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CHAPTER1
Introduction

This dissertation is concerned with the study of categorical data, and, more specifically, those

that arise from surveys of human respondents. It is primarily a study of new statistical methods

and algorithms for the analysis of such data (Chapters 2 to 4), but also included is an empirical

study utilizing an existing advanced statistical model (Chapter 5). While many monographs are

devoted to the design of such surveys, such as Lohr (1999), the human element means that even

the most well-designed study can suffer from unobserved heterogeneity arising from individual

differences between respondents.

One such problem is the occurrence of response styles, a main theme of the studies included

here. Response styles arise because individuals use rating scales, most often Likert (1932) scales,

differently. An often cited definition, attributed to Paulhus (1991), is that a response style is a

systematic tendency to respond to survey items on some basis other than what the questions were

designed to measure. To illustrate what the problem is, consider this example taken from the

European Social Survey:

How much do you agree or disagree with each of the following statements?

Q1: In general I feel very positive about myself.

Q2: I’m always optimistic about my future.

In order to measure the responses on a unified scale, the researcher will typically specify a rating

scale which the respondent is obliged to use in answering the question. This is a constraint

imposed by our limited measurement ability: there is no way for us to objectively measure

opinion. We simply have to ask for it, which introduces an element of subjectivity.

In our example, the answer sheet may look like this:

1 – Strongly agree 2 – Agree 3 – Neutral 4 – Disagree 5 – Strongly disagree

Q1 � � � � �

Q2 � � � � �
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The response style problem is that there is heterogeneity in how persons map their opinions to

the given rating scale. Suppose that two persons strongly agree with the first statement. The first

person maps this opinion to the expected rating category, namely “1 – Strongly agree.” However,

the second person exhibits a tendency to use only the middle three rating categories – a response

style known as ‘midpoint scoring’ (more on this and other styles in Chapter 2). Consequently,

this person, being adverse to using the extremes of the rating scale, answers the question with “2

– Agree.” Hence, even though these persons had exactly the same opinion, they have arrived at

different answers because of the difference in response style. Concluding that these two different

answers are driven solely by a difference in opinion obfuscates the truth.

There is growing evidence that response styles are widespread in survey data, as the present

study also shows. However, ordinary, established statistical analyses take the meaning of the

rating categories in survey items at face value. It is by far the simplest approach, and is perfectly

justifiable in situations where categorical data arise naturally, such as when the political party

that a person voted for is recorded. However, in surveys, where we have to ask for a person’s

unobservable opinion, the heterogeneity introduced by different interpretations of the rating scale

can contaminate the conclusions drawn from standard statistical analyses.

In this thesis, statistical methods and algorithms, which account for differences in response

styles, are formulated and evaluated. A number of principles underly these methods. First,

we can learn about what different rating categories mean to a specific individual by looking at

how he used the rating scale across multiple questions. If, for the second person in the above

example, we observe that he never uses rating category ‘1 – Strongly agree’ across a set of

diverse questions, we can conclude that this rating category probably corresponds to a higher

level of agreeance than the same category for the first hypothetical individual. The task then

becomes how to quantify the difference in meaning.

A second principle is that if we can identify groups of individuals who exhibit the same

response styles, we can apply standard analyses within each of these groups. This is because

response styles are only a problem when individual differences are present. If all persons in the

above survey example exhibits midpoint scoring similar to the second person, we can safely

assume that the rating categories mean the same thing for all persons and proceed with standard

methods. The question is then how to identify these groups, and how we can determine how

many of these groups there are.

This dissertation makes methodological and empirical contributions to the literature on

modelling response styles, related areas such as psychometrics, and potentially to any area

utilizing rating data. The main contributions of the four substantive chapters can be summarized

as follows:
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Chapter 2 proposes a new numerical method for detecting and purging response styles;

Chapter 3 formulates a fast least-squares method for estimating the latent-class bilinear multi-

nomial logit (LC-BML) model for response style detection, and extends this to more

general bilinear decompositions coupled with crisp clustering;

Chapter 4 implements a novel algorithm for estimating the rating scale model (RSM), a simple

but powerful item response theory (IRT) model for analyzing rating data; and

Chapter 5 applies the LC-BML model to the Dutch political landscape, uncovering an array of

response styles in data from the European Social Survey.

These chapters are accompanied by software packages for R (R Core Team, 2015), a free

software environment for statistical computing and graphics. I strongly believe in open science

and reproducibility of research, and hence this software aims to allow the work in this thesis to be

disseminated and reproduced as far as possible. The cds package (Schoonees, 2015b) for Chapter

2 is available for download from the Comprehensive R Archive Network (CRAN) at http:

//cran.r-project.org/web/packages/cds. An unpublished accompanying package, muk,

implements the incomplete constrained dual scaling routines outlined in Appendix C of Chapter 2.

These routines will be merged into cds in due course. Chapter 3 is accompanied by the CRAN

package lsbclust (Schoonees, 2015a), available at http://CRAN.R-project.org/package=

lsbclust. A package implementing the routines of Chapter 4, currently named polymix, is

available on request. Releasing this code too on CRAN is planned once other related algorithms

have been added.

The next and final section of this chapter elaborates on the content of Chapters 2 to 5.

1.1 Chapter Synopsis

Chapter 2, based on Schoonees et al. (2015b) and co-authored with Michel van de Velden and

Patrick Groenen, introduces an optimal scaling method for detecting and purging response

styles. The method assigns optimal scores (numerical values) to the rating categories, which

quantifies how similar the rating categories are. Multiple response styles are allowed for by

identifying groups of individuals with similar rating scale use. Within each group, different

optimal scores are assigned. The method relies on a special characteristic of dual scaling for

successive categories data (Nishisato, 1980), which is closely related to correspondence analysis

(e.g, Greenacre, 2007). We show by simulations under which circumstances the method works

best, and that the optimal scores derived from the method can be used to obtain a version of the

http://cran.r-project.org/web/packages/cds
http://cran.r-project.org/web/packages/cds
http://CRAN.R-project.org/package=lsbclust
http://CRAN.R-project.org/package=lsbclust
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original data set which is purged of the response styles. The method is applied to sensory data to

illustrate it’s practical application.

The topic of Chapter 3 (Schoonees et al., 2015a), co-authored with Patrick Groenen and

Michel van de Velden, is the analysis of three-way data. Three-way data arise when each

observation in the data set is a matrix, and can be visualized as a stack of such matrices. An

example of three-way data arise in consumer studies when consumers assess a set of products

on a set of attributes. For each consumer, we observe the ratings of each of the products, e.g.

chocolate bars, on a range of attributes, such as colour, texture, firmness, melt rate and taste.

Such three-way data also arise in many other contexts, such as in longitudinal studies. Our

method combines cluster analysis with two-way matrix decompositions, and can be interpreted

with simple graphical displays. As such it is a useful alternative to the multi-way decompositions

available in the literature. A special case of our method, where two-way data are transformed to

three-way data by adding the rating scale, can be used to detect response styles. This version of

our method can be seen as a nonparametric alternative to the latent-class bilinear multinomial

logit (LC-BML) model (Van Rosmalen et al., 2010), an advanced and computationally intensive

method for analyzing data while accounting for response styles.

In Chapter 4, a new algorithm is formulated in collaboration with Patrick Groenen for

estimating the rating scale model (RSM; Andrich, 1978a), an important item response theory

(IRT) model from the psychometric literature. This RSM models all responses to a set of

items by three sets of parameters: person parameters describing the person’s location on a latent

continuum, such as political orientation, that we are trying to measure; item parameters indicating

how difficult an item is; and rating category parameters for the rating scale used. We derive a

majorization algorithm (see De Leeuw, 1994, for example) which maximizes the joint maximum

likelihood formulation of the model by iterative least squares operations. The advantages of this

approach is that missing observations can be handled very easily, and that regularization methods,

which penalize the parameters in the model, can be incorporated very easily, compared to existing

algorithms. Regularization methods can be used to improve the predictive performance of these

models and to overcome identifiability issues which arise relatively often in these methods.

The algorithm can also be applied to other IRT models, and it provides a building block for

the development of models that account for different subgroups in the data by finite mixture

modelling.

Chapter 5, co-authored with Hester van Herk, Patrick Groenen and Joost van Rosmalen,

concerns an application of the LC-BML model to five waves of Dutch data from the European

Social Survey. We use data from roughly 9500 Dutch persons collected in 2002, 2004, 2006,

2008 and 2010 respectively, to identify segments of individuals in the Dutch population who

have similar human value preferences. We then relate these segments to which political parties
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persons voted for, which gives insight into what kinds of voters are attracted to which parties, and

how this attraction evolved over time. For example, a subset of the Dutch population considers

tradition to be a very important value, while other segments exist which do not think tradition is

important at all. We evaluate 480 different instances of the LC-BML model in order to select

the model which best describes the data, a computationally intensive task. Seven different value

segments are identified, as well as 20 different response styles. This provides more evidence

of response style contamination in survey data, and by relating the value segments to political

parties we gain insight into which type of individuals are attracted to which parties.





CHAPTER2
Constrained Dual Scaling for Detecting

Response Styles in Categorical Data

2.1 Introduction

A major issue in questionnaire-based research is the presence of response styles. A response

style, sometimes also known as response bias or scale usage heterogeneity, can be described

as systematic bias due to a respondent’s tendency to respond to survey items regardless of its

content (Van Rosmalen et al., 2010). Paraphrasing, a response style is the manner in which

a person uses a rating scale, an example being extreme response style where the respondent,

for no substantial reason, prefers to use the endpoints of the Likert scale more often than the

intermediate rating categories.

Response styles can invalidate statistical analyses since they are completely confounded with

the substantial information contained in the data and hence biases results in non-trivial ways

(Baumgartner and Steenkamp, 2001). The problem manifests itself when different respondents

resort to different response styles within the same data set. Advanced methods, such as the latent-

class multinomial logit model of Van Rosmalen et al. (2010), the multidimensional ordinal IRT

model of De Jong and Steenkamp (2010), or the ordinal regression model with heterogeneous

thresholds of Johnson (2003), have been developed to deal with the data analysis when response

style contamination is relevant. None of these appear to have achieved much popularity in

practice.

Existing models often require a substantial investment of resources for its implementation,

estimation and/or interpretation. As an alternative, the method presented in this paper results

in a data set cleaned of the effects of response styles so that any analyses appropriate for the

continuous nature of this cleaned data can be conducted. Furthermore, this method has three

This chapter is based on Schoonees et al. (2015b).
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additional purposes, namely to (i) determine whether different response styles are present in

categorical data; (ii) identify the respondents associated with each response style; and to (iii)

classify the identified response styles into four different types. Software which implements the

method in the R software environment (R Core Team, 2015) are available from the first author.

The proposed method is a variant of dual scaling (DS) for rating data (Nishisato, 980a), also

referred to as successive categories data in the DS literature. DS is an exploratory multivariate

method, akin to correspondence analysis or CA (e.g. Greenacre, 2007). In the special case of

rating data, DS however differs from CA in a manner that implicitly caters for response styles

by including parameters for the Likert scale categories in an innovative way. These parameters

allow for the detection of frequent (or infrequent) usage of certain ratings since the optimal

scores assigned by DS to these parameters depend on how often each rating occurs in the data.

The new method builds on this aspect of DS by including monotone spline functions to model

the response styles and by allowing for multiple response styles through latent classes.

The literature on response styles (also known as scale-usage bias or heterogeneity) can be

traced back at least to the work of Cronbach in the 1940’s (e.g. Cronbach, 1941, 1942, 1946,

1950). For an overview of the early work, see for example Rorer (1965). A more recent set

of references can be found in Baumgartner and Steenkamp (2001). Krosnick (1999) discuss

the origins of response styles as a shift in the procedure whereby a response is formulated;

this is also known as satisficing in the literature (e.g. Krosnick, 1991). The use of so-called

personal equations with double coding, as known in the French school of CA, is a related method

of dealing with differences in the interpretation of rating scales at the respondent level (e.g.

Benzécri, 1992; Murtagh, 2005).

The next section focuses on a closer discussion of response styles. Section 2.3 introduces

spline functions for modelling response styles, explains the new methodology and details an

alternating least squares algorithm for solving an extended version of the dual scaling problem.

A simulation study is conducted in Section 2.4 to assess the strengths and weaknesses of the

method. Finally, an application (Section 2.5) is presented.

2.2 Overview of Response Styles

It is assumed that the process of formulating a response to a survey item requires the respondent

to map a latent opinion, preference or some similar concept to a Likert scale. For example,

the respondent may be asked how much she agrees with a certain statement using a scale with

categories ranging from “1 – Totally Disagree” to “5 – Totally Agree.” During the cognitive

process of formulating the answer, the respondent first forms an opinion about the survey item

and subsequently needs to decide how to transform or map this opinion to the presented rating
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scale (see for example Weijters and Baumgartner, 2012). The mathematical properties of this

response mapping from the latent to the Likert scale determines whether a respondent exhibits a

response style or not.

Specifically, a response style can be defined as a monotone nonlinear response mapping (Van

de Velden, 2007). If this transformation is linear, no response style is present. Consequently,

once a method is available to estimate response mappings the presence of response styles can

be assessed by looking at the curvature properties of the estimated mappings. These steps are

carried out in subsequent sections. In the case where Likert scales are used these transformations

are step functions, but for the moment it is more intuitive to consider continuous transformations.

Four different response styles are considered here, as depicted in Figure 2.1. This figure shows

different possible inverse mappings from the rating supplied by the respondent on the horizontal

axis to the respondent’s true latent opinion on the vertical axis. The inverse transformations are

shown since these must be estimated from the observed data.

The different styles can be characterized by which parts of the latent opinion scale is stretched

and which parts are shrunk. These are shown by the rug plots on the respected axes in Figure 2.1.

For ease of exposition it is assumed here that the true latent opinion comes from a uniform

distribution. The rug on the horizontal axis partitions the axis into intervals of equal length, with

each interval receiving a rating on the Likert scale. Here a seven-point scale is employed. The

rug on the vertical axis shows the effect that the response style transformation has on the intervals

of equal length. Hence these transformations characterize the following four response styles:

• Acquiescence (ARS) shrinks the lower part of the latent scale and stretches the upper part

indicating that higher ratings are favoured (panel (a));

• Disacquiescence (DRS) in contrast favours lower ratings by stretching and shrinking the

lower and upper parts of the latent scale respectively (panel (b));

• Midpoint responding (MRS) reflects a tendency to frequent the middle categories of the

rating scale (panel (c)); and

• Extreme responding (ERS) in contrast means that the endpoints of the rating scale is used

more often than the middle categories (panel (d)).

A critical concept is that the boundaries dividing the latent preference scale into the different

rating categories, that is the tick marks on the vertical axes in Figure 2.1, determines which

response style is present. If these boundaries are equally spaced, no response style is present.

Any significant deviations however give cause to believe that a response style is present.

The methodology outlined in the next section makes use of these boundaries to provide an

estimate of the response mappings of groups of individuals.
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Figure 2.1: Examples of (inverse) response style functions mapping the true item content scale

(vertical axis) into the observed measurement scale (horizontal axis).

2.3 Methodology

Consider the situation where a set of m objects or survey items are being rated on a q-point

Likert scale, enumerated as 1 to q. Due to the ordinality this is sometimes known as successive

categories data (Nishisato, 1980, 1994). It is supposed that n individuals are asked to rate the

objects according to their preference. Objects may receive equal ratings, and it is assumed that

there exists a fixed but unknown preference structure for the set of objects, such as a population

mean. Let X denote the n × m data matrix. Note that the method detailed below requires all

items to use a common rating scale.

The next subsection discusses using dual scaling for analysing successive categories data

in general, making use of the method’s relationship with correspondence analysis. Monotone

quadratic splines for modelling response styles are introduced in Section 2.3.2. Subsequently

the dual scaling method is modified to utilise these splines together with latent classes to allow

for multiple response styles. An alternating non-negative least squares algorithm is described

for fitting the model in Section 2.3.4. Selecting the number of latent response style groups

(Section 2.3.5) and creating a data set purged of the effects of response styles (Section 2.3.6) are

also discussed.

2.3.1 Dual Scaling of Successive Categories Data

Dual scaling (DS) is a multivariate exploratory statistical technique which is equivalent to

correspondence analysis (CA) when analysing contingency tables (Van de Velden, 2000). For

such cases it is used to visualise departures from the independence assumption in the two-way

contingency table in a low dimensional space, akin to principle components analysis (PCA) for
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continuous data (Nishisato, 980a; Greenacre, 2007). However, for the successive categories data

dealt with here there are important differences.

Both DS and CA deal with non-contingency table data by typically applying the standard

procedure to a specific recoding of the data, designed to transform the data into a form that

resembles a contingency table (Greenacre, 2007). This recoding requires the original data matrix

X to be transformed before analysis, and for successive categories data in particular the recoding

schemes differ in an important way. The usual CA method uses a doubling of columns (that

is, adding an additional column to X for each object) to construct scales with “positive” and

“negative” poles before applying ordinary CA (see Greenacre, 2007). However Nishisato (1980)

proposes the following alternative method. This involves augmenting rating scale category

thresholds or boundaries to the data, which increases the number of columns from m to m + q−1,

and then converting this to rank-orders. Although Nishisato’s original DS formulation focuses

on a so-called dominance matrix (see Nishisato, 980a), it has been shown that DS applied to

these rank-orders are equivalent to doubling the rows (instead of the columns) of the matrix of

rankings before applying CA (Van de Velden, 2000; Torres and Greenacre, 2002).

The method is perhaps best illustrated by an example. Consider transforming the following

data matrix X, where three objects A, B and C are rated by n = 4 respondents on a 5-point Likert

scale (thus, q = 5). The first step requires augmenting 4 (= q − 1) columns to X, one column

for each of the boundaries between the pairs of adjacent ratings. Let the boundaries be called

b1, . . . ,b4, where b1 falls between ratings 1 and 2, and so forth up to b4 which falls between

categories 4 and 5. It suffices to assign scores midway between the rating categories to each

boundary, to arrive at the augmented data matrix:

X =

*......
,

A B C

4 3 1

2 2 5

3 2 2

1 5 4

+//////
-

⇒ Xaug =

*......
,

A B C b1 b2 b3 b4

4 3 1 1.5 2.5 3.5 4.5

2 2 5 1.5 2.5 3.5 4.5

3 2 2 1.5 2.5 3.5 4.5

1 5 4 1.5 2.5 3.5 4.5

+//////
-

. (2.1)

Secondly, each row is converted to rankings, starting with a lowest rank of 0 and a highest

rank of 6 (= m + q − 2) in this case. For ties the total ranking assigned to the tied objects are
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distributed equally. This yields the following result for the example:

Xaug ⇒ T =

*......
,

A B C b1 b2 b3 b4

5 3 0 1 2 4 6

1.5 1.5 6 0 3 4 5

4 1.5 1.5 0 3 5 6

0 6 4 1 2 3 5

+//////
-

. (2.2)

Note that in general T has n rows and m + q − 1 columns. DS also requires construction of the

matrix S that would have resulted if q was the lowest and not the highest rating of the Likert

scale. This is easily achieved as

S = (m + q − 2)11
′

− T. (2.3)

Using the CA formulation of DS of Van de Velden (2000), a row-doubled ratings matrix

Fr : 2n × (m + q − 1) is constructed as

Fr = *
,

T
S

+
-
. (2.4)

This matrix is subjected to CA, which assigns optimal scores in the vectors a and b to the rows

and columns of Fr respectively. Since the aim is to assign to the boundaries ordered scores which

are sensitive to rating scale use, a one-dimensional solution is used. This assignment is achieved

by minimising a least squares criterion L(a,b) through the singular value decomposition (SVD)

(Van de Velden et al., 2009). In the present context L is given by

L(a,b) = c‖Fr −
1
2

(m + q − 2)(11
′

+ ab
′

)‖2 (2.5)

where c is a proportionality constant, 1 denotes vectors of ones of the appropriate lengths and
1
2 (m + q − 2)11′ centres the rankings in Fr . For identifiability a constraint such as ‖a‖ = 1 is

imposed. The method is discussed in more detail in Section 2.3.3.

Note that an important consequence of the data recoding scheme is that the dual scaling

procedure provides coordinates for the boundaries. The effect of the boundaries is to retain the

information on how different the original ratings assigned to the objects were before the rankings

were constructed. The coding scheme also imposes ordinality on the object and the boundary

scores in b by constructing rankings.

The optimal scores assigned to the boundaries can be used to detect response styles since they

estimate the thresholds of the response mapping of the group of respondents, as was discussed
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Response style Lower Curvature Upper Curvature
No Response Style None None

Acquiescence Convex Convex

Disacquiescence Concave Concave

Extreme Responding Concave Convex

Midpoint Responding Convex Concave

Table 2.1: Curvature properties of the four response styles.

in relation to Figure 2.1. Intuitively optimal scores assigned to the boundaries work as follows.

If a specific rating category j is used very often, the boundaries b j−1 and b j will often receive

rankings which differ substantially since the category is often filled. Consequently, the optimal

scores assigned will differ significantly, indicating that respondents use the category very often.

The same reasoning illustrates that when rating j is used very infrequently, the optimal scores for

b j−1 and b j will be very similar. Therefore, when a group of respondents have the same response

mapping, the method will be able to tell which type that mapping is.

In Section 2.3.3 latent classes will be introduced for the boundary scores which allows for

multiple response styles. First, however, using monotone quadratic splines with the dual scaling

method is discussed.

2.3.2 Modelling Response Styles by Monotone Quadratic Splines

From Figure 2.1 it is evident that the four response styles considered can be completely described

in terms of its curvature properties. By dividing the horizontal axes into two equal lower and

upper parts, the four response styles are characterized by either concavity or convexity in the

lower and upper parts of its domain. This is summarised in Table 2.1.

For inferential and response style classification purposes it will prove useful to parameterize

the response style transformations considered here. Furthermore, using smooth functions will

improve model parsimony and the stability of parameter estimation, as well as facilitate the

process of purging the response styles from the data by interpolation (see Section 2.3.6). The

family of monotone quadratic splines with a single interior knot is ideal for this purpose as it

combines two quadratic polynomial functions in the adjacent intervals of the domain, subject to

continuity and differentiability restrictions at the interior knot. These splines are either concave,

convex or linear in the lower and upper halves of the domain and therefore reproduce all the

curves described in Figure 2.1 and Table 2.1.
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The splines have three non-constant basis functions (the so-called I-spline basis) derived

by appropriately integrating the basis functions of the M-spline basis (see Ramsay, 1988). A

quadratic monotone spline with a single interior knot t ∈ [L, U] and intercept µ is of the form

f (x) = µ +

3∑
i=1

αi Mi (x | t). (2.6)

In the proposed model t = L + 0.5(U − L) is chosen to lie halfway between the lower and upper

limits L and U respectively. Monotonicity requires that αi ≥ 0 for i = 1,2,3. The basis functions

M1,M2 and M3 are constructed to ensure continuity and first-order differentiability at t, and their

formulae are as follows (Ramsay, 1988):

M1(x | t) =




2t(x−L)−(x2−L2)
(t−L)2 , if L ≤ x < t;

1, if t ≤ x ≤ U;

M2(x | t) =




(x−L)2

(t−L)(U−L) , if L ≤ x < t;
t−L
U−L +

2U (x−t)−(x2−t2)
(U−t)(U−L) , if t ≤ x ≤ U;

(2.7)

M3(x | t) =




0, if L ≤ x < t;
(x−t)2

(U−t)2 , if t ≤ x < U;

Hence (2.6) is simply a linear combination of these three piece-wise quadratic functions with an

intercept.

The spline functions are built into the column scores b in (2.5) by using the (q−1)×4 design

matrix M to collect the basis functions corresponding to µ,α1,α2 and α3 respectively. The basis

functions are evaluated at the midpoints between rating categories, for example at 1.5, 2.5 up to

6.5 for a 7-point Likert scale. Hence b can be written as

b = *
,

b1

b2

+
-

= *
,

b1

Mα
+
-

(2.8)

with b1 the m-vector of unrestricted object scores and b2 the (q − 1)-vector of spline-restricted

boundary scores. The spline parameters are collected in α = (µ,α1,α2,α3)
′

.

The basis functions M1,M2 and M3 in (2.7), as depicted in Figure 2.2, are piecewise quadratic,

with only two of them nonconstant in each of the intervals [L, t) and [t, U]. This is convenient

because it means the second derivative of f , and hence the curvature, depends only on two

parameters in each interval. Rescaling without loss of generality so that L = 0 and U = 1, the
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L t U

M1
M2
M3

Figure 2.2: The three I-spline basis functions for quadratic monotone splines with a single

interior knot t.

curvature of f (not necessarily defined at t = 1/2) is given by

d2

dx2 f (x) =




−8α1 + 4α2, if 0 ≤ x < 1/2;

−4α2 + 8α3, if 1/2 < x ≤ 1;
(2.9)

The function f (x) is either convex, concave or linear in a given interval depending on whether

the second derivative (2.9) is positive, negative or zero respectively, which does not depend on

x. In fact, assuming that α1 and α3 are larger than zero, the curvature can be measured solely

in terms of the ratios α2/α1 and α2/α3, referred to henceforth as the curvature parameters. For

example, the requirement for convexity in both the lower and upper domain is

d2

dx2 f (x) > 0⇔



α2
α1
> 2, if L ≤ x < t;

α2
α3
< 2, if t < x < U.

(2.10)

When one or both of α1 and α3 are zero, one or both of these curvature parameters may be

undefined. This can cause problems for its graphical representation, some of which will be

shown below. In such cases a continuity adjustment through the addition of a small positive

constant to both the numerator and denominator in (2.10) can be useful.

It is possible to rewrite Table 2.1 wholly in terms of the curvature parameters, but more

importantly using the curvature parameters it is possible to visualize the curvature of an estimated

response style in a single plot. Figure 2.3 illustrates the situation by plotting α2/α3 against

α2/α1, as well as incorporating the response style classification regions derived from Table 2.1.

When both curvature parameters equal two, no response style is present. Due to the fact that
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Figure 2.3: Classifying response styles graphically using the curvature properties of monotone

quadratic splines.

both curvature parameters has the range [0,∞), a more symmetric plot is arrived at by using the

base-2 logarithmic transform and centring – this is illustrated in Section 2.5.

2.3.3 Dual Scaling Method for Multiple Response Styles

To allow for multiple response styles, suppose that each of the n individuals belongs to one of K

response style groups, the exact membership being unknown. Let the n × K matrix G contain as

columns the group indicator vectors {gk }
K
k=1, each indicating which individuals belong to that

specific group. The column scores {bk }
K
k=1 are of the same form as b in Equation (2.8), but are

now group-specific by replacing b2 with b2k = Mαk . This allows for the different groups to

have different response mappings by letting the spline parameters αk = (µk ,α1k ,α2k ,α3k )
′

vary

between groups. The object scores b1 and the row scores a remain fixed across all response style

groups.

The group membership G needs to be estimated, together with the 2n-vector a of optimal

scores for the individuals and the column score vectors bk of length (m + q − 1) contained in the

K columns of B. It is required for monotonicity that αik ≥ 0 for all i and k. The loss function in

Equation (2.5) must be adjusted to allow for the multiple response styles as well as for the spline

restrictions. This constrained dual scaling method for the detection of response styles can be

formulated as

min
a,B,G

L(a,B,G)

subject to bk = *
,

b1

b2k

+
-

and αik ≥ 0, i = 1,2,3, k = 1,2, . . . ,K. (2.11)
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The adjusted loss function (compare Eq. (2.5)) is

L(a,B,G) = c‖Fr −
1
2

(m + q − 2)(11
′

+

K∑
k=1

Dgk ab
′

k )‖2. (2.12)

Again, c is a proportionality constant, and the diagonal matrices Dgk are constructed as

Dgk = *
,

diag (gk ) 0
0 diag (gk )

+
-
. (2.13)

In this context, diag(x) denotes the diagonal matrix with x on the main diagonal. Through using

the {Dgk }
K
k=1 in (2.12), individuals are associated with the corresponding bk for their group. As K

increases, the number of parameters in the model increases and consequently the loss function L

decreases as well. Therefore, when considering how the value of L changes for different values

of K in a scree plot, it is convenient to standardise these values to the unit interval [0,1].

An algorithm for minimising L is discussed in the next section.

2.3.4 An Alternating Nonnegative Least Squares Algorithm

Solving the optimization problem in (2.11) requires finding a,B and G under the appropriate

restrictions. The approach discussed here alternates over two steps:

1. The algorithm combines alternating least squares (ALS) and nonnegative least squares

(NNLS; Lawson and Hanson, 1974) to approximate the optimal a and B for a given group

membership matrix G. This involves fixing the value of a, estimating the optimal B with

NNLS, and then updating a by ordinary least squares (OLS) based on the estimate of B.

This ALS process is repeated for a given G until numerical convergence is observed.

2. For fixed a and B, G is updated by a K-means type algorithm given the values determined

for a and B. This step simply allocates each individual sequentially to the group which

minimises the loss function.

The algorithm alternates between steps one and two until the loss function L changes by less

than a small positive constant. Note that starting values for both a and G are required. For the a

vector standard normal random numbers are simulated, while random assignment to K groups is

used for G. Block-relaxation algorithms such as this is guaranteed to converge monotonically,

albeit to a local minimum; therefore multiple random starts are required (De Leeuw, 1994).

The related issues of local optima in K-means clustering and categorical principal components

analysis are discussed in Hand and Krzanowski (2005) and Van der Kooij (2007, Chapter 2)
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respectively. In Appendix B an overview of these local optima is given in the context of the

empirical example (Section 2.5).

The optimization process is described in more detail in Algorithm 1, with an exposition of its

derivation deferred to Appendix A. The formulation is for a single starting configuration of G,

and needs to be repeated for multiple such configurations. Parameters that need to be specified

include na, the number of (random) starts used for a, the maximum number of iterations maxita

and maxitG for the ALS and K-means phases respectively, and also the numerical tolerances

ε1 > 0 and ε2 > 0 for these two steps. Note that the spline restrictions are sufficient as

normalization constraints in the ALS part of the algorithm, and hence the vector a is only

standardized to ‖a‖2 = 2n after convergence.

To update G, the algorithm cycles through all respondents in turn. For the current respondent

i, it calculates for each class what the loss function would be if respondent i were assigned to

that class, given the current classification of all other respondents. This respondent is then moved

to the class with minimum loss (or stays in the same class if this is already the best choice). The

algorithm then proceeds to the next respondent i + 1, and starts again with respondent 1 once

the last respondent is reached. Once a complete pass over all respondents are made where no

change in classification occurs, the updating of G terminates and the algorithm returns to the

ALS updating step.

2.3.5 Selecting the Number of Response Style Groups

To select the number of groups K , a scree plot of the loss function for different values of K can

be used. The aim is to choose the smallest K such that larger values do not significantly reduce

the loss. This method was introduced by Cattell (1966) and has been widely adopted. The dual

scaling method also separates individuals based on the shape of the response transformations and

rating frequencies in the groups. This supplementary information can be helpful for choosing K

in cases where the scree plot is not conclusive. This will be illustrated in the empirical application

of Section 2.5.

2.3.6 Purging Response Styles

Once the estimates â, B̂ and Ĝ have been obtained, these can be used to create a version of

the original data X which is purged of response styles. All that is needed is to use the splines

estimated for each response style group to assign optimal scores to the rating scale. Then these

scores are substituted in X by replacing every rating with the appropriate optimal score.

Determining the optimal scores of the ratings proceeds by evaluating the splines as before,

but now at the ratings themselves and not at the boundaries. This simply requires constructing
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Algorithm 1 Alternating Nonnegative Least Squares Algorithm
1: set i = 0, h = 0 and na, maxita, maxitG, ε1 > 0 and ε2 > 0
2: initialise G0, set F∗r = Fr −

1
2 (m + q − 2)11

′

3: while Lh−1 − Lh > ε2 and h ≤ maxitG do
4: construct Dh

gk from Gh according to Equation (2.13)
5: for all j = 1,2, . . . ,na do (iterate over different starts for a)
6: if i = 0 and h = 0, generate a starting configuration a j for a
7: while Li−1,j − Li j > ε1 and i ≤ maxita do
8: update (indices i and h are omitted for readability)
9: wk j ← (a′jD

h
gk a j )

−1/2 for all k
10: (v1k j ,v2k j )

′

← 2
m+q−2wk j (F∗r )

′Dh
gk a j for all k

11: b1 j ← (a′ja j )
−1 ∑K

k=1 wk jv1k j

12: αk j ← arg minαk j
‖w−1

k j Mαk j − v2k j ‖
2 s.t. α1k j , α2k j , α3k j ≥ 0 for all k

13: b2k j ←Mαk j for all k so that bk j = (b1 j ,b2k j )
′

14: a j ←
2

m+q−2 (
∑K

k=1 b′k jbk jDh
gk )−1 ∑K

k=1 Dh
gk F∗r bk j

15: i ← i + 1
16: calculate Li j = L(a j ,B j , Gh)
17: end while
18: end for
19: if na > 1, set (a1,B1) ← arg min(a j ,B j ) Li j and na ← 1
20: update h ← h + 1 and Gh−1 to Gh by reassigning each individual to the group which

minimises L
21: calculate Lh = L(a1,B1,Gh)
22: end while
23: return â = a1, B̂ = B1 and Ĝ = Gh, and repeat for different starting values G0
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a design matrix from the spline basis functions evaluated at the rating categories 1 to q, where

for categories 1 and q respectively L and U are used in the notation of Section 2.3.2. As before,

a single interior knot t at the middle of the domain [L,U] of the splines are assumed. Let this

matrix be M∗. The optimal scores are then simply determined as M∗αk . In Section 2.4.3 a

simulation experiment is conducted to assess how accurately this method can reproduce a known

underlying correlation structure from contaminated data.

2.4 Simulation Results

2.4.1 Simulation Model

The simulated data was generated in a three-step procedure. First, the true underlying prefer-

ence structure for the m objects is obtained by simulating m random numbers from a U (0,1)-

distribution. These are gathered into the m-vector µ. Second, individual preferences are generated

by simulating n times from each of m truncated normal distributions respectively centred at

the elements of µ. The individual preferences are given by δi = µ + εi, with εi, i = 1, . . . ,n,

representing the individuals deviation from the mean.

Truncation is done at 0 and 1 so that response styles can be defined on the closed interval

[0,1]. Note that the use of truncation avoids overflow problems at the lower and upper ends

of the response style mapping, and hence improves on the original approach of Van de Velden

(2007). The truncated normal draws are done independently and with error variance σ2, which is

an important parameter because it determines how pronounced the multi-modality of the mixture

of truncated normals over [0,1] is. An increase in the value of σ implies that it easier to detect

response styles as the actual preference structure plays less of a role in forming the ratings.

The resultant true preferences are randomly divided into different response style groups.

Finally, these data are discretized to m categorical variables with q-point Likert-scales, according

to the cut points on [0,1] implied by the chosen K response styles. These response styles are

parameterized to come from the family of monotone quadratic splines outlined in Section 2.3.2.

In the simulations, choices must be made regarding the following: the number of objects m,

the number of rating categories q, the underlying standard deviation σ, the number of response

styles K , as well as their shapes defined by αk , k = 1, . . . ,K, the sample size n and how this is

divided among the K groups, namely nk , k = 1, . . . ,K.
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Figure 2.4: Response styles used in the simulation study. Each curve represents a different style.

2.4.2 Assessing Classification Performance

The first simulation study assesses the classification accuracy of the dual scaling method. It is

assumed in this experiment that the number of groups K is known beforehand. For each of the

experimental conditions, 50 simulated data sets were constructed and the dual scaling method

applied. For each data set estimation was based on 15 random starts for G, and for each of these

starts the ALS procedure was initialised from 50 different random configurations for the row

scores a.

The 108 experimental conditions consisted of the following. The number of objects m was

varied over 10, 20 and 30 items. The rating scales employed were either q = 5 or 7-point scales.

Sample sizes of n = 200, 1000 and 5000 respectively were used. The number of groups K were

either 3 or 5. For each of these K , it was assumed that one of the groups has a linear response

mapping (that is, a group with no response style). The additional K −1 groups exhibited response

styles through nonlinear mappings. For K = 3, these additional groups were acquiescence

and extreme responding, since Baumgartner and Steenkamp (2001) found that these are most

prevalent in survey data. For K = 5, groups for disacquiescence and midpoint responding were

also added. The corresponding spline functions used to simulate from are shown in Figure 2.4.

The sample of n respondents was assigned to the groups by allocating either 20%, 50% or 80%

of respondents equally among the K − 1 response style groups. These percentages represent the

amount of contamination in the simulated data. The remaining percentage of respondents was

assigned to the group exhibiting no response style. The latent standard deviation σ was fixed at

0.1 for all experiments.
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To assess the classification performance of the method, the adjusted Rand index as well as

the percentage correctly classified (the so-called hit rate) were computed. The adjusted Rand

index (ARI) of Hubert and Arabie (1985) assesses the similarity between two partitions, adjusted

for chance correspondences between these partitions. The upper limit of the ARI is one, and

indicates perfect agreement. An ARI of zero indicates that the method does not improve on

random assignment, with all positive values indicating an improvement. Negative ARI values are

also possible, and indicate poorer performance than random assignment. The ARI is in general

lower than the hit rate, and can be considered as a more objective measure of performance.

For each of the 108 experimental conditions, Tables 2.2 and 2.3 show the average values

over the 50 simulated data sets. It is apparent that the sample size n does not have a large

influence on the ARI and hit rate. The number of groups K is very important for performance

when the contamination percentage is low (20%). This is because for K = 5 groups the 20%

of contaminated data points must be divided into 4 groups instead of 2 when K = 3, which

results in groups with very low proportions nk/n of the total sample. The low performance here

is somewhat compensated for by using more items, such as m = 30, but for K = 5 groups even

more items are needed. In general, using more items increases the classification accuracy. Using

a larger number of rating categories q also increases performance, but mostly so with fewer

groups (K = 3). The method improves on random assignment – especially in cases with higher

response style prevalence and 20 or more items the improvement is substantial.

2.4.3 Recovering Underlying Structure through Data Cleaning

The simulation model of Section 2.4.1 assumes that, given the expected value of the object scores

m, the objects are independently distributed as truncated normal distributions. Although the true

correlation matrix between the objects thus is the identity matrix I, the observed correlations

after the response style contamination is often inflated. To show improvement, the cleaned data

derived as in Section 2.3.6 should have correlations resembling independence more closely. A

visual example is given in Figure 2.5 for simulated data (m = 20,K = 3 similar to the conditions

used in Tables 2.2 and 2.3), where the colours indicate the magnitude of the Pearson correlations.

It is evident that the response styles artificially inflate the correlations. When q = 7, the cleaned

data to some extent succeeds in removing the spurious correlations, but when q = 5 the situation

is not much improved.

The conditions under which the cleaned data can be expected to provide a better representation

of the underlying correlation matrix was studied further through simulations. For the different

values of K,n,q, and the proportion of response style contamination used in Section 2.4.2, 50

simulated data sets were constructed and cleaned through the dual scaling method. Here m = 20
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Figure 2.5: The effect of response styles on the underlying uncorrelated objects: estimated

Pearson correlations before and after contamination, as well as after cleaning the data. The

number of rating categories is q = 5 for (a) – (c) and q = 7 for (d) – (f), with m = 20 items in all

cases .
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was fixed for simplicity. For each of these data sets, the root mean square error (RMSE) between

I and the empirical Pearson correlation matrix for the contaminated data was calculated, where

RMSE(V,W) =

√∑
i

∑
j

(vi j − wi j )2 (2.14)

for commensurable matrices V and W. Similarly, the RMSE comparing I with the empirical

Pearson correlations of the cleaned data can be computed. A reduction in the RMSE when

using the cleaned data as opposed to the contaminated data indicates that the cleaned data has a

correlation structure which matches the true correlation structure more closely.

A two-sample Wilcoxon test, also known as the Mann-Whitney test, (e.g. Rice, 2007) was

used to test the null hypothesis that the RMSE is equal for the contaminated and cleaned data

against the one-sided alternative that the RMSE for the contaminated data is greater than that of

the cleaned data. The results are quite clear: when q = 7 the null hypothesis is always rejected

(p < 0.001) in favour of the alternative, whilst when q = 5 the null hypothesis cannot be rejected

even once (all p > 0.2). It can therefore be deduced that when a sufficient number of rating

categories q are used, the correlation structure of the cleaned data is more representative of the

true underlying structure of the data.

A related question concerns the performance of the method in the presence of a nontrivial

correlation structure. To impose such a structure whilst retaining truncated normal marginal

distributions for the objects, a copula is used (note that the truncated multivariate normal distri-

bution does not guarantee truncated normal marginals). A copula is a multivariate distribution

function C(u1,u2, . . . ,um) with uniform marginals (Hofert and Mächler, 2011). According to

Sklar’s theorem (Sklar, 1959; Hofert and Mächler, 2011) a multivariate distribution function F

with marginals {Fj }
m
j=1 can be constructed as

F (x1, x2, . . . , xm) = C(F1(x1),F2(x2), . . . ,Fm(xm)). (2.15)

The marginal truncated normal distributions can be achieved by the inverse probability integral

transform. The dependence structure between the variables is solely determined by the copula.

Here two independent Clayton copula (Clayton, 1978) functions will be used to impose a

correlation structure in terms of Kendall’s τ, a well-known measure of rank correlation (see

Kendall, 1938; Hofert and Mächler, 2011). The structure induced here for m = 20 is as follows:

the first 10 objects are correlated with τ = 0.2, independent of the other 10 objects which are

correlated with τ = 0.35. These τ values amount to Pearson correlations of approximately

ρ = 0.3 and ρ = 0.5 respectively (an approximate relationship is ρ ≈ sin(τπ/2) - see Kendall

and Gibbons (1990)). It is also possible to introduce negative correlations by using 1 −U instead
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Figure 2.6: An example of the correlation structure imposed by the Clayton copula’s, in terms

of Kendall’s τ.

of U in the inverse probability integral transform. In the application here these reversals are

made randomly with differing probability γ. The theoretical, observed and cleaned correlations

given by Kendall’s τ for one such copula is illustrated in Figure 2.6, with m = 20 and q = 7.

The difference in RMSE can again be used to evaluate the effect of the data cleaning on

the correlation structure, now using Kendall’s τ since the Clayton copula’s use this measure

directly. A simulation study was conducted for m = 20 objects with the other parameters varying

as before. For each combination of the parameters, the RMSE was calculated for 50 randomly

generated data sets according to the copula model described above. Then for each data set

the constrained dual scaling model was fit as before, and a cleaned data set constructed. The

difference in the RMSE for the contaminated data as compared to the cleaned data was recorded.

Table 2.4 presents the average reduction in RMSE as a result of cleaning the data with the

dual scaling procedure. As before the two-sample Wilcoxon test was performed. Significant

improvements were found in all cases except those printed in italic in Table 2.4. It is apparent that

the cleaned data improves the RMSE in all cases, except where both q and K are small and the

proportion of contamination is moderate (50%) to large (80%). Except for these circumstances,

the constrained dual scaling method improves the estimation of the true correlation structure by

removing the response styles effects.

2.4.4 Recovering the Parameters in Principal Components Analysis

It is possible to examine how well the method can recover parameters after the contaminated

data have been cleaned of response styles. For simplicity, Principal Components Analysis (PCA)

(e.g. Johnson and Wichern, 2002) was used as analysis method, a well-known multivariate

dimension reduction technique that seeks to summarize the majority of the variation in the
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data by a few uncorrelated linear combinations of the original variables (the so-called principal

components). Subsequent principal components each account for as much variation in the data

as possible, subject to being uncorrelated with the previous components. PCA relies on the

eigendecomposition of the covariance (or correlation) matrix, where the eigenvalue-eigenvector

pairs give the variance accounted for (VAF) and the linear combination (also known as the

principal component loadings) respectively for each component.

The following procedure was used to compare the PCA conducted on the true correlation

matrix to those conducted on the correlation matrices of the cleaned and contaminated data

respectively. First, a matrix of standard normal random numbers of dimension m× r is simulated,

with r denoting the required rank of the PCA solution. The rows are then standardized to

length one; denote this matrix by L. The simulated correlation matrix is then R = LL′, with

the corresponding covariance matrix assumed to be Σ = σ2R. Here σ2 is the same error

variance as assumed in Section 2.4.1. Since the decomposition R = LL′ is not unique, the

eigendecomposition of R is used to re-express R as R = LrL′r , where Lr is constructed from the

first r eigenvectors and singular values of R.

Second, a population mean vector µ for the m items is simulated as uniform random numbers.

The true underlying data for the respective respondents are then simulated from the multivariate

normal distribution with mean vector µ and covariance matrix Σ. The resultant matrix represents

the uncontaminated data. Subsequently, response styles are added to arrive at the contaminated

data. The same response styles as in Section 2.4.2 were used, the only difference being that

the range [L,U] of the splines was set to be the 1st and 99th percentiles of the sampled values

respectively. Any spillovers outside the range of the splines are then added to the lowest or

highest rating category. The interior knot t was fixed at the mean of the sampled values.

Finally, the constrained dual scaling method was applied to the contaminated data, assuming

that the correct number of response styles K are known and using 15 and 50 random starts for G
and a respectively. Based on this, a cleaned data set was constructed, from which the cleaned

empirical correlation matrix, R̂c is obtained. Similarly, let R̂o be the empirical correlation matrix

of the observed (i.e. the contaminated data). To compare the PCA solutions on these correlation

matrices to that of R, the decompositions R̂c ≈ LcL′c and R̂o ≈ LoL′o are constructed as before

assuming that the researcher is able to identify the correct rank r of R. The RMSE between Lr

and Lc is then compared to that between Lr and Lo to determine whether the PCA structure of

the cleaned data reflect the actual structure better or worse than the contaminated data.

For this simulation study, it was assumed that all groups are of equal size. The total sample

size was varied over n = 200, 1000 and 5000 respondents as before, with either K = 3 or 5

response styles added. Again, either q = 5 or 7 response categories were studied, with m = 10,
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20 or 30 items. The rank of Σ was either r = 2,3 or 4. For each combination of these factors,

100 simulated data sets were analyzed.

The results are shown in Table 2.5, which displays the average relative improvement in the

RMSE of the cleaned over the contaminated data. It is evident that the PCA structure is better

reflected by the cleaned data when q = 7. From the table it can therefore be concluded that rating

scales of more than 5 categories are ideal for the method. For rating scales with q = 5, marginal

improvements are seen only for small numbers of items. It is reassuring that the method does not

yield significantly worse result for less refined rating scales such as q = 5. The improvement

of the method is greatest for small values of m. The number of segments K does not influence

performance. Finally, the method performs best for low values of r , which corresponds to simpler

underlying structures.

2.5 Application

To illustrate the method in an empirical application, consider data obtained from an anonymous

multinational food and beverage conglomerate regarding an investigation of product perceptions

for 20 similar products. These include in-house products as well as those of competitors. Data

were collected from n = 268 panellists, who scored each product on 7 different sensory attributes

using a 9-point Likert scale. Each product is rated on all 7 attributes (or, equivalently, items), so

that there are 140 items collected in a data matrix with 268 rows and m = 140 columns. The

Likert scale ranges from 1 (“low”) to 9 (“high”), and hence q = 9. Since these products are

generally liked by consumers, acquiescence can be expected. The data set is available in coded

form as part of the cds package (Schoonees, 2015b) for the statistical computing environment R
(R Core Team, 2015). This can be obtained online from the Comprehensive R Archive Network

(CRAN). The package contains the software used for all computations in the present paper.

The first step is to select K by inspecting the loss function through a scree plot. Consideration

is also given to the curvature properties of the splines as well as how well the method separates

groups of panellists who exhibit different distributions of rating scale use. It is expected that once

spurious clusters are added at least two of the estimated response curves will be very similar,

and/or that two groups will on aggregate use the rating scale in a very similar fashion. For each

of K = 1,2, . . . ,8 groups, the algorithm was run from 50 different random starts for the grouping

matrix G, where appropriate. Also, 50 random starts for the alternating least squares (ALS) part

of the algorithm was used. Appendix B gives insight into the effect of local optima for these data.

Figure 2.7 shows the resulting (rescaled) scree plot. There does not seem to be a clear “elbow”

in the plot, although it is apparent that K = 3,4 and 5 are the options requiring closer scrutiny.

As K increases beyond 5 not much improvement in the loss function is observed.
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Figure 2.7: Scree plot for the sensory data.

The response mappings for the solutions K = 1, . . . ,8 are displayed in Figure 2.8. In these

plots the horizontal axis contains the original rating scale, while the vertical axis denotes the

optimal scores assigned to the Likert scale. The area of the bubbles superimposed on the transfor-

mation plots indicate how often each rating category is used, aiding in the interpretation. A first

observation is that (strictly, almost) all the detected response mappings have the characteristic

convex shape of acquiescence. This means that all panellists have a tendency to use positive

ratings frequently. The groups differ with respect to the intensity of the acquiescence.

Furthermore, the range of optimal scores that is assigned to each group, namely
∑3

i=1 αik

in terms of the spline parameters set out in Sections 2.3.2 and 2.3.3, depends on the within-

group variability of rating scale use. Groups where individual panellists’ rating scale use show

more variability from the group’s aggregate rating scale use are assigned optimal scores with a

wider range. Hence the method treats such groups, i.e. groups containing more individualistic

respondents, as more informative as opposed to groups with more uniform response behaviour.

A closer look at the distribution of the rating scale use in the identified groups reveal that all

groups in the solutions K = 3,4 and 5 show visually different distributions, except group I and

group III when K = 5. The relative frequencies with which each rating is used in each of the

groups when K = 5 are shown in the barplots in Figure 2.9. It is obvious that groups I and III

have very similar aggregate behaviour when K = 5 . This is however not immediately apparent

from the spline functions displayed in Figure 2.8, which assign different optimal scores to these

groups.

A more formal comparison can also be made by using the Kullback-Leibler divergence (KL;

e.g. Lehmann and Casella, 1998) between the distributions of different groups. This is also known

as entropy distance and is often employed in the construction of classification trees (e.g. Breiman

et al., 1984). It is an asymmetric measure of the dissimilarity between two density functions,

the reference density f and another density g, which is defined as E f [log( f (X )/g(X ))]. When
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Group I II III IV V

I - 0.158 0.009 0.187 0.234
II 0.161 - 0.138 0.699 0.701
III 0.008 0.134 - 0.224 0.297
IV 0.166 0.606 0.202 - 0.053
V 0.231 0.680 0.317 0.065 -

Table 2.6: The Kullback-Leibler divergence between the groups when K = 5, based on the

rating scale use per group. The distributions of the groups in the rows are treated as the respective

reference distributions, f .

f = g, the entropy is zero; otherwise it is positive. For discrete distributions the integral

is replaced by a summation. In the present context, let f̂1, . . . , f̂q and ĝ1, . . . , ĝq denote the

observed proportion of all answers in two different groups that use ratings 1, . . . ,q respectively.

The observed KL divergence between these groups, with respect to f̂ , is then
∑q

h=1 f̂h log( f̂h/ĝh).

Assessing the pairwise KL divergence for all pairs of groups (and using both f and g as

reference) show that indeed the above-mentioned two groups diverge the least among all pairs

when K = 5 – see Table 2.6. Since the method is designed to detect groups with different

aggregate rating scale use it can be concluded that the addition of a fifth group is spurious and

therefore K = 4 is selected. The findings of Figure 2.9 are therefore supported by this analysis.

Consider the results for K = 4 groups. These four groups consist of 67, 71, 61 and 69

panellists respectively. The rating scale usage of these groups are displayed in Figure 2.10,

panels (a) – (d). Figure 2.11 displays the optimal scores assigned to the ratings in the different

groups as well as their curvature chart. The curvature chart includes an approximate 95%

confidence ellipse constructed for the parameter estimates of 5000 data sets simulated under the

assumption that no response styles exist. Any group falling outside this band therefore has a

significantly nonlinear response mapping and hence a response style.

Group I represents acquiescence as mainly ratings 6 to 9 are used by panellists. There is a

slight boundary effect, as also with the other groups, in that category 9 is used less often than

category 8. Because the ratings 6 to 9 are frequently used, the optimal scores assigned to these

are close to zero. The most meaningful optimal scores are assigned to the lower categories

since when these are used it contains more information for this group of panellists. Overall the

information provided by this group is low since the range of optimal scores assigned is very

narrow. This is because the group members display low variability with respect to their rating

scale use. This is evident from Figure 2.10 (e), which plots the frequency with which each rating

is used per individual. Group II represents a more extreme acquiescence where categories 7 to 9

are often used. The range of assigned optimal scores, and hence information, is similarly narrow,
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Figure 2.9: Relative aggregate frequencies of rating scale use in the identified groups when

K = 5.

but shifted further to the left since the upper categories are used even more frequently. Since

the response mapping is concave in the lower part of the domain there is a slight deviation from

acquiescence towards an extreme response style.

Groups III and IV both exhibit a mix of acquiescence and midpoint responding. This is

evident from the relative frequencies in Figure 2.10 and the curvature chart in Figure 2.11 (b). In

these groups generally ratings 4 to 8 are preferred. Based on the range of optimal scores assigned

to them these consist of the panellists providing the most information. Especially Group III is

endowed with the most meaningful spread of optimal scores, and can be seen in Figure 2.10 (g)

to exhibit the most within-group variation.

Finally, consider the optimal scores assigned to the items as displayed in Figure 2.12. It is

evident that Product R, and to a lesser extent Products N, D, E and F, received the lowest ratings.

In contrast, Product P was the best performing one. By using a cleaned data set constructed

by replacing the ratings by optimal scores further analyses can be conducted which are less

influenced by the presence of the response styles.

2.6 Conclusions

A method that relies on the properties of dual scaling for successive category data to detect

response styles in categorical data was presented. It combines newly suggested spline models for

four main types of response styles with the original dual scaling method to construct optimal

scores for the boundaries between rating categories. These optimal scores are sensitive to the

presence of response styles. The method was adapted to allow for multiple response style groups

by utilizing a k-means type procedure, which is combined with a constrained alternating least

squares algorithm using nonnegative least squares to fit the model.

Both the ability of the method to detect response styles and the improvement in correlation

structure that results from a cleaned data set where ratings are replaced by optimal scores were
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Figure 2.10: (a) - (d): Relative frequencies of rating scale use for the chosen solution K = 4;

and (e) - (h) Variability of rating scale use within these groups, with each line representing a

single individual.
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Figure 2.11: (a) Optimal scores assigned to the K = 4 response style groups, from rating 1 (left)

to rating 9 (right). (b) Curvature plot similar to Figure 2.3 for the four groups, with the axes now

transformed to obtain a more symmetrical plot. The ellipse in the centre is an approximate 95%

confidence ellipse for no response style.
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studied. It was found that using 30 or more items and a rating scale of 7 or more categories

yields great improvements in the classification of individuals to different response style groups.

When fewer rating categories are used other factors become important, such as the extent to

which response styles are present in the data. Also, when using a 7-point scale or more, the

resulting cleaned data provide a more accurate description of the true substantial content in the

data, after accounting for different response styles. The use of the method to identify respondents

who provide similar amounts of information in their responses to a survey was illustrated on an

empirical data set.

The number of response style groups to retain was selected on the grounds of a scree plot

of the loss function, combined with the distribution of rating scale use in the different response

style groups. It remains to be seen whether a more formal selection method can be derived.

Other grounds for further research include alternatives for or additional restriction to the spline

functions, and whether more freedom is needed by allowing for differences between the m

object scores in different groups. An overview an adapted algorithm that can handle missing

observations, missing by design or otherwise, is given in Appendix C.



Appendix

Appendix A

Here an overview of the derivation of Algorithm 1 is provided (specifically, steps 9 – 14).

Consider expanding the criterion of Equation (2.12), assuming without loss of generality that the

proportionality constant c = 1:

L(a,B,G) = ‖F∗r −
1
2

(m + q − 2)
K∑

k=1

Dgk ab
′

k ‖
2

= tr F∗r
′F∗r +

1
4

(m + q − 2)2
K∑

k=1

b
′

kbka
′

Dgka − (m + q − 2)
K∑

k=1

b
′

kF∗
′

r Dgka. (2.16)

This derivation uses F∗r = Fr −
1
2 (m + q − 2)11

′

, the fact that Dgk is idempotent and that

Dgk Dgl = 0 ∀ k , l, as well as the properties of the matrix trace operator. Note that the first term

does not depend on the model parameters and hence are not used in the optimization algorithm.

Now, consider optimizing a and B when G is fixed. It follows from Equation (2.16) that,

given a starting configuration of a, the relevant loss function to be minimized for finding a new

B is proportional to:

L(B | a,G) =

K∑
k=1

[
1
4

(m + q − 2)2b
′

kbka
′

Dgka − (m + q − 2)b
′

kF∗
′

r Dgka

]

=
1
4

(m + q − 2)2
K∑

k=1

‖(a
′

Dgka)1/2bk −
2

m + q − 2
(a
′

Dgka)−1/2F∗
′

r Dgka‖
2 + c1

(2.17)

where the constant c1 depends only on K and F∗r . Hence B, and, more specifically, the parameters

b1 and αk , , k = 1,2, . . . ,K, are updated by minimizing:

K∑
k=1

‖(a
′

Dgka)1/2bk −
2

m + q − 2
(a
′

Dgka)−1/2F∗
′

r Dgka‖
2. (2.18)
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Now, recall that bk = (b
′

1,b
′

2k )
′

with b2k = Mαk , so that the relevant parameters in the

{bk }
K
k=1 is b1 and {αk }

K
k=1. These parameters must therefore be updated using the loss function

in Equation (2.18). Let wk = (a
′Dgka)−1/2 and 2

m+q−2wkF∗′r Dgka = (v
′

1k ,v
′

2k )
′

. Since

‖(x
′

1,x
′

2)
′

− (y
′

1,y
′

2)
′

‖2 = ‖x1 − y1‖
2 + ‖x2 − y2‖

2,

it follows that

L(b1,α1, . . . ,αK | a,G) =

K∑
k=1

‖w−1
k b1 − v1k ‖

2 +

K∑
k=1

‖w−1
k Mαk − v2k ‖

2. (2.19)

Therefore b1 can be updated by minimizing the first summation in Equation (2.19) by OLS

independently of {αk }
K
k=1. Since αik ≥ 0 for all i and k, the latter vectors are updated for each k

by using NNLS to minimize each of the individual elements of the second summation.

Appendix B

Here a short exposition is given of the spread of local optima for the empirical example. Specifi-

cally, the variability of the loss function for the 50 random starts of G is shown in Figure B1. The

curves are ordered from K = 2 at the top to K = 8 at the bottom. It is evident that only a single

random start typically produces the best result. In general, the local optima is less stable for

larger values of K , as can be expected. It is evident from this example that attention must be paid

to the number of random starts used in empirical applications of such algorithms. These results

suggests that the “best of 20 random starts” rule often favoured by practitioners of K-means

clustering may not suffice (Hand and Krzanowski, 2005); a pragmatic approach is required.

Appendix C

This Appendix gives an overview of how the constrained dual scaling (CDS) algorithm, outlined

above, can be used as a building block for an algorithm that extends this procedure so that

missing data can be handled. Missing data can occur for various reasons (see Little and Rubin,

2002, for example). Here we are specifically interested in data missing by design, although

more traditional forms of missing data can also be handled. For example, in a chocolate sensory

study, the overall liking, texture, taste and melt rate of a range of chocolates might be assessed

by a consumer panel. Incomplete experimental designs, which expose the consumers only to
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Figure B1: The spread of the loss values (scaled by a constant) for K = 2, . . . ,8 in the empirical

example, for 50 different starting configurations of G.

a subset of all products, are often used in such studies. This may be done because of concerns

regarding respondent fatigue when all products must be assessed, there may not be enough

product samples available for all subjects to assess all products, or the researchers may face

budget or time limitations.

It may very well be that the respondents in incomplete studies based on rating scales display

different response styles. But the CDS algorithm cannot handle incomplete designs without

modification. We therefore briefly present here an incomplete CDS (ICDS) algorithm which

embeds the CDS algorithm in a majorization procedure originally proposed by Kiers (1997).

This allows for arbitrary incomplete designs to be handled, including conventional missing data.

In the case of incomplete data, the same transformation from X to F∗r , as outlined in Sec-

tion 2.3.1, must be applied. Only the observed products are used when forming rankings. But to

ensure that the range of rankings assigned are commensurate across rows (persons), the same

number of products must be evaluated by each respondent. This will be the case for randomized

block designs, but not when data are missing for other reasons. Although it is unlikely that small

differences in the number of products assessed by the different persons will have a large effect,

larger differences can have an effect. We assume in the sequel that this is not an issue, as will be

the case with most well-designed studies.
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For incomplete designs, the matrices X, T, S and consequently also F∗r will have missing

blocks. A very simple balanced incomplete block design might for example have

X =



X11 NA X13 X14

X21 X22 X23 NA

NA X32 X33 X34

X41 X42 NA X44



. (2.20)

Here Xi j is the matrix that pertains to the answers of the respondents assigned to block i on

product j, and NA indicates incomplete data. The columns of Xi j correspond to the questions

used to assess each of the products. Converting this X to F∗r results similarly in missing blocks

within F∗r .

We handle missing data by introducing a weight matrix W which assigns zero weights to all

missing or incomplete observations, and nonnegative weights to all other elements of F∗r . The

nonnegative weights can be either equal to one for all nonmissing observations, or a more refined

specification of nonnegative values. In this way, missing data does not play any role in the model

fit. The ICDS problem therefore directly modifies (2.5) to seek the minimization of the weighted

loss function given by

L(a, {bk },G) =








*
,
F∗r −

1
2

(m + q − 2)
K∑

k=1

Dgkab
′

k
+
-
∗W









2

(2.21)

over a, {bk } and G. Here the ∗ operator denotes the Hadamard (or elementwise) product.

To minimize (2.21), we derive an iterative procedure based on Kiers (1997), which uses the

CDS algorithm as building block. Specifically, Kiers (1997) discusses majorization algorithms

for the weighted least squares (WLS) problem seeking minimization of

h(M|Z,W) = ‖(Z −M) ∗W‖2 (2.22)

= ‖Dw (Vec (Z) − Vec (M))‖2, (2.23)

over a model M, where W is a weight matrix and Dw = diag (Vec (W)). In our context then,

Z = F∗r and M = 1
2 (m + q − 2)

∑K
k=1 Dgkab

′

k . The idea is to solve this WLS problem by

repeatedly solving an ordinary least squares (OLS) problem by standard methods. The OLS

problem changes after each iteration by updating the target to which the model is fitted after each

iteration. This is done by defining a function k (M|Ml ,Z,W) that majorizes h(M|Z,W). The

majorizing function is a function that is everywhere larger than or equal to h, and equal to h at

the support point M = Ml . Here Ml is the value of M at iteration l. Minimizing the majorizing
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function k is simpler than minimizing h, and assures that the value of h decreases at each step

too.

The majorizing function for the generic criterion (2.22) is of the form (Kiers, 1997)

k (M|Ml ,Z,W) = α + w2
m‖Ml + w−2

m W(2) ∗ Z − w−2
m W(2) ∗Ml −M‖2 (2.24)

= α + w2
m‖Z̃l −M‖2. (2.25)

Here α is a constant, W(2) = W ∗W, and w2
m is the largest eigenvalue of D2

w, which is just

the largest squared element of W. Equation (2.25) shows that at step l + 1 of the majorization

algorithm, a simple least squares problem with working target Z̃l = Ml +w−2
m W(2)∗Z−w−2

m W(2)∗

Ml must be solved to find Ml+1. A sequence of monotonically decreasing function values for h

is constructed by the following inequality:

h(Ml+1 |Z,W) ≤ k (Ml+1 |Ml ,Z,W) < k (Ml |Ml ,Z,W) = h(Ml |Z,W). (2.26)

Monotonic convergence occurs, but only to local minima. Hence several random starts M0 are

required to increase the likelihood of finding the global optima.

We can hence derive the majorizing function for the ICDS criterion (2.21) as

k (M|Ml ,F∗r ,W) = α + w2
m




Ml + w−2
m W(2) ∗

(
F∗r −Ml

)
−M




2

= α + w2
m




w
−2
m W(2) ∗ F∗r + Ml ∗

(
11
′

− w−2
m W(2)

)
−M




2

= α + w2
m




F̃∗rl −M



2
. (2.27)

The working target at each iteration is therefore F̃∗rl . Finding M which minimizes (2.27) is

achieved by the CDS algorithm. Note though that random starts for a should only be employed

once for each random start of G in the CDS algorithm for the majorization procedure to work.

The constant α is inconsequential for optimization and can be safely ignored.

A starting value M0 can be obtained in at least three ways: (1) by random generation; (2)

by setting M0 = 0; or (3) by using for example a corresponding principal components analysis

(PCA) solution. The ICDS algorithm proceeds as follows:

Step 1. Initialize Ml as M0 and set l = 0.

Step 2. Compute F̃∗rl = Ml + w−2
m W(2) ∗

(
F∗r −Ml

)
.

Step 3. Find the update Ml+1 where Ml+1 decreases (or minimizes) ‖F̃∗rl −M‖2 by CDS. Set

l ← l + 1.

Step 4. Repeat Steps 2 and 3 until numerical convergence in (2.21).
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There are several options for the implementation of Step 3, as well as some caveats. Random

starts for a can only be done in the first CDS iteration since parameters must be updated

sequentially between majorization iterations for the majorization procedure to work. Furthermore,

it is not necessary to do a full CDS update each time Step 3 is executed – indeed it is recommended

not to be greedy in this regard. Therefore we choose to do only a single update of a, {bk } and G
each time Step 3 is repeated. Experimentation shows that using a few random starts for a (such

as 5) in the first majorization step can be advantageous without incurring a large computational

overhead.



CHAPTER3
Least-Squares Bilinear Clustering of

Three-Way Data

3.1 Introduction

Three-way data appear regularly in research, such as when a number of respondents are asked

to rate several objects based on a set of characteristics in a marketing survey. Such data can be

collected in a three-way array, with slices along one dimension containing the data matrices for

the different individuals. Several models have been formulated for least-squares approximation

of such three-way arrays, such as candecomp/parafac (Carroll and Chang, 1970; Harshman, 1970)

and tuckals3 (Kroonenberg and De Leeuw, 1980). Much research is available on theoretical

aspects of these models, nonuniqueness properties, and estimation algorithms (e.g. Kruskal,

1977; Kiers and Krijnen, 1991; Ten Berge and Sidiropoulos, 2002; Faber et al., 2003). However,

these models suffer from disadvantages including that they are relatively complicated, hard to

fit and that the interpretation of their graphical representations require sound knowledge of the

models (e.g. Kiers, 2000; Krijnen et al., 2008).

Here our aim is to simplify the analysis of such data by using a simple model for the two-way

matrix slices of the three-way data array, combined with clustering over the third way. The

model we elaborate on is the well-known bilinear decomposition of a matrix into an overall

mean, row means, column means, and a low-rank decomposition of the remaining row-column

interactions (see Gower and Hand, 1996, for example). This can be viewed as a two-way analysis

of variance-type decomposition into an overall mean effect, marginal effects and row-column

interaction effects, and is also known as a biadditive model.

We gratefully acknowledge the input of Karl Jöreskog, whose question at a seminar in Uppsala sowed the seeds
for this research.
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The novelty of the least-squares bilinear clustering model proposed in this paper, henceforth

referred to as lsbclust, is that the clusters over the third way of the array are introduced jointly

for each of the terms in the bilinear decomposition. Importantly, however, we show that this

clustering can be done separately for each of the terms because of the orthogonality of the terms

in the bilinear model (with one exception – see Section 3.2.1). This property greatly reduces

the computational cost of the method, and aids interpretation of the results. Additionally, we

show how to construct biplots for the interaction effects so that these can be easily interpreted,

and how different choices for the identifiability constraints in the bilinear model lead to different

submodels.

The main ideas of lsbclust are summarized in Figure 3.1. The data array represented by

X is decomposed into overall means, row means, column means and row-column interaction.

Each of these components are modelled clusterwise, with different sets of clusters introduced for

each of the components of the decomposition. The clusters are represented by different colours

and/or labelled effects in the figure. Within each cluster the effects are determined by modelling

the cluster means, and in the case of the interactions low-rank decompositions of the cluster

means are used. This enables us to elicit only the most prominent structure in the interactions

and improves interpretability by allowing biplots to be constructed. We note that adjusting for

different row and column margins pre-analysis is routinely done in correspondence analysis (e.g.

Greenacre, 2007).

The problem is formulated as a least-squares loss function in Section 3.2. We also discuss

the separability of the different clustering problems in this section. In Section 3.3 we develop an

alternating least-squares algorithm for minimizing the loss function and discuss the construction

of biplots for the interactions, as well as model selection. Section 3.4 contains two illustrative

empirical applications, and Section 3.5 concludes.

3.2 Problem Formulation

Consider as starting point data consisting of J objects that have been rated by N individuals

on K attributes. Define the indices i, j and k such that these identify the respondents, objects

and attributes respectively. It follows that i = 1, . . . ,N , j = 1, . . . , J and k = 1, . . . ,K . For each

individual, form the J × K matrix Xi where each row j gives the scores of person i for object j

on all K attributes. For now, we assume that there are no missing values and that the values in

the Xi’s are commensurable, that is, measured on the same scale. The collection of these Xi’s

can also be viewed as a three-way array, with the objects, attributes and individuals constituting

the three dimensions.
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Figure 3.1: A diagram illustrating our lsbclust approach to analysing three-way data. Colours

and/or labels indicate different clusters, while pale blue indicates constant vectors or matrices.

Different clusters are introduced for all four parts of the bilinear decomposition of the two-way

matrix slices. The cluster means are modelled within each such cluster, and the clustering and

modelling steps are undertaken jointly.
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The Xi’s are modelled by a variation of the bilinear (or biadditive) decomposition in the

least-squares loss function

L(m,a,b,C,D) =

N∑
i=1




Xi −
(
m1J1

′

K + a1
′

K + 1Jb
′

+ CD
′
)




2
. (3.1)

Here m denotes an overall constant or average effect, a the row effects, b the column effects,

CD′ a low-rank decomposition of the interaction effects between rows and columns, and ‖ · ‖

the Frobenius norm. Also, 1K denotes the length-K vector of ones. Representing the interaction

effects as inner products permit these to be displayed in biplots (Gower and Hand, 1996;

Gower et al., 2011). To ensure uniqueness of the model, the usual sum-to-zero constraints

a
′1J = b

′

1K = 0 and 1
′

JC = 1
′

KD = 0 must be imposed. Additionally, the columns of C and D
are required to be orthogonal and of equal length (for more information, see Denis and Gower,

1994). Model (3.1) has an analytic solution.

Our main contribution is to embed (3.1) in a general modelling framework by adding several

different types of clusters (latent classes or segments) while allowing for a variety of parameter

constraints. Different choices for these constraints lead to different submodels. Clusters are

introduced to separate the respondents on four different characteristics: the first with respect

to the overall average, the second for the row effects, the third for the column effects, and the

fourth for the interaction effects. For modelling the interactions, we allow for three options:

(a) a common C1 for representing the rows and a differential Du for each interaction cluster

indexed by u; (b) a differential Cu but common D1 for each interaction cluster; or (c) both Cu

and Du are specific to the interaction cluster. Options (a) and (b) are more parsimonious than (c)

and are particularly useful for linking the graphical representations (biplots) of the clusterwise

interaction effects through common row or column representations. In Section 3.3.3 we consider

generalized Procrustes analysis (Gower and Dijksterhuis, 2004) as an interpretative aid for option

(c).

Let G(o) be the N × R matrix of cluster memberships for the overall constant, which has

g(o)
ir = 1 if person i belongs to cluster r and g(o)

ir = 0 otherwise (r = 1,2, . . . ,R). Similarly, G(r)

is the N × S matrix of cluster memberships for the row effects, G(c) the N × T matrix of cluster

memberships for the column effects, and G(i) the N ×U matrix of cluster memberships for the
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interaction effects. Now, by incorporating the clustering, the least-squares loss function becomes

L(G(o),G(r),G(c),G(i),m,A,B,C,D)

=

N∑
i=1

R∑
r=1

S∑
s=1

T∑
t=1

U∑
u=1

g(o)
ir g(r)

is g(c)
it g(i)

iu



Xi −

(
mr1J1

′

K + as1
′

K + 1Jb
′

t + CuD
′

u

)



2

=
∑

i,r,s,t,u

g(o)
ir g(r)

is g(c)
it g(i)

iu L(i |r, s, t,u). (3.2)

Here m = (m1, . . . ,mR)
′

, A =
[
a1 · · · aS

]
, B =

[
b1 · · · bT

]
, and C′

=
[
C′

1 · · · C′

U

]
and

D′

=
[
D′

1 · · · D′

U

]
. In case options (a) or (b) are used, CuD′

u in (3.2) should be replaced by

C1D′

u or CuD′

1 respectively.

3.2.1 Separability of Different Cluster Types

Here we show that the joint clustering can be simplified significantly into four separate clustering

problems. Define the matrix J(δ)
J to be of the form

J(δ)
J = IJ −

δ

J
1J1

′

J , (3.3)

where δ ∈ {0,1}. Hence when δ = 1, J(δ)
J is the J-dimensional centring matrix; otherwise it

reduces to the identity matrix. The shorthand notation JJ = J(1)
J will also be used. Applying a

generalization of the well-known double-centring operation to Xi yields

J(δ1)
J XiJ(δ2)

K =

(
IJ −

δ1

J
1J1

′

J

)
Xi

(
IK −

δ2

K
1K1

′

K

) ′
. (3.4)

Expanding and rearranging the above implies that

Xi = −δ1δ2
1
′

JXi1K

JK
1J1

′

K +
δ1

J
1J1

′

JXi +
δ2

K
Xi1K1

′

K + J(δ1)
J XiJ

(δ2)
K . (3.5)

Furthermore, (3.5) can be rewritten as

Xi = (δ1δ3 + δ2δ4 − δ1δ2)
1
′

JXi1K

JK
1J1

′

K +
δ1

J
1J1

′

JXiJ
(δ3)
K

+
δ2

K
J(δ4)

J Xi1K1
′

K + J(δ1)
J XiJ

(δ2)
K (3.6)

by inserting additional centring matrices operating on the row and column means. The binary

variables in δ
′

= (δ1, δ2, δ3, δ4) act as switches which determine which centring constraints
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are applied and are chosen by the user according to the problem at hand. The choice of these

switches determines the biadditive model to be fitted. Although there are 16 different choices for

the δ’s, there are fewer unique specifications. For example, notice that if δ1 = 0, the second term

on the right-hand side of (3.6) vanishes so that δ3 does not have any effect. The choices δ3 = 0

and δ3 = 1 therefore leads to the same decomposition when δ1 = 0. A similar relationship exists

between δ2 and δ4.

By using the same centring approach in the model specification, we can drop the sum-to-zero

constraints from the formulation. This is done by redefining the terms in the summation in (3.2)

as

L(i |r, s, t,u) =



Xi −

(
(δ1δ3 + δ2δ4 − δ1δ2)mr1J1

′

K + δ2J(δ4)
J as1

′

K

+ δ11Jb
′

tJ
(δ3)
K + J(δ1)

J CuD
′

uJ(δ2)
K

)



2
. (3.7)

Note that using δ1 = 1, δ2 = 1, δ3 = 1 or δ4 = 1 enforces the sum-to-zero constraints on the

columns of Cu or Du, or on bt or as respectively. For example, estimating the parameters in JJas

is equivalent to estimating as subject to 1
′

Jas = 0.

We can now associate each of the terms in (3.6) with the corresponding terms in the model

(3.7), by substituting (3.6) in (3.7) so that

L(i |r, s, t,u) =



(δ1δ3 + δ2δ4 − δ1δ2)

(
1

JK 1
′

JXi1K − mr
)

1J1
′

K

+ δ11J

(
1
J 1
′

JXi − b
′

t

)
J(δ3)

K

+ δ2J(δ4)
J

(
1
K Xi1K − as

)
1
′

K

+ J(δ1)
J

(
Xi − CuD

′

u

)
J(δ2)

K ‖2 . (3.8)

It can be shown (see Appendix A for an overview) that for all choices of δ, with the exception

of the case δ
′

= (1,1,0,0), the decomposition is orthogonal such that

L(i |r, s, t,u) = JK 


(δ1δ3 + δ2δ4 − δ1δ2)
(

1
JK 1

′

JXi1K − mr
)




2
+ J 


δ1

(
1
J 1
′

JXi − b
′

t

)
J(δ3)

K





2

+ K 


δ2J(δ4)
J

(
1
K Xi1K − as

)



2

+



J(δ1)

J (Xi − CuD
′

u)J(δ2)
K





2

= L(o) (i |r) + L(r) (i |s) + L(c) (i |t) + L(i) (i |u). (3.9)

This equality follows from the fact that all the cross-products are zero. Furthermore, the

orthogonality leads to a profound simplification in the clustering, since now the loss function
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(3.2) equals

L(G(o),G(r),G(c),G(i),m,A,B,C,D)

=
∑

i,r,s,t,u

{
g(o)

ir L(o) (i |r) + g(r)
is L(r) (i |s) + g(c)

it L(c) (i |t) + g(i)
iu L(i) (i |u)

}

= JK
N∑

i=1

R∑
r=1

g(o)
ir




(δ1δ3 + δ2δ4 − δ1δ2)
(

1
JK 1

′

JXi1K − mr
)




2

+ K
N∑

i=1

S∑
s=1

g(r)
is




δ2J(δ4)
J

(
1
K Xi1K − as

)



2

+ J
N∑

i=1

T∑
t=1

g(c)
it




δ1
(

1
J 1
′

JXi − b
′

t

)
J(δ3)

K





2

+

N∑
i=1

U∑
u=1

g(i)
iu




J(δ1)
J

(
Xi − CuD

′

u

)
J(δ2)

K





2

= L(o)
(
G(o),m

)
+ L(r)

(
G(r),A

)
+ L(c)

(
G(c),B

)
+ L(i)

(
G(i),C,D

)
. (3.10)

Consequently, the joint clustering reduces to separate clusterings on the overall mean, row

margins, column margins and interactions respectively. To see why simplification in (3.10) is

possible after utilizing (3.9), consider the summation

R∑
r=1

S∑
s=1

T∑
t=1

U∑
u=1

g(o)
ir g(r)

is g(c)
it g(i)

iu



J(δ1)

J

(
Xi − CuD

′

u

)
J(δ2)

K





2
. (3.11)

As the term 


J(δ1)
J

(
Xi − CuD′

u

)
J(δ2)

K





2
only depends on the subscript u, the summations of the

other cluster types are equal to one because for each i we have
∑R

r=1 g
(r)
ir = 1,

∑S
s=1 g

(c)
is = 1, and∑U

u=1 g
(i)
iu = 1. The same holds for the other terms.

Different choices for δ lead to different model specifications, the choice of which should be

guided by the application. The nine different cases are summarized in Table 3.1. Note that Model

6 does not lead to an orthogonal decomposition and is therefore not discussed further. The most

general model is Model 1, which amounts to a clusterwise low-rank decomposition of the mean.

All the other models are essentially special cases of this model, stemming from specific forms for

Cu or Du or both. For example, Model 4 can be written as C∗uD∗′u where C∗u =
[
1J JJCu

]
and

D∗u =
[
bt Du

]
. We note that the added clustering adds additional restrictions on the parameters

which is not the case in ordinary bilinear models. Besides the choice of δ, the choice of either (a)

C1D′

u, (b) CuD′

1 or (c) CuD′

u must be made.
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Model δ1 δ2 δ3 δ4 Model for Xi

1 0 0 0 0 CuD′

u

2 0 1 0 0 as1
′

K + CuD′

uJK

3 0 1 0 1 mr1J1
′

K + JJas1
′

K + CuD′

uJK

4 1 0 0 0 1Jb
′

t + JJCuD′

u

5 1 0 1 0 mr1J1
′

K + 1Jb
′

tJK + JJCuD′

u

6 1 1 0 0 −mr1J1
′

K + as1
′

K + 1Jb
′

t + JJCuD′

uJK

7 1 1 0 1 JJas1
′

K + 1Jb
′

t + JJCuD′

uJK

8 1 1 1 0 as1
′

K + 1Jb
′

tJK + JJCuD′

uJK

9 1 1 1 1 mr1J1
′

K + JJas1
′

K + 1Jb
′

tJK + JJCuD′

uJK

Table 3.1: A summary of the models implied by different choices of δ. Note that Model 6 is not

orthogonal and is only included for completeness.
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3.3 Algorithm

Due to the form of the loss function (3.10), we can treat each of the components separately.

Conveniently, the loss functions L(o)
(
G(o),m

)
, L(r)

(
G(r),A

)
and L(c)

(
G(c),B

)
are specific k-

means problems (e.g. Everitt et al., 2011), on the rows of (say) the data matrix Y : N × d. In

each of these cases, Y can be defined as follows:

• For estimating G(o) and m, Y has a single column (d = 1) containing the overall means
1

JK 1
′

JXi1K of the {Xi};

• For estimating G(r) and A, the rows of Y (d = J) consist of the row mean vectors 1
K 1

′

KX′

i ;

and

• For estimating G(c) and B, the rows of Y (d = K) are the column mean vectors 1
J 1
′

JXi.

Hence optimizing L(o)
(
G(o),m

)
, L(r)

(
G(r),A

)
and L(c)

(
G(c),B

)
can resort to standard meth-

ods for k-means on the overall mean, row margins and column margins respectively. Also, there

are a variety of tools available for selecting R,S and T . We stress that caution is required with

respect to local minima in k-means clustering, which can be alleviated by using multiple random

starts.

The degrees-of-freedom for estimating the clusterwise overall means are (δ1δ3 + δ2δ4 −

δ1δ2)R, while the degrees-of-freedom associated with estimating the clusterwise row and column

means are δ2S(J−δ4) and δ1T (K −δ3) respectively. The degrees-of-freedom for the interactions

depends on the choice of (a), (b) or (c), and are deferred to the next section.

3.3.1 An Algorithm for the Interaction Clustering

We proceed to formulate a special algorithm for minimizing L(i)
(
G(i),C,D

)
based on block-

relaxation methods (see for example De Leeuw, 1994). The proposed algorithm iterates over

optimizing one set of parameters while keeping the others fixed. Specifically, in step (1) we

consider G(i) fixed and simultaneously update C and D, while step (2) consists of updating

G(i) while keeping C and D fixed at the values obtained in step (1). Finally, steps (1) and (2)

are repeated until numerical convergence of the loss function is observed. This algorithm is

guaranteed to converge monotonically, but only to local minima. It must be initialized by a

starting configuration for G(i). To increase the likelihood of locating the global minimum, it is

advisable to use multiple (random) starting values for G(i).
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We now describe the steps of our algorithm in more detail. To minimize L(i)
(
G(i),C,D

)
over

C and D for fixed G(i), it is useful to rewrite it as follows:

L(i)
(
G(i),C,D

)
=

N∑
i=1

U∑
u=1

g(i)
iu




J(δ1)
J

(
Xi − Xu + Xu − CuD

′

u

)
J(δ2)

K





2

=

N∑
i=1

U∑
u=1

g(i)
iu




J(δ1)
J

(
Xi − Xu

)
J(δ2)

K





2
+

U∑
u=1

Nu



J(δ1)

J

(
Xu − CuD

′

u

)
J(δ2)

K





2
. (3.12)

Here Nu =
∑N

i=1 g
(i)
iu is the cardinality of cluster u, and Xu = 1

Nu

∑N
i=1 g

(i)
iu Xi is the cluster mean.

Equality holds as the cross-product equals zero. Note also that (3.12) shows L(i)
(
G(i),C,D

)
to

be decomposable into two parts: the first term gives the deviations of the observations from

their respective cluster means, while the last term is the modelling part which models the cluster

means by a low-rank decomposition CuD′

u.

It is evident from (3.12) that estimating the Cu’s and Du’s only requires minimization of the

modelling term. In order to do this, we first make the following definitions:

D∗ =

[ √
N1 D′

1J(δ2)
K

√
N2 D′

2J(δ2)
K · · ·

√
NU D′

UJ(δ2)
K

] ′
;

C∗ =
[√

N1 C′

1J(δ1)
J

√
N2 C′

2J(δ1)
J · · ·

√
NU C′

UJ(δ1)
J

] ′
;

X(C) =

[ √
N1 X1J(δ2)

K

√
N2 X2J(δ2)

K · · ·

√
NU XUJ(δ2)

K

]
;

X(R) =

[ √
N1 X

′

1J(δ1)
J

√
N2 X

′

2J(δ1)
J · · ·

√
NU X

′

UJ(δ1)
J

] ′
. (3.13)

Distinction must be made between the three cases where (a) C1D′

u, (b) C′

uD1 or (c) C′

uD′

u applies.

For a specified rank P, we now consider finding updates for C and D in each of these cases.

(a) Suppose that C1D′

u applies. The last term in (3.12) can be rewritten as




J(δ1)
J X(C) − J(δ1)

J C1D
′

∗





2
. (3.14)

Hence by the Eckart-Young theorem (Eckart and Young, 1936), the best rank-P least-

squares approximation of J(δ1)
J X(C) is given by the truncated singular value decomposition

(SVD) of J(δ1)
J X(C). Consequently we can update C and D as follows:

J(δ1)
J C1 = UΓαL

D∗ = VΓ1−αL (3.15)
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where J(δ1)
J X(C) = UΓV′

is the appropriate SVD and the square matrix L of dimension

min{J,UK } is given by

L =



IP 0
0 0


. (3.16)

Hence multiplication by L sets all singular values except the first P equal to zero. The

parameter 0 ≤ α ≤ 1 is typically taken to be 0.5, but can be set by the user to improve

the interpretability of the graphical output (see Section 3.4). In this notation Γα denotes

the diagonal matrix where the diagonal contains the singular values to the power α. The

degrees-of-freedom for the interactions are P(J + UK − P − δ1 − δ2U) in this case. See

Appendix C for a short overview of how to derive this and the other degrees-of-freedom

stated in the current section.

(b) In case CuD′

1 applies, we can rewrite the last term in (3.12) as




X(R)J
(δ2)
K − C∗D

′

1J(δ2)
K





2
. (3.17)

Analogously to (a), the update is based on the SVD X(R)J
(δ2)
K = UΓV′

and is

C∗ = UΓαL

J(δ2)
K D1 = VΓ1−αL. (3.18)

Here L is square with dimensions min{U J,K }. In this case, the degrees-of-freedom

associated with the interactions are P(U J + K − P − δ1U − δ2).

(c) Finally, when both Cu and Du are cluster-specific, the update is based on the cluster-wise

SVD’s J(δ1)
J XuJ(δ2)

K = UuΓuV′

u. We then have

J(δ1)
J Cu = UuΓ

α
u L

J(δ2)
K Du = VuΓ

1−α
u L, (3.19)

with L having dimensions min{J,K }. The appropriate degrees-of-freedom are UP(J +

K − P − δ1 − δ2).

Hence the first step of our algorithm conveniently relies only on SVD’s. Now in step (2) G(i) is

updated while regarding C and D as fixed. The updated G(i) is constructed by simply assigning

each i to the cluster with the closest mean, hence minimizing L(i)
(
G(i),C,D

)
for each individual

in a greedy manner. This entails setting giki = 1 and zero elsewhere, where gi is the ith row of
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G(i) and ki is determined as

ki = arg minU
u=1




J(δ1)
J

(
Xi − CuD

′

u

)
J(δ2)

K





2
. (3.20)

We prefer reporting the minimized value of L(i)
(
G(i),C,D

)
after division by

∑N
i=1




J(δ1)
J XiJ

(δ2)
K





2
,

since this standardized value lies within [0,1].

3.3.2 Fit Diagnostics

If P ∈ {1,2,3} dimensions are used, biplots can be used to visualize the relationships between

the J objects and K attributes for each of the clusters. Biplots generalize scatterplots of two

variables to multiple variables (Gower and Hand, 1996; Gower et al., 2011), and rely on low-rank

inner product approximations.

Constructing biplots for the interactions here simply entails plotting the approximation of

J(δ1)
J XuJ(δ2)

K for each cluster. For example, for case (c) in (3.19) the object coordinates are given

by UuΓ
α
u L, while VuΓ

1−α
u L provides the coordinates for the attributes in P-dimensional space.

The inner products between the pairs of rows in these matrices are rank-P approximations of

the corresponding entries in J(δ1)
J XuJ(δ2)

K . Similar results are easily obtained for cases (a) and

(b). We defer discussion of the interpretation of these biplots to Section 3.4, where empirical

examples are examined.

It is possible to construct goodness-of-fit measures for the biplots used to visualize the

interactions. These are based on the proportion of variation accounted for by the model. A fit

value of one indicates perfect fit: the model captures all the variation in the data. In contrast,

low fit values imply that a substantial amount of variation occurs in the subspace orthogonal

to that identified by the model. An increase in fit can usually be achieved by increasing P, but

even though overall fit is guaranteed to improve with increasing P, the fit of all individual rows

and columns will not necessarily improve concurrently. In practice the choice P = 2 is the most

convenient because the biplots can readily be displayed.

Measures can be defined for the overall fit, the J objects as well as for the K attributes. Again,

we must distinguish between the three cases (a), (b) and (c). Case (c), where the applicable

model is J(δ1)
J CuD′

uJ(δ2)
K , is the simplest and therefore discussed first. The overall fit relies on the

result




J(δ1)
J XuJ(δ2)

K





2
=




J(δ1)
J CuD

′

uJ(δ2)
K





2

+



J(δ1)

J

(
Xu − CuD

′

u

)
J(δ2)

K





2
, (3.21)

which shows that the total sum-of-squares in cluster u can be decomposed into that explained by

the model and the residual sum-of-squares. We therefore define the overall quality of fit within
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cluster u for P dimensions as

ofit =
‖J(δ1)

J CuD′

uJ(δ2)
K ‖2

‖J(δ1)
J XuJ(δ2)

K ‖2
=

tr Γ2
uL

tr Γ2
u
. (3.22)

This is just the proportion of the variation in the cluster mean explained by the model. Here

tr A denotes the trace of the square matrix A, which is just the sum of its diagonal elements.

Diagnostics for the J objects rely on the more general decomposition(
J(δ1)

J XuJ(δ2)
K

) (
J(δ1)

J XuJ(δ2)
K

) ′
=

(
J(δ1)

J CuD
′

uJ(δ2)
K

) (
J(δ1)

J CuD
′

uJ(δ2)
K

) ′
+

(
J(δ1)

J

(
Xu − CuD

′

u

)
J(δ2)

K

) (
J(δ1)

J

(
Xu − CuD

′

u

)
J(δ2)

K

) ′
. (3.23)

Hence the total sum-of-squares for each of the objects can be decomposed orthogonally into the

part explained by the model in the first term on the right-hand side of (3.23), and the residual

sum-of-squares in the second term. The proportion of the variation explained by each of the

rows, also known as sample predictivities (Gower et al., 2011), is therefore given by

rfit =
[
diag J(δ1)

J CuD
′

uJ(δ2)
K DuC

′

uJ(δ1)
J

] [
diag J(δ1)

J XuJ(δ2)
K X

′

uJ(δ1)
J

]−1
1J

=
[
diag UuΓ

2α
u LU

′

u

] [
diag UuΓ

2α
u U

′

u

]−1
1J , (3.24)

with each element bounded on [0,1]. In this context, diag A denotes the diagonal matrix

constructed from the main diagonal of A.

The column fit for case (c) can be defined analogously for each of the K attributes as

cfit =
[
diag J(δ2)

K DuC
′

uJ(δ1)
J CuD

′

uJ(δ2)
K

] [
diag J(δ2)

K X
′

uJ(δ1)
J XuJ(δ2)

K

]−1
1K

=
[
diag VuΓ

2α
u LV

′

u

] [
diag VuΓ

2α
u V

′

u

]−1
1K . (3.25)

These quantities are also known as axis predictivities (Gower et al., 2011). Diagnostics for

cases (a) and (b) are deferred to Appendix C.

The loss contribution for person i towards the interactions is defined as

L(i) (i) =

U∑
u=1

g(i)
iu L(i) (i |u) =

U∑
u=1

g(i)
iu




J(δ1)
J

(
Xi − CuD

′

u

)
J(δ2)

K





2
. (3.26)
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This gives an indication of badness-of-fit, and the sum over all persons gives the minimized value

of L(i)
(
G(i),C,D

)
. These loss contributions account for possible differences in origin, scale

and/or rotation between a person’s interactions and the modelled cluster mean J(δ1)
J CuD′

uJ(δ2)
K . A

more informative manner of presenting these loss contributions may be as percentage contribu-

tions to L(i)
(
G(i),C,D

)
.

An alternative measure of person fit which is bounded on [−1,1] is given by

pfit(i) =

U∑
u=1

g(i)
iu

tr J(δ1)
J XiJ

(δ2)
K DuC′

u



J(δ1)

J XiJ
(δ2)
K








J(δ1)

J CuD′

uJ(δ2)
K





. (3.27)

This only takes into account differences in rotation and origin, and high values indicate good

fit whilst negative values indicate poor fit. When the origins coincide, the quantity (3.27)

can be interpreted as a product-moment correlation coefficient between Vec J(δ1)
J XiJ

(δ2)
K and

Vec J(δ1)
J CuD′

uJ(δ2)
K . The notation Vec A denotes the vector formed by concatenating the columns

of a matrix A into a single vector.

3.3.3 Biplot Interpretability

When neither the row nor column configurations are fixed across biplots, as is the case in

(c), it can aid interpretation to rotate the configurations so that the axes lie more or less in

the same direction. For any orthogonal matrix Qu, it holds for the inner product matrices

that CuD′

u =
(
CuQu

) (
DuQu

) ′
, and hence these are invariant to orthogonal rotations. The

problem of finding orthogonal matrices Qu,u = 1,2, . . . ,U, such that either the row or column

configurations match each other as closely as possible is known as the generalized orthogonal

Procrustes problem (Gower, 1975; Gower and Dijksterhuis, 2004).

Supposing without loss of generality that we use the J(δ1)
J Cu as axes in the biplots, a typical

loss function for this problem is

L
(
Q1, · · · ,QU

)
=

U∑
u<v

‖J(δ1)
J CuQu − J(δ1)

J CvQv ‖
2

= U
U∑

u=1

‖J(δ1)
J CuQu −H‖2 (3.28)

where H = U−1 ∑U
u=1 J(δ1)

J CuQu. A solution for (3.28) can be obtained through an alternating

least-squares (ALS) algorithm; see Gower and Dijksterhuis (2004) for more details.

We note that two types of scalings can be used to make the biplot displays more attractive,

namely α and λ scaling. First, since our choice of α does not change the inner product
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approximations (3.15), (3.18) and (3.19), we are free to choose it such that the resulting biplots

are easy to interpret. In our software implementation we use as a heuristic method the value of α

which maximizes the minimum Euclidean distance over all row and column points to the origin.

Alternatively, the user can choose any other quantile of these distances, such as the median, or

specify the desired value of α explicitly.

Second, note that for matrices A and B it holds that AB′ = (λA)(B′/λ), so that λ can also

be freely chosen. Following Gower et al. (2011), we choose λ such that the average squared

Euclidean distances from the two sets of points represented by the rows of the matrices in (3.15),

(3.18) and (3.19) to the origin are equal. For case (c) in (3.19) for example, this amounts to

choosing

λ =

(
J‖VΓ1−α

u L‖2

K ‖UΓαu L‖2

)1/4

=

(
J tr Γ1−α

u L
K tr Γαu L

)1/4

. (3.29)

3.3.4 Model Selection

Some questions remain, including how to select the number of segments for each of the four

clustering problems, and what to do when missing values are present in the data. Here and in the

next section we give a short description of viable options for dealing with these issues, which are

by no means intended to be exhaustive. The applications of Section 3.4 will further illustrate

some of the points raised here.

Selection of the number of clusters can be handled separately for each of the four clustering

problems. Many criteria have been proposed in the literature, especially in the context of k-

means and hierarchical clustering. Naturally, these can be utilized directly for the three k-means

subproblems, and most can also be used for the interaction clustering. The simplest approach,

and the one we use here for illustration, is probably the scree test (Cattell, 1966). This method

involves running the algorithm for several values of k and plotting the loss function against k.

The user must then choose a value for k based on this so-called scree plot, such that the chosen k

is close to an “elbow” in the plot. This indicates that adding additional groups to the analysis

does not significantly increase how well the results describe the data.

A variation of the scree test is the convex hull (CHull) procedure of Ceulemans and Kiers

(2006), which uses a measure of model complexity other than k, such as the degrees-of-freedom,

for the scree plot. A convex hull is constructed from these points and a point close to the resulting

elbow is selected, which represents a trade-off between model complexity and goodness-of-fit.

This approach has recently been used successfully in several component analysis contexts (e.g.

Schepers et al., 2008; Ceulemans and Kiers, 2009; Ceulemans et al., 2011; Lorenzo-Seva et al.,

2011).
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Several other approaches have also been proposed in the literature, such as the Caliński-

Harabasz criterion (Caliński and Harabasz, 1974), the Krzanowski-Lai criterion (Krzanowski

and Lai, 1988), the silhouette plot (Kaufman and Rousseeuw, 1990), the gap statistic (Tibshirani

et al., 2001), the jump method (Sugar and James, 2003) and bootstrapping (Dolnicar and Leisch,

2010). Milligan and Cooper (1985), Hardy (1996) and Everitt et al. (2011) provide an assessment

of some of these criteria and additional references. Experimenting with such alternative criteria

are left for future research.

We note that it is also possible to select the number of clusters for all four subproblems at

the same time. This may be easier to achieve with e.g. the CHull procedure than doing model

selection separately. This approach can also be employed when the analyst wishes to treat the

dimensionality of the interactions P as part of the model selection process.

3.4 Applications

We discuss two empirical examples: the first considers the evaluation of car manufacturers by a

Dutch consumer panel, while the second considers the list of values data set (e.g. Van Rosmalen

et al., 2010).

3.4.1 Car Manufacturers

This data set consists of 187 persons evaluating 10 car manufacturers on a set of 8 attributes, as

collected via an online survey (Bijmolt and van de Velden, 2012). The data is a subset of a larger

set collected from panellists within the CentERpanel of Tilburg University in the Netherlands.

The sample used was selected to be representative of the population of Dutch households. The

car brands and items were presented in random order to each respondent, with the order of the

items fixed per respondent. More information regarding the data collection can be found in

Bijmolt and van de Velden (2012).

The manufacturers considered are ten international brands, namely Citroën, Fiat, Ford, Opel,

Peugeot, Renault, Seat, Toyota, Volkswagen and Volvo. The task respondents were taxed with

was to rate each of these brands on 8 different attributes using a 10-point rating scale. For

6 out of the 8 items, namely Affordability, Attractiveness, Safety, Sportiness, Reliability and

Features, a score of 10 relates to the most desirable outcome. However, for the items Size and

Operating Cost, a score of 10 reflects small cars and those with high operating costs respectively.

Consequently, higher ratings on these items indicate more negative assessments.

We fit an lsbclust model with δ = (1,1,1,1) so that the overall means, row means, columns

means and interactions are estimated separately. Also, we use P = 2 dimensions and fix the
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coordinates of the 10 car brands across all interaction biplots (case (a)). The number of clusters

to use for each of the four components must be determined. As mentioned in Section 3.3.4, this

can be done separately for each subproblem. Here we fit lsbclust models for 1 to 15 clusters

and inspect the resulting scree plots to select R,S,T and U. Based on these plots, we selected

R = 5, S = 8, T = 6 and U = 8 clusters. We note that these choices are subjective, should take

into account the aims of the research and that alternative selection criteria can also be used. The

number of random starts used for the interaction and k-means clustering were 100 and 1000

respectively.

The mean ratings for each of the five overall mean clusters are shown in Figure 3.1. Most

interesting here are that 8 and 3 persons used very high and very low scores overall respectively

(clusters O4 and O5). Inspecting the individuals belonging to Segment O5, we can identify

individuals 50, 66 and 85, all of which respond with a rating of 1 to all items on all car brands,

save for a single 2 assigned by person 66. These respondents obviously do not provide very

interesting information in their answers, but since their corresponding row means, column means

and interactions do not differ from the overall mean, we do not have to remove them from

our analysis. These person are merely assigned to the row, column and interaction segments

containing negligible effects (see below). In a similar vein, of the 8 persons in Segment O4,

individuals 40, 47, 151 and 162 exclusively use rating category 10. The remaining persons in

this cluster also almost exclusively use high ratings. lsbclust has therefore been able to identify

the 11 persons in clusters O4 and O5 who provide very little sensible information.

Figure 3.2 displays the means of the eight car brand (row) clusters across all attributes.

Effect sizes can be read off on the horizontal axis. Both Segments R7 and R8 consist of single

individuals, namely persons 121 and 156 respectively. Person 121 used constant ratings for all

car brands, except for Citroën (perhaps indicating that this person owns a Citroën). Specifically,

10’s were assigned to Fiat and Toyota, 1’s to Opel and Seat and 6’s to the other brands. Segment

R8 can be explained by only 10’s being assigned to Fiat and Toyota and 1’s to Peugeot and

Volvo by person 156. Segment R6 contains 2.7% of respondents who scores Peugeot on average

nearly 2.5 points below average, and rather prefers Fiat and Toyota, albeit with smaller effects

(approximately 1.2 and 1.5 above average respectively). Segment R5 (8%) is not attracted to

Opel with a negative mean effect of approximately 1.6 rating points, but does like Renault and

Citroën somewhat. Persons in Segment R4 (9.6%) mainly dislike Volvo, scoring it 1.6 below

average. The remaining segments can be interpreted similarly. Note that the largest cluster (R1,

48.7%) does not contain any large effects, indicating that these consumers do not have strong

preferences for any of the brands across all attributes.

The attribute (column) mean effects for all six clusters are displayed in Figure 3.3. There are

no singleton clusters here. Segment C6 (7%) consists of respondents who assign high scores



60 Least-Squares Bilinear Clustering of Three-Way Data

n = 105

n = 45

n = 26

n = 8

n = 3

0.0

2.5

5.0

7.5

10.0

O1 O2 O3 O4 O5
Cluster

M
ea

n

Overall means

Figure 3.1: Clusterwise overall means detected for the cars data.
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Figure 3.2: Car manufacturer (row) cluster means detected in the cars data. The size of the

effects can be read off from the horizontal axis.
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Figure 3.3: Attribute (column) cluster means detected in the cars data.

to Safety and Reliability irrespective of the car brand, with effects of approximately 1.4 and

1.3 respectively. Operating Cost and Size are also assessed positively on average, taking into

account that for these items lower scores are better. The effects are approximately −1.4 and

−1.7 on these two items. Segment C5 (8%) is somewhat curious in that the large negative

effect on Affordability (−1.6) dominates. These respondents give ratings below their average

on Affordability, irrespective of the car brand. Affordability also has a large negative effect in

Segment C4 (11.8%), together with positive effects for Safety, Size and Reliability. The largest

segment, C1 (36.9%), again has negligible effects.

The most interesting results can be found among the interactions, which is where respondents

distinguish between different car manufacturers on the measured attributes. Figure 3.4 shows the

biplots for the eight interaction segments. The car manufacturers are represented by points, and

the attributes by arrows. The labels, points and arrows are shaded according to their goodness-

of-fit, with well-fitting points being darker. The locations of the car brands are fixed across all

biplots to make them easier to interpret. All car brands except Ford, with a fit of only 0.04,

fit reasonably well – see Table 3.1. It is immediately apparent that the French manufacturers

(Peugeot, Citroën and Renault) are judged to be similar, while the German brands Opel and

Volkswagen are also located close together. The Swedish car manufacturer, Volvo, is somewhat

isolated towards the right of the biplots. Fiat and Toyota are judged to be somewhat similar to

the French and German brands respectively. Seat in turn are most similar to Toyota. By virtue of

its low fit, Ford is hardly visible and lies near the origin.

The fit for the eight attributes vary per segment and is summarized in Table 3.2. Typically

only a subset of items fit well in each segment, and only those with a fit larger than 0.5 are

adorned with calibrated axes in Figure 3.4. For any manufacturer, the estimated cluster mean

effects can be read off from the orthogonal projection of its representing point unto the biplot

axes. For example, Volkswagen scores approximately 2 points above that predicted by the

overall mean, row mean and column mean on Safety in Segment I8. Also, Volvo score about 3.3

rating points below the overall and marginal effects on Affordability in the same segment. The
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overall variance accounted for is 82.5% in two dimensions, with 63.2% and 19.2% attributed to

dimension 1 and 2 respectively. Hence two dimensions are a reasonable choice.

Again, the largest Segment I1 (31.6%) represents very small effects, indicating that there is a

significant proportion of respondents who did not discern between the car manufacturers based

on the measured attributes. Predictably, this includes the 11 persons in Segments O4 and O5

discussed above. Segment I2 (16.6%) is characterized by large effects on Affordability, Size,

Safety and Operating Cost. In particular, Affordability goes hand-in-hand with smaller cars (i.e.

higher scores on Size), while high Operating Cost is strongly associated with increased Safety.

Volvo scores well on Safety and Size but badly on Operating Cost and Affordability. On the

other end of the scale Seat, Fiat and Toyota are seen as producing more affordable, smaller cars

which are less safe to drive.

The 15% of respondents in Segment I3 consider Affordability and Size by far the most

important items. These attributes are also highly correlated: more affordable cars are the smaller

ones. Safety and Reliability also correlates, and Attractiveness as well as Features, although to

a lesser extent, also elicit relatively large effects. Seat scores well on Affordability but low on

size, as does Fiat, but these cars are seen as unsafe and unreliable. Fiat is considered much more

attractive that Seat, but less than the French cars and Volvo. Volvo are now seen as both safe and

reliable, but also as the most attractive brand.

Segment I4 (9.6%) displays large effects on Affordability, Reliability, Safety and Attrac-

tiveness. As in Segment I3, cars cannot be affordable as well as safe and reliable at the same

time. Attractiveness is more or less orthogonal to these polar opposites. People in this segment

consider Fiat to be the most affordable, even more so than Seat. Volvo is followed by Volkswagen

in Safety and Reliability but Volkswagen cannot compete with Volvo in terms of Attractiveness.

The French cars are seen as the most attractive though.

In segment I5 (9.1%), Affordability again elicits the largest effects, although smaller than

in some of the previous segments. In this case, Fiat, Renault and Citroën are seen as the most

affordable cars while Volkswagen and Volvo again score badly in this category. Volkswagen,

Opel and Toyota are seen as the most attractive. Segment I6 (8.6%) harbours even smaller effects,

the largest being with respect to Safety, Affordability and Operating Cost. In the opinions of

these respondents, better Affordability means higher Operating Costs and lower Safety. It is

particularly interesting to see that these people do not believe that Volvo’s are safe, but do think

they are affordable. This contrasts with most other segments. Seat and Fiat are considered the

safest cars in this case, but they are considered to be expensive too.

Size and Affordability are again highly correlated in segment I7 (5.3%), and responsible

for some large effects. These attributes are strongly opposed to Features, Sportiness, Safety

and Reliability. Fiat and Seat score best on Size and Affordability, but score low on Features.



3.4 Applications 63

−0
.4

−0
.2

0.
2

0.
4

−0
.3

−0
.2

−0
.1

0.
1

0.
2

0.
3

−0
.3

−0
.2

−0
.1

0.
1

0.
2

Af
fo

rd
ab

ilit
y

Sp
or

tin
es

s
Fe

at
ur

es

C
itr

oe
n

Fi
at

O
pe

l

Pe
ug

eo
t

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
en

Vo
lvo

In
te

ra
ct

io
ns

 1
 (3

1.
6%

)

−3
−2

−1

1
2

3

−1

1

−2
−1

1
2

−2

−1

1

2

−0
.5

0.
5

−0
.5

0.
5

Af
fo

rd
ab

ilit
y

Sa
fe

ty

O
pe

ra
tin

gC
os

t

Si
ze

C
itr

oe
n

Fi
at

Fo
rd O

pe
l

Pe
ug

eo
t

R
en

au
lt

Se
at To

yo
ta

Vo
lk

sw
ag

en

Vo
lvo

In
te

ra
ct

io
ns

 2
 (1

6.
6%

)

−4
−2

2
4

−2

−1

1

2

−3
−2

−1
1

2
−2

2

−3

−2

−1

1

2

3

−1

1

2

Af
fo

rd
ab

ilit
y

At
tra

ct
ive

ne
ss

Sa
fe

ty
Si

ze
R

el
ia

bi
lit

y

Fe
at

ur
es

C
itr

oe
n

Fi
at

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
en

O
pe

l

Vo
lvo

In
te

ra
ct

io
ns

 3
 (1

5%
)

−3
−2

−1

1
2

3

−1

1

−2
−1

1
2

−1

−0
.5

0.
5

1

−1
−0

.5
0.

5
1

−2

−1

1

2

Af
fo

rd
ab

ilit
yAt

tra
ct

ive
ne

ss

Sa
fe

ty
O

pe
ra

tin
gC

os
t

Sp
or

tin
es

s
Si

ze R
el

ia
bi

lit
y

Fe
at

ur
es

C
itr

oe
n

Fi
at

O
pe

l

Pe
ug

eo
t

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
enVo

lvo

In
te

ra
ct

io
ns

 4
 (9

.6
%

)

−3

−2

1

2

3
−1

.5

−1

1

1.
5

−1

−0
.5

0.
5

−1

0.
5

1

−1

1

1.
5

−1

1 1.
5

Af
fo

rd
ab

ilit
y

At
tra

ct
ive

ne
ss

Sa
fe

ty

O
pe

ra
tin

gC
os

t

Sp
or

tin
es

s

Si
ze

R
el

ia
bi

lit
y

Fi
at

O
pe

l

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
en

Vo
lvo

In
te

ra
ct

io
ns

 5
 (9

.1
%

)

−1
−0

.5
1

−1

1
1.

5

−1
1

−0
.5

0.
5

−0
.5

0.
5

Af
fo

rd
ab

ilit
y

At
tra

ct
ive

ne
ss

Sa
fe

ty

O
pe

ra
tin

gC
os

t
Si

ze
R

el
ia

bi
lit

yC
itr

oe
n

Fi
at

O
pe

l

Pe
ug

eo
t

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
en

Vo
lvo

In
te

ra
ct

io
ns

 6
 (8

.6
%

)

−4

2

4

−2

−1

1

2

−1

1

−1−0
.5

0.
511.
5

2

−1

1
−4

2

4

−2

1

−2
−1

1
2

Af
fo

rd
ab

ilit
y

At
tra

ct
ive

ne
ss

Sa
fe

ty

O
pe

ra
tin

gC
os

t

Sp
or

tin
es

s

Si
ze

R
el

ia
bi

lit
yFe

at
ur

es

C
itr

oe
n

Fi
at

Fo
rd

O
pe

lPe
ug

eo
t

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
enVo

lvo

In
te

ra
ct

io
ns

 7
 (5

.3
%

)

−4

−2

2

4

6

−4

−2

24

−4

−2

2

4

−4

−2

2

−4

−2

2

4

−4

−2

2

4

−2

−1

1

2

3

Af
fo

rd
ab

ilit
y

At
tra

ct
ive

ne
ss

Sa
fe

ty

O
pe

ra
tin

gC
os

t

Sp
or

tin
es

s

Si
ze

R
el

ia
bi

lit
y

Fe
at

ur
es

C
itr

oe
n

Fi
at

O
pe

l

R
en

au
lt

Se
at

To
yo

ta
Vo

lk
sw

ag
en

Vo
lvo

In
te

ra
ct

io
ns

 8
 (4

.3
%

)

Fi
gu

re
3.

4:
B

ip
lo

ts
fo

rt
he

in
te

ra
ct

io
n

cl
us

te
rs

de
te

ct
ed

in
th

e
ca

rs
da

ta
.E

ac
h

at
tr

ib
ut

e
is

re
pr

es
en

te
d

by
a

ve
ct

or
,a

nd
th

os
e

w
hi

ch
fit

w
el

l

al
so

by
ca

lib
ra

te
d

ax
es

.T
he

ca
rm

an
uf

ac
tu

re
rs

ar
e

re
pr

es
en

te
d

by
po

in
ts

,a
nd

th
e

or
th

og
on

al
pr

oj
ec

tio
ns

of
th

es
e

po
in

ts
on

to
th

e
at

tr
ib

ut
e

ax
es

gi
ve

th
e

es
tim

at
ed

m
ea

n
eff

ec
ts

.T
he

co
lo

ur
s

an
d

la
be

ls
ar

e
fa

de
d

ac
co

rd
in

g
to

ho
w

w
el

lt
he

y
fit

in
to

th
e

di
sp

la
y:

so
lid

co
lo

ur
s

fit
w

el
l

an
d

tr
an

sp
ar

en
to

ne
s

fit
ba

dl
y.



64 Least-Squares Bilinear Clustering of Three-Way Data

Volkswagen and Opel are seen as the most attractive cars. Finally, the smallest segment (Segment

I8, 4.3%) considers Attractiveness and Features to be correlated, as well as Affordability and

Size, and Reliability and Safety. The French cars score well on Attractiveness and Features,

followed by Fiat and Volvo. Volkswagen are now seen as safer and more reliable than Volvo,

with Opel also scoring well in these categories. Seat and Toyota score more than two rating

points above the marginal effect on Affordability, but are considered to produce particularly

small cars. Volvo and the French manufacturers produce much larger models. Volvo is the only

manufacturer to combine attractive cars with high Safety and Reliability, but they are by far the

most expensive.

Brand All segments

Citroën 0.72
Fiat 0.87
Ford 0.04
Opel 0.63
Peugeot 0.53
Renault 0.82
Seat 0.92
Toyota 0.66
Volkswagen 0.75
Volvo 0.97

Table 3.1: Brand fit for the cars data across all clusters. Higher values indicate better fit, with a

maximum of one and minimum of zero.

Interaction segment
Item I1 I2 I3 I4 I5 I6 I7 I8

Affordability 0.52 0.96 0.94 0.93 0.72 0.83 0.95 0.80
Attractiveness 0.39 0.25 0.93 0.74 0.62 0.38 0.68 0.83
Safety 0.38 0.91 0.98 0.94 0.51 0.92 0.68 0.90
OperatingCost 0.46 0.94 0.08 0.64 0.66 0.90 0.53 0.57
Sportiness 0.51 0.22 0.03 0.56 0.28 0.35 0.73 0.26
Size 0.15 0.87 0.95 0.44 0.61 0.76 0.87 0.89
Reliability 0.07 0.62 0.97 0.98 0.69 0.71 0.83 0.84
Features 0.60 0.68 0.51 0.45 0.00 0.12 0.77 0.81

Table 3.2: Attribute fit for the cars data, for all eight interaction segments.
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3.4.2 List of Values

The list of values (LOV) is a well-known values system, developed in Kahle (1983), which asks

respondents to indicate the importance of nine different values as a guiding principle in their

lives. These items are: (1) a sense of belonging, (2) excitement, (3) warm relationships with

others, (4) self-fulfillment, (5) being well-respected, (6) fun and enjoyment in life, (7) security,

(8) self-respect and (9) a sense of accomplishment (Van Rosmalen et al., 2010). A labelled nine-

point rating scale with endpoints ‘very important’ (category 1) to ‘not important at all’ (category

9) are used for all items. LOV data have been studied in single or multi-country contexts in

various studies, including Beatty et al. (1985); Grunert and Scherlorn (1990); Kamakura and

Novak (1992); Brunsø et al. (2004); Chryssohoidis and Krystallis (2005); Lee et al. (2007);

Sudbury and Simcock (2009).

The particular data set we analyse here originates from a commercial survey performed in

1996 (Van Herk, 2000), and was also analysed by Van Rosmalen et al. (2010). As in many

data sets collected using rating scales, there are some concern regarding differences in response

style between respondents. Response styles are related to respondents exercising their freedom-

of-choice with respect to how to the rating scale is used, irrespective of the item content (e.g.

Baumgartner and Steenkamp, 2001). For example, a person exhibiting an extreme response

style may choose to use rating categories one and nine a majority of the time, while a person

exhibiting midpoint scoring may favour mainly categories four, five and six. Crucially, response

styles do not convey anything regarding the preference that a person may have for the items.

Therefore response style effects should be accounted for separately in a model so that these

effects are not confounded with the substantive information in the data.

Van Rosmalen et al. (2010) develop the so-called latent-class bilinear multinomial logit

(lc-bml) model specifically to deal with situations where response styles are a concern. The

lc-bml model is a parametric finite mixture of multinomial logit models which models the

response to all items jointly. Also, this model simultaneously segments respondents into two

types of clusters, namely response style and substantive item segments. Similarly to lsbclust,

the lc-bml model produces biplots describing the relationship between the values and the rating

categories within each item segment. The coordinates of the rating categories are fixed across all

biplots. The response styles are modelled as marginal effects for the rating categories.

A nonparametric equivalent of the lc-bml model can be formulated within the lsbclust

framework. The data array is constructed by transforming each observation into an indicator

matrix, with the rows representing the respective rating categories and the columns the value

items. Each column contains a single one indicating which rating was used to answer that

item. In effect we therefore consider the rating scale as one of the modes in our three-way data
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set. Choosing δ = (0,1,0,0) fits a model containing only row or response style effects and

interactions. Additionally, we use the option (a) C1D′

u as a model for the interactions so that the

coordinates for the rating categories are fixed across biplots. The resulting model is, except for

the inclusion of demographic variables in the lc-bml model, equivalent to the lc-bml model. It

has the distinct advantage of being much faster to compute, as least-squares estimation and crisp

clustering are used instead of maximum likelihood and finite mixture models.

Our particular sample consists of 4514 respondents from five European countries (Great

Britain, France, Germany, Italy and Spain). The demographic variables Education (Low or High)

and Age (0–25, 25–39, 40–54 or 55+ years) are also available. There are 344 missing values

in the data, spread among 141 respondents. In order to emulate the results in Van Rosmalen

et al. (2010), we follow their convention of adding a specific rating category labelled ‘NA’ for

the missing value. Also, all respondents who did not answer any item or who answered all items

with the same rating were removed from the sample, as well as those who did not disclose either

or both of the demographics Education and Age. Van Rosmalen et al. (2010) report that this

resulted in a deletion of 8% of the original respondents.

For comparability, we use the same number of clusters as Van Rosmalen et al. (2010): 11 row

and 5 interaction segments, with two-dimensional biplots. These were selected for the lc-bml

model by using the Bayesian Information Criterion (BIC; Schwarz, 1978). The number of starts

used in lsbclust for the row and interaction effects were 1000 and 100 respectively. The clusters

for the row effects (response styles) are summarized in Figure 3.5. For comparison the response

styles detected by lc-bml are given in Figure 3.6 (see also Table 2 in Van Rosmalen et al. (2010)).

These have been reordered such that they match more or less those detected by lsbclust.

There are definite similarities between the two sets of clusters. Quite clearly segments R1

(18.7%) and R1* (17.5%) correspond quite closely, indicating that slightly more than 1 in every

6 people tend to use rating category 1 (‘very important’) for 75% of their answers. This is an

extreme form of an acquiescent response style, which favours positive responding (Baumgartner

and Steenkamp, 2001). Segments R2 (16.6%) and R2* (16.7%) agree closely and indicate that a

less severe acquiescent response style is used by approximately 1 in every 6 persons. In addition,

clusters R3 (14.1%) and R4 (13.6%) are also versions of acquiescence, but with less focus on

category 1 only. We note that the similarity between R3 and R3* (24.2%) are not perfect, but

R4 and R4* does correspond well. Indeed R3* was the largest segment detected by the lc-bml

model. Among the remaining segments, there are also strong agreement between the lsbclust

and lc-bml results, except for R8 (5%) and R9 (4.5%). These segments can be interpreted as

imperfect forms of midpoint responding. We note that lsbclust tend to identify more balanced

response styles while the lc-bmlmodel identifies styles which give large points masses to specific

ratings.



3.4 Applications 67

R1 (18.7%) R2 (16.6%) R3 (14.1%) R4 (13.6%) R5 (9.7%) R6 (9.1%)
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Figure 3.5: Response styles (row main effects) detected by lsbclust.

R1* (17.5%) R2* (16.7%) R3* (24.2%) R4* (14.1%) R5* (6.5%) R6* (9.3%)
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Figure 3.6: Response styles detected by the lc-bml model (see Table 2 in Van Rosmalen et al.,

2010). The order of the segments have been adjusted so that it matches those of Figure 3.5 as

closely as possible.
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The interaction segments detected by lsbclust are shown as biplots in Figure 3.7. The overall

fit is very high at 99.1% for two dimensions, with 88.5% attributed to the first dimension alone.

The goodness-of-fit for the rating categories and value items are given in Table 3.3 and 3.4. All

rating categories except the ‘NA’ category fit very well; likewise the fit for the items are very

high in almost all cases.

Looking at the rating categories, the variation on the first dimension is associated almost

exclusively with effects on rating category 1. Categories 1 and 2 are involved in the largest

effects, but these categories are almost orthogonal. This indicates that a large effect on category

1 does not necessarily translate to a similarly large effect on category 2. The second dimension is

associated with effects on category 2 and to a lesser extent categories 4 through 9. The directions

of the axes for these latter categories are very similar, indicating that when a respondent uses

one of these categories other persons in the same segment are likely to use one of these ratings

too. This suggests that we should perhaps consider collapsing these categories into a single one.

Effects on the ‘NA’ category is very small – being very close to the origin it is not labelled in the

biplots.

Segment I1 (31.1%) contains respondents who attach most importance to a sense of belonging,

warm relationships and self-respect, and find excitement the least important value. The effects in

this segment are not particularly large, indicating that these persons do not consider the values to

differ very much in importance. Segment I2 (20.8%) boasts much larger effects, with self-respect

now considered the most important value followed by security and fun and enjoyment. The

least important values in this segment are excitement, being respected and self-fulfilment. In I3

(20.3%), self-fulfilment and self-respect are most valued while belonging and excitement are

not considered important. Segment I4 (15.4%) is characterized by the great importance attached

to being respected and self-respect, while a sense of belonging, excitement and self-fulfilment

are not considered important. Finally, in I5 (12.4%) the most importance is attached to fun and

enjoyment, with self-respect also considered important. Least important in this segment is a

sense of belonging and excitement.

Drawing comparisons between our segments and those detected by lc-bml in Van Rosmalen

et al. (2010) proves to be a difficult task. This is not entirely unexpected as there are substantial

differences between the methods. The most important difference is that lsbclust models the

interactions directly whilst the lc-bml models the response probabilities. Hence the resulting sets

of biplots are on different scales.
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Figure 3.7: Biplots for the interaction segments detected in the LOV data. Rating categories

are indicated as vectors and biplot axes, while the LOV items are indicated by labelled points.

Points, lines and labels are shaded according to their goodness-of-fit (see Tables 3.3 and 3.4).
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All segments

1 1.00
2 1.00
3 0.90
4 0.94
5 0.98
6 0.91
7 0.92
8 0.85
9 0.86
NA 0.60

Table 3.3: Rating category fit for the LOV data across all interaction segments.

Interaction segment
Item I1 I2 I3 I4 I5

Belonging 0.97 0.98 1.00 0.98 0.94
Excitement 0.97 0.99 1.00 1.00 0.98
Relationships 0.92 0.35 0.96 0.97 0.96
Self-fulfilment 0.80 0.99 1.00 1.00 0.95
Respected 0.91 0.99 0.98 1.00 0.73
Enjoyment 0.99 0.98 0.95 0.99 1.00
Security 0.97 1.00 0.99 1.00 0.96
Self-respect 0.95 1.00 1.00 1.00 0.98
Accomplishment 0.73 0.99 1.00 0.99 0.96

Table 3.4: Item fit for the LOV data across all interaction segments.

3.5 Conclusions

lsbclust is a modelling framework for three-way data, where one of the three ways is clustered

over whilst the corresponding matrix slices are approximated by low-rank decompositions.

The philosophy is to alternate between finding clusters of similar two-way matrices and doing

low-rank matrix decompositions within each cluster. The clustering is done simultaneously

with respect to up to four different aspects of these matrix slices, namely the overall mean

responses, the row means, the column means, and the row-column interactions. These are

the four elements of the biadditive (or bilinear) model used to approximate each of the matrix

slices. Which of these terms are included in the model depends on the choice of identifiability

constraints, as elegantly parametrized by δ. We show that in eight out of nine unique choices

for δ, the combination of the bilinear model and least-squares loss allows the four clustering
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problems to be treated independently. This important property greatly simplifies the complexity

of the clustering problem, which also has positive implications for model selection and the

interpretation of the results. The low-rank decompositions of the interaction cluster means lead

to readily interpretable biplots which greatly aid in the interpretation of the results.

We argue that lsbclust is a useful and natural alternative to more traditional three-way matrix

decomposition methods such as parafac/candecomp and tuckals3. Whereas these methods can

be difficult to interpret, hard to fit and require careful study to understand properly, lsbclust

uses a combination of well-known statistical methods in k-means cluster analysis, low-rank

decompositions of two-way matrices and biplots. Since least-squares loss functions are used, the

problems can be treated very efficiently in software. Such software implementing lsbclust has

been developed in the form of an eponymous R (R Core Team, 2015) package. The package,

lsbclust (Schoonees, 2015a), is available for download from the Comprehensive R Archive

Network (CRAN, http://cran.r-project.org).

There are some points that require further research. The treatment of missing values have not

been discussed, apart from adding a dedicated catch-all missing category in the LOV example

(Section 3.4.2). More refined techniques can be employed, such as iterative majorization (Kiers,

1997), and should be investigated in the future. In terms of model selection, a wide variety of

alternatives to the scree test can and should be investigated. There are a number of promising

methods out there, including using multiple criteria and taking a vote to determine the most

attractive choice. We note that the rank of the low-rank decomposition can also be considered as

a model selection step. Furthermore, it would be possible to add case weights to the methodology.

An advantage of case weights is that it allows a mechanism for implementing the bootstrap (e.g.

Efron and Tibshirani, 1994) to assess the variability of any given solution.

Finally, we have compared the results of lsbclust when δ = (0,1,0,0) and the lc-bml model

of Van Rosmalen et al. (2010) in the LOV example (Section 3.4.2). This required reformulating

a two-way data set of categorical variables as three-way data by introducing dummy variables

for each of the rating categories as the third way. Interestingly, there were obvious similarities

between the response styles detected by both methods, but not so much among the interaction

segments. The differences in the interaction clusters found can most likely be attributed to some

important differences between the two methods: crisp clustering (lsbclust) versus probabilistic

clustering (lc-bml), least-squares approximation of matrices (lsbclust) compared to generalized

linear modelling of response probabilities (lc-bml), and the inclusion of covariates in the lc-bml.

A definite advantage of lsbclust over lc-bml is that the results can be computed in a fraction of

the time needed to run the Expectation-Maximization algorithm needed for the latter.

http://cran.r-project.org
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Appendix

Appendix A: Orthogonality

Here we discuss the orthogonality of the decomposition (3.9), and consequently also (3.10). For

the decomposition (3.9) to be orthogonal, it must be shown that all six cross-products occurring

among the terms in (3.9) are zero. We treat each of these cross-products in turn.

1. For the cross-product between the interaction term and the row term, it holds that

tr
(
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)
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= 0. (3.30)

The last equality follows since when δ2 = 1, J(δ2)
K 1K = JK1K = 0. When δ2 = 0, the

equality is trivial.

2. For the cross-product between the interaction term and the column term, the result is

analogous to the above, except that now the equality 1
′

JJJ = 0
′

is used.

3. For the cross-product between the interaction term and the term for the overall mean, we

have that
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This cross-product equals zero whenever at least one of the following is true: δ1 = 1,

δ2 = 1 or δ1δ3 + δ2δ4 − δ1δ2 = 0. But whenever both δ1 = δ2 = 0, δ1δ3 + δ2δ4 − δ1δ2 = 0

irrespective of δ3 and δ4. Hence the cross-product always equals zero.
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4. For the cross-product between the row and column terms, we have
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if δ = (1,1,0,0)

′

0 otherwise.
(3.32)

Deducing when the cross-product equals zero uses the same concepts as above, but when

δ = (1,1,0,0)
′

none of these apply and the cross-product is not necessarily equal to zero.

5. The cross-product between the column term and the term for the overall mean also does

not necessarily equal zero. Here we can derive the following:
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(3.33)

The last line follows from the fact that the crossproduct equals zero if δ1 = 0, if δ1 = 1

and δ3 = 1, and when δ1δ3 + δ2δ4 − δ1δ2 = 0. Hence consideration must be given to the

four cases δ1 = 1, δ2 ∈ {0,1}, δ3 = 0, δ4 ∈ {0,1}. It is easy to see that δ1δ3 + δ2δ4 − δ1δ2 =

δ2δ4 − δ2 = 0 in all these cases except when δ = (1,1,0,0)
′

.

6. Analogously to the above, consider the cross-product between the row term and the term

for the overall mean:
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(3.34)

The expression equals zero when δ2 = 0, when δ2 = 1 and δ4 = 1 or when δ1δ3 + δ2δ4 −

δ1δ2 = 0. Considering the cases δ1 ∈ {0,1}, δ2 = 1, δ3 ∈ {0,1}, δ4 = 1 then, it can be seen

that δ1δ3 + δ2δ4 − δ1δ2 = δ1δ3 − δ1 = 0 except when δ = (1,1,0,0)
′

.

Consequently the decomposition in (3.9) and (3.10) is valid for all δ, except for δ = (1,1,0,0)
′

.
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Appendix B: Degrees-of-freedom

The degrees-of-freedom (DF) associated with each of the four subproblems in (3.10) are given

in Table B1. These are split according to the two sets of parameters that must be estimated in

each case: the cluster memberships and the cluster means, or low-rank approximations of these.

In this Appendix we give a short overview of how to calculate these quantities.

The number of parameters affiliated with the cluster memberships are somewhat ambiguous

to quantify. For each person and C clusters, there are arguably C − 1 free parameters to find

since this is the number of dummy coded variables needed to encode the clustering. However,

only one of these C parameters are nonzero, and equal to one, since we are doing crisp clustering.

So using N (C − 1) DF for the cluster memberships is a conservative approach. Recall also that

the inclusion of certain types of clusters depends on the choice of δ, and consequently also the

number of parameters associated with the clustering.

The DF for the estimation of the mean effects not only depends on δ, but also on the choice

between cases (a), (b) and (c). This choice affects the SVD used and hence the length and

orthogonality restrictions imposed within the SVD itself. We illustrate the calculation here

for case (a) only and leave cases (b) and (c) to be verified by the reader. Firstly, there are P

singular values to be estimated in (3.15). Secondly, the estimation of UL require in total JP

parameters, but these are subject to length, orthogonality and, depending on δ1, sum-to-zero

constraints. Each column of UL must be of length one, orthogonal to the other columns and

possibly have a zero sum, giving P +
(

P
2

)
+ δ1P restrictions. Finally, VL has UK P parameters but

these are subject to the same length and orthogonality restrictions on the P columns. However,

δ2 now optionally applies sum-to-zero constraints within each block of D∗. Hence there are

P +
(

P
2

)
+ δ2UP restrictions here.

The DF are therefore given by the total number of parameters P + JP + UK P in ΓL, UL
and VL, minus all these constraints.

Appendix C: Biplot Diagnostics

Here we note fit diagnostics for cases (a) and (b) – case (c) has already been treated in Sec-

tion 3.3.2. For case (a), we again have an orthogonal decomposition, based on (3.15), namely
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. (3.35)
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Cluster membership Mean effects

Overall means δ∗N (R − 1) δ∗R

Rows δ2N (S − 1) δ2S(J − δ4)

Colums δ1N (T − 1) δ1T (K − δ3)

Interactions (a) N (U − 1) P(J + UK − P − δ1 − δ2U)

Interactions (b) N (U − 1) P(U J + K − P − δ1U − δ2)

Interactions (c) N (U − 1) UP(J + K − P − δ1 − δ2)

Table B1: Degrees-of-freedom associated with each of the four subproblems, split into the cluster

membership parameters and estimates of the mean effects. Note that δ∗ = δ1δ3 + δ2δ4 − δ1δ2.

The row fit can therefore be defined as
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and the column fit as
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For case (b), a similar decomposition follows from (3.18) and we have
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for the rows, and similarly
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for the columns.



CHAPTER4
Quadratic Majorization of the Rating Scale

Model

4.1 Introduction

Item response theory (IRT) is concerned with the construction of joint models for the responses

of multiple respondents to a battery of items in a test. The goal of such models is to express the

probability of a response as a mathematical function of that respondent’s location on a latent trait

and the item and rating scale characteristics (Van der Linden and Hambleton, 1997). A typical

example of such a trait is mathematical ability. IRT models customarily include person, item and

answer category parameters, and are used intensively in test construction, which involves the

calibration of the item batteries in trial runs.

The original IRT models were developed for dichotomous items, where a test taker scores

one point for each correct answer (e.g. Lord et al., 1968). The focus has since shifted to include

models for polytomous items, where multiple answer categories are possible (e.g. Samejima,

1969; Andrich, 1978a; Masters, 1982). Concurrently, IRT models have also found applications

in non-traditional settings, such as in the measurement of attitudes, or nonability testing, as it

is sometimes known. In such a context, the latent trait can be seen, for example, as a political

spectrum with the extremes indicating extreme left or extreme right political tendencies. The

latent trait is hence not measured in terms of an ideal point or unfolding model, but on a scale

with definite low and high extremes: a so-called cumulative model.

A more functional view of the latent trait is that it is simply a construct which captures all

the dependency between answers extracted from the same individual. In nonability testing this

may be a more helpful view, as more factors may come into consideration when formulating an

answer than in traditional psychometric settings. An important distinction between this context

and that of the typical aptitude or ability settings in psychometrics is that an item does not

have a correct response. A person must merely map his or her opinion to the set of ratings

presented, such as categories ranging from “disagree completely” to “agree completely.” In
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aptitude testing a person may also be expected to answer a mathematical problem with one of a

number of possible answers, but in contrast to attitude measurement such items have definite

correct answers.

Estimating IRT models can be challenging because of the inclusion of one or more such

latent variables. Three prominent maximum likelihood estimation methods have emerged,

namely joint maximum likelihood (JML), conditional maximum likelihood (CML) and marginal

maximum likelihood (MML) estimation. JML estimation seeks to estimate the latent trait value

θ for all persons directly. In contrast, CML estimation uses the properties of Rasch models,

a subfamily of IRT models, to maximize the likelihood conditional on the sufficient statistic

for the person parameters. This conditional likelihood does not contain the person parameters

and can be maximized to obtain estimates of the item and answer category parameters. Finally,

MML estimation involves assuming a distribution for the person parameters and maximizing the

marginal likelihood function constructed by (numerically) integrating over this distribution.

Here we discuss and illustrate a new algorithm for JML estimation, applied to the rating scale

model (RSM), a polytomous Rasch model (Andrich, 1978a). The iterative majorization procedure

we derive leads to an iterative least-squares method for obtaining maximum likelihood estimates

for the person, item and answer category parameters jointly. The simple form of the updates

enables a speedy procedure to be developed which is guaranteed to converge monotonically to

the global optimum of the likelihood function. Missing values and case weights can be handled

seamlessly. We also show how penalized JML estimation can be implemented by applying a

quadratic penalty on the linear predictors. This can be useful for solving the issue of infinite

parameter estimates that can occur in models based on the (multinomial) logistic transform,

as most IRT models are. Penalized estimation can also lead to better estimates, as Hoerl and

Kennard (1970) show in their existence theorem for ridge regression.

It should be noted that MML and CML estimation have traditionally been favoured over JML

estimation by practitioners. The reason for this is that the estimates of the person parameters

are not consistent as the number of respondents tends towards infinity (N → ∞) for a fixed

number of items, J (e.g. Fischer and Molenaar, 1995). Simulation studies have nevertheless

shown that the resulting bias can be compensated for by a small adjustment. The JML estimates

are consistent when N → ∞, the number of items J → ∞ and N/J → ∞. We note that there

is a strong recent trend of favouring estimation methods with superior predictive power over

those with sound traditional statistical properties (e.g. Hoerl and Kennard, 1970; Tibshirani,

1996; Zou and Hastie, 2005). Also, there are some cases where the latent trait parameters have

to be modelled explicitly, such as in finite mixture models where the complete likelihood is

needed (Rost, 1990; Rost and von Davier, 1995; Von Davier and Rost, 1995). In finite mixture

models it is insufficient to use CML or MML estimation as a proper likelihood is required for
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the Expectation-Maximization (EM) algorithm (Frick et al., 2015). Larger sample sizes, both in

terms of the number of observations N and especially with respect to the number of items J in

test batteries, means that JML estimation can be expected to perform similarly, or even better

than the alternatives.

The RSM is introduced in the next section, followed by a discussion of the iterative majoriza-

tion estimation approach. In Section 4.4 we discuss the application of iterative majorization for

the JML estimation of the RSM, and this is followed by empirical illustrations of the method in

Section 4.5.

4.2 The Rating Scale Model

The rating scale model (RSM) was introduced by Andrich (1978a) for the situation where an

individual i (i = 1,2, . . . ,N) answers item j from a collection of J items on a common rating

scale 1,2, . . . ,K (see also Andrich (1978b, 1982)). It is a latent trait adjacent-category logit

model for ordinal responses (Agresti, 2010), where a single latent dimension is assumed to

underlie all J items. The RSM contains three sets of parameters, one set each for characterizing

the persons on the latent trait, the items and the rating categories. We denote these parameters as

follows. The person parameter θi indicates the attitude of person i on the latent trait, β j the item

difficulty for item j, and τk the rating category parameter for category k.

The RSM is a special case of the partial credit model (PCM; Masters, 1982), which does

not assume that all items are answered on the same rating scale. The PCM using item-specific

rating category parameters of the form β j k = β j + τk , where k = 1,2, . . . ,K j . The RSM is thus a

PCM model which makes the simplifying assumption that the category scores are equally spaced

across different items. It is more appropriate than the PCM in cases where a common rating

scale is used, as is the case in many surveys and also in the application in Section 4.5.

Use Yi j ∈ {1,2, . . . ,K } to denote the random variable representing the response of person

i to item j, and let γ
′

= (θ
′

,β
′

,τ
′

) contain all the model parameters. The RSM models the

adjacent-category logit as

logit P
(
Yi j = k |Yi j ∈ {k − 1, k},γ

)
= log

P
(
Yi j = k |γ

)
P

(
Yi j = k − 1|γ

)
= θi −

(
β j + τk

)
k = 2, . . . ,K. (4.1)

The probability of choosing category k over category k − 1 is therefore governed by a (restricted)

dichotomous IRT model. Here β j denotes the overall location of item j on the latent continuum,

whereas τk denotes the distance between any item’s overall latent location to the point where the
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probability of answering with either rating k − 1 or k is equal. This point is given by β j + τk .

The β j therefore shifts the general location for each item, while the τk monitors the spread of the

item thresholds across all items. It follows from (4.1) that

log
P

(
Yi j = k |γ

)
P

(
Yi j = 1|γ

) =

k∑
l=2

(
θi − β j − τl

)
, k = 2, . . . ,K.

Subsequently, the response probability is

P(Yi j = k |γ) = πi j k (γ) =
exp

∑k
l=2

(
θi − β j − τl

)
1 +

∑K
l=2 exp

∑l
k=2

(
θi − β j − τk

) , k = 2, . . . ,K. (4.2)

Rating category k = 1 is used as the so-called reference category; it would also be possible to

use category K as reference. We prefer the symmetric but over-determined specification

πi j k (γ) =
exp

∑k
l=1

(
θi − β j − τl

)
∑K

l=1 exp
∑l

k=1

(
θi − β j − τk

) , k = 1, . . . ,K. (4.3)

In the traditional formulation (4.2) it is implicitly assumed that θi − β j − τ1 = 0. We now replace

this requirement with the identifiability constraint
∑K

k=1

(
θi − β j − τk

)
= 0. A cumulative, mean

centred form of the linear predictors is more convenient. Particularly, define κk =
∑k

l=1 τl such

that

k∑
l=1

(
θi − β j − τk

)
= kθi − k β j − κk ; and

1
K

k∑
l=1

(
θi − β j − τk

)
= Kθi − K β j − κ,

with K = K+1
2 and κ = 1

K
∑K

k=1 κk . By dividing both the numerator and denominator by the same

term, (4.3) becomes

πi j k (γ) =
exp

(
(k − K )θi − (k − K ) β j − (κk − κ)

)
∑K

l=1 exp
(
(l − K )θi − (l − K ) β j − (κl − κ)

)
=

exp δi j k∑K
l=1 exp δi jl

, k = 1, . . . ,K. (4.4)

Since δi j k is mean centred, it follows trivially that
∑K

k=1 δi j k = 0, as required. The reference

category is now the virtual mean rating category. Furthermore, it is evident from (4.4) that
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an adjacent-category logit model is equivalent to a nominal multinomial logit model with the

predictors adjusted by an equally-spaced category-specific constant factor of k−K , a well-known

result (Agresti, 2010). For properly identifying these models, the origins of the three sets of

parameters must be fixed. We therefore impose zero-sum constraints
∑N

i=1 θi =
∑J

j=1 β j =∑K
k=1 κk = 0, so that the model has P = N + J + K − 3 degrees-of-freedom.

The joint probability for the J responses of person i is arrived at by the conditional in-

dependence assumption. This states that all dependence between the answers of the same

person is captured by the latent trait θ. If this is the case, and Y i contains all random variables

Yi j , j = 1, . . . , J, then

P(Y i = yi |γ) =

J∏
j=1

K∏
k=1

πi j k (γ)yi jk . (4.5)

Here yi j k denotes the observed value of the Bernoulli random variable Yi j k indicating whether

that response was category k, or otherwise. These are collected in the three-dimensional arrays y
and Y of size N × J×K respectively. The expression (4.5) defines a probability distribution on all

J×K indicator matrices with the entries yi j k ∈ {0,1}, j = 1, . . . , J, k = 1, . . . ,K . Combining this

with the assumption of random sampling of respondents’ answer vectors, we have the likelihood

function

L(γ |Y = y) =

N∏
i=1

J∏
j=1

K∏
k=1

πi j k (γ)wi yi jk , (4.6)

where wi ≥ 0, i = 1, . . . ,N, are nonnegative case weights. The likelihood (4.6) defines a

probability distribution on all three-way arrays Y of size N × J × K , with slice i along the first

dimension containing the J × K indicator matrix for person i, weighted by wi. As a useful

extension for handling missing responses, we also assume that Yi j k = 0 for all k = 1, . . . ,K when

person i did not answer item j. Hence we define Mi j =
∑K

k=1 Yi j k with realizations mi j as the

Bernoulli random variables indicating whether person i responded to item j, or otherwise.

Finally, a note on sufficiency. Define the random variable Ri = 1
′

Y i as the total score achieved

by person i across all J items. It can be shown for the RSM that

P(Y i = yi |Ri = ri, θi,β,κ) =
P

(
Ri = ri |Y i = yi, θi,β,κ

)
P

(
Y i = yi |θi,β,κ

)
P (Ri = ri |θi,β,κ)

=
P

(
Y i = yi |θi,β,κ

)
P (Ri = ri |θi,β,κ)

(4.7)
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since P
(
Ri = ri |Y i = yi, θi,β

)
= 1, which follows from the dependence of Ri onY i. Writing y |ri

as shorthand for the set
{
y : 1

′

y = ri
}
, it can be verified that

P(Y i = yi |Ri = ri, θi,β,κ) =

∏J
j=1 exp

∑yi j
k=1 δi j k∑

y |ri
∏J

j=1 exp
∑y j

k=1 δi j k

= P(Y i = yi |Ri = ri,β,κ), (4.8)

which does not depend on θi. Hence Ri is a sufficient statistic for θi, such that all the information

on θi in the data is contained in the total score of person i over all items. In CML, the part of the

likelihood based only on (4.8) is maximized to estimate β and κ. Sufficient statistics also exist

for the item and rating category parameters. In our notation, sufficient statistics for θi, β j and κk

are

Tθi (Y) = wi

J∑
j=1

mi j (Yi j − K )

Tβ j (Y) =

N∑
i=1

wimi j (Yi j − K )

Tκk (Y) =

N∑
i=1

J∑
j=1

wiYi j k . (4.9)

These can be interpreted as the weighted, centred and observed total score for person i across all

items, the weighted, centred and observed score for item j across all persons, and the weighted

number of times category k was selected across all persons and items, respectively. We use scaled

versions of the observed sufficient statistics as starting values in our algorithm (see Section 4.4.1).

4.3 Iterative Majorization

Iterative majorization algorithms approach the minimization (or maximization) of a complicated

function by iteratively minimizing a simpler auxiliary or majorizing function (De Leeuw, 2011b;

Groenen et al., 1995; De Leeuw, 1994). The majorizing function is chosen such that it is easy to

minimize and always has a larger value than the target function, except in the so-called support

point where the functions are equal. Minimizing this function leads to a reduction in the value of

the original target function. At each step of the iterative procedure the majorizing function is

updated and minimized. This guarantees monotone convergence to a local mininum. The family

of such majorizing algorithms can be seen as a generalization of the EM algorithm, and they are

also known as optimization transfer methods (Lange et al., 2000).
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Constructing majorizing functions relies on mathematical results such as the Cauchy-

Schwartz, Jensen and Popoviciu inequalities, or on Taylor’s theorem (De Leeuw, 2011b). Here

we will use the latter to derive a procedure also known as quadratic majorization (Böhning and

Lindsay, 1988). Consider minimizing a function f (x), which will be a negative log-likelihood

function in our context. The quadratic Taylor series expansion of f at x∗ is

f (x) = f (x∗) + (x − x∗)
′

∂ f (x∗) +
1
2

(x − x∗)
′

∂2 f (ξ)(x − x∗).

Here ξ lies on the line between x and x∗, ∂ f (x∗) denotes the vector of first partial derivatives of

f evaluated at x∗ and ∂2 f (ξ) is the Hessian matrix of second partial derivatives of f evaluated

at ξ. Let B be an invertible, symmetric matrix such that B − ∂2 f (ξ) is positive semi-definite.

Define

g(x,x∗) = f (x∗) + (x − x∗)
′

∂ f (x∗) +
1
2

(x − x∗)
′

B(x − x∗). (4.10)

It follows that

g(x,x) = f (x)

g(x,x∗) ≥ f (x)

so that g(x,x∗) is said to majorize f with support point x∗. Minimizing f can therefore proceed

by successively minimizing g(x,x (b)) over x, where x (b) is the current estimate of x at iteration

b. A starting configuration x (0) is necessary. This procedure is guaranteed to decrease the value

of g in each iteration. It also follows that for a vector-valued function h of the parameters in x,

g(h(x),h(x)) = f (h(x))

g(h(x),h(x∗)) ≤ f (h(x)),

and therefore g also majorizes f as a function of h(x) with support point h(x∗). Simple forms

of h, such as linear functions used to construct the linear predictors from a set of parameters in

generalized linear models, are especially easy to handle. Equation (4.10) can be rewritten as

(De Leeuw, 2011b)

g(x,x∗) = f (x∗) +
1
2

(x − z)
′

B(x − z) −
1
2
∂ f (x∗)B−1∂ f (x∗) (4.11)

where z, the current target, is given by

z = x∗ − B−1∂ f (x∗). (4.12)
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Note that only the second term in (4.11) depends on x so that minimizing g(x,x∗) over x is a

simple least-squares problem, namely

min
x

(x − z)′B(x − z). (4.13)

Linear functions of the form h(x) = Ax is a special case, where A is a design matrix. The

solution is

x̂ = (A
′

BA)−1A
′

Bz

= (A
′

BA)−1A
′

B(Ax∗ − B−1∂ f (Ax∗))

= x∗ − (A
′

BA)−1A
′

∂ f (Ax∗)). (4.14)

The rate of convergence can be shown to be only linear, with a tighter bound B on the Hessian

leading to faster convergence. De Leeuw and Heiser (1980) showed that a simple way of

increasing the convergence rate whilst retaining the global convergence property is to use an

over-relaxed update of the form

z = x∗ − 2B−1∂ f (x∗). (4.15)

This makes the update step twice as large as in (4.12), and will reduce the number of iterations

required by approximately one half (De Leeuw, 2011b).

In the subsequent section we show how to derive such a majorization algorithm for the RSM.

4.4 Estimating the Rating Scale Model

We seek to minimize the negative log-likelihood of the RSM, which follows from (4.6) as

L = −

N∑
i=1

J∑
j=1

K∑
k=1

wiyi j k log πi j k . (4.16)

The dependence of L on γ is suppressed for notational brevity. Before proceeding to derive a

majorization algorithm for this function, an optional quadratic penalty term is added for the sum

of squared linear predictors
∑K

k=1 δ
2
i j k . This penalty is controlled by the tuning parameter λi j ,

which controls the overall size of the linear predictors for a specific person i and item j. The
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objective function hence becomes

L = −

N∑
i=1

J∑
j=1

K∑
k=1

wiyi j k log πi j k +

N∑
i=1

J∑
j=1

λi j

K∑
k=1

δ2
i j k

=

N∑
i=1

J∑
j=1

Li j . (4.17)

In our formulation, penalizing the δi j k instead of the individual parameters is computationally

convenient. Note though that the dependence of λi j on person i and item j makes it possible to

apply different penalties for different person and item parameters, albeit indirectly through δi j k .

This is not possible for κk in this formulation.

Our optimization strategy is to construct a majorizing function for each Li j separately. The

sum of the resulting N J majorizing functions is then necessarily also a majorizing function of L.

To achieve this, the first partial derivatives of Li j can be derived as

∂Li j

∂δi j k
= wi

(
πi j k mi j − yi j k

)
+ 2λi jδi j k . (4.18)

Here πi j k is the function (4.4) of δi j k , and mi j are the observed missingness indicators. The

entries of the Hessian matrix Hi j = ∂2Li j are

wimi j
(
δklπi j k − πi j kπi jl

)
+ 2λi jδ

kl , (4.19)

with δkl denoting the Kronecker delta.

To find a function that majorizes Li j , we must find a matrix Bi j such that Bi j − Hi j ≥ 0.

Now, any square matrix A is dominated by vmaxI in the sense that vmaxI − A ≥ 0 (positive

semi-definite), where vmax is the largest eigenvalue of A. We can derive an upper bound on

the largest eigenvalue of Hi j by using the mathematical result that the largest eigenvalue of a

square matrix is smaller than any norm of that matrix. This therefore also holds for the maximum

absolute column sum norm, which has a simple form for Hi j (De Leeuw, 2011a).
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The maximum absolute column sum norm of Hi j , with Hi j (k, l) the element of Hi j in row k

and column l, is

‖Hi j ‖1 =
K

max
k=1

K∑
l=1

���Hi j (k, l)���

=
K

max
k=1

���Hi j (k, k)��� +

K∑
l,k

���Hi j (k, l)���

=
K

max
k=1

wimi jπi j k (1 − πi j k ) + 2λi j︸                            ︷︷                            ︸
|Hi j (k,k) |

+wimi jπi j k

K∑
l,k

πi jl︸               ︷︷               ︸∑K
l,k |Hi j (k,l) |

=
K

max
k=1

{
2wimi jπi j k (1 − πi j k ) + 2λi j

}
, (4.20)

since
∑K

l,k πi jl = 1 − πi j k . The only unknown parameters in (4.20) are the πi j k , for which we

know from inspection or Popoviciu’s inequality on variances (Popoviciu, 1935) that

πi j k (1 − πi j k ) ≤
1
4
.

Therefore

Hi j ≤

(
1
2
wimi j + 2λi j

)
IK = ρi jIK = Bi j . (4.21)

To majorize the complete L =
∑N

i=1
∑J

j=1 Li j then, we choose B to be the N JK × N JK diagonal

matrix with the Bi j (i = 1, . . . ,N ; j = 1, . . . , J) as diagonal blocks.

It can be shown that L in (4.17) is a convex function in γ, such that any local minimum

γ̂ = minγ L(γ) is also a global minimum. To establish this, we show that Hi j ≥ 0. It is known

that a symmetric diagonally dominant real matrix with nonnegative diagonal entries is positive

semi-definite (see Briggs, 2015, for example). Hence it suffices to show that Hi j is diagonally

dominant. A matrix is diagonally dominant when the absolute value of the diagonal entry in

each column is larger than or equal to the sum of the absolute values of all the other entries in

that column. This has in fact already been proven in (4.20), since we have shown there that the

diagonal entries ���Hi j (k, k)��� = wimi jπi j k (1− πi j k ) + 2λi j ≥
∑K

l,k
���Hi j (k, l)��� = wimi jπi j k (1− πi j k )

for all k. Therefore Li j is a convex function in the δi j k , k = 1, . . . ,K , which we collect in

the three-way array ∆ of size N × J × K . Since affine mappings such as Vec∆ = Xγ preserve

convexity, Li j is also convex in γ (Boyd and Vandenberghe, 2004). Consequently, being a sum

of convex functions, (4.17) is also a convex function. Since majorization algorithms are globally

convergent, we are therefore guaranteed to locate the global minimum of (4.17). Some starting
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configurations may however lead to faster convergence of the algorithm than others. This and

other computational specifics are outlined next.

4.4.1 Computational Details

Additional notation is required for a full description of the least-squares updates (4.14) in the

majorization algorithm. Let γ
′

= (θ
′

,β
′

,κ
′

), with θ
′

= (θ1, . . . , θN−1), β
′

= β1, . . . , βJ−1 and

κ = (κ1, . . . , κK−1)
′

be the vector containing the P = N + J + K − 3 free parameters. Define ∆

to be the N × J × K array with entries δi j k and denote by X the N JK × P design matrix such

that Xγ = Vec∆. The least-squares update (4.14) at iteration b + 1 now becomes

γ(b+1) = γ(b) − (X
′

BX)−1X
′

Vec
∂L

∂∆
, (4.22)

where ∂L
∂∆ is the three-way array of first derivatives with entries (4.18).

Several types of regression contrasts can be used for constructing X. It is particularly

advantageous to choose contrasts such that X′BX is block diagonal, since this implies that the

least-squares updates for all parameters separate into independent updates for the three parameter

sets. Particularly, X =
[
Xθ Xβ Xκ

]
so that if Xθ , Xβ and Xκ are mutually orthogonal, X′BX

is block diagonal with entries X′

θBXθ , X′

βBXβ and X′

κBXκ. If this is the case, (X′BX)−1 is

similarly block diagonal with entries (X′

θBXθ )
−1, (X′

βBXβ)−1 and (X′

κBXκ)
−1 respectively.

Consequently the parameter updates for θ, β and κ in (4.22) can be done independently, which

has computational advantages.

To ensure separability of the parameter updates, we use contrasts of the form

CL =



IL−1

−1
′

L−1


(4.23)

as the basis for the design matrix X. Specifically, Xθ , Xβ and Xκ are based on CN , CJ and CK

respectively. This implies that θN = −
∑N−1

i=1 θi, βJ = −
∑J−1

j=1 β j and κK = −
∑K−1

k=1 κk so that

the zero-sum constraint on the parameters are naturally enforced. For θ and β, the constants

k − K in the vector k must also be accounted for. Denoting by R the N × J matrix with ρi j as

entries, it can be shown that

X
′

θBXθ = ‖k ‖2C
′

N diag(R1J )CN

X
′

βBXβ = ‖k ‖2C
′

J diag(R
′

1N )CJ

X
′

κBXκ = 1
′

N R1JC
′

KCK . (4.24)
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Inverses for these matrices can be found explicitly via the Sherman-Morrison formula (Sherman

and Morrison, 1950), saving costly numerical computations. Furthermore, the crossproduct

X′

Vec ∂L
∂∆ performs elementary operations on the array of first derivatives. Denote by K the

N × J × K array containing the entries of k varying only in the third dimension. Let s(θ) be the

sum of K ◦ ∂L
∂∆ over the last two dimensions, where ◦ denotes the elementwise (or Hadamard)

product of the arrays. Similarly, s(β) is the sum of K ◦ ∂L
∂∆ over the first and third dimensions,

whereas s(κ) is the sum of ∂L
∂∆ over the first two dimensions. The crossproducts are then simply

X
′

θ

∂L

∂∆
= CN s

(θ)

X
′

β

∂L

∂∆
= −CJs

(β)

X
′

κ

∂L

∂∆
= −CK s

(κ) . (4.25)

We can therefore completely circumvent doing expensive linear algebra calculations in the

least-squares updates.

Finally, we construct starting configurations for the parameters from their respective sufficient

statistics. Good starting configurations will lead to faster convergence. Our general strategy is

first to standardize the sufficient statistics (4.9), and then to convert these standardized values

to the quantiles of some distribution. For θ and β, the sufficient statistics are scaled to the

interval [0,1] using their theoretical minima and maxima. These are then transformed to standard

Gaussian quantiles and centred. Finite quantiles are ensured by altering the standardized sufficient

statistics for extreme scoring persons and items by a small quantity ε . For κ, the category counts

are first converted to proportions, taking into account the case weights and missingness structure.

These are then converted to approximate standard Gaussian values via the probit transformation,

again ensuring finiteness by adjusting extreme values by a small constant. The resulting starting

configurations lead to much faster convergence than random starts.

In the following section we illustrate the use of the algorithm and discuss some key properties

of the RSM.

4.5 Applications

4.5.1 Simulated Example

As a first example, consider a simulated data set with N = 1000 observations, J = 15 items

and K = 7 rating categories. The true parameter values are all simulated from standard
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Gaussian distributions, and the data set is constructed by sampling from the corresponding

RSM probabilities (4.4). There are 10 persons who scored either the minimum or maximum

number of points on the hypothetical test. These persons present a problem for the estimation

algorithm since the theoretical θ for these persons are −∞ and ∞ respectively, a well-known

characteristic of logistic models. For these parameters, the log-likelihood function very slowly

approaches these extremes. Nonfinite parameter values are associated with extreme sufficient

statistics, and can also arise for parameters in β and κ. However in practice this occurs much

less frequently than for θ, since it is unlikely that all persons answer an item with the same

rating category, or that a rating category is not used in the entire data set. In extreme cases,

response styles (Baumgartner and Steenkamp, 2001, for example) may however cause unexpected

behaviour.

Here we consider three strategies for dealing with the problem: (a) retain these persons

and continue to estimate their θ, (b) remove these persons from the data so that only the

remaining θ are estimated, and (c) apply a penalty on the squared linear predictors. Strategy (a)

is unsatisfactory because we can expect the algorithm to converge very slowly to the infinite

theoretical values. In contrast, strategy (b) assures convergence but does not give estimates of

θ for these persons, and moreover does not take the responses of these persons into account

when estimating the β and κ. Just because these persons scored as high or as low as possible

on this test does not mean that they will never do worse or better on other items. It is quite

reasonable that their θ are not as extreme as the data suggests (and indeed we know this is true

for our simulated data set). Strategy (c) allows estimates for all parameters to be found, as will

be illustrated below.

4.5.1.1 Unregularized Estimation

Consider first our estimates with strategy (a). The algorithm does not converge and terminates

when the maximum number of iterations (500) are reached. On this laptop computer (Intel Core

i7-3537U 2.00GHz processor with 10 GB RAM) this takes 6.4 seconds with over-relaxation.

Figure 4.1 illustrates the problem with the θ parameters by plotting the estimates after each

iteration. It is quite clear that the algorithm has not converged for the sole reason that the θ of the

so-called extreme scorers are wandering off to infinity. Figure 4.2 compares the final estimates

with the actual values. Colours are assigned according to the total score achieved on the test,

which is a sufficient statistic for θ (see Section 4.2). The mean squared error (MSE) for the full

θ, β and κ vectors are 0.180, 0.001 and 0.026 respectively. The overall MSE is 0.177.

Estimation with strategy (b), takes only 4.1 seconds and 359 iterations. Convergence is

assumed when the relative change in the negative log-likelihood from one iteration to the next is

less than 10−8. The MSE for the estimated parameters in θ, β and κ are 0.127, 0.001 and 0.014
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Figure 4.1: The evolution of the estimates of the θ parameters over the iterations of the estimation

algorithm.
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Figure 4.2: A comparison of the actual and estimated θ. Colouration are according to the total

score achieved on the hypothetical test, the sufficient statistic for θ. The solid line is the 45 degree

line through the origin representing the expected one-to-one relationship, while the dashed line

is a fitted regression line.
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Figure 4.3: A comparison of the actual and estimated θ after removing the extreme scorers.
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Figure 4.4: Plot of the out-of-sample negative log-likelihood against the penalty parameter λ

for the first penalized estimation strategy. Bands showing the extent of the estimated standard

errors are also shown.

respectively, and the overall MSE is 0.124. Hence we are doing much better at estimating θ and

κ and similarly for β. The resulting estimates for θ are shown in Figure 4.3.

4.5.1.2 Regularized Estimation

In strategy (c) we consider estimating all parameters but with λi j > 0 in the quadratic penalty

term. Two strategies are investigated. In the first of these, we let λi j = λ for all i and j in

(4.17). In order to select a good value for λ, five-fold cross-validation (CV) is used on the

out-of-sample negative log-likelihood. This is assessed over the sequence of candidate λ values

ranging from 0 to 0.005, with increments of 0.00025. V -fold CV involves splitting the set of

all N J observations into V folds of roughly equal size, fitting for each fold the model to all

observation not in that fold, and determining the contributions of the observations in that fold to

the total negative log-likelihood (4.16). This gives an objective estimate of the out-of-sample

negative log-likelihood for the entire data set, and is repeated for each candidate value of λ. We

can also obtain an estimate of the standard error of the mean out-of-sample loss by calculating

the empirical standard deviation of the mean estimated loss over all five folds.

The result of our CV procedure is displayed in Figure 4.4, including bands showing the

estimated standard errors. It is evident that nonnegative penalties can lead to smaller out-of-

sample negative log-likelihoods. The optimal value λ = 0.0010 was found to correspond to

a loss value of 18994, which is significantly lower than the unpenalized out-of-sample loss of

19272. Fitting the model for this optimal value of λ, convergence is achieved in 1.7 seconds and

145 iterations. The overall MSE is now further reduced to 0.075, with the individual MSE’s for
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Figure 4.5: The results of CV for the second penalized estimation strategy.

θ, β and κ being 0.077, 0.0011 and 0.026 respectively. It therefore pays to use the quadratic

penalty while retaining all samples in the estimation process, given that a good choice of λi j

can be made. Note however that the MSE for κ has increased even though the overall MSE has

increased.

As a second regularized approach, we consider letting

λi j = λ
�����

2tθi (y)
wi J (K − 1)

�����
, (4.26)

where λ > 0 must be chosen. Here tθi (y) are the observed values of the sufficient statistic for θi

in (4.9). In (4.26) these values are standardized to [0,1] in a manner which takes into account

the absolute size of the sufficient statistic. Hence extreme values of the sufficient statistic, be

it either the minimum or maximum, will invoke the maximum penalty. As before, we select λ

via 5-fold CV, with candidate values ranging from 0 to 0.005 with increments of 0.0005. The

optimal λ was found to be 0.0010. Fitting the RSM model with these values for λi j results in a

minimum loss of 19024, with convergence in 1.7 seconds and 150 iterations. The overall MSE is

now further reduced to 0.073, with the individual MSE’s for θ, β and κ now being 0.075, 0.0007

and 0.017 respectively. Penalizing relative to the sufficient statistics for θ therefore seems to

be the optimal strategy for this simulated example. A comparison of all three sets of parameter

estimates with their actual values are given in Figure 4.6.

4.5.2 European Social Survey Data

As a further illustration, we apply our algorithm to 11 personal well-being items taken from wave

6 of the European Social Survey (ESS; www.europeansocialsurvey.org), which was conducted

http://www.europeansocialsurvey.org/
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Figure 4.6: A comparison of all three sets of parameter estimates with their actual values for the

second penalized estimation strategy.
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Figure 4.7: Cross-validation results for the ESS data using 5 folds.

in 2012. We use only the Dutch sample of 1845 respondents. The items are summarized in

Table 4.1. A rating scale with 4 categories was used, with labels ‘1 – none or almost none

of the time, ‘2 – some of the time,’ ‘3 – most of the time’ and ‘4 – all or almost all of the

time.’ We reversed Items 4, 6, 9 and 11 so that lower scores on these items indicate higher

personal well-being, in accordance with the other items. Hence for these items the categories are

effectively labelled ‘1 – all or almost all of the time,’ ‘2 – most of the time,’ ‘3 – some of the

time’ and ‘4 – none or almost none of the time.’ This reversal assumes that the rating scale was

interpreted symmetrically by the respondents, which we feel is a reasonable assumption for this

simple scale. We apply post-stratification weights as recommended for the ESS, which adjusts

for the sampling design as well as for sampling and nonresponse errors.

The penalized approach (4.26) is applied with five-fold CV to select the value of the penalty

parameter. The results of this procedure are shown in Figure 4.7, resulting in the optimal choice

λ = 0.0025. Convergence took 77 iterations and 0.8 seconds. The estimates of the item and

category parameters are given in Tables 4.1 and 4.2 respectively, and the corresponding category

characteristic curves (CCCs) for the 11 items are shown in Figure 4.8. As is characteristic of

the RSM, the curves all have the same shape. The item parameters β j give the overall location

of the item on the latent scale θ, whereas β j + τk gives the value of the latent trait for which

the probabilities of selecting either category k − 1 or category k are equal for item j – see (4.1).

Higher estimates of β j imply that θ must be comparably high before a person is likely to select

category 3 or 4 for that item, and vice versa for lower estimates of β j .

Observe that the rating categories are indeed ordered. A larger θ is associated with higher

probabilities for the higher rating categories. The relatively large estimates for τ3 and τ4 indicate

that these categories are in general associated with persons with very low personal well-being.
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Figure 4.8: The category characteristic curves (CCCs) of the 11 ESS items as fitted by the RSM.

The curves show the estimated probability of choosing each category as a function of the latent

trait.
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Figure 4.9: A kernel density estimate of the distribution of the estimated θ. The individual

estimates are indicated on the x-axis.
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Item Description β̂ j

Please indicate how much of the time during the past week...
1 ...you felt depressed? 0.93
2 ...you felt that everything you did was an effort? 0.44
3 ...your sleep was restless? −0.17
4* ...you were happy? −0.39
5 ...you felt lonely? 1.12
6* ...you enjoyed life? −0.36
7 ...you felt sad? 0.52
8 ...you could not get going? 0.01
9* ...you had a lot of energy? −1.04
10 ...you felt anxious? −0.33
11* ...you felt calm and peaceful? −0.72

Table 4.1: The 11 ESS personal well-being items included in the Dutch sample. In our analysis,

items 4, 6, 9 and 11 were reversed so that lower scores indicates higher personal well-being,

in correspondence with the other items. The estimated item parameters are given in the third

column.

k κk τk

1 −1.37 −1.37
2 −1.50 −0.13
3 0.36 1.86
4 2.51 2.16

Table 4.2: The parameter estimates for the category parameters κ, and the corresponding τ

estimates.
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For a specific person i and item j, the estimated odds of choosing category 2 over category 1

is exp(θi − β j ) exp(−τ2 + τ1) = 0.29 exp(θi − β j ). Similarly, the estimated odds of choosing

category 3 over category 2, and of choosing category 4 over category 3, are 0.14 exp(θi − β j )

and 0.74 exp(θi − β j ) respectively.

The item parameters indicate that high scores on Items 1 and 5 are associated with extremely

low values of personal well-being since these items’ parameter estimates are especially high.

Frequently feeling depressed and lonely therefore are strong indicators of very low levels of

personal well-being. On the opposite end of the scale, Items 9 and 11 set those with extremely

high personal well-being apart from others. Hence frequently feeling energetic, calm and

peaceful contributes strongly to high levels of personal well-being.

The distribution of the estimated θ are summarized in Figure 4.9. There are 41 persons who

obtained the minimum score across all items and hence received large negative scores on the

latent trait – these are the persons with the highest possible personal well-being. Theoretically,

these persons would receive a θ estimate of −∞, but the penalty term in the log-likelihood has

enabled a finite estimate to be found. However, this estimate will depend wholly on the penalty

used. No person attained the maximum possible score.

4.6 Conclusions

In this paper we develop a novel algorithm for JML estimation of the RSM. It is shown how

iterative majorization can be used to construct an iterative least-squares algorithm for maximum

likelihood estimation of essentially any model that can be written in terms of the multinomial

logit transform, as outlined by (De Leeuw, 2011b). The method can therefore also be applied to

e.g. the PCM, and the simple form of the parameter updates has the potential to enable restricted

versions of these models to be fit with ease. This can be especially advantageous in the PCM,

which contains many more parameters than the RSM, and we envisage investigating this in

future work. Another strength of the algorithm is the ease with which missing responses can be

handled.

We showed how a quadratic penalty can be included to penalize the size of the linear

predictors in the model. It would also be possible to extend this to penalties on individual

parameters, but together with the investigation of lasso-type penalties (Tibshirani, 1996), this is

left for future work. A cross-validation procedure on the out-of-sample negative log-likelihood

was shown to work well for selecting the value of the penalization parameter. Furthermore, a

more refined approach which penalizes relative to the scaled value of the sufficient statistics for

the person parameters was found to perform even better on a simulated example. This procedure

also worked well in our empirical application. We note that in the presence of a penalty term
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we chose not to calculate standard errors for the parameter estimates since a penalty necessarily

reduces the variance of estimates at the cost of a potential increase in the estimation bias. Hence

reporting only standard errors would be likely to overstate the accuracy of estimation: an estimate

of the induced bias would also be needed.

Computationally, the efficiency of the algorithm is greatly increased by the separability of

the parameter updates for the three sets of parameters. This separability enables us the find

the inverses of the relevant matrices explicitly, saving a substantial amount of computations.

Similarly, the cross-product matrices can be shown to perform simple summations over three-way

arrays, which negates the need for matrix products in the updates completely. We feel that JML

estimation combined with regularization is an attractive alternative method to CML and MML

estimation.
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CHAPTER5
Competing for the Same Value Segments:

Insight into the Volatile Dutch Political

Landscape

5.1 Introduction

Recent years have seen substantial changes to political landscapes in many countries (Van der

Meer et al., 2015), including the Netherlands. Major political parties such as the CDA (Christian

Democrats) have lost ground to new parties, most notably the LPF (Pim Fortuyn List) and the

populist PVV (Party for Freedom), which launched in 2002 and 2006 respectively. Concurrently,

the proportion of the electorate choosing to abstain from voting is on the rise, possibly due to a

growing separation between voters and political parties as the latter fail to align their political

agendas with voters’ values.

Human values are deeply ingrained in a people’s psyche and direct their behaviour, especially

abstract behaviour such as voting in elections (Schwartz et al., 2010; Caprara et al., 2006; Barnea

and Schwartz, 1998). Political parties appeal to political values such as safety and security,

freedom of speech and concern for one’s fellow man that closely resemble human values such as

security, self-direction and universalism (Schwartz et al., 2013). It is therefore to be expected

that people will be more likely to vote for the political party that best reflects their own values.

Previous research has focused on relationships between human values and choosing whether

to vote or abstain (Caprara et al., 2012), the left-right dimension in politics (Thorisdottir et al.,

2007), and value preferences of people voting for specific political parties (Barnea and Schwartz,

1998).

This chapter was co-authored with Hester van Herk, Patrick J.F. Groenen and Joost van Rosmalen.
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This study reports on an empirical investigation into the relationship between human values

and political preference in the Netherlands. All political parties and values are considered

simultaneously, using data collected for five waves of the European Social Survey. Schwartz

(1992)’s Human Values Scale, comprising of 21 survey items measured on 6-point Likert (1932)

scales, is used to assess individuals’ values. Self-reported voting behaviour in national elections

is also available. These data span the years 2002 until 2010, giving insight into concurrent

changes in voting behaviour and human values. Whilst until now research has focused on values

separately (Schwartz et al., 2010; Barnea and Schwartz, 1998), we interpret combinations of

values that together influence voting behaviour. Such combinations of values are termed ‘value

segments’ hereafter.

The established method of measuring human values is by using rating scales. This requires

correcting for response styles (Schwartz, 2007), since comparing responses between different

survey participants should account for the heterogeneous use of rating scales pervasive in such

studies (e.g. Van Vaerenbergh and Thomas, 2013; Baumgartner and Steenkamp, 2001). Only

after disentangling these response styles from substantive content can valid comparisons be made.

However, few studies correct for response styles as it is difficult and content-related information

might be removed in the process (Schoonees et al., 2015b). Recently, more advanced alternatives

to the commonly used response style indices advocated by Baumgartner and Steenkamp (2001)

have been developed. Specifically, we use the latent-class bilinear multinomial logit (LC-BML)

model of Van Rosmalen et al. (2010), which allows us to estimate value segments while at the

same time correcting for differences in response style. This correction results in more valid value

segments.

The questions we pose in this study are as follows: How many content-based value segments

are there in the Dutch population and how are these value segments related to voting behaviour?

How stable is the relationship between the value segments and the political parties over time?

What effect do individual differences in response style have on content-based value segments?

We start by giving an overview of political dimensions and cultural value theory applied to Dutch

politics, a short summary of important recent events affecting voting, and an overview of our

research propositions. Then we will further describe the LC-BML model and present our results.

We end with a discussion and show the relevance of our method to study political change in other

multi-party political systems.

5.2 Dutch Politics and Political Orientation

Dutch politics have seen a number of important events during the first decade of the 21st

century. Populist parties such as Liveable Netherlands (LN), the LPF and the PVV have emerged,
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placing great emphasis on issues surrounding ethnic groups, immigration, Islam and asylum

seekers. Especially the PVV has successfully elevated immigration to a salient issue, whilst also

harbouring strong anti-European sentiments. They are particularly concerned that any benefits

likely to be brought on by the expansion of the European Union will be offset by problems

associated with increased immigration, a belief also shared with the Socialist Party (SP). An

overview of Dutch political parties, past and present, is given in Table 5.1.

Other events, such as the September 11 attacks in the United States in 2001, the assassination

of the LPF leader Pim Fortuyn shortly before the general election in 2002 (May 6), and the

murder of film director Theo van Gogh1 (November 2, 2004) have strengthened the call for

increased security across society. Fundamental shifts in the population’s most pressing issues

have occurred too (Aarts and Thomassen, 2008). Before 1998, unemployment was a key issue

but it hardly featured as a factor for voters in the first decade of this century. The predominant

issues were found by Aarts and Thomassen (2008) to be minorities and asylum, followed by

health care, law and order as well as security. All of these issues feature prominently in the

manifestos of the newly emerging populist parties.

A useful shorthand classification of the orientation of political parties is the customary

distinction between left and right. In countries or regions with a two-party system, it can also

be an accurate reflection of the political situation. However, in countries which have multi-

party systems, such as the Netherlands, the left-right political spectrum is often too simplistic.

Therefore a second dimension is sometimes added to distinguish between authoritarian and

libertarian parties (Evans et al., 1996).

Aarts and Thomassen (2008) identify three dimensions: left versus right, authoritarian versus

libertarian and religious versus secular. In their context, left (right) indicates opposition to

(support for) differences in social equality between people and support for (opposition to) a

strong role for government in society. Here the right is primarily opposed to the state having a

strong influence on the economy: it considers private enterprise important and accepts inequality

in society. Authoritarian versus libertarian primarily relates to dealing with people from other

cultures and law enforcement. On the libertarian side, people are open to other cultures and non-

conformist practices such as abortion or euthanasia, whereas authoritarians are more traditional,

less open to foreign cultures and consider law enforcement to be important. Finally, the religion

dimension concerns the role that the church should play in society on moral issues. Aarts

and Thomassen (2008) show that the authoritarian versus libertarian dimension has become

increasingly important in deciding which party to vote for between 1989 and 2006.

1Van Gogh, critical of aspects of Islam in his work, was murdered by radical Dutch Muslim Mohammed Bouyeri,
sparking a number of retaliatory incidents.
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Specific to the Netherlands, the religious factor distinguishes the strictly religious SGP

(Reformed Political Party), the CU (Christian Union) and to a lesser extent the CDA (Christian

Democrats) from the other parties. The libertarian versus authoritarian factor distinguishes the

D66 (Democrats 1966) and the GL (Green Left) from the other parties, and from the liberal VVD

(People’s Party for Freedom and Democracy) in particular. The left-right factor distinguishes

GL, the SP and to a lesser extent the PvdA (Labour Party) from the VVD and the new populist

parties, such as the PVV. Each of these parties has political values that might be related to human

values deemed important by the electorate (Schwartz et al., 2013).

For a long time there have been three main political parties: CDA, PvdA and VVD. Together

these parties have enjoyed over 60% of the votes. Since 2008, other parties have become larger,

such as the SP (9.8% in 2010) and the PVV (15%). The growth of these latter parties came at the

expense of the three long-established parties. In the 2010 elections, five parties received about

80% of the votes; the political landscape became more diverse.

5.3 Human Values

Human values are abstract and context-free, in contrast to attitudes which are more closely

related to various life domains. The seminal framework of Schwartz (1992) comprises ten

fundamental value domains. These value domains can each be defined based on their central

goal: power, achievement, hedonism, stimulation, self-direction, universalism, benevolence,

tradition, conformity, and security (Schwartz and Rubel, 2005). Table 5.1 provides a brief

summary of these domains.

Schwartz represented these ten value domains in a circular structure – see Figure 5.1. Do-

mains with adjoining positions are closely related while opposing positions indicate incompatible

values. For example, power and achievement are complementary but generally incompatible

with universalism and benevolence. Hence the theory predicts that persons who attach high value

to universalism and benevolence will find power and achievement much less important, and

vice versa. A further example of incongruent values are conformity and stimulation; however,

stimulation is compatible with the adjacent self-direction because people who enjoy challenges

are also more likely to be creative and investigative.

These ten individual value domains can be merged into four different higher-order domains

(Schwartz, 1992), namely self-enhancement, self-transcendence, conservation and openness-to-

change. This is also depicted in Figure 5.1. Fontaine et al. (2008) further distinguished person-

focused (self-enhancement and openness-to-change), socially-oriented (self-transcendence and

conservation), protection (power and security) and growth (self-direction and universalism). For

example, growth is associated with independent thought and action, and people who find these
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Value Code Description

Power PO Social status and prestige, control or dominance over people and things.

Achievement AC Demonstrating personal success by displaying competences considered to be socially
valuable.

Hedonism HE Enjoyment and sensual self-reward.

Stimulation ST Doing exciting, new and challenging things.

Self-direction SD Thinking independently and opting for action, being creative and investigative.

Universalism UN Showing understanding, and appreciating, tolerating and protecting all people and the
natural world.

Benevolence BE Protecting and improving the well-being of people with whom one has frequent personal
contact.

Tradition TR Respect for, involvement in and acceptance of ideas that traditional culture or religion offers
people.

Conformity CO Refraining from action, tendencies and impulses that can disrupt or hurt others and which
conflict with social standards and expectations.

Security SE Safety, security, harmony and stability of the community, relationships and one’s self.

Table 5.1: An overview of the ten fundamental value domains of Schwartz and Rubel (2005).
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Figure 5.1: Schwartz’s value circumplex.
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values important will therefore accept a diverse society. Those who emphasize protection will in

contrast aim to maintain the power that they have and expect good security.

Various studies have used individual values or their higher-order domains to predict attitudes

and behaviour. Those who score high on openness-to-change were found to be more innovative

(Steenkamp et al., 1999), less religious (Schwartz and Huismans, 1995) and more likely to

vote left (Thorisdottir et al., 2007). The opposite applies to people who score high on conser-

vation. Those who score high on achievement and power are more materialistic (Burroughs

and Rindfleisch, 2002) and those who score high on self-transcendence are generally more

environmentally aware (Schultz et al., 2005). Human values have also been used to link specific

political parties to individual values (Barnea and Schwartz, 1998; Caprara et al., 2006; Schwartz

et al., 2010). Conservative values were found to be more important to those who voted for

right-wing parties, and universalism more important to those who voted left.

Although benevolence has been shown to be the most important value in general, the relative

importance of values differ among people (Schwartz and Bardi, 2001). This hierarchy may

depend on demographic characteristics and personal circumstance. In addition, some people

draw a firm distinction between values – finding some to be very important while explicitly

rejecting others – whereas others consider most values to be more or less equally important.

These differences result in several distinct groups of people sharing the same value preferences.

In this research, we aim to identify segments of people with such similar value profiles and

to explore the role these profiles play in determining which political party an individual votes

for. We also provide insight into the value profiles of people who did not vote. To find valid

segments, a correction for differences in rating scale use will be made (Van Vaerenbergh and

Thomas, 2013).

5.4 Values and Voting

Values are linked to political orientation and determine the political choices that individuals make

(Barnea and Schwartz, 1998; Thorisdottir et al., 2007). People tend to vote for the party which

best reflects their own values. While group values are relatively stable over time (Schwartz, 2006),

the emergence and disappearance of political parties in the Netherlands in recent years suggest

that for some groups of voters their best-fitting political parties have changed. Most people aim

to achieve congruence between their values and attitudes on the one hand and behaviour on the

other (Edwards and Cable, 2009).

Left-wing parties emphasize equality, tolerance and a strong governmental role. These first

two issues are congruent with the human values universalism and self-direction (Schwartz et al.,

2010) and, for more traditional left-wing parties, environment-related security (Thorisdottir et al.,
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2007). We therefore expect that a segment considering these values relatively more important

than other segments will vote for left-wing parties such as the PvdA and to a lesser extent GL;

voters of SP are expected to emphasize security values more than the other left-wing parties. In

contrast, right-wing parties consider inequality in society, maintenance of the status quo, and

economic freedom important. These issues are associated with the values power, achievement

and to a lesser extent self-direction (Thorisdottir et al., 2007; Caprara et al., 2006). We expect

that a segment prioritising these values will vote for a right-wing party such as the VVD.

Libertarian parties emphasize equal opportunities and taking initiative, which is compatible

with universalism, self-direction and stimulation but incompatible with security and conformity.

People who consider the values universalism and self-direction and to a lesser extent benevolence

essential have a positive stance toward immigration (Davidov et al., 2008; Schwartz et al., 2010);

accepting immigrants is specifically associated with libertarian parties. We therefore expect

that there is a segment considering benevolence, universalism, self-direction and stimulation of

particular importance, which predominantly votes for parties such as GL, D66 and the PvdD.

Authoritarian parties emphasize maintenance of the status quo, inequality in society and strict

rules, which relates to power, security and tradition but not to universalism and self-direction.

Such a segment would be anticipated to vote for parties such as the conservative VVD and the

populist LPF and PVV. The latter parties also emphasize the negative side of immigration, which

is compatible with security, tradition and conformity. Finally, religious parties consider the role

of the church in society of key importance, relating to traditional (gender) roles, conformity

to rules, and taking care of people. Religiousness is therefore related to human values in the

conservation domain (Schwartz and Huismans, 1995). Specifically, it is expected that there is a

segment highlighting conformity, tradition, and security as highly important and self-direction,

stimulation, and hedonism as unimportant. This segment would tend to vote for the religious

parties SGP, CU and to a lesser extent the CDA. They would consider benevolence to be more

important than universalism as benevolence emphasizes the traditional in-group more.

Summarizing, we expect to find a small number of segments differing in value importance,

which we link to voting behaviour. We expect this relation to exist for people with clear value

profiles; however, the value profiles are derived solely from the data and therefore the segments

are not guaranteed to adhere to the Schwartz theory of compatibilities and incompatibilities

among values.

5.5 The LC-BML Model

To determine the value segments free from response styles, we use the latent-class bilinear multi-

nomial logit model (LC-BML model; Van Rosmalen et al., 2010). This model is a multivariate
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generalization of the standard multinomial (or baseline-category) logit model for multinomial

responses (e.g. Agresti, 2002), which in turn is the multicategory extension of logistic regression.

The multinomial logit model describes the probability that a respondent answers a single item

with a given rating. The LC-BML model combines such models for multiple items in order to

describe the responses of a respondent on all items simultaneously.

Furthermore, the model allows for respondents to be segmented into two types of segments

(or latent classes), namely value and response style segments. This is done by allowing the model

parameters to vary between segments. The response style segments correct for the differences

in response styles, while the value segments indicate differences in the importance attached to

the respective values. Hence each person is assigned simultaneously to both a response style

segment and a value segment by the LC-BML model. Another feature is the use of a bilinear

decomposition of the model parameters so that the effects can be summarized parsimoniously

with the help of biplots (e.g. Gower et al., 2011).

Describing the LC-BML model in more detail requires some notation. Let Yi j be the random

variable denoting the response of respondent i (i = 1, . . . ,N ) to item j. Index by k (k =

1, . . . ,K ) the common rating scale used for all J items. Missing responses are included by

adding a dedicated ‘Missing’ category to the rating scale. Let there be R and S latent classes for

the response style and value segments respectively. Supposing that πrs is the prior probability

that any respondent belongs to segments r and s, it follows that

P(Yi j = k) =

R∑
r=1

S∑
s=1

πrsP(Yi j = k | r, s). (5.1)

In the LC-BML model, the segment-specific probabilities follow multinomial logit models such

that

P(Yi j = k | r, s) =
exp

(
ηi j k | r,s

)
∑K

k=1 exp
(
ηi j k | r,s

) , (5.2)

where ηi j k | r,s is a segment-specific linear predictor. The basic form of the linear predictor is

ηi j k | r,s = αk | r +

L∑
l=1

β
′

klxil + γ j k | s . (5.3)

Here αk | r is the attractiveness of rating k in response style segment r , xil is an indicator vector

indicating which category of the (discretized) socio-demographic variable l (l = 1, . . . ,L) person

i belongs to, β
′

kl is the transpose of the vector of effects for this socio-demographic variable on

category k, and γ j k | s is the effect of rating k on item j in value segment s. Finally, a bilinear

decomposition is applied to the parameters in (5.3), a description of which is deferred to the
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Appendix. This decomposition serves two purposes, namely to reduce the number of parameters

to be estimated and to allows for all effects to be interpreted graphically in biplots. Note that the

dimensionality P of this decomposition determines the dimensionality of these biplots.

For a given choice of the number of segments R and S, and dimensionality P, the LC-BML

model is estimated by maximum likelihood via the Expectation-Maximization (EM; Dempster

et al., 1977) algorithm. The likelihood contribution of person i is given by

R∑
r=1

S∑
s=1

πrs

J∏
j=1

K∏
k=1

P(Yi j = k | r, s)I (yi j=k), (5.4)

with yi j being the realized value of Yi j and I (·) the indicator function. An important by-product

of the estimation algorithm is the estimated posterior probabilities of each person belonging to

each of the R × S latent classes, which can be calculated as

πrs (i) =
πrs

∏J
j=1

∏K
k=1 P(Yi j = k | r, s)I (yi j=k)∑R

r=1
∑S

s=1 πrs
∏J

j=1
∏K

k=1 P(Yi j = k | r, s)I (yi j=k)
. (5.5)

This gives a posterior measure of class membership for all persons. These can for instance be

aggregated over the respondents’ self-reported voting behaviour to establish how people within

each segment voted. Information criteria, such as the Akaike Information Criterion (AIC; Akaike,

1974) or Schwarz’s Bayesian Information Criterion (BIC; Schwarz, 1978) can be used to select

the number of segments R and S, as well as the dimensionality P. An alternative is the graphical

CHull procedure of Ceulemans et al. (2011). We opt for a combination of the BIC and the CHull

procedure. The BIC has been shown to work well in conjunction with the LC-BML model

(Van Rosmalen et al., 2010).

5.6 European Social Survey Data

This study focuses on five rounds of the European Social Survey (ESS), namely those of 2002,

2004, 2006, 2008 and 2010. In each round, the ESS included the 21 PVQ-based value items

(Portrait Values Questionnaire; Schwartz and Bardi, 2001; Schwartz, 2007). These statements

are gender-specific and operationalized by posing statements such as ‘Thinking up new ideas and

being creative is important for her. She likes to do things in her own original way.’ The responses

to each statement were based on a 6-point Likert scale, ranging from 1 (‘Very much like me’) to

6 (‘Not like me at all’). More information and average ratings can be found in Table 5.1. We

control for the socio-demographics Gender, Education Years and Age. Since discrete covariates

are required for the LC-BML model, both Education Years and Age were discretized into three
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categories. For years of education, the categories were low (1 to 10 years; comparable to ISCED2

levels 1 and 2), intermediate (11 to 15 years; ISCED levels 3 – 5) and high (16+ years; ISCED

level 6 or higher). Age was divided into the categories 15 to 34 years, 35 to 59 years and 60 to

96 years.

A total of 9607 respondents from the Netherlands were available across the 5 ESS waves.

Respondents with missing values for the abovementioned socio-demographic variables were

removed from the analysis (85 persons), together with respondents who used the same rating to

answer all 21 value items (11 persons). After removing these respondents, 9511 observations

were used in the analysis. The numbers of respondents per ESS wave were 2323, 1854, 1845,

1713 and 1776 respectively. Note that although sampling weights are applicable in the ESS,

it was not possible to apply them in the LC-BML analysis due to software limitations. We do

however apply post-stratification weights in summary statistics, which corrects for the sampling

design and unit nonresponse.

In the ESS, respondents were also asked to indicate whether they voted in the most recent

elections for the Second Chamber of Parliament3, and, if so, for which political party. For the

2002 survey, this concerned the Dutch elections of 6 May 2002, for 2004 the elections of 22

January 2003, for both 20064 and 2008 the elections of 22 November 2006 and for 2010 the

elections of 9 June 2010. The official election results are given in Table A1 in the Appendix.

Voting is not mandatory in the Netherlands. In recent elections, roughly 20% to 25% of the

electorate chose not to vote. The weighted proportion of eligible respondents in our sample who

indicated that they voted is slightly higher at 86.4%, 82.4%, 83.3%, 86.1% and 84.4% for the 5

ESS waves respectively. We include an explicit group for persons who chose not to vote in our

analyses of the reported voting behaviour. Besides these individuals, approximately 7.1% of the

respondents were not eligible to vote, mostly on account of being younger than 18 at the time of

the election. Moreover, the ESS asked respondents which political parties they voted for. The

disclosure rates for those who indicated that they voted were quite high at 97.9%, 96.6%, 95.1%,

96.4% and 96.0% respectively.

Since the results of the relevant elections are known at the population level (see Table A1),

we use these to recalibrate the post-stratification weights from the ESS before analyzing the

voting behaviour. These recalibrated weights are constructed so that the proportion of votes

for all competing parties as well as the proportion of nonvoters in the observed sample match

2See http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf.
3This is the main legislative body of the Netherlands.
4Data collection for the third ESS wave started in September 2006, before the election took place in November.

Respondents interviewed before the election were asked who they intended to vote for. After the election they
were asked who they actually voted for. Roughly half the sample were interviewed before the election. In the
questionnaire, LN was still given as a voting option. However, LN disbanded before the 2006 elections, hence we
do not consider LN when interpreting voting behaviour after 2004.

http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf
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the official election results as closely as possible. Iterative proportional fitting, also known as

raking, was used to construct these weights separately for each wave of the ESS (see Chapter 8

of Lohr, 1999, for example). These weights are subsequently used whenever voting behaviour

is considered. This recalibration procedure also adjusts for the respondents not eligible to vote

in the elections, as well as the small proportion who did vote but either chose not to disclose

for which party they voted, or could not recall which party they supported. This is done by

increasing the weights of the remaining respondents such that the total weight for the eligible

voters equals that of the entire sample.

5.7 Results

A mean hierarchy of human values often exists in society. Schwartz and Bardi (2001) identified

pan-cultural norms, in other words norms that apply generally in every society. According

to their findings, people across the world consider values such as benevolence, self-direction

and universalism to be the most important; power, tradition and stimulation are considered the

least important. This is also true in the Netherlands, as the weighted mean ratings reported in

Table 5.1 shows. Dutch people consider values such as self-direction (SD1; average score 2.11),

universalism (UN1; 2.11) and benevolence (BE2; 2.16) to be important. Power (PO2; 3.40) and

stimulation (ST2; 3.72) are considered to be relatively unimportant. The least important is power

(PO1; 4.18). This ordering of the average responses is stable over time: the minimum Spearman

rank correlation of the average rating score per item between the various ESS rounds is 0.98. We

use the LC-BML model to find more refined subsets of respondents who exhibit different value

hierarchies.

5.7.1 Model Selection

In order to select the most appropriate model, we fitted the LC-BML model for R = 1,2, . . . ,20

response style segments, S = 1,2, . . . ,12 value segments, and P = 1,2 dimensions. In total 480

different models were considered; however 9 models did not converge in the allotted number

of EM iterations (10 000) and were discarded. A numerical convergence criterion of 10−5 was

used. The EM algorithm is however only guaranteed to find a local optimum of the likelihood

function. We therefore estimated each of these models for 20 different random starts to increase

our chances of finding the global optimum. Only the start which resulted in the highest value of

the likelihood function is retained.

We plotted the maximized log-likelihood values against the model degrees-of-freedom for

the 471 models, as in Figure 5.1. The convex hull enclosing the cloud of points can then be
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Value Code Item Description Average Rating

Benevolence BE1 It’s very important to him to help the people around him. He wants to care
for their well-being.

Help others 2.27

BE2 It is important to her to be loyal to her friends. She wants to devote herself to
people close to her.

Loyalty 2.16

Universalism UN1 He thinks it is important that every person in the world should be treated
equally. He believes everyone should have equal opportunities in life.

Equality 2.11

UN2 It is important to him to listen to people who are different from him. Even
when he disagrees with them, he still wants to understand them.

Understand others 2.43

UN3 She strongly believes that people should care for nature. Looking after the
environment is important to her.

Care for nature 2.31

Self-Direction SD1 It is important to her to make her own decisions about what she does. She
likes to be free and not depend on others.

Independent 2.11

SD2 Thinking up new ideas and being creative is important to her. She likes to do
things in her own original way.

Creative 2.46

Stimulation ST1 He likes surprises and is always looking for new things to do. He thinks it is
important to do lots of different things in life.

Look for new things 2.85

ST2 He looks for adventures and likes to take risks. He wants to have an exciting
life.

Excitement 3.72

Hedonism HE1 Having a good time is important to her. She likes to spoil herself. Have a good time 3.04

HE2 He seeks every chance he can to have fun. It is important to him to do things
that give him pleasure.

Have fun 2.52

Achievement AC1 It’s important to her to show her abilities. She wants people to admire what
she does.

Be admired 3.27

AC2 Being very successful is important to him. He hopes people will recognise
his achievements.

Be successful 3.26

Power PO1 It is important to her to be rich. She wants to have a lot of money and expen-
sive things.

Be rich 4.18

PO2 It is important to her to get respect from others. She wants people to do what
she says.

Get respect 3.40

Security SE1 It is important to him to live in secure surroundings. He avoids anything that
might endanger his safety.

Security 2.80

SE2 It is important to her that the government ensures her safety against all threats.
She wants the state to be strong so it can defend its citizens.

Strong government 2.73

Conformity CO1 He believes that people should do what they’re told. He thinks people should
follow rules at all times, even when no-one is watching.

Follow rules 2.95

CO2 It is important to her always to behave properly. She wants to avoid doing
anything people would say is wrong.

Behave properly 2.85

Tradition TR1 Tradition is important to her. She tries to follow the customs handed down
by her religion or her family.

Tradition 2.86

TR2 It is important to him to be humble and modest. He tries not to draw attention
to himself.

Modesty 3.29

Table 5.1: The 21 value items from the ESS and their weighted average ratings for the Dutch

sample. The unadjusted post-stratification weights supplied in the ESS were used to calculate

the weighted averages.
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Figure 5.1: The maximized log-likelihood plotted against degrees-of-freedom for the models

considered. Colours are assigned according to the number of response styles R and item segments

S in the left and right panels respectively. The convex hull enclosing the cloud of points is also

shown.

determined. We reduced the model selection problem by considering only the models that lie

on this hull, similar to the CHull procedure of Ceulemans et al. (2011). These models can be

considered to present a good trade-off between complexity and data fit. The BIC values for the

23 models that lie on this hull are summarized in Table 5.2. Although it has only the fourth

lowest BIC value, we selected the model with R = 20 response styles, S = 7 value segments and

P = 2 dimensions, since we found this model to be more interpretable than the more complex

models with slightly better BIC values. We now proceed to describe and interpret the results

from this model.

5.7.2 Value Segments

As shown in Table 5.3, the sizes of the value segments are relatively stable over time. This is

expected as values at a higher aggregation level hardly change (Schwartz, 2006). Segment 4 has

grown somewhat over the years from 12.8% to 16.3%, whilst Segments 3 and 5 have decreased

in size from 16.1% and 16.0% to 12.3% and 13.2% respectively. Overall, Segment 7 is estimated

to contain only 1.1% of the population, while the other segments range in size from 14.3% to

22.0%. Table 5.4 shows the distribution of the demographic variables across the segments. These

distributions are calculated by summing the post-stratification weights of all respondents who

fall in a specific category (e.g. all males). Segment membership is incorporated by weighting the

post-stratification weights with the estimates of each respondent’s posterior segment-membership

probabilities in (5.5). The segments differ with respect to socio-demographic characteristics.
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R S P DF BIC

20 9 2 677 526 346
20 8 2 617 526 402
19 11 2 780 526 459
20 7 2 557 526 501
19 12 2 839 526 607
20 12 2 857 526 699
20 6 2 497 526 948
17 6 1 333 528 639
16 6 1 321 528 782
14 6 1 297 529 069
17 4 1 259 529 938
11 4 1 199 531 425

R S P DF BIC

10 3 1 159 534 569
8 3 1 141 536 296

10 2 1 129 537 576
8 2 1 113 539 285
6 2 1 97 542 677
5 2 1 89 544 748
6 1 1 71 553 751
4 1 1 57 560 906
3 1 1 50 565 456
2 1 1 43 573 453
1 1 1 36 595 156

Table 5.2: A summary of the 23 models lying on the convex hull considered in the final model

selection step. Given are the number of segments R and S and dimensionality P, the number of

degrees-of-freedom (DF), and the respective BIC values. The models are ordered from low to

high BIC. The selected model is shown in boldface.
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ESS Wave

Segment 2002 2004 2006 2008 2010 Overall

1: Mainstream 21.4 22.2 22.5 21.2 22.7 22.0
2: Security Seekers 18.3 18.8 18.2 18.5 19.3 18.6
3: Traditionalists 16.1 15.2 13.6 14.9 12.3 14.5
4: Universalists 12.8 13.1 16.8 16.8 16.3 15.0
5: Indifferent 16.0 15.7 13.2 14.1 13.2 14.5
6: Entrepreneurs 14.3 13.9 15.0 13.4 14.7 14.3
7: Uninterested 1.1 1.1 0.8 1.1 1.6 1.1

Table 5.3: Segment sizes per year (in percentage), using unadjusted post-stratification weights.

Gender Education Years Age

Segment Male Female 1–10 11–15 16–30 15–34 35–59 60–96 Size

1: Mainstream 38.9 61.1 28.4 50.1 21.5 18.6 52.0 29.5 22.0
2: Security Seekers 52.4 47.6 22.2 48.9 28.8 30.2 50.0 19.8 18.6
3: Traditionalists 43.7 56.3 40.6 44.7 14.6 12.8 45.3 42.0 14.5
4: Universalists 49.3 50.7 14.0 47.9 38.1 34.2 52.2 13.6 15.0
5: Indifferent 53.4 46.6 35.2 46.6 18.3 33.9 41.7 24.4 14.5
6: Entrepreneurs 63.3 36.7 15.1 51.6 33.3 62.0 33.6 4.4 14.3
7: Uninterested 42.7 57.3 29.7 53.9 16.4 26.3 41.1 32.6 1.1

Average 49.1 50.9 26.5 49.1 24.5 31.1 45.1 23.8 100.0

Table 5.4: The distribution of the socio-demographic variables across value segments, and the

segment sizes. All values are expressed as percentages per row and variable, except for the

segment sizes. Post-stratification weights are applied.

Segment 3 has a large group of people who are lower educated females, aged primarily above 60.

In Segment 6, the majority is highly educated young males, while Segment 4 includes higher

educated people, both male and female, who are mostly aged 35–59. Segment 5 includes more

people with low education levels than average.

These seven value segments are based on different value priorities. To help interpret these

priorities, all the response categories and values are represented jointly in a two-dimensional

space using biplots (see Figures 5.2 – 5.4). The positions of the value items vary across all value

segments, but the locations of the response categories remain the same. The magnitude of the

effect of each item on the probability to endorse a specific rating category is determined by

the inner product (also known as the scalar or dot product) between the position of the item in

that segment and the vector representing the rating. This can be determined by multiplying the
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length of the projection of the item point onto the rating vector by the length of the rating vector.

Simply put, items which have large positive projections are associated with large probabilities of

endorsing that rating, and vice versa. For example, in Segment 1 the item PO1 has a very large

positive projection on rating category 6 (“Not like me at all”), which implies that in Segment 1

people do not value this item highly. In contrast, UN1 has a large positive projection on rating

category 1 (“Very much like me”), implying that this segment values this aspect of universalism

most highly.

We first interpret each value segment, and then relate these to voting behaviour in the next

section. To ease interpretation, names are assigned to the segments:

Segment 1: Mainstream. The ‘Mainstream’ group forms the largest segment comprising

roughly 22.0% of the sample. From Figure 5.2, we see that this segment attaches great impor-

tance to values universalism (UN1: equal treatment and opportunities for everyone; and UN2:

understanding others), benevolence (BE2: loyalty and devotion to friends and family; and BE1:

helping others and caring about their well-being), and self-direction (SD1: being independent).

Values such as power (PO1: being rich; and PO2: being respected by others), achievement

(AC2: being successful; AC1: and being admired) as well as stimulation (ST2: living an exciting

life), are considered to be completely unimportant. This is mostly in line with the pan-cultural

hierarchy of Schwartz and Bardi (2001). We might consider this segment to represent the modal

person in the Netherlands.

Segment 2: Security Seekers. The ‘Security Seekers’ (18.6%) do not have any pronounced

preference for or aversion to any particular values. They consider all values to be of approximately

equal importance. However, in comparison to the other segments, they consider security (SE1

and SE2) relatively more important. Further, benevolence (BE2: being loyal to friends and

family) and self-direction (SD1: independence) are considered important. As in most other

segments, they consider power (PO1: being rich) and stimulation (ST2: living an exciting life)

to be relatively unimportant. Interestingly, tradition (TR2: modesty) is also considered to be

relatively unimportant.

Segment 3: Traditionalists. Compared to the other segments, the ‘Traditionalists’ (14.5%)

emphasize the conservation values (security, conformity and tradition) far more than the other

segments. People in this segment consider it to be especially important that the area in which

they live is safe (SE1: security) and that traditions are respected (TR1: tradition). Contrary to

many of the other segments, they consider the item gaining new experiences (ST1: stimulation)

to be of only minor importance. The key motivation for people in this segment are conservation

and socially-oriented values.

Segment 4: Universalists. The fourth value segment, the ‘Universalists’ (15.0%), places

relatively great emphasis on self-direction (SD1: independence; and SD2: creativity), universal-



118 Competing for the Same Value Segments: The Volatile Dutch Political Landscape

BE1
BE2

UN1

UN2

UN3
SD1

ST2

AC1

AC2

PO1 PO2

Very much like me

Like me

Somewhat like meA little like me

Not like me

Not like me at all

No answer

−1

0

1

−4 −2 0 2
Dim. 1

D
im

. 2
1: Mainstream (22.0%)

BE1
BE2

UN1

UN2

UN3
SD1SD2

ST2 AC2

PO1

TR1

TR2

Very much like me

Like me

Somewhat like me
A little like me

Not like me

Not like me at all

No answer

−1

0

1

−4 −2 0 2
Dim. 1

D
im

. 2

2: Security (18.6%)
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Figure 5.2: Biplots for value segments 1 – 3. The same colours and symbols apply in all plots,

as explained in the legend in Figure 5.4.
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4: Universalists (15.0%)
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5: Indifferent (14.5%)
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Figure 5.3: Biplots for value segments 4 – 6. The same colours and symbols apply in all plots,

as explained in the legend in Figure 5.4.
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Figure 5.4: Biplot for value segment 7.
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ism (UN1 to UN3), and also benevolence (BE2: loyalty to friends and family). Values in the

conservation domain such as tradition (TR) and conformity (CO) are not considered important.

Values representing growth are the motivation of people in this segment.

Segment 5: Indifferent. This segment, simply named ‘Indifferent,’ consists of individuals

who hardly differentiated between the values. They comprise roughly 14.5% of the sample.

All values are considered of average importance. Self-direction (SD1: being independent) and

benevolence (BE2: being loyal to family and friends) are the values considered relatively most

important to them.

Segment 6: Entrepreneurs. The ‘Entrepreneurs’ (14.3%) consider the values self-direction

(SD1 and SD2), benevolence (BE2: loyalty to friends and family), and hedonism (HE2: having

fun) to be extremely important. Universalism is considered relatively less important. Relative to

the other segments, power and achievement are more important, while tradition and conformity

are considered less important. Person-focused values are the key motivation for the people in

this segment.

Segment 7: Uninterested. The smallest segment consists of 1.1% of individuals who are

seemingly not interested in completing the entire value scale. This may have been an issue with

the data collection or recording. In the ESS questionnaire, the values were divided over two

pages and the respondents might have missed the second page. As is evident from the biplot in

Figure 5.4, roughly half the items have been completed (the items in the lower half of the plot),

while responses to the remaining nine items are mostly missing. This corresponds to the order in

which the items appeared in the questionnaire.

5.7.3 Value Segments and Political Parties

To relate the value segments to voting over time we performed a correspondence analysis (CA;

e.g. Hoffman and Franke, 1986; Greenacre, 2007). CA can be used to plot the value segments

together with the political parties for which they voted. This makes it easier to interpret our

results. For this analysis, a cross-tabulation of the individual posterior probabilities in Equation

(5.5) was made with the value segments in the columns and the political parties, split into the

five waves of the ESS, in the rows. The CA was used to visualize the links between the rows

and columns in this table simultaneously (see Figure 5.5). The total inertia in the table can be

effectively shown in two dimensions (78.6% of the inertia is explained in two dimensions).

Figure 5.5 shows the column-principal map of the CA (Greenacre, 2007), where each of the

political parties are labelled. In addition, each year is indicated by a different symbol. Symbols

for the same party are connected by lines. The black triangles represent the seven value segments.

The darker the points, the better the explained inertia (fit) of the points – see Greenacre (2007)
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Figure 5.5: Correspondence analysis for the segments and reported votes, using the adjusted

poststratification weights applied to the posterior probabilities of Equation (5.5). The symbols

for the segments are faded according to the explained inertia so that darker points fit better. No

shading was done for the political parties.
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for more information on inertia. Across the five waves, three value segments are quite distinct,

namely the Traditionalists, the Universalists, and the Entrepreneurs. The Mainstream segment is

located in between the Traditionalists and the Universalists and lie more towards the centre of the

graph. The Indifferent and Uninterested segments lie close together; however, the Uninterested

segment fits less well into the CA solution, suggesting possible measurement issues in this

segment. Last, the Security Seekers also fit less well into the display and should therefore not be

strongly interpreted.

The first dimension divides the Traditionalists from the Universalists and Entrepreneurs.

In value terms this is a distinction between conservation and openness-to-change. The second

dimension is a distinction between Universalists, and to a lesser extent Traditionalists, and

the Entrepreneurs. This is a distinction between an emphasis on self-transcendence versus

self-enhancement. The first dimension distinguishes the religious parties (SGP, CU and CDA)

from the non-religious parties (e.g., GL and D66); this meets our expectation that segments

considering conservation and self-transcendence important more often vote for religious parties.

The religious parties lie in the upper left quadrant, strongly associated with the Traditionalist

segment. They are ordered from the most traditional SGP to the more moderate CDA, and clearly

distinguished from the libertarian and authoritarian parties towards the right of the graph. The

libertarian parties, namely the PvdD, D66, GL and PvdA, are located alongside each other to

the top right quadrant of the figure. The more extreme libertarian parties, namely the GL and

PvdD, are located in the upper right corner, whereas the more centrist PvdA are located towards

the origin. The authoritarian parties form a tight cluster slightly below the centre. These parties

(LPF, PVV, VVD and LN) have tight historical connections, as for instance the LPF was formed

by a former member of LN, and the PVV leader similarly was a former member of parliament

for the VVD. Members of the Indifferent segment as well as the Entrepreneurs are the most avid

supporters of the newly established authoritarian parties. In addition to voting for the VVD,

in the elections in 2002 and 2003 these segments voted relatively often for LPF and LN, and

since 2006 for the populist PVV. For the Entrepreneurs, universalism is relatively unimportant

compared to the other segments. This is congruent with their preference for authoritarian parties,

and our expectations. Individuals emphasizing conservation values tend to vote more often for

religious parties, especially the SGP and CU. This is in line with our expectations.

As expected, the Universalist segment, which opposes the protection and conservation values

and emphasizes growth and openness-to-change values, votes for libertarian parties such as GL.
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Figure 5.6: The proportion of ratings used in each response style segment.

18.3 28.0 27.1 21.7 14.7 15.5 18.7 12.7 36.2 39.3 30.5 31.6 11.6 11.3 30.6 4.7 0.0 0.0 0.0 6.5

29.1 18.6 7.2 35.3 3.9 21.3 23.1 34.0 25.8 8.2 2.0 0.3 0.0 0.0 2.0 0.8 47.5 0.0 0.0 0.0

8.9 18.6 20.9 13.6 8.3 6.9 16.9 13.9 15.5 22.9 25.8 16.7 27.2 6.5 9.9 6.9 3.3 3.1 24.3 0.0

18.8 14.9 25.0 14.4 13.1 20.1 15.4 15.9 5.4 11.8 3.0 11.2 7.8 1.9 3.5 6.0 16.7 0.0 5.0 7.1

3.6 7.6 10.3 0.9 43.5 11.6 6.8 4.3 6.4 6.0 36.3 28.4 48.9 64.1 51.3 77.6 6.7 24.1 61.7 7.3

21.3 12.1 9.5 13.8 16.6 23.1 17.5 18.1 10.7 11.8 2.2 11.8 4.6 13.2 0.0 4.0 19.8 0.0 8.9 0.0

0.0 0.2 0.0 0.3 0.0 1.4 1.5 1.2 0.0 0.0 0.2 0.0 0.0 2.9 2.7 0.0 6.1 72.8 0.0 79.1  7: Uninterested

  6: Entrepreneurs

  5: Indifferent

  4: Universalists

  3: Traditionalists

  2: Security Seekers

  1: Mainstream

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Response Style Segment

V
al

ue
 S

eg
m

en
t

0.0 0.2 0.4 0.6 0.8
Proportion

Figure 5.7: The distribution of each response style across all value segments.
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5.7.4 Response Styles

The value segments analyzed above are adjusted for response styles through the inclusion of

the response style segments in the model. Figure 5.6 gives the proportion of responses in each

response style segment that was attributed to each of the ratings. Colours are used to highlight

larger values. It is evident that a variety of response styles have been detected. The largest

styles (1 – 3) concentrate on using ratings one through five, but very few sixes. Response style

4 focuses on using ratings two and three, while response style 5 uses the breadth of the rating

scale. Styles 9 and 10 can be described as midpoint scoring, while style 16 comprise extreme

scoring focusing on categories 1 and 6. Response styles 18 and 20 contain a disproportionate

number of missing values. These results show that there is indeed a lot of heterogeneity with

respect to rating scale use.

Figure 5.7 shows the association between the response style and value segments. The

percentages in each column sums to one, showing which segments each response style is

associated with. Note that some response style segments are often strongly associated with

a single value segment. This is especially true for the Indifferent and Uninterested segments.

Specifically, the Uninterested segment associates strongly with response styles 18 and 20 (missing

values), and the Indifferent segment with response styles 13 – 16 and 19. The latter include some

well-known styles (see Baumgartner and Steenkamp, 2001, for example), such as response range

(13), acquiescence (14 and 15), extreme responding (16) and disacquiescence (19).

5.8 Discussion and Conclusion

There is a clear link between the seven value segments based on Schwartz’ values and people’s

voting behaviour for political parties. Our approach using the LC-BML model, followed by a

correspondence analysis, clearly reveals the three factors identified in the literature according to

which political parties in the Netherlands may be categorized (Aarts and Thomassen, 2008). We

can see religious parties (SGP, CU and CDA), left-leaning (GL, SP, PvdD) versus right-leaning

parties (VVD and PVV) and libertarian (D66, GL) versus more liberal and traditional parties.

The division between right and left applied widely in the literature is therefore too simplistic to

effectively describe multi-party political systems, such as the Dutch system. Importantly, our

method can be applied in other multi-party contexts too.

This study distinguishes itself from previous studies on values and voting in multiple ways.

First, we focus on segments instead of considering the whole population as one group. Second,

we relate value segments to voting for specific political parties. With our approach we are not

only able to confirm established relationships between single values and political orientation,
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such as correlation between the universalism and a leftist orientation (e.g, Caprara et al., 2006),

but also to determine which combinations of value items are related to voting behaviour. Third,

we correct for response styles, which is a neglected issue in research on values and voting. It has

however long been acknowledged as an issue in public opinion research (for example, Peter and

Valkenburg, 2011; Greenleaf, 1992; Alwin and Krosnick, 1985; Bachman and O’Malley, 1984;

Cunningham et al., 1977; O’Neill, 1967). Fourth, our study is the first that shows the relationship

between values and voting behaviour over a period longer than a decade; the longitudinal study

by Schwartz et al. (2010) covered one month.

Fifth, we treat all 21 value items separately, instead of reducing the items to the 10 values

they set out to measure (Piurko et al., 2011; Caprara et al., 2006), or to their respective value

domains, such as self-transcendence and conservation (Barnea and Schwartz, 1998). The value

segments not only differ with respect to the importance they attach to values, but also with

respect to specific items. For example, in most segments the two items measuring power are

far apart, as are the items measuring universalism. The average for power and stimulation, as

would be used when analysing value domains only, would have masked that a similar importance

is attached to two different value items PO1 (rich) and ST2 (adventure). The LC-BML model

accepts correlated items, allowing us to treat items belonging to the same value separately.

The relations between the value segments and voting behaviour are quite stable over time.

For example, the Traditionalists tend to vote for the religious parties (SGP and CU) relatively

frequently, whereas the Entrepreneurs vote more frequently for the libertarian parties, such as

D66 and VVD. A remarkable segment is the Indifferent segment. This segment either tends not

to vote, or, when voting, likely votes for the newly emerging populist parties. Such behaviour is

compatible with the results of the Dutch panel study by Van der Meer et al. (2012). However,

the reason for their (non)-voting behaviour might be either substantive or methodological. One

possible substantive reason is value incongruence with the existing parties, as suggested by

Caprara et al. (2012). Another possibility is that populist parties are more engaging to lower

educated citizens than the established parties (Hakhverdian et al., 2012). Disinterest or lack of

cognitive capacity when answering the survey items, resulting in a response style, might be a

methodological explanation.

The LC-BML model identified 20 different response style segments, providing further

empirical evidence of the prevalence of response styles in rating scale data. Importantly, our

results show that the value and response style segments are not independent. Two problematic

value segments, namely the Indifferent and Disinterested segments, are closely associated with

specific response styles. Together, these comprise 15.7% of the sample. Hence the answers of

a significant number of respondents are mainly driven by specific response styles. In the other

segments we might consider the way in which people use the rating scale a communication
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style. With a communication style, no adjustment, or simple adjustments, may suffice (He and

Van De Vijver, 2015). Our study indicates that taking into account response styles in value

measurement is important, since ignoring response styles can lead to segments that differ only

with respect to rating scale use, and not in value preference. Our study also suggests that the

response styles present in empirical data are not limited to one specific style such as extreme

responding (for example, Liu et al., 2015; De Jong et al., 2008): people use many different

response styles that all might invalidate our findings.



128 Competing for the Same Value Segments: The Volatile Dutch Political Landscape



Appendix

Appendix

The official national election results are shown in Table A1. We now describe the bilinear

decomposition of the parameters used in the LC-BML model. In order to reduce the number

of parameters in (5.3), Van Rosmalen et al. (2010) introduce bilinear decompositions which

also make it possible to display all effects in P-dimensional graphs. Let Bl be the matrix with

Election

Party 2002 2003 2006 2010

VVD 15.4 17.9 14.7 20.5
PvdA 15.1 27.3 21.2 19.6
PVV – – 5.9 15.4
CDA 27.9 28.6 26.5 13.6
SP 5.9 6.3 16.6 9.8
D66 5.1 4.1 2.0 6.9
GL 7.0 5.1 4.6 6.7
CU 2.5 2.1 4.0 3.2
SGP 1.7 1.6 1.6 1.7
PvdD – 0.5 1.8 1.3
TON – – – 0.6
LPF 17.0 5.7 0.2 –
LN 1.6 0.4 – –
Other 0.7 0.4 1.0 0.5

Subtotal 9 501 152 9 654 475 9 838 683 9 416 001
Blank/Invalid 14 074 12 127 16 315 26 976
Total 9 515 226 9 666 602 9 854 998 9 442 977

Electorate 12 035 935 12 076 711 12 264 503 12 524 152
Turnout 79.1% 80.0% 80.4% 75.4%

Table A1: The percentage of votes won by the different political parties in the four Dutch

elections, as well as the total number of votes cast and the size of the electorate. (Source:

www.verkiezingsuitslagen.nl)

http://www.verkiezingsuitslagen.nl
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β1l , . . . ,βKl as rows, and gather the γ j k | s in the J × K matrix Γs. The bilinear restrictions are

imposed by requiring that

Bl = FG
′

l and Γ
′

s = FH
′

s, (5.6)

where F, Gl and Hs has P columns. Typically, the dimensionality of the graphical representations

is chosen to be P = 1, 2 or 3 so that it can be displayed easily. The matrix F contains the

coordinates of the K rating categories, Gl the coordinates for the categories of socio-demographic

variable l, and Hs the coordinates of the J items in value segment s in P-dimensional space.

Under these bilinear restrictions, (5.3) becomes

ηi j k | r,s = αk | r +

L∑
l=1

P∑
p=1

f kpg
′

lpxil +

P∑
p=1

f kph jp | s, (5.7)

with f kp and htp | s being the elements of F and Hs respectively, and glp the pth column of Gl .

Besides these bilinear restrictions, several identifiability constraints must be imposed on the

parameters in (5.7) – details are given in Van Rosmalen et al. (2010).



CHAPTER6
Conclusions

This dissertation provides new methods for analyzing categorical data while accounting for the

presence of response styles. We also uncover overwhelming empirical evidence that response

styles are widespread in such data. Researchers should therefore strive to use appropriate

methods, such as those proposed here, whenever analyzing such data. The mantra that data

analysis cannot account for bad data collection still applies, but in the absence of proper design

methods to negate the effects of the response styles, allowing for this type of variation in the

analysis of the data is necessary. Nonetheless, training in these types of methods are limited,

mostly because no consensus has been reached as to what constitutes a good method. Another

limit is also the statistical expertise of social science researchers who typically conduct surveys.

Perhaps in time more objective ways of measuring opinion can be developed, for example as

a results of the efforts of the neuroscience community, but it will likely be a while before such

methods are widely available to researchers.

A problem with all methods that account for response styles is, of course, that response styles

are latent and hard, if not impossible, to measure. Evaluating methods are consequently hard,

apart from in idealized simulated situations. Typically, these studies show parameter recovery

when simulating from the model specification itself, which, although very interesting, is of

limited use when arguing for applying the method to actual data. Ideally the added value of

‘response style methods’ should be established by showing it’s added value in predicting future

data. This remains firmly in the domain of future research directions, but such studies would be

invaluable in evaluating the growing number of proposed methods out there.

Several avenues for further research stem from the studies in this dissertation. One of these

are to use the algorithm in Chapter 4 as the basis for a finite mixture model which can be used

for studying the relation between differential item functioning (DIF) and response style bias in

psychometric models. DIF and response styles are both sources of measurement invariance, but

while DIF is a popular research topic in the psychometric literature, response styles have not

received much attention. It is very likely that the effects of these two phenomena are confounded

in current statistical assessments. In traditional IRT models, such as aptitude testing, this may



132 Conclusions

not be a problem, but in recent years IRT models have been used for nonability testing as well,

such as for analyzing the types of surveys found in this monograph. It is not well understood

how the impact from response styles and DIF differ, and if and how they can be separated.

Chapter 3 provides a nonparametric and much more computationally efficient implementation

of the LC-BML model as a special case. It would be interesting to directly compare the results

of these two methods on the same data sets, and to assess how and why the results differ. The

computational difficulties of the LC-BML model makes it very hard to apply in practice, but the

results can be readily interpreted. Another feature that will be added to the lsbclust framework,

is the ability to handle case weights. Modern survey research almost always include weights

which should be accounted for in the analysis.

The LC-BML model assumes that the data is measured on a nominal level. Much more can

be done when assuming an ordinal measurement level, including reducing the complexity of the

model by using the ordering information. An interesting alternative in categorical data pertains

to how associations are measured. Often, so-called polychoric correlations are used, which is

just the correlation from an assumed underlying multinormal distribution. Correllation is a very

simple method of measuring association. For example, specific associations often exist between

rating categories on different variables. Alternative association measures can be much more

informative, and can be incorporated into a model via copula functions. Work on such a model is

already in an advanced stage, and shows promising results. There are many more possibilities,

however.

The final chapter, Chapter 5, provides a framework that can easily be applied in other contexts,

including other countries in the European Social Survey. We can also substitute the lsbclust

framework for the LC-BML model to reduce the computational burden.
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Summary

Rating scale data are widely used for measurement in the social sciences, business and beyond.

For example, ratings scales are often utilized for deducing consumer perceptions of films,

measuring job satisfaction and evaluating employee performance. Yet using a rating scale is

subjective. A CEO pressed for time may choose to use only the extreme rating categories as a

means of approving or disapproving the statements put to him. In contrast, a trained panellist

being paid to fill out the questionnaire may use a wider range of ratings. Hence, even if they have

similar opinions, they would likely respond with different ratings, implying that a rating category

potentially carry different meanings for different respondents. Typical statistical analyses of

rating data, however, do not account for such individual differences in response styles. Ignoring

these discrepancies are dangerous since doing so can lead to erroneous conclusions.

This dissertation makes methodological and empirical contributions towards modelling rating

scale data while accounting for differences in response styles. The general approach is to

identify individuals in the data which exhibit similar response styles, and to extract substantive

information only within such groups. These elements naturally lead to the synthesis of cluster

analysis and dimensionality reduction methods. In order to identify these response styles,

responses to multiple survey questions are used to assess within-subject rating scale usage. Both

non-parametric and parametric approaches are formulated and studied, and accompanying open-

source software implementations are made available. The added value of using the developed

algorithms, and therefore accounting for response style differences in data analyses, is illustrated

by applying these to empirical data. Applications range from sensometrics and brand studies, to

psychology and political science.





Afrikaanse Samevatting

(Summary in Afrikaans)

Meting met beoordelings- of graderingskale kom algemeen voor in die sosiale en bestuursweten-

skappe, asook in verskeie ander velde, waar dit byvoorbeeld gebruik word om films te beoordeel,

werksbevrediging te meet of werknemersprestasie te assesseer. Tog is die gebruik van grader-

ingskale subjektief: ‘n Hoof uitvoerende beampte onder tydsdruk kan byvoorbeeld besluit om

slegs die eindpunte van die skaal te gebruik om sy goed- of afkeuring vir die gestelde vrae

uit te druk, terwyl ‘n persoon wat vergoeding ontvang vir die voltooiing van die vraelys ‘n

wyer keuse van kategorieë kan gebruik. Verskille in hierdie sogenaamde antwoordstyle beteken

dat antwoordkategorieë verskillende betekenisse vir verskillende persone kan bedra. Tipiese

statistiese analises van graderingsdata maak egter nie voorsiening vir sulke individuele verskille

nie. Indien geen aanpassings gemaak word vir verskillende antwoordstyle nie, word die gevaar

geloop dat ongeldige gevolgtrekkings gemaak kan word.

Hierdie proefskrif dra by tot die wetenskap deur die ontwikkeling van nuwe statistiese

metodes vir die hantering van verskille in antwoordstyle in die analise van graderingsdata.

Empiriese gevallestudies lewer ook verdere insig in die voorkoms en effek van antwoordstyle.

Die algemene benadering van die nuwe metodes is om eerstens groepe individue te identifiseer

wat soortgelyke antwoordstyle openbaar, en om dan beduidende informasie slegs binne sulke

groepe individue te ontbloot. Hierdie elemente lei tot die natuurlike kombinasie van trosanalise

en dimensiereduksiemetodes. Ten einde antwoordstyle te indentifiseer, word die antwoorde van

‘n spesifieke persoon oor meerdere vrae geanaliseer. Beide parametriese en nie-parametriese

metodes word geformuleer en bestudeer, en meegaande sagteware word vrylik beskikbaar gestel.

Die toegevoegde waarde wat hierdie metodes oplewer, dit wil sê deur te korrigeer vir verskillende

antwoordstyle, word geïllustreer aan die hand van empiriese analises wat oor verskeie velde

strek, insluitende sensometrie, handelsmerkstudies en politieke wetenskap.





Nederlandse Samenvatting

(Summary in Dutch)

Opinieschalen worden veel gebruikt voor het doen van metingen in de sociale wetenschappen, in

het bedrijfsleven, en in andere sectoren. Voorbeelden hiervan zijn het evalueren van reacties van

consumenten op films, het meten van de arbeidstevredenheid, en het evalueren van de prestaties

van werknemers. Het gebruik van een opinieschaal is echter altijd subjectief: Een CEO onder

tijdsdruk kan ervoor kiezen om alleen de extreme categorieën te gebruiken om de voorgelegde

stellingen goed te keuren of af te keuren, terwijl een getraind panellid die wordt betaald voor

het invullen van de vragenlijst een groter bereik van categorieën kan gebruiken. Standaard

statistische analyses van de opinieschaal-gegevens kunnen niet goed omgaan met individuele

verschillen in responsstijlen. Het gevaar van het negeren van variaties in responsstijlen die

ontstaan door verschillende interpretaties van de aangeboden antwoordschalen, is dat foutieve

conclusies getrokken kunnen worden uit de verzamelde gegevens.

Dit proefschrift levert methodologische en empirische bijdragen aan het modelleren van

opinieschaal-gegevens door rekening te houden met verschillen in responsstijlen. De algemene

aanpak is om individuen die gelijksoortige responsstijlen vertonen te identificeren en om in-

houdelijke informatie alleen te extraheren binnen dergelijke groepen. Deze aspecten leiden op

natuurlijke wijze tot een synthese van clusteranalyse en dimensionaliteitsreductie methoden. Om

responsstijlen te identificeren worden de antwoorden op meerdere enquêtevragen gebruikt zodat

het mogeljik is individueelspecifiek gebruik van opinieschalen op te sporen. In dit proefschrift

worden zowel niet-parametrische en parametrische benaderingen geformuleerd en bestudeerd. De

bijbehorende open-source software-implementaties zijn openbaar beschikbaar. De toegevoegde

waarde van het gebruik van de ontwikkelde algoritmes, en daarmee ook het nut van corrigeren

voor responsstijl-verschillen in data-analyses, wordt geïllustreerd door het toepassen van de

voorgestelde methoden op gegevens, afkomstig uit verschillende onderzoeksgebieden reikend

van zintuigstudies en merkstudies tot psychologie en politieke wetenschappen.
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