector’s perspective.6 The BENESCO model simulates the benefits of quitting smoking in 

terms of smoking-related morbidity, mortality and associated medical costs. Diseases 

included in the model are chronic obstructive pulmonary disorder (COPD), lung cancer, 

chronic heart disease (CHD) and stroke. The model is structured as a Markov model and 

follows a hypothetical cohort of current smokers making a single attempt to quit smoking 

at the beginning of the simulation. More information on the model can be found in the 

online appendix and several publications.7-9 

7.2.2 Smoking cessation support

If a person decides to quit smoking, (s)he can do this unaided, or using one of the available 

forms of smoking cessation strategies. In this paper, we compare three forms of pharma-

cological smoking cessation support: nicotine replacement therapy (NRT), bupropion and 

varenicline. NRT is the generic term for any form of smoking cessation aid which delivers 

a measured dose of nicotine to the person using it. Examples include the nicotine patch 

or nicotine gum. Bupropion is an antidepressant used to support smoking cessation.10 

Varenicline is designed to relieve symptoms of nicotine withdrawal including cigarette 

craving and block the reinforcing effects of continued nicotine use.11 The reference case 

to which the results of other countries in this analysis are compared is an economic 

evaluation performed from the Dutch health care perspective. In this study, NRT has been 

shown to be costeffective compared to unaided cessation, bupropion was dominant over 

NRT and varenicline was dominant over bupropion.7
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7.2.3 Cost-benefit

The primary outcome of the economic evaluation was the INMB. The INMB was chosen 

because it explicitly incorporates the threshold value for the willingness-to-pay (WTP), or 

the societal value for a QALY (k). Hence, we could study the extent to which the impor-

tance of the transferability factors depends on the λ (see paragraph below). The INMB was 

calculated for different values of λ ranging from € 0 to € 50,000. Comparing two smoking 

cessation interventions, A and B, the INMB was calculated as:

[QALY(A) – QALY(B)] x λ – [Costs(A) – Costs(B)].

A positive INMB indicates that the net benefits of intervention A are higher than the net 

benefits of intervention B. A negative INMB indicates that the net benefits of intervention 

A are lower than the net benefits of intervention B.

7.2.4 Factors affecting transferability

Within the BENESCO model, all variables except the risk ratio of getting a smoking-related 

illness were changed to calculate country-specific cost-effectiveness. These variables can 

intuitively be grouped in a total of nine transferability factors, which could potentially 

cause differences in the cost-benefit of smoking cessation support between countries. We 

investigated each of these factors. Each transferability factor consisted of a group of coun-

try-specific input parameters which were varied simultaneously. Demography included 

the total number of people older than 18 years of age in six age/gender classes. Smoking 

prevalence refers to the percentage of smokers, non-smokers and former smokers in each 

age/gender class. All-cause mortality was the percentage of the total number of people in 

each age/gender class that dies during a single year. The epidemiology of smoking-related 

diseases consisted of three elements: the incidence rates, prevalence rates and annual 

cause-specific mortality rates by age/gender class. The costs of smoking-related diseases 

were separated into first year costs and costs in subsequent years, except for COPD. The 

amount of resource use (i.e., medication and counselling) associated with the SCS and 

the unit costs of these resources were the two elements defining the intervention costs. 

The utility weights were defined both for the general population and for patients with a 

smoking-related disease. The discount rates for both costs and outcomes were set equal to 

the values recommended in 2007 in the national guidelines for economic evaluations. For 

each country, we adopted a health care perspective. Information on the main input factors 

can be found in appendix A7.

7.2.5 The importance of each transferability factor

Based on the hierarchy of effectiveness of the smoking cessation interventions, we calcu-

lated the INMB of NRT versus unaided cessation, bupropion versus NRT and varenicline 
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versus bupropion in The Netherlands.7 These results were used as the reference values. 

We then changed the Dutch input values of each of the nine factors individually to the 

country-specific values for Germany, Sweden, the UK, Belgium and France.5, 8, 12, 13 This 

changes the INMB. The percentage of change in the INMB was then averaged over the 

three treatment comparisons. Each factor is then rank ordered from highest (1) to lowest 

(9) percentage of change in INMB. We compare these rankings for different threshold 

values, ranging from € 0 to € 50,000 per QALY, for each country separately.

7.3 RESULTS

The INMB of NRT versus unaided cessation in The Netherlands at a WTP threshold of 

€ 20,000 per QALY was € 1.42 million. The INMB of bupropion versus NRT was € 0.39 

million, and the INMB of varenicline versus bupropion was € 0.90 million. Table 7.1 shows 

the ranking of factors at different threshold values for a QALY, after replacing the Dutch 

reference values with the German country-specific values. It is clear from this table that 

the threshold value has a considerable impact on the importance of each factor.

This can be seen most clearly for the cost of smoking-related diseases, resource use, unit 

costs and utility weights. The INMB is calculated as the difference in QALYs multiplied 

by λ minus the difference in costs. Hence, the QALY gains are weighted with the λ before 

subtracting the additional costs. When λ decreases, the transferability factors that mainly 

affect the health outcomes are given less weight and become less important, whereas 

the transferability factors which mainly affect the costs become more important. Among 

the latter are the costs of smoking cessation support, which are driven by the resources 

Table 7.1: Univariate ranking of factors after changing to the German values, at different threshold values for 
the WTP for a QALY.a

Threshold 
value for 

WTP

Demog-
raphy

All-cause 
mortality

Smoking 
prevalence

Epidemiol-
ogy

Costs of 
smoking-
related 
diseases

Resource 
use

Unit 
costs

Utility 
weights

Discount 
rates

€ 0 7 8 6 5 3 1 2 9 4

€ 100 7 8 6 5 4 1 2 9 3

€ 500 8 9 6 5 4 1 3 7 2

€ 1,000 8 9 7 5 3 1 4 6 2

€ 5,000 8 9 7 4 6 2 5 3 1

€ 10,000 8 9 6 3 7 4 5 2 1

€ 20,000 8 9 4 3 7 5 6 2 1

€ 50,000 7 9 4 3 8 5 6 2 1

a WTP: Willingness-to-pay; Ranked according to the percentage change in INMB compared to the reference 
country, averaged over three pair-wise comparisons of smoking cessation strategies.
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used and the unit costs of these resources, and the costs of smoking-related diseases. 

When λ increases, the transferability factors with a large impact on the QALYs are given a 

higher weigh, increasing their importance as a cause of between country differences in net 

benefit. As a consequence, utility weights, epidemiology (mainly incidence and mortality) 

of smoking-related diseases and smoking prevalence become more important. 

When replacing Dutch by German input values, the discount rate, which changed from 

4% for costs and 1.5% for effects in The Netherlands to 5% for both costs and effects 

in Germany, led to the highest percentage of change in INMB at thresholds of € 5,000 

or higher. At lower thresholds, the relative importance of the discount rate decreases, 

with the resource use taking over as the most important factor. All-cause mortality and 

demography are relatively unimportant at all threshold values.

Similar tables result for the other countries. They are shown in appendix A7. For the 

other four countries, the same general overview can be seen, although there are individual 

differences. Tables on the outcomes of other countries can be found in appendix A7. In 

all countries, unit costs and/or resource use are amongst the two most important causes 

of between country differences in cost benefit at low thresholds. At high thresholds, utility 

weights, discount rates and the epidemiology of smoking-related diseases are the three 

most important factors for all countries, except for Belgium which had almost the same 

discount rates as in The Netherlands.

Figure 7.1 shows the percentage of change in the INMB of NRT versus unaided cessa-

tion, when substituting the reference case input values to the German values, at various 

levels of λ. The results were comparable for the other pair-wise comparisons of smoking 

cessation interventions (not shown, available on request). At a λ of € 0, substituting Dutch 

resource use by German resource use led to the greatest change in INMB, a decrease of 

92%. The second most important transferability factor was the costs of smoking-related 

diseases, decreasing the INMB with 29%. At a λ of € 500, Germany-specific resource 

use still caused the INMB to change most, but now followed by the discount rates. At a 

λ of € 5,000 or above, the discount rates had the highest impact on the INMB, causing a 

decrease in INMB of 99%, followed by the utility weights, causing a decrease in INMB 

of 25%.

The closer the threshold value of a QALY was to the original ICER in the reference 

country—in this case € 1,637 per QALY—the more the INMB was affected by a change to 

country-specific input data. This was true for every transferability factor, since the INMB 

of the base case comparison is close to zero with a λ close to the ICER. For most transfer-

ability factors, the sign of the impact on the INMB at a threshold of € 1,000 or lower 

switched from positive to negative or vice versa at a threshold of € 5,000 or higher. Only 

the factor discount rates for Sweden and the UK and the factor epidemiology for Belgium 

and Sweden show a slightly different pattern. The reason is that the INMB of the base case 

comparison is always positive with a λ above the value of the ICER, but negative with a λ 
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below the ICER. A similar change in INMB due to a new country-specific variable value 

will therefore have a directly opposite effect. 

Figure 7.2 shows, for various levels of λ, the change in INMB of NRT versus unaided 

cessation, when all reference case input values are simultaneously replaced by country-

specific values. This change to the country-specific INMB is shown for each country 

separately. At lower levels of λ, the INMB changes most when adapting the Dutch input 

data to the UK input data. This is because the resource use and costs of NRT in the UK 

Figure 7.1: Percentage of change in the INMB of NRT versus unaided cessation, when replacing Dutch input 
values for each factor by the German input values, at different threshold values for the WTP for a QALY. F1: 
demography, F2: smoking prevalence, F3: mortality, F4: epidemiology, F5: costs of smoking-related diseases, 
F6: resource use, F7: unit costs, F8: utility weights, F9: discount rates.
a WTP: Willingness-to-pay
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differ most from that in The Netherlands, i.e., NRT is considerably less expensive in the 

UK than in The Netherlands. At higher levels of λ, the INMB changes most when adapting 

the Dutch input data to the German input data. This is because of the great difference in 

discount rates.

Figure 7.2: Percentage of change in the INMB of NRT versus unaided cessation, when simultaneously replac-
ing Dutch input values for all transferability factors by the country-specific input values at different threshold 
values for the WTP for a QALY. 
a WTP: Willingness-to-pay
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7.4 DISCUSSION

This paper has clearly shown that, when we transfer a foreign economic evaluation to 

the country of interest, the factor which should most carefully be adapted is driven by 

the threshold value for a QALY. We feel that this aspect has been given too little attention 

in the transferability debate until now. When discussing the transferability of smoking 

cessation evaluations in countries with low threshold values, we should pay most at-

tention to the country-adaptation of the cost drivers, i.e., the costs of the interventions 

and the disease that are studied. In countries with high threshold values, we should pay 

most attention to the country-adaptation of the factors that affect the health outcomes. 

These include disease epidemiology and utility values. Although the results are specific 

for smoking cessation interventions, and indeed for the BENESCO model, we feel this con-

clusion is applicable to similar interventions of a preventative nature that require initial 

investments which by far precede the returns on these investments in terms of improved 

health outcomes and savings in the costs of health care utilization. In addition, we feel 

that based on this paper, the threshold value for a QALY should be an integral part of the 

investigation of transferability for all economic evaluations.

The approach taken in this paper assumes the acceptance of the QALY as a relevant 

decision-making outcome and the existence of threshold values, either explicit or implicit. 

The reason that the role of the threshold value has been largely ignored in the transfer-

ability discussion may be related to the fact that we are far from reaching a consensus 

on the maximum willingness to pay for a QALY. There is not a single jurisdiction where 

the threshold value is really fixed. With respect to the countries in our current study, 

NICE (National Institute for Health and Clinical Excellence) in the UK mentions the most 

explicit threshold value, but they too reject the use of a single, absolute threshold, instead 

preferring to make decisions on a case-by-case basis. NICE is unlikely to reject a technol-

ogy with a ratio in the range of £ 5,000 – £ 15,000 per QALY solely on the grounds of 

cost ineffectiveness but would need special reasons for accepting technologies with ratios 

over £ 25,000 – £ 35,000 per QALY as cost effective.14 In The Netherlands, a threshold of 

€ 20,000 per QALY is often cited. However, this threshold was obtained from economic 

evaluations of preventive interventions and is certainly not used consistently.15 Currently, 

there is discussion in The Netherlands on increasing the threshold value depending on 

the burden of the disease of interest, with a maximum threshold of up to € 80,000 for 

very severe diseases.16,17 In Germany, IQWiG (Institut für Qualität und Wirtschaftlichkeit 

im Gesundheitswesen) has prepared guidelines for economic evaluation as part of the 

evaluation of the value of pharmaceuticals18, but coverage does not depend on any ex-

ternally set maximum standard. In 2008, the Belgian KCE (Federal Knowledge Centre 

for Health Care) started to produce methodological reports in order to help standardize 

the methodology used for health technology assessment.19 One such report mentions 
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that CE is now only rarely used as an argument for reimbursement. The budget impact is 

considered more important. This report was intended as a starting point for a discussion 

on the role of threshold values in Belgium.20 In Sweden, no guidance has been given as 

to acceptable cost-effectiveness ratios, defined in terms of cost per QALY or otherwise, 

although cost-effectiveness is considered a crucial aspect in the Swedish reimbursement 

system.21 Rather than apply a single threshold, there may be different (implicit) thresholds 

depending on the severity of the disease or an assessment of patient need.22 In France, no 

threshold value is used when making health care decisions.23

In a cost-utility analysis, an intervention is found to be cost-effective if the cost per 

QALY falls below the WTP for a QALY. This value is used as an external threshold value 

against which the ICER is compared. In the cost benefit analysis, the societal value of a 

QALY is directly incorporated into the analysis. For an intervention to be cost-effective, 

the INMB (calculated as [QALY(A) – QALY(B)] x λ – [Costs(A) – Costs(B)]) needs to be 

positive. In the net benefit approach, it is apparent that the impact of a country-specific 

model parameter on the decision to adopt an intervention depends on the threshold value 

of the QALY. Though not immediately visible in the cost-utility analysis itself, the impact 

of a parameter on the probability that the ICER falls below the threshold value equally 

depends on the level of this threshold value. Whether or not the threshold value is ex-

plicitly incorporated into the analysis does to affect the importance of a country-specific 

parameter in the transferability discussion. The consequence of our findings may be that 

we have to adjust the available transferability check lists to encourage checking whether 

there might be differences in the willingness to pay between the countries, next to check-

ing how well a foreign study represents the circumstances in the country of interest and 

how much effort is required to adapt particular data inputs to the country of interest. For 

example, NRT, bupropion and varenicline are currently not covered by the basic health 

care insurance in The Netherlands, although the health insurance board CVZ has recently 

advised the Ministry of Health to reimburse them as part of an integrated smoking ces-

sation program.24 This implies a current willingness to pay of € 0. Consequently, when 

future foreign CE studies of new smoking cessation interventions (e.g., a vaccine) become 

available, the transferability of the cost of this intervention to The Netherlands will be 

driving the reimbursement discussion. In contrast, in the UK, where NRT, bupropion and 

varenicline are already paid by the NHS, the discussion on the transferability of foreign 

cost-effectiveness studies of such a drug might focus more on the representativeness of 

the epidemiology of smoking-related diseases for the UK and the utility values of patients 

having a smoking-related disease.
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7.5 CONCLUSION

When judging the transferability of a CE study from one jurisdiction to another, it is rel-

evant to consider the between country differences in threshold values per QALY. Between 

country, differences in cost-effectiveness are determined by between country differences 

in unit costs, disease epidemiology, discount rates etc., but the importance of each of 

these is influenced by the threshold value for a QALY. Between country differences that 

are important at a low threshold value might be less important at a high threshold value 

and vice versa.
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A7 APPENDIX

A7.1 Background information BENESCO model and additional results

The projections of the effects of smoking cessation were based on the BENESCO (Benefits 

of Smoking Cessation on Outcomes) model.1 The BENESCO model simulates the conse-

quences of smoking and the benefits of quitting in terms of smoking-related morbidity, 

mortality and associated medical costs in a population. The model is structured as a 

Markov model (cycle length 1 year) and follows a hypothetical cohort of current smokers 

making a single attempt to quit smoking at the beginning of the simulation. The cohort 

is followed from the time of their quit attempt until all members of the cohort have died. 

Individuals are classified into one of three smoking states, i.e., smoker, recent quitter (ab-

stinent 1–5 years after successful quit attempt) or long-term quitter. Transition probabilities 

between smoking states in the first year depend on cessation rates of the interventions, 

while the probabilities after 1 year depend on relapse rates, which in turn depend on time 

since quitting. The model simulates the age, gender and smoking status-specific incidence 

and mortality of four major diseases for which smoking is a well-established risk factor: 

chronic obstructive pulmonary disease (COPD), lung cancer, coronary heart disease and 

stroke. Smoking state-specific incidence and mortality rates were calculated using relative 

risks.2, 3 The incidence and mortality rates for recent quitters were calculated using the 

relative risks of former smokers versus never smokers, while the rates for long-term quitters 

were assumed to be the same as those of never smokers. Because COPD and lung cancer 

are chronic progressive conditions, these diseases were given hierarchical prominence 

over the other conditions with acute recurrent events. This means that individuals with 

COPD or lung cancer remain in this state until they die and cannot move to a CHD or 

stroke state, whereas individuals with CHD or stroke can move to the COPD or lung 

cancer state. A patient cannot have two diseases at the same time. The model calculates 

the total number of smokers and quitters that have one of the smoking-related diseases 

as well as the number of deaths (due to one of the smoking-related diseases and overall) 

over the time horizon of the simulation. Based on these numbers, the total health care 

costs associated with the different disease states and the total number of (quality adjusted) 

life years are calculated. The model uses three age bands: 18–34 years, 35–64 years and 

65 years and older. Subjects alive in the model at age 99 years are all assumed to die in 

the next cycle. It is assumed that there is no smoking-related morbidity or mortality in the 

18–34 years age class. 
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ABSTRACT

Background National regulatory agencies often have to use cost-effectiveness (CE) 

data from multinational randomized controlled trials (RCTs) for national decision 

making on reimbursement of new drugs. We need to make the best use of these 

patient-level data to obtain estimates of country-specific CE. Several methods, ranging 

from simple to statistically complex, have existed for years. We investigated which 

of these methods are used to estimate CE ratios in economic evaluations performed 

alongside recent, multinational RCTs that enrolled at least 500 patients.

Methods In this systematic literature review, studies were classified based on whether 

resource use, unit costs, health outcomes and utility value sets were obtained from 

all countries, a subset of countries or one country. We recorded if the study presented 

trial-wide and country-specific CE results and reported the statistical analyses that 

were used to estimate them.

Results We included 21 studies, of which the majority used measurements of health 

care utilization and health outcomes from all countries to estimate CE. Thirteen stud-

ies used a one-country valuation of health care utilization; six used a multi-country 

valuation. Despite the availability of country-specific utility value sets, none of the 

studies that presented quality-adjusted life-years (QALYs) used multi-country valua-

tion. Valuation of health care utilization and health outcomes was not always consis-

tent within a study: three studies combined a multi-country valuation of health care 

utilization, with a one-country valuation of health outcomes. Most studies calculated 

trial-wide CE estimates, while 11 studies calculated country or region-specific esti-

mates. Thirteen studies used relatively simple methods, which do not take the possible 

interaction between the country and treatment effect on health care utilization and 

health outcomes into account. Eight studies used more advanced statistical methods. 

Three of them used a fixed-effects modeling approach. Five studies explicitly took 

the hierarchical structure of the data into account, which leads to more appropriate 

estimates of population average results and associated standard errors. In this way, 

they help improve transferability of the published results.

Conclusion Based on this systematic review, we concluded that the uptake of more 

advanced statistical methods has been relatively slow, while simpler naïve methods 

are still routinely employed.
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8.1 INTRODUCTION 

Once regulatory approval has been obtained, pharmaceutical companies have to file 

for reimbursement of a drug in many different countries, each with their own specific 

regulations. In many countries, decision makers are in principle prepared to consider 

cost-effectiveness (CE) evidence from an international origin, provided that the data are 

adapted to their own country and setting. Such adaptations are often done with decision 

analytic models that are filled with country-specific epidemiological and economic data. 

Sometimes, the country of interest has participated in a CE study that was linked to a 

multinational clinical trial. In that case, there are patient-level data on cost-effectiveness. 

The challenge is to make the best use of this data to obtain a CE estimate that represents 

the country of interest best. This is the topic of this paper. 

Three simple methods are frequently used to calculate CE estimates from multinational 

randomized controlled trials (RCTs). The first simple method is to use only data from 

the country of interest. This method disregards all data collected in other countries.1 For 

example, in a trial with both Dutch and UK data, only the data from Dutch patients 

is included. The second method is to combine measurements of health care utilization 

and health outcomes from all  or a subset of  countries included in the RCT, which are 

then valued with weights (unit costs, utility values) from a single country (one-country 

valuation, see table 8.1). In our example, we count the number of hospital bed days in 

both countries, which are then multiplied with the Dutch costs for each bed day. In effect, 

all patients in the trial are treated as if they come from the country where the valuation 

comes from.2,3 The final simple method that is frequently used, combines measurements 

of resource utilization and health outcomes with country-specific values that only apply 

to that specific country (multi-country valuation). In our example, the hospital bed days 

used by Dutch patients are multiplied by the Dutch unit costs, and the bed days from UK 

patients are multiplied by the UK unit costs. These three methods do not take into account 

the interaction between country and treatment effect on health care utilization and health 

outcomes, an interaction that may be due to differences in for example epidemiology, 

practice patterns, payment systems and unit costs. In this sense, they might be called 

naïve.

More advanced statistical techniques have been developed, which do take this inter-

action into account. The first such method was introduced in 1998 by Willke and col-

leagues4, who proposed the use of two separate patient-level regression models, modeling 

both the direct effect of a treatment on costs and the indirect effect of treatment on costs 

through a change in health outcomes. They were soon followed by other studies proposing 

different fixed effect models with country-level covariates, for example Koopmanschap 

and colleagues and more recently Clarke and colleagues.5,6
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Health economic data from multinational RCTs naturally fall into the hierarchical struc-

ture of multiple micro units (patients) within macro units (countries). To take this structure 

into account, multilevel modeling (MLM) has been used.7-10 MLM uses a random intercept 

for each macro unit to model the hierarchical structure, but can be expanded to include a 

random slope or country-level (fixed) covariates. Hierarchical models lower the variability 

of country-specific CE results by borrowing strength from the other countries, and lead 

to more appropriate estimates and associated standard errors.11-14 In a recent review of 

available methods, Manca et al. conclude that these hierarchical models are the most 

appropriate tool to analyze CE alongside a multinational trial.15

In 2005, Barbieri and colleagues showed that one of the most frequently used methods 

of calculating CE was to combine country-specific measurements of health care utilization 

and weights from a single country.2 Because more advanced methods have been avail-

able for several years and their use has been recommended by the ISPOR Task Force on 

Transferability16, we aimed to review the experience with these methods. We examined 

recent multinational cost-effectiveness analyses (CEAs) that were conducted alongside 

large RCTs and described and summarized how these studies dealt with transferability 

aspects. In more detail, we aimed to answer the following questions:

- In what way have the researchers looked for evidence of heterogeneity between 

countries and (how) have heterogeneity issues been addressed?

- How have the researchers calculated trial-wide CE estimates?

- How have the researchers calculated country-specific CE estimates?

Table 8.1: Terminology used in classifying transferability issues of multinational trials.

Measurement

One-country (1C) Measurements from a single country are included

Subset Measurements from a subset of countries are included

All countries (All) Measurements from all countries in the RCT are included

Measurements in

 health care utilization E.g.: number of days in a hospital, number of pills taken 

 health outcomes E.g.: survival, number of exacerbations, number of events

Valuation

One-country valuation (1C) The weights used, come from a single country

Multi-country valuation (MC) Each country has their own weights

Unweighted (UW) No weights are used

Measurements in

 health care utilization Unit costs

 health outcomes Quality of life weights
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At all points in the texts where we say country, it could also be read as any other 

jurisdiction.

8.2 METHODS

8.2.1 Search strategy

A systematic electronic literature search was performed for CEAs alongside multinational 

RCTs, published in 2005 or after, written in English, Dutch or German. Because the more 

advanced statistical techniques can only be applied to large numbers of patient, the RCT 

in question needed to be conducted on at least 500 individual patients from at least 2 dif-

ferent countries. The CEA needed to be performed on individual patient-level data (IPD). 

We searched both PubMed and EMBase with combinations of the following key words 

(one from each category): 

- “multinational”, “international”, “multiple countries”, “multi-country” and/or “re-

gional”;

- “cost-effectiveness”; “cost-utility”; “costs”; “ICER” (incremental cost-effectiveness 

ratio) and/or “QALY” (quality adjusted life year);

- “trial” and/or “RCT”.

Additional studies were sought by hand searching the reference list of original research 

papers and review papers on transferability that were found in the initial literature search. 

As we only wanted to include CEAs, we excluded studies that did not measure both 

health care utilization and health outcomes. We excluded all (systematic) reviews, meta-

analyses, evaluations or overviews of treatments and programs, guidelines and recom-

mendations for performing an RCT. Decision analytic models, like Markov models, were 

also excluded. Studies where the primary source of data was not a randomized controlled 

trial (i.e. registries, cohort studies, longitudinal studies or non-randomized studies) and 

published abstracts were excluded.

8.2.2 Data extraction

For all the papers included in the study, we first looked for the name of the RCT, disease 

area, interventions, number of patients and number of countries. Next, we classified the 

studies based on whether the measurement of health care utilization and health outcomes 

was based on patients in just one country, a subset of countries or all countries. See 

table 8.1 for an overview of the terminology used. In addition, studies were classified by 

the source of the valuation for the health care utilization and the health outcomes: unit 

costs and utility values (quality of life weights). In a one-country valuation, an analyst ap-

plies the weights from one country to measurements from all countries. In a multi-country 

valuation, an analyst applies weights from each individual country to the quantities from 
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that same country. If the health outcomes reported are other than QALYs, no value sets 

are used for health outcomes and the valuation is classified as unweighted. Studies may 

be classified differently for the valuation of health care utilization and health outcomes.

We recorded if the study described trial-wide and country-specific CE results, how these 

were calculated and how heterogeneity between countries was measured. Finally, we 

classified the studies based on the statistical methods used to analyze the data. The studies 

were classified as a “simple method”, a “fixed effects regression model” or a “hierarchical 

regression model”.

8.3 RESULTS

8.3.1 Literature search

The literature search was performed on Jul 12th, 2013. We identified 821 potentially 

eligible papers, with 318 titles from PubMed and 716 from EMBase. Based on the title 

of the paper, we excluded 391 titles. Reasons for exclusion are listed in figure 8.1. Upon 

 
Figure 8.1: In- and exclusion of papers at various stages.
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Table 8.2: Papers included in study.

RCT on which study is based

First author and year Diseasea Name Interventions and 
number of patientsb

Number of 
countries

Lindgren 2005 17 Hypertension ASCOT-LLA Atorvastatin (n = 5,168)
Placebo (n = 5,137)

7

Lofdahl 2005 18 COPD - Budesonide (n = 257) 
Formoterol (n = 255) 
BFC (n = 254)
Placebo (n = 256)

15

Peeters 2005 19 Psoriasis vulgaris - Calipotriol / betamethasone 
dipropionate followed by 
calcipotriol alone (n = 249)
Tacalcitol (n = 252)

4

Pinto 2005 13 Acute MI ASSENT-3 N = 6,095
Heparin
Enoxaparin
Abciximab

26

Radeva 2005 20 Severe side 
effects after heart 
transplantation

- Everolimus 1.5 mg/day (n = 
209)
Everolimus 3.0 mg/day (n = 
211)
Azathioprine (n = 214)

14

Reed 2005 21 Acute MI VALIANT Valsartan (n = 4,909) 
Captopril (n = 4,909) 
Both (n = 4,855)

24

Weintraub 2005a 22 ACS CURE N = 12,562
Clopidogrel
Placebo

28

Weintraub 2005b 23 Acute MI EPHESUS N = 6,632
Eplerenone
Placebo

37

Briggs 2006 24 Asthma GOAL N = 3,416
FP alone 
SFC

44

Tonkin 2006 25 ACS LIPID Pravastatin (n = 4,470)
Placebo (n = 4,544)

2

Willan 2006 26 Parkinson’s 
Dementia 
Disease 

EXPRESS Rivastigmine (n = 362)
Placebo (n = 179)

12

Bachert 2007 27 ARC - (idem 
Canonica)

Grazax (n = 316)
Placebo (n = 318)

8

Canonica 2007 28 ARC - (idem 
Bachert)

Grazax (n = 316)
Placebo (n = 318)

8

Manca 2007 29 CHF ATLAS Low dose lisinopril (n = 1,596)
High dose lisinopril (n = 1,568)

19

Rutten-van Mölken 
2007 30

COPD - Roflumilast (n = 761)
Placebo (n = 753)

14
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reading the abstract, a further 351 titles were excluded for various reasons. Hand search-

ing resulted in six more studies. A total of 21 papers were included after reading in full 

(table 8.2).13,17-36

8.3.2 Characteristics of studies

The studies come from a variety of disease areas, with eight papers on cardiovascular 

diseases, four on lung diseases and three on allergies. The other studies investigated inter-

ventions in Parkinson’s disease, colon cancer, anesthesia, psoriasis vulgaris and hyperten-

sion. Three studies only used the trial data as a convenient data sample for exploring a 

new method of analysis.13,29,31 Because they used a particular clinical trial to demonstrate 

how CEAs can be performed alongside RCTs in order to obtain country-specific estimates 

of CE, they were included in the review. One of these papers did not reveal the original 

RCT nor disease area, “so as not to conflict with previous publications”.31 The minimum 

number of countries in an RCT was two in the LIPID trial in patients with a history of acute 

coronary syndromes25; the maximum was 48 in the ExTRACT TIMI 25 study in patient with 

a myocardial infarction.32 This last study also had the highest number of patients, namely 

20,506. The lowest number of patients was 501 in the trial discussed by Peeters et al. in 

psoriasis vulgaris.19

Table 8.2: Papers included in study. (Continued)

RCT on which study is based

First author and year Diseasea Name Interventions and 
number of patientsb

Number of 
countries

Willan 2008 31 ? ? “T” (n = 680)
“S” (n = 676)

14

Marcoff 2009 32 ST-segment 
elevation MI 

ExTRACT–
TIMI 25

N = 20,506
Enoxaparin
Unfractionated heparin

48

Briggs 2010 33 COPD TORCH Salmeterol (n = 1,521)
FP (n = 1,534)
SFC (n = 1,533)
Placebo (n = 1,524).

42

Gomes 2010 34 Anaesthesia for 
carotid surgery

GALA General Anaesthetic (n = 1,753)
Local infiltration and cervical 
plexus nerve block (n = 1,773)

24

Lorgelly 2010 35 CHF CORONA Rosuvastatin (n = 2,514)
Placebo (n = 2,497)

21

Rogkakou 2011 36 Persistent rhinitis XPERT Levocetirizine (n = 278)
Placebo (n = 237)

5

a MI = Myocardial infarction, ARC = Allergic rhinoconjunctivitis, ACS = Acute Coronary Syndromes, CHF = 
Chronic heart failure, COPD = Chronic obstructive pulmonary disease.
b Number of patients per arm when available (“n”) or total number of patients in the trial (“N”). 5fu/lv = 
5-fluorouracil/leucovorin, BFC = Combination of budesonide / formoterol, FP = Fluticasone propionate, SFC = 
Combination of Salmeterol / Fluticasone propionate. 
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8.3.3 Classification of studies

Measurement: resource use and health outcomes
Table 8.3 classifies the studies according to the sample of countries from which data on 

resource use and health outcomes were obtained. Most studies based both health care 

utilization and health outcomes on information from all countries. None of the studies 

was based on data from only one country, but three based their analysis on a subset of 

countries.[27,29,33[ Bachert et al. only used data from the five North European countries, out 

of eight countries included in the RCT.27 The study by Manca and colleagues excluded two 

unnamed countries with a very low number of patients and/or an extremely unequal al-

location of patients between the two treatment groups in the trial.29 Briggs and colleagues 

based their results on 21 of the 42 participating countries for which validated translations 

of the EuroQol-5D (EQ-5D) instrument were available. The CE analysis was therefore 

limited to 70% of the trial participants.33 Weintraub et al. used all patients for their health 

outcomes, but only measures utility weights in patients from English speaking countries. 

For other patients, the average utility by treatment arm from the English speaking countries 

was used to estimate utility.23 Although theoretically possible, none of the studies based 

the health care utilization on a different selection of countries than the health outcomes. 

Valuation: unit costs and utility value sets
Table 8.3 also reports the valuation of health care utilization (unit costs) and health 

outcomes (utility value sets) for each of the studies. Twelve studies used a one-country 

valuation for health care utilization13,17-19,22,23,25,26,30,32,34,35, six a multi-country valua-

tion.20,21,24,27,28,33 In 3 studies this was unclear.29,31,36 In two studies this was because their 

focus was more on the analytical methodology, than on how data was gathered and the 

resulting CEA.29,31 In the study by Rogkakou et al. it was not stated if every country has 

their own unit cost vector or if only one unit cost vector is used.36

In twelve of the studies, health outcomes were unweighted. The health outcomes in 

these papers were, for example, the number of avoided exacerbations18,30, major car-

diovascular events35, patient-level survival32 and event-free-days.34 None of the studies 

used a multi-country valuation to obtain utilities, while four studies used a one-country 

valuation. All four of these studies used the recommended tariffs for the EQ 5D for the 

United Kingdom (UK)37,38, although only two studies calculated country-specific CE results 

for the UK. Bachert et al. used these UK tariffs for calculating country-specific results for 

the UK, Germany, The Netherlands, Sweden, Denmark, Norway and Finland.27 Willan and 

colleagues applied the UK tariffs on data from all countries to calculate the CE results for 

the UK, and, in a separate calculation, applied the Canadian tariffs when calculating CE 

results for Canada.26 Canonica and colleagues used the UK tariffs to calculate CE results 

for Spain, France, Italy and Austria.28 The study by Briggs and colleagues used the UK 
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weights to calculate CE results for four groups of countries called regions, of which one, 

Western Europe, included the UK.33 In five studies, the valuation of health outcomes was 

not apparent from the text. In three studies this was because of their methodological fo-

cus.13,29,31 In the study by Briggs et al., the authors applied a mapping algorithm to mat the 

IPD on the Asthma Quality of Life Questionnaire to the EQ-5D in order to obtain a utility 

estimate.24 Since no further information about this algorithm was given and no reference 

could be found, it is unknown whether it is transferable across countries. In the study by 

Weintraub et al. the source of the utility valuation was not mentioned in the text.23 

The valuation of the health care utilization and health outcomes was not consistent 

in three studies. They used a one-country valuation for health outcomes, the UK EQ-5D 

tariffs discussed above, and a multi-country valuation for health care utilization: unit costs 

from each individual country.27,28,33

8.3.4 Trial-wide and country-specific CE estimates

Thirteen studies calculated a trial-wide CE estimate, of which three also calculated coun-

try-specific CE estimates (table 8.3).29,31,34 Briggs and colleagues calculated both trial-wide 

CE results, and CE results for four regions.33 The remaining eight studies calculated only 

country-specific CE estimates. Two studies extrapolated the results beyond the countries 

included in the original trial.27,28 They did this by applying country-specific unit costs 

of countries not participating in the trial to trial-wide resource use. However, as was 

mentioned before, these studies calculated QALYs by using the same utility value set (UK) 

for all countries.27,28 Both Lindgren and colleagues and Willan and colleagues combined 

all available data and applied one-country valuation for health care utilization and health 

outcomes.[17,26[ By performing the procedure twice, once using unit costs from one country 

and once from the other country, they could calculate country-specific results for two 

countries The study by Marcoff and colleagues mentioned estimates of country-specific CE 

in an online appendix, but these estimates could not be found in the appendix.32

Differences between country-specific CE results
When the same study publishes results for more than one country, it is informative to 

compare these results. Five studies calculated CE results for more than one country25-29 

and one for four regions.33 

Willan and colleagues found that the incremental costs were positive in the Cana-

dian setting and negative in the UK setting (intervention was dominant).26 However, the 

confidence intervals were very wide and both symmetrically straddle the origin. They 

therefore concluded that there is very little evidence of a difference in costs between the 

two countries. 

The studies by Bachert et al. and Canonica et al. are based on the same RCT about 

allergic rhinoconjunctivitis. Bachert and colleagues concluded that the ICER was similar 
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in every country, ranging between € 13,000 and € 18,000 per QALY gained.27 Possible 

reasons for the differences in CE results given by the authors were differences in discount 

rates, unit costs and treatment costs. Canonica and colleagues calculated ICERs ranging 

from € 14,000 to € 22,000. They did not list potential reasons for these differences.28 Nei-

ther of the two studies commented on the difference in ICERs between the two studies, nor 

on the difference in intervention costs, which was € 1,200 for all countries in Canonica et 

al. versus € 1,500 for all countries in Bachert et al.27,28

In the study by Manca and colleagues there are large differences in outcomes between 

the 17 countries.29 Incremental costs ranged from approximately -UK£ 200 to +UK£ 400 

and mean incremental survival ranged from approximately -100 days to +100 days. The 

size of the confidence intervals also differed significantly between the countries, as did the 

shape of the scatter plot in the CE planes and the CE acceptability curves. 

Briggs and colleagues calculated regional ICERs for two treatment comparisons in 

COPD.33 In the first comparison, the region-specific ICERs ranged from US$ 21,500 to 

US$ 77,100, with a trial-wide estimate of US$ 43,600. The second comparison showed a 

range of region-specific ICERs from US$ 13,200 to US$ 46,300, with a trial-wide estimate 

of US$ 26,500. In both comparisons, the ICER in the USA was by far the highest estimate. 

The authors mentioned in their discussion that this reflects the higher unit costs in the 

USA, although it was also clear from the results that the incremental QALYs were also 

lowest in the USA, which would also have contributed. 

8.3.5 Heterogeneity

Differences in CE results between countries can be partly explained by heterogeneity 

between the countries, which is the part of the variation, in addition to that accounted 

for by chance, that can be explained by local characteristics, such as average age or 

cost levels.39 Only one of the studies formally tested for heterogeneity before calculating 

CE results: Briggs and colleagues used joint tests of significance for treatment-by-region 

interactions.33,40 The only evidence of heterogeneity they found was in the costs of study 

medication. They made a post-hoc comparison of the combined estimate with region-

specific estimates based on dividing the dataset in region-specific subsets. They could not 

reject homogeneity across regions, but the authors acknowledge that such an approach 

suffers from a lack of power, making negative test results difficult to interpret. 

Six studies did not discuss the possibility of heterogeneity between countries at 

all.19,20,25,28,35,36 Two studies addressed heterogeneity by performing subgroup analyses. 

Löfdahl and colleagues conducted a subgroup-analysis to investigate differences between 

European and non-European countries.18 They assumed that healthcare delivery and uti-

lization is somewhat more homogenous within Europe, compared with other continents. 

Gomes and colleagues performed a similar subgroup-analysis. They analyzed patients 
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from the UK and patients not from the UK, separately.34 This did not change the CE results 

significantly.

Lindgren and colleagues expected no problems with averaging resource use across 

patients unless resource consumption differed markedly between countries. They did not 

detect such problems and concluded that combining countries is not likely to have biased 

their analyses. Reed and colleagues recognized that there are differences in practice pat-

terns and unit costs between countries, but argued that the randomized design of the 

RCT would not bias the findings in either direction.21 Weintraub and colleagues (a) stated 

that their costing approach, combining country-specific measurements of resource use 

with one-country valuation, does not fully account for possible differences in treatment 

practices and resource use between countries or health care systems.22 However, they felt 

their method yielded unbiased results and should even reduce “unwanted variability”. 

Weintraub and colleagues (b) stated that it is not possible to adequately account for varia-

tion in costs across countries, but using country-specific costs should have little effect 

on their results. Bachert and colleagues justified not checking for heterogeneity due to 

(assumed) “similarities in costs and healthcare systems” for North European countries.27 

Rutten-van Mölken and colleagues assumed that the relative treatment effect on outcome, 

the prevention of COPD exacerbations, is generalizable across countries although no 

test was done.30 They acknowledged that this approach does not account for many of the 

differences between countries that may affect CE, since differences between countries 

in relative prices of resources may lead to a different mix of resource use. For example, 

in countries where specialist contacts are relatively expensive compared to GP contact, 

patients may be referred to specialists less often. Applying a single set of unit costs to 

multiple countries ignores the presence of such substitution effects. Briggs and colleagues 

used an indicator variable for the country of interest, the UK, in two of the estimated 

regression models. The coefficient showed that the resource use needed for the treatment 

of an asthma exacerbation was relatively low in the UK.24

Finally, there were five studies explicitly taking differences between countries into ac-

count in the analysis, as explained in the next section.1,13,29,31,32 However, no formal test of 

heterogeneity was performed beforehand.

8.3.6 Statistical methods

Thirteen studies used relatively simple methods to calculate trial- and country-specific CE 

results; while eight studies used more advanced statistical methods. Of these, three studies 

used a fixed effects modeling approach and the remaining five studies explicitly took the 

hierarchical structure of the data into account.
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Simple methods
Thirteen studies calculated a simple country-specific patient-level average of the resource 

use and health outcomes. The resource use was then multiplied by either the same unit 

costs for all countries (one-country valuation), or by country-specific unit costs (multi-

country valuation). If applicable, the health outcomes were multiplied by the utility value 

sets, which could also be the same for all countries, or country-specific. Dividing the 

resulting mean country-specific costs per patient by the mean country-specific health 

outcomes per patient led to country-specific CE estimates. Eight studies used a one-

country valuation17,18,20,22,23,25,30,35, two a multi-country valuation19,21 and two combined a 

multi-country valuation for health care utilization with a one-country valuation for health 

outcomes.27,28 The method used by Rogkakou and colleagues is unknown, as the method 

of valuation of health care utilization is unknown.36

Fixed effects models
Briggs and colleagues used a series of statistical regression models for costs and health- 

related quality of life weights in their 2006 study, including an adjustment to the country 

of interest via an indicator variable.24 In their 2010 study, Briggs and colleagues used a 

Weibull survival model and multivariate patient-level regression models for costs and EQ-

5D preference data.33 Explanatory variables included patient-level data and dummies for 

each region. Both studies estimated the models for costs and health outcomes separately. 

These models were then used to calculate incremental costs, incremental health outcomes 

and CE results. Gomes and colleagues explicitly modeled the correlation between costs 

and health outcomes, by estimating a system of regressions and assuming a correlation 

between the error terms. This is called SUR modeling, or Seemingly Unrelated Regres-

sion.34 No specific adjustment for country was made.

Hierarchical models
Five studies took the hierarchical structure of health care data explicitly into ac-

count.13,26,29,31,32 Despite the use of many different names –multilevel modeling with ran-

dom intercepts, empirical Bayesian shrinkage estimation, bivariate hierarchical models- all 

these methods are variations of multilevel modelling (MLM).7 All models were analyzed 

using Bayesian methods, although MLM can be estimated using Frequentist methods.8,9,11

The studies by Pinto and colleagues and Willan and colleagues calculated trial-wide 

CE results by including a random intercept for each country.13,26 They used two normal 

distributions for both costs and effects. Marcoff and colleagues extended this method by 

also including a random slope for each country. They analyzed the incremental net health 

and monetary benefits.32 

There was no correlation modeled between costs and effects in any of these three stud-

ies. In contrast, both Manca and colleagues and Willan and colleagues extended the 
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hierarchical model by explicitly linking costs and effects. They both used flexible specifi-

cations which treat the trial-wide mean costs and effects as fixed effects, but differ in the 

specification of the assumed country-specific random effects. The model of Manca et al. 

was based on O’Hagan et al.29,41 and assumed a bivariate normal (BVN) distribution to 

model the interaction. Willan et al. extended the model by Nixon and Thompson10, which 

does not necessarily assume a normal distribution, but may accommodate for example 

skewed distributions when necessary.31 Costs and effects do not need to have the same 

distribution. In both methods, costs and effects are correlated across equations in the same 

way. Both models allow extension of the hierarchical structure by including explanatory 

variables at the country level, on top of patient level covariates.

8.4 DISCUSSION

In this paper, we looked at CEAs that were based on recent, large multinational RCTs. We 

categorized the studies by the methods used to calculate trial-wide and country-specific 

cost-effectiveness. What we found was that simple, naïve methods were still frequently 

used. Within these studies one-country valuation of the healthcare utilization of patients 

from multiple countries was the most applied method. Each of the simple methods has its 

own advantages and disadvantages. An analysis that only uses the data from the country of 

interest, provides an unbiased country-specific estimator, but ignores all the information 

we have about the other countries. In addition, it requires enough patients within the coun-

try of interest to counter the risk of low statistical power. This defeats the purpose of doing 

a multinational RCT. A one-country valuation that uses one set of unit costs multiplied 

with trial-wide health care utilization has the advantage of keeping the statistical power. 

When different sets of unit costs from different countries are repeatedly combined with 

trial-wide resource use, we get insight in the influence of different absolute and relative 

prices on CE. However, differences in treatment patterns between countries are ignored 

and applying the unit costs from one country to trial-wide resource use could confound 

‘price effects’ with ‘country effects’.14 A multi-country valuation accounts for differences 

between countries in both unit costs (or utility value sets) and treatment patterns. When 

averaging over all countries, the resulting point estimate is an accurate representation of 

the average in the trial, but it is difficult to interpret and generalize, as it is not representa-

tive for any of the countries.

Regardless of whether the investigator is interested in trial-wide or country-specific 

results, not taking the interaction between country and treatment effect on health care 

utilization and health outcomes into account may lead to wrong conclusions. Several 

models have been proposed that take this interaction into account. They can be grouped 

into fixed effects models and hierarchical models. The key advantage is that they improve 
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statistical efficiency by ‘borrowing’ information from all available data in the estimation of 

the difference between treatments for an individual country.

The effect of the interaction between country and treatment on costs, due to the differ-

ences in for example epidemiology, practice patterns and prices, is widely recognized.42-44 

At the same time, most models assume that the clinical effectiveness does not differ greatly 

between countries. However, many factors could potentially affect the between-location 

variability of health outcomes, such as the availability of health care services, local treat-

ment guidelines, and differences in quality of health care.29 Because of this, the between-

country variability in differential health outcomes can be even greater than the variability 

in differential costs.13 Allowing for variation across countries in both costs and health 

outcomes is, in our view, a preferred strategy.

In fixed effects models, applied by 3 studies in this review, country-level covariates are 

used to model the country-specific differences. These covariates may just be a series of 

simple country-dummies, but can also measure differences more explicitly with variables 

that measure differences in epidemiology, medical practice and economic factors. The 

precise formulation of the model can differ widely, ranging in this review from simple 

ordinary least squares regression and survival analysis to SUR modeling. Fixed effects 

models are typically included to ”control for” differences across countries. Because of 

this, Drummond et al. argue that they might not be adequate to produce country-specific 

results.16

Hierarchical modeling, applied by 5 studies included in this review, lowers the vari-

ability of the country-specific CE results, by borrowing strength from other countries. 

Compared to the observed difference in country means, Pinto et al. achieved a 21–59 

per cent reduction in average standard error of the difference. For one of the included 

countries, achieving this gain in precision using only country-specific data would have 

required more than twice as many patients.13 Hierarchical models also lead to more ap-

propriate estimates of population average results and associated standard errors compared 

to other methods.11,12,14 For example, Grieve et al. modeled both length of stay and total 

costs of stroke admissions, in an observational study across 11 countries. They compared 

MLM with simple OLS and showed that the OLS analysis severely overestimated the preci-

sion of centre-level associations and made incorrect inferences.11 In particular, the OLS 

analyses found that centre-level variables were associated with resource use, whereas the 

MLM analysis showed that, once the hierarchical nature of the data was recognized, none 

of these variables predicted resource use.

Manca et al. have recently compared advanced statistical methods for CE estimation, 

alongside multinational trials.15 They conclude that Bayesian hierarchical models, using 

both patient- and country-level information, are the most appropriate tool to analyze 

CE alongside a multinational trial. This recommendation is based on the flexibility in 

facilitating the inclusion of patient- and cluster-level explanatory variables, and the ability 
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to accommodate distributions when costs and/or effects are not normally distributed. The 

Bayesian methodology allows direct interpretation of the country-specific (posterior) mean 

estimates and it provides probability statements regarding the CE in any given country.

In MLM, the country-specific estimates are latent variables, which must be quantified 

rather than estimated. This is achieved using shrinkage estimation, which is a weighted 

sum of the country-specific observed difference (one-country analysis) and the estimates 

provided by the MLM trial-wide estimate. It implements the idea that although different, 

country-specific data might share some degree of similarity and therefore contain informa-

tion that is usable for all countries. The term ‘shrinkage’ reflects that the country-specific 

estimate for all countries will be closer (‘shrunken’) to the combined estimate, than the 

observed difference is. The degree of shrinkage depends on the between- and within-

country variance, with more shrinkage occurring when the within-country variability is 

greater relative to the between-country variability.

In addition to the statistical advantages, Grieve and colleagues propose that hierarchi-

cal models may be used to assist in the design of multinational RCTs, which often only 

measure costs for a subsample of centers.11 The choice of centers to collect costs is usually 

based on pragmatic grounds, but the factors identified as being associated with total costs 

from hierarchical models could be used to choose where best to measure costs. As an 

example, if the level of health care spending as a percentage of GDP is associated with 

total or incremental costs, centers could be selected which were broadly representative of 

countries with high, medium or low levels of spending on health care.11 

A limitation to MLM is that it is assumed that countries are “exchangeable”. This means 

that there are no a priori reasons to assume that one country has higher or lower health 

outcomes or costs, and can be represented by the same variance across all countries. 

Since MLM are often used to explore these differences, making this a priori assumption 

may be unreasonable.16 Adding fixed effects on country-level may solve this.45

Despite the availability of these fixed effects and hierarchical models and demonstrated 

increased precision of the estimates11-15, these newer methods have not yet been applied 

on a wide scale amongst researchers, nor have they replaced the simpler, naïve methods. 

Studies that did use more advanced methods were often studies with a theoretical, statisti-

cal point of view focused on the (illustration of) methods.One of the reasons for not using 

the advanced models might be found in the relative complexity. The resulting lack of 

transparency may limit their use in decision making.46 Especially the hierarchical models 

require an advanced knowledge of (Bayesian) statistics and programming. Moreover, if 

these models demonstrate a difference in effectiveness of a treatment between countries, 

it may be very problematic to include this in a reimbursement dossier, especially for the 

country in which results differ from the drug’s label claim.

Another drawback of the more advanced methods is the need of a large number of 

patients per country. Because one of our inclusion criteria was a minimum number of 500 
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patients, all studies in this review could have applied the more advanced methods. This 

is illustrated by the study of Willan et al.26, which had a total of 541 patients and applied 

hierarchical models. The smallest study in the sample, the one by Tonkin25, applied a 

simple method, but still had more patients in each arm than Willan in the placebo arm 

(179).26 On the other hand, one of the largest studies, the study by Reed et al. with more 

than 14,500 patients in three arms, was analyzed by a simple method.21 It is unclear why 

this dataset was not analyzed by a more advanced method and whether it would have 

changed the results. In any case it would have increase the precision of the estimates. 

Unfamiliarity with the methods may be a reason why more advanced methods are not 

used. Although the ISPOR Good Research Practices Task Force on transferability recom-

mends the advanced methods16, guidance on the analysis of IPD from multinational trials, 

and the calculation of country-specific CE estimates, in national guidelines is scarce.47 The 

Canadian pharmacoeconomic (PE) guidelines mention the advanced methods discussed 

in this paper as a possible option to analyze IPD from multinational trials, but do not 

explicitly recommend them.48 The other PE guidelines and recommendations found on the 

ISPOR website do not suggest way to calculate country-specific CE estimates from multi-

national RCTs.47 Multilevel models may not be necessary when only a few countries are 

included in a trial. Drummond et al. suggest 4 or 5 as a lower bound, suggesting that all 

RCTs in this review but one25 could have been be analyzed by more advanced methods.16 

Heterogeneity between countries can be tested formally, which was done in only one 

study, based on the method proposed by Cook and colleagues.33,40 Fixed effects models 

typically contain several interaction terms to investigate whether the treatments differ 

between countries. If these interaction terms are statistically significant, there is hetero-

geneity between the countries. On the other hand, if they are not statistically significant, 

and there is sufficient statistical power, one may conclude that the effect of the treatment 

is not different between countries. In this case, the treatment effect may best be estimated 

for all countries together.40 Unfortunately, low power within a single country is a common 

problem in multinational trials. One way of handling this problem is using a higher level 

of significance, or combining several countries with similar characteristics.53

Another formal test, based on the likelihood ratio, was proposed by Gail and Simon.54 

They distinguish between qualitative interaction, which occurs when the treatment effect 

is positive for the patients in some countries and negative for those in other countries, 

and quantitative interaction, which occurs when the magnitude but not the direction of 

treatment effects varies. Other examples of formal tests for qualitative interactions include 

the range test proposed by Piantadosi and Gail, and a simple test based on simultaneous 

confidence intervals proposed by Pan and Wolfe.55,56 

When policy makers are judging the results of a study in one country for applicability 

in their own country, one of the first things they compare is the characteristics of the study 

population. This information makes it easier to interpret CE results and to determine to 
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what extent the results are valid for the target population in their country. However, only 

ten of the 21 papers produced a table showing demographic characteristics of patients 

in the original trial.20,22,23,25,27,28,30,32,33,35 Even if this information is included in the clini-

cal paper on the same study, it is relevant for policy makers to repeat this information 

in the cost-effectiveness paper.57 Other important information for policy makers is the 

valuation of health care utilization. Only eight papers specified the unit costs used in the 

study.17,18,22,26-28,30,34 Some studies did not list total health care utilization and/or health out-

comes by treatment arm, which is considered to be basic information for a CEA.18,21,26-28,31

Calculating country-specific CE results for many countries may lead to challenges in 

presentation. This is apparent in the study by Manca and colleagues, which shows results 

for 17 countries.29 They improved the readability of the results by choosing to show 95% 

confidence ellipses and CE acceptability curves, for a selection of countries. They also 

refrained from presenting point estimates. However, if point estimates and results for all 

countries are of primary importance, these may not be viable solutions and other ways of 

improving readability need to be explored.

8.5 CONCLUSION

Several advanced statistical techniques are available to calculate country-specific CE 

results from multinational trials. These methods take the interaction between country and 

treatment effect on health and health care utilization into account. Hierarchical models 

also lower variability of the country-specific CE results and lead to more appropriate 

estimates of population average results and associated standard errors. However, they 

have not been used on a wide scale yet, while simpler, naïve methods are still routinely 

employed. This should change in future.
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9.1 INTRODUCTION

After introducing the (simple) concept of health technology assessment (HTA) in chapter 1, 

chapter 2 showed a practical application of health economic (HE) modelling, by calculat-

ing the cost-effectiveness (CE) of the reimbursement of aids in smoking-cessation. The 

following chapters explored several types of differences, and how these differences may 

be handled. Chapter 3 discussed differences between patients, which can be attributed to 

patient characteristics, called patient heterogeneity. Chapters 4 and 5 discussed different 

data sources, and how they can be combined using meta-analysis. Chapters 6, 7 and 8 ex-

plored issues that occur in decision making, when dealing with several different countries. 

These issues fall within the field of health-economics called transferability, which tries to 

tackle these differences and provide useful information for the decision maker. 

9.2 PRACTICAL APPLICATION: SMOKING CESSATION

Chapter 2 explored the long term societal effects of reimbursement of smoking cessation 

support (SCS). We found that reimbursement led to more successful quitters and a gain in 

life years and QALYs. Accounting for overhead, administration costs and the costs of SCS, 

these health gains could be obtained at relatively low cost, even when including costs in 

life years gained. Hence, reimbursement of SCS seems to be cost-effective in the long term 

from a health care perspective.

The discussion on the reimbursement of smoking cessation has known many stages in 

The Netherlands. At the moment the study was performed, during the summer of 2008, 

SCS was only partly reimbursed and pharmacological SCS was not reimbursed at all. To-

bacco control policy in The Netherlands at that time aimed to reduce smoking prevalence 

to 20% in 2010.1 Smoking prevalence was declining, but additional efforts were required 

to reach the goal. In 2007 28% of the Dutch population still smoked.2 The health insur-

ance board (CVZ) had advised the Dutch Ministry of Health to reimburse an integrated 

smoking cessation programme, consisting of a combination of behavioural counselling 

and pharmacotherapy.3 

A randomized controlled trial (RCT) was performed to investigate the effects of such 

a reimbursement policy in the Dutch region of Friesland in May 2002.4,5 This study was 

funded by the Dutch Ministry of Health and the then Minister of Health, Mrs. Borst, 

expressed a willingness to start reimbursement, once effectiveness was shown. The trial 

found that the number of participants using SCS was higher in the intervention group than 

in the control group.4 It also showed that the intervention would be cost-effective, in the 

short term. Unfortunately, when the results were presented, the new Minister of Health, 
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Mr. Hoogervorst, had to reduce costs in the basic insured package. He decided not to 

reimburse SCS in 2003.

A pilot study investigated the feasibility of large-scale implementation of reimbursement 

in The Netherlands in 2008. This so-called Agis Study, performed in the Dutch province 

of Utrecht, looked in particular to the availability and accessibility of care, and attain-

ability of the program.6 At the end of the test period, a third of respondents said they had 

stopped smoking. Based on insurance declarations, the estimated costs of nation-wide 

SCS reimbursement are between € 14.0 en € 22.7 million. Expanding on this study, Over 

et al. concluded that reimbursement of SCS produced overall health gains, but did not 

reduce health disparities between different socioeconomic groups.7

The goal to reduce smoking prevalence to 20% in 2010 was not met. In 2011, SCS 

programs were reimbursed leading to a much higher use of SCS than in the years before 

and an unprecedented drop in smokers from 27.2% to 24.7%. As a recent population 

study concluded, full health insurance coverage for smoking cessation treatment in The 

Netherlands was accompanied by a significant increase in the number of (dispensed) 

prescriptions of stop-smoking medication and a decrease in smoking prevalence.8 In 

2012, this was changed again, with a stop of the reimbursement of nicotine replacement 

therapies (NRTs) and pharmacotherapy. Behavioural counselling was still reimbursed. 

This immediately led to a drop in the use of effective SCS, a drop in the number of SCS 

prescriptions of 21.6 per 1,000 smokers, a rise in smoking prevalence by 1.2% and pres-

sure on political actors by GPs and medical specialists to reinstate reimbursement.8-11 As 

of 2013, NRTs and pharmacotherapies are now reimbursed for a maximum of one attempt 

per calendar year, provided they are accompanied by behavioural counselling. 

Public health, personal health and health-economic arguments all point in the direction 

that SCS should be reimbursed. This includes the results in chapters 2 and 6. In chapter 

2, the long-term incremental CE ratio of the reimbursement for NRT, bupropion and 

behavioural counselling, compared to no reimbursement, is below € 16,000 per QALY 

gained. In chapter 6, varenicline to aid in smoking cessation dominates buproprion in The 

Netherlands. However, these arguments do not seem to be enough to keep reimbursement 

of SCS in place.

The choice whether SCS are reimbursed in The Netherlands seems to be more a political 

debate on “life style” medications. This also includes contraceptives, erectile dysfunction 

medication and cholesterol lowering medication, for which reimbursement also changes 

from year to year. This discussion centers on the amount of responsibility that can be 

laid at the feet of Dutch citizens for their own life style and its consequences. Another 

issue working against the health(-economic) arguments, seems to be the influence of the 

tobacco industry lobby in both The Netherlands12-14 and wider Europe.15,16

A separate methodological issue that is addressed in chapter 2 is the inclusion of costs 

in life-years gained. In the extra life years gained by successful quitters, additional costs 
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are generated for diseases unrelated to smoking, such as dementia or hip fractures in 

old age.17 This makes CE estimates both more conservative and more accurate. In most 

CE-studies published these costs are not taken into account (for example chapter 3), even 

though the inclusion of these costs is now facilitated by an online tool called Practical 

Application to Include Disease costs (PAID).18

9.3 DIFFERENT PATIENTS

Chapter 3 discussed the difference between patient heterogeneity and parameter uncer-

tainty. We compared four ways of dealing with heterogeneity and showed that they led to 

widely different results in CE. Three of the methods can all be viable options, depending 

on the decision makers’ information need. When little or no heterogeneity is expected, 

or when it is not expected to influence the CE results, disregarding heterogeneity may be 

correct. Subgroup analyses may inform policy decisions on each subgroup, as long as they 

are well defined and the characteristics of the cohort that define a subgroup truly represent 

the patients within that subgroup. Despite the necessary calculation time, the Double 

Loop PSA is a viable alternative which leads to better results and better policy decisions, 

when accounting for heterogeneity in a Markov model.

The final method draws from all available distributions at the same time: probabil-

ity distributions that reflect parameter uncertainty and frequency distributions of patient 

characteristics. The expected outcome of this analysis reflects parameter uncertainty and 

patient heterogeneity in a heterogeneous population, but ignores the fundamental differ-

ence between the two. We have shown that this Single Loop PSA should not be used in CE 

research. It disregards the fundamental differences between heterogeneity and sampling 

uncertainty and overestimates uncertainty as a result.

9.4 DIFFERENT DATA SOURCES

In chapters 4 and 5, we discussed the combining of different sources of information using 

meta-analysis. In chapter 4 we compared four methods of direct meta-analysis and found 

that three of these methods lead to comparable HE outcomes, while the Bayesian random 

effects methods tends to overestimate uncertainty. Based on this study, we recommended 

using the frequentist random effects method proposed by DerSimonian and Laird as the 

preferred method of meta-analysis.19 It automatically reduces to a fixed effects model in 

the absence of heterogeneity. Compared to the Bayesian methods it is easier to implement 

and more easily understood by physicians and policy makers who will be using the results. 

In chapter 5 we compared four methods of network meta-analysis. The method proposed 
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by Puhan and the Bayesian fixed effects generalized fixed effects model are preferred.20-22 

The method proposed by Song has slightly less preferable characteristics, while the Bayes-

ian random effects generalized model overestimated uncertainty and had shown large 

biases and absolute deviations.

One of the major issues in meta-analysis is how different sources of evidence can be 

combined. This is a particular issue with a program like ‘expensive drugs’, where only 

little evidence is available at the start of conditional reimbursement, and usually the only 

additional evidence available after the conditional reimbursement period is evidence from 

use in real world observational studies. Since the decision to continue reimbursement 

can have a major impact, both in a financial and medical sense, it should be based on all 

available evidence.

For many researchers, the randomized controlled trial (RCT) is the gold standard, 

because of its rigorous evaluation design. This would indicate that CE results should 

be based on RCTs alone. However, the strict protocols in RCTs do not generally reflect 

clinical practice. Because of this, other researchers may prefer observational evidence 

alone. However, due the lack of a rigorous design, there is a possibility that the efficacy 

outcomes cannot be directly interpreted, and might be biased. In either situation, valuable 

information may be left unused.

If it is decided that both sources of evidence can be combined, a weight needs to be 

defined to combine all sources of evidence. Either one of the sources may get a relatively 

higher weight than other evidence. In the hierarchy of evidence framework, an RCT pro-

duces stronger evidence than an observational study.23 If the weighing of the evidence in 

a meta-analysis would be based on this hierarchy, the strength of evidence from observa-

tional studies would be graded relatively low compared to RCTs. However, the results of 

well-designed observational studies do not necessarily contain bias in the magnitude of 

the effects of treatment.24 This would argue for the same weights for observational stud-

ies and RCTs, provided the observational studies are well-designed. In some instances, 

observational studies may provide better evidence, for example in the case of rare events. 

Moreover, the result of an RCT may not be applicable at all, for example if the patients 

are highly selected or motivated relative to the population of interest.25 In these cases, one 

might argue for giving observational studies a higher weight than RCTs.

Even if the results of the real life outcomes study would be treated the same as the 

results of an RCT, a meta-analysis of the evidence is still likely to be driven by trial results, 

since the uncertainty around the trial-based estimates of the treatment effect is likely to be 

smaller due to the generally homogeneous nature of included patients. Moreover multiple 

RCTs are often available, compared to one, perhaps relatively small, real life outcomes 

study. In order to take other issues than study design into account, the GRADE Working 

Group proposed a systematic and explicit method of making judgments on the quality of 

evidence under consideration.25 Next to study design, the other three key elements they 
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named in reviewing available evidence are study quality, consistency and directness. On 

each of these elements, each source of evidence is graded High, Moderate, Low or Very 

Low. Using this grading system, different sources may be combined qualitatively, ranking 

the trade-offs between health benefits and harms before considering costs. This methodol-

ogy can provide insight in the way different types of evidence can be weighted.

Once an appropriate weight has been determined, this weight will have to be incorpo-

rated into the meta-analysis. As most of the frequentist methods are based on the Inverse-

Variance (IV) approach, where studies with a low standard error get a larger weight, it 

is logical to apply the weights directly to the standard error of the weights. This also 

works for the Bayesian methods, which use standard errors as a proxy for the strength of 

evidence, except when the link function is discrete (binomial, multinomial, Dirichlet). In 

this case, the weights can be applied directly to both the number of patients in the trial 

and the number of “successes” (transitions, events, etc). 

The question remains how big a certain weight should be. Since every choice of weight 

would be arbitrary, it is recommended to perform the same analysis several times, for 

different types of weights and comparing the results.26 In addition, it is recommended not 

using higher weights for sources of evidence with high quality, but using lower weights 

for sources of evidence with low quality instead.26 Artificially giving a trial a higher weight 

would imply a larger number of patients than are really available. In essence, this means 

“inventing patients” and artificially “adding certainty” about the newly synthesized pa-

rameter. On the other hand, giving a trial a lower weight as is recommended would imply 

fewer patients than were really there, thus reflecting the extra uncertainty due to the 

quality of evidence. 

This issue of combining different sources of evidence is still being discussed. In open 

debates at HTA conferences, for example during the ISPOR 16th Annual European Meet-

ing (2-6 Nov 2013, Dublin), it is now being suggested that these two types of data should 

not be combined at all. The reasoning is that both forms of evidence provide information 

for two different policy questions: the RCT on whether the new intervention is at all better 

than what it is compared with (efficacy), and the real life data whether this better efficacy 

translates to better results in the real world. Combining these two forms of information is 

deemed unlikely to answer either question.

9.5 DIFFERENT STATISTICAL PARADIGMS

In chapters 4 and 5, a simulation study is described, which compares several methods 

of meta-analysis. In these chapters, the two existing statistical paradigms, the frequentist 

and the Bayesian approaches, meet. These two paradigms differ in the way they approach 

inference. If one wants to estimate the value of an unknown parameter, a likelihood func-
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tion can be defined based on the data. This likelihood function is used in both approaches, 

albeit in different ways. The frequentist approach is to maximise the likelihood function 

over all possible parameter values to obtain the maximum likelihood estimate (mle). As-

ymptotically, as the information available increases (usually sample size) the distribution 

of the mle tends towards a normal distribution. Population means, standard errors and 

confidence intervals can then be estimated. The Bayesian approach is to define a prior 

distribution, which is a summary of the knowledge the statistician has before starting 

the analysis. This prior knowledge can be non-existent (“any value is equally likely”), 

somewhat informative (“it is centered around 0”; “the probability must lie between 0 

and 1”) or very informative (“previous research indicates a point estimate of 4.55, with 

a 95% credibility interval between 4.50 and 4.62”). These (subjective) prior probabilities 

are then combined with the (observed) frequency probabilities, which are summarized in 

the likelihood function. This forms a posterior distribution, with a population mean and 

credibility interval.

Normally, statisticians are proponents of one or the other paradigm, which directs the 

kind of analysis they perform. As Crowder puts it: “Some of the more vocal proponents 

of the different approaches to inference have been shouting at each other for years from 

their respective hilltops.”27 Therefore, a study comparing frequentist and Bayesian methods 

is not found very often, even if both methods have their own merits and drawbacks. For 

example, the estimated outcomes of a frequentist exercise are always (implicitly) normally 

distributed, while Bayesian outcomes may have every possible shape. The frequentist 

approach says the parameter we want to estimate is unknown, but fixed. The Bayesian 

approach treats the unknown parameter as a random variable, even if we know it’s a fixed 

number, for example the distance Groningen-Rotterdam (although this distance seems to 

be shorter than the distance Rotterdam-Groningen).

The biggest criticism of the frequentist approach is often about the p-value. It is in-

terpreted as the probability that the hypothesis is correct, given the data. However, the 

p-value derives from the likelihood of the data given the hypothesis, and can therefore 

strictly speaking not be interpreted as such. A 95% Bayesian credible interval is that region 

in which we believe the parameter to lie with probability 95%. This is how many prac-

titioners actually interpret a frequentist confidence interval, but the “95%” refers to the 

long-term frequency with which 95% intervals of multiple trials contain the true value.28 

Within the Bayesian framework one can also calculate the probability that the outcome 

has a particular range of values, which cannot be done in the classical framework.28

The biggest drawback of the Bayesian approach is the introduction of subjective knowl-

edge, via the prior distribution. The frequentist therefore says this method is inappropriate 

for objective scientific decision making and should only be used for individual decisions. 

The Bayesian in return says that there is no such thing as objectivity, since inference is 
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always done via an interpreter, whose background influences the inference. In addition, 

given enough data, the data can speak for themselves.

Bayesian statistics at its heart is ideally suited for meta-analysis, since the premise of 

both are the same: you have prior information available and it is updated with new data.29 

However, during the performance of the underlying study, Bayesian statistics was found 

not to be ideally suited for a simulation study such as we have done. When perform-

ing Bayesian statistics, the available data has to be the starting point. Ideally, the data is 

examined in detail, which will drive the modelling decisions around all aspects: priors, 

link function, initial values, etc. Additionally, the outcomes of a Bayesian model are 

meaningless when the model itself does not converge. Checking for convergence requires 

the visual examination of plots, and careful examination of other outcome measures. 

However, all these aspects are impossible to do in a simulation study, where many data 

sets are fitted one after the other.

9.6 DIFFERENT COUNTRIES

In chapters 6, 7 and 8 we discussed several aspects of transferability. Chapter 6 showed 

how differences in parameters between countries, also influenced the health economic 

outcomes. In our case study, these differences were primarily related to the epidemiology 

of diseases and the choice of discount rate. The least important factor was demography, i.e. 

the age/gender distribution of the cohort of smokers making a quit attempt. Unfortunately, 

this happens to be the easiest available set of parameters for new countries, whereas less 

easily available parameters were not specified country by country. Only one out of the six 

included countries had completely country-specific data.

In the case of quality of life, this was partly due to the lack of availability of country-

specific utility values. In chapter 6, the country-specific results for the Belgian model used 

the Dutch value set.30 Four out of the six countries referred back to the recommended 

tariffs for the EQ-5D for the UK.31,32 Three papers in chapter 8 also used this value set, even 

when the study is not trying to calculate country-specific CE results in the UK. The UK 

tariffs are often used as it was the first validated value-set available. This may have been 

done to improve comparability between outcomes, but can also be due to unfamiliarity 

of researchers with the availability of other value sets for other countries. Apart from 

a Dutch value set which has been available since 2006, validated value sets for other 

countries have also been published, for example for Spain in 200133 and Germany in 

200434, and many other countries. (See http://www.euroqol.org/ for other value sets). Dif-

ferences between country-specific value sets of the EQ-5D are considerable, and some of 

the variation is due to cultural dissimilarities between countries. Using value sets from one 

country for another without any form of adjustment is therefore not advisable.35
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In order to make good policy decisions, decision makers need to have all information 

available. In chapter 8, we have seen that a large percentage of papers is missing crucial 

information. Less than half of the included studies produced a table showing the demo-

graphic characteristics of patients in the original, underlying trial. Furthermore, less than 

a third of the papers specified the unit costs used in the study and almost a quarter of the 

papers did not list total health care utilization and/or health outcomes by treatment arm. 

All of this is considered basic information for a CEA. It is clear that a stricter adherence to 

for example the CHEERS guidelines, is necessary.36

9.7 DIFFERENT THRESHOLD VALUES

Several different outcome measures that are used in HTA are presented within the thesis. 

Chapters 2 to 5 perform a CE analysis (CEA), where the HE outcomes are shown as an 

incremental CE ratio (ICER). The ICER is the ratio of the difference in costs between two 

treatment options, and the difference in health outcomes. As explained in chapter 1, 

the ICER is compared to an (implicit or explicit) threshold. Policy makers can deem the 

intervention to be cost-effective compared to the comparator when the ICER is below this 

threshold. 

In chapters 6 and 7, the outcomes are presented as the incremental net monetary 

benefits (INMB). The ICER was not used, due to several well-known problems with ratio 

statistics37, combined with the fact that we wanted to calculate percentile changes in CE 

outcomes. The INMB is the difference in health outcomes, valued in monetary terms, 

minus the monetary costs. If the INMB is positive, the new intervention has more value to 

society than costs, and can thus be considered cost-effective compared to the comparator. 

If the INMB is negative, the new intervention will cost more than the societal benefits, 

and the intervention cannot be considered cost-effective compared to the comparator. In 

order to value the health outcomes in monetary terms, a “price” is needed for each unit of 

health. In chapter 6, the price, or “Willingness-to-pay” (WTP), is set at € 20,000 per QALY 

gained. In that chapter, this was called “relatively low”. 

The price which can be deemed acceptable to pay for a unit of health, whether it is the 

threshold value to compare the ICER with, or the WTP to calculate the INMB, should be 

set by public discussion. Within CE studies, as was done in for example chapters 2 and 3, 

the outcomes can be presented for different threshold values, which allows the reader to 

make their own conclusion of CE. Another presentation tool is the CE acceptability curve, 

which shows the uncertainty around the outcomes for a whole range of threshold values. 

In order to avoid interfering directly with the public debate of the “price for health”, the 

INMB may not be ideally suited to present results of CE studies, as it assumes a threshold 

value. However, academic research can be used to inform this public debate, by study-
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ing what threshold value is deemed acceptable by the general public, or what implicit 

thresholds have been applied in past decisions.38-43

In 1998, a Dutch publication mentioned a threshold value of fl 40,000,- (€ 18,000), 

which was used for the first time in a clinical guideline.44 In 1999, a threshold ICER of 

€ 20,000 per QALY gained has been proposed by the CVZ.41 More recently, the Dutch 

Council for Public Health and Health Care (RVZ) suggested a maximum value of € 80,000 

per QALY for illnesses associated with a considerable burden.45,46 This value corresponded 

to the implicit £ 50,000 per QALY gained from NICE at that time, and it reflected the ap-

plication of the World Health Organization (WHO) threshold ICER to The Netherlands.41 

The WHO Commission on Macroeconomics and Health suggested that health technolo-

gies costing less than three times the gross domestic product (GDP) per capita for each 

disability adjusted life year (DALY) averted, represents good value.47

However, CVZ is reluctant to explicitly name a maximum threshold value for a number 

of reasons.46 Firstly, there will always be other arguments that may influence a decision. 

Secondly, naming an explicit threshold value may elicit strategic pricing behaviour 

from pharmaceutical companies. Finally, it was found to be extremely difficult to elicit 

“societal” preferences from the general population. Other regulatory agencies around 

the world seem to have the same concerns. The UK regulatory organization NICE has 

publically discussed an “acceptable” threshold value. As a guideline rule, NICE accepts as 

cost-effective those interventions with an ICER of less than £ 20,000 per QALY gained and 

that there should be increasingly strong reasons for accepting as cost effective interven-

tions with an ICER above a threshold of £ 30,000 per QALY gained.48 

9.8 FOURTH HURDLE OR FOURTH FLOOR?

In considering how a new (pharmaceutical) product comes to market, CE is often described 

as the “fourth hurdle” in drug development.49-51 In this terminology, the demonstration of 

quality, safety and efficacy are the first three hurdles. They can be considered hurdles, 

as they must all be overcome to secure a successful market registration. But being on 

a market does not guarantee successful commercialization in that market. This can be 

illustrated by for example the 13-valent pneumococcal conjugate vaccine (PCV13, Pre-

venar13, Pfizer). This vaccine is available for use in the Dutch infant population, but the 

10-valent competitor PCV10 (Synflorix, GSK) won a tender for inclusion in the national 

vaccination program.52 As such, PCV10 is free for parents, but PCV13 is not. CE was 

a crucial criterion in this policy decision. Another illustration is roflumilast, which was 

discussed in chapter 2. European market access has been gained in 2010, but it is still not 

reimbursed in The Netherlands at the end of 201353, despite pressure from patient groups 

and medical experts.54 This is largely due to a lack of direct evidence of effectiveness 
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compared with inhaled corticosteroids.54 The available indirect evidence, used in chapter 

2, was not accepted due to a possible difference in patient population between the two 

combined trials. Once a product gains market access, the critical fourth hurdle to success-

ful commercialization is thus to gain product reimbursement.

However, CE can also be judged in a different way: as the top floor of a metaphori-

cal building, representing the evidence about a certain intervention. The ground floor of 

this building (or first floor, if we follow the US numbering) is evidence on the quality of 

medicines, encompassing for example such aspects as manufacturing, packaging, stability 

and impurities.55 The next floor would be made from evidence that the intervention can 

be considered to be safe for use, followed by evidence that the intervention is effective in 

the indication for which it is to be used.55 Having reached this floor, the researchers may 

gain market access and move up to the top floor, which offers a view towards successful 

commercialization.

Evidently, the stronger each of the lower floors are, the more solid the building. How-

ever, researchers in HTA usually only work on the top floor, and can often not personally 

check the source of evidence for every parameter. Instead, as in chapters 5 and 6, most if 

not all of the parameters come from sources in the published literature. These publications 

are read for any anomalies and differences in case definitions, but are otherwise taken at 

face value. In some cases, researchers in HTA can’t even work with published or properly 

peer reviewed material. For example, the efficacy of roflumilast in the group of severe 

COPD patients used in chapter 2 were obtained from a subgroup analysis of patients in 

two RCTs. The efficacy for this “LABA subgroup” does not have an official publication, and 

thus a peer-reviewed evidence base. The references used in this chapter lead to the trial 

publication, where outcomes from the subgroups are not mentioned.56 The numbers used 

in the chapter come from an internal publication, which cannot be cited from. Others 

have also brought to light problems with the evidence on lower floors, pointing at possible 

missing or shaky evidence on safety, efficacy and effectiveness of drugs (e.g.57-59) 

These are potentially severe issues for the lower floors of the evidence building, making 

building on top of them a potentially hazardous business. However, in addition, the fourth 

floor has its own methodological problems. In chapters 4 and 5, we discussed methods 

of meta-analysis, which bring together evidence from several sources in order to inform a 

CE model. However, many CE studies are based on evidence from a single source, either 

because only one source of evidence existed at that time, or because of pragmatic choices 

made by the modeller. This leads to less confidence in the outcomes of the CE study. 

Chapter 7 was a review of CE studies, all based on a single trial. Additionally, since this 

one source of data is often a RCT, these data are collected on ideal patients, often younger, 

with less co-morbidities and more homogeneous than “real-life” patients.

Another important current issue with CE research is structural uncertainty, which rep-

resents a lack of knowledge of the underlying true system. Just as parameter uncertainty 
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which arises from uncertainty around the population average, heterogeneity which arises 

from measurable differences in patient characteristics, and statistical uncertainty which is 

representative of unknowns that differ each time we run the same experiment, structural 

uncertainty is an integral part of HTA.60 For example, the choice to model the difference 

between two interventions as a risk difference or a risk ratio is often a pragmatic one, 

not based on empirical knowledge of the ‘true’ difference between interventions, even if 

it is possible that such a ‘truth’ can be found. Unlike the other three important forms of 

uncertainty in HTA, structural uncertainty cannot be measured easily, and is often ignored 

in practice. 

In conclusion, there are many possibilities of structural problems in the lower floors, in 

addition to many methodological issues that need to be solved on our own floor. Because 

of this, the fourth floor can be a rather shaky place to be. But with good research practice, 

and a continuous eye open for the potential pit falls, it is a worthwhile one.
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10.1 SUMMARY

At its heart, health technology assessment (HTA) is very simple. It compares two or more 

alternative courses of action, often pharmaceutical interventions, in terms of both their 

costs and health outcomes. Better health outcomes usually come at extra costs, often in 

the way of a higher price for the intervention. HTA makes this exchange between costs 

and effects explicit. However, HTA is facing many methodological challenges, calling for 

more complexity in the analyses.

In chapter 2, we gave an example of a health-economic (HE) decision model as is 

commonly used to tackle the analysis complexity. The model was used to show the long 

term HE effects of the reimbursement of smoking cessation treatments. The study showed 

that reimbursement of smoking cessation support via the obligatory health care insurance 

in The Netherlands would result in fewer smokers and more quality-adjusted life years 

(QALYs). It is a cost-effective way to contribute to a reduction in the percentage of smokers. 

One of the complexities discussed in this thesis was the heterogeneous nature of pa-

tients. In chapter 3, we showed that there are several ways of dealing with heterogeneity 

and that the outcomes, and thus the policy decision, may change when heterogeneity is 

handled differently. Three of these methods discussed can be useful in cost-effectiveness 

(CE) research, each in different circumstances. When little or no heterogeneity is expected, 

or when it is not expected to influence the CE results, disregarding heterogeneity may be 

correct. Subgroup analyses may inform policy decisions on each subgroup, as long as they 

are well defined and the characteristics of the cohort that define a subgroup truly represent 

the patients within that subgroup. Despite the necessary calculation time, the Double 

Loop Probabilistic Sensitivity Analysis (PSA) is a viable alternative, which leads to better 

results and better policy decisions, when accounting for heterogeneity in a Markov model. 

The Single Loop PSA can only be used to calculate the point estimate of the expected 

outcome. It disregards the fundamental differences between heterogeneity and sampling 

uncertainty, and overestimates overall uncertainty as a result. 

The second complexity discussed in this thesis was the difference between data 

sources that have to be combined. In chapters 4 and 5, we compared several methods of 

meta-analysis. Using a simulation study we could compare the HE outcomes to a golden 

standard, and each other. In chapter 4, which compared methods of direct meta-analysis, 

frequentist fixed effects (FFE), frequentist random effects (FRE) and Bayesian fixed effects 

(BFE) led to comparable HE outcomes, even in scenarios where we built in heterogeneity. 

Bayesian random effects (BRE) tends to overestimate uncertainty reflected in the shape of 

the CE acceptability curve.

In chapter 5 we compared several methods of indirect meta-analysis. Puhan’s method 

and the Generalized Linear Model Fixed Effects (GLMFE) showed similar results, with 

GLMFE having the tendency to overestimate uncertainty, but also having lower average 
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bias and mean absolute deviation (MAD). Generalized Linear Model Random Effects 

(GLMRE) showed large bias and MAD, and overestimated uncertainty even more. Based 

on this study, where we had to combine nine trials in a network that includes evidence 

for all treatment combinations, we would recommend Puhan’s method or GLMFE as the 

preferred method of indirect meta-analysis.

The final complexity discussed in this thesis, were differences between countries. 

Many factors should be taken into account when transferring cost-effectiveness results 

across countries and settings and there are many interactions between these factors. This 

stresses the importance of carefully considering whether foreign results can be applied 

and adapted to a different setting. We’ve shown in chapter 6 that it is not only important to 

see which factors vary, but also how much this variation in factors causes variation in CE. 

The factors that cause the most variation in cost-effectiveness do not necessarily have to be 

the same as the factors that vary most themselves. Chapter 7 showed that the importance 

of each of the factors is also influenced by the local threshold value for a QALY. When 

studying the CE of smoking cessation, there is a need for local data even for countries 

within a similar region of the world.

Chapter 8 discussed CE analyses that were based on recent, large multinational random-

ized controlled trials. Several advanced statistical techniques are available to calculate 

country-specific CE results from multinational trials. These methods take the interaction 

between country and treatment effect on health and health care utilization into account. 

Hierarchical models also lower variability of the country-specific CE results and lead to 

more appropriate population estimates. However, they have not been used on a wide 

scale yet, while simpler, naïve methods are still routinely employed.
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10.2 NEDERLANDSTALIGE SAMENVATTING

Het principe van evaluatieonderzoek in de gezondheidszorg (health technology assess-

ment, HTA) is simpel. Twee of meer alternatieve behandelingen, vaak farmaceutische 

interventies, worden vergeleken in termen van kosten en effecten. Betere gezondheidsuit-

komsten gaan meestal gepaard met hogere kosten, vaak door een hogere prijs voor de 

interventie. HTA maakt deze vergelijking expliciet. Echter, diverse methodologische 

problemen binnen de HTA vragen om steeds complexere analyses.

In hoofdstuk 2 werd een voorbeeld van een gezondheidseconomisch (GE) beslismodel 

gegeven, zoals deze gebruikt worden voor dergelijke complexe analyses. Het model werd 

gebruikt om de lange termijn kosteneffectiviteit (KE) te berekenen voor het vergoeden van 

stoppen-met-roken behandelingen. De studie toonde aan dat een dergelijke vergoeding 

vanuit de verplichte ziektekostenverzekering in Nederland zal leiden tot minder rokers en 

meer voor kwaliteit van leven gewogen levensjaren (quality-adjusted life years, QALYs). 

Het is een kosteneffectieve manier om het percentage rokers in Nederland naar beneden 

te brengen. 

Eén van de complexiteiten die in dit proefschrift zijn besproken, is de heterogeniteit 

in groepen patiënten. In hoofdstuk 3 lieten we zien dat er diverse manieren zijn om met 

heterogeniteit om te gaan en dat de KE uitkomsten, en dus de beleidsbeslissing, anders 

kunnen zijn als een andere methode wordt gekozen. Drie van de genoemde methodes 

kunnen van nut zijn in HTA, elk in andere omstandigheden. Met weinig of geen hetero-

geniteit, of wanneer het wordt verwacht dat dit de KE uitkomsten niet zal beïnvloeden, 

kan heterogeniteit worden genegeerd. Subgroepen kunnen beleidsbeslissingen voor 

elke subgroep apart ondersteunen, zolang deze subgroepen goed zijn afgekaderd en de 

karakteristieken van het cohort binnen elke subgroep ook daadwerkelijk alle patiënten 

binnen de subgroep vertegenwoordigen. Ondanks de benodigde rekentijd, is de Double 

Loop probabilistische gevoeligheidsanalyse (Probabilistic Sensitivity Analysis, PSA) een 

goed alternatief dat leidt tot betere resultaten en beleidsbeslissingen. De Single Loop PSA, 

waarin heterogeniteit en parameteronzekerheid tegelijk worden geanalyseerd, negeert het 

fundamentele verschil tusen beide en zal daardoor de onzekerheid overschatten.

De tweede complexiteit die in dit proefschrift werd beschreven, is het verschil tussen 

databronnen die samengevoegd moeten worden. In hoofdstukken 4 en 5 werden diverse 

methoden van datasynthese vergeleken. Met een simulatiestudie was het mogelijk om de 

GE uitkomsten te vergelijken met een Gouden Standaard en met elkaar. In hoofdstuk 4, 

waarin vier methoden van directe datasynthese werden vergeleken, bleken de frequentist 

fixed effects (FFE), frequentist random effects (FRE) en Bayesian fixed effects (BFE) tot 

vergelijkbare GE resultaten te leiden, zelfs in scenarios waarin heterogeniteit was inge-

bouwd. Bayesian random effects (BRE) neigde naar een overschatting van de onzekerheid.
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In hoofdstuk 5 werden diverse methodes van indirecte datasynthese vergeleken. Pu-

han’s methode en Generalized Linear Model Fixed Effects (GLMFE) leidde tot vergelijkbare 

resultaten, waarin GLMFE de neiging vertoonde om de onzekerheid te overschatten, maar 

ook een lagere systematische fout en absolute afwijking had. Generalized Linear Model 

Random Effects (GLMRE) liet een grote bias en absolute afwijking zien, en overschatte 

de onzekerheid nog meer. Gebaseerd op deze studie, met negen studies in een netwerk 

waarin bewijs is voor alle mogelijke interventiecombinaties, zouden wij Puhan’s methode 

of GLMFE prefereren voor het doen van indirecte datasynthese.

De laatste complexiteit in dit proefschrift besproken, is het verschil tussen landen. Een 

grote hoeveelheid factoren moet in acht worden genomen wanneer KE resultaten worden 

vertaald tussen landen, en er diverse interacties tussen deze factoren zijn. Dit benadrukt 

het belang om goed na te gaan of resultaten uit een andere land kunnen worden toe- en 

aangepast in de eigen omgeving. In hoofdstuk 6 hebben we laten zien dat het niet alleen 

van belang is om goed te kijken welke factoren veranderen, maar ook hoeveel de variatie 

in deze factoren, de variatie in KE veroorzaakt. Factoren die de meeste variatie in KE 

veroorzaken tussen landen, zijn niet noodzakelijk factoren die zelf veel variëren tussen 

landen. Hoofdstuk 7 toonde aan dat het belang van elke factor ook kan veranderen als de 

maatschappelijke bereidheid om te betalen voor een QALY verandert. Wanneer de KE van 

stoppen-met-roken middelen wordt onderzocht, is er een duidelijke noodzaak voor lokale 

data, zelfs voor landen in vergelijkbare regio’s.

Hoofdstuk 8 besprak KE studies die zijn gebaseerd op recente, grote multinationale 

studies. Diverse geavanceerde statistische technieken zijn beschikbaar om landspecifieke 

KE resultaten te berekenen. Deze methodes houden rekening met de interactie tussen 

het land en het behandeleffect. Hiërarchische modellen verlagen ook de variabiliteit in 

landspecifieke resultaten en leiden tot betere schattingen. Echter, deze methodes worden 

niet op grote schaal gebruikt, terwijl simpelere, naïeve methodes nog regelmatig worden 

toegepast.



225

10 
10.3 ACKNOWLEDGMENTS

And here starts the most read part of any thesis: the acknowledgments. They are always 

incomplete, as every success is a sum of the interactions with many people, but I do try 

to be as complete as I possibly can. The first solid step on the road towards this thesis was 

inspired by Dave Sugano, a delightful man who I’m indebted to for the reference he gave 

me at iMTA. He first told me about the exciting field of health economics “which is up and 

coming” and has “the best European institute right next door to where you live.”

To come to iMTA, I left the good people at APE behind me. They have taught me many 

small and big things, not in the least on the political side of organizations and the practi-

cal side of economics. I need to thank the partners and all the other colleagues for the 

wonderful time I have had on one of the most beautiful spots in The Hague. 

During the time at iMTA, I have been involved with several organizations, which have 

shaped me the way I am. The people of Toastmasters of The Hague, Rotterdam Toastmasters 

and Toastmasters District 59 (Continental Europe) are very dear to me. Coming from all 

over the world, they have inspired me endlessly and helped me hone my communication 

and leadership skills. In the municipality of Barendrecht, I was involved with D66. My 

fellow democrats have rekindled my love of the common good, and my political ambi-

tions. I have continued my work for the community in Tynaarlo, and I hope that you will 

be as proud of my accomplishments, as I am of what you have accomplished in the past 

few years. My fellow members of the Culturele Raad (Cultural Council) Barendrecht have 

taught me a lot about culture policies and have given me a new appreciation of local 

cultural initiatives.

For my newest endeavor, I have to thank Dr. Talitha Feenstra, Dr. Paul Krabbe and Prof.

dr. Maarten Postma for giving me the opportunity to continue my work in a new environ-

ment, and my new colleagues for making me feel at home in Groningen.

Two men deserve special mention, as they have kept me sane during the past decade 

or longer. Without the (almost) daily correspondence between The Hague, Brussels and 

Rotterdam, my life would have been much more boring. Thank you, Jelte Theisens and 

Jan Willem Gerritsen, for the many wonderful moments that we have shared. Cold wind 

in Brugge, rain in Nice, more rain in Cannes, even more rain in Maastricht and of course 

“trains on a bridge” in Nijmegen. I hope to share many more moments, glasses and 

e-mails with you.

During the time I have worked on this thesis, it never ceased to amaze me how incred-

ibly nice health economists are. They might well be the best that the dismal science has 

to offer. It started with the wonderful colleagues at iMTA and the iBMG: you all made the 

time I’ve spend with you special. I have warm recollections of many moments, of which 

daily morning coffee before the day properly starts, the Roparun in 2012 and the confer-

ences stand out. Conferences and courses are also a nice way of meeting new people, 



10 

226

who you will meet again and again for many years afterwards. (Yes, you, I know you are 

looking for your name  - admit it.)

I particularly enjoyed giving classes during my time in Rotterdam and I have to thank 

Dr. Erwin Birnie, Dr. Ken Redekop and Dr. Jacco Keja for allowing me time in their various 

courses. As much as I taught the students, I think I have learned more myself.

I would also like to thank several sponsors for their financial support for the research 

shown in this study: the Dutch Ministry of Health for the study on which chapter 2 is 

based, Takeda for the study on which chapter 3 is based, ZonMW for the study on which 

chapters 4 and 5 are based and Pfizer for the funding of the study discussed in chapters 6 

and 7. I would also like to thank the management of iMTA for allowing me to use part of 

the investment budget for my investigation into the field of transferability, which allowed 

me to write chapters 6 and 8.

Many thanks go to Prof.dr. C.A. Uyl-de Groot, Prof.dr. F. Rutten and Prof.dr. M.J. Postma, 

who graciously accepted the invitation to take part in the judging committee for this thesis.

Prof.dr. Maureen Rutten-van Mölken did an exemplary job in guiding me through this 

thesis. There have been many ways in which my mind, and my projects can get side-

tracked and she always managed to get me back on track. Maureen, I thank you for the 

opportunity to write this thesis under your guidance, and for all the things I have learned. 

You and I sometimes have polar opposite ways of doing things, and I think discussing 

these differences and learning from the way you approach things, have vastly improved 

my work.

After having spent the first month at iMTA in a separate room by myself, a new colleague 

was hired at iMTA. When I discussed this with the other colleagues, they were shocked 

(SHOCKED!) to discover that I had already run her name through the internet search 

engines and that I knew a lot about Saskia Schawo already. Fortunately, there was much 

more to discover about you, Saskia, and we soon found out we had similar interests. You 

brightened my days when you were around. I feel incredibly fortunate that we shared an 

office and I look back on that time with great fondness.

Most of the “junior” staff at a university (read: not holding a PhD-title) come straight 

from their Masters defense. At iMTA, only a few were a bit older, with a whole career 

behind us. One of these was Lucas Goossens, and this meant we had something in com-

mon. Lucas, I love the way you dive into completely new subject matters, and I treasure 

the memory of our discussions, be it about statistics, politics or TV series. 

All of the changes in my working life since 2002, have been thoroughly discussed 

with Ingeborg Been. She started out as a colleague, quickly became someone to share 

diner with in the many restaurants in The Hague, became a close friend and is someone 

I consider to be a coach. Ingeborg, your opinions, your ideas, the way you look at things 

have always meant a great deal to me.

Lucas and Ingeborg, I am honoured to have both you as my paranymph.



227

10 
Where I have lived around the whole country, my sister Erlinde and her family have 

always been a steady place to come home to, close to Nijmegen. We may not see each 

other very often, but all time spend together is valuable to me. 

Dear Hans and Wilma. I always hear people say that “working in health care runs in the 

family”. I initially escaped this by becoming an econometrician, but as with all clichés, it 

was stronger than I was. Not only did I marry a doctor, but I was also drawn to the field 

after having worked for years in social welfare. An upbringing filled with medical terms at 

the dining room table has prepared me for many parts of the work I do today. It isn’t the 

only thing I have learned that I have taken with me on this road. Having been brought up 

in a loving family has shaped me to the man I am today. Thank you for all that you have 

given me, all that you have taught me, and every way that you inspired me.

Finally, I have to thank the three brightest rays of sunshine in my life: Eveline, Casper 

and Anne. You bring me joy daily. Watching every step that the children take makes me 

feel proud. Although I do still have nightmares of a certain red, lighted button under my 

desk… Anne, thank you for putting up with my evenings of work, and for allowing me to 

continue to do so, even now that this thesis is done and I am pursuing other things. I love 

you and I hope to spend many more years together; learning, growing, enjoying.





229

10 
10.4 CURRICULUM VITAE

Pepijn Vemer was born in Enter, on July 10th, 1975. Having spent his childhood in several 

cities in The Netherlands, he started his econometrics study at the University of Groningen 

in 1994. During this time he was an active member of the Stichting Eloquentia Groningen 

(Elocution Society), as a debater, board member and the organizer of the biweekly debat-

ing events. He also organized the Dutch debating championships twice. In addition, he 

was a member of the local political party Student en Stad. Besides contributing to the 

political work of the party, he was the editor in chief of the (irregular) newsletter.

He graduated in 2000, after an internship at IMS Health, Plymouth Meeting, USA. At 

IMS Health he investigated time series of drug sales, before and after going off patent. His 

first job was as at ANOVA Health Care Insurance (now part of Agis Health Care Insurance) 

in Amersfoort. There he was responsible for quarterly reports, for the setting up of a quality 

feed-back system for physical therapists and for premium calculations for new products. In 

2002 he was hired as a consultant at APE in The Hague, where he did research and advice 

in several fields in public and private sectors. Having started in the field of health care 

insurance and disability, he later branched out into social welfare. His particular interest 

was in the nation-wide implementation of the model to distribute the National Welfare 

Budget over local municipalities objectively, and in the local consequences of this model.

During this time he was heavily involved with local chapters of Toastmasters, an interna-

tional organization which teaches its members communication and leadership skills. He 

has acted as President of Toastmasters of the Hague (TMOTH) and as Founding President 

of Rotterdam Toastmasters. During his time in Toastmasters he earned the Advanced Com-

municator Bronze and Advanced Leadership Bronze.

In 2008 he started work at the Institute for Medical Technology Assessment (iMTA), part 

of the Institute for Policy and Management (iBMG) at the Erasmus University Rotterdam. 

Here he primarily did contract research in the area of cost-effectiveness of new medical 

technologies, with a main interest in transferability between jurisdictions. Several large 

projects were performed by him, together with several colleagues both within and outside 

the university. The largest of these projects was a ZonMW project dealing with the meth-

odology of meta-analysis. Research finding have been disseminated at conferences and 

in academic journals. He also taught various classes at different levels, ranging from first 

year Bachelor students to the NIHES Summer Program. See 10.5 for a complete overview 

of the work done during this period.

From 2013 onwards, he has been in a Postdoc-position working for the department of 

Epidemiology (Unit HTA) at the University Medical Center Groningen, and Pharmacoepi-

demiology and Pharmacoeconomics (PE2) at the University of Groningen.





231

10 
10.5 PHD PORTFOLIO

The following ‘deliverables’ have been produced, based on work done at iBMG/iMTA, 

between February 2008 and January 2013.

10.5.1 Publications

An up to date list of publications by the author can be found on:

http://www.ncbi.nlm.nih.gov/pubmed?term=Vemer%20P[Author] and 

http://www.researchgate.net/profile/Pepijn_Vemer 

“Health Related Quality-of-Life and productivity-losses in patients with depression and 

anxiety disorders” Bouwmans C, Vemer P, Van Straten A, Tan SS, Rutten F, Hakkaart L. J 

Occup Environ Med. 2014 Apr;56(4):420-4. doi: 10.1097/JOM.0000000000000112.

“Let’s get back to work. Survival analysis on the return-to-work after depression “ Vemer 

P, Bouwmans C, Vlasveld M, Van der Feltz C, Hakkaart L. Neuropsychiatr Dis Treat. 

2013;9:1637-45

“The road not taken. Transferability issues in multinational trials” Vemer P, Rutten-van 

Mölken MPMH. Pharmacoeconomics. 2013 Oct;31(10):863-876

“A Choice That Matters? Simulation Study on the Impact of Direct Meta-Analysis Methods 

on Health Economic Outcomes “ Vemer P, Al MJ, Oppe M, Rutten-van Mölken 

MPMH. Pharmacoeconomics. 2013 Aug;31(8):719-30.

“A systematic review of hospital-at-home care. Cost savings are overestimated” Goossens 

LM, Vemer P, Rutten-van Mölken MPMH. Chapter in “Underestimated uncertain-

ties. Hospital-at-home for COPD exacerbations and methodological issues in the 

economic evaluation of healthcare” Goossens LM, iBMG Rotterdam 2012 ISBN 

978-94-6169-338-9

“Largely Ignored: The impact of the threshold value for a QALY on the importance of a trans-

ferability factor.” Vemer P, Rutten-van Mölken MP. Eur J Health Ec 2011;12(5):397-

404

“If you try to stop smoking, should we pay for it? The cost-utility of reimbursing smoking 

cessation support in the Netherlands” Vemer P, Rutten-van Mölken MPMH, Kaper J, 

Hoogenveen RT, Van Schayck CP, Feenstra TL. Addiction, 2010;105(6):1088–1097

“Crossing Borders: Factors Affecting Differences in Cost-Effectiveness of Smoking Cessa-

tion Interventions between European Countries.” Vemer P, Rutten-van Mölken MP. 

Value Health. 2010;13(2):230–241

“Internationale vertaalbaarheid van kosten-effectiviteit” Rutten-van Mölken MPMH, 

Vemer P. Chapter in “Van Kosten tot Effecten Een handleiding voor evaluatiestudies 

in de gezondheidszorg “ Rutten-van Mölken,M.P.M.H. (Ed.), 2nd ed, ELSEVIER ge-

zondheidszorg, Maarssen 2010 ISBN 978 90 352 3187 0



10 

232

10.5.2 Projects

International comparison of health-economic outcomes for varenicline

Reimbursement of smoking cessation support

Cost-effectiveness of new pneumococcal vaccines

Go-ahead review

Zon/MW project on Meta Analysis

Transferability: Paper Threshold value for a QALY

Tiotropium Workorder

Nycomed

Transferability: Invited paper Pharmacoeconomics

Major Depressive Disorder (Lundbeck)

Functional Family Therapy

Model validation for Celgene

Zon/MW project on Chronic Lymphocytic Leukemia (CLL)

10.5.3 Education

Workgroups “Inleiding Methoden en Technieken van Onderzoek (M&T1)”, BA1, 2008-

2012.

Evaluator for Health Econometrics, 2008 

Workgroup “Transferability”, 2009-2012

Workgroup “Excelvaardigheden”, 2009, 2010, 2012

Erasmus Summer Program, course “Health Economics”, 2009-2012.

Workgroup “Debatteren” (Lijnvaardigheden), 2010

Workgroup “Markov Modeling”, 2010-2011

Workgroup “Uncertainty”, 2011

Classes BA-M&T1 Inleiding Methoden en Technieken van Onderzoek (M&T1), “Steekpro-

even” (2011-2012) and “Steekproeffouten” (2012).

Supervisor master graduation Georgios Gkountouros.

Supervisor Bachelor thesis Suzanne Oomen.

Co-evaluator Master Thesis Michelle Lieuw-On

Co-evaluator Master Thesis Daisy Duell

Course coordinator “Life Sciences Pricing and Management”, 2011

Preparation for new elective course Pharmaceutical Pricing and Market Access, 2012

10.5.4 Courses

Evidence Synthesis for Decision Modeling, Venice June 29 - July 3, 2009

Basiscursus didaktiek, Rotterdam May-June, 2010

Training “Nieuwe B1 programma”



233

10 
10.5.5 Scientific meetings and presentations

NV-TAG, Bilthoven, Mar 14th, 2008

ISPOR 11th annual European congress, Athens, Nov 9th-12th, 2008

Poster presentation “Crossing Borders: Factors affecting differences in cost-effectiveness of 

smoking cessation interventions between European countries”

NV-TAG, Utrecht, Nov 14th, 2008

poster presentation “Crossing Borders: Factors affecting differences in cost-effectiveness of 

smoking cessation interventions between European countries”

LoLa HESG, Berg en Terblijt, May 28th and 29th, 2009

Discussant, “The Longitudinal Relationship Between Health Status And Costs Of Hospital 

Use”, Bram Wouterse, Universiteit Tilburg / Tranzo.

Own paper discussed by Saskia Knies, Maastricht University, Faculty Health Med & Life 

Science, School Public Health & Primary Care: “Crossing Borders: Factors affecting 

differences in cost-effectiveness of smoking cessation interventions between Euro-

pean countries” 

ISPOR 12th annual European congress, Paris, Oct 24th-27th, 2009

Podium presentation “Seven, Ten or Thirteen? The cost-utility of infant vaccination with a 

7-, 10- and 13-valent Pneumococcal Conjugate Vaccine in the Netherlands”

Poster presentation “Largely Ignored: The impact of the threshold value for a QALY on the 

importance of a transferability factor”

ZonMw/NVTAG, HTA-methodologie geneesmiddelen, Utrecht, Jan 29th, 2010.

Oral presentation “Tussenresultaten Meta Analyse” 

LoLa HESG, Egmond aan Zee, May 27th and 28th, 2010

Gespreksleider.

ISPOR 13th annual European congress, Prague, Nov 6th-9th, 2010

Poster presentation “Country adaptation of a health economic model. The case for roflu-

milast in The Netherlands”

ZonMw/NVTAG, HTA-methodologie geneesmiddelen.

Presentatie tussenresultaten Meta Analysis Nov 23th, 2010

Bijeenkomst HTA methodologie, Utrecht, Sep 12th, 2011

Oral presentation “Updating parameters of decision-analytic cost effectiveness models: a 

systematic comparison of methods.”

ISPOR 14th annual European congress, Madrid, Nov 5th-8th, 2011

Oral presentation “A choice that matters: Comparing methods of data synthesis in cost-

effectiveness modelling”

LoLa HESG, Landgoed Ehzerwold, May 24th, 2012

Discussant, “How should we deal with patient heterogeneity in economic evaluation: 

a systematic review of pharmacoeconomic guidelines”, Bram Ramaekers et al., 

Universiteit Maastricht.



10 

234

Own paper discussed by Willem Woertman Nijmegen University: “Comparing methods of 

indirect meta-analysis in health economic models” 

ISPOR 15th annual European congress, Berlin, Nov 3th-7th, 2012

Poster presentation “Comparing methods of mixed treatment comparisons in health eco-

nomic models”

Poster presentation “A systematic review of hospital-at-home care: cost savings are over-

estimated”

10.5.6 Other

Organizer lecture Prof Richard Gill, “Probiotics”, Mar 24th, 2008

Course leader Public speaking for BMG employees, 2008, 2009.

Pier review for Eur J Health Econ (Jun 2008, May 2010, May 2012, Dec 2012), Vaccine 

(July 2010), British Journal of Medicine and Medical Research (Apr 2012)

Parents’ Day FBMG, Feb 13th, 2009

Meeting with BI in Frankfurt, Nov 19th, 2009

Course leader Public speaking for BMG employees, two sessions from Jan 11th, 2010.

Worked for two months in San Francisco, 2012

Roparun, 2012

Astellas Advisory Board Meeting (Dec 7th, 2012)

10.5.7 Awards

Best New Investigator Podium Presentation for Podium presentation “Seven, Ten or Thir-

teen? The cost-utility of infant vaccination with a 7-, 10- and 13-valent Pneumococcal 

Conjugate Vaccine in the Netherlands” at the ISPOR 12th annual European congress, 

Paris, Oct 24th-27th, 2009





             PePijn Vem
er 

 D
ealing w

ith D
ifferences


	Dealing with Differences Different populations, data sources and countries in HTA modelling = Omgaan met Verschillen Verschillende populaties, data bronnen en landen in HTA modelleren
	PROPOSITIONS
	TABLE OF CONTENTS
	Chapter 1 - Introduction: A simple concept; many complications
	Chapter 2 - If you try to stop smoking, should we pay for it? The cost-utility of reimbursing smoking cessation support in the Netherlands.Vemer P, Rutten-van Mölken MP, Kaper J, Hoogenveen RT, van Schayck CP, Feenstra TL.Addiction. 2010 Jun;105(6):1088-97. doi: 10.1111/j.1360-0443.2010.02901.x.PMID:    20659063    [PubMed - indexed for MEDLINE] 
	Chapter 3 - Not simply more of the same. Distinguishing between patient heterogeneity and parameter uncertainty
	Chapter 4 - A choice that matters? Smulation study on the impact of direct meta-analysis methods on health economic outcomes.Vemer P, Al MJ, Oppe M, Rutten-van Mölken MP.Pharmacoeconomics. 2013 Aug;31(8):719-30. doi: 10.1007/s40273-013-0067-0.PMID:    23736971    [PubMed - indexed for MEDLINE] 
	Chapter 5 - Mix and Match. A simulation study on the impact of mixed-treatment comparis on methodson health-economic outcomes
	Chapter 6 - Crossing borders: factors affecting differences in cost-effectiveness of smoking cessation interventions between European countries.Vemer P, Rutten-van Mölken MP.Value Health. 2010 Mar-Apr;13(2):230-41. doi: 10.1111/j.1524-4733.2009.00612.x. Epub 2009 Sep 25.PMID:    19804435    [PubMed - indexed for MEDLINE] 
	Chapter 7 - Largely ignored: the impact of the threshold value for a QALY on the importance of a transferability factor.Vemer P, Rutten-van Mölken MP.Eur J Health Econ. 2011 Oct;12(5):397-404. doi: 10.1007/s10198-010-0253-3. Epub 2010 May 30.PMID:    20512607    [PubMed - indexed for MEDLINE] Free PMC Article
	Chapter 8 - The road not taken: transferability issues in multinational trials.Vemer P, Rutten-van Mölken MP.Pharmacoeconomics. 2013 Oct;31(10):863-76. doi: 10.1007/s40273-013-0084-z. Review.PMID:    23979963    [PubMed - indexed for MEDLINE] 
	Chapter 9 - Discussion. Further issues in HTA
	Chapter 10 - Afterword
	10.1 - SUMMARY
	10.2 - NEDERLANDSTALIGE SAMENVATTING
	10.3 - ACKNOWLEDGMENTS
	10.4 - CURRICULUM VITAE
	10.5 - PHD PORTFOLIO



