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1. INTRODUCTION

In this chapter we provide introductory information on genome-wide association studies.
We briefly discuss the statistical methods used in the association analyses. Both genetical
and statistical parts are described in a non-technical way to help the reader understand
basic concepts related to our research. Furthermore, we introduce the motivating data set
and explain the aims of this thesis.

1.1 Genome-wide association studies

There are many ways to investigate the relationship between genes and human traits. Ex-
ploring genetic patterns in families by linkage analysis, was successful in explaining mono-
genic diseases, controlled by a single gene. However, common medical conditions, such as
diabetes or obesity, are associated with multiple loci each having a small effect. The motiva-
tion to explain complex diseases together with the large progress in genotyping technology,
made it possible to focus on genome-wide association studies (GWAS). The major ingredi-
ent in GWAS is the single nucleotide polymorphism (SNP), a genome position at which two
(but rarely more) distinct nucleotide residues occur in at least 1% of the population. For in-
stance, two sequenced DNA fragments from different individuals: AATGCTA and AATTCTA,
contain one SNP: T replacing G at the middle fourth position. Such alternative forms of
nucleotides are called alleles. Since individuals inherit a SNP allele from each parent, if we
call the alleles A and B, the possible genotypes can be summarized as: AA, AB, BB. Since
2005, technological developments facilitated genotyping of over half a million SNPs in one
go and at a reasonable price. In GWAS all SNPs are tested, one by one, for their associa-
tion with the phenotype, which is either the susceptibility for the disease or the level of a
trait. Identified SNPs may pinpoint new biological pathways, helping researchers to under-
stand the mechanisms among the molecules in a cell. The expected effect sizes are rather
small, usually below 0.5% contribution to R2 in linear regression models and odds ratios
below 1.2 in logistic regression models. On the other hand, to avoid false positive results,
conservative multiple testing correction (Bonferroni) is applied to the commonly accepted
significance level, leading to alpha level 5× 10−8. Those two factors together require very
large sample sizes (thousands of individuals) to obtain reasonably small standard errors of
the estimated coefficients.

The first large stream of the results published on GWAS dates back to 2007, when numer-
ous papers were written on loci associated with (among others): diabetes, breast cancer,
and lipids. From then onwards the field expanded enormously, investigating hundreds of
human diseases and features, even choral singing (Morley et al., 2012), entrepreneurship
(Van der Loos et al., 2010), and coffee drinking (Amin et al., 2012). All those endeavors
are reported in the publicly available GWAS Catalogue (Hindorff et al., 2010), where over
1900 articles have been published by June 2014.

Effect sizes, quantified as variances explained or odds ratios, discovered in GWAS turned
out to be even smaller than expected. A way to increase their significance is to enlarge the
sample size even more. This led to meta-analyses performed across cohorts from all over
the world. Different cohorts genotyping different SNPs hampered carrying out the pooled
analyses. To be able to perform a meta-analysis became one of the driving forces behind the
genotype imputation, using the fact that nearby SNPs are correlated. The dimensionality of
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1.2. Linear regression and generalized linear models

the data is increased by imputing genotypes that are not directly assayed, using the values
of the two measured “tag” SNPs. Based on the HapMap project (Gibbs et al., 2003), the
numbers of analyzed SNPs grew to approximately 2.5 million. Recently, with the advent
of the 1000 Genomes Project (1000 Genomes Project Consortium and others, 2012) this
number has even grown to 30 million.

The statistical tools used in association testing in GWAS belong to the set of popular and
common methods. However, it is not the modeling that makes these studies challenging for
statisticians. The necessity of fitting millions of models leads to computational struggles.
In case of 30 million SNP data imputed using the 1000 Genomes Project, a GWA scan with
simple linear regression takes a couple of days on a single computer. This time increases
to weeks for logistic regression and to months or years for the linear mixed model. On the
other hand, this “embarrassingly parallel” task can be split up, with little effort, among as
many processors as desired/available. So called cluster-computing is indeed common in
GWAS. Despite large-scale computing facilities, computing times remain long.

Another issue in GWA studies is caused by very large data files storing the SNP data.
The total size of genotype data for 30 million SNPs reaches many hundreds of Gigabytes,
stored in a few hundred files of a few Gigabytes each. Loading such large files, saved as
ASCII files, demands a lot of time and computer memory. Moreover, the structure in which
the data are stored also matters tremendously. Commonly, the data are written as “row per
individual” in which all SNPs for an individual form a record on a disk. This structure is
very inconvenient for a quick access of the selected SNPs of all individuals. In this thesis,
we thoroughly discuss the problem of SNP data access. We show that it is a vital element
of achieving fast speed of GWA computations. We overcome that problem using existing
implementations.

We focus on cross-sectional continuous and binary outcomes as well as continuous lon-
gitudinal measurements. Below we describe statistical methods used in the analysis of this
type of data.

1.2 Linear regression and generalized linear models

The major aim in statistics is to describe relationships between variables, which with some
degree of realism reflect processes related to the subject of study. A formalization of those
relationships is expressed in the form of statistical models. One of the oldest, the linear
regression model, is used to formulate the association between a continuous outcome with
a set of continuous or categorical predictors. Formally, the linear regression model for a set
{yi, xi1, ...., xip}ni=1 has the following form:

yi = x′iβ + εi i = 1, ..., n, (1.1)

where yi denotes the response variable for individual i, xi is a p-dimensional vector with
predictors, β = (β1, ..., βp)′ is a p-dimensional vector with regression coefficients and εi
represents measurement error that is assumed to be normally distributed. After stacking
the n models (1.1) we obtain the vector form of the linear regression model
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1. INTRODUCTION

y = Xβ + ε,

where y is n × 1 dimensional vector, X is a n × p dimensional design matrix and ε is
a n-dimensional vector. It is assumed that εi are normally distributed with mean 0 and
standard deviation σ.

The coefficients in linear regression model are estimated using the ordinary least-squares
method, which minimizes

||y −Xβ|| =
n∑

i=1

(yi − x′iβ)2

with respect to β. The explicit solution is given by

β̂ = (X ′X)−1X ′y.

The variance-covariance matrix of β̂ is equal to

σ2(X ′X)−1, (1.2)

where σ2 can be approximated by its unbiased estimator

s2 =
Y ′Y − β̂′X ′Xβ̂

n− p .

The standard error of β̂j coefficient is the square root of the j-th diagonal element of the
matrix in (1.2). Significance of the individual coefficients in the model is assessed using a
t-test, because the statistic β̂j/se(β̂j) has a t-distribution with n− p degrees of freedom.

A flexible generalization of the linear regression model to other types of outcomes is
given by the class of generalized linear models (GLM). There are three components build-
ing up the GLMs: the random component coming from the exponential family, the system-
atic component specifying the way the explanatory variables influence the response, and
the link function defining the relationship between E(Y) and the systematic component.
As an example consider the binary response with the model estimating the probability of
“success”. Every realization of response variable is treated as an outcome of the Bernoulli
trial with E(Yi) = P (Yi = 1) = pi. To prevent predicted probabilities to fall outside [0; 1]

the logit link function is used to relate p with the set of predictors. Namely, the model has
a form

log
( pi

1− pi

)
= x′iβ,

from which we can easily calculate the probability of an event as

p(xi) =
exp(xiβ)

1 + exp(xiβ)
.

The model coefficients are typically estimated using the maximum likelihood (ML) method,
which maximizes the logarithm of the joint probability mass function of a sample size n,
i.e.,

L(β) =

n∏
i=1

p(xi)
yi [1− p(xi)]

1−yi .
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1.3. Linear mixed models

Maximization is done using the Newton-Raphson or Fisher scoring method. These iter-
ative procedures start with a tentative solution for the parameters and next improve it
until convergence. In the Newton-Raphson method, the variance-covariance matrix of the
parameters is obtained by inverting the negative of Hessian: a matrix with second order
partial derivatives of the log-likelihood function. In the Fisher scoring approach the ex-
pected value of this matrix is inverted. Significance of the particular coefficients is assessed
using the Wald test that evaluates the ratio β̂j/se(β̂j), which has asymptotically a standard
normal distribution.

1.3 Linear mixed models

One of the basic assumptions in linear regression is independence of the collected realiza-
tions of the random variable. In case of hierarchical data, this assumption is violated. An
example of hierarchical, also called multilevel, structure are exam scores obtained from
pupils within classes, classes within schools, and schools within districts. Measurements
on individuals sharing a cluster are more similar than measurements collected in different
clusters.

In this thesis we focus on a particular case of hierarchical data, namely longitudinal
data. Here, the repeated measures collected on individuals over time form clusters of
correlated outcomes. When the data are dependent, special care in the analysis is needed.
Mixed models offer a flexible way of modeling correlated data. As given in Laird and Ware
(1982) a mixed model describing the ni-dimensional vector yi of measurements collected
on individual i over time is given by

yi = Xiβ + Zibi + εi, i = 1, ..., n,

where Xi and Zi are ni × p and ni × q design matrices with fixed and random ef-
fects. It is assumed that bi has a multivariate normal distribution with zero means and
variance-covariance matrix D, εi has a multivariate normal distribution with mean zero
and variance-covariance matrix Σi. In case of independent errors with constant variance
Σi = σ2Ini . Finally, it is also assumed that b1, ..., bn, ε1, ..., εn are mutually independent.
The random effects describe the individual deviation from the average population evolu-
tion. They control for unobserved heterogeneity inducing the correlation between outcome
variables from the same individual. The simplest structure of the random part consists
of only the random intercept implying different baseline levels between individuals. This
structure leads to a constant correlation over time, so called the compound symmetry struc-
ture. In many studies, this assumption is not realistic and therefore a random slope is added
to allow for a variation in the individual slopes and thus implying a more complex correla-
tion structure.

The estimation of variance components and fixed effects can be performed using the
maximum likelihood method, which maximizes the log-likelihood

log(LML) = −0.5

n∑
i=1

log |Vi| − 0.5

n∑
i=1

(yi −Xiβ)′V −1
i (yi −Xiβ) + c,
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1. INTRODUCTION

where Vi = Z′iDZi+Σi is the variance-covariance matrix of vector yi. Maximization is done
iteratively with respect to variance components in Vi and fixed parameters β. It has been
shown that for small samples ML estimation can lead to biased estimates of σ̂2 (Verbeke
and Molenberghs, 2009). Therefore, Restricted Maximum Likelihood (REML) method was
proposed which maximizes the slightly modified log-likelihood

log(LML)− 0.5 log |
n∑

i=1

X ′iV
−1
i Xi|

providing an unbiased solution for σ̂2. The explicit solution for the fixed effects is given by

β̂ =
( n∑

i=1

X ′iV
−1
i Xi

)−1
n∑

i=1

X ′iV
−1
i yi,

where the unknown variance components in Vi are replaced by their (RE)ML estimates and
the variance-covariance matrix is given by

var(β̂) =
( n∑

i=1

X ′iV
−1
i Xi

)−1

.

A lot of attention has been spent on the proper estimation of the degrees of freedom in the
inference for the fixed effects using an F or t-test. Several methods have been proposed by
Satterthwaite (1941) and Kenward and Roger (1997), which may lead to slightly different
p-values. This however concerns only situations with very small sample sizes or when
linear mixed models are used outside the context of longitudinal data analysis (Verbeke
and Molenberghs, 2009).

One way to estimate random effects is to use Bayesian ideas. The estimates called
Empirical Best Linear Unbiased Predictors (EBLUPs) are given by

b̂i = DZ′iV
−1
i (yi −Xiβ).

As provided by Henderson et al. (1959), for given variance components, the estimates for
fixed and random effects can be obtained simultaneously by solving the following system
of equations (

X ′Σ−1X X ′Σ−1Z

Z′Σ−1X Z′Σ−1Z +D−1

)(
β

b

)
=

(
X ′Σ−1y

Z′Σ−1y

)
,

where X, y, b are obtained by stacking Xi, yi, bi, respectively, underneath each other. Fur-
thermore, D,Σ and Z are block diagonal matrices with D,Σi and Zi on the main diagonal
and zeros elsewhere.

Another important issue related to linear mixed models are missing data. A popular clas-
sification as given by Little and Rubin (1989) distinguishes between: missing completely
at random (MCAR), missing at random (MAR) and missing not at random (MNAR). This
classification is based on the relationship between the probability of an observation being
missing and the previously collected or unobserved values of the outcome and covariates.
The principles behind the missing data mechanisms are discussed in Chapter 2.

6



1.4. The Rotterdam Study and the genetics of bone loss

1.4 The Rotterdam Study and the genetics of bone loss

The Rotterdam Study is a population-based cohort prospective study which started in 1990
in the city of Rotterdam (Hofman et al., 2013). Initially 7983 individuals (so called RS-I
cohort) were enrolled in the study. All participants were 55 years of age or over at baseline.
This cohort was examined during 5 cycles: 1990-1993, 1993-1995, 1997-1999, 2002-2004
and 2009-2011 with sample sizes: 7983, 6315, 4797, 3550 and 2140 respectively. The
objective of the Rotterdam Study is to explore factors that determine the occurrence of
diseases frequent in the elderly populations such as: coronary heart disease, heart failure
and stroke, Parkinson disease, Alzheimer disease, osteoporosis and other diseases. In over
1000 scientific articles and reports the researchers published on environmental, clinical and
genetic risk factors of these diseases using Rotterdam Study data.

The part of the Rotterdam Study that inspired the research in this thesis relates to bone-
strength in elderly people which is clinically assessed through bone mineral density (BMD)
measurements. Low BMD is one of the strongest risk factors for osteoporotic fractures. Tak-
ing into account that osteoporotic fractures constitute an important public health problem,
it is relevant to target their prevention. Identification of the genetic contribution is one of
the routes to explaining BMD variation. A lot of work has been spent in investigating cross-
sectionally measured BMD. Major GWAS findings report 56 loci influencing bone mineral
density, which explains around 5% of its variation. Clinical speculations suggesting that
some of those loci may be also related to age-related bone loss as well as conducted her-
itability studies motivated researchers to pursue genetic contributions to the BMD change
(Mitchell and Yerges-Armstrong, 2011). Longitudinal studies are essential in relating the
individual evolution of a trait with genetic characteristics. Measurements of BMD in the
Rotterdam Study were collected 5 times for the RS-I cohort, however only 4 measurements
were available by the time we conducted our research. The individuals were examined
at baseline and on average after 2, 6, and 12 years. Unequal times of examinations and
individuals missing their visit(s) generated an unbalanced data set.

1.5 Aim and outline of the thesis

Two major issues arise in performing genome-wide scans on longitudinal data. The first
one is related to very small longitudinal SNP effects expected in GWAS. The sample sizes
required to reach genome-wide significance level are very large and by now no longitudinal
studies of this size have been conducted. The second challenge is linked to computational
issues when millions of mixed models are to be fitted. Analyses of “longitudinal GWAS”
demand sizeable computing resources and even then the computing time remains long.

This thesis focuses on the computational aspects of GWAS. We wish to show that large
computing resources are not necessarily required in implementing genome-wide analyses.
In addition, one should keep in mind that a statistical analysis is usually conducted multiple
times by a researcher before the final result is obtained. The reasons for that include various
factors such as: excluding/including subsets of individuals, correction for different sets of
covariates (stratified or pooled analysis) or changes in the model. Also, purely technical
factors, such as human errors during programming or power failure in the office facility,
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1. INTRODUCTION

might necessitate to repeat the analysis.
We propose methods which speed up the computations in GWAS by several orders of

magnitude and facilitate whole genome scans on a single computer within reasonable time
frames. The speedups are achieved by using approximations or by improving algorithms.

Particularly, in Chapter 2, we propose the conditional two-step (CTS) approach which
simplifies the linear mixed model computations to estimating the regression coefficients in
a simple linear regression. This procedure provides an approximation to the p-values for
the longitudinal SNP effect. It involves the conditional linear mixed model, introduced by
Verbeke et al. (2001). Our proposal is compared to other approximate procedures based
on data reduction, which are known to us from the literature or collaborations with other
researchers.

The CTS is further explored in Chapter 3. In this chapter we also consider the two-step
approach which is a two-stage approach like the CTS, but now based on the classical linear
mixed model. We focus in more detail on the theoretical fundaments of the approximate
procedures for balanced situations. We describe results of an extensive simulation study
comparing the performance of the two approximate methods in various data scenarios.

In Chapter 4, we focus on linear and logistic regression. For linear regression we pro-
pose an exact method, called semi-parallel regression, which estimates SNP effects, their
standard errors and the p-values. This approach is based on replacing loops with large
matrix operations, efficiently solving the least-squares problem for many SNPs at the same
time. Many rearrangements in the computational algorithms are possible due to the fact
that all models within a GWA study differ only by SNP values. In logistic regression, model
fitting is done using iterative procedure and exact semi-parallel computations are not pos-
sible. We propose an approximate solution exploiting reweighted least-squares technique
combined with the fact that SNP effects are very small. In this chapter we also discuss the
issues related to the SNP data access. We recommend efficient solutions using available
implementations.

In the spirit of matrix operations, we proceed in Chapter 5 with another fast approach
for linear mixed model fitting, called QuickMix. The cross-sectional and the longitudinal
SNP effects can be estimated with this algorithm. We make a connection between mixed
model equations and penalized least squares. We approximate the penalty matrix, so it
does not need to be estimated for every model. Many computational tricks are introduced.
We avoid operations on large matrices solving the equations in a semi-symbolic way.

In Chapter 6 we apply both the QuickMix and the CTS to the longitudinal BMD data
from the Rotterdam Study. Additionally, we discuss many practical issues of large-scale
genome scans.

We close with a discussion on our findings and plans for future research in Chapter 7.
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Chapter 2

Fast linear mixed models for genome-wide

association studies with longitudinal data

Abstract

Genome-wide association studies (GWAS) are characterized by an enormous
amount of statistical tests performed to discover new disease-related genetic vari-
ants (in the form of single nucleotide polymorphisms) in human DNA. Many SNPs
have been identified for cross-sectionally measured phenotypes. However, there
is a growing interest in genetic determinants of the evolution of traits over time.
Dealing with correlated observations from the same individual, advanced statistical
techniques need to be applied. The linear mixed model is popular, but also much
more computationally demanding than fitting a linear regression model to indepen-
dent observations. We propose a conditional two-step approach as an approximate
method to explore the longitudinal relationship between the trait and the SNP. In
a simulation study we compare several fast methods with respect to their accuracy
and speed. The conditional two-step approach is applied to relate SNPs to longitu-
dinal BMD responses collected in the Rotterdam Study.

Adapted version of the research article: Sikorska et al.(2013) Fast linear mixed model computations for genome-
wide association studies with longitudinal data, Statistics in Medicine, 32(1): 165-180
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2. FAST LINEAR MIXED MODEL FOR GWAS WITH LONGITUDINAL DATA

2.1 Introduction

The main aim of genome-wide association studies (GWAS) is to identify common genetic
factors across the whole human genome (single nucleotide polymorphisms, SNPs) associ-
ated with a particular trait or a disease. In this hypothesis-free approach the entire genome
is scanned instead of focusing only on a candidate gene region. Thanks to recent imputa-
tion techniques not only directly genotyped but also untyped SNPs can be tested for their
association with a trait. The genotype imputation is used to increase the power of the
studies and to facilitate performance of a meta-analysis (Li et al., 2009). However, it also
increases the number of tests to perform, up to 2.5 mln in Northern Europeans or 40 mln
with the advent of the 1000 Genomes project. GWAS are typically set up to detect very
small effects (<0.5% variance explained) requiring large sample sizes. Much progress has
been made over the last decade in the characterization of human genetic variations related
to complex diseases. According to the GWAS catalog (Hindorff et al., 2010) 1449 GWAS for
237 traits have been published by June 2011. Dedicated software, e.g. Plink (Purcell et al.,
2007), GenABEL (Aulchenko et al., 2007), ProABEL (Aulchenko et al., 2010), has been
developed to handle large data files, together with implementations to reduce computation
time (Estrada et al., 2009).

Up to now the majority of GWAS has focused on cross-sectionally measured phenotypes.
However, much of the epidemiological research is based upon longitudinal designs involv-
ing repeated measurements of an outcome of interest gathered for each individual in the
study. It may be desirable to identify SNPs that are associated with the longitudinal develop-
ment of a trait over time. However, repeated measures tend to be correlated and dedicated
statistical techniques are needed. Kerner et al. (2009) give a summary of approaches for
tackling problems involving longitudinal data coming from the Framingham Heart Study.
Several methods have been applied on this data set to characterize the trajectory of a phe-
notype in association with genetic variants. For a continuous response that evolves over
time, the linear mixed model (Laird and Ware, 1982) is a popular approach. Unfortunately
this technique can be computationally demanding when many subjects are involved and
becomes prohibitively time consuming when it has to be executed a large number of times.
A longitudinal GWA study (for 600 000 tests) of cardiovascular disease risk factors in the
Bogalusa Heart Study (Smith et al., 2010) analyzed using the linear mixed model took ≈3
hours on a cluster of 64 processors. Moreover, in order to fit the final linear mixed model
many modeling aspects have to be taken into account, like correct specification of the mean
and the variance-covariance structures. To obtain the final results the whole procedure is
therefore often repeated several times.

Introduced by Liang and Zeger (1986), Generalized Estimating Equations (GEE) is an
alternative approach for modeling correlated data structure, especially if one is interested
in the marginal expectations of the outcome as a function of the predictors. GEE models do
not specify the joint distribution of a subject’s observations, but assume only that the mean
and the variance adhere GLM specifications. Intracluster dependency is taken into account
via a working correlation matrix. For statistical inference the sandwich estimator of the
standard errors is used to correct for possible misspecification of this correlation matrix.
GEE models are computationally simpler than the random effects models, however fitting a
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2.2. Motivating example

few million of them, still remains an issue. The original GEE method requires the data to be
missing completely at random (MCAR) since the approach is not likelihood based. Robins
et al. (1994) proposed a modification of the standard GEE, so called weighted GEE, which
allows the data to be MAR . In their approach, weights corresponding to the inverse proba-
bility of missingness are estimated through a logistic regression model, to be later included
in the GEE. However, this additional step will even more increase the computational time
and for that reason, weighted GEE will not be considered further in this article.

In a GWA analysis with a longitudinal design, where the main interest lies in dependence
of the evolution of the outcome over time on the SNP alleles, the p-value of the SNP × time
interaction is of central importance. We argue that the effort needed to evaluate the effects
of 2.5 mln SNPs on the longitudinally measured trait is prohibitively large with a classical
mixed effects or a GEE approach. It is desirable to develop a fast technique.

We take the classical linear mixed model as the reference. We investigate several fast
methods, which approximate the p-value obtained from testing the longitudinal association
of the trait with a SNP. Via a simulation study we explore the accuracy and computational
times of the fast approaches.

The paper has the following structure. In Section 2.2 we introduce the motivating data
set and the research goals. The methods are presented in Section 2.3. In Section 2.4 we
describe the setup and the results of a simulation study that compares the performance
of the above described approaches. The analysis of the motivating data set is reported in
Section 2.5 and final conclusions are stated in Section 2.6.

2.2 Motivating example

Osteoporosis is a skeletal disorder characterized by loss of bone strength and increased risk
of fracture. Low bone mineral density (BMD) is one of the most important risk factors
for osteoporotic fractures. Mitchell and Yerges-Armstrong (2011) give a summary of the
genetic determinants of BMD loss documented by now. Most studies published on the
genetics of BMD are based on a one-point measure of this trait. For example, Rivadeneira
et al. (2009) provide an elaborate description of 20 BMD loci identified in a large meta-
analysis of GWAS. However, such studies cannot provide any information about genetic
associations with the rate of bone loss. While the knowledge of the genetic contribution to
the baseline variation of BMD grows, no genes have been identified yet as associated with
age-related bone changes.

In the prospective population-based Rotterdam Study (Hofman et al., 2013), femoral
neck bone mineral density of 4987 elderly individuals (aged 55 years and over) was mea-
sured 4 times: at the baseline and after 2, 6, and 12 years. The first three BMD measure-
ments were obtained using a Lunar DPX-L densitometer, while the last measurement was
obtained with a Lunar Prodigy densitometer. For the purpose of the calibration, 102 indi-
viduals were measured using both devices. We fitted the following cross-calibration linear
regression model

BMD(DPX−L) = 1.012BMD(Prodigy) − 0.019.

However, the slope was not significantly different from 1 (95% CI = (0.94, 1.17), p= 0.74)
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and the intercept was not different from 0 (95% CI = (-0.08, 0.04), p = 0.51). Summary
statistics as well as the number of individuals in conjunction with number of non-missing
outcome measures can be found in Table 2.1 and Table 2.2. A random sample of individual
profiles is shown in Figure 2.1. The exploratory analysis showed that the data are highly
unbalanced. The research goal is to identify SNPs associated with evolution of BMD over
time. Because of its popularity, a linear mixed model was chosen for the analysis. As typical
for GWA studies, the number of considered predictors is much larger than the number of
subjects. In such high-dimensional data scenario, multiple regression models break down,
so the goal is to fit the linear mixed model for each SNP separately. The chosen model is:

BMDij = β0 + β1ai + β2wij + β3tij + β4SNPi + β5tijSNPi + bi0 + b1itij + εij ,

where ai denotes the age of an individual i at the beginning of the study and wij describes
the weight of individual i at the time tij . Both covariates are known to be associated
with BMD level (Jones et al., 1994; Hannan et al., 2000). Assuming an additive genetic
model for imputed data, the SNP variable, which indicates the number of minor alleles in
a particular single nucleotide polymorphism, can take values from the interval from 0 to
2. We allow the intercept and the slope for the time evolution to vary from one patient to
another, by specifying random effects b0i and b1i. We limit ourselves to a linear evolution
of BMD over time. The patients were measured at maximally 4 occasions and exploratory
analysis did not indicate any curvilinear pattern. Also, the clinical literature indicates that
the age-related decrease in BMD is best described by a linear function (Aloia et al., 1990;
Riggs et al., 1982). Adding a quadratic term did not improve the fit and while it resulted in
a statistically significant (due to the large sample size) estimated effect, its size appeared
to be negligible. The GWA analysis was planned separately for males and females with
imputed genotype data (for≈2.5 mln of SNPs) in R software (version 2.10.0). Computation
time for the whole scan (in parallel for two genders) was estimated to be ≈130 days using
the R package nlme and ≈28 days using the R package lme4, on a single desktop with
Intel(R) Core(TM) 2 Duo CPU, 3.00GHz.

Table 2.1: Rotterdam study: Evolution of BMD (g/cm2) measurements over time for
females and males.

Females Males
Time N mean SD N mean SD

0 2814 0.829 0.135 2119 0.917 0.137
2 1916 0.827 0.135 1514 0.921 0.136
6 1336 0.822 0.137 1036 0.930 0.140

12 1210 0.818 0.127 982 0.919 0.136

2.3 Statistical methods

Linear mixed model

Let Yij denote the response variable for the i-th (i = 1, ..., N) individual on the j-th
(j = 1, ..., k) measurement occasion. A vector of all measurements taken on individual
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Table 2.2: Rotterdam study: number of individuals with K non-missing responses.

K Females Males
4 679 554
3 833 659
2 759 552
1 543 354
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Figure 2.1: Rotterdam Study. Individual profiles of BMD for 40 randomly selected females
and males.

i is denoted by Yi. The linear mixed model is given by :

Yi = Xiβ + Zibi + εi, i = 1, ..., N, (2.1)

whereXi, Zi are (ni×p) and (ni×q) design matrices, β and bi are p- and q-dimensional vec-
tors of unknown parameters and εi is a (ni×1) vector of random errors with εi ∼ N (0, σ2).
The β parameters are considered as fixed, while the parameters bi are subject-specific re-
lated to the population heterogeneity. We assume bi = (b0i, b1i), where b0i ∼ N (0, σ2

0),

b1i ∼ N (0, σ2
1) and cor(b0i, b1i) = ρ. Additionally b1, ..., bN , ε1, ..., εN are assumed to be

mutually independent.
Inspired by the motivating example (but omitting additional covariates) we assume the

following model:

Yij = β0 + β1Si + β2tij + β3Sitij + b0i + b1itij + εij , j = 1, ...ni, i = 1, ..., N, (2.2)

where Si denotes the SNP genotype for an individual i, Si ∈ (0; 2) and tij is the j-th time at
which an individual i is measured. We test if there is a statistically significant effect of the
SNP on the evolution over time of the response Yij . This is verified by testing H0 : β3 = 0

in model (2.2) using a Wald, score or likelihood ratio test.
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2. FAST LINEAR MIXED MODEL FOR GWAS WITH LONGITUDINAL DATA

Missing data in longitudinal studies

Although designed to measure every individual at all planned occasions, most of the lon-
gitudinal studies result in highly unbalanced data sets. The validity of the methods used
for the analysis is then impacted by the missing data mechanism. Little and Rubin (1987)
distinguish three mechanisms generating missingness. In the missing completely at random
(MCAR) mechanism the probability of observing the response is unrelated to the observed
and the unobserved outcome values. On the other hand, if the data are missing at random
(MAR), the probability of observing the response depends on the observed outcome values
but is independent from the unobserved outcome values. Finally, in the missing not at ran-
dom (MNAR) mechanism, probability of observing the response depends on observed as
well as unobserved outcome values.

We focus on the MCAR and MAR mechanisms. Note that maximum likelihood estimation
of β is valid under a MCAR or MAR, as long as the joint distribution of the responses is
correctly specified. This implies that estimates from model (2.2) are robust against a MAR
process. On the other hand, least squares estimation is robust only under a MCAR process.

Conditional linear mixed model

As shown in Verbeke et al. (2001), misspecification of the cross-sectional component of the
linear mixed model can affect the estimation of its longitudinal elements. They propose the
so-called conditional linear mixed model which estimates the longitudinal effects regardless
of model assumptions on the baseline characteristics.

We rewrite model (2.1) as

Yi = X
(1)
i β(1) +X

(2)
i β(2) + Z

(1)
i b

(1)
i + Z

(2)
i b

(2)
i + εi, i = 1, ..., N, (2.3)

where X(1)
i represents the (ni×p1) matrix of time-stationary covariates and X(2)

i (ni×p2)

the matrix of time-varying covariates with Xi = (X
(1)
i |X

(2)
i ). Additionally Z(1)

i = 1ni , and
Z

(2)
i is the ni× (q− 1) matrix of time-varying covariates for the random effects. The condi-

tional linear mixed model uses the approach of conditional inference where random inter-
cepts b(1)

i (bi0 in model (2.2)) are treated as nuisance. Estimation is then done conditional
on sufficient statistics for the nuisance parameters. Here, in particular Ȳi =

∑
j Yij/ni

represents the sufficient statistics for the subject specific intercepts. Verbeke and others
showed that inference conditional on Ȳi is equivalent to inference based on transformed
data AT

i Yi, where Ai is a full-rank ni × (ni − 1) matrix such that AT
i 1ni = 0.

In the conditional linear mixed model, both sides of the model (2.3) are now multiplied
by AT

i leading to the following model

Y ∗i ≡ AT
i Yi = AT

i X
(2)
i β(2) +AT

i Z
(2)
i b

(2)
i +AT

i εi = X∗i β
(2) + Z∗i b

(2)
i + ε∗i ,

i = 1, ..., N.
(2.4)

In addition, Ai is chosen such that AT
i Ai = Ini−1, so ε∗ is normally distributed with

mean 0 and covariance matrix σ2Ini−1. Matrix Ai can be found for each individual with
at least two available response measurements. An example of such a matrix is based on
orthogonal polynomials (as given in the SAS macro in Verbeke et al. (2001)).
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Rewriting X(1)
i into 1nix

T
i (xi is the p1-dimensional vector of the baseline covariates)

we observe that not only the random intercepts but also the cross-sectional fixed effects
β(1) have vanished from model (2.3). Note that the vector of the ni original measurements
for the i-th individual is reduced to the vector of ni − 1 transformed observations. The
transformed response values as well as the transformed design matrix X∗i are difficult to
interpret. However, it has been shown in Verbeke et al. (2001) that the parameter estimates
and their standard errors from the conditional linear mixed model are very similar to those
obtained from the linear mixed model with correctly specified baseline structure. The
conditional linear mixed model corresponding to the model (2.2) is given by:

Y ∗ij = β2t
∗
ij + β3Sit

∗
ij + bi1t

∗
ij + ε∗ij , j = 1, ..., ni, i = 1, ..., N, (2.5)

since it can be easily shown that (Sitij)
∗ = Sit

∗
ij .

Estimation of the model parameters of the conditional linear mixed model is likelihood-
based and therefore it is robust against a MAR process. The additional advantage of the
conditional model is that one does not have to specify the cross-sectional part. This model
has also another desirable property. Since the longitudinal effects are estimated regardless
any baseline characteristics, this approach is also robust against misspecification of the
distributional assumptions for the subject specific intercepts.

Generalized Estimating Equations

If one is interested in estimating marginal (population-average) effects and not in individ-
ual predictions, GEE is a proper approach (Liang and Zeger, 1986; Diggle et al., 2002).
In this semiparametric method, only the first two moments are specified, instead of the
full joint distribution. Correlation between the observations is handled via a working cor-
relation matrix. Some popular choices include: independence, exchangeable (compound
symmetry), unstructured and autoregressive. There are no strict guidelines for the choice
of the correlation matrix. However, if one deals with a small set of unequally spaced time
points common for all individuals in the large sample, the unstructured correlation ma-
trix is one of the most suitable choices. Those ’working’ assumptions about the correlation
structure are corrected by computing the sandwich estimator for the standard errors. Fit-
ting a GEE model is computationally simpler than fitting a random effects model. However,
it still requires a lot of effort if it has to be repeated many times. Note also that since GEE
models are not likelihood-based, they are not robust against the MAR process. Statistical
inference is done using a Wald or a score test.

In our case the marginal model is:

E(Yij) = β0 + β1Si + β2tij + β3Sitij , j = 1, ..., ni, i = 1, ..., N. (2.6)

Fast approaches

Because of its many desirable properties, a linear mixed model is our favorite method to
make an inference about the longitudinal association between the considered outcome and
the SNPs. The p-value for SNP × time effect in model (2.2) is of our main interest. We
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explored three fast alternative methods that can provide approximately the same p-value
for testing H0 : β3 = 0 in model (2.2), in a much shorter time. These methods split the
analysis into two steps in order to avoid fitting the full model (2.2) repeatedly for every
SNP. The first step, reduces the vector of ni observations for each individual, to at most 2
outcomes (intercept and slope of linear evolution). However, the data reduction depends
on the method. In the second step one regresses the individual slopes on each of the SNPs.
Note that in classical linear regression the likelihood ratio test, the Wald test and the score
tests coincide.

Slope as outcome

In the first stage, the slope β41i per individual (with at least two available observations) is
estimated from the model

Yij = β40i + β41i tij + ε4ij j = 1, ..., ni i = 1, ..., N, (2.7)

using a least squares approach. In the second stage the estimated β̂41i ’s are regressed on Si

by fitting
β̂41i = β440 + β441 Si + ε44i , i = 1, ..., N, (2.8)

using ordinary least squares. Notice that this approach is based to the two-stage formula-
tion of the linear mixed model. The p-values of interest are those obtained from testing
H0 : β441 = 0 and they are compared to the p-values for SNP×time interaction term in
model (2.2).

According to the theory described in Section 2.3, the slope as outcome approach is not
robust against the MAR mechanism since the estimation in the first step is based on the
least squares principle.

Two-step

In the first step all terms containing Si are omitted from model (2.2), so it becomes

Yij = β∗0 + β∗1 tij + b∗0i + b∗1itij + ε∗ij j = 1, ..., ni i = 1, ..., N. (2.9)

The linear mixed model (2.9) is then fitted only once. In case the SNP is important (cross-
sectionally or longitudinally), model (2.9) is misspecified. In that case we expect that the
subject-specific slopes predicted from this model will contain information about differences
of the evolution of Yij over time between SNP alleles (Si). Therefore, in the second step
we regress the best linear unbiased predictors (BLUPs, Henderson (1975)) of b∗1i on Si with
a simple linear regression model:

b̂∗1i = β∗∗0 + β∗∗1 Si + ε∗∗i i = 1, ..., N. (2.10)

We argue that testing H0 : β∗∗1 = 0 in model (2.10) results in approximately the same
p-value as that obtained from testing H0 : β3 = 0 in model (2.2).
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Assuming that β1 and β3 in model (2.2) are 0, the reduced model (2.9) (without SNP-
terms included) is still the correct model describing evolution of the response Yij . Because
the estimation is performed using maximum likelihood, the two-step approach is robust
against MCAR and MAR mechanisms.

Conditional two-step

This method is similar to the previous one, however, in the first step we use the idea of the
conditional inference. We apply the data transformation introduced in Section 2.3, but like
in the two-step approach, omitting SNP from the model. Now the reduced model becomes
independent from all cross-sectional effects. Namely, the model is as follows.

Y ∗ij = β∗∗2 t∗ij + b∗∗i1 t
∗
ij + ε∗∗ij , j = 1, ..., ni, i = 1, ..., N. (2.11)

Model (2.11) is still misspecified by the lacking SNP×time interaction term. We again
argue that the subject specific slopes from the reduced conditional linear mixed model
(2.11) will contain an information about omitted SNP. Note also that the SNP data were
not transformed and the original values are taken to the second step. Step 2 is then based
on estimating the regression coefficients in model

b̂∗∗1i = β∗∗∗0 + β∗∗∗1 Si + ε∗∗∗i , i = 1, ...., N, (2.12)

using ordinary least squares. The conditional two-step approach, is again robust against
the MCAR and MAR processes for the same reasons as the two-step approach.

2.4 Simulation study

Setup

Throughout the simulation study we take the mixed effects model as our reference. We
focus on the p-values obtained from testing the longitudinal relationship of the outcome
with the SNPs. As faster alternatives to the full modeling we explore the three approaches
proposed in Section 2.3. We also applied the classical GEE approach for two choices for
the working correlation matrix: unstructured and independence. The first choice appears
to be most suitable for our data structure. The latter is expected to be the least computa-
tionally demanding. Except from the GEE approach, all above methods are considered as
approximate to the linear mixed model. The objective of the simulation study is two-fold.
First, we assessed the accuracy of the approximation using a measure SDdiff defined as a
standard deviation of log10(pF ) − log10(pA), where pF and pA are the p-values for test-
ing β3 = 0 from model (2.2) and alternative approaches, respectively. We also explored
the probability of type I error and the power of the surrogates relative to the linear mixed
model (2.2). We also compare computational times necessary to conduct a GWA analysis
for approximately 2.5 mln SNPs. The data were generated to resemble as much as possible
the motivating example. Namely, the data sets were simulated according to the model (2.2)
for all individuals measured at 4 fixed occasions (tij = 0, 2, 6, 12). The fixed effects and the
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variance-covariance matrix were set similar to those coming from fitting the reduced linear
mixed model (excluding all terms containing SNP) for BMD data for females and can be
found in Table 2.3. In addition, we explore the dependence of the approximation on the
sample size, unknown SNP effects and the process generating missing responses. For that
reason we designed a full factorial design with 4 following factors:

1. sample size (with 3 levels: N=500, 1000, 3000)

2. cross-sectional SNP effect (with 2 levels: β1 = 0 or β1 = 0.005)

3. longitudinal SNP effect (with 2 levels: β3 = 0 or β3 = 0.0008)

4. missing data process (with 3 levels: complete data, MCAR dropout and MAR dropout)

In the MCAR dropout, at each time point we randomly select individuals that are lost to
follow-up. The missingness is generated such that the percentage of patients with available
response at each of 4 time points is set to 100, 70, 50, 30% of the sample size. The MAR
dropout was generated according to the logistic model

log
( pij

1−pij

)
= 1.5− 2.5Yij−1, j = 2, 3, 4,

where pij is the probability of missing response for the subject i at the time point j. This
dropout model generates the proportions of available outcomes which are practically the
same as for MCAR scenario.

We simulated 200 data sets for each of the 36 combinations of the factorial design and
analyzed them using the linear mixed model (LMM) and five alternative methods:

1. slope as outcome (SAO),

2. two-step (TS),

3. conditional two-step (CTS),

4. GEE-unstructured (GEE-un),

5. GEE-independence (GEE-ind),

The simulation study was conducted in R software (version 2.10.0 R Core Team (2013)).
The linear mixed model was fitted using the R package lme4 and the GEE approach was
performed with the R packages gee and geepack. The function lmer (in lme4) does not
provide the p-values. Based on estimated parameters and their standard errors, we calcu-
lated them using a Wald test. This test (based on robust standard errors) was also used
for the GEE models. The parameters were estimated using REML. The results were also
compared to the ML estimation. The conclusions did not differ between the two methods.

Results

Graphical and numerical comparisons of the statistical efficiency

We explored the influence of several factors on the performance of the alternative ap-
proaches. We now discuss some general patterns found in the simulation results. For all
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Table 2.3: Values of the parameters in model (2.2) used in the simulation study

Effect Parameter Value
Intercept β0 0.970
Time effect β2 -0.004
sd(b0) σ0 0.110
sd(b1) σ1 0.003
cor(b0, b1) ρ -0.140
sd(ε) σ 0.040

the scenarios we calculated the proposed measure of accuracy, SDdiff . The results for the
MCAR and MAR dropouts were very similar, therefore we focus on the MAR dropout re-
sults. For a balanced design, as readily seen from Figures 2.2 and 2.3, the p-values from
all the alternative methods are very close to those obtained in the LMM. The calculated
SDdiff ’s are given in Tables 2.4 and 2.5. We observe that in case of a non-zero longitudinal
SNP effect, the SDdiff ’s are larger than for data sets simulated under the null. This is due
to the fact that our measure of accuracy is based on − log10(p) which penalizes more the
deviations on the tails of the z-score distribution. We also notice that the performance of
the two-step approach is affected by a cross-sectional SNP effect. As theoretically moti-
vated in Section 2.3, the conditional two-step is robust against misspecifying the baseline
characteristic. Moreover, for the balanced design the inferences from the slope as outcome
and the conditional two-step approaches are identical.

Different conclusions emerge for unbalanced designs. Here, the approximations of the
p-values can be very inaccurate for all the methods except from the conditional two-step
approach. We observe a lack of precision for the slope as outcome and the GEE approaches
(Figure 2.4). The calculated SDdiff ’s are summarized in Tables 2.6 and 2.7. Similarly to
balanced designs, the performance of the two-step approach is influenced by the cross-
sectional SNP effect (Figure 2.5). The conditional two-step is again robust against this
factor. If there is a true nonzero longitudinal SNP effect, the slope as outcome and the GEE
methods tend to overestimate the p-values with respect to those from the LMM (Figure
2.6). The same tendency is observed for the two-step approach in case of a nonzero cross-
sectional SNP effect (Figure 2.7).

In Tables 2.8 and 2.9 we show the calculated type I error rates. The conclusions for the
balanced and unbalanced scenarios appear to be the same. The type I error rates are similar
for all the methods and do not differ distinctly between the LMM and the approximate
approaches. With respect to the power, the conclusions diverge between balanced and
unbalanced designs (Tables 2.10 and 2.11). Unlike the complete data scenarios, where the
power of the alternative methods is similar to that of the LMM, in case of dropouts in the
study some approaches are highly underpowered. Namely, as already mentioned above the
highest overestimation of the p-values occurs for SAO and GEE-ind. The power of CTS is
very close to the power of LMM and also higher than for the two-step approach.

19



2. FAST LINEAR MIXED MODEL FOR GWAS WITH LONGITUDINAL DATA

−log(p) full mixed model

−
lo

g
(p

) 
a

lte
rn

a
tiv

e
 a

p
p

ro
a

ch

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

SAO

0.0 0.5 1.0 1.5 2.0

TS

0.0 0.5 1.0 1.5 2.0

CTS

0.0 0.5 1.0 1.5 2.0

GEE−un

0.0 0.5 1.0 1.5 2.0

GEE−ind

Figure 2.2: Simulation study (β1 = 0 and β3 = 0, N=1000), balanced scenario. On the
x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis the
corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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Figure 2.3: Simulation study (β1 = 0 and β3 = 0.008, N=3000), balanced scenario. On
the x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis
the corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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Figure 2.4: Simulation study (β1 = 0 and β3 = 0, N=1000), MAR scenario. On the
x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis the
corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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Figure 2.5: Simulation study (β1 = 0.005 and β3 = 0, N=3000), MAR scenario. On the
x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis the
corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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Figure 2.6: Simulation study (β1 = 0 and β3 = 0.008, N=1000), MAR scenario. On the
x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis the
corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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Figure 2.7: Simulation study (β1 = 0.005 and β3 = 0.008, N=3000), MAR scenario. On
the x-axis − log10(p) for SNP×time term from the linear mixed model and on the y-axis
the corresponding − log10(p) from the approximate methods (SAO - slope as outcome, TS -
two-step, CTS - conditional two-step, GEE-un - GEE with unstructured working correlation
matrix, GEE-ind - GEE with independent working correlation matrix)
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2.4. Simulation study

Table 2.4: Simulated data, balanced scenario. β3 = 0

SDdiff

β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
SAO 0.003 0.001 0.0004 0.002 0.001 0.0006

TS 0.047 0.033 0.0240 0.063 0.059 0.0452
CTS 0.003 0.001 0.0004 0.002 0.001 0.0006

GEE-un 0.082 0.061 0.0489 0.087 0.067 0.0442
GEE-in 0.019 0.013 0.0082 0.018 0.014 0.0078

Table 2.5: Simulated data, balanced scenario. β3 = 0.0008

SDdiff

β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
SAO 0.03 0.04 0.04 0.03 0.03 0.04

TS 0.11 0.13 0.18 0.18 0.24 0.30
CTS 0.03 0.04 0.04 0.03 0.03 0.04

GEE-un 0.23 0.23 0.33 0.20 0.24 0.30
GEE-in 0.10 0.13 0.29 0.11 0.14 0.33

Table 2.6: Simulated data, MAR dropout. β3 = 0

SDdiff

β1 = 0 β1 = 0.005
Method N=500 N=1000 N=3000 N=500 N=1000 N=3000

SAO 0.59 0.55 0.51 0.59 0.57 0.52
TS 0.17 0.16 0.14 0.21 0.22 0.27

CTS 0.11 0.11 0.09 0.13 0.09 0.09
GEE-un 0.37 0.38 0.40 0.42 0.40 0.37
GEE-in 0.56 0.54 0.49 0.53 0.51 0.51

Table 2.7: Simulated data, MAR dropout. β3 = 0.0008

SDdiff

β1 = 0 β1 = 0.005
Method N=500 N=1000 N=3000 N=500 N=1000 N=3000

SAO 1.00 1.23 1.90 0.96 1.21 2.07
TS 0.29 0.38 0.43 0.40 0.52 0.60

CTS 0.16 0.22 0.32 0.16 0.22 0.32
GEE-un 0.64 0.81 1.18 0.62 0.80 1.16
GEE-in 0.87 1.11 1.71 0.80 1.12 1.73
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Table 2.8: Simulated data, balanced scenario. β3 = 0

P(type I error)
β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
LMM 0.04 0.05 0.05 0.06 0.05 0.03
SAO 0.04 0.05 0.05 0.06 0.05 0.03

TS 0.04 0.05 0.05 0.05 0.05 0.03
CTS 0.04 0.05 0.05 0.06 0.05 0.03

GEE-un 0.05 0.05 0.05 0.07 0.06 0.03
GEE-in 0.04 0.05 0.05 0.05 0.05 0.03

Table 2.9: Simulated data, MAR dropout. β3 = 0

P(type I error)
β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
LMM 0.06 0.06 0.05 0.07 0.07 0.06
SAO 0.05 0.05 0.05 0.05 0.05 0.04

TS 0.05 0.06 0.04 0.07 0.06 0.08
CTS 0.06 0.06 0.05 0.06 0.07 0.05

GEE-un 0.08 0.04 0.04 0.08 0.05 0.05
GEE-in 0.07 0.06 0.05 0.06 0.05 0.06

Table 2.10: Simulated data, balanced scenario. β3 = 0.0008

Power(%)
β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
LMM 82 95 100 78 97 100
SAO 82 95 100 78 97 100

TS 82 95 100 78 97 100
CTS 82 95 100 78 97 100

GEE-un 80 95 100 78 97 100
GEE-in 82 95 100 77 97 100

Table 2.11: Simulated data, MAR dropout. β3 = 0.0008

Power(%)
β1 = 0 β1 = 0.005

Method N=500 N=1000 N=3000 N=500 N=1000 N=3000
LMM 38 74 98 44 66 99
SAO 12 23 46 14 26 44

TS 34 69 96 36 56 95
CTS 36 72 99 42 69 98

GEE-un 32 56 93 32 50 91
GEE-in 16 36 75 22 32 75
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2.5. Analysis of the BMD data

Computation times

The approximate system times needed to fit 2.5 mln of models (in R software) on a desktop
(with Intel(R) Core(TM) 2 Duo CPU, 3.00GHz) for different sample sizes are provided in
Table 2.12. It is clear that necessity of fitting large number of random effects models causes
computational issues. We observe a high impact of sample size on the computational times,
which may become very large. A full GWA analysis for a sample of 3000 individuals even
if performed using the fastest available program (the R package lme4) would take more
than a month. As expected, the GEE methods are less time demanding, but still much
slower than the two-step approaches. Simplification of the working correlation matrix from
unstructured to independence almost halves the time. We conclude that much time can be
gained using considered in this paper fast approaches. All of them are about 170 times
faster (for sample size of 3000) than the linear mixed model approach. It is also important
to note that all the reported times are based on the model without any additional covariates.
Thus, they are very optimistic. Parallelization across multiprocessor systems and/or using
GRID computing approaches (Estrada et al., 2009) may further reduce the time achieving
reasonable time frames.

Table 2.12: Simulation study. Approximate system time (R function) for 2.5 mln models
in R software (Intel(R) Core(TM) 2 Duo CPU, 3.00GHz)

System Time (h)
Method N=500 N=1000 N=3000
LMM (lme) 660 1250 3500
LMM (lmer) 180 347 833
GEE-un (gee) 90 139 430
GEE-ind (geepack) 35 55 139
SAO (lm) 3 4 5
TS (lm) 3 4 5
CTS (lm) 3 4 5

2.5 Analysis of the BMD data

Based on the simulation study, we conclude that the conditional two-step approach is the
most accurate from the fast approaches. It was chosen for the analysis of the motivating
data set. The data transformation necessary to remove the cross-sectional terms was done
using a SAS macro provided by Verbeke et al. (2001). Next, for the transformed data,
we fitted a linear mixed model with only slope specified in the random part. As shown in
Section 2.2, the BMD data set is highly unbalanced. The predicted subject-specific slopes for
the individuals with incomplete profiles are then shrunken toward the population-average
mean profile. That resulted in a distribution of the random slopes which is symmetric, but
with a high kurtosis. However, the same feature of the predicted individual slopes was
observed in the simulation study, in case of generated dropouts, where the true distribution
of subject specific intercepts and slopes was multivariate normal. Predicted BLUPs for the
random slope were used as a response for a simple linear regression. This last step was
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2. FAST LINEAR MIXED MODEL FOR GWAS WITH LONGITUDINAL DATA

performed using MACH2QTL (Li et al., 2010) as implemented in the web-based interface
GRIMP.

Under the hypothesis of no association between SNPs and the trait the calculated
p-values follow a uniform(0,1) distribution (Sellke et al., 2001). It is common to sum-
marize a GWA analysis by Q-Q and Manhattan plots. In the Q-Q plot the distribution of the
calculated − log10(p)’s is compared to the theoretical distribution under the null (such as
χ2). The confidence limits are estimated based on the fact that j-th order statistics from a
uniform(0,1) sample has a beta(j, n−j+1) distribution . In Manhattan plots the calculated
− log10(p)’s are plotted against the SNPs positions on the chromosomes. The resulting Q-Q
and Manhattan plots for the BMD data for females are shown in the Figures 2.8 and 2.9.
No SNPs reached the genome-wide significance level (p < 5 × 10−8, Pe’er et al. (2008);
Frazer et al. (2007)). Similarly, no SNPs reaching that level of significance were found for
males (plots not shown).

Finally, 1000 randomly selected SNPs from the GWA analysis for females (using the con-
ditional two-step approach) were also analyzed with the full linear mixed model approach.
The resulting plot of the corresponding p-values (Figure 2.10) confirmed that the method
can be used as a LMM surrogate. The SDdiff for that sample of SNPs was calculated as
0.117.

Figure 2.8: Rotterdam Study, females. Q-Q plot of GWA analysis using CTS approach. The
gray band represents pointwise 95% confidence interval
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2.6. Conclusions

Figure 2.9: Rotterdam Study, females. Manhattan plot of GWA analysis using CTS ap-
proach. The horizontal line represents the genome-wide significance level
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Figure 2.10: BMD data, females. On the x-axis − log10(p) for SNP × time term from the
linear mixed model and on the y-axis the corresponding − log10(p) from the conditional
two-step

2.6 Conclusions

In this article we discuss computational issues in genome-wide association studies in case of
a longitudinal design with a normal response. We explored several approximate methods
which can analyze the longitudinal relationship of the response with the SNP in a much
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2. FAST LINEAR MIXED MODEL FOR GWAS WITH LONGITUDINAL DATA

shorter time. The simulation study showed that the best performing method is the con-
ditional two-step. Among other considered techniques, the CTS combines two desirable
properties: the highest accuracy and the shortest CPU time. It also showed some additional
advantages comparing to the two-step. Performance of the CTS is independent from the
cross-sectional effect of the SNPs. The practical application of the conditional two-step ap-
proach is to perform the first genome-wide scan for millions of SNPs in a fast manner, to
later on focus on the promising hits via the full linear mixed model. Of next interest is to
explore further potential of the conditional two-step. Several data scenarios can be consid-
ered, for example an unbalanced design with missing responses generated by missing not
at random (MNAR) process. We also find it worthy to examine the properties of the CTS in
case of more complicated data structure like non-normal or correlated errors.
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Chapter 3

GWAS with longitudinal phenotypes -

performance of approximate procedures

Abstract

In our previous work (Sikorska et al., 2013b) we proposed the conditional
two-step (CTS) approach as a fast method providing an approximation to the
p-value for the longitudinal SNP effect. In the first step a reduced conditional
linear mixed model is fitted, omitting all the SNP terms. In the second step the
estimated random slopes are regressed on SNPs. The CTS has been applied to the
bone mineral density data from the Rotterdam Study and proved to work very well
even in unbalanced situations. In another article (Sikorska et al., 2013a) we sug-
gested semi-parallel computations, greatly speeding up fitting many linear regres-
sions. Here, we explore further the properties of the CTS approach both analytically
and by simulations. We also investigate speedup achieved by combining the CTS
approach with semi-parallel regression.

Adapted version of the research article: Sikorska et al.(2014) GWAS with longitudinal phenotypes - performance
of approximate procedures. European Journal of Human Genetics. Under revision.
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES

3.1 Introduction

In longitudinal studies repeated measurements from the same participant are gathered
over a period of time. Such studies play an important role in clinical and epidemiological
research since they can relate changes in an individual to covariates. Longitudinal studies
have been recently introduced in genome-wide association studies, where the goal is to
find single nucleotide polymorphisms (SNPs) which impact change in physical condition
of individuals. Hundreds of diseases and traits have been investigated cross-sectionally,
identifying thousands of significant SNPs. For several traits it is relevant to explore their
change over time. In this article the evolution of bone mineral density (BMD) in elderly
people participating in the Rotterdam Study (Hofman et al., 2013) is taken as a guiding
example.

Measurements taken from the same individual are correlated which invalidates the basic
assumption of a linear regression model. Therefore dedicated statistical procedures are re-
quired. In practice participants are often not examined at regular time points, they stop the
study permanently (dropouts) or miss visits (intermittent missingness). The linear mixed
model (LMM) is one of the popular approaches to analyze such irregularly measured re-
sponses. Fitting one LMM to thousands of individuals takes around a second. However,
performing the LMM computations millions of times makes the whole-genome scans pro-
hibitive in practice, especially with the growing amount of SNP data implied by the 1000
Genomes Project. Additionally, the model building process may require repetition of the
whole analysis for different mean and/or covariance structures.

Mixed models have been intensively used in GWA studies involving related individuals
where the dependence structure needs to be properly modeled. This is also time consuming.
Speeding up mixed models in this context is therefore also important and received quite
some attention, see e.g. Lippert et al. (2011) and Zhou and Stephens (2012). However,
limited research has been devoted in this respect for longitudinal data.

It is expected that only a few SNPs correlate with the change of the trait over time. The
longitudinal effect of a SNP is measured by the SNP×time interaction term in the mean
structure of the model. Current GWAS are interested in identifying markers for which
the p-value is lower than the threshold of 5 × 10−8. Sikorska et al. (2013b) explored
several approximate procedures which identify the important SNPs in a fast manner. In
particular, the authors proposed the conditional two-step approach which is based on the
conditional linear mixed model (Verbeke et al., 2001). They explored the properties of
this method on longitudinal bone mineral density data collected in the Rotterdam Study
and compared their proposal to several other approaches. The conditional two-step proved
to be an excellent approximation to the LMM approach. The CTS approach is basically
reducing the computations to fitting one linear mixed model in the first step and in the
second step a simple regression model, for each SNP at a time.

Sikorska et al. (2013a) showed how to achieve huge speedups in the second step via so
called semi-parallel regression (SPR). Many SNPs are analyzed at the same time using big
matrix operations, which replace time consuming loops. In this way, a GWAS with simple
linear regression is performed 50-60 times faster than with standard implementations. So-
lutions for efficient SNP data access have also been discussed in Sikorska et al. (2013a). As
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a result, the combination of the CTS and SPR, makes an analysis of a GWAS with longitudi-
nal data feasible even on a desktop computer, thereby considerably reducing demands on
computing resources.

Here we further investigate the properties of the conditional two-step approach, ana-
lytically as well as by simulations. In addition, we compare it to a related method, the
two-step approach. The latter approach has already been applied in some GWAS. Our goal
is to explore the robustness of the two approximate methods for different data scenarios
allowing us to draw general conclusions. Moreover, we discuss the speed gains achieved by
applying jointly the CTS and SPR. Our simulations lead us to the discussion on the practical
aspects of the fast analysis of a longitudinal GWAS. Finally, in the Supplementary Material
we provide R code useful for the implementation of the CTS approach.

3.2 Materials and methods

The development of fast approximate procedures was inspired by the data collected in
the Rotterdam Study, exploring determinants of disease and disability in Dutch individuals
age 55 years and over. In this prospective cohort study the bone mineral density of more
than 5000 individuals, aged 55 or over, was measured at baseline (in 1990) and after
approximately 2, 6, and 12 years. After an extensive whole-genome research on the cross-
sectional BMD (Rivadeneira et al., 2009) it was decided to explore genetic contributions to
the change of BMD over time in elderly people. The BMD data from the Rotterdam Study
are unbalanced and the missingness rates at the second, third and fourth recording times
were 30, 50 and 70%, respectively. Due to the unbalanced structure of the data, the linear
mixed model was chosen for the analysis. Originally the model was corrected for the age at
entry to the study and the evolution of body weight. However, for ease of illustration, in this
article we consider only time and SNP. Below, we indicate how additional covariates should
be handled in practice. In the Supplementary Material we provide simulations proving that
conclusions remain the same when other covariates are included in the model.

The linear mixed model

The linear mixed model describing the vector yi, which consists of ni measurements taken
on individual i over time, can be expressed as

yi = Xiβ + Zibi + εi, i = 1, ..., N (3.1)

where Xi and Zi are ni × p and ni × q design matrices for fixed and random effects. The
fixed effects model the overall population characteristic and are common to all individuals
with the same Xi. The random effects describe the individual deviation from the average
population evolution. Additionally εi represents a ni × 1 vector of measurement errors.
We adopt model (3.1) to our motivating example, describing the response BMD for an
individual i at the occasion j as follows:

yij = β0 + β1si + β2tij + β3sitij + b0i + b1itij + εij . (3.2)
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES

In model (3.2) the fixed effects are represented by SNP (si), time (tij) and their interaction
(sitij). We assume that the response evolves over time in a linear fashion. The SNP variable
can be represented either by an integer from {0,1,2} denoting the genotyped number of the
reference allele or a continuous number between 0 and 2 describing the expected genotype
count after imputation. The subject-specific part of the model consists of a random intercept
(b0i) and a random slope (b1i). The first describes an individual deviation of the baseline
BMD level from β0. The latter characterizes the subject-specific fluctuation of the slope
around β2 +β3si. Classically, it is assumed that the random effects have a bivariate normal
distribution with mean 0 and covariance matrix

D =

[
σ2

0 ρσ0σ1

ρσ0σ1 σ2
1

]
.

Finally, εij denotes a normally distributed measurement error with mean 0 and variance σ2.
It is assumed that the εij are independent from bi = (b0i, b1i)

T . From the above it follows
that the ni-dimensional response yi has covariance matrix given by Vi = ZiDZ

T
i + σ2Ini ,

where Zi is a ni × 2 dimensional matrix with ones in the first column and tij in the second
columns and Ini is the identity matrix of size ni. More information about the mixed model
formulation can be found in Verbeke and Molenberghs (2009).

The fixed effects and the unknown variance components in (3.2) are commonly esti-
mated iteratively using (restricted) maximum likelihood ((RE)ML). The parameter esti-
mates (apart from the SNP terms) of model (3.2) for the BMD data applied to women are
shown in Table 3.1.

Table 3.1: Estimates of the parameters in model (3.2) from the BMD data for women
obtained from a LMM analysis of the Rotterdam Study (taken from Sikorska et al. (2013b)).

Effect Parameter Estimate
Intercept β0 0.970
Time effect β1 -0.004
sd(b0) σ0 0.110
sd(b1) σ1 0.003
cor(b0, b1) ρ -0.140
sd(ε) σ 0.040

Our main interest lies however in the estimate of β3 and more precisely in the p-value
for testing H0 : β3 = 0. In the Appendix we show that, when the data are balanced (so
tij = tj and ni = n), the ML estimate of β3 is equal to:

β̂3 =
cov(s, u)− t̄ cov(s, y)

n var(t)var(s)
, (3.3)

where t = (t1, ..., tni)
T , t̄ =

∑
j tj/n, var(t) =

∑
j(tj − t̄)2/n, s = (s1, ..., sN )T ,

var(s) =
∑

i(si− s̄)
2/N , y = (y1, ..., yN )T (yi =

∑
j yij), u = (u1, ..., uN )T (ui =

∑
j yijtj).

Assuming that the variance components are known, the variance of β̂3 is given by (see
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Appendix):

var(β̂3) =
σ2 + σ2

1 n var(t)
N n var(t)var(s)

. (3.4)

In practice the unknown σ2, σ2
0 and σ2

1 are replaced by their (RE)ML estimates. The ra-
tio β̂3/ŜE(β̂3) gives the value of the t-statistic which determines p∗, the p-value for the
SNP×time effect.

The conditional linear mixed model (CLMM)

The conditional linear mixed model has been suggested when baseline characteristics are
not of interest or cannot be properly modeled. Verbeke et al. (2001) and Verbeke and
Fieuws (2007) showed that misspecification of the cross-sectional part of the model may
lead to biased estimates of the longitudinal part. Such a misspecification happens when,
e.g. an important cross-sectional SNP effect has been omitted from model (3.2). We are
interested only in the longitudinal part of the model and therefore we aim for unbiasedly
estimating the longitudinal part irrespective of estimating the cross-sectional part. Below
we explain why that is particularly useful. The idea behind the CLMM is to map the time-
stationary part of the model to zero. This is achieved by multiplying both sides of the model
(3.1) by a full-rank ni×(ni−1) matrixAi such thatAT

i 1ni = 0 andAT
i Ai = I(ni−1), where

1ni is a ni-length vector of ones. In our case, the CLMM corresponding to (3.2) has the
following form:

y∗ij = β2t
∗
ij + β3sit

∗
ij + b1it

∗
ij + ε∗ij , (3.5)

where y∗ij = AT
i yij , t∗ij = AT

i tij , ε∗ij = AT
i εij , var(b∗1i) = σ2

1 and var(ε∗ij) = σ2.
Matrix Ai can be easily found using properties of orthogonal polynomials. One should

note that this data transformation reduces the length of the vector of observations for indi-
vidual i from ni to ni − 1. Thus, only individuals with at least two repeated measurements
actually contribute to the estimation of the CLMM parameters. Although the transformed
variables are not directly interpretable, we are interested in the relationships of the esti-
mated fixed and random effects between the linear mixed model and its conditional version.
If the linear mixed model is correctly specified, the estimates from the LMM and the CLMM
are the same in the balanced case (Verbeke et al., 2001). In the unbalanced case, the em-
pirical evidence suggest that they are similar (Verbeke et al., 2001). But other operational
characteristics, such as the type I error rate and the power of the CLMM versus the LMM
have not yet been investigated, to our best knowledge. When the cross-sectional part of the
LMM is wrong, the CLMM may prevent bias in estimation of the longitudinal effects.

The data transformation is easily done in SAS, as shown in Verbeke et al. (2001) or in R
using the code provided in the Supplementary Material.

Approximate procedures

Fitting model (3.2) for one SNP takes around 4 seconds in the R package nlme (Pinheiro
et al., 2013) and around 1 second in the package lme4 (Bates et al., 2014). In a GWAS
millions of such models may need to be fitted, which results in weeks or months of compu-
tations on a single computer. Even when applying the commonly used brute-force approach
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of multiprocessor computing, the computation time may be prohibitively long. It is desir-
able to simplify the computations making GWA scans for longitudinal data quicker and
feasible even on one desktop computer. Below we show how a GWA analysis based on a
mixed model can be reduced to fitting simple linear regression models to each SNP provid-
ing an approximate p-value for the hypothesis test H0 : β3 = 0 for each SNP separately.

Two-step (TS)

We can reformulate model (3.2) into

yij = β∗0 + β∗2 tij + b∗0i + b∗1itij + εij , (3.6)

with
β∗0 = β0 + β1E(s),

β∗2 = β2 + β3E(s),

b∗0i = b0i + β1(si − E(s)),

b∗1i = b1i + β3(si − E(s)).

We call model (3.6) the reduced model and its fitting constitutes the first step in the two-
step procedure. The procedure consists in practice in fitting a linear mixed model which
omits both SNP terms from model (3.2). Therefore, it has to be done only once for all the
SNPs. All additional covariates (time-stationary and time-varying) should be also included
in the reduced model. Note that b∗0i and b∗1i have still zero means satisfying conditions
of linear mixed model formulation. However, their variance-covariance matrix, D∗ has
changed into

D∗ =

[
σ2

0 + β2
1var(s) ρσ0σ1 + β1β3var(s)

ρσ0σ1 + β1β3var(s) σ2
1 + β2

3var(s)

]
. (3.7)

The variance of the b∗1i suggests that if a SNP has an effect on the longitudinal evolution
of the trait, information about that effect is now hidden in the individual slopes. The un-
known values of b∗i = (b∗0i, b

∗
1i)

T are estimated using empirical Bayesian methods resulting
in so-called “best linear unbiased predictors” (BLUPs, Robinson (1991)). The estimation is
done according to the following equation:

b̂∗i = D∗ZT
i W

∗
i (yi −X∗i β∗), (3.8)

where X∗i and β∗ are the design matrix and the vector of fixed effects of model (3.6).
The matrix W ∗i is equal to V ∗−1

i , where V ∗i = ZiD
∗ZT

i + σ2Ini . In practice, β∗ and D∗

are replaced by their (RE)ML estimates. In our analytical derivations, we assume that the
variance of the measurement error will not change much from that in model (3.2).

The second step of the two-step approach involves regressing the estimated random
slope b̂∗1i on the omitted SNP using the following simple regression model

b̂∗1i = β∗∗0 + β∗∗1 si + ε∗∗i . (3.9)
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We are interested in the relationship of the p-value from testing the hypothesisH0 : β∗∗1 = 0

with p∗. It can be shown (see Appendix) that the ML estimate of β∗∗1 in the balanced case
has the form

β̂∗∗1 =
cov(s,u)− n c t̄ cov(s, y)

var(s)(σ2/σ∗21 +
∑

j t
2
j − c(

∑
j tj)

2)
, (3.10)

where σ∗20 and σ∗21 are the diagonal elements of D∗ and c = (n + σ2/σ∗20 )−1. It can be
shown using elementary algebraic manipulations that |β̂∗∗1 | ≤ |β̂3|. This illustrates the
shrinkage effect of BLUP estimators, see e.g. Robinson (1991).

We note that expression (3.10) is based on the assumption that the covariance part in
D∗ is zero. If there is no cross-sectional effect of the SNP (β1 = 0), this implies that ρ must
be zero. One can always turn the covariance of the original random intercept and slope
into zero by choosing an appropriate translation of the time. That is, when tij is replaced
by tij − a with a = −ρ σ0/σ1 the covariance of the changed random effects becomes zero.
However, such a change in origin drastically changes the other settings of the model, e.g.
the time variable does not start anymore from zero. Consequently, we cannot compare
the transformed situation with the situation whereby the correlation is zero at the start.
When β1 is not zero, the covariance will be equal to β1β3var(s). However, its value will be
relatively small, because of the very small SNP effects in a GWAS setting.

To see how (3.3) and (3.10) are related, one takes σ2 much smaller than σ∗20 and σ∗21 .
Then c ≈ n−1 and β̂∗∗1 ≈ β̂3. However, in many practical situations this assumption will not
hold. For the standard error of β̂∗∗1 no insightful expression could be obtained. Therefore
the relationship between p∗ and the p-value for H0 : β∗∗1 = 0 remains unclear and needs to
be evaluated numerically.

Conditional two-step (CTS)

The conditional linear mixed model corresponding to model (3.2) is given by (3.5). The
transformed outcome y∗ij is a function of only longitudinal effects including the effect of
interest: SNP×time interaction. Following the rationale from the two-step approach we
build a reduced conditional linear mixed model

y∗ij = β42 t
∗
ij + b41it

∗
ij + ε4ij , (3.11)

with var(b41i) = σ∗21 and as in the two-step approach, var(ε4ij ) ≈ σ2. Note that all addi-
tional baseline covariates vanish from the conditional linear mixed model through the data
transformation. However, the transformed time-varying covariates remain in the reduced
CLMM. The idea is now to regress the EBLUPs of b41i on SNPs via the following simple
regression model

b̂41i = β440 + β441 si + ε44i . (3.12)

The ML estimate for the SNP effect in model (3.12) and its variance are for the balanced
case given by

β̂441 =
cov(s,u)− t̄ cov(s, y)

var(s)(n var(t) + σ2/σ∗21 )
, (3.13)

var(β̂441 ) =
n var(t)σ∗21

N var(s)(σ2/σ∗21 + n var(t))
. (3.14)
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It is easy to relate β̂3 and β̂441 by

β̂441 =
n var(t)

n var(t) + σ2/σ∗21

β̂3. (3.15)

Now the shrinkage effect of the BLUPs is immediately clear from the above relationship.
For the Rotterdam study, this shrinkage factor is about 0.32. The relationship between the
t-statistics is given by:

tCTS =

√
n σ2

1var(t) + σ2

n σ∗21 var(t) + σ2
tLMM , (3.16)

where tCTS and tLMM are the t-statistics for the CTS approach and the LMM, respectively.
Since also the variance of β̂441 is shrunken compared to that of β̂3, the t-statistic of the CTS
approach is not necessarily smaller in absolute value. In GWAS, SNP effects are usually very
small, which means that σ∗21 ≈ σ2

1 . Consequently, tCTS ≈ tLMM , implying approximately
the same p-values for the two methods.

Note that we have compared the performance of the CTS to LMM, while it is in fact an
approximation to the CLMM. The LMM was chosen as comparator, because of its popularity.
But, for the reasons stated above we might have chosen also the CLMM to compare with,
because for the balanced case tCLMM = tLMM (Verbeke et al., 2001; Verbeke and Fieuws,
2007).

While our analytical derivations lead to a clear relationship between p∗ and the p-value
from the conditional two-step approach, for the two-step approach things are less clear.
Unknown remains also the impact of cross-sectional SNP effect on the two-step approach.
Moreover, our derivations are limited to balanced data with known variance components,
which rarely occurs in practice. Performance of the two-step and the conditional two-step
approaches in more practical situations is addressed in a simulation study.

Simulation study

The settings in our simulation study are based on the characteristics of the BMD data.
In particular we assume that the data for 2000 individuals come from model (3.2) with
the parameter values equal to those in Table 3.1. For the balanced scenario, we assumed
that the measurements were taken for all individuals at baseline and after 2, 6, and 12
years without missing data. The SNP variable was taken as a random number with a
uniform distribution on [0, 2]. We denote this setting as Scenario 1. Then we considered
modifications of that scenario whereby the values for ρ and σ2

1 were changed. The scenarios
are described in Table 3.2. We ran an additional eight scenarios which are the same as in
Table 3.2 but with σ = 0.04 (inspired by value in Table 3.1) replaced by σ/2. But, since the
results were quite the same, we did not include these results here.
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Table 3.2: Scenarios used in the simulation study for the balanced case describing changes
made to the parameters values with respect to those given in Table 3.1. All settings assume
β1 = 0.

Scenario ρ σ1

1 -0.14 0.003
2 0 0.003
3 0 0.03
4 -0.5 0.003
5 -0.9 0.003
6 0.5 0.003
7 0.9 0.003
8 -0.9 0.03

In the unbalanced case, we assumed that times of measurements after baseline are
slightly different between individuals. We used a jittering function which adds the times
from the balanced case a random number between -0.8 and 0.8. Additionally we simulated
a missing at random (MAR) dropout. The MAR mechanism assumes that the probability
of missing observation depends on the observed outcome values but is independent from
the unobserved values (Little and Rubin, 1989). More specifically, we assumed that the
probability of dropping out from the study at time tij (j > 1) depends on yij−1 according
to the following logistic model:

log

(
pij

1− pij

)
= α+ βyij−1, (3.17)

where pij is the probability of a missing yij . The values of α and β determine how im-
portant the dropout is and were chosen such that the dropout at the second measurements
was about 30%, implying a dropout at the third and fourth occasions of around 50% and
70% respectively. The simulation scenarios for the MAR case were chosen the same as for
the balanced case (Table 3.2).

To evaluate the two approximate procedures several criteria were considered. Com-
parison is done mainly with the LMM, for the reasons stated above. First, there is the
probability of type I error. Preferably, we would like to have it around α = 0.05 as for the
LMM. Secondly, the power should be close to the power of the LMM. We also evaluated the
precision defined as the standard deviation of log10(pLMM) − log10(pA), where pA is the
p-value from the approximating method. We denote this measure as SDdiff . Lastly, we are
interested in the influence of β1 on the approximations given by the two-step approach.
Two values for β1 were chosen: 0.01 and 0.05. The first one is the estimate obtained in the
cross-sectional GWA analysis for BMD data.

All simulations were performed using R software (R Core Team, 2013). The LMMs were
fitted using the package lme4. In our experience, this package is faster and encounters less
problems with convergence than the package nlme.
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Probit regression to estimate power

In the mixed model framework the distributions of the test statistics for the Wald, t- and
F-tests are generally known only under the null hypothesis (Verbeke and Molenberghs,
2009). Exhaustive simulations are considered the most accurate method to compute statis-
tical power. However fitting many LMMs is time consuming and so is the simulation-based
estimation of the power curve. The effect and parameters are computed repetitively for
a grid of values. The proportion of times that a SNP is qualified as significant gives the
empirical type I error rate (simulation under null hypothesis) and power (simulation un-
der alternative hypothesis). For an exhaustive simulation study this approach demands a
discouraging amount of computation time.

We propose a faster way for power calculations based on the probit model. Helms
(1992) demonstrated via simulations that the distribution of the general F-test

H0 : ξ ≡ Lβ − ξ0 = 0 versus HA : ξ 6= 0

under the alternative can be approximated by a noncentral F-distribution with noncentrality
parameter δ given by

δ = ξT [L(
∑

iX
T
i V
−1
i Xi)

−1LT ]−1ξ.

From this it follows that the t-test for testing

H0 : β3 = 0 versus HA : β3 = θ,

under HA has a noncentral t-distribution with noncentrality parameter
√
δ (Littell, 2006).

In GWAS situations the number of degrees of freedom is large and the (non-central)
t-distribution can be approximated by a normal distribution. Consequently, the power curve
plotting the effect size versus the statistical power has approximately the shape of the cu-
mulative normal distribution function. We observed the same shape for the approximate
procedures. In our simulations, a grid of equally spaced β3-values is chosen on the interval
[0, β3,max], where β3,max is the smallest value for which the power is practically 100%.
Thousand grid values were chosen and for each value one data set was simulated and the
considered models were fitted. The obtained p-values can be dichotomized according to
the condition p < 0.05 giving pbin. Finally, a probit model was fitted to pbin.

Results

Balanced case

The results of the simulation study for the balanced case are summarized in Table 3.3. We
observe a high impact of the correlation between random effects (ρ) on the performance
of the two-step approach. For the variance of the random slope like in the BMD data, the
power of the two-step decreased with about 31% and 91% for ρ equal to -0.5 and -0.9
respectively. When σ2

1 was further increased, the TS procedure revealed only a minor loss
of power (0.05%) even when the correlation ρ was set to -0.9 (Scenario 8, Table 3.3). A
positive sign of the correlation affected slightly less the approximation. The conditional
two-step approach exhibits a stable behavior across all the scenarios, resulting in a similar
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type I error rate and power as LMM. The difference in performance between TS and CTS
is also demonstrated in Figure 3.1. The minimal loss of power for CTS in Scenario 8 may
be caused by a small difference between σ2 and σ∗2 in case of larger β3 simulated for that
scenario.

Unbalanced case

When the data are unbalanced, both approximate methods are sensitive for the changes
in ρ and σ2

1 , but the effect on the CTS approach is often minimal. The results from our
simulations are shown in Table 3.4. We observed a loss of power for TS and CTS when |ρ|
increases. However, TS was more affected by a large |ρ|. For ρ = −0.5, CTS lost up to
2.4% of power while TS was highly underpowered (max loss of 53%). As for the balanced
case, increasing σ2

1 (Scenario 8) improved the approximation for TS, but did not reduce
power loss for the CTS. For all scenarios, the type I error rates for TS and CTS were similar
to LMM. The performance of the approximations for the unbalanced case is illustrated in
Figure 3.2.

Heteroscedasticity and robust standard errors

The variance of the estimated BLUPs from the LMM is given by

var(b̂i) = DZT
i

(
Wi −WiXi

(∑
i

Xt
iWiXi)

−1XT
i Wi

))
ZiD.

From this expression we observe that the variation of the estimated individual slopes may
be quite different between individuals, especially in case of unbalanced data, which could
lead to heteroscedasticity in the second step of the two-step procedures. However, replacing
the simple linear regressions by weighted linear regressions with weights obtained in the
first step, had almost no impact on our simulation results. In general, one might of course
prefer the weighted regressions solutions at the expense of a small extra computation time.

Effect of distributional assumptions

We explored the performance of the approximate procedures in cases where the distribu-
tional assumptions of the LMM are not met. We considered MAR dropout and two modifi-
cations of Scenario 1. In the first modification we simulated measurement error from the
strongly asymmetric, exponential distribution with rate parameter equal to σ1 to keep the
same variance like in the BMD data. We next shifted this distribution such that the mean
was equal to 0. In the second case we applied the exponential distribution to the random
effects, also keeping variances like those in the BMD data. For the exponentially distributed
measurement error, the type I error rate was approximately 0.05 for all the methods and
the maximum loss of power was equal to 7% and 1% for TS and CTS, respectively.

Similarly, for the exponentially distributed random effects, the maximum loss of power
for both TS and CTS was only 1% with the type I error rate approximately 0.05. Note that
in this case the random effects were simulated as independent.
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Table 3.3: Balanced case. Comparison of probability of type I error, loss of power with
respect to LMM and precision measured by SDdiff of two-step and conditional two-step.

P(type I error) Max loss of power SDdiff

Scenario LMM TS CTS TS CTS TS CTS

1 0.044 0.045 0.044 0.48% 0.00% 0.05 0.006

2 0.047 0.045 0.047 0.40% 0.00% 0.17 0.006

3 0.059 0.058 0.059 0.23% 0.00% 0.03 0.015

4 0.063 0.052 0.063 31.00% 0.00% 0.66 0.007

5 0.053 0.054 0.053 91.00% 0.00% 1.38 0.007

6 0.061 0.052 0.061 27.00% 0.00% 0.72 0.007

7 0.053 0.062 0.053 67.00% 0.00% 1.19 0.007

8 0.056 0.056 0.056 0.50% 0.21% 0.12 0.015

Table 3.4: Unbalanced case. Comparison of probability of type I error, loss of power with
respect to LMM and precision measured by SDdiff of two-step and conditional two-step.

P(type I error) Max loss of power SDdiff

Scenario LMM TS CTS TS CTS TS CTS

1 0.053 0.056 0.053 5.50% 0.20% 0.26 0.15

2 0.029 0.036 0.033 1.20% 1.10% 0.20 0.11

3 0.066 0.067 0.066 0.31% 0.03% 0.08 0.07

4 0.055 0.052 0.055 53.40% 2.40% 1.04 0.30

5 0.055 0.058 0.052 94.30% 11.00% 1.51 0.49

6 0.054 0.050 0.052 43.90% 0.67% 0.90 0.11

7 0.052 0.043 0.058 84.00% 4.30% 1.29 0.25

8 0.047 0.047 0.050 40.10% 13.00% 1.52 0.90
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Figure 3.1: Balanced case, Scenarios 1 and 4. Panels (a) and (b) display the approximation
of the p-values obtained in TS and CTS for Scenario 1. Panels (c) and (d) display the
approximation for Scenario 4. Panel (e) shows the power curves for Scenario 4. The curves
for LMM and CTS are overlapping.
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES
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Figure 3.2: MAR case, Scenarios 1 and 4. Panels (a) and (b) display the approximation
of the p-values obtained in TS and CTS for Scenario 1. Panels (c) and (d) display the
approximation for Scenario 4. Panels (e) and (f) show the power curves for Scenarios 1
and 4.
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3.2. Materials and methods

Influence of the cross-sectional SNP effect

Our simulations showed a big impact of the cross-sectional SNP effect on the performance
of TS. In the balanced case, when β1 = 0.01 only a minor power loss of the TS was observed
(1%). However, for β1 = 0.05, the type I error rate was inflated to 0.10 compared to 0.038
for LMM and CTS. The performance of TS for that scenario is displayed in Figure 3.3. For
the MAR case, a cross-sectional SNP effect of 0.01 led to a loss of power for the TS to even
17% (Figure 3.4). For β1 = 0.05, the type I error rate was inflated to 0.54.

●●

●

●

●

●

●

● ●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●
●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●●
●

●

●●

●

●
●●

● ●

●

●● ●
●

●

●●●
●

●

●

●

●

●●

●
●

●

●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●● ●
● ●●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●
● ●●●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●

●

●
●

●●

●

●●

●

●

●

●
●

● ●

●●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●●
●

●
●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●
●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●●●●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●●●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●

●

●

●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

● ●

●

●●●

●
●
●

●●●

●

●
●

●

● ●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●
●

●

● ●●

●

●

●
●

●●

●

●

●

●

●

● ●●
●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●●
●

●

●

●

●
●

●

●●

●

●

●

●●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

− log10(pval) LMM

−
lo

g 1
0(

pv
al

) 
T

S

(a)

0e+00 2e−04 4e−04 6e−04 8e−04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βSNP x time

P
ow

er

LMM
TS
CTS

(b)

Figure 3.3: Balanced case, Scenario 1 with β1 = 0.05. Panel (a) shows the approximation
given by the two-step. Panel (b) shows the power curves for LMM, TS and CTS.
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Figure 3.4: MAR case, Scenario 1 with β1 = 0.01. Power curves for the LMM, TS and CTS.
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Approximation to conditional linear mixed model

The CTS approach provides an approximation to the slope obtained by the CLMM. Now,
since the CLMM removes the effect of the cross-sectional part on the estimation of the slope,
different results from those of the LMM should be expected. As mentioned above, the ad-
vantage of the CLMM is that it is less vulnerable to misspecification of the cross-sectional
part. In order to appreciate the CTS as an approximation of the CLMM, we also compared
the p-value obtained from the CTS and the CLMM. For this, we only deal with the unbal-
anced case of Scenario 5, where the greatest drop in power is seen. From Supplementary
Figure 1 it is clear that the CTS perfectly approximates the p-value obtained in the CLMM,
suggesting that its power loss with respect to LMM is implicitly related to the conditional
model.

Discussion of the simulation results

We can safely conclude from the above simulation results that the CTS approach is superior
to the TS approach, loosing basically no power in the balanced case compared to the LMM
and showing a minimal power loss in the unbalanced case. The eventual loss in power
is due to the loss of power with the CLMM, and this loss must be weighted against the
advantage of the conditional approach which is less vulnerable to model assumptions than
the LMM.

In the balanced case, the TS seriously suffers from lack of power in Scenarios 4-7, where
small variability of the random slope is combined with a high correlation between the
random effects. However, it is not the high correlation per se that causes the drop in power
since one can always render the correlation zero. In fact, it is the complex interplay between
σ, σ0, σ1, ρ and the values t1, . . . , tn that have an impact on the power. Our simulation
study did not unravel this complex interplay, but had only the intention to show that some
loss of power can be expected in some extreme situations. Below we show that this does
not have an effect on the proposed practical procedure.

Furthermore, we observed that the behavior of the CTS is quite similar to that of the
CLMM. That there is some loss in power of the CLMM approach might be surprising given
the results in Section 4.2 of Verbeke et al. (2001). In that section it is argued that the
CLMM implies no loss of information from a Bayesian viewpoint. However, this result is
based on the assumption that the random intercept has a flat prior, while we have taken
the classical assumption of joint normality for the random intercept and slope. That in the
balanced case there is (basically) no power loss and in the unbalanced case there must be
in general a power loss, can be seen from the following reasoning.

The results in Section 4.3 of the same paper applied to the current simplified situation
results in:

p(y | b0, β3, b1, σ
2) = p(y∗ | β3, b1, σ

2) p(y | b0, β3, b1, σ
2),

with y the stacked vector of responses, b0 (b1) the stacked vector random intercepts (slope),
y∗ the stacked vector of y∗i values and y the stacked vector of profile means. Now for each
of the profile means the following result holds:

yi|b0i, b1i ∼ N(β0 + β1si + β2ti + β3siti + b0i + b1iti, σ
2),
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with ti the average time for the i-th subject. In the balanced case, one can change the time
origin such that ti ≡ t = 0 without changing anything on the estimation of the longitudinal
part of the model. This implies that there is no information on β3 anymore in the second
part of the likelihood (part of y). That a minimal loss of information for the CTS approach
was seen in some of the simulations for the balanced case, has to do with the estimation of
the variance parameters. Indeed, the variance parameters of the LMM are present in both
parts of the likelihood and must therefore be estimated better with the LMM than with
any of the two parts separately. However, in the unbalanced case, no change in origin can
remove β3 from that part. Hence, a loss of power is expected with the CLMM and also with
the CTS approach, but the loss of power is often minimal as seen in the simulations.

Practical aspects and computation times

Our simulation study clearly indicates that CTS should be the method of choice for the
approximate computations in longitudinal GWAS. We illustrated that especially for unbal-
anced data (and we expect the readers to be mainly dealing with such data) this approach
is more precise and reliable than the TS approach. In our experience, CTS does not in-
flate the type I error and leads to only a minor loss of power, which depends on the data
scenario. In practice, one can learn a lot about the data by fitting a LMM without a SNP.
The variance components parameters will basically not change when the SNP is included
in the model, as the effects in GWAS are very small. This provides a useful information
on the expected power loss when applying the CTS approach. Additionally, is it advisable
to conduct a small simulation study, say for 100 SNPs, assessing the quality of approxima-
tions. After the approximate GWAS is performed, one will obviously confirm the findings
by fitting the LMM to the most promising SNPs. Depending on the expected small power
loss, a somewhat increased number of “the top” SNPs can be considered. The practical use
of the conditional two-step approach is also displayed in Supplementary Figure 2.

We compared the pure computation times (without time spent on data access) using
the 3.0.2 64-bit version of R software (R Core Team, 2013) on a desktop computer with
i5-3470, 3.20 GHz and 8 GB of RAM. Fitting one linear mixed model (3.2) for 2000 in-
dividuals takes around 2 seconds using the package nlme and around 0.5 seconds using
the package lme4, which would imply 23 and 6 days respectively, for 1M of SNPs. This
computation time is linear in the sample size. Applying the two two-step procedures we
reduce the computations to fitting one LMM for all the SNPs and a simple linear regression
for each SNP at a time. One should also note that the data transformation needed for CTS
is performed within a minute. Using a standard procedure in R, function lm, fitting 1 mil-
lion regressions takes around 1 hour. Applying the semi-parallel regression we can perform
this analysis within 2 minutes. Finally, one should add the time spent on re-analyzing “the
top” SNPs with the LMM, which is around 2 minutes for fitting 100 regression models. To
summarize, we speed up the computations for 1M of SNPs from respectively 23 or 6 days
to 5 minutes.

Supplementary Figure 3 displays the time needed to perform the second step of the
two-step procedures and the speeding up with respect to the linear mixed model for dif-
ferent sample sizes and the number of repeated observations. Note that the computation
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES

time for the two-step methods is essentially the same regardless of the number of longitudi-
nal observations. With 10 observations per individual the conditional two-step approach is
50000 times faster than the function lmer. This is partially due to the fact that the values for
a SNP, which are read from the files as N -dimensional vector, do not need to be expanded
to length N ∗ n, which is an additional cost of the standard analysis in R functions.

Another aspect of the analysis is SNP data access, which remains the same issue for
any type of computations. Application of array-oriented binary files has been discussed in
Sikorska et al. (2013a) showing that an additional 5 minutes are needed to access the data
for 1M of SNPs. As a result, we make the GWAS computations feasible on a single everyday
computer.

3.3 Discussion

We explored the performance of two approximate procedures for GWAS on longitudinal
data in different scenarios. Our analytical investigations for the balanced case showed that
the conditional two-step approach provides an excellent approximation of the p-value for
the SNP×time interaction term obtained from the LMM and the CLMM. This result was
also confirmed by the simulation study. The performance of the two-step approach is less
straightforward, due to the lack of insightful expression for the standard errors. For the
balanced case this method showed to be sensitive for the variance-covariance structure of
the random effects. The same behavior was observed for CTS in the case of unbalanced
data, however, the loss of power is always much lower than in TS. One should note that
in our simulations we considered extreme values for ρ. In practice, the correlation of -0.9
is improbable. We also indicated that it is not necessarily the correlation that drives the
results, since this correlation can always be made zero.

We additionally illustrated the possible danger in using the two-step approach when a
SNP is cross-sectionally important, leading to either strongly inflated type I error rate or
considerable loss of power.

In conclusion, the conditional two-step approach provides, in virtually all practical sit-
uations, a very good approximation of the p-value for the SNP×time effect obtained from
the CLMM. At the same time it protects the user better against model misspecification than
the LMM and the TS. In addition, it hugely reduces demands on computing resources. The
computational benefits become even more important with growing number of SNPs and in
models analyzing the joint effects of multiple SNPs.

Finally, the two-step approaches can be viewed as approaches that perform inference on
the longitudinal fixed effects using longitudinal summary measures, namely the random
slopes. In this paper we focused on evaluating the importance of the SNPs separately, but
it is clear that the CTS approach can be extended to cover mixed models with a non-linear
evolution in time modeled either in a non-linear or smooth manner. The CTS approach
can also be combined with other, more complex, statistical procedures in the second step
evaluating the effects of the SNPs jointly.

Finally we note that our approach assumes uncorrelated measurement errors. In prin-
ciple correlated errors are not covered here. However, in Jacqmin-Gadda et al. (2007) it
is shown that the estimation of fixed effects is robust again violation of independence as-
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sumption as long as random intercept and slope are present in the mixed model. This is
also confirmed in Supplementary Figure 4. We believe that our approach therefore offers
a wide range of possibly complex statistical procedures that are practically feasible with
limited computational resources.
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Appendix

Linear mixed model

The ML estimator of β in model (3.1) for balanced data set can be expressed as

β̂ = (

N∑
i=1

XT
i WXi)

−1(

N∑
i=1

XT
i Wyi), (3.18)

with yi = (yi1, . . . , yin)T ,Xi the design matrix for the i-th subject consisting of the columns
1, t, si1, sit, and W equals V −1. Using Woodbury equation,

(A+BDBT )−1 = A−1 −A−1B(D−1 +BTA−1B)−1BTA−1,

W can be rewritten for model (3.2) as

W =
1

σ2
(In − c1˜n)(In − γ t tT (In − c1˜n)), (3.19)

where t = (t1, ..., tn)T , is the vector of time points, c = (σ2/σ2
0 + n)−1, γ = (σ2/σ2

1 + θ)−1

and θ =
∑
t2j − c(

∑
tj)

2. By inserting equation (3.19) in equation (3.18) the estimate of
interaction term in model (3.2), can be obtained as

β̂3 =
cov(s, u)− t̄ cov(s, y)

n var(t) var(s)
.

By inserting W in the variance-covariance matrix of LMM, i.e. var(β̂3) =

(
∑N

i=1 X
T
i WXi)

−1, the variance of the interaction estimator can be written as

var(β̂3) =
σ2 + σ2

1 n var(t)
N n var(t) var(s)

.

Two-step approach

In the second step of the two-step approach (i.e. model (3.9)) the MLE of β̂∗∗1 can be
expressed as

β̂∗∗1 =
∑ (si − s̄)b̂∗1i∑

(si − s̄)2
, (3.20)

where b̂∗1i is the best linear unbiased predictor (BLUP) and can be computed by the empiri-
cal Bayesian approach as

b̂∗i = DZTW (yi −Xβ̂∗), (3.21)

where β̂∗ is the ML estimator of the vector of fixed effects of reduced model (3.6). By
inserting β̂∗ and W in equation (3.21) the BLUP for model (3.6) can be obtained as

b̂∗1i = γ(ξi − ξ̄), (3.22)

where ξi =
∑

j tjyij−c(
∑

j tj)(
∑

j yij), ξ̄ =
∑

j tj ȳj−c(
∑

j tj)(
∑

j ȳj), ȳj = 1
N

∑N
i=1 yij ,

c = (σ2/σ∗20 + n)−1, γ = (σ2/σ∗21 + θ)−1 and θ =
∑
t2j − c(

∑
tj)

2. By inserting the two
above equations into equation (3.20) the estimate of β∗∗1 can be derived as

β̂∗∗1 =
cov(s,u)− n c t̄ cov(s, y)

var(s)(σ2/σ∗21 +
∑

j t
2
j − c(

∑
j tj)

2)
.
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Note that in the above derivations we have used the assumption that the covariance of
the random intercept and slope is zero. We have argued in the text when this assumption
is reasonable.

Conditional two-step approach

The transformed matrix (i.e. A) which was introduced in CLMM can be defined as

A =<
a1

‖ a1 ‖
,

a2

‖ a2 ‖
,

a3

‖ a3 ‖
>,

by using the Gram Schmidt process, where a1 = t − < t . 1 > 1
n

. In the second step of
the conditional two-step approach (i.e. model (3.12)), the ML estimator of β̂441 can be
expressed as

β̂441 =
∑ (si − s̄)̂b41i∑

(si − s̄)2
, (3.23)

where b̂4i1 is the best linear unbiased predictor (BLUP) and can be computed by the empiri-
cal Bayesian approach as

b̂4i = DZ∗TW ∗(y∗i −X∗β̂4), (3.24)

where β̂4 is the MLE of the reduced model (3.11), X∗ and Z∗ are the transformed design
matrices of fixed and random effects, respectively. By using the Woodbury equation, W ∗

can be obtained as
W ∗ =

1

σ2
(I˜n − γ Z∗Z∗T ),

where γ = (σ2/σ∗21 + n var(t))−1. By inserting β̂4 and W ∗ into equation (3.24) the BLUP
for model (3.11), can be obtained as

b̂41i = γ (ui −
1

N

∑
i

ui − t̄yi +
1

N
t̄
∑
i

yi),

with yi =
∑

j yij and ui =
∑

j yijtj . By inserting the two above equations into the equation
(3.23), the ML estimator of SNP effect in model (3.12) can be derived as

β̂441 =
cov(s,u)− t̄ cov(s, y)

var(s)(n var(t) + σ2/σ∗21 )
.

In the second step of the conditional two-step approach, model (3.12), variance of the β̂441

can be expressed as

var(β̂441 ) =
var(̂b4i1)∑
(si − s̄)2

, (3.25)

where var(̂b41i) taken from the variance-covariance matrix of LMM, i.e.

var(̂b4i ) = DZTW ∗Z∗D −DZTW ∗X∗(X∗TW ∗X∗)−1X∗W ∗Z∗D,

can be expressed as

var(̂b4i ) =
σ∗21

σ2
(1− γ n var(t)) n var(t). (3.26)
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES

By inserting former equation into the equation (3.25), the variance of the estimate of
SNP effect can be derived as

var(β̂441 ) =
n var(t)σ∗21

N n var(s) (σ2/σ∗21 + n var(t))
.
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Supplementary Figure 2: Flowchart describing practical use of CTS.
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Figure: Balanced case. Performance of the approximate procedures when the time-varying
covariate is included to the mixed model.
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Figure: Unbalanced case. Performance of the approximate procedures when the time-
varying covariate is included to the mixed model.
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3. PERFORMANCE OF THE APPROXIMATE PROCEDURES

An example of applying the conditional two-step approach
The data are arranged in a so-called “long format” with one row per observation. The SNP
data are stored in matrix S with N rows and ns columns. The size of ns depends on the
available RAM. The first few rows of the phenotype data (mydata) look as follows:

id y Time

1 1 1.1289273 1

2 1 1.1426346 2

3 1 1.1663130 3

4 1 1.2042046 4

5 1 1.2647349 5

6 2 0.9595783 1

7 2 0.8327966 2

8 2 0.6577344 3

9 2 0.4980894 4

10 2 0.3416705 5

The code below, with function cond, transforms data for conditional linear mixed model.
It is based on the SAS macro provided in Verbeke et al. in “Conditional linear mixed models”
(2001). Variable “vars” is a vector with the names of the response and all the time-varying
covariates that should be transformed.

cond = function(data, vars) {

data = data[order(data$id), ]

### delete missing observations

data1 = data[!is.na(data$y), ]

## do the transformations

ids = unique(data1$id)

transdata = NULL

for(i in ids) {

xi = data1[data1$id == i, vars]

xi = as.matrix(xi)

if(nrow(xi) > 1) {

A = cumsum(rep(1, nrow(xi)))

A1 = poly(A, degree = length(A)-1)

transxi = t(A1) %*% xi

transxi = cbind(i, transxi)

transdata = rbind(transdata, transxi)

}

}

transdata = as.data.frame(transdata)

names(transdata) = c("id", vars)

row.names(transdata) = 1:nrow(transdata)

return(transdata)

}

The code below applies the conditional two-step approach. First, the data are trans-
formed using function cond. Next, the reduced conditional linear mixed model is fitted and
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3.4. Supplementary Material

the random slopes are extracted. Finally, the semi-parallel regression is performed.

# transform data for the conditional linear mixed model

trdata = cond(mydata, vars = c("Time", "y"))

#fit the reduced model and extract random slopes

mod2 = lmer(y ~ Time - 1 + (Time-1|id), data = trdata)

blups = ranef(mod2)$id

blups = as.numeric(blups[ , 1])

# perform the second step using semi-parallel regression

X = matrix(1, n, 1)

U1 = crossprod(X, blups)

U2 = solve(crossprod(X), U1)

ytr = blups - X %*% U2

ns = ncol(S)

U3 = crossprod(X, S)

U4 = solve(crossprod(X), U3)

Str = S - X %*% U4

Str2 = colSums(Str ^ 2)

b = as.vector(crossprod(ytr, Str) / Str2)

sig = (sum(ytr ^ 2) - b ^ 2 * Str2) / (n - 2)

err = sqrt(sig * (1 / Str2))

p = 2 * pnorm(-abs(b / err))
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Chapter 4

GWAS on your notebook: fast semi-parallel

linear and logistic regression for

genome-wide association studies

Abstract

GWA studies encounter the following computational issues: a large number of
tests and very large genotype files which cannot be directly loaded into the software
memory. We show how to speed up the computations for cross-sectional continuous
outcome using matrix operations in pure R code. Computation time from 6 hours
is reduced to 10-15 minutes. Our approach can handle essentially an unlimited
amount of covariates efficiently, using projections. Data files in GWAS are vast and
reading them into computer memory becomes an important issue. However, much
improvement can be made if the data is structured beforehand in a way allowing
for easy access to blocks of SNPs. We propose several solutions based on the R
packages ff and ncdf. Additionally, we adapted the semi-parallel computations for
logistic regression.

Adapted version of the research article: Sikorska K., Lesaffre, E., Groenen P.J.F. and Eilers P.H.C. (2013) GWAS
on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioin-
formatics, 14(1), 166.
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

4.1 Introduction

For the benefit of readers who are not familiar with genome-wide association studies we
provide a brief introduction to this area.

There are many ways to investigate the influence of genes on (human) traits. One
of them, genome-wide association studies (GWAS), exploits the fact that strings of DNA
contain many small variations, called SNPs which may influence the level of traits or risk of
having a disease. Modern micro-array technology makes it possible to measure genotypes
of a million SNPs in one go, at a reasonable price, using only one drop of blood. In large
epidemiological studies, this has been done for large to very large groups of individuals, for
which (many) phenotypes have been measured too. SNPs that are found to be influential
may point to relevant genes. This approach has been applied on a grand scale (Pearson
and Manolio, 2008). The number of results published on GWAS is rapidly increasing. The
GWAS catalogue includes over 1400 papers on newly discovered important SNPs (Hindorff
et al., 2010).

Typically, the number of genotyped SNPs is around half a million. However, it is possible
to impute the most probable genotypes for real or hypothetical SNPs using spatial correla-
tion on the genome. This way, the number of SNPs analyzed in a GWAS can grow to 2.5 or
even 30 million.

The statistical model used in GWAS is rather basic: univariate linear or logistic regres-
sion of phenotype on genotypes, for each SNP in turn, correcting for covariates like age,
height and gender. Large sample sizes are required to detect very small effects at the very
strict ”GWA-significance level”, namely 5× 10−8, the common 0.05 divided by one million
(inspired by Bonferroni correction for that many tests). The goal is to find SNPs for which
the p-value will survive this conservative multiple testing correction.

Dedicated software is available to support those analyses. Popular examples are:
GenABEL (Aulchenko et al., 2007), PLINK (Purcell et al., 2007), Mach2qtl (Li et al., 2010,
2009) and ProbABEL (Aulchenko et al., 2010). Computation times are long. An exam-
ple from the literature is a GWAS with a continuous trait for 6000 individuals and 2.5 mln
SNPs, which on ”a regular computer” takes around 6 hours (Estrada et al., 2009). This time
will dramatically increase with larger sample size and/or more SNPs to test. Additionally,
logistic regression is more computationally demanding than linear regression. Based on the
available published materials, it is actually quite difficult to assess computation times. Usu-
ally information about available memory, number of used processors/cores, and the size of
the model (the number of covariates) are not provided.

GWAS may be computationally demanding, but the problem is “embarrassingly parallel”,
meaning that it can be distributed over as many processors as desired, by simply splitting
the work into groups of SNPs. This brute force approach with computing clusters is now
being applied broadly, with GRIMP (Estrada et al., 2009) as an example in our institution.

We show that huge speed gains can be achieved by simple rearrangements of linear
model computations, exploiting fast matrix operations. We call this the “semi-parallel”
approach, to set it apart from parallel computation on multiple processors. A similar idea
can be found in Shabalin (2012), in the framework of expression quantitative trait loci
(eQTL) analysis. That paper focuses on computing R2 statistics, to get a first insight into a
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4.2. Implementation

data. We are more ambitious: we want to reproduce very closely the results of “traditional”
GWAS software. Present-day GWAS practice is focused on very low p-values, regardless
of the amount of variance that the SNPs actually explain. Thus, we apply large matrix
operations to compute estimates, standard errors and p-values for GWAS with a continuous
outcome.

There is a second challenge: reading the data quickly enough from a disk into computer
memory. A key issue is to rearrange them in such a way that arbitrary blocks of SNPs
(containing all individuals) can be accessed very quickly. We show how to pre-process data
for this goal.

The bottom line is that a GWAS for one million SNPs and 10k individuals can be done
on an average notebook computer within 15 minutes. This is the time needed for pure
computations. Accounting for the time needed to load the data, the whole time of the
analysis increases to 25 minutes.

Semi-parallelization of GWAS with a binary outcome is more difficult. Parameters in
logistic regression are estimated via maximum likelihood, which unlike the least squares
approach is an iterative procedure. However, we were able to find an approximate way to
provide odds ratio for the SNP effect using semi-parallel computations.

The paper is written in a tutorial-like manner. We gradually extend the complexity of the
problem, showing step by step how to speed up computations using simple tricks in R. Also
the goal is not to present a package (there is none) but to introduce a new way of thinking
about large-scale GWAS computations and to present and provide code that anyone can
easily integrate into existing systems.

4.2 Implementation

Data, real and simulated

A GWAS is based on very large numbers of SNPs, for many thousands of individuals, leading
to very large data files. Observed genotypes generally are coded as the number of reference
alleles, 0, 1 or 2. Very efficient storage is possible, using only 2 bits per SNP (per individual).
The program PLINK uses this approach to store genotypes in its BED file format. The
package SNPstats mimics it for storing SNPs in computer memory. This is quite attractive:
100k SNPs (we use k as shorthand for thousand) for 10k individuals can be stored in a
quarter of a Gigabyte.

In large data sets one may expect some values of the traits and/or genotypes to be
missing. Typically genotypes with a call rate (percentage of measured genotypes in the
sample) below 95% will be removed from the analysis.

The recent GWAS practice is to use genotype imputation. The commonly used MACH

program does two things: it imputes missing SNPs within genotyped markers and predicts
untyped markers. The result of imputation is the expected dose, a non-integer number
between 0 and 2. In this case more room is needed to store the values. Actual files with
imputation results are then much larger. Those that MACH produces are ASCII-code files,
using six positions per number (with three decimals). In principle a more compact repre-
sentation is possible. There is no need to be precise and by multiplying the dose by 100 we
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

can store an integer between 0 and 200 in one (unsigned) byte. This is four times larger
than for raw genotypes.

In our experience, SNP data are stored in such a way that all SNPs for one individual
form one record. We call this structure “row per person”. It is useful for random reading
of (blocks of) individuals, but selection of certain (blocks of) SNPs is time consuming.
Essentially one has to read the complete records for all persons and keep only the required
selection of SNPs. This has to be repeated for every block of SNPs one considers.

It is much more attractive to have each record represent one SNP, as measured for all
individuals (“row per SNP”). To achieve this, given a “row per person” organization, is an
important part of the enterprise. It would not be an issue if all data would fit into fast
random-access memory, but this is usually not the case, as we are talking of 10 to 100 GB.

There is no need for real data when discussing computation times. Instead we simulate
genotypes as random numbers from a uniform distribution between 0 and 2. Phenotypes
and covariates are simulated as independent variables coming from a standard normal dis-
tribution. In our simulations we set the sample size to a typical GWAS scenario, namely 10K
individuals. The number of simulated SNPs is 1000, which is determined by the available
RAM.

Semi-parallel computations

In this section we present semi-parallel computation, using the R programming language
as the vehicle for implementation (R version 2.15). We report computation speeds, as
achieved on a single PC running Windows XP on an Intel E8400 (3.00 GHz) with 3.2 GB of
RAM. We report user times provided by the R function proc.time. User time is defined as
the CPU time charged for the execution of user instructions of the calling process.

A simple benchmark for comparing to other computers is the time needed for the sin-
gular value decomposition (SVD) of a 1000×1000 random matrix. For our computer it is 5
seconds in R software.

Our goal is to report computation times in a standardized way, such that they can be
easily recalculated for different numbers of individuals and/or SNPs. Computation time for
GWAS is linear in sample size and in the number of investigated SNPs. We express speed
in “sips” standing for “snp-individual per second”. It is obtained by dividing the product of
the numbers of individuals and SNPs by the time needed for a computation. Conversely, if
one divides the product of the number of individuals and the number of SNPs by speed, one
obtains the number of seconds needed for a job. One should keep in mind that due to the
imprecision of proc.time and its variability from run to run, the calculated times/speeds
are only approximate. They are provided to assess the order of magnitude of the times
gained in computations. Because of the size of the numbers, we will exclusively use Msips,
meaning one million sips.

Regression without additional covariates

Let the (continuous) phenotype be given as a vector y of length n and the states of m SNPs
as the n×m matrix S. A single column of S will be denoted as s. Unless stated otherwise,
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we use the same symbols for the R variables. To detect potential genetic effects on y, the
linear model

y = α+ βs+ ε (4.1)

is fitted for each SNP and the size of β̂ is evaluated. Generally the estimated effects are dis-
appointingly low. A culture has grown in which one searches for low (Bonferroni corrected)
p-values, using large to very large sample sizes. To compute p-values we need standard er-
rors, but we will not consider them until the model with covariates has been discussed. A
straightforward way to fit the model (4.1) is to use the function lm repeatedly.

t0 = proc.time()[1]

beta = rep(0, m)

for(i in 1 : m) {

mod = lm(y ~ S[ , i])

beta[i] = mod$coeff[2]

}

t1 = proc.time()[1]-t0

cat("Speed", 1e-6 * n * m/t1, "Msips\n")

The reported speed is 0.8 Msips, meaning that for this sample size we can test 80 SNPs per
second. For 2.5 M SNPs we would need almost 9 hours. In the code above we included
the statements used to compute processing times and speed. They will not be shown in the
upcoming examples. A faster alternative to lm is lsfit, recording a speed of 5.3 Msips.

beta = rep(0, m)

for(i in 1 : m){

mod = lsfit(S[ , i], y)

beta[i] = mod$coeff[2]

}

For this simple regression problem, we know how to compute the slope explicitly:

β̂ =

∑n
i=1(si − s̄)(yi − ȳ)∑n

i=1(si − s̄)2
. (4.2)

This is implemented in the following code, which increases the speed to 26 Msips.

beta = rep(0, m)

yc = y - mean(y)

for(i in 1 : m){

sc = S[ , i] - mean(S[ , i])

beta[i] = sum(sc * yc)/(sum(sc ^ 2))

}

So far, we considered cases where the analysis is implemented in a loop, for one SNP at
a time. However, loops are inefficient and it is better to vectorize the computations. That
leads us to our first semi-parallel algorithm. In the previous code fragment we took each
column of the SNP matrix, to center it and compute its inner product with centered y, ỹ.
If we center all columns at once using the function scale we obtain the whole vector β̂
without using loops. However, when running the code below
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yc = y - mean(y)

Sc = scale(S, scale = T)

S2 = colSums(Sc ^ 2)

b = crossprod(yc, Sc) / S2

we get an unpleasant surprise: the speed drops to 19 Msips. It turns out that scale is a
very slow function. We were able to avoid it when we did the calculations ourselves and
achieved a speed of 45 Msips.

yc = y - mean(y)

s1 = colSums(S)

e = rep(1, n)

Sc = (S - outer(e, s1 / n))

b = crossprod(yc, Sc) / colSums(Sc ^ 2)

Centering columns of the SNP matrix is actually not necessary. We can rewrite the numer-
ator of the equation (4.2) as

n∑
i

ỹi(si − s̄) =

n∑
i

ỹisi − s̄
n∑
i

ỹi =

n∑
i

ỹisi.

Similarly, we can show that the denominator of (4.2) can be rewritten as

n∑
i

(si − s̄)2 =

n∑
i

s2
i − n(s̄)2.

This leads to the following code, running at 90 Msips.

yc = y - mean(y)

s1 = colSums(S)

s2 = colSums(S ^ 2)

b = crossprod(yc, S) / (s2 - (s1 ^ 2) / n)

This means that to analyze a GWAS with 2.5 mln of SNPs and 10k individuals around 5
minutes are needed. However, this is for an unrealistic scenario, without covariates. Also,
we have not calculated the p-values yet. We will now discuss the needed extensions.

Regression with covariates

To handle covariates in a matrix X, we extend the model (4.1) to

y = βs+Xγ + ε, (4.3)

where it has been assumed that X contains a column of ones, to cater for an intercept. A
straightforward application of this model uses lm in a loop, as shown below.

for(i in 1:m){

mod = lm(y ~ S[,i] + X - 1)

b[i] = summary(mod)$coeff[1]

}
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Of course the speed will now depend on the number of covariates. This relation is shown
in Figure 4.1.
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Figure 4.1: The plot shows the relationship between the speed of the computations using
lm function in R and the number of the covariates in the linear regression model.

We can also repeatedly apply function lsfit in the following manner.

b = rep(0, m)

for(i in 1 : m){

mod = lsfit(cbind(S[ , i], X), y, intercept = F)

b[i] = mod$coeff[1]

}

For 10 covariates, speed is equal to 1.17 Msips. It is again faster than lm, but the whole
GWA scan for 2.5 mln SNPs and 10K individuals would still take around 6 hours (18 hours
for lm). Shabalin (2012) has briefly discussed how to deal with one covariate in an efficient
way. The main idea is to orthogonalize the response and the predictor of interest (here the
SNP) with respect to that covariate. We derived it for the general case with k covariates
(see Appendix). The transformed variables are given by the equations:

s∗ = s−X(XTX)−1XT s, (4.4)

y∗ = y −X(XTX)−1XT y. (4.5)

Assuming that the intercept was included in the matrix of covariates, the model is now
simplified to

y∗ = βs∗ + ε. (4.6)

It is important to calculate y∗ and s∗ efficiently. If we multiply the matrices in order as they
appear in (4.4) and (4.5), R will encounter memory problems when working with n × n
matrix. A code fragment for well-organized calculations is shown below.
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X = cbind(1, X0)

U1 = crossprod(X, y)

U2 = solve(crossprod(X), U1)

ytr = y - X %*% U2

U3 = crossprod(X, S)

U4 = solve(crossprod(X), U3)

Str = S - X %*% U4

b = as.vector(crossprod(ytr, Str) / colSums(Str ^ 2))

Speeds are 45, 25, 13 Msips for 2, 10 and 30 covariates respectively, about 70 times faster
than using lm.

Standard errors and p-values

The variance for the estimated β̂ in model (4.6) is given by

v̂ar(β̂) = σ̂2(s∗T s∗)−1. (4.7)

The error variance is estimated by

σ̂2 =
RSS

n− k − 2
, (4.8)

where the residual sum of squares (RSS) is calculated as

RSS = (y∗ − s∗β̂)T (y∗ − s∗β̂) =

n∑
i

y∗2i − β̂2
n∑
i

s∗2i . (4.9)

Note that in the degrees of freedom we have accounted for the removed covariates, al-
though this usually will be of minor influence. The standard errors of β̂ and logarithm of
the p-values can be calculated with the code below.

Str2 = colSums(Str ^ 2)

sig = (sum(ytr ^ 2) - b ^ 2 * Str2) / (n - k - 2)

err = sqrt(sig * (1 / Str2))

p = 2 * pnorm(-abs(b / err))

logp = -log10(p)

Table 4.1: Speed in Msips for linear model (estimates, standard errors and p-values) with
k covariates for the functions lm, lsfit and semi-parallel (SP).

k lm lsfit SP
0 0.70 3.0 43.0
2 0.60 2.4 43.0
10 0.40 1.0 25.0
30 0.16 0.32 12.0

The calculation of the p-values assumes, given the large sample size, that the test statistic
has a normal distribution. We used the lower tail of the normal distribution to calculate
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the p-values. It is not advisable to use the textbook definition 2 * (1-pnorm(b / err)),
because it suffers from severe rounding errors.

We make a final comparison of speed between lm, lsfit and our fast computations.
Standard errors and p-values are not included in the lsfit function, but are easily ob-
tained those using ls.print procedure. The results, for different numbers of covariates,
are provided in the Table 4.1. We see that the standard function lm is the slowest, but the
computational benefits of lsfit decrease for the cases with many covariates. Using semi-
parallel computations, we can do a GWAS 61 times faster than with lm for no covariates
and 75 times faster for a model with 30 covariates. A GWA scan for 10K individuals, 2.5M
SNPs and 10 covariates can be now done within 20 minutes.

We tested our codes on a another PC with Intel Xeon(R) X5550, 2.67 GHz, 24 GB of
RAM and the 64 bit version of R. This machine was around 1.4 times faster than our PC.
However, the ratios of the speeds remained similar. Semi-parallel approaches is 60-80 times
faster than looping function lm.

Missing genotypes

The semi-parallel algorithm does not allow missing values. A single NA in either a phenotype
vector or a SNP matrix will result in NA in the whole vector of estimates.

Incomplete phenotypes are easy to handle. We can exclude those individuals from the
whole analysis. Missing genotypes are more problematic. In general missing data can be
handled using weighted least squares estimation, taking as weights 0 and 1 for missing and
available observation. However the weights will vary for different SNPs and semi-parallel
approach for the model with covariates cannot be applied anymore.

We propose a very simple solution for the analysis of a GWAS with incomplete SNPs by
imputing the missing SNP values with the sample mean of the observed genotypes. Our
simulations show that for large sample size (thousands of individuals) and even 5% missing
genotypes no substantial precision is lost (Figure 4.2).
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Figure 4.2: The effect of imputation of missing SNPs using sample mean on estimates and
p-values
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

Logistic regression

When there is an interest in association between a binary outcome and SNPs, logistic re-
gression is needed. The model without additional covariates is given by

log

(
p

1− p

)
= β0 + β1s, (4.10)

with p representing probability of “success”.
No closed-form expression exists for the coefficient values. Instead, the (logarithm of

the) likelihood function is maximized using iterative procedures like Newton-Raphson or
Fisher scoring. The maximization begins with a tentative solution which is iteratively im-
proved until convergence. In R the straightforward way to fit a logistic model is to call a
function fitting generalized linear model specifying proper outcome distribution (binomial)
and link function (logit). It can be easily done using the code

beta = rep(0, m)

for (i in 1:m) {

mod = glm(y ~ S[,i], family = binomial ("logit"))

beta[i] = mod$coeff[2]

}.

The speed is 0.2 Msips which is four times slower than fitting a regression model to a
continuous outcome.

A relation exists between maximum likelihood estimation using Fisher scoring and
weighted least squares estimation (Agresti, 2002). Maximum likelihood equations for the
(t+ 1)-th iteration can be written as

(XTW (t)X)β(t+1) = XTW (t)z(t), (4.11)

where z is a “working variable” given by

z
(t)
i = log

(
p

(t)
i

1− p(t)
i

)
+
yi − p(t)

i

w
(t)
i

(4.12)

and where W (t) is diagonal matrix with elements p(t)
i (1− p(t)

i ). Every update of β involves
solving a weighted least squares problem with updated weight matrix. This process is called
iteratively reweighted least squares. The covariance matrix is given by

ĉov(β̂(t+1)) = (XTW (t)X)−1. (4.13)

In case of a model without additional covariates the estimated SNP effect and the stan-
dard error are given by

β̂1 =

∑
i wi(zi − zw)(si − sw)∑

i wi(si − sw)2
, (4.14)

v̂ar(β1) =
1∑

i wi(si − sw)2
, (4.15)
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4.2. Implementation

where zw and sw are weighted means defined as
∑

i wizi/
∑

i wi and
∑

i wisi/
∑

i wi,

respectively.
It is not possible to semi-parallelize logistic regression computations to provide an exact

solution, because in principle the weights are different for each SNP. However, effects found
in GWAS are usually of modest size, with a median odds ratio of 1.33 and only a few odds
ratios exceeding 3.00 (Feero et al., 2010). This means that probabilities predicted by a
model without a SNP will not change much once SNP is included to the model. We can do
semi-parallel computations approximately using weights from the model without SNP (w̃)
as starting values and updating the solution for β1 by one iteration. Note that in case of no
other covariates we have to fit the model with only intercept. The predicted probabilities
are the same for every individual and so are the weights. In that special case the weighted
mean is equal to the arithmetic mean and (4.14) reduces to (4.2). The computations can
be easily done in R using the code

#### fit model without SNP and set weights

mod0 = glm(y ~ 1, family = binomial ("logit"))

p = mod0$fitted

w = p * (1 - p)

### Do the computations

z = log(p / (1 - p)) + (y - p) / (p * (1 - p))

zc = z - mean(z)

s1 = colSums(S)

s2 = colSums(S ^ 2)

den1 = s2 - s1 ^ 2 / n

b = crossprod(zc, S) / den1

err = sqrt(1 / (w[1] * den1))

pval = 2 * pnorm(-abs(b / err)).

The speed is 55 Msips which is 275 faster than using glm.
Obviously, the quality of approximation of the weights from the model without the SNP

depends on the magnitude of β1. We conducted a small simulation experiment explor-
ing an effect of a true odds ratio on the accuracy of estimation in semi-parallel approach.
We simulated 1000 logistic regression models in which true OR was a random number
between 1 and 5. We calculated the relative difference of the odds ratios estimated by
glm function and semi-parallel approach. The relative difference is increasing monoton-
ically and non-linearly with the correctly estimated OR (Figure 4.3). The semi-parallel
approach underestimates the OR by 0.1% for OR = 1.33, by 6% for OR = 3 and by 17%
for OR = 5. This result was independent from the sample size. Additionally, the p-values in
semi-parallel approach were slightly too significant, but the difference was observed only
for the − log10(p) above 25 (for the sample size 2000, Figure 4.4). We do not find those
observations worrisome in a typical GWAS scenario. However, we leave it up to the user to
additionally fit the glm model to a selection of the most promising SNPs.

Dealing with covariates in semi-parallel logistic regression follows the same reasoning
as in linear regression, but taking the weight matrix into account. The equations for trans-
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Figure 4.3: Odds ratios from the standard approach (glm) versus semi-parallel approach.
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Figure 4.4: P -values from the standard approach (glm) versus semi-parallel approach.
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4.2. Implementation

formed SNP (s∗) and z∗ are

s∗ = s−X(XTWX)−1XTWs, (4.16)

z∗ = z −X(XTWX)−1XTWz, (4.17)

where again X is a matrix of covariates including an intercept. The weight matrix W is
replaced with W̃ coming from the model without SNP. After the transformation the solution
for SNP effect and the standard error are given then by

β̂1 =

∑
i wiz

∗
i s
∗
i∑

i wis∗2i
, (4.18)

and
v̂ar(β1) =

1∑
i wis∗2i

. (4.19)

Noting that in this case weights are different for every individual, we can compute the
solution by running the following R code

mod0 = glm( y ~ X, family = binomial("logit"))

p = mod0$fitted

w = p * (1 - p)

z = log(p / (1 - p)) + (y - p) / (p * (1 - p))

xtw = t(X * w)

U1 = xtw %*% z

U2 = solve(xtw %*% X, U1)

ztr = z - X %*% U2

U3 = xtw %*% S

U4 = solve(xtw %*% X, U3)

Str = S - X %*% U4

Str2 = colSums(w * Str^2)

b = crossprod(ztr * w, Str)/Str2

err = sqrt(1/ Str2)

pval = 2 * pnorm(-abs(b / err)).

Comparisons of speeds between semi-parallel approach and glm for different number of
covariates are presented in Table 4.2. The speed gains are between 80 times for the model
with 30 covariates and 170 times for the model with 10 covariates making the efficiency
even larger than in linear regression.

Table 4.2: Speed in Msips for logistic model (estimates, standard errors and p-values) with
k covariates for the functions glm and semi-parallel (SP).

k glm SP
1 0.2 20.0
10 0.1 17.0
30 0.1 8.0
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

4.3 Organization of the SNP data

Our semi-parallel algorithms substantially reduce computation times. However before we
can apply our algorithm we need to load the data into computer memory. Of course this
always is an issue, but not really critical when computations are slow.

We assume that we have limited memory available, say 2 to 4 GB. With 64 bit operating
systems, 64 bit R and expensive hardware, it is possible to build a system that can have all
data in memory. We do not expect the reader to be that lucky. Instead we assume that we
will read in blocks of SNPs of reasonable size.

Data loading entails not only CPU but also I/O times. That is why in this section we only
focus on the elapsed time provided by proc.time. This is the clock time measured from
the start of the operation until its completion.

We propose different solutions depending on the type of the genotypes we are dealing
with (observed or imputed). We show how to efficiently deal with PLINK data formats.
For imputed dosage (MACH) files, we discuss what the difficulties are when loading in the
structure necessary to apply fast computation algorithm. We describe two R packages: ff
(Adler et al., 2012), ncdf (Pierce, 2011) which we found most useful to tackle this problem.

Observed genotypes in PLINK format

As an example, we utilized a PLINK BED file that we encountered at our institution. This
file stores around 42000 SNPs on chromosome 1 measured for about 6000 persons. Some
values were coded as missing. We can easily read a PLINK BED file into R using the function
read.plink implemented in the package SNPstats (Clayton, 2012).

library(SnpStats)

P = read.plink("Chrom-01.bed")

U = P$genotypes@.Data

This will store the genotypes in a SnpMatrix raw format. It is a very efficient storage
scheme, using only 2 bits for each element of the SNP matrix. It takes around 10 seconds
to load the data. Of course, this can be done only if the matrix fits in memory, but that is no
problem here. Another useful feature of the SnpMatrix object is that the indexing operator
returns a matrix. Having a SnpMatrix object, we can extract blocks of SNPs to a floating
point matrix. The maximum allowed size of the block depends on the available memory
and the operating system.

#### Read blocks of SNPs

for (k in 0:nb) {

j1 = 1 + k * bs

j2 = min(j1 + bs - 1, m)

cat("Block", k, "of", nb, ’\n’)

if (j2 > j1) {

# Read SNPS

S = as.numeric(U[, j1 : j2]) ## returns a vector

ns = j2 - j1 + 1
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4.3. Organization of the SNP data

dim(S) = c(n, ns)

}

Another problem that we have to deal with are missing genotypes, but in the previous
section we proposed a simple strategy to overcome this problem. In the code given below
we assume that the missing values are coded as 3 and that the threshold for the call rate is
5%.

# Remove bad SNPs (missing SNPs are coded as 3)

fmis = colSums(S == 3) / n

sel = fmis < 0.05

S = S[, sel]

W = S < 3

# Impute missing SNPs

imp = colSums(W * S) / colSums(W)

Imp = outer(rep(1, n), imp)

S = W * S + (1 - W) * Imp

Once “bad” SNPs have been removed we can apply a fast computation algorithm. We
analyzed a model with correction for 25 covariates. The association scan for our example
data file was finished within one minute.

Imputed genotypes in MACH format

MACH files are larger than PLINK files and may include hundreds of thousands of SNPs
written as “row per person” in text files. On a computer without large amount of RAM we
will not be able to read into R the whole data file. We have to work with blocks of SNPs.
The “row per person” structure is very inefficient if we want to read only a group of SNPs
(say 1000) for all individuals. Having a transpose of it, so the “row per SNP” would make it
possible for function scan to create a matrix with a block of SNPs for all persons. But even
then, reading 1000 SNPs for 10000 individuals takes around 13 seconds. For a genome
with 2.5 mln SNPs we would need around 9 hours just to bring the data into R.

There are other, faster ways to deal with large data files in R. One possibility is to
work with binary files. Saving and reading binary files is easily done using writeBin and
readBin. However, those files work on vectors. This is not an optimal solution for us.
Saving all the genotypes for individuals sequentially will not allow us for an easy access to
the blocks of SNPs later on.

There are several packages available which deal with array oriented binary files. We will
discuss here ncdf and ff which we found the most useful. The Network Common Data Form
(netCDF) are commonly used in meteorology and oceanography. Recently the R package
ncdf was released to support this data format (Pierce, 2011). First, the MACH data files
have to be saved into a ncdf object. Our experiments showed that it is most efficient to
work with blocks of SNPs and individuals. We will denote bsx and bsy as block size for
individuals and SNPs respectively. Number of blocks will be denoted as nbx and nby. We
need to define dimensions and variables of the ncdf object.
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

# Define dimensions

dimx = dim.def.ncdf("x", "units", 1:nx)

dimy = dim.def.ncdf("y", "units", 1:ny)

# Define variables

varz = var.def.ncdf("z", "nix", dim = list(dimx, dimy),

missval = 999, prec ="short" )

For the specified variables, a netCDF file is created using

# Create the netCDF file

netf = create.ncdf(fname, vars = list(varz)).

If Z is a bsx× bsy block read by the function scan, the data can be easily stored into ncdf
file.

# Read blocks and store them

for(i in 1:nbx) {

k = 1 + (i - 1) * bsx

put.var.ncdf(netf, varz, vals = Z,

start = c(k, 1), count = c(bsx, ny))

cat(’Block’, i, ’\n’)

}

# Close the file

close(netf)

Saving 100000 SNPs for 6000 persons would take around 45 minutes on our computer. To
estimate the complete time, we need to add the time needed for scanning the MACH file
(about 15 minutes). To read back the file created above (with the same block sizes) we
have to use the following code

netf = open.ncdf(fname)

for (i in 1:nby) {

k = (i - 1) * bsy + 1

Z = get.var.ncdf(netf, varz, start = c(1, k) , count = c(nx, bsy))

}

close(netf).

Reading goes very fast and is done within 30 seconds.
The package ff was created to support memory efficient storage of the large data files.

Keeping notation from the ncdf example, an ff object creation and data storage are done
using

FF = ff(vmode = "short", dim = c(nx,ny), filename = fname )

for(i in 1 : nbx) {

k = 1 + (i - 1) * bsx

FF[k:(k + bsx - 1), ] = Z

cat(’Block’, i, ’\n’)

}

close(FF).
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After the object is created, the R workspace should be saved. The data saving is faster in
ff than in ncdf. It is linear with the number of individuals’s block for the fixed number of
SNPs. We recorded less than a minute necessary to save 100000 SNPs for 6000 persons.
To read back the blocks we need to load the saved R workspace. This workspace keeps the
pointer to the ff file. After that, data reading is very straightforward.

for (i in 1:nby) {

k = (i - 1) * bsy + 1

Z = FF[ , k : (k + bsy - 1)]

}

The elapsed times for reading are as similar to those of ncdf.

4.4 Results and Discussion

Computations for GWAS were made easy. We have shown that they can be rearranged as
large matrix operations performing 60-80 times faster for linear regression and up to 300
times faster for logistic regression. The algorithms can be written in pure R and they do
not exceed 20 lines of code.

Fast computations demand fast access to the data and this is actually a harder problem.
Not all SNP data fit in memory at the same time. They have to be read in as blocks contain-
ing all individuals and selections of SNPs. In practice data are not organized in this way,
but as records that contain all SNPs for each individual. We have shown two ways to rear-
range data, in a preliminary step, to make fast access possible. Our first solution uses the
standardized netCDF file format. It has the advantage that the files can be exchanged easily
between computers, operating systems and programming languages. Our second solution
uses memory mapped files, as implemented in the package ff. It is the fastest solution and
it is easy to use, but it is less portable than netCDF.

We believe that we have presented here an attractive solution to computations for rela-
tively large GWAS, on modest hardware, using pure R code. Our algorithms are still “em-
barrassingly parallel”: it is trivial to divide the task over multiple machines, each working
on a different block of SNPs. However, using the package SNOW to exploit multiple pro-
cessors in one PC, we discovered that it takes so much time to load the data into separate
processes that it was not worth the effort.

Using the many processors on modern graphic cards looks like an attractive road to
explore. We feel that we are still in a transition phase in which easily accessible libraries
for R are not yet available. At the moment of writing this manuscript, most available
packages are tied to Nvidia GPUs and needed special installation procedures. We have not
yet explored this approach.

A more complicated case of weighting is encountered when one corrects for correlation
between individuals. Because the relationship matrix has as many rows and columns as the
number of individuals, this poses a real challenge. Several solutions have been proposed,
see e.g Lippert et al. (2011). More research is needed to determine whether they can be
combined with our semi-parallel approach.
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4. SEMI-PARALLEL LINEAR AND LOGISTIC REGRESSION

GWAS for static phenotypes is only one important issue. Much more challenging are
longitudinal data, in which multiple measurements per individual are available. In general
the number of measurements varies between persons, as well as the times of observation.
One has to use linear mixed models, which entail heavy computation loads. A typical mixed
model with 10K observations takes about 1 second, implying a speed of 0.01 Msips, more
than 100 times slower than a linear model. The need for fast computations in case of
longitudinal data and few approximate procedures have been described in Sikorska et al.
(2013b). We are working on algorithms involving large matrix operations for massive
fitting of linear mixed models. We have had some successes, but a lot has still to be done.
We will report on this subject in due time.
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APPENDIX

The minimum least squares fit for the model

y = βs+Xγ + ε, (4.20)

is obtained by solving the linear system of equations(
s′s s′X

X ′s X ′X

)(
β̂

γ̂

)(
s′y

X ′y

)
(4.21)

for β̂ and γ̂. This system is equivalent to the two equations

sT sβ̂ + sTXγ̂ = sT y, (4.22)

XT sβ̂ +XTXγ̂ = XT y. (4.23)

From equation (4.22) it follows that

γ̂ = (XTX)−1(XT y −XT sβ̂). (4.24)

If we insert that into the equation (4.23) equation we get

(sT s− sTX(XTX)−1XT s)β̂ = sT y − sTX(XTX)−1XT y. (4.25)

We introduce new SNP variable s∗ and new outcome y∗ defined as

s∗ = s−X(XTX)−1XT s, (4.26)

y∗ = y −X(XTX)−1XT y. (4.27)

Note that the transformed variables have clear a interpretation. They are part of s and y
that is orthogonal to the space spanned by the columns of X, since X(XTX)−1XT s and
X(XTX)−1XT y are the projections of s and y on X.

Now equation (4.25) has the form

sT s∗β̂ = sT y∗. (4.28)

We can easily calculate the following

s∗T s∗ = [sT − sTX(XTX)−1XT ][s−X(XTX)−1XT s] =

= sT s− sTX(XTX)−1XT s = sT s∗.
(4.29)

Similarly we can get that s∗T y∗ = sT y∗. We can now write the equation (4.28) as

s∗T s∗β̂ = s∗T y∗. (4.30)

Therefore, β̂ is a solution of a new regression model

y∗ = βs∗ + ε, (4.31)

with simpler solution (as the new model has no intercept)

β̂ =

∑N
i s∗i y

∗
i∑N

i s∗2i
. (4.32)
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Chapter 5

More GWAS on your notebook: fast mixed

models for longitudinal phenotypes using

QuickMix

Abstract

Although genome-wide association studies on cross-sectional outcomes are ex-
tremely popular, longitudinal data are hardly being explored. Computation time
is a limiting factor since a typical GWA scan for 1 million of SNPs takes around 2
weeks on a single computer. We present an algorithm, QuickMix, to reduce that
time substantially. The key idea behind our method is to write a mixed model as
penalized least squares and assume that the penalty matrix is known. Furthermore,
we explore the structure of the equations to avoid operations on large matrices.
QuickMix reduces the computations from 2 weeks to half an hour on a notebook
computer. Its performance is excellent in the range of p-values encountered in
GWAS, providing almost exact estimates of both cross-sectional and longitudinal
SNP effects. QuickMix perfectly combines speeding up with accuracy. It facilitates
GWA analysis of longitudinal data on a single everyday computer within reasonable
time frame.

Adapted version of the research article: Sikorska K., Lesaffre, E., Groenen P.J.F. and Eilers P.H.C. (2013) More
GWAS on your notebook: fast mixed models for longitudinal phenotypes using QuickMix. Manuscript
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5. FAST MIXED MODELS USING QUICKMIX

5.1 Background

Computations in genome-wide association studies (GWAS) have two aspects. On the one
hand vast data are analyzed in search of significant results, making the computations inten-
sive. The amount of data is continuously growing with new imputation strategies as well
as analyses of different types of genetic variants. On the other hand, GWA analysis is an
“embarrassingly parallel problem” which can be solved by multiprocessor computing. The
approaches to those intensive computations are also twofold. Large computing resources
can be used to perform the analysis within a reasonable time frame. This is a common
solution. The second approach is to develop algorithms that hugely speed up the compu-
tations. We, following of the latter route, recently presented “semi-parallel” algorithms for
linear and logistic regression, which offer several attractive improvements (Sikorska et al.,
2013a). We translated the computations to large matrix operations increasing their speed
by several orders of magnitude, making them feasible on a single everyday computer. The
name “semi-parallel” indicates that many SNPs are handled at the same time, but within
the algorithm and not by using multiple processors. We implemented our approach in just
a handful of lines of pure R code, performing exactly linear regression and approximating
logistic regression very precisely.

Modeling cross-sectionally measured continuous or binary response covers the majority
of present-day GWAS, but gradually the field is being extended to longitudinal phenotypes.
One of the advantages of using such data is that they may improve the precision of the es-
timated mean effects over the single visit analysis (Kerner et al., 2009). However, the main
purpose of analyzing longitudinal data is to find genetic variants influencing the evolution
of a phenotype over time. The complexity of the computations increases enormously, be-
cause a linear regression model is no longer enough. The key points are to take care of the
dependence between observations from the same individual, together with irregularity of
the measurements’ occasions and missing data. Mixed models (MM) constitute one way to
solve these issues, at the price of more intensive computations. A typical fit of a MM takes
around one second. With a million SNPs this becomes two weeks. In our experience there is
a growing amount of data and interest in “longitudinal GWAS”, however the computations
can be a real hassle or even a limiting factor.

In Sikorska et al. (2013b) we proposed a solution, reducing mixed models to linear re-
gression, after which semi-parallel regression can be applied. This approach is extremely
fast, cutting down the computations for one million SNPs to a quarter of an hour. How-
ever, this method is providing an approximation of the p-values for only the SNP×time
interaction effect in the model.

In this paper we present another approximate method to large-scale fitting of MMs,
providing estimated effects and standard errors for both cross-sectional and longitudinal
SNP effects. We exploit two characteristics of the problem. Firstly, we write down MM
estimation as penalized least squares, where the MM variance components are translated
into penalty parameters. Secondly, we assume that the penalty matrix is known (from the
model without a SNP) and does not need to be re-estimated for each SNP. This assumption
seems to be very reasonable considering large sample sizes and the very small effect sizes
characterizing GWAS.
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5.2. Methods

The penalized least squares problem leads to a large system of equations, based on a
bordered block-diagonal matrix. We avoid forming this matrix explicitly (not even using
sparse matrices), but solve the equations stepwise in a semi-symbolic way. Fast MM com-
putations are more complex than semi-parallel linear regression and also some convenient
properties are lost, for example, the possibility to project out the covariates. Therefore,
another crucial point is to compute as many components of those equations as possible,
before introducing a SNP into the model.

Our implementation is not as concise as in semi-parallel regression, but it is still done
in pure R code and it is still very fast. We can handle 5000 individuals with 5 observations
each, 5 covariates and one million SNPs within half an hour, again on an average notebook.
This motivated us to calling our method QuickMix emphasizing the great speed of the
computations.

The approximation is almost exact for estimated betas and very precise for the p-values
in the range of a typical GWAS, p > 5× 10−10.

With this speed of the computations, as in semi-parallel regression, data access becomes
a bottleneck. In Sikorska et al. (2013a) we discussed how to arrange the storage of SNP
data in such a way that blocks of SNPs, containing all subjects, can be accessed quickly.
We assume that this data reorganization has been performed. For details we refer to the
abovementioned paper.

5.2 Methods

Mixed models as penalized least squares

Let us consider the general formulation of a linear mixed model (Laird and Ware, 1982)


Yi = Xiβ + Zibi + εi, i = 1, ..., n

bi ∼ N(0, D)

εi ∼ N(0,Σi)

b1, ..., bn, ε1, ..., εn independent.

(5.1)

In (5.1) Yi is ki dimensional vector of responses for individual i, Xi and Zi are ki × p

and ki × q dimensional matrices of covariates, β is a p-dimensional vector of coefficients
identical for all individuals and bi is a q-dimensional vector containing random effects.
Measurement error is represented by the ki-dimensional vector εi. Furthermore, D is q× q
variance-covariance matrix of random effects and Σi is ki × ki variance-covariance matrix
of measurement error. In case of balanced data with an equal number of observations per
individual we have ki = k. There are several methods for fitting model (5.1) that differently
approach the estimation of the random effects. One of the approaches evaluates fixed
parameters and variance components using (restricted) maximum likelihood ((RE)ML).
Next, since the subject-specific parameters are assumed to be random variables, Bayesian
methods are used for their estimation, resulting in “Empirical Bayes” estimates.
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Henderson et al. (1959) showed that conditional on the variance components, the fixed
and random effects can be estimated jointly by solving the system of equations:(

X ′Σ−1X X ′Σ−1Z

Z′Σ−1X Z′Σ−1Z +D−1

)(
β

b

)
=

(
X ′Σ−1y

Z′Σ−1y

)
, (5.2)

where X, y, b are obtained by stacking Xi, yi, bi, respectively, underneath each other. Fur-
thermore, D,Σ and Z are block diagonal matrices with D,Σi and Zi on the main diagonal
and zeros elsewhere.

It is easier for the future computations to rewrite the joint variance-covariance ma-
trix of random effects and measurement error in a relative variance-covariance form as in
Robinson (1991):

var

(
b

ε

)
=

(
Q 0

0 R

)
σ2, (5.3)

where Q = D/σ2. We consider here the model with independent and homoscedastic
measurement error, so R simplifies to the identity matrix I. Now system (5.2) can be
written as:

(
X ′X X ′Z

Z′X Z′Z +Q−1

)(
β

b

)
=

(
X ′y

Z′y

)
. (5.4)

In Robinson (1991) it has been shown that system (5.4) can be also obtained from mini-
mization of the objective function

‖y −Xβ − Zb‖+ b′Q−1b

with respect to β and b. Hence, we are solving a penalized least squares problem with
a penalty imposed on random effects. In the remainder of this article we will replace
Q−1 with P , denoting the penalty matrix. The connection between MMs and penalized
least squares (PLS) has already been made a number of times. In Gurrin et al. (2005)
and Wand (2003), this relationship facilitates using the general mixed model software for
smoothing. On the other hand, in the R package lme4, this representation of a MM speeds
up estimation through the exploitation of sparse matrices.

Mixed model in longitudinal GWAS

We consider the following linear mixed model for a continuous phenotype Y measured for
individual i at the time tij

Yij = β0 + β1tij + β2gi + β3gitij +

l∑
h=1

γhchij + b0i + b1itij + εij , (5.5)
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where gi denotes the genotype for individual i which is either the SNP allele count (integer
number) or the dosage (continuous number) and chij is the value of the h-th additional
covariate. Model (5.5) is a so-called “random intercept + slope model”, in which b0i and
b1i describe individual variation in the intercept and the slope respectively. Depending
on the time origin, the intercept usually corresponds to the baseline or average value. It
is commonly assumed that b0i and b1i have a multivariate normal distribution with zero
means and variance-covariance matrix

D =

(
σ2

0 ρσ0σ1

ρσ0σ1 σ2
1

)
. (5.6)

Model (5.5) can be fitted in two freely available R packages: nlme and lme4. Average
computation time for one model is 4 and 1 seconds, respectively. That implies at least 12
days of computation for 1 million of SNPs, using the faster package.

Normally, the D matrix is estimated every time for each SNP. It is not unreasonable,
however, to assume that it not much different from D∗ which is estimated for model (5.5)
but without both SNP components. Formal derivation of this concept has already been
explored by us in another article (Sikorska et al., 2014). There we have shown that D∗ has
the form (

σ2
0 + β2

2var(g) ρσ1σ2 + β2β3var(g)

ρσ1σ2 + β2β3var(g) σ2
1 + β2

3var(g)

)
. (5.7)

When a SNP is not important in the model, i.e β2 and β3 are practically zero, D∗ is essen-
tially equal to D. This is the case for most of the SNPs in GWAS. In the situation when SNP
has an effect (cross-sectional and/or longitudinal), the variances inD∗ will be inflated. The
cross-sectional effect inflates the variance of the random intercept, while the longitudinal
effect affects the variance of the random slope. The magnitude of this inflation depends on
the β2 and β3. The covariance in D∗ is influenced only if both SNP effects are non-zero.

With respect to the measurement error variance, we can assume that the model without
a SNP provides the almost exact value of σ2. It has been discussed in Orelien and Edwards
(2008) that σ2 is robust against misspecification in the fixed effects if those effects have also
corresponding random component in the model. The effect of the inflation in the variance
components on the estimates, standard errors and consequently p-values of the SNP effects
is explored later in this article and summarized in the Results section.

Once the assumption of known variance components has been made, the computations
in QuickMix are exact. Below we describe the idea and used computational tricks.

The QuickMix algorithm

No covariates, no SNP

We start with the mixed model in which we describe the evolution of Y as a function of
only time given by

Yij = β0 + β1tij + b0i + b1itij + εij . (5.8)
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We can write the system of equations solving β = (β0, β1)′ and b =

(b01, b11, b02, b12, ..., b0n, b1n)′ in penalized least squares manner as follows:(
T ′T T ′Z

Z′T Z′Z + P

)(
β

b

)
=

(
T ′y

Z′y

)
. (5.9)

In (5.9) T is a fixed design matrix with ones in the first column and time points in the sec-
ond column and Z is a block diagonal matrix with Ti on the diagonal and zeros elsewhere.
Below we write system (5.9) for 3 individuals more explicitly:


∑

i Si S1 S2 S3

S1 S1 + P 0 0

S2 0 S2 + P 0

S3 0 0 S3 + P



β

b1
b2
b3

 =


∑

i ri

r1

r2

r3

 , (5.10)

where:

Si =

( ∑
j 1

∑
j tij∑

j tij
∑

j t
2
ij

)
, bi =

(
b0i
b1i

)
and ri =

( ∑
j yij∑

j tijyij

)
.

The above system has a block structure(
A11 A′21

A21 A22

)(
β

b

)
=

(
q1
q2

)
, (5.11)

with the explicit solution given by:

β = (A11 −A′21A
−1
22 A21)−1(q1 −A′21A

−1
22 q2) and b = A−1

22 (q2 −A21β). (5.12)

In (5.12) A22 is a block diagonal matrix with 2 × 2 matrices Si + P on its diagonal. It
is convenient for the further computations to transform it into an identity matrix, so that
the inverse of this matrix does not need to be computed. It is achieved in two steps using
singular value decomposition (SVD) as follows. We decompose each Si + P into UiΩiV

′
i ,

such that U ′iUi = I, V ′i Vi = I and Ωi is a diagonal matrix. Matrix Si + P is symmetric
and therefore its singular value decomposition simplifies to UiΩiUi. Now, we can write the
second equation in (5.10) as

Siβ + UiΩiUibi = ri. (5.13)

Substituting Uici for bi and premultiplying both sides of the equation by Ui gives us:

UiSiβ + Ωici = Uiri, (5.14)

which transforms matrixA22 from block diagonal to diagonal. In the second step we replace
ci with Ω−1/2θi and premultiply both sides of the equation by Ω−1/2 which leads to a new
system of equations given by

∑
i Si (Φ1S1)′ (Φ2S2)′ (Φ3S3)′

Φ1S1 I 0 0

Φ2S2 0 I 0

Φ3S3 0 0 I



β

θ1

θ2

θ3

 =


∑

i ri

Φ1r1

Φ2r2

Φ3r3

 , (5.15)
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where Φi is a rotation matrix for individual i defined as Ω
−1/2
i Ui. This system has the block

structure (
A11 A∗′21

A∗21 I

)(
β

θ

)
=

(
q1
q∗2

)
. (5.16)

Now the system of equations in (5.12) is simplified to

β = (A11 −A∗′21A
∗
21)−1(q1 −A∗′21q

∗
2) and θ = q∗2 −A∗21β. (5.17)

The part of the equations related to the fixed effects remains unchanged. The random
effects have been transformed, but they are not of interest in GWAS. Moreover, one can
always transform the θ back into b.

Adding covariates

If C denotes a Σiki × l dimensional matrix of covariates, the solution of the extended
model is given by system (5.4) with X = (T C). In semi-parallel regression covariates
were very easy to handle via projections. This trick is unfortunately not possible in mixed
models framework and we need to solve the system for l + 2 parameters. The system for
the model with covariates is extended in 3 out of 4 blocks in the left-hand side, leaving
the bottom-right block diagonal structure unchanged. Therefore, it is again convenient to
apply rotation bringing this matrix to identity. After applying the SVD transformation we
can write the system for 3 individuals as follows

X ′X (Φ1T
′
1X1)′ (Φ2T

′
2X2)′ (Φ3T

′
3X3)′

Φ1T
′
1X1 I 0 0

Φ2T
′
2X2 0 I 0

Φ3T
′
3X3 0 0 I



α

θ1

θ2

θ3

 =


X ′y

Φ1T
′
1y1

Φ2T
′
2y2

Φ3T
′
3y3

 , (5.18)

where α = (β γ)′. Now the solution is equal to (5.17) with the corresponding blocks
coming from (5.18).

Solving SNP effects

We add a SNP to the model creating a border to the previous system of equations. Two
effects, cross-sectional and longitudinal are added, so G is a Σiki × 2 dimensional matrix.
We again divide this system for blocks but this time we separate the SNP border instead of
dividing fixed and random parts G′G G′X G′Z

X ′G X ′X X ′Z

Z′G Z′X Z′Z + P


ξα
b

 =

G′yX ′y

Z′y

 , (5.19)

where ξ = (β2, β3)′. We can write system (5.19) after SVD transformation in a block form(
H11 H ′21

H21 H22

)(
ξ

ψ

)
=

(
J11

J21

)
, (5.20)
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with

H21 =


X ′G

Φ1T
′
1G1

Φ2T
′
2G2

...
ΦnT

′
nGn

 , J21 =


X ′y

Φ1r1

Φ2r2

...
Φnrn

 .

Solving system (5.20) for ξ gives us

ξ = (H11 −H ′21H
−1
22 H21)−1(J11 −H ′21H

−1
22 J21). (5.21)

Clearly, in (5.21) H−1
22 J21 and H−1

22 H21 are the most expensive operations, since they in-
volve inverting (2n+ p+ 2)× (2n+ p+ 2) dimensional matrix. However, in none of those
matrices H22 needs to be solved explicitly. Note that H−1

22 J21 is a vector with solutions of
system (5.18) which after being solved once is stored and treated as constant in the further
computations. The second operation is a solution for the mixed model given in (5.18) but
for a different right hand side, namely H21. Note that in this case the RHS of the system is
two-dimensional.

We showed here how the genetic effects can be estimated efficiently, using the idea of
bordered matrices and exploiting elements computed for the model without the SNP.

Standard errors

To compute the variance-covariance matrix of the estimated fixed and random effects in
a MM we need to invert the LHS matrix of system (5.2) (Ruppert et al., 2003). Standard
errors are equal to the square roots of the diagonal elements of that matrix. In penalized
least squares (PLS) notation, we need to invert LHS of system (5.4) and multiply diagonal
elements by σ2. In our case we are interested only in the inference for SNP effects. They
are the upper-left part of the expression

σ2

(
H11 H ′21

H21 H22

)−1

. (5.22)

Using the formula for the matrix inverse in block form, the standard errors of ξ are given
by

σ

√
(diag(H11 −H ′21H

−1
22 H21)−1). (5.23)

Note that this diagonal has already been computed in (5.21) showing that the computation
of the standard errors is trivial.

Missing data

Typically in longitudinal studies we deal with data sets in which individuals have different
number of available outcome measurements. It may also be the case that the outcome value
is available but at least one of the covariates is missing. If a covariate is related to a baseline
characteristic, the whole individual profile is removed from the analysis. However, if the
the covariate is time-varying, the available measurements still contribute to the estimation.
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This is one of the advantages of the mixed model analysis that fully exploits gathered data.
We assume that the user’s data are arranged in a long-format also used by the R packages
lme4 and nlme and that there is an equal number of rows per individual, namely k, with
missing data coded as “NA”. To apply QuickMix all “NA’s” have to be removed from the
database. We can replace them with any numeric value and introduce weighting matrix
with zeros and ones on the diagonal indicating if the observation if valid or not. The PLS
system of mixed model equations looks then as(

X ′WX X ′WZ

Z′WX Z′WZ + P

)(
β

b

)
=

(
X ′Wy

Z′Wy

)
. (5.24)

One then has to adjust the solution (5.21) for the weights leading to system(
Hw11 H ′w21

Hw21 Hw22

)(
ξ

ψ

)
=

(
Jw11

Jw21

)
, (5.25)

noting that SVD is now applied to a matrix Swi + P , where

Swi =

( ∑
i wi

∑
i witi∑

i witi
∑

i wit
2
i

)
.

The dimension of matrix W is usually large, nk×nk. However, this matrix is never formed
explicitly and only its diagonal is stored as a vector.

Formally, one should take the proper degrees of freedom (excluding observations with
weight 0) in the calculation of p-values. It has no influence on our computations as we use
the normal approximation of the distribution of the t-statistics. Note also that the approach
using weights is technically equivalent to replacing the whole missing row with zeros and
skipping the weighting matrix. To achieve a higher speedup we use this approach in our
computations. Regarding SNPs, as in our previous work, we assume that genotype data
after imputation is complete and otherwise imputed with the sample mean.

Implementation

QuickMix is written purely in R, but the code is much more lengthy than for semi-parallel
regression. Therefore, we provide only the pseudo-code here and the R implementation
can be found in the Appendix.

The SNP data is stored in a n×m dimensional matrix, where m is the number of SNPs.
In order to fit the mixed model with for example lme4, a SNP vector of length n has to
be extended to the length nk. This is time consuming for a large n. We avoid it in our
algorithm, knowing that a SNP is constant over time. Additionally it is useful to notice that

Gi =


gi giti1
gi giti2
...
gi gitik

 = giTi. (5.26)
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Our algorithm has four phases. The first one is data preparation and getting the penalty
matrix which is later treated as known through the remaining computations. Second part
consists of solving efficiently the model without the SNP and storing key elements. In the
third phase we precompute some elements in the SNP border of system (5.20). Using the
fact that genotype is constant over time we can store individual sum of products

∑
j wijxij

for all X columns. This speeds up the computations during the estimation of the genetic
effects and additionally keeps the SNP data as compact as possible. Finally we loop over
SNPs estimating their cross-sectional and longitudinal effects. Below we summarize the
computations in pseudo-code.

1. Read phenotype data.

2. Fit the mixed model without SNP with lmer/lme.

3. Extract the variance-covariance matrix and compute the penalty matrix.

4. Compute the weights for missing data and store them in a vector.

5. Replace rows with missing values by rows with all values being zero.

6. Build matrices T , X and Y needed to solve system (5.18).

7. In a loop for i to n compute SVD(Si + P ) and build matrices A∗21 and q∗2 .

8. Compute and store the solution given in (5.17).

9. Compute
∑

j wijxij for all individuals using row-wise Kronecker products.

10. Read SNP data.

11. Loop over SNPs.

a) Compute solution given in (5.21).

b) Compute standard errors given in (5.23).

In GWA analysis not all SNP data fit into software memory. This has already been
discussed in our previous work (Sikorska et al., 2013a). We advertise using array-oriented
binary files implemented in a number of R packages, e.g. ncdf and ff. Likewise semi-
parallel regression, QuickMix works with blocks of SNPs repeating step 11 over the blocks.

5.3 Results

Simulation study

For evaluating the performance of QuickMix, we are interested in the magnitude of the
computational speedup and the accuracy of the estimation. Our algorithm uses only one
approximation: it assumes that the penalty matrix does not change when a SNP is intro-
duced. For the rest, the computations are exact.

Theoretical justification of the assumption about known penalty matrix has been dis-
cussed in the Methods section where we compared D with D∗. Practically, the magnitude
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of the misspecification in D∗ depends on the values of β2 and β3. In cross-sectional GWAS
framework, the SNP effects contribute to the total variance explained by the model, mea-
sured by R2, by no more than 1%. However, unlike in linear regression, the concept of
variance explained in mixed models is much more complicated and not fully resolved. In
Orelien and Edwards (2008) it has been shown that the available measures of variance ex-
plained for mixed model framework are inappropriate for evaluating the contribution of the
fixed predictors on the individual level (conditional R2). By saying inappropriate we mean
that they do not necessarily increase once the significant predictors are added to the model
or that they can even have negative values. On the other hand, the marginal R2 seems
to be a good measure (with desirable properties) of the goodness of fit. Several choices
of the marginal R2 exist in the published literature, e.g Vonesh et al. (1996), Vonesh and
Chinchilli (1997) and Xu (2003). Because our aim is only to get an idea of a maximum
SNP effect that we can expect in GWAS, we chose the measure of variance explained by
fixed effects, which is the most intuitive and the simplest in implementation, provided in
Xu (2003):

R2 = 1−
∑n

i=1(yi − ŷi)′(yi − ŷi)∑n
i=1(yi − ȳ1ni)

′(yi − ȳ1ni)
, (5.27)

where ŷi = Xiβ̂.
We explored through simulations the influence of the misspecification in the matrix P

on the estimates, standard errors and p-values of the SNP effects. We also computed R2 for
each simulation to make sure that the chosen values for β2 and β3 are reasonable within
the GWAS framework.

Results of the simulation study

The estimates are basically exact through the whole scale of their values (Figure 5.1).
The standard errors of QuickMix are somewhat overestimated for the larger values of β’s,
which is expected as variances in P are inflated due to omitted SNP effects (Figure 5.2).
However, our main interest lies in p-values. Due to overestimated standard errors, the
− log 10(p) for larger betas are too pessimistic. Nevertheless, they increase monotonically
with larger effect sizes, just with bias downward with respect to the − log 10(p) from lmer.
Moreover, Figure 5.3 shows that the p-values obtained in QuickMix are almost exact in the
significance range common in GWAS (up to 10 on − log 10 scale), which guarantees the
correct probability of type I error. To generate those results we used simulated data for
2000 individuals and the maximum contribution to R2 of the SNP effects around 6%.

We explored the speedup of QuickMix with respect to lmer depending on the sample
size. We are also interested in the computation time of our method for 1 million of SNPs,
assuming 5 observations per individual and 5 additional covariates. We performed the
computations on a single desktop computer with Intel i5-3470, 8 GB of RAM and 64 bit
version of R. The results are displayed in Figure 5.4. The achieved speedup is substantial.
QuickMix performs around 1000 times faster than lmer. We notice that in general the
benefit become larger when the sample size increases. A GWA on 1 million SNPs can be
done within half an hour for around 10K of individuals.
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Figure 5.1: Precision of the estimates obtained by QuickMix.
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Figure 5.2: Precision of the standard errors obtained by QuickMix.

5.4 Conclusions

We presented QuickMix, an algorithm which speeds up a GWA scan for 1 million SNPs from
two weeks to half an hour on an everyday computer. The key idea is to write the mixed
model equations as penalized least squares. Additionally QuickMix relies on only one, very
reasonable, assumption about the penalty matrix, which has been justified here analytically
and by simple simulations. Apart from this assumption, the remaining computations are
exact. This is an attractive property, leading to very precise computation of the p-values.
The implementation is purely based on R functions, using basic matrix operations. It is
important to keep computations and data as compact as possible and therefore we use
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Figure 5.3: Precision of the p-values obtained by QuickMix.
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Figure 5.4: On the left panel speedup achieved by QuickMix depending on sample size. On
the right panel computation time for 1 M of SNPs using QuickMix versus sample size.

many computational tricks storing key elements before looping over SNPs. We provide the
R code as supplementary material allowing readers an easy start with QuickMix.

As in the semi-parallel approach, with a fast speed of computations data access becomes
a bottleneck. The solution to that, presented in our previous manuscript (Sikorska et al.,
2013a), also applies here. Using packages ff or ncdf we can read the genotype data for
1 million of SNPs within 10-15 minutes. A combination of data organization based on
array-oriented binary files together with QuickMix makes it feasible to perform a longitudi-
nal GWAS for several millions of SNPs on a single laptop within just a few hours.
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5. FAST MIXED MODELS USING QUICKMIX

However, there are still more challenges waiting in this area. One could think of a
longitudinal data gathered within families, where many sources of correlation need to be
modeled in the same time, or nonlinear trends involving polynomials or even splines. In a
GWAS framework all these types of modeling need a great speedup to facilitate a reasonable
time of analysis.
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Appendix

The R code provided below solves the mixed model for ns simulated SNPs using QuickMix.
We assume that the phenotype data denoted in the code as Data a have long structure, i.e
repeated observations on the same individual are in separate rows. Additionally the data
frame has nk rows and missing data are coded as “NA”.

# Fit model without SNP using lmer

# covs are names of all additional covariates in the model

mod_formula <- as.formula(paste("y ~ time +",

paste(covs, collapse= "+"), "+ (time|id)"))

mod1 = lmer(mod_formula, data = Data, na.action = "na.omit")

# Extract variance components and compute penalty matrix (P)

varcor = VarCorr(mod1)

G = varcor$id

sig = attr(varcor, "sc")

P = solve(G / sig ^ 2)

# Put data in convenient arrays and vector

TT = XY[ , 1 : 2]

nxy = ncol(XY)

X = XY[ , -nxy]

nx = ncol(X)

y = XY[ , nxy]

# Compute components of block-diagonal

# system with covariates (without SNP)

# Additionally compute and store object SS = Rot %*% Si

#which is used later on

A21 = matrix(NA, 2 * n , 2 + ncov)

q2 = rep(NA, 2 * n)

SS = matrix(NA, 2 * n , 2)

for (i in 1 : n ) {

uk = (i - 1) * k + (1 : k)

u2 = (i - 1) * 2 + (1 : 2)

Ti = TT[uk, ]

Si = crossprod(Ti, Ti)

sv = svd(Si + P)

Rot = sqrt(1 /sv$d) * sv$u

Q = Rot %*% t(Ti)

SS[u2, ] = Rot %*% Si

A21[u2, ] = Q %*% X[uk, ]

q2[u2] = Q %*% y[uk]

}

q1 = crossprod(X, y)

A11 = crossprod(X)

# Solve the system (20)
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5. FAST MIXED MODELS USING QUICKMIX

Q = A11 - crossprod(A21)

q = q1 - crossprod(A21, q2)

sol = solve(Q, q)

blups = q2 - A21 %*% sol

# Compute sums of products per subject involved in the

# crossprod(X, G), crossprod(G) and crossprod(G, y)

# We use row-wise Kronecker product to avoid repeating

# SNP vector k times

ex = matrix(1, 1, ncov + 2)

et = matrix(1, 1, 2)

XTk = kronecker(et, X) * kronecker(TT, ex)

TTk = kronecker(et, TT) * kronecker(TT, et)

Tyk = y * TT

XTs = matrix(0, n, ncol(XTk))

TTs = matrix(0, n, ncol(TTk))

Tys = matrix(0, n, 2)

AtS = matrix(0, n, 2 * nx)

for (i in 1:n) {

uk = (i - 1) * k + (1 : k)

XTs[i, ] = apply(XTk[uk, ], 2, sum)

TTs[i, ] = apply(TTk[uk, ], 2, sum)

Tys[i, ] = apply(Tyk[uk, ], 2, sum)

u2 = (i - 1) * 2 + (1 : 2)

AtS[i, ] = c(crossprod(A21[u2, ], SS[u2, ]))

}

# Add SNPs one by one and solve

Theta = D = matrix(NA, ns, 2)

for (i in 1 : ns) {

si = SNPS[, i]

snp2 = rep(si, each = 2)

H1 = matrix(crossprod(si, XTs), nx, 2)

H2 = snp2 * SS

AtH = matrix(crossprod(si, AtS), nx, 2)

R = H1 - AtH

Cfix = solve(Q, R)

Cran = H2 - A21 %*% Cfix

GtG = matrix(crossprod(si ^ 2, TTs), 2, 2)

Gty = matrix(crossprod(si, Tys), 2, 1)

V = GtG - crossprod(H1, Cfix) - crossprod(H2, Cran)

v = Gty - crossprod(H1, sol) - crossprod(H2, blups)

Theta[i , ] = solve(V, v)

D[i, ] = diag(solve(V))

}

SE = sqrt(sig2) * sqrt(D)

Pval = 2 * pnorm(-abs(Theta / SE))
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Chapter 6

GWAS of longitudinal BMD data with 30

million imputed SNPs

Abstract

We report on a large-scale genome-wide association analysis with longitudinal
data. The study involved 5000 individuals with 4 measurements of bone mineral
density collected over a period of 12 years. The number of SNPs, imputed using
the 1000 Genomes Project, is around 30 million. Using the traditional linear mixed
model software it would take at least one year to do the computations. We perform
the analysis of the BMD data using two approaches: the conditional two-step and
Quickmix, speeding up the computations to 4 and 21 hours, respectively. We em-
phasize strong points of each of the approaches. Many practical issues are being
discussed, such as: data access, dealing with large outputs, and plotting. Although
computational aspects are our priority, we also report briefly on our findings related
to the genetics variants influencing age related change in bone mineral density.
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6. GWAS OF LONGITUDINAL BMD DATA WITH 30 MILLION IMPUTED SNPS

6.1 Phenotype data

The longitudinal data come from the Rotterdam Study (see Chapter 1). Around 700 indi-
viduals participating in the study did not have any available measurement. It was planned
to measure individuals at the baseline and after 2, 6, and 12 years, but the collected data
are highly unbalanced. As is typical for large cohort studies, the participants were not
measured at the same time points and many of them either dropped out from the study or
missed intermittent visits. The number of available BMD measurements versus sample size
is described in Table 6.1.

Table 6.1: Number of available BMD measurements (k) versus number of individuals (n)
for the Rotterdam Study BMD data.

k n
1 1107
2 1528
3 1649
4 1281

Due to large gender-related differences in BMD, it is useful to explore the data for men
and women separately. The average BMD at baseline was 0.83 g/cm2 for women and
0.92 g/cm2 for men. No appreciable change over time was observed. The profile plots are
displayed in Figure 6.1
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Figure 6.1: Rotterdam Study BMD data. Profile plots for sample of individuals, separately
for females and males.

In the BMD data 402 individuals missed their first measurement, but at least one of the
subsequent observations was available. In order to increase the statistical power we have
treated the first available observation as baseline.
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6.2. Genotype data

We first build an epidemiological model for the evolution of the BMD omitting genetic
effects. The mixed effects model describing the BMD for individual i at time occasion tij
has the form

BMDij = β0 + β1tij + β2gi + β3wij + β4ai + β5gitij + b0i + b1itij + εij , (6.1)

where gi denotes gender for the individual i, ai denotes the age at baseline, wij is the body
weight at the time tij . We consider a linear evolution of the BMD over time. Subject-specific
coefficients consist of random intercepts (b0i) and random slopes (b1i). Model (6.1) can be
easily fitted in R using for example the packages nlme or lme4. The REML estimates for
the parameters are given in Table 6.2.

Table 6.2: REML estimates for fixed effects and variance components for model (6.1).

Parameter Estimate Stderr Pval
β0 0.986 0.0170 < 0.001

β1 -0.002 0.0002 < 0.001

β2 -0.059 0.0034 < 0.001

β3 0.003 0.0001 < 0.001

β4 -0.005 0.0002 < 0.001

β5 -0.002 0.0002 < 0.001

sd(b0i) 0.120
sd(b1i) 0.004

cor(b0i, b1i) -0.057
sd(εij) 0.038

Two types of residuals are defined for mixed effects models. The marginal residuals rm
are computed as Y −Xβ̂, where Y are the observed outcome values, X is a design matrix
for the fixed effects and β̂ are the (RE)ML estimates for the fixed effects. On the other
hand, the conditional residuals rc are computed as rm − Zb̂, where b̂ are BLUPs for the
random effects. The marginal and the conditional residuals from model (6.1) are shown in
Figures 6.2 and 6.3.

No violations of the normal distribution are observed for marginal residuals (apart from
a few outliers). The distribution of the conditional residuals is symmetric but with high
kurtosis. The fact that the marginal residuals are normally distributed can be explained
by the fact that the normally distributed random intercepts dominate the variability of the
marginal residuals (see Table 6.2). We proceed with the untransformed outcomes relying
on the fact that the estimation in the linear mixed model for moderate sample sizes is
robust against misspecification in the error distributions, as shown in Jacqmin-Gadda et al.
(2007).

6.2 Genotype data

The SNP data come from the 1000 Genomes-based imputations. The number of SNPs is
around 29 million. As already discussed in the previous chapters, the organization of the
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6. GWAS OF LONGITUDINAL BMD DATA WITH 30 MILLION IMPUTED SNPS
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Figure 6.2: Marginal residuals from model (6.1).
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Figure 6.3: Conditional residuals from model (6.1).

genotype data is a vital element of efficient GWAS computations. In Chapter 4 we argued
that the “row per SNP” structure facilitates easy access to blocks of SNPs, unlike the “row
per subject” structure. We advised to use array-oriented binary files, where the access to
the blocks of SNPs is much more efficient than with MACH/Minimac ASCII files. The data
provided to us by our institution used the DatABEL format, which is one of the choices for
array-oriented binary formats. The SNP data were divided into 198 files, with sizes rang-
ing from 950 MB to 5.4 GB. Additionally, ASCII “info files” store information about refer-
ence allele and minor allele frequency (MAF), defined as min(1 - mean(SNP), mean(SNP)).
However, MAFs need to be recalculated excluding those 700 individuals with all BMD mea-
surements missing. Finally, so called legend files include the position of the SNP which are
needed for Manhattan plotting. Eventually, all those files need to be merged in order to
properly summarize the results from the GWA analysis. The total size of the DatABEL files
is around 700 GB.
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6.3. GWA analysis

6.3 GWA analysis

The goal is to relate the 29 million SNPs to the evolution of BMD over time. The epidemi-
ological model (6.1) is now extended by SNP and SNP× time effects. The main focus
lies on the interaction effect. However, the cross-sectional effect is also of interest. Kerner
et al. (2009) discusses that longitudinal study may increase the power of identifying cross-
sectionally important variants.

The GWA scan for 29 million SNPs involves fitting 29 million mixed models. This leads
to exhaustive computations: 1-2 years of CPU time. We apply 1) the conditional two-step
approach (CTS) and 2) the QuickMix algorithm to reduce that time substantially. We com-
bine the conditional two-step algorithm with semi-parallel regression applied to the second
step (see Chapter 4). By doing this we achieve an additional speedup. Both methods pro-
vide the estimates for longitudinal SNP effect, but the main effect can be computed only by
using QuickMix.

6.4 Preliminary checks

We performed a preliminary check on one file from the genotype data (a chunk of chromo-
some 1). We analyzed that data chunk using QuickMix, loading blocks of 10000 SNPs at a
time. Next, we randomly selected 5000 SNPs from the whole file and analyzed them using
the lmer function in R. First we performed the analysis on a single computer with Windows
OS and noticed a strange behavior of the method. Around the straight line describing re-
lationship between the p-values from QuickMix and the lmer, a few outlying p-values were
observed (Figure 6.4). After detailed research on that issue, we concluded that those out-
lying p-values are not related to the QuickMix algorithm, but to the SNP selection from
the DatABEL file. Namely, different SNP values were selected during the block selection
and during the random SNP selection. To confirm this, we performed exactly the same
analysis on a PC with Linux OS and all the outliers vanished (Figure 6.4). We concluded
that the problem of the wrong SNP selection is characteristic of the combination of large
DatABEL files (>4 GB) with Windows, suggesting a bug in DatABEL. That issue is still
being investigated by us and by the developers of the DatABEL package.

6.5 Saving the output

Storing and presenting the output becomes an important issue in GWAS with very many
SNPs. The number of rows in the output is around 29 million, which results in large ASCII
files (several GB). Reading this file with R is either impossible (for a PC with 4-6 GB RAM)
or very time consuming. Loading a GWA output saved as a text file took us about 1 hour
on a PC with 144 GB RAM. One should keep in mind that the output from the analysis
has to be merged with the info and legend files causing an additional challenge. We used
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6. GWAS OF LONGITUDINAL BMD DATA WITH 30 MILLION IMPUTED SNPS
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Figure 6.4: Comparison of the p-values between QuickMix and lmer for a large DatABEL
file performed under Windows and Linux.

a database that stores all data in separate tables. R software offers the package RSQLite
which is an interface to SQLite database.

6.6 Results

We performed the analysis on one PC with an Intel X5680 processor running at 3.33 GHz,
144 GB RAM and Linux OS. The analysis with QuickMix took around 21 hours compared
to the 4 hours for the conditional two-step approach. Although 29 million SNPs were
analyzed, only about 30% (8816273 SNPs) of them survived the filtering with respect to
the Minor Allele Frequency (MAF > 0.01) and the quality of imputation (Rsq > 0.3).

We performed two accuracy evaluations, analyzing a sample of SNPs with the lmer func-
tion of the R package lme4. During the first check we reanalyzed 10000 randomly selected
SNPs out of all 29 million. To avoid the time-consuming SNP selection we limited ourselves
to one of the 198 genotype files. The comparison is shown in Figures 6.5 and 6.6. We
noticed that once the very rare SNPs (MAF < 0.01) are excluded, the conditional two-step
approach dramatically gains accuracy.

It is important to mention that the conditional two-step approach in fact approximates
the conditional linear mixed model. If the latter one would be taken as a reference model,
the approximation is almost perfect, as shown in Figure 6.8. In Chapter 3 we discussed
that it may be desirable to take the conditional model as a reference, since it protects us
better from any kind of misspecifications in the baseline part of the model.

On the other hand, the main interest lies in the SNPs with low p-values. During the
second check, after filtering with respect to MAF > 0.01, we selected the SNPs with a
p-value < 5 ∗ 10−4. QuickMix selected 5426 SNPs, whereas CTS selected 5216 SNPs. Fur-
thermore, 3995 SNPs were selected with both methods. We reanalyzed the SNPs selected
by QuickMix with the function lmer. The accuracy is displayed in Figure 6.7.
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Figure 6.5: Comparison between QuickMix and lmer for random SNPs
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Figure 6.6: Comparison between conditional two-step and lmer for random SNPs. In A all
the SNPs are present, in B only SNPs with MAF > 0.01.
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Figure 6.7: Comparison between the linear mixed model with the QuickMix (a) and the
CTS (b) for the top SNPs (p < 5 ∗ 10−4), MAF > 0.01.
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Figure 6.8: Comparison of the p-values from the conditional two-step approach with the
p-values from the conditional linear mixed model.

Q-Q and Manhattan plots

Results from GWA analyses are typically summarized using Q-Q and Manhattan plots. They
have been described in detail in Chapter 2. We plotted the results from QuickMix and CTS
for MAF > 0.01 and MAF > 0.05 (Figures 6.9, 6.10, 6.11, 6.12). One SNP reaching the
GWA significance level was identified for MAF > 0.01. However, for MAF > 0.05 no SNPs
were identified with p < 5∗10−8. Plots based on the QuickMix and the conditional two-step
are very similar, especially for MAF > 0.05.
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6.6. Results

(a) (b)

Figure 6.9: Q-Q plots for longitudinal SNP effect: a) QuickMix, b) CTS. MAF > 0.01.

(a) (b)

Figure 6.10: Q-Q plots for longitudinal SNP effect: a) QuickMix, b) CTS. MAF > 0.05.

101



6. GWAS OF LONGITUDINAL BMD DATA WITH 30 MILLION IMPUTED SNPS

(a) (b)

Figure 6.11: Manhattan plots: a) QuickMix, b) CTS. MAF > 0.01.

(a) (b)

Figure 6.12: Manhattan plots: a) QuickMix, b) CTS. MAF > 0.05.
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6.7. Conclusions and Discussion

No significant SNPs were identified for the cross-sectional SNP effect. The Q-Q plot was
slightly inflated, which was probably due to population stratification, which was not taken
into account in our model.

Plotting a Q-Q plot takes around 15 minutes and a Manhattan plot around 25 minutes.
Additionally, it is memory demanding and cannot be done on a PC without a large RAM.
We propose an efficient approach to Manhattan plotting using the smoothing techniques as
described in Eilers and Goeman (2004). A “smooth” Manhattan plot can be plotted within
a couple of minutes using a lot less memory than the traditional approach. An example of
such a plot for 2 Chromosomes is displayed in Figure 6.13.
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Figure 6.13: Fast approach for Manhattan plot using smoothing techniques for the first 2
Chromosomes.

6.7 Conclusions and Discussion

We have analyzed the longitudinal BMD data from the Rotterdam Study, searching for
associations of the evolution of the BMD over time with around 29 million SNPs. Without
our methods this task would take 1-2 years on one CPU. We reduced the time to 21 hours
for the QuickMix algorithm and 4 hours for the conditional two-step approach.

The precision is higher for the QuickMix algorithm than for the CTS. This is due to the
fact that the latter is in fact approximating the conditional linear mixed model. This has
been discussed in detail in Chapter 3 and confirmed here on real data. For very low MAFs,
the results from the CLMM were very different than for the LMM (plot not shown). Most
of the times the p-values were much larger, suggesting the lack of power of the CLMM
to detect the effect of the SNP on the slope when the variability of the SNP is essentially
zero. Additionally, the results from the conditional two-step were different from the con-
ditional mixed model. Nevertheless, the SNPs with very low MAFs are filtered out before
summarizing the results.
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6. GWAS OF LONGITUDINAL BMD DATA WITH 30 MILLION IMPUTED SNPS

We are still working on additional speed improvements. Other types of array-binary files
can be investigated, such as ff, ncdf or hdf5 files. Fast SNP data access is vital in achieving
the maximum speed of the algorithms.
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Chapter 7

Conclusions, Discussion and Further

Research

In this thesis, we presented new computational approaches to genome-wide association
studies. Our methodology improves computations for cross-sectional continuous and binary
outcomes as well as for continuous longitudinal responses. We exploited two approaches
to speed up GWA computations. In the first approach, we make use of approximations.
Millions of SNPs are investigated in GWAS, but we expect at least 99% of them not to be
significant. Approximations facilitate the identification of significant (or close to significant)
variants in a rapid manner. Since SNP effects are very small, very precise results could be
obtained. In the second approach, we improved directly the speed of the algorithms. Many
functions in popular software have been implemented without considering such large-scale
analyses and are therefore often not fully optimized. We used the fact that millions of
models fitted in GWAS are very similar differing only in the SNP values. This facilitated
storing common parts of the solution and hugely increased the speed of the whole analysis.

We also discussed the importance of the organization of the SNP data and proposed
efficient solutions. Below we describe the main conclusions of each chapter and directions
for future research. We close this chapter with general conclusions on the importance of
improving computations in the GWA area.

In Chapter 2 we proposed the conditional two-step (CTS) approach which approximates
the p-value for the longitudinal SNP effect. We were motivated by the bone mineral density
data from the Rotterdam Study and HapMap imputed SNPs. A GWA analysis would take
at least a month on a single computer. Our research is based on the fact that if a SNP
is omitted from the mixed model, its effect is incorporated in the random effects: the
cross-sectional effect is seen in random intercepts and the longitudinal effect is seen in
random slopes. Next, inspired by the conditional linear mixed model we related unbiased
individual trajectories of the outcome to SNPs. In this manner, we reduced the mixed model
computations to fitting simple linear regressions, speeding up the computations around 200
times. The CTS proved to be superior to other approximating strategies that were known
to us, either from the literature, or through discussions with other scientists. We obtained
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7. CONCLUSIONS, DISCUSSION AND FURTHER RESEARCH

essentially exact p-values for balanced data and a very close approximation for unbalanced
data.

Satisfactory performance of the CTS approach motivated us to explore further properties
of that method. This was the focus of Chapter 3 in which we described an extensive sim-
ulation study. We compared the CTS approach to the two-step method through many data
scenarios. In this chapter, we also approached the problem analytically. Due to the complex-
ity of the analytical derivations we limited ourselves to balanced data, which nonetheless
gave us a good insight into the properties of the methods and we were able to prove in-
tuitive the relationships that we discovered in Chapter 2. We proved the equality of the
p-values between the linear mixed model and the conditional two-step for balanced data
and derived a relationship between the linear mixed model and the two-step approach.
The simulations allowed us to explore this relationship further, as well as assess the per-
formance of the methods for various scenarios of unbalanced data. We showed that the
CTS approach remains a solid approximating method unlike the TS which, in certain data
situations, leads to unreliable results. The CTS approach may lose up to a few percents of
statistical power compared to the linear mixed model, but this happens only in special data
situations. We also verified that this power loss is related to the fact that the CTS approach
is approximating the conditional linear mixed model, which may give somewhat different
results than the linear mixed model.

In Chapter 4 we switched to cross-sectional outcomes. We speeded up linear regres-
sion computations by 60-80 times using semi-parallel regression. The computations were
performed exactly and the gain in computation time was achieved by avoiding loops and
exploiting smart matrix operations. We used that fact that a SNP is the only part of the
regression model that is changing in the equations. By the term “semi-parallel” we em-
phasize the possibility of quickly solving parallel problems within one CPU. We speeded up
fitting one million of regressions from 4 hours to 4 minutes. Semi-parallel regression also
brought a great benefit to the conditional two-step approach, where the second step can
be now performed extremely fast. The combination of the conditional two-step approach
with semi-parallel regression speeded up the computations by a factor of 50000 even. In
Chapter 4, we also improved the logistic regression computations. Here, we exploited the
iteratively reweighted least squares algorithm which is equivalent to maximum likelihood.
The combination of the two strategies: approximation of the weights and semi-parallel
computations, boosted the speed by a factor of 300 with hardly any loss of precision. In
this chapter, we also emphasized the importance of the SNP data organization. We showed
that even extremely fast algorithms are useless if genotypes are badly stored. We demon-
strated that array-oriented binary files implemented in several R packages serve as a great
solution for fast and efficient data access.

In the spirit of fast matrix operations, we moved in Chapter 5 again to linear mixed
models. We presented the QuickMix algorithm which exploits the equivalence of Henderson
mixed model equations with the penalized least squares approach. Knowing that the SNP
effects are very small we can approximate very precisely the penalty matrix. Next, we
performed the calculations avoiding operations on large matrices. The cross-sectional and
longitudinal SNP effects can be computed using QuickMix. We speeded up fitting 1 million
mixed models from 12 days to half an hour on a single computer. In this chapter we again
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stressed the importance of a proper SNP data organization.
The focus of Chapter 6 was the analysis of longitudinal BMD data and the 1000

Genomes imputed SNPs. The number of investigated SNPs is around 29 million creat-
ing a great challenge not only for the computations, but also for managing large outputs
and plotting the results. We performed the analysis with the conditional two-step and
the QuickMix algorithms and compared the precisions of the results and the time spent
on the computations. The conditional two-step approach was around 4 times faster, how-
ever, its accuracy with respect to the linear mixed model was somewhat worse than for
the QuickMix. As already mentioned, this is due to the fact that the CTS approximates the
conditional linear mixed model. Nevertheless, both methods resulted in similar summary
plots, such as Manhattan and Q-Q plots. In this chapter, we described benefits of using a
database to store the output. We showed that in such large-scale studies the output saved
as an ASCII file may be very inefficient in summarizing and evaluating the results. We also
demonstrated how to efficiently approach plotting by incorporating smoothing techniques.

A few additional remarks are worth mentioning regarding the use of fast approaches.
The conditional linear mixed model may be very useful in situations where values for the
baseline covariates are missing for a group of individuals. The conditional model, as inde-
pendent from the baseline characteristics, incorporates those individuals in the analysis as
long as the the outcome and time-varying covariates are available.

On another note, caution should be used in performing meta-analysis merging the re-
sults of the analyses from different studies. In case of the conditional two-step approach,
estimates and standard errors may be shrunken, which was shown in Chapter 3. Thus,
performing variance-inverse meta-analysis may lead to spurious results. In Chapter 3, we
showed how the shrinkage factor can be calculated from the data, allowing transformation
of the estimates to the original scale. In case of QuickMix, the approach to meta-analysis
remains straightforward.

Many extensions of our research can be considered in the framework of cross-sectional
as well as longitudinal outcomes. One important example is the fast analysis of survival
outcomes for GWAS analyses. More complex regression models can be considered, such
as those including interactions of SNPs with environmental factors. The speedup of more
complex mixed models is also a future challenge. Some traits may require going beyond
linear relationships with time. Another computational challenge is provided by model-
ing curvatures through polynomials or splines. Other types of outcomes in the framework
of generalized linear mixed models, such as binary outcomes or counts could be consid-
ered. Finally, modeling longitudinal data within families demands the incorporation of the
between-individual relatedness matrix. This would be one of the most useful extensions of
the fast mixed models computations.

In this thesis, we showed how to improve algorithms in order to speed up GWA analysis
a few hundreds and sometimes even many thousands times. Our goal was to make the
GWA scan feasible on a single computer within a reasonable time. It is important to apply
the fastest and the most efficient solutions already at the start of your study, because the
amount of data will grow only bigger. This was the case when switching from HapMap
to 1000 Genomes imputations. Our experience is, however, that there are as many re-
searchers pursuing computational improvements as there are researchers who believe that
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7. CONCLUSIONS, DISCUSSION AND FURTHER RESEARCH

large computing clusters are the solution. We believe that improvements in computational
statistics should not be neglected. First of all one should think of financial and even ecolog-
ical benefits of reducing computational resources. Secondly, the use of clusters has many
disadvantages, such as unexpected and sometimes long downtimes due to technical rea-
sons. Moreover, often one has to wait for hours or even days before a job can be submitted.
We believe that the methodology presented in this thesis is a useful contribution to the
more efficient and elegant computations in the present-day genetic research.
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Summary

In the last decade genome-wide association studies (GWAS) have become a popular ap-
proach to relate human DNA to traits and diseases. The major tool in GWAS is a single
nucleotide polymorphism (SNP), which is defined as a variation in a single nucleotide oc-
curring in at least 1 % of the population. In this hypothesis-free approach, millions of SNPs
are tested for their relationship with common diseases. Identified SNPs may pinpoint to
new biological pathways. Statistical tools used in genome-wide association testing belong
to commonly used methods, such as linear and logistic regression for cross-sectional out-
comes, or mixed models for longitudinal outcomes. Nevertheless, the necessity of fitting
up to 30 million of such statistical models creates a computational challenge. This thesis
focuses on new methodology facilitating speeding up GWA analyses by several orders of
magnitude. Our research was motivated by longitudinal bone mineral density data from
the Rotterdam Study which serve as a guiding example in this thesis.

Chapter 1 provides a brief introduction to the field of GWAS and a short explanation of
the statistical models.

In Chapter 2, we present the conditional two-step approach approximating the p-value
for the longitudinal SNP effect. We relate slopes of individual trajectories from the re-
duced model (omitting SNP) with one SNP at a time through simple regression. To prevent
possible bias coming from misspecification in the baseline part of the reduced model, we
use conditional linear mixed model. Our proposal is compared to a few other procedures
through a small simulation study involving balanced and unbalanced data. The perfor-
mance of our method is also evaluated using the Rotterdam Study data. We show that the
p-values given by the conditional two-step approach are very accurate and are obtained
even 200 times faster than with standard R functions.

Chapter 3 elaborates further on the conditional two-step approach. We also compare it
to the two-step approach based on the linear mixed model. Analytical derivations for the
balanced data and an extensive simulation study show the performance of the methods. In
particular, we show that our method does not inflate probability of type I error and the loss
of power is minimal.

Chapter 4 focuses on continuous and binary cross-sectional outcomes. We propose
semi-parallel computations to speed up linear regression. The method is based on the
fact that outcome and all additional covariates, except the SNP covariate, are the same in
all GWA models. By avoiding loops and using optimized matrix operations the regression
estimates and standard errors are obtained 60-80 times faster. The method is adapted
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SUMMARY

to logistic regression by exploiting that the iteratively reweighted least squares method is
equivalent to maximum likelihood. Using the fact that SNP effects are very small we can
precisely approximate the weights from the model without a SNP. This way the iterative
procedure is reduced to a semi-parallel weighted regression. This approach combined with
the conditional two-step approach, allows its second step to be performed extremely fast.
In Chapter 4, we also elaborate on the importance of the SNP data organization. We show
that fast algorithms must be combined with a rapid access to the data. Solutions based on
the array-oriented binary files, implemented in a couple of R packages, are discussed.

In Chapter 5, the QuickMix algorithm, based on writing the Henderson equations as the
penalized least-squares problem, is presented. In this way, the penalty matrix is treated as
known and taken from the model without a SNP. This is reasonable since in a typical GWAS
genetic effects are very small. In the QuickMix algorithm, operations on large matrices are
avoided. We explore the structure of the equations and solve them in a semi-symbolic way.
Using QuickMix, we solve cross-sectional and longitudinal SNP effects 1000 faster than
standard R functions.

Chapter 6 focuses on the analysis of the longitudinal bone mineral density data from
the Rotterdam Study. This involves almost 30 million SNPs coming from 1000 Genomes
imputations. Such large-scale data create a challenge not only for the mixed model analysis,
but also for other practical aspects. We discuss the issue of managing a large output, that
can be very inefficient when saved as an ASCII file. We propose using an SQL database
allowing quicker access to the results. Moreover, efficient techniques to plotting Manhattan
and Q-Q plots are discussed. Both, the conditional two-step and the QuickMix, are applied.
Their speed and performance are thoroughly discussed.

Chapter 7 provides the summary of the findings in each chapter indicating directions
for future research.
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Samenvatting

In het afgelopen decennium hebben genoombrede associatiestudies (GWAS) sterk aan po-
pulariteit gewonnen om het menselijk DNA in verband te brengen met kenmerken en
ziektes. Het belangrijkste hulpmiddel in GWAS is een enkelvoudige-nucleotide polymor-
fie (SNP). Deze wordt omschreven als een variatie in een enkelvoudige-nucleotide die in
ten minste 1% van de bevolking voorkomt. In deze benadering, vrij van iedere hypothese,
worden miljoenen SNP’s getoetst op hun relatie met veel voorkomende ziekten. SNP’s
die zo gëıdentificeerd worden, kunnen duiden op nieuwe biologische paden. De statisti-
sche methoden die voor deze associatietoetsen gebruikt worden, zijn klassieke statistische
technieken, zoals lineaire en logistische regressie voor cross-sectionele uitkomsten en ge-
mengde modellen voor longitudinale uitkomsten. Het is een uitdaging op computationeel
gebied om van 30 miljoen statistische modellen de waarden van de parameters te vinden.
Dit proefschrift gaat daarom over nieuwe methoden die de snelheid van GWA analyses
drastisch weten te verhogen. Dit onderzoek is gebaseerd op de longitudinale botmineraal-
dichtheid data zoals gemeten in de Rotterdam Studie.

Hoofdstuk 1 introduceert GWAS en geeft een korte beschrijving van de statistische mo-
dellen.

In hoofdstuk 2 presenteren we de voorwaardelijke tweetrapsbenadering die het longitu-
dinale SNP-effect bij benadering berekent. Hiervoor relateren we de hellingen van individu-
ele banen in het model zonder SNP-effecten met de SNP. Deze techniek is gebaseerd op het
voorwaardelijke lineaire gemengde model. In een simulatiestudie hebben we de prestaties
van deze techniek vergeleken met andere tweetrapstechnieken op zowel gebalanceerde als
ongebalanceerde data. De prestaties van onze methode werden ook geëvalueerd door bot-
mineraaldichtheid data van Rotterdam Studie. We tonen aan dat de p-waarden verkregen
door onze techniek zeer nauwkeurig zijn en tot 200 keer sneller berekend kunnen worden
dan door het gebruik van de standaardfuncties in R.

Hoofdstuk 3 gaat verder in op de voorwaardelijke tweetrapsbenadering. We vergelij-
ken deze met een gelijkwaardige methode gebaseerd op het lineaire gemengde model. Via
analytische afleidingen en een uitgebreide simulatiestudie, verkennen we de prestaties van
de methode in verschillende datascenario’s en tonen we de voordelen van het gebruik van
het voorwaardelijke lineaire gemengde model. In het bijzonder laten we zien dat onze
methodiek de kans op een type I fout niet verhoogt en dat het verlies aan onderscheidings-
vermogen minimaal is.

In hoofdstuk 4 ligt de focus op cross-sectionele studies met continue en binaire uitkomst-
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variabelen. We stellen semi-parallelle computaties voor om lineaire regressie te versnellen.
Deze methode is gebaseerd op het feit dat de uitkomst en alle covariabelen, behalve de
SNP variabele, in alle GWA modellen dezelfde zijn. Door lussen te vermijden en specifieke
operaties op matrices toe te passen verkrijgen we de exacte regressiecoëfficiënten en de
standaardfouten, 60 tot 80 keer sneller. Een aangepaste versie van deze methode voor lo-
gistische regressie verkregen we door gebruik te maken van de iteratief gewogen kleinste
kwadraten techniek die gelijkwaardig is aan het bepalen van de meest aannemelijke schat-
ter. Omdat SNP-effecten zeer gering zijn, kunnen we nauwkeurig de wegingsfactoren van
het model zonder de SNP variabele benaderen. Op deze manier wordt de iteratieve proce-
dure teruggebracht tot semi-parallelle regressie waarbij de wegingsfactor berekend wordt.
Semi-parallelle regressie is ook nuttig voor de voorwaardelijke tweetrapsbenadering, om-
dat die het mogelijk maakt de tweede trap extreem snel uit te voeren. In Hoofdstuk 4 tonen
we ook het belang van een efficiente dataorganisatie voor GWAS aan. We laten zien dat
snelle algoritmes gecombineerd moeten worden met een optimale dataopslag. Oplossingen
gebaseerd op de array-georiënteerde binaire files die gëımplementeerd zijn in een aantal R
pakketen, worden hier ook besproken.

In hoofdstuk 5 presenteren we een andere benadering om de regressiecoëfficiënten van
lineaire gemengde modellen snel te bepalen. Het QuickMix algoritme is gebaseerd op
interpretatie van de Henderson-vergelijkingen als een ’penalized’ kleinste-kwadraten pro-
bleem. De ’penalized’ matrix, verkregen uit het model zonder SNP, wordt daarna als be-
kend verondersteld. Dit is een zeer redelijke veronderstelling gezien de voor GWAS karak-
teristieke geringe genetische effecten. In het QuickMix algoritme vermijden we operaties
op grote matrices. We onderzoeken de structuur van de vergelijkingen die we op semi-
symbolische wijze oplossen. We illustreren de hoge nauwkeurigheid van onze algoritme
die cross-sectionele en longitudinale SNP-effecten 1000 keer sneller berekent dan de stan-
daardfuncties in R.

In hoofdstuk 6 ligt de focus op de analyse van de longitudinale botmineraaldichtheid-
data van de Rotterdam Studie en van bijna 30 miljoen SNP’s afkomstig uit imputaties van
de data van het 1000 Genomes project. Data op zo’n grote schaal is niet alleen een uitda-
ging voor de analyse met het gemengde model maar ook voor andere, praktische aspecten.
We bespreken het probleem van het beheren van een grote output, dat zeer inefficiënt kan
zijn wanneer deze als ASCII file opgeslagen wordt. We stellen voor om een SQL-database
te gebruiken, die snellere toegang tot de resultaten geeft. Verder worden hier efficiënte
technieken besproken voor het maken van Manhattan plots en Q-Q plots. Onze snelle
benaderingen, de voorwaardelijke tweetrapsbenadering en de QuickMix, zijn hierop toege-
past en hun snelheid en prestaties worden uitgebreid besproken.

In hoofdstuk 7 vatten we onze bevindingen samen en doen we voorstellen voor toekom-
stig onderzoek.
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