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CHAPTER 1

1
nOrmaL hemaTOpOieSiS and Leukemia 

Hematopoiesis encompasses the process by which mature peripheral blood cells are 

generated by differentiation of hematopoietic stem cells (HSC) in the bone marrow (BM). 

The daughter cells of HSC’s, progenitor cells, can each commit to the myeloid or lymphoid 

differentiation pathways that lead to the production of one or more specific types of ma-

ture blood cells. These cells are then released in the peripheral blood. The myeloid lineage 

generates platelets, erythrocytes, granulocytes (basophils, neutrophils and eosinophils) and 

monocytes, whereas the lymphoid lineage differentiates into T and B-lymphocytes (Figure 

1).1,2 

Leukemia is a comprehensive term covering a spectrum of malignant hematological 

diseases originating from hematopoietic precursor cells and affecting the hematopoietic 

system and extra-medullary sites. The initial lineage of the leukemic cells defines the type 

of leukemia. In general, leukemic blasts originate from either the lymphoid lineage resulting 

in lymphoblastic leukemia, or from the myeloid lineage causing myeloid leukemia, although 

mixed lineage leukemias/bi-phenotypic leukemias exist. Both lymphoid and myeloid leuke-

mia can be further subdivided into acute and chronic leukemias. Acute leukemia is character-

Mul$potent	  progenitor	  cells	  

Common	  lymphoid	  progenitor	  cells	  Common	  myeloid	  progenitor	  cells	  

Self	  renewal	  

Natural	  killer	  cell	  Small	  lymphocyte	  

B-‐lymphocyte	   T-‐lymphocyte	  

Plasma	  cell	  

Megakaryocyte	   Erythrocyte	   Mest	  cell	   Myeoloblast	  

Thrombocyte	  

Basophil	   Monocyte	  

Macrophage	  

Neutrophil	   Eosinophil	  

Pluripotent	  hematopoie$c	  stem	  cells	  	  

Figure 1. Schematic representation of the different lineages and stages during normal hematopoiesis
The development of blood cells from a bone marrow pluripotent hematopoietic stem cell to mature cells of different lineages. 
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ized by a maturation arrest, followed by rapid clonal expansion of highly immature malignant 

precursor cells in the BM and blood. In chronic leukemia, malignant cells accumulate due 

to hyper-proliferation without a clear maturation arrest, and usually develop more slowly. 

Subsequently, normal hematopoiesis fails and patients suffer from the absence of normal 

blood cells resulting in symptoms such as anemia, paleness, fatigue, fever, infections, bruis-

ing and petechiae. 

Pediatric Acute Lymphoblastic Leukemia

Worldwide, more than 200,000 children are diagnosed with cancer every year.3 In the Nether-

lands, 500-600 children are diagnosed with cancer annually. Leukemia is the most common 

type of cancer in children, comprising approximately 30% of all childhood malignancies 

(DCOG registration 2006-2011). Acute lymphoblastic leukemia (ALL) accounts for ~75% of all 

childhood leukemias, and can be subdivided in precursor B-cell ALL (BCP-ALL; ~85%) and in 

ALL originating from the T-cell lineage (T ALL; ~15%). The proportion of acute myeloid leu-

kemia (AML) is ~18%, and the very rare other myeloid malignancies, such as myelodysplastic 

syndrome (MDS), juvenile myelomonocytic leukemia (JMML) or chronic myeloid leukemia 

(CML), represent the remaining cases (Figure 2).4

Leukemias in childhood are heterogeneous disorders, which is reflected by differences in 

clinical presentation, morphology and immunophenotype, and by a variety of acquired (cyto-) 

genetic aberrations. In precursor B-ALL, different well-established genetic risk groups can be 

BCP	  ALL,	  n=544,	  59.2%	  
DS,	  BCP	  ALL,	  n=33,	  3.6%	  

T	  cell	  ALL,	  n=98,	  10.7%	  

Unknown	  lymphoid	  lineage,	  
n=5,	  <1%	  

AML,	  n=119,	  13%	  

ML	  DS,	  n=48,	  5.2%	  

CML,	  n=17,	  1.8%	  

MDS,	  n=48,	  5.2%	   Other,	  n=7,	  <1%	  

Figure 2. Distribution of types of childhood leukemia in The Netherlands 
Numbers are derived from the Dutch childhood oncology group registration 2006-2011. ALL, acute lymphoblastic leukemia; BCP, B-cell 
precursor; ML DS, myeloid leukemia of down syndrome; CML, chronic myeloid leukemia; MDS, myelodysplastic syndrome.
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distinguished. The favorable risk group includes cases with abnormalities such as t(12;21)

(p13;q22) [ETV6-RUNX1] and high hyperdiploidy (HeH) (51-65 chromosomes), especially 

when extra copies of chromosome 4 and 10 are present.5-9 The unfavorable abnormalities 

include translocations such as t(9;22)(q34;q11) [BCR-ABL1] and t(4;11)(q21;q23) [MLL-AF4].6-9 

The World Health Organisations’ (WHO) classification of childhood ALL is defined by these 

genetic aberrations in combination with an immunophenotypic classification based on the 

different maturation stages in B lymphocyte development (Table 1).10 These cytogenetic 

abnormalities are essential for risk group stratification in treatment protocols.5 

The remaining cases are patients with genetically unclassified disease and referred to as 

’B-Other’ ALL, comprising ~25% of pediatric B-cell precursor-ALL.11-13 Interestingly, the avail-

ability of new genome-wide screening techniques led to the discovery of a large new genetic 

subgroup, referred to as ‘BCR-ABL1 like’.11,69  These leukemias have a similar gene expression 

profile as BCR-ABL1 positive ALL, but lack the typical BCR-ABL1 translocation. Moreover, over 

70% of these ‘BCR-ABL1 like’ cases have abnormalities in B-cell differentiation genes, includ-

ing the IKZF1, PAX5 and EBF1 genes. The prognosis of ‘BCR-ABL1 like’ patients is poor, as they 

merely reach an event free survival (EFS) of 50-70%.11,14 

Treatment of Acute Lymphoblastic Leukemia

In recent decennia, ALL therapy has become very effective, now resulting in an overall sur-

vival of ~85% for children diagnosed with ALL and treated with risk-stratified combination 

chemotherapy.15-18 In the Netherlands, children with ALL are currently treated according to 

the Dutch Childhood Oncology Group (DCOG) ALL-11 treatment protocol, which opened 

in 2013 and followed the previous ALL-10 protocol. Both protocols use a Berlin-Frankfurt-

Münster Group (BFM) backbone,19 consisting of an initial consolidation (protocol 1B) phase, 

an interim maintenance phase, a reinduction (delayed intensification) phase followed by 

maintenance therapy. 

Table 1. The WHO classification of B cell ALL based on immunophenotype and genotype

immunophenotype Cd19 Cd10 cy μ sur μ Genotype

Pro B-cell ALL + - - - MLL-AF4, MLL-ENL

Common B-cell ALL + + - - ETV6-RUNX1, BCR-ABL1

Pre B-cell ALL + + + - E2A-PBX

WHO, world health organization; CD, cluster of differentiation; Cy, cytoplasmic; sur, surface; ALL, acute lymphoblastic leukemia.
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dOwn SyndrOme and Leukemia 

Down syndrome

Down syndrome (DS) is considered one of the most common chromosomal abnormalities in 

the normal population,20 with a prevalence of ~320 live births in the Netherlands.21,22 Despite 

the increasing age at which women deliver their first child in Europe, this prevalence has 

decreased over the past decades due to increased screening and termination of DS pregnan-

cies.23 

DS is caused by trisomy of chromosome 21 (Hsa21), which is the result of abnormal division 

of chromosomes (non-disjunction) in the first or second meiotic division of the oocyte (80-

95%) or the sperm cell (5-20%), or occasionally during mitotic division.23-25 These DS children 

(95%) carry trisomy 21 in all their cells. However, ~5% of DS children have phenotypically 

none or fewer symptoms, which is a result of 1) mosaicism, i.e. that not all cells carry an ad-

ditional chromosome 21, or 2) due to a Robertsonian translocation, where the participating 

chromosomes, usually chromosome 14 and 21, break at their centromeres and the long (q) 

arms fuse to form a single chromosome with a single centromere.25

Typically, DS patients have characteristic clinical features, such as an up-slant of the eyes, a 

protruding tongue, a single crease of the hand palm, and a sandal gap deformity of the feet. 

Most DS children show cognitive impairment, although this varies in severity.23 DS children 

carry an increased risk to encounter a wide variety of complex medical problems including 

congenital cardiac anomalies, anatomical abnormalities of the gastrointestinal tract, autoim-

mune phenomena such as hypothyroidism and coeliac disease, a vulnerability to recurrent 

bacterial and viral complications due to an impaired immune system, and an increased risk of 

hematological malignancies.23,26-30 The life expectancy of DS children is primarily dependent 

on the risk of morbidity and mortality in the first year of life.23 

Leukemia in Down syndrome 

DS children have an increased risk of developing leukemia as compared to non-DS children, 

which was already recognized in the 1930s.31-34 This increased risk of leukemia includes both 

the risk for ALL, which is approximately 20-fold higher, as well as for myeloid leukemia of DS 

(ML DS), which is 150-fold higher.32 Leukemic disease from the myeloid lineage consists of 2 

entities, i.e. transient myeloproliferative disorder (TMD) and ML DS. TMD is a clonal disease 

that is characterized by immature megakaryoblasts in the fetal liver and peripheral blood.35,36 

In absolute numbers, ALL affects ~5 and ML DS ~8 DS children each year in the Netherlands 

every year (DCOG registration 2006-2011, Figure 2). The true incidence of TMD is not known, 

as the course of TMD is uncomplicated and asymptomatic in the vast majority of cases, a 

diagnosis of TMD is often missed prior to its spontaneous remission. Probably TMD occurs in 
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less than 10% of newborns with DS, which is based on the finding of GATA1 mutations (see 

below) in 590 Guthrie cards in 4% of newborn DS children.37 The strong predisposition for DS 

children to develop acute leukemias is as yet not completely understood. Remarkably, the 

general risk for developing cancer in DS individuals is not increased, as there is a reduced 

propensity for solid tumors, and even a decreased frequency of secondary malignancies 

after treatment for prior leukemia.32,38 Hence, DS is not a cancer susceptibility but a leukemia 

susceptible syndrome. 

DS-ALL patients are different from ALL patients without DS (non-DS ALL) in presenting 

characteristics. For instance, in DS-ALL there is a lower frequency of T cell ALL, and ALL never 

occurs in DS infants (<1 year).8,39-41 Moreover, in DS ALL, favorable subtypes such as high 

hyperdiploidy and ETV6-RUNX1, as well as the unfavorable characteristics such as MLL rear-

rangements and the Philadelphia-chromosome [BCR-ABL1] occur less frequent.6-9 In addition, 

there is a relatively large group of DS ALL patients (~40%) without known cytogenetic aber-

rations.9 It is unknown whether this group comprises ‘BCR-ABL1 like’ patients, and leukemias 

with abnormalities of B-cell differentiation genes, as this has not been studied in DS ALL. 

ML DS is characterized by a unique acquired mutation in the globin transcription factor 1 

(GATA1).42-44 These mutations are disease specific and therefore can be used as a marker for 

MRD.35 It is unknown whether such a unique genetic event also exists in DS ALL. Recently 

new molecular aberrations such as mutations of Janus Kinase 2 (JAK2) and rearrangements of 

Cytokine Receptor Like Factor 2 (CRLF2) were reported to occur in DS ALL, but later they were 

also identified in non-DS high-risk ALL.45-55 Their role in DS and non-DS ALL pathogenesis is 

uncertain, as it is unknown whether they are true leukemia initiating events. To unravel the 

cytogenetic profile of DS ALL, it is needed to search with new techniques on a molecular 

level. Furthermore, as all published series are small, large series are needed to determine the 

prognostic relevance of well-established cytogenetic and novel molecular aberrations, and 

to study clinical relevant outcome parameters in DS ALL, thereby allowing a sufficient sample 

size to draw meaningful conclusions. 

The outcome of DS ALL patients has been reported to be at best similar and often inferior 

to that of non-DS ALL patients.6-8,39,41,56-58 This is in sharp contrast to ML DS patients, who 

have an excellent prognosis compared to other AML types, based on a very unique chemo-

sensitivity profile with enhanced sensitivity to most AML drugs.59,60 Moreover, TMD often 

resolves without therapy, although early death occurs in 10-20% of the affected children.61,62 

The biological basis for the reduced probability of survival in DS ALL is not fully understood. 

A study from the Children’s Oncology Group reported that DS ALL patients treated in SR arms 

had an inferior outcome, while patients treated in HR arms had similar outcome as compared 

to non-DS ALL patients.8 It is therefore questionable whether the National Cancer Institute 

classification is appropriate for risk-group stratification in DS ALL. It may also suggest that 

DS ALL cells are relatively resistant to chemotherapy. This is reflected in a small number of 

cellular cytotoxicity assays showing that DS ALL cells do not have increased sensitivity to 
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chemotherapy in vitro; indicating that reduction of therapy for DS-ALL patients may not 

be possible in contrast to ML DS.60 However, intensification of therapy in these vulnerable 

patients may neither be feasible nor desirable given the increased risk of treatment-related 

morbidity and mortality.

Worldwide, DS ALL patients are treated according to the same protocols as their non-DS 

ALL counterparts, although dose reductions of Methotrexate and / or Anthracyclines are 

frequently applied This is different from ML DS patients, who are treated according to specific 

ML DS regimens with reduced treatment intensity in some countries.63,64 

It is well known that DS ALL patients have a higher susceptibility to the toxic side effects and 

to treatment related mortality (TRM)  compared to non-DS ALL children.58,65,66 It is conceivable 

therefore that attempts to decrease morbidity and TRM by reduction of treatment intensity 

in individual DS ALL patients may have contributed to their inferior outcome.67 For instance, 

it is well known that DS-ALL patients are more susceptible to MTX induced side effects than 

non-DS-ALL patients.58,65,66,68 However, it is not known whether the enhanced susceptibility 

for MTX induced side effects is due to the difference in cellular sensitivity (for instance of the 

mucosa), but whether it also the reflects differences in pharmacokinetics between DS-ALL 

and non- DS-ALL patients. Moreover it is unknown whether the risk for TRM is related to a 

specific treatment phase or chemotherapeutic agent. 

In order to guide subgroup directed therapy and the development of novel therapies, the 

frequency and prognostic relevance of conventional and new (cyto-) genetic aberrations 

needs to be established in large series of DS ALL, despite the caveat of heterogeneity in treat-

ment over time and between different study groups. Furthermore, molecular insight into the 

pathogenesis of DS ALL is necessary, and this could be achieved by identifying novel (and 

drugable) molecular abnormalities that characterize DS ALL. 

OuTLine Of ThiS TheSiS

In this thesis we studied the clinical and biological features of DS ALL that determine 

prognosis (chapter 2-3). Although DS children have an increased risk of developing ALL, it 

remains a rare disease and almost all published series lack sufficient power to draw mean-

ingful conclusions. Therefore, in chapter 2, we performed a large retrospective study within 

the international childhood ALL Ponte-di-Legno working group, with the aim to determine 

clinical relevant outcome parameters, the prognostic relevance of well-established (cyto-) 

genetic and novel molecular aberrations, and causes of treatment failure in DS ALL. Chapter 

3 describes the results of a retrospective case-control study, which defined whether the well-

known enhanced susceptibility for MTX-induced side effects is the result of differences in 

pharmacokinetics between DS-ALL and non-DS ALL patients.
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In chapter 4-7 we report on the results of several genome wide techniques to identify spe-

cific molecular aberrations involved in the pathogenesis of DS ALL. In chapter 4, we searched 

for mutations in the kinase and pseudokinase domains of Janus Kinase (JAK) 1-3 by direct 

sequencing in order to identify novel aberrations. Moreover, we analyzed the prognostic 

significance of JAK2 mutations in DS ALL in our cohort, and included a meta-analysis of all 

published data. In chapter 5, results of the array comparative genomic hybridization and 

multiplex ligation-dependent probe amplification studies to determine the frequency and 

prognostic significance of abnormalities in B-cell development and differentiation genes in a 

population based DCOG DS ALL cohort are presented, which was validated with DS ALL pa-

tients from UK trials. Chapter 6 reports a study on the frequency of BTG1 deletions in a large 

series of DS ALL patients and describes the prognostic significance of these abnormalities. 

In chapter 7 we show the results of gene-expression profiling to determine whether DS ALL 

can be characterized by differentially expressed genes and pathways as compared to non-DS 

ALL. Chapter 8 provides the general discussion of this thesis and includes future perspectives 

for further research. Chapter 9 contains the summary in English and the layman’s summary 

in Dutch.  
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aBSTraCT

Children with Down syndrome (DS) have an increased risk of B-cell precursor acute lym-

phoblastic leukemia (BCP-ALL). The prognostic factors and outcome of DS-ALL patients 

treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled 

in 16 international trials from 1995-2004. Non-DS BCP-ALL patients from the DCOG and 

BFM were reference cohorts. DS-ALL patients had a higher 8-year cumulative incidence of 

relapse (26±2% vs. 15±1%; p<0.001) and 2-year treatment-related mortality (TRM) (7±1% 

vs. 2.0±<1%; p<0.0001) than non-DS patients, resulting in lower 8-year event-free survival 

(EFS) (64±2% vs. 81±2%; p<0.0001) and overall survival (74±2% vs. 89±1%; p<0.0001). Inde-

pendent favorable prognostic factors include age<6 years (hazard ratio [HR]=0.58, p=0.002), 

white blood cell count (WBC) <10x109/L (HR=0.60, p=0.005) and ETV6-RUNX1 (HR=0.14; 

p=0.006) for EFS, age (HR=0.48, p<0.001), ETV6-RUNX1 (HR 0.1, p=0.016) and high hyperdip-

loidy (HeH) (HR 0.29, p=0.04) for relapse-free survival. TRM was the major cause of death in 

ETV6-RUNX1 and HeH DS-ALLs. Thus while relapse is the main contributor to poorer survival 

in DS-ALL, infection-associated TRM was increased in all protocol elements, unrelated to 

treatment-phase or regimen. Future strategies to improve outcome in DS-ALL should include 

improved supportive care throughout therapy, and reduction of therapy in newly identified 

good-prognosis subgroups. 
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inTrOduCTiOn 

Children with Down syndrome (DS) are predisposed to develop acute myeloid leukemia 

(AML) and acute lymphoblastic leukemia (ALL),1 which are characterized by unique biological 

features in comparison with those of non-DS ALL.2-4

Children with DS-ALL have an inferior outcome compared to non-DS patients because 

of both higher treatment related mortality (TRM) and higher relapse rate.5-9 As attempts to 

decrease TRM by reducing treatment intensity may contribute to the increased risk of relapse 

in DS-ALL, it is important to determine whether the risk for TRM is related to a specific treat-

ment phase or chemotherapeutic agent.8-10 Small series suggest that DS-ALL patients have an 

increased risk of mucositis from methotrexate, myelosuppression from anthracyclines, and 

hyperglycemia from glucocorticoids.10-16 Acquired leukemic cell genetic abnormalities have 

important prognostic significance in non-DS childhood ALL.17 However, the impact of these 

abnormalities on treatment outcome in DS-ALL is unknown, as all published series lack a suf-

ficient sample size to draw clear conclusions. Even the prognostic significance of well-known 

good prognostic factors in non-DS ALL such as the t(12;21)(p13;q22) [ETV6-RUNX1], high 

hyperdiploidy (HeH) and trisomies 4&10 is uncertain in DS-ALL, as well as for the unfavorable 

translocations including the t(9;22)(q34;q11) [BCR-ABL1] and t(4;11)(q21;q23) [MLL-AF4].2 Of 

interest, these prognostic genetic features have a lower frequency in DS-ALL.2,7,18,19

Recently, genetic abnormalities such as JAK2 mutations20 and CRLF2 rearrangements have 

been identified in both DS and non-DS ALL.3,4,20-27 Activating JAK2 R683 mutations were 

found in ~18% of DS-ALL patients.20,24 Rearrangements of CRLF2 occurred in ~60% of DS-ALL 

patients and in fewer than 10% of non-DS ALL patients.3,4,23 In almost all instances JAK2 (or 

rarely JAK1, or IL7R) mutations were associated with CRLF2 gene rearrangements, suggesting 

a model by which CRLF2 overexpression results in JAK-STAT activation and proliferation of the 

leukemic clone.3 Thus far, CRLF2 gene rearrangements lack prognostic relevance in DS ALL, 

although all series were small.3,4,21,27 

The small size of most studies in DS-ALL patients has precluded definitive answers to the 

issues raised above. Hence, we undertook a large retrospective study of DS-ALL within the 

International ALL “Ponte di Legno” Working Group to study clinically relevant outcome pa-

rameters, the prognostic relevance of well-established and novel (cyto-) genetic aberrations 

in ALL, and causes of treatment failure, thereby allowing a sufficient sample size to draw 

meaningful conclusions, despite the caveat of heterogeneity in treatment over time and 

between different study groups.28
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paTienTS and meThOdS

Patients

Patients eligible for this study were enrolled in various national or collaborative group clinical 

trials between January 1, 1995 and December 31, 2004, were ≤18 years at diagnosis and were 

treated with curative intent. The Institutional Review Boards of each participating center 

approved treatment protocols according to the local law and guidelines. Participating study 

groups and their number of patients are mentioned in Supplementary Table S1. A predefined 

set of data was collected, consisting of clinical data obtained at diagnosis, treatment, and 

cytogenetic and molecular data (Supplementary Table S2). 

DS-ALL patients were treated according to standard ALL treatment protocols, but 

modifications of the standard protocol did occur. None of the protocols provided specific 

supportive care measures for DS-ALL children. In total, 42.3% (n=276) DS-ALL patients re-

ceived a reduced dose of chemotherapy. Most of these dose-reductions (79%) were planned 

prior to the administration of specific courses of chemotherapy and gradually increased by 

observed clinical toxicity. Modifications for MTX consisted of dose-reductions of high dose 

MTX, varying from 10-75% of the maximum dose, and intensified leucovorin rescue. DS ALL 

patients enrolled in EORTC 58951 protocols from September 2002 (n=7) received 0.5g/m2 of 

MTX instead of 5g/m2. In addition, patients treated on protocol POG 9405 (n=10) started with 

50% of the total dose of Daunorubicin, Cytarabine, Teniposide, HDAC and Peg-asparaginase, 

which was successively increased or reduced depending on toxicity. Supplementary Table S3 

provides an overview of the main chemotherapeutic agents of treatment protocols used by 

the various study groups. 

Data on either JAK2 R683 mutations and/or CRLF2 gene rearrangements were available 

from a subset of patients (n=182) included in this study. There were no statistical differences 

between patients with and without available data. Some of these data have been previously 

reported.20,24,25 However, several study groups contributed new unpublished data. 

Non-DS ALL reference cohort 

For comparison, population-based B-cell precursor ALL reference cohorts from the DCOG 

and the ALL-BFM Study Group, from exactly the same time period as the DS patients (January 

1, 1995 and December 31, 2004), were added. The DCOG dataset consisted of 827 non-DS 

BCP-ALL patients enrolled in 3 DCOG ALL treatment protocols (ALL-8, ALL-9 and ALL-10). 

The BFM dataset consisted of 3618 non-DS BCP-ALL patients enrolled in 2 BFM treatment 

protocols (BFM-95 and BFM-2000) in Germany and Austria. Details of these protocols have 

been reported elsewhere, except for protocol ALL10, which is on-going.29,30
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There were no significant differences in outcome estimates, nor in the distribution of 

cytogenetic subgroups, between the DCOG and BFM datasets (data not shown), nor when 

compared to reported data from other participating groups.31-38 The DCOG and BFM non-DS 

datasets were merged for statistical analysis.

Cytogenetic analysis

Genetic abnormalities were determined by G-, Q-, or R-banded karyotyping, fluorescence in 

situ hybridization (FISH) or reverse-transcribed polymerase chain reaction (RT-PCR). Diagno-

sis of rearrangements of ETV6-RUNX1, BCR-ABL1 and MLL were based on one or more of these 

techniques; diagnosis of high hyperdiploidy (HeH) was defined by modal chromosomal num-

ber ≥52 or DNA index ≥1.13 for DS-ALL patients and ≥51 chromosomes for non-DS patients. 

All cytogenetic data were centrally reviewed by two co-authors (N.H. and E.F.). The definition 

and description of clonal abnormalities followed the recommendations of the International 

System for Human Cytogenetic Nomenclature (ISCN 2005).39

CRLF2 gene rearrangements were identified by genomic array, FISH, genomic PCR, Sanger 

sequencing or Multiplex Ligation-dependent Probe Amplification. 

Statistical analyses

Statistical analyses were conducted using SAS software (SAS-PC, Version 9.1). The Kaplan-

Meier method was used to estimate survival: complete remission rate (CR), event-free survival 

(EFS), overall survival (OS), relapse free survival (RFS). The survival estimates were compared 

using the log-rank test. The cumulative incidence of toxic death (TRM) and the cumulative 

incidence of relapse (CIR) were calculated by the method of Kalbfleisch and Prentice and 

compared with the use of Gray’s test. CR was defined as less than 5% blasts in the bone 

marrow, with regeneration of tri-lineage hematopoiesis plus absence of leukemic cells in the 

cerebrospinal fluid or elsewhere. EFS was calculated from the date of diagnosis to the date 

of last follow-up or to the first event, including relapse, death in CR, failure to achieve CR 

(considered as event on day 0) or second malignancy. Early death was defined as any death 

within the first 6 weeks of treatment, and was considered as an event on day 0 for statistical 

analysis. OS was measured from the date of diagnosis to the date of last follow-up or to the 

date of death from any cause. CIR included death in CR and other events as competing events.

To compare categorical variables c2 analyses was used and the Fisher exact test was used 

for small patient numbers. The non-parametric Mann-Whitney U test was applied for continu-

ous variables. P values ≤ 0.05 were considered as statistically significant (two-tailed testing).

For multivariate analysis, the Cox regression model was used. Continuous variables were 

categorized according to the National Cancer Institute (NCI) risk criteria.40 P values ≤ 0.05 

were considered as statistically significant (two-tailed testing). 
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reSuLTS

Patient characteristics 

In total data of 708 DS-ALL patients were collected, of which 55 were excluded because they 

did not meet the inclusion criteria; i.e. the karyotype of one patient lacked constitutional 

trisomy 21; 39 patients were diagnosed outside the inclusion period of the study; 2 patients 

were not treated with curative intent; and the age of 9 patients was above 18 years at di-

agnosis (range 18.2 – 21.9). Furthermore, we excluded the 5 patients with T-cell ALL as this 

number was considered too small for meaningful statistical analysis. However, clinical and 

cyto-genetic characteristics of these 5 T-cell ALL patients are described in Supplementary 

Table S4. Hence, 653 patients with DS BCP-ALL were analyzed. DS-ALL patients were slightly 

older than non-DS patients at diagnosis (median 5.0 vs. 4.7 years; p=0.002) (Table 1), and 

DS-ALL did not occur in infants. The initial white blood-cell count (WBC) of DS-ALL patients 

was not different compared with non-DS (median 10.2x109/L (range 0.2–459) vs. 8.9x109/L 

(range 1.7–998), p=0.14). 

Genetic data

All leukemic karyotypes, FISH and RT-PCR results underwent central review; 68% (n=444) of 

the DS patients had adequate genetic data (Table 1). In total, 40.3% had a cytogenetically 

normal (CN) karyotype (i.e. only constitutional trisomy 21) compared to 6.9% of the non-DS 

cases (p<0.001). Nine percent of DS patients had a HeH karyotype compared to 33% of non-

DS patients (p<0.001). HeH DS patients were significantly older than HeH non-DS patients 

(median, 7.2 years vs. 4.2; p<0.001). Trisomies of both chromosomes 4 and 10 were found in 

45% of the HeH DS-ALL patients, similar to non-DS HeH patients (42.6%; p=0.77).18,41

ETV6-RUNX1 fusion was found in 8.3% of the DS-ALL patients (compared with 25.8% in 

non-DS; p<0.001), BCR-ABL1 fusion in 0.7% compared with 2.4% in non-DS (p=0.02) and MLL 

rearrangements in <1% compared with 1.2% in non-DS (p=0.2). The previously reported 

t(8;14)(q11.2;q32) translocation was found in DS-ALL patients only (2%).2,42,43

In total, 182 patients had available data on either JAK and/or CRLF2 aberrations. JAK2 

R683 mutations were found in 21% (n=30) of the 141 DS-ALL patients with available data, of 

which 83% (n=25) also had a CRLF2 gene rearrangement. In 69% (n=93) of the 134 DS-ALL 

patients with available data, CRLF2 gene rearrangements were found, including 5.4% (n=6) 

with IGH@-CRLF2 translocations, and 94.6% (n=87) with P2RY8-CRLF2 fusions. DS patients 

with CRLF2 gene rearrangements were younger compared to DS patients with wildtype 

CRLF2 (4.1 vs. 7.7 years, p<0.001), but no difference in diagnostic WBC was observed (14.8 vs. 

11.8x109/L, p=0.7). This differs from non-DS patients with CRLF2 gene rearrangements who 
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had lower WBC (14.6 vs. 34.6x109/L, p=0.004), but did not differ in age (5.1 vs. 4.7 years, p=0.7) 

compared to wild-type patients (Supplementary Table S5). 

Treatment outcome according to clinical data

The median follow up time was 6.8 years for DS-ALL and 8.4 years for non-DS survivors. 

The CR rate was 96.7% in DS-ALL and 99% in non-DS patients (p<0.001). Induction failures 

were more frequent in DS-ALL compared to non-DS (3.0% and 1.0% respectively, p<0.001). 

DS patients had a higher cumulative incidence of relapse (CIR, 26±2% vs. 15±1% at 8 years; 

p<0.0001), and treatment related mortality (TRM, 7±1% vs. 2±<1% at 2 years; p<0.0001) than 

non-DS patients, resulting in a lower EFS (64±2% vs. 81±2% at 8 years; p<0.0001) and OS 

Table 1. Patient characteristics of DS-ALL patients and the DCOG non-DS BCP ALL reference cohort

  dS aLL non-dS aLL p

number 653 4445  

age at diagnosis (range) 5.0 (1.2-17.9) 4.7 (0.1 - 17.9) 0.002

Sex      

Male 343 2431  

Female 310 2014 0.3

median initial wBC x 109/L (range) 10.5 (0.2-459) 8.8 (0.2 - 999) 0.14

extra medullary disease      

CNS (%) 16/624* (2.5) 98/4258* (2.2) 0.69

Lymphnodes (%) 134/412* (32.5) 1471/4339* (33.1) 0.57

Hepatomegaly (%) 245/469* (52.2) 3156/4357* (71) <0.001

Testis (%) 1/296* (<1%) 28/4317 (<1%) 0.51

Cytogenetic subgroups      

Normal karyotype 179 (40.3) 45/650* (6.9) <0.001

BCR-ABL1 t(9;22) 3 (0.7) 93/3898* (2.4) 0.02

MLL (11q23) 2 (0.5) 36/2966* (1.2) 0.15

ETV6-RUNX1 t(12;21) 37 (8.3) 841/3264* (25.8) <0.001

HeH$ 40 (9) 235/708* (33) <0.001

HeH trisomy 4 & 10 18 (4.1) 100/650* (15.4) <0.001

HeH, other 22 (5.0) 135/708* (19.1) <0.001

Others 183 (41.2) 225/650* (34.6) 0.03

8-year OS 74 ± 2% 89 ± 2% <0.001

8-year efS 64 ± 2% 81 ± 2% <0.001

8-year Cir 26 ± 2% 15 ± 1% 0,001

2-year Trm 7 ± 1% 2 ± <1% <0.001

DCOG, Dutch childhood oncology group; BCP, B-cell precursor; WBC, white blood cell count; CNS, central nervous system involvement at 
diagnosis (>5 WBC/ml; CNS-3); HeH$ DS: 52-60 chromosomes, non-DS 51-60 chromosomes; OS, overall survival; EFS, event-free survival; TRM, 
treatment-related mortality; CIR, cumulative incidence of relapse, *Number of patients available for analysis.



CHAPTER 2

30

(74±2% vs. 89±2%; p<0.0001) (Figure 1). In total, 144 DS patients relapsed compared to 650 

non-DS patients. The time-to-relapse after CR was significantly longer for DS (median 2.8 

years, p25: 1.8 years, p75: 4.0 years), than for non-DS patients (median 2.4 years, p25: 1.4 

years, p75: 3.5 years; p=0.007). In addition, 23 DS ALL patients relapsed after 5 years versus 

33 non-DS ALL patients, p<0.001. Treatment outcome did not differ significantly between the 

early (1995-2000) and late treatment eras (2000-2004) for DS patients (8-year: OS 77±3% vs. 

73±3%;p=0.7, CIR 26.7±3% vs. 31±6%; p=0.4). 

The 379 DS-ALL children below the age of 6 years fared significantly better than the 272 

older children (8-year: EFS 70±3% vs. 54±4%; p<0.0001; OS 78±2% vs. 67±3%; p=0.002, 

CIR 21±2% vs. 34±3%; p=<0.001, and 2-year cumulative incidence of TRM 7±1% vs. 8±2%; 

p=0.33). Notably, the 126 children aged 6-9 years had a relatively poor outcome (8-year: EFS 

51±3%, OS 70±5%), which was due to a very high frequency of relapse (CIR 41±6%), not at-

tributable to any known risk factor(s). Outcome declined with increasing WBC, and was best 

for the 319 patients with WBC <10x109/L due to a low risk of TRM (8-year: 4±1% vs.11±2% for 

WBC ≥10x109/L; p=0.0003) and relapse (8-year: 21±3% vs. 30±3%; p=0.03). These features 

thus define a favorable risk-group with age <6 years and WBC <10x109/L, when compared to 

the remaining DS patients (8-year: EFS: 78±3% vs. 58±3%, p<0.0001; OS: 87±3% vs. 68±3%, 

p<0.0001; CIR: 17±3% vs. 30±2%, p=0.003; 2-year TRM: 3±1% vs. 9±1%, p=0.002) (Figure 2, 

Table 2). These criteria predicted outcome more accurately than the classical NCI-criteria 

(Figure 3).40 These features remained significant after excluding patients with ETV6-RUNX1 

rearrangements or trisomies 4&10 from the analysis. The effect of this new PdL risk stratifica-

tion was consistent among the larger study groups including AIEOP, BFM, CCG, POG, and the 
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Figure 1. Treatment outcome of the Down syndrome and non Down syndrome ALL patients 
The continuous lines represent the DS-ALL patients, the dotted lines represent the non-DS ALL patients. The 100%-black line represents overall 
survival, the 50%-black line event free survival, the 25%-black line the cumulative incidence of treatment-related mortality and the 75%- black 
line the cumulative incidence of relapse.
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UK with a HR of 1.62 for high-risk patients from the UK, and 3.79 for BFM patients. Among pa-

tients with age >6 years and WBC >10x109/L, DS patients had a poorer outcome than non-DS 

patients (8-year: EFS: 58±3% vs. 78±1%, p<0.001; OS: 68±3% vs. 86±1%, p<0.001; CIR: 30±2% 

vs. 17±1%, p<0.001; 2-year TRM: 10±1 vs. 2±<1%, p<0.0001). The clinical characteristics of 

DS-ALL patients (n=246) classified as NCI low risk, but considered high-risk according to our 

criteria are described in Supplementary Table S6. 

In total, 18 (2.8%) of the DS-ALL patients received a stem-cell transplantation, 3 in CR1 and 

15 in CR2. Of these patients, 6 are alive in continuous CR, and 12 patients died (1 graft versus 

host disease, 1 toxic non-infectious event, 1 infection, and 9 relapsed).

Figure 2. Treatment outcome according to age and white blood cell count in Down syndrome ALL
The overall survival (A), event-free survival (B), cumulative incidence of treatment-related mortality (C) and cumulative incidence of relapse (D) 
are depicted for patients with age <6 years and WBC <10x109/L (black line) versus all other DS-ALL patients (grey line). The numbers on the 
curves for overall survival and event-free survival represent results at 8 years. The numbers on the curves for treatment related mortality are 
2-year results (during treatment only) and those for relapse are results at 8 years.
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Treatment outcome according to genetic data

The 37 DS-ALL patients with ETV6-RUNX1 had significantly better outcome than the other DS 

patients: 8-year EFS 95±4% vs. 63±3% (p=0.001), OS 97±3% vs. 75±2% (p=0.007), CIR 3±3% vs. 

26±2% (p=0.004), and 2-year: TRM 3±3% vs. 8±1%; (p=0.2). DS ALL patients with ETV6-RUNX1 

did not differ in outcome when compared to the 841 non-DS patients with this abnormality 

(8-year: EFS 95%, p=0.48; OS 96%, p=0.91; CIR 7%, p=0.32; 2-year TRM 1%, p=0.19). 

The 40 HeH DS-ALL patients had a significantly lower CIR than the other DS-ALL patients 

(8-year: 8±5% vs. 26±3%, p=0.02). However a relatively high rate of TRM (2-year: 13±5% in 

HeH vs. 7±1% in non-HeH DS; p=0.2) resulted in similar 8-year EFS (77±7% vs. 65±3%, p=0.28) 

and OS (79±6% vs. 76±2%, p=0.88). TRM in these HeH patients was not exclusively seen in 

one treatment strategy, but was spread across the different treatment protocols. HeH DS-ALL 

patients showed lower OS when compared to the 235 HeH non-DS patients due to increased 

TRM (8-year: OS 79±6% vs. 93±2%; p=0.009, EFS 77±7% vs. 86±2%; p=0.06, CIR 8±5% vs. 

11±2%; p=0.7, 2-year: TRM 13±5% vs. 1±1%, p<0.001). 

The subgroup of HeH DS-ALL patients with trisomies 4&10 (n=18) showed a trend towards 

better outcome, when compared to all other DS-ALL patients (8-year: EFS 88±8% vs. 65±3%, 

p=0.09; OS 88±8% vs. 76±2%, p=0.32; CIR 0% vs.25±2%, p=0.03; 2-year: TRM 12±8% vs.7±1%, 

p=0.6). No DS patients with these trisomies did relapse, and all events were due to toxicity. 

Their outcome was similar when compared to non-DS patients with trisomy 4&10 (8-year: 

EFS 90.8±3%; p=0.75, OS 92.3±4%; p=0.65, CIR 5.1±2%; p=0.34, 2-year: TRM 3.0±2%, p=0.1). 

Table 2. Contingency table representing outcome of Down syndrome patients by NCI risk group and PdL risk group criteria

 

ponte di Legno risk model  

Low risk high risk  

 

nC
i c

rit
er

ia

Low risk

N=187 N=246  

  EFS 78±3% EFS 63±4% NCI LR

Cl
as

sic
al

OS  87±3% OS 73 ±3% N=433

TRM 3±1% TRM ±%  

CIR 17±3% CIR ±%  

high risk

N=218  

EFS 57±4% NCI HR

N=0 OS  62±4% N=218

  TRM 12±2  

  CIR 29±3%  

 

PdL LR model PdL HR model Total

N=187 N=464 N=651

EFS, event-free survival; OS, overall survival; TRM, treatment-related mortality; CIR, cumulative incidence of relapse; SR, standard risk; HR, high 
risk; PdL, Ponte di Legno; Classical NCI risk criteria, age 1-9 or ≥10 years at diagnosis and WBC < or ≥50x109/L; Ponte di Legno low risk criteria; 
age <6 years and WBC <10x109/L, Ponte di Legno high risk criteria; all other patients. 
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DS ALL patients with or without JAK2 mutations had similar treatment 8-year outcomes (EFS 

57±10% vs. 69±5%, p=0.1; CIR 26±9% vs. 23±5%, p=0.48). No data were available in the refer-

ence cohort. The 93 DS ALL patients with CRLF2 aberrations showed no significant difference 

in 8-year survival compared to the 41 wild-type DS ALL patients (EFS 62±6% vs. 71±8%, 

p=0.21; OS 73±5% vs. 83±8%, p=0.13; CIR 26±6% vs. 22±8%; p=0.44). DS ALL patients with 

CRLF2 gene rearrangements did not differ in outcome from non-DS ALL patients with these 

aberrations (8-year: EFS 62±6% vs. 58±9%; p=0.7; OS 73±5% vs. 79±8%; p=0.6; CIR 26±6% 

vs. 38±9%; p=0.15). Median time to relapse for DS patients with CRLF2 aberrations was 29 

months versus 51 months in patients with wildtype CRLF2 (p=0.11).

Treatment related mortality

In total, 7.7% of the DS-ALL patients died from other causes than relapsed/refractory disease 

compared to 2.3% in non-DS (p<0.001). TRM occurred at all phases of therapy, including main-

Figure 3. Treatment outcome according to standard- and high-risk National cancer Institute criteria in Down syndrome ALL 
patients
The overall survival (A), event-free survival (B), cumulative risk of mortality (C) and cumulative risk of relapse (D) depicted for patients with NCI 
standard-risk (black line) and high-risk (grey line) patients with cut off values for WBC < or ≥ 50x109/L and age < or ≥10 years. The numbers 
on the curves for overall survival and event-free survival represent results at 8 years. The numbers on the curves for treatment-related mortality 
are 2-year results and those for relapse are results at 8 years.
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tenance (supplementary Table S7). TRM death during induction occurred in 2.8% (n=18) of 

the DS patients (13 infectious, 5 non-infectious deaths). In CR, 4.9% (n=32) of the DS patients 

died of TRM (25 infectious, 7 non-infectious). The most common cause of TRM was infection, 

mainly respiratory and bacterial infections. Only 0.3% (n=2) of the DS ALL patients died of 

second malignancies in CR1 (secondary AML and Epstein-Barr virus lymphoproliferative dis-

ease), compared to 1.3% of the non-DS patients, p<0.04. Secondary malignancies in non-DS 

patients included 28 AML/MDS, 5 brain tumors, 9 other tumors, and 13 other malignancies. 

TRM was not significantly different between DS patients treated on the CCG/POG/UK 

studies (3-drug induction) and those DS patients treated on AIEOP/BFM-studies (4-drug 

induction): the rate of death during induction was 1.1±1% vs. 1.9±1% (p=0.7) and the 2-year 

cumulative rate was 7±2% vs. 8±3 % (p=0.99). The inclusion of an anthracycline in induction 

(4-drug induction) had no impact on TRM.

Multivariate analysis

Stepwise multivariate Cox regression analysis of EFS revealed age <6 years (HR=0.58; 95%CI= 

(0.41–0.81); p=0.002), WBC <10x109/L (HR=0.60; 95%CI= (0.42–0.86); p=0.005), and ETV6-

RUNX1 (HR=0.14; 95%CI=(0.03–0.57); p=0.006) as independent predictors for favorable out-

come. They also independently predicted OS (Age HR=0.66, p=0.04; WBC<10x109/L HR=0.51 

p=0.003; and ETV6-RUNX1 HR=0.12, p=0.04). Relapse-free survival (RFS) was predicted by 

age, ETV6-RUNX1, and HeH (Table 3).

In non-DS ALL the classical NCI criteria are comprised by age and the initial WBC, however 

ETV6-RUNX1 and trisomy 4&10 are independent predictors for favorable outcome (ETV6-

Table 3. Multivariate analysis of the DS-ALL dataset

Outcome Variable hr 95% Ci P-value

efS

Age < 6 years 0.58 0.41 - 0.81 0.002

WBC < 10 x 10 9/L 0.60 0.42 - 0.86 0.005

TEL/AML1 0.14 0.03 - 0.57 0.006

HeH 0.68 0.34 - 1.36 0.275

OS

Age < 6 years 0.66 0.44 - 0.99 0.044

WBC < 10 x 10 9/L 0.51 0.33 - 0.79 0.003

TEL/AML1 0.12 0.02 - 0.86 0.035

HeH 1.01 0.48 - 2.11 0.983

rfS

Age < 6 years 0.48 0.32 - 0.73 0.000

WBC < 10 x 10 9/L 0.71 0.46 - 1.08 0.105

TEL/AML1 0.01 0.01 - 0.64 0.016

HeH 0.29 0.09 - 0.92 0.036

HR, hazard ratio; CI, confidence interval; EFS, event free survival; OS, overall survival; RFS, relapse-free survival; WBC, white blood-cell count; 
HeH, high hyperdiploid (≥52 chromosomes).
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RUNX1: HR=0.29; 95%CI= (0.15–0.58); p<0.001; or trisomy 4&10: HR=0.37; 95%CI= (0.17–0.79); 

p=0.011). NCI-criteria retained their prognostic value in a Cox model with these three vari-

ables (HR 1.96; 95%CI= (1.30-2.95), p=0.001). In addition, multivariate analysis showed that 

the PdL criteria are not driven by the large group of DS-ALL patients having CRLF2 aberrations 

(HR=0.66; 95%CI= (0.33–1.33); p=0.25), but more likely by age and initial WBC (HR=2.16; 

95%CI= (0.95–4.90); p=0.07).

diSCuSSiOn

Many study groups have reported the worse clinical outcome of DS-ALL, however, almost all 

reports lack sufficient power to answer relevant biological questions in DS-ALL, which is the 

reason the Ponte di Legno group undertook this retrospective review. The unprecedented 

size of this study cohort resolves the controversy of the frequency and clinical impact of 

specific (cyto-) genetic aberrations in DS ALL.2,18 Moreover, the scale of the study enabled 

the identification of relatively small subgroups of DS-ALL with favorable outcomes. Analysis 

of 444 DS-ALL patients with known cytogenetics, demonstrated that the genetic subgroups 

predicting favorable outcome in non-DS ALL,2,6,7,18,41,44 also predict favorable outcome in DS-

ALL. Most significant is the discovery that ETV6-RUNX1 conferred an excellent prognosis, and 

that HeH with trisomy of chromosomes 4&10 was associated with a very low CIR. Hence these 

patients, comprising 12% of DS-ALL, may be eligible for future treatment reduction to reduce 

TRM, and can be treated according to the same risk-stratified algorithms as non-DS patients 

in the collaborative study group protocols. 

Another novel finding of this study was the identification of a clinically favorable prognos-

tic subgroup of DS-ALL patients, characterized by age <6 years and WBC <10x109/L. These 

cut points differ from those used in the classical NCI ALL risk criteria, although the biological 

basis for this difference is not fully understood.40 No genetic abnormalities were identified 

that could explain this difference between the classical NCI- and the herein reported criteria. 

Remarkably, children aged between 6 and 9 years at diagnosis, had a relatively poor outcome 

similar to high-risk ALL patients, which was due to a high frequency of relapse. This subgroup 

may be treated according to a medium or high-risk arm of future collaborative study group 

protocols. Unraveling the genetic background of the leukemia in this subgroup will be 

required in order to design more rational therapy for these patients. Noteworthy, MRD was 

not routinely determined during the era of this study, and it is unclear whether MRD would 

confirm these novel risk-groups. Since MRD was proven to be a powerful tool in non-DS ALL 

risk assignment,45,46 further research is needed to validate whether a MRD based strategy is 

desirable in future DS ALL treatment protocols.

In general, we showed that DS-ALL patients have an inferior survival when compared to 

a representative non-DS ALL cohort treated in the same time period, which is in agreement 
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with previous smaller studies.5,10,47 Despite a high rate of TRM, and different from what is often 

suggested, relapse remained the main cause of treatment failure in DS patients. Interestingly 

the relapses tend to occur later in DS. It is unclear if this is due to the genetic makeup of DS-

ALL or to decreased immune surveillance of the residual leukemia in DS patients. It cannot be 

ruled out that under-reported treatment reduction of patients with DS-ALL contributes to the 

increased relapse risk.48 This finding suggests that the currently accepted strategy of treat-

ment reduction in DS-AML, which is characterized by a chemotherapy-sensitive phenotype,49 

is not applicable to DS-ALL.47 The only exception may be DS-ALL patients with ETV6-RUNX1 or 

HeH, in which TRM outweighed the risk of relapse, for whom a 3-drug induction and a limited 

re-induction might be adequate. Interestingly and in accordance with previous results, the 

incidence of secondary malignancies was significantly lower in DS patients as compared to 

non-DS ALL patients.  This is in agreement with the reduced propensity for solid tumors in DS 

patients reported before.50 

The genetic basis of the aggressive clinical behavior of DS-ALL is still unknown. A high 

proportion of DS-ALLs have normal karyotype (40.3% compared with 6.9% of non-DS), 

suggesting the presence of cytogenetically invisible molecular abnormalities. One of these 

abnormalities, detected in 60% of DS-ALLs is the aberrant expression of CRLF2, which is often 

associated with JAK-STAT mutations. In contrast to some studies showing deleterious effects 

of CRLF2 alterations in non-DS high-risk ALL,26,51 no such association was found in this study, 

nor in several prior smaller studies of DS-ALL.3,4,21,27 Nevertheless, a substantial proportion 

of DS ALL patients carry these aberrations, thereby providing a pathway which might be 

targeted by inhibitors of the JAK-STAT pathway or mTOR signaling.52 

IKZF1 mutational status was unknown in our dataset. Recently it was shown that this gene 

was frequently deleted in DS-ALL patients (in ~35%), and was found to be an independent 

predictor for dismal outcome.27 Of note, the median age of patients with IKZF1 aberrations in 

the DS-ALL study was significantly higher compared to wildtype patients (8.2 vs. 4.3 years), 

which could be an important genetic factor underlying the biological basis for the age cut-off 

point of 6 years reported here as clinically significant. 

Previous studies reported increased TRM in children with DS-ALL9, also in relapse proto-

cols.53 The large size of our cohort enabled the observation that the increased TRM is present 

throughout treatment, with about half of the deaths occurring during maintenance therapy. 

While doses of myelosuppressive chemotherapy are typically adjusted during maintenance 

therapy, to maintain an adequate neutrophil count, this phase of treatment may neverthe-

less lead to B-cell depletion and hypo-gammaglobulinemia, and hence to a higher infection 

rate in already immune-compromised DS patients.54,55 To reduce TRM, we suggest improving 

supportive care throughout the treatment period with aggressive treatment of infections, 

and studies analyzing the potential benefit of anti-bacterial and anti-fungal prophylaxis, and/

or immunoglobulin substitution. Patients should be leucocyte depleted as non-DS patients 

during maintenance in order to prevent relapse, but with prompt interruptions for aplasia 
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and with more intensive surveillance than non-DS children. In conclusion, this large interna-

tional study demonstrated that the poorer survival seen in DS-ALL is mainly due to a higher 

relapse rate, and less so to TRM. Therefore, treatment reduction is not warranted, except for 

the 12% of patients with HeH or ETV6-RUNX1 in which toxicity is the major cause of mortality. 

As TRM occurs throughout therapy and is not associated with a specific chemotherapy regi-

men, better surveillance and improved supportive care measures throughout therapy need 

to be evaluated. As a result of this study an initiative is underway to develop an international 

treatment protocol for children with DS-ALL. 
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Supplementary Table S1. Participating study groups 

Study group number of included patients

North American Children’s Oncology Group including the Children’s Cancer Group and 
the Pediatric Oncology Group studies

202

German Berlin-Frankfurt-Münster Study Group 109

UK Medical Research Council 66

Italian Associazione Italiana di Ematologia ed Oncologia Pediatrica 63

Scandinavian Nordic Society for Pediatric Hematology and Oncology 43

Belgian European Organization for Research and Treatment of Cancer 31

Dutch Childhood Oncology Group 30

North American Dana Faber Cancer Institute 27

Japan Association of Childhood Leukemia Study 18

German Cooperative study-group for childhood acute lymphoblastic leukemia 16

St. Jude Children’s Research Hospital 13

Tokyo Children’s Cancer Study Group 10

Taiwan Pediatric Oncology Group 9

Polish Paediatric Leukaemia and Lymphoma Study Group 8

Israel National Study group for Childhood ALL 8

Supplementary Table S2. Collected variables in the dataset

Collected variables in the dataset

Patient ID Name of protocol 

Study group Use of Anthracylines in induction: yes/no

Lab ID cytogenetic lab Steroids in induction: Prednisone or Dexamethasone

Date of birth L’ asparaginase in induction: yes or no

Gender Dose of Methotrexate: gram/m2

Age at diagnosis Therapy reduction: yes/no, agent, dose

Date of diagnosis Day 6-9 BM evaluated

Hepatomegaly Day 6-9 BM evaluated

Splenomegaly Day 6-9 PB evaluated

Lymphnodes Day 6-9 PB evaluated

Mediastinal involvement Day 12-16 BM evaluated

Testicular infiltration Day 12-16 BM evaluated

Hemoglobine Start date and name of therapy block 1

Platelets Start date and name of therapy block 2

White bloodcell count Start date and name of therapy block 3

CNS involvement Start date and name of therapy block 4

Percentage blasts in PB by morphology Start date and name of therapy block 5

Percentage blasts in PB by immunology Start date and name of therapy block 6

BM aspirate: percentage blasts morphologically Start date and name of therapy block 7

BM aspirate: percentage blasts immunological Start date and name of therapy block 8
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Supplementary Table S2. (Continued)

Collected variables in the dataset

Trephine % blasts morphologically Irradiation and dose

Trephine % blasts immunology Therapy Comments

Immunophenotype determined on PB or BM Stemcell transplantation, type and date

Immunophenotype Date of CR 

Date karyotype Date of relapse

Karyotype on PB or BM Date and type of secondary malignancy

Karyotype (ISCN 1995 nomenclature) Date and status at last follow up

Number of metaphases Date of death

Ploidy Cause of death 

FISH for ETV6-RUNX1, BCR-ABL, MLL-AF4, and any 
other FISH performed. 

General comments

Percentage of positive cells in FISH  

Number of assessed nuclei in FISH  

PCR for ETV6-RUNX1, BCR-ABL, MLL-AF4, and any 
other PCR performed. 

 

CRLF2 gene rearrangement  

JAK 1-3 mutation  

DNA index  

If available percentage of positive cells of CD33, CD 
117, TdT, HLA-DR, CD19, CD10, CD20, CD22, CD79a, 
CD1, TCR a/b, TCR g/d, CD13, CD33, cylgM, CD2, 
CD3m, CD3cy, CD4, CD5, CD7, CD8

 

CNS, central nervous system; PB, peripheral blood; BM, bone marrow; CD, cluster of differentiation; CR, complete remission.

Supplementary Table S3. Details of the various treatment protocols used in this study

Study 
group

protocol
methotrexate 

(gram/m2)
anthracycline

induction 
steroids

L’asparaginase

AIEOP AIEOP ALL 95 SR 11 No Prednisone Yes

AIEOP AIEOP ALL 95 MR 11 Yes Prednisone Yes

AIEOP AIEOP ALL 95 HR 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (SR1) 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (SR2) 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (MR1) 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (MR2) 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (DXM) 11 Yes Dexamethasone Yes

AIEOP AIEOP ALL 2000 (DXM-SR1) 11 Yes Dexamethasone Yes

AIEOP AIEOP ALL 2000 (PDN-MR1) 11 Yes Prednisone Yes

AIEOP AIEOP ALL 2000 (DXM-MR2) 11 Yes Dexamethasone Yes

AIEOP AIEOP ALL 2000 (PDN-MR2) 11 Yes Prednisone Yes
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Supplementary Table S3. (Continued)

Study 
group

protocol
methotrexate 

(gram/m2)
anthracycline

induction 
steroids

L’asparaginase

BFM-A ALL-BFM 95 SR 5 Yes Prednisone Yes

BFM-A ALL-BFM 95 MR 5 Yes Prednisone Yes

BFM-A ALL-BFM 2000 SR 5 Yes Prednisone Yes

BFM-A ALL-BFM 2000 MR 5 Yes Prednisone Yes

BFM-G ALL-BFM 95 SR 5 Yes Prednisone Yes

BFM-G ALL-BFM 95 MR 5 Yes Prednisone Yes

BFM-G ALL-BFM 2000 SR 5.02 Yes Prednisone Yes

BFM-G ALL-BFM 2000 MR 5.02 Yes Prednisone Yes

BFM-G ALL-BFM 2000 HR 5.02 Yes Prednisone Yes

CCG 1952 No HD MTX No No No

CCG 1961 No HD MTX Yes No No

CCG 1991 No HD MTX No No No

POG 9201 0.53 No No No

POG 9405 14 No No No

POG 9406 14 Yes No No

POG 9605 0.53 No No No

POG 9904 0.53 No No No

POG 9905 0.53 No No No

POG 9906 0.53 Yes No No

DCOG ALL8 5 Yes Prednisone Yes

DCOG ALL9 NHR 3 No Dexamethasone Yes

DCOG ALL9 HR 5 Yes Dexamethasone Yes

DCOG ALL10 5 Yes Prednisone Yes

DFCI 95001 (SR) 4 Yes Prednisone Yes

DFCI 95001 (HR) 4 Yes Prednisone Yes

DFCI 00001 (SR) 4 Yes Prednisone Yes

DFCI 00001 (HR) 4 Yes Prednisone Yes

EORTC EORTC CLG 58881 5 Yes Prednisone Yes

EORTC EORTC CLG 58951 55 Yes Randomized trial Yes

Israel 93-01(ALL -BFM 90 mod) 5 Yes Prednisone Yes

Israel 98-01(ALL-BFM 95 SR) 5 Yes Prednisone Yes

Israel 98-02(ALL-BFM 95 MR) 5 Yes Prednisone Yes

Israel 03-02-00(IC-BFM 2002) 5 Yes Prednisone Yes

1 First high dose MTX course is 1g/m2, if tolerated 2nd course 2g/m2; 2 First high dose MTX course 0.5g/m2, if tolerated 2nd course 2g/m2, if 
tolerated following course 5g/m2; 3 First course of MTX 0.5g/m2, if tolerated 2nd course 1g/m2. If not tolerated, continue to reduce each dose by 
25% until tolerated; 4 DS patients not eligible for randomization to 2.5 mg/m2 MTX; 5 From September 2002, DS ALL patients were only enrolled 
in VLR and AR1 risk groups, and received 0.5g.m2 MTX; 6 Children <4 years of age receive 8 g/m2, and those older received 6g/m2. 7High dose 
MTX is limited to 0.5g/m2 for all course, leucovorin rescue from T=30 and vigorous hydration; 8 High dose MTX is limited to 0.5g/m2, normal dose 
is 2.5 g/m2 for SR and 5.0 g/m2 for HR patients.
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Supplementary Table S4. Patient characteristics and outcome parameters of the 5 excluded T cell DS-ALL patients

id 
no.

age, 
y

Sex
wBC, 

x109/L
CnS Lymphnodes hepatomegaly Testis karyotype Cr

relapse 
(rfS)

dead (OS)

1 13,6 M 55,9 No No No No 47,XY,+21c Yes No No (101)

2 9,1 F 231,6 No No No NK 47,XX,+21c Yes No No (78)

3 2,2 M 50,2 No No No No

47,XY,t(1;16)
(p34),t(3;6)
(q24;p12),del(4)
(q34),der(7)t(1;7)
(q32;q36),+21c[18]

Yes Yes (13.2) Yes (18.5)

4 11,2 M 0,6 No Yes Yes No NK NA NK No (60)

5 3,5 M 5,5 No NK Yes NK 47,XY,+21c[10] Yes No No (154)

WBC, white blood cell count x 109/L; CNS, central nervous system; CR, complete remission; RFS, relapse free survival in months; OS, overall 
survival in months; M, male; F, female; NK, not known

Supplementary Table S5. JAK2 and CRLF2 subgroup analysis

  JAK2/CRLF2 cohort (n=182) residual cohort (n=471) p-value

age at diagnosis (range) 5.1 (1.2-17.2) 5.0 (1.2-17.9) 0,6

Sex      

Male (%) 98 (54) 245 (52)  

Female (%) 84 (46) 226 (48) 0,68

median initial wBC x 109/L (range) 11.7 (1.0-322) 9.5 (0.2-459) 0,15

extra medullary disease      

CNS (%) 8/176* (4.5) 8/440* (1.8) 0.06 

molecular aberrations      

JAK1 2/141* (1.4)    

JAK2 R683 30/141* (21.3)    

IGH@-CRLF2 6/134* (4.5)    

P2RY8-CRLF2 87/134* (69.4)    

8-year OS 73 ± 5% 83 ± 8% 0,13

8-year efS 62 ± 6% 71 ± 8% 0,21

8-year Cir 26 ± 6% 22 ± 8% 0,44

*Number of patients available for analysis.

Supplementary Table S6. Patient characteristics of NCI standard risk DS ALL patients considered high risk by Ponte di Legno DS 
ALL risk group criteria

  high risk modified model

number 246

age at diagnosis (range) 5.2 (1.2 - 9.9)

Sex  

Male 136

Female 110

median initial wBC x 109/L (range) 16.4 (0.5 - 48.8)
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Supplementary Table S6. (Continued)

high risk modified model

extra medullary disease  

CNS (%) 6/234* (2.6)

Lymph nodes (%) 64/159* (40.3)

Hepatomegaly (%) 100/171* (58.5)

Testis (%) 1/117* (<1)

Survival

10-year OS 73±3% 

10-year EFS 63±4%

10-year TRM  7±2%

2-year CIR  30±4%

median time to relapse in years (range) 3.2 (4.4 months - 9.3 years)

Cytogenetic subgroups 171*

Normal karyotype (%) 71 (41.5)

MLL (%) 1 (<1)

ETV6-RUNX1 (%) 11 (6.4)

HeH (%) 18 (10.5)

Other (%) 70 (40.9)

WBC, white blood cell count; CNS, central nervous system; OS, overall survival; EFS, event-free survival; TRM, treatment-related mortality; CIR, 
cumulative incidence of relapse; HeH, high hyperploidy (≥52 chromosomes); *Number of patients available for analysis.

Supplementary Table S7. Specified cause of death for treatment related mortality

patient id Cause of death Treatment phase Study group

1 Infection Induction DFCI

2 Infection Induction AIEOP

3 Infection Induction UKCLWP

4 Suspected infection, unknown organism Induction NOPHO

5 Suspected infection, unknown organism Induction NOPHO

6 Infection and Epidermolysis Bullosa Induction UKCLWP

7 Gram positive infection: Streptococcus alpha Induction CCG

8 Pseudomonas aeruginosa Induction NOPHO

9 Pseudomonal aeruginosa septicaemia Induction TPOG

10 Serratia marcescens in blood and urine Induction CCG

11 Para-influenza pneumonitis Induction UKCLWP

12 Adenovirus during leukopenia Induction COALL

13 Candida Albicans pneumonia Induction SJCRH

14 Chemotherapy related toxicity Induction NOPHO

15 Chemotherapy related toxicity Induction BFM-Austria

16 Central nervous system toxicity Induction CCG
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Supplementary Table S7. (Continued)

patient id Cause of death Treatment phase Study group

17
Coagulation disturbances (thrombosis in oment to 
intestinal ischemia)

Induction NOPHO

18 Hemorrhage Induction UKCLWP

19 Pseudomonal septicemia Delayed intensification UKCLWP

20
Gram negative septicemia, aspiration and septic 
shock

Delayed intensification UKCLWP

21 Rhinovirus Delayed intensification UKCLWP

22 Respiratory syncytial virus Delayed intensification CCG

23 Sepsis Interim maintenance BFM-Germany

24 Cardiopulmonal decompensation Interim maintenance BFM-Germany

25 Infection during aplasia Consolidation BFM-Germany

26 Infection and neutropenia Consolidation UKCLWP

27 Hemorrhage Consolidation UKCLWP

28 Atypical pneumonia during aplasia Consolidation BFM-Germany

29 Candida septicemia Intensified consolidation POG

30 Infection Maintenance DFCI

31 Fulminant sepsis, multi organ failure Maintenance BFM-Germany

32
Detection of adenovirus in stool and serum, acute 
liver failure

Maintenance BFM-Germany

33 Infection, pneumonia Maintenance BFM-Germany

34 Sepsis, aplasia Maintenance BFM-Germany

35 Septic shock Maintenance UKCLWP

36 Septic shock Maintenance TPOG

37 Septic shock, Acute Respiratory Distress Syndrome Maintenance DCOG

38 Pseudomonal septicaemia Maintenance UKCLWP

39 Pneumonia, septicaemia, acute renal failure Maintenance UKCLWP

40
Infection and lympho proliferative disease (EBV 
associated)

Maintenance POG

41 Bacterial pneumonia Maintenance UKCLWP

42 Bacillus meningitis Maintenance CCG

43 Aspergillus pneumonia Maintenance UKCLWP

44 RSV pneumonitis Maintenance UKCLWP

45 Influenza Maintenance UKCLWP

46
Cardiopulmonary failure secondary to overwhelming 
sepsis, presumed viral etiology

Maintenance POG

47
Cardiopulmonal circulatory failure during 
conditioning for SCT

Maintenance BFM-Germany

48 Chemotherapy related toxicity Maintenance CCG

49 Renal insuffiency Maintenance EORTC-CLG

50 Hemorrhage Maintenance UKCLWP
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aBSTraCT

Children with Down Syndrome (DS) have an increased risk of developing acute lymphoblas-

tic leukemia (ALL). They have a poor tolerance for methotrexate (MTX). This is assumed to be 

caused by a higher cellular sensitivity of the tissues in DS children. However, whether differ-

ences in pharmacokinetics (PK) play a role is unknown. We compared MTX induced toxicity 

and pharmacokinetics in a retrospective case-control study between DS-ALL and non-DS 

ALL patients. Population PK-models were fitted to data from all individuals simultaneously, 

using non-linear mixed effect modeling. 468 MTX courses (1-5 g/m2) were given to 44 DS and 

87 non-DS ALL patients. Grade 3-4 gastro-intestinal toxicity was significantly more frequent 

in DS versus non-DS children (25.5% vs. 3.9%; p=0.001). Moreover, the occurrence of grade 

3-4 gastro-intestinal toxicity was not related to plasma MTX area under the curve (AUC). 

MTX-clearance was 5% lower in DS-ALL patients (p= 0.001), however this small difference is 

probably clinically not relevant, because no significant differences in MTX plasma levels were 

detected at T=24 and at T=48 hours. No major safety concerns were observed when using 

intermediate dosages of MTX (1-3 gr/m2) in DS-ALL children in this study, and hence this may 

be a safe dose for DS-ALL children.
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inTrOduCTiOn

Down syndrome (DS) is one of the most common congenital chromosome abnormalities, 

with a prevalence of 16 per 10.000 live births in the Netherlands.1 Children with DS have an 

increased risk of developing both acute myeloid, as well as acute lymphoblastic leukemia 

(DS-ALL).2

DS-ALL patients differ in presenting characteristics from ALL patients without DS (non-

DS ALL). For instance, in DS-ALL a lower frequency of T-cell ALL2-5 and CD-10 negative ALL 

(pro-B cell ALL) is found.4 Moreover, there are differences in the distribution of genetic ab-

normalities, with lower frequencies of unfavorable characteristics such as MLL-AF4 and the 

Philadelphia-chromosome, as well as lower frequencies of favorable characteristics such as 

high hyperdiploidy and TEL-AML1 in DS-ALL cases.2,3,6

Several studies indicate a poorer outcome for children with DS-ALL compared to non-DS 

ALL patients.2,3,7 Whitlock et al. reported that children with DS-ALL treated according to the 

NCI (National Cancer Institute) standard-risk arm in Children’s Oncology Group (COG) proto-

cols, had a worse outcome when compared with children with non-DS ALL.2 In contrast, DS-

ALL patients stratified in the NCI high-risk arm showed no significant differences in outcome 

compared to high-risk non-DS ALL. This suggests that DS-ALL cells are relatively resistant to 

chemotherapy, and that intensification of therapy for DS-ALL patients may be warranted.2 

Moreover, this study may suggest that the NCI-classification is not appropriate for risk-group 

stratification in DS ALL. Preliminary results of the ALL-BFM 2000 study showed no significant 

differences in minimal residual disease levels in the first 3 months of treatment between DS 

and non-DS ALL children, nor in relapse risk (6.1% in DS versus 11.4% in non-DS patients).8,9 

Of interest, the risk of serious adverse events was significantly higher in DS-ALL patients 

(23.4%) vs. non-DS ALL (6%) patients, as well as the cumulative incidence of treatment related 

deaths (9% vs. 2%).8,9 These data suggest that treatment intensification in DS ALL patients 

need to be carefully balanced against enhanced toxicity and potential excess in treatment 

related mortality. 

One of the key agents used in ALL treatment is methotrexate (MTX). MTX inhibits dihydro-

folate reductase, and leads to inhibition of DNA-synthesis. MTX-polyglutamylation increases 

the intracellular retention of MTX, which is an important parameter of MTX efficacy.10-13 MTX 

is associated with side effects, especially mucositis, liver-toxicity and myelo-suppression. Pa-

tients can be rescued from excessive toxicity with leucovorin, which is routinely administered 

following the infusion of higher dosages of MTX. It is well-known that patients with Down 

syndrome are more susceptible to MTX-induced side-effects than non-DS ALL patients,14,15 

which is due to the higher cellular sensitivity of the tissues affected by MTX, such as the 

mucosa and bone-marrow. This vulnerability often results in MTX dose reductions. It is not 

known whether the differences in toxicity between DS and non-DS children also reflect dif-

ferences in MTX-pharmacokinetics. The only available study from Garré et al., showed that 
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MTX plasma concentrations 42 hours after the start of infusion were significantly higher in 5 

DS-ALL patients compared to 3 non-DS ALL patients.16 

We performed a retrospective case-control study of 44 children with DS-ALL and 87 non-DS 

ALL controls, enrolled on Dutch Childhood Oncology Group (DCOG) studies. The aim of the 

study was to identify differences in MTX pharmacokinetics between DS and non-DS children, 

and whether this was related to side effects. 

paTienTS and meThOdS

Patients 

We identified all DS-ALL patients enrolled in 3 consecutive DCOG treatment protocols, i.e. 

study DCOG ALL-8, -9 and -10, conducted between November 1991 and December 2006. The 

children were enrolled in the 8 participating University Hospitals in the Netherlands. Only 

children who were treated according to the protocol and in complete remission (CR) after 

induction therapy were included. In addition, for each DS ALL case, we selected 2 non-DS ALL 

controls that were matched for treatment protocol, sex and body surface area (BSA). 

Treatment protocols and MTX-administration

From 1991 until January 1997, children with newly diagnosed ALL were enrolled in the BFM-

based treatment protocol DCOG-ALL-8.17 Patients were stratified in 3 risk groups; standard 

(SRG), medium (MRG) and high risk (HRG). SRG and MRG patients received HD-MTX courses 

(5 g/m2/course), given every 2 weeks for a total of 4 courses; combined with intrathecal triple 

therapy (ITT) consisting of MTX/DAF/ARA-C, and oral 6-mercaptopurine (6-MP; 25 mg/m2/

day) given once daily for 8 weeks. MRG patients were randomized to receive this bock with 

either oral low-dose 6-MP oral, or high-dose 6-MP intravenously (1300 mg/m2, directly fol-

lowing the MTX infusions) every two weeks. HRG patients received HD-MTX (5 g/m2/course) 

in 2 of the 3 high-risk blocks. Three doses of leucovorin rescue (SRG: 15 mg/m2; MRG and 

HRG patients: first dose 30 mg/m2; subsequent dosages 15 mg/m2) were given every 6 hours, 

starting 36 hours after the start of the MTX infusion for SRG patients, and at 42 hours for MRG 

and HRG patients. 

The DCOG-ALL-9 protocol (1997 – 2004) stratified children into 2 risk groups; non-high risk 

(NHR) and high risk (HR). NHR patients received 3 HD-MTX courses (2 g/m2/course) given once 

weekly and HR patients received 4 HD-MTX courses (3 g/m2/course), given every 2 weeks. 

HD-MTX courses were combined with ITT at the start of every MTX infusion. Children treated 

according to the SR group did not receive 6-MP; the HR group received oral 6-MP (50 mg/m2, 
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once daily) for 8 weeks. Leucovorin rescue therapy (15 mg/m2) was initiated at 36 hours after 

start of the infusion, and was administered every 6 hours for 3 doses.18

From November 2004 onwards, children with ALL were treated according to the DCOG-

ALL-10 protocol, which is ongoing. Patients were stratified in three risk groups; standard 

(SR), medium (MR) and high risk (HR). SR and MR patients received HD-MTX courses (5 g/m2/

course), given every 2 weeks for a total of 4 courses. HD-MTX courses were combined with 

ITT and oral 6-MP (25 mg/m2, once daily) for 8 weeks. Leucovorin rescue (15 mg/m2) was 

given every 6 hours starting at 42 hours after the start of the MTX infusion, for a minimum of 

3 doses. HR patients received 3 HR blocks with HD-MTX (5g/m2/course) after which patients 

who were eligible received stem cell transplantation, or 3 subsequent HR courses when 

patients did not have a suitable donor. Leucovorin rescue therapy (15 mg/m2) was initiated at 

42 hours after start of the infusion and was given every 6 hours.  

All protocols used similar supportive care guidelines for administration of high dose 

MTX, including hyperhydration (2.5-3.0 L/m2/day), and urine alkalinization (using sodium 

bicarbonate infusion, aiming at producing urine with a pH between 7 and 8). In case of MTX 

plasma levels ≥ 0.4 µmol/L at time point (T) T=48 hours after the start of the MTX infusion, 

hyperhydration, alkalinization and leucovorin rescue were continued for at least another 24 

hours. The required MTX plasma level to discontinue these measures was ≤ 0.25 µmol/L at 

T=72 hours or later. No specific guidelines for DS patients regarding MTX administration were 

provided in any of these protocols. The MTX and Leucovorin dosages are specified in detail 

in Table 1.

MTX toxicity and plasma levels

The data were extracted from patient files, and included the number of MTX courses, the 

dose of MTX that was prescribed, the MTX plasma levels, the leucovorin rescue that was 

given, the hyperhydration and urine alkalinization procedures, as well as the side-effects 

during and after the MTX infusion until the next block of chemotherapy. Toxicity data were 

graded according to the Common Toxicity Criteria for Adverse Events version 3.0 (CTCAE). 

MTX plasma levels 48 hours after the start of the MTX infusion were collected, as well as 

additional time-points in case of high levels, or in case the hospital also routinely determined 

plasma levels at other time-points. Other items that were tabulated included co-medication, 

delays in starting subsequent therapy elements, creatinine and liver function tests. In a few 

cases the exact time of MTX plasma level determination was missing, and then the assump-

tion was made that the physicians followed the treatment protocol, and that samples were 

taken at the prescribed time-points.
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Pharmacokinetic analysis

The pharmacokinetic model was fitted to the data from all individuals simultaneously, us-

ing non-linear mixed effect modeling (NONMEM).19 The population parameters, intra- and 

inter-patient and residual variances were estimated using the NONMEM software program 

(double precision; version VI, level 1.0). The first-order conditional estimate method was used 

throughout the analysis. 

MTX pharmacokinetics was described according to a two-compartmental model with 

a first order elimination from the central compartment. The following parameters were 

estimated: the volume of distribution of the central compartment (V1), clearance from the 

central compartment (CL), volume of distribution of the peripheral compartment (V2) and 

inter-compartmental clearance (Q). In the structural model pharmacokinetic parameter val-

ues were standardized for a body weight of 70 kg using an allometric model.20 For instance 

CL and V1 were standardized as to CLpop = CLstd • (WT / 70)0.75 and V1pop = V1std • (WT / 

70), where CLpop and V1pop are typical population parameter values in individuals with a 

certain weight (WT) and CLstd and V1std are the standard values for patients with a weight of 

Table 1. Methotrexate and standard leucovorin rescue dosages in the 3 Dutch Childhood Oncology Group ALL treatment 
protocols

 protocol mTX 6-mp Leucovorin rescue

dCOG aLL 8

SRG 4 x 2 gram/m2 every 
14 days

25mg/m2/day, orally for 
56 days

15 mg/m2, every 6 hrs from T=36 for 3 dosages

MRG 4 x 5 gram/m2 every 
14 days 

25mg/m2/day, orally for 56 
days, or 1300mg2 iv every 
14 days

30 mg/m2 at T=42; followed by 15 mg/m2 at T=48 
and T=54

HRG 2 x 5 gram/m2 every 
21 days

100 mg/m2 for 5 days 30 mg/m2 at T=42; followed by 15 mg/m2 at T=48 
and T=54

dCOG aLL 9

NHR 3 x 2 gram/m2 every 
7 days

NA 15 mg/m2, every 6 hours from T=36 for 3 dosages

HR 4 x 3 gram/m2 every 
14 days

50mg/m2/day for 56 days 15 mg/m2, every 6 hours from T=36 for 3 dosages

dCOG aLL 10

SR 4 x 5 gram/m2 every 
14 days

25mg/m2/day for 56 days 15 mg/m2, every 6 hours from T=42 for 3 dosages 

MR 4 x 5 gram/m2 every 
14 days

25mg/m2/day for 56 days 15 mg/m2, every 6 hours from T=42 for 3 dosages

HR 5 gram/m2 every 50 
days, for 3-6 courses

25mg/m2/day for 14 days 15 mg/m2, every 6 hours from T=42 for 3 dosages 

In some protocols 6-mercaptopurine (6-MP) was added during this treatment block. SRG: standard risk group; MRG: medium risk group; HRG: 
high risk group; NHR: non high risk; HR: high risk; SR: standard risk; MR: medium risk; T: time-point after start of MTX-infusion; m2: meter 
square; DCOG: Dutch Childhood Oncology Group; MTX: methotrexate. NA: not applicable, since none of the ALL9-NHR patients did receive 6-MP.
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70kg. Inter-and intra-patient variability of the pharmacokinetic parameters was estimated us-

ing an exponential error model. For instance, inter- and intra-individual variability in CL was 

estimated using: CLi = CLpop x exp (ηi + κi) where CLi represents the clearance of individual 

i, and η and κ are the respective inter- and intra-patient random effects with a mean of zero 

and variance ω2. The covariance between inter-patient variability was estimated as well. For a 

NONMEM model, the residual variance corresponds to the difference between the observed 

concentration (Cobs) and predicted concentration (Cpred). The latter is predicted on basis of 

individual parameters (e.g. CLi, V1i, etc.). Residual variance was modelled with a combined 

additive and proportional error model: Cobs, i = ε1 + Cpred, i (1 + ε2), where ε1 and ε2 are 

independent random variables with zero mean and common variances of σ2. The adequacy 

of the developed model was evaluated by examination of the precision of the parameter 

estimates, the values of random-effect variances and various diagnostic plots.20-23 In order 

to explain the pharmacokinetic variability between and within the patients, relationships 

were investigated between pharmacokinetic parameters and various patient characteristics. 

Covariates were introduced in a multiplicative way. Categorical variables, like for example 

Down syndrome, were modelled as: CLi = CLpop x θ DOWN, where CLpop is the population 

value for MTX-clearance in non-Down patients (exponent DOWN=0) and θ is the fractional 

change in clearance in Down-patients (DOWN = 1). Continuous variables, like creatinine 

clearance (CRCL), were modelled centred around the median value in the population: CLi 

= CLpop * (CRCL/142) θ, where CLpop is the MTX-clearance in individuals with a creatinine 

clearance of 142 ml/min and θ is an exponential. The objective function value (OFV) was used 

for comparison of the models. Discrimination between hierarchical models was based on the 

OFV using the log-likelihood ratio test. A value of p=0.05, representing a decrease in OFV of 

3.8 units was considered statistically significant (df=1).19 

Individual pharmacokinetic parameters were generated by Bayesian analysis. On basis of 

these parameters, individual plasma concentration-time profiles were generated for assess-

ment of the area under the plasma concentration versus time curve (AUC), and the plasma 

concentration at 48 hours after the start of the MTX infusion.

Statistics

For statistical comparisons the Statistical Package for the Social Sciences (SPSS) Analysis 

system (v.15.0, SPSS Inc., Chicago, IL, USA) was used. To analyze differences between DS-ALL 

patients and non-DS ALL patients, non-parametric matched paired analysis was applied. For 

toxicity parameters with binary values, the non-parametric Cochran test for k related samples 

was used. Analysis were 2-tailed at the significance level of p<0.05.
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reSuLTS

Patient characteristics 

In total 47 DS-ALL patients, enrolled in protocols DCOG ALL 8, 9 and 10, were identified in the 

DCOG database. Three patients died during induction therapy, and could therefore not be 

evaluated. For the remaining 44 DS-ALL patients (25 boys, 19 girls), 87 matched non-DS-ALL 

controls (50 boys, 37 girls) were selected. One patient with DS was matched to 1 instead of 2 

non-DS ALL patients, because no other appropriate control could be identified. 

Patient characteristics are shown in table 2. All DS-ALL patients had B-cell-precursor ALL, 

and 7/87 (8%) non-DS ALL patients had T-cell ALL. DS-ALL patients were slightly older com-

pared to non-DS-ALL patients (3.4 vs. 5.4 years respectively; p=0.02), which was the result of 

matching on BSA. There was a difference in median presenting white blood cell count (WBC) 

between DS and non-DS children (8.8x109/l. vs. 26.9x109/l. respectively; p= 0.005). Significant 

co-morbidity was present in 5 DS-ALL patients, including a complex cor vitium (n=3; surgi-

cally corrected before diagnoses of ALL in all of them), hypothyroidism (n=1), and diabetes 

mellitus (n=1). However, all patients were in a clinically good condition before they were 

diagnosed with DS-ALL, and all children were treated with curative intent. 

MTX treatment

In total, 468 HD-MTX courses were administered to 44 DS children (n = 152 courses) and 87 

non-DS children (n = 366 courses). Dose reductions were applied in 26 of 152 (17.1%) MTX 

courses, in 9 out of 44 (20.5%) patients, whereas none of the non-DS ALL patients received a 

dose-reduction. Three DS-ALL patients received one course less than required per protocol, 

and 1 non-DS ALL patient received 3 instead of 4 courses because of severe MTX induced 

side effects (p= 0.68). Dose-reduction was electively initiated from the 1st course onwards, in 

anticipation of possible greater toxicity in 18/26 courses in 5 DS children. In 8 of 26 courses in 

4 DS patients, dose-reductions were applied from the 2nd or subsequent courses onwards be-

cause of documented excessive toxicity in earlier HD-MTX courses. Dose-reductions occurred 

in protocol ALL-9 at the 2 gr/m2 MTX dose (2 courses in 1 patient), and in protocol ALL-10 

at the 5 gr/m2 MTX dose (6 courses in 3 patients). Of interest, the number of DS patients 

requiring dose-reductions in the 2nd or subsequent courses due to excessive toxicity in earlier 

courses was therefore 1/27 (3.7%) patients when treated at the 2-3 gr/m2 dose-level, and 

3/12 (25%) patients when treated at the 5 gr/m2 dose level (p=0.046).
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Table 2. Patient characteristics of Down syndrome ALL patients and their non-Down syndrome ALL matched controls

parameter dS-aLL patients non dS-aLL patients p-value

N 44 87  

matching parameters      

Sex, n and (%)      

Male 25 (56.8) 50 (57.5)  

Female 19 (43.2) 37 (42.5)  

BSA, median (range), m2 0.70 (0.3-1.6) 0.74 (0.5-1.6)  

Treatment protocol.      

ALL 8, n and  (%) 10 (22.7) 20 (23)  

ALL 9, n and  (%) 24 (54.5) 48 (55.2)  

ALL 10, no and  (%) 10 (22.7) 19 (21.8)  

patient characteristics      

Age, median (range), years 5.4 (2.0-17.1) 3.6 (1.3-14.7) 0.03 

Initial WBC, median x 109/L 8.8 (1.2-460) 27.0 (0.8-684.0) 0.005

Immunophenotype      

Pro B-ALL, n and  (%) 0 4 (4.6)  

BCP-ALL, n and (%) 48 (100) 76 (87.4)  

T-ALL, n and  (%) 0 7 (8)  

DNA index  

<1,16 29/32 (90.6%) 45/87 (51.7%) 0.524

>= 1,16 3/32 (9.3%) 8/87 (9.2)  

unknown 12 34 (39.1)  

Cytogenetic abnormalities      

t(9;22), n and (%) 2/44 (4.5) 1/87 (1.1) 0.261

t(12;21), n and (%) 4/44 (9.1) 6/87 (6.9) 0.732

mTX Courses      

Number of MTX courses (n)1 152 316  

Administered at 2 gr/m2 89 126 (39.8)  

Administered at 3 gr/m2 15 71 (22.5)  

Administered at 5 gr/m2 39 119 (37.6)  

Administered other 9    

Courses not received, n. 3 1 0.68

Reduced dosage, n and (%)      

All courses, n and (%) 26 (17.1) 0 (0) 0.001

Dose reduction below the prescribed of 2 gr/m2 2/74 0/126  

Dose reduction below the prescribed of 3 gr/m2 0/15 0/71  

Dose reduction below the prescribed of 5 gr/m2 24/63 0/119  

1 This is the actual dose that was given to patients, which sometimes differs from the prescribed dose in the protocol. *Dose reductions were 
either given empirically before the 1st course of MTX, or dosages were adapted based on experiences toxicity in the 1st course. WBC: white blood 
cell count; BSA: body surface area; BCP-ALL: B-cell precursor acute lymphoblastic leukemia. 
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Toxicity of high dose MTX courses

We first evaluated the frequency of grade 3/4 toxicities after the first HD-MTX course only  

(after excluding the 5 DS-ALL patients with initial dose reductions in anticipation of greater 

toxicity), as toxicity in later courses was influenced by dose-reductions and cumulative toxic-

ity. DS patients experienced a significantly higher frequency of grade 3-4 gastrointestinal 

toxicity when compared with non-DS ALL patients (DS 13/38 patients (34.2%) vs. non DS 3/76 

patients (3.9%); p= 0.001), as shown in Table 3. 

Next, we compared the cumulative frequencies of grade 3-4 toxicities; now only including 

the MTX-courses 2, 3 and 4 in all patients. Despite dose-reductions, children with Down syn-

drome still had an increased risk of cumulative grade 3-4 gastrointestinal toxicity compared 

with non-DS ALL patients (27/102 patients (26.5%) vs. 8/204 patients (3.9%), respectively; 

p=0.001). 

DS patients did not experience enhanced hematological toxicity. Moreover, no difference in 

hematological toxicity was found between DS-ALL patients who received 6-mercaptopurine 

(6-MP) during MTX therapy, compared with those DS ALL patients who did not receive 6-MP 

Table 3. Frequency of grade 3/4 toxicities in DS- and non-DS-ALL patients after high dose Methotrexate therapy blocks

 Side-effects dS non-dS p-value

first course hd-mTX*      

Number of MTX courses 39 87  

Anemia 0/5 0/10  

Leukopenia 0/5 3/10 0.71

Neutropenia 0/4 4/7 0.37

Thrombocytopenia 0/4 0/8  

Neurological toxicity 1/38 1/76 0.60

Gastro-intestinal toxicity (mucositis) 13/38 3/76 0.001

Cumulative toxicity: courses 2-4      

Number of MTX courses 108 229  

Anemia 2/43 1/86 0.36

Leukopenia 10/43 9/86 0.06

Neutropenia 8/24 11/48 0.36

Thrombocytopenia 5/43 4/86 0.33

Liver toxicity (transaminases) 1/15 0/30 0.36

Neurological toxicity 1/102 1/204 0.60

Gastro-intestinal toxicity (mucositis) 27/102 8/204 0.001

Toxicity was graded according to the Common Toxicity Criteria for Adverse Events version 3.0. Not all toxicities could be evaluated in all subjects, 
as many centers did not routinely check blood values in between courses. Number of grade 3-4 toxicity divided by number of measurements 
for the specific parameter. *Patients with dose reduction in anticipation of greater toxicity were excluded from the analysis. HD-MTX: high dose 
methotrexate.
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treatment (p=0.58). The same lack of difference in hematological toxicity was observed when 

comparing the non-DS ALL controls that received 6-MP versus those that did not (p= 0.74).  

Neurological toxicity (grade1-4) was reported in 3 DS (in 5 courses) and in 3 non-DS patients 

(in 4 courses). Grade 4 MTX encephalopathy, consisting of either seizures, unconsciousness, 

and/or transient hemi-paresis, occurred in 1 DS (in 2 courses) and in 2 non-DS patients (in 1 

course per patient). 

MTX pharmacokinetics 

Figure 1 shows the observed MTX plasma concentrations and the diagnostic plots of the 

developed population pharmacokinetic model in DS and non-DS ALL patients. The popula-

tion pharmacokinetic parameters are given in Table 4. Predicted concentrations are evenly 

distributed around the line of unity, indicating the ‘goodness of fit’ of the model. For each 

patient the individual estimates of CL, Q, V1 and V2 were obtained by Bayesian analysis. On 

basis of these parameters, individual plasma concentration-time profiles were calculated.

The two-compartment pharmacokinetic model adequately described the data, and the 

parameters were generally well estimated as indicated by their standard errors. Allometric 

normalization of clearances for weight reduced the inter-patient variability from 45% to 31%. 

Both inter- and intra-patient variability in clearance was moderate with respective values of 

31% and 15%. Covariate analysis revealed that MTX-clearance was 5% lower in DS-ALL pa-

tients compared to non-DS ALL patients (p=0.001). Median (range) posthoc values for clear-

ance were 4.7 (2.4 – 11.9) L/hr and 4.9 (1.3 – 10.4) L/hr in DS ALL and non-DS ALL patients, 

respectively; standardized values were 12.3 (7.3 – 18.9) L/hr/70kg and 13.0 (4.6 – 25.2) L/hr/

kg. No relationship was found between the pharmacokinetic parameters and the treatment 

center or treatment protocol, MTX dose, hyper hydration (L/m2), number of leucovorin dos-

ages, creatinine clearance, age, WBC, bilirubin or ASAT levels. 

The 5% difference in MTX-clearance between DS-ALL and non-DS ALL is small, which is 

further demonstrated by the fact that no significant differences were detected in the  plasma 

concentration at T=24 and T=48 hours after the start of the MTX infusions. At T=24, the me-

dian MTX-level in DS-ALL patients was 38.74 µmol/L (range 0.38-133.11 µmol/L; 25th and 75th 

percentiles: 19.7–66.3 µmol/L) versus 36.49 µmol/L (range 7.62-261.49 µmol/L; 25th and 75th 

percentiles: 22.8-63.5 µmol/L; p=0.51) in non-DS patients. At T=48 hours, the median MTX 

level in DS-ALL patients was 0.28 µmol/L (range 0.04-9.57 µmol/L; 25th and 75th percentiles: 

0. 15-0.51 µmol/L), versus 0.27 µmol/L (range 0.06-14.63 µmol/L; 25th and 75th percentiles 

0.17-0.41; p=0.41) in non-DS patients. After stratification for the various dosages of MTX that 

were administered to the patients (either 2, 3 or 5 gram/m2/course), again MTX plasma levels 

did not differ significantly between DS and non-DS ALL children. 
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Figure 1. Methotrexate plasma levels and diagnostic plots of the population pharmacokinetic model
Methotrexate (MTX) plasma levels at various time-points following the start of a 24-hour MTX-infusion in DS (graph A, n=152 courses in 
44 patients) and non-DS (graph B, n=316 courses in 87 patients) ALL. Each dot represents a plasma level in a patient measured at a given 
time-point. Plasma concentrations at T=48 hours were available from all patients, whereas levels at T=1 hour and T=24 hour were only 
determined in some of the hospitals. In case of T=48 MTX levels > 0.4 µmol/L monitoring of MTX levels was continued. C) Model predicted 
MTX concentrations calculated by the NONMEM two-compartment model versus observed concentrations for all patients. The points are evenly 
distributed around the line of unity indicating the goodness of fit of the model. Deviations from the line are caused by intra- and inter-patient 
variability and residual variability. D) Individually (Bayesian) predicted MTX concentrations versus observed concentrations for all patients. All 
dots are close to the line of unity indicating limited residual variability.
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In 36.4% of the MTX courses in DS-ALL patients, the MTX plasma levels were ≥0.4 µmol/L at 

T=48 hours, which is the cut-off value used in DCOG centers for additional leucovorin rescue, 

compared to 27.7% of the MTX courses in non Down syndrome patients (p=0.14). 

No correlation was found between the MTX area under the curve (AUC, range 276-2603 

µmol/L*hr) of the 1st course of MTX and grade 3-4 toxicity in the DS ALL patients, although 

the number of patients in the 5 gr/m2 group was limited (Figure 2). We also did not observe 

a clear correlation when all subsequent courses were included. Grade 3-4 toxicity occurred 

both at low and high AUC, and was even seen at the lowest AUC of 276 µmol/L*hr in one 

DS-ALL patient.

Table 4. Population pharmacokinetic parameters for Methotrexate in children with ALL

  estimate Se (%)

population parameter    

V1 (L/70kg 46 12

CL (L/hr/70kg) 13 8

 θ Down 0.95 5

θ Gender 0.87 9

V2 (L/hr/kg) 10 19

Q (L/hr/kg) 0.3 31

inter-patient variability    

V1 (%) 38 45

CL (%) 31 34

V2 (%) 74 38

Q(%) 57 51

Correlation    

V1 – CL 0.9  

V1 - V2 0.86  

CL - V2 0.63  

V1 – Q 0.72  

CL – Q 0.73  

V2 – Q 0.81  

intra-patient variability    

V1 (%) 37 54

CL (%) 15 65

residual variability    

Additive (µmol/L) 0.02 22

Proportion (%) 35 31

V1 and V2, central and peripheral volume of distribution, respectively; CL, clearance in male non-DS-ALL patients; θ DOWN, fractional change in 
clearance in DS-ALL patients; θ GENDER, fractional change in clearance in DS-ALL patients; Q, inter compartmental clearance; SE: standard error of 
the estimate.
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diSCuSSiOn

Given the well-known reduced tolerance for MTX in children with DS, we performed a retro-

spective case-control study to define whether the enhanced susceptibility for MTX-induced 

side-effects is not only be due to the well-known difference in cellular sensitivity (for instance 

of the mucosa), but whether this is also the result of differences in pharmacokinetics between 

DS-ALL and non-DS ALL patients.2,16,24 

In our study, indeed a significantly higher proportion of children with DS experienced 

MTX-induced gastrointestinal toxicity compared with the non-DS controls, which is consis-

tent with other reports.2,16,24,25 Dose reductions were applied both in anticipation of possible 

toxicity, and because of apparent excessive toxicity, and were restricted to DS patients only. 

However, due to excessive toxicity both DS ALL (n=3) as well as 1 non-DS ALL patient, each 

received one course less than required per protocol. 

A two-compartment pharmacokinetic model was constructed to characterize the phar-

macokinetics of MTX. The MTX-clearance we observed in this study was in agreement with 

other studies.26-29 For instance, Relling et al. reported a mean MTX-clearance of 99.9 ml/min/

m2 (~0.149 L/hr/kg), in 134 children enrolled on the St. Jude Total Therapy study XII for newly 

diagnosed ALL.26 We found that the MTX-clearance was 5% lower in DS-ALL when compared 

to non-DS ALL patients. This is only a marginal difference, and probably not clinically relevant, 

which is reflected by the fact that MTX plasma concentrations in DS-ALL versus non-DS ALL 

patients did not differ at T=24 nor at T=48 hours after the start of the infusion. Altogether, 

we did not observe major differences in MTX pharmacokinetics between DS- and non-DS 
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Figure 2. Correlation of Methotrexate area under the curve versus gastrointestinal toxicity 
Grade 1-4 gastro intestinal toxicities in the first Methotrexate (MTX) course versus the MTX area under the curve in Down syndrome patients 
only. Number of patients per subgroup: <1000 mmmol/L*h: n=29, 1000-2000 mmmol/L*h: n=11, 2000-3000 mmmol/L*h: n=4. ALL, acute 
lymphoblastic leukemia, CTC grade 0-2 light grey, CTC grade 3-4 dark grey.
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children, which would explain the enhanced rate of side effects in DS children. The only other 

study regarding MTX pharmacokinetics in DS-ALL found significantly higher plasma concen-

trations for DS ALL patients, but numbers were small (5 DS-ALL and 3 non-DS ALL patients).16 

We could not relate clinical severe toxicity to the MTX AUC, and toxicity was not restricted 

to DS-patients with higher plasma levels only. This suggest that the enhanced frequency of 

gastrointestinal side effects in the DS patients must have been related to pharmacodynamic 

differences of the gastrointestinal mucosa between DS and non-DS children. Several differ-

ences in MTX pharmacodynamics between DS and non-DS children have been reported in the 

literature. For instance, patients with DS have decreased folate levels when compared to con-

trol patients without DS, which may result in enhanced polyglutamylation and MTX-induced 

cell-kill.16,30 Another plausible explanation for the observed MTX toxicity in DS patients could 

be a gene dosage effect for enzymes found on chromosome 21.30,31 In particular, the reduced 

folate carrier gene (RFC), which is responsible for MTX transport over the cell-membrane, is 

localized on chromosome 21q22 15,32. However, at higher concentrations passive diffusion of 

MTX across the cell-membrane may also occur.33,34 This may explain why, in an earlier study, 

we could not demonstrate higher sensitivity of DS-ALL cells to MTX, compared to non-DS 

ALL cells.32 

Furthermore, polymorphisms in genes linked to the pharmacodynamics of MTX, such as 

folate-metabolism related genes, could give rise to enhanced toxicity, as has been shown in 

previous reports by us and others.35-38 Children harboring polymorphisms exhibited signifi-

cantly more GI toxicity. More knowledge on folate related polymorphisms might contribute 

to further individualization of MTX treatment in ALL and specifically for DS-ALL patients. 

It remains a challenge to advise clinicians on the right dose of MTX to use in DS patients. 

Even in non-DS ALL patients, different protocols use different dosages, and there seems to 

be no consensus when it comes to the best dose of MTX to be used. In this retrospective 

study, a significantly higher number of DS-patients was given a dose-reduction in subse-

quent courses when treated with higher dosages (5 gram/m2/course) of MTX, compared with 

intermediate MTX-dosages (1–3 g/m2/course). In absence of major safety concerns, it seems 

safe to start with intermediate dosages of MTX, followed by careful monitoring. The fear of 

enhanced toxicity, however, needs to be balanced against efficacy, as DS ALL cells are not 

more sensitive to chemotherapy when compared to non-DS ALL cells, which is different from 

the situation in myeloid leukemia of Down syndrome, which is characterized by hypersensi-

tivity to chemotherapy.32,39-41  

In summary, we did not find evidence for differences in MTX pharmacokinetics between 

DS-ALL and non-DS ALL patients, which might have explained the higher rate of grade 3-4 

gastrointestinal toxicity and the greater need for MTX dose-reductions in DS-ALL patients 

due to excessive toxicity in earlier courses. Hence, these differences are most likely explained 

by differential pharmacodynamic effects in the tissues/organs of MTX between DS and 

non-DS children. Based on the clinical experience in this retrospective study, no major safety 
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concerns were observed when using intermediate dosages of MTX (1-3 gr/m2) in DS-ALL 

children, and hence this might be a safe dose to consider in future studies.
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aBSTraCT

Children with Down Syndrome (DS) have an increased risk of developing acute lymphoblastic 

leukemia (DS ALL) and acute myeloid leukemia (ML-DS). ML-DS can be preceded by transient 

leukemia (TL). As most studies focus only on known mutations, the true frequency of JAK 

mutations in acute leukemias in Down syndrome may be underestimated. We performed 

mutational analysis of the whole kinase and pseudokinase domains of JAK 1-3 by direct 

sequencing of 6 TL, 14 ML-DS and 35 DS ALL samples and related this to outcome. JAK1 muta-

tions were found in 1 ML-DS patient and 1 DS ALL patient. One TL patient and 1 ML-DS patient 

harbored a JAK3 mutation. Six DS ALL patients had a JAK2 mutation and their 10-year event 

free survival (EFS) was 100% vs. 75 +/- 9 % in wildtype patients (p=0.27); the 10-year overall 

survival (OS) was 100% vs. 86 +/- 7% (p=0.3) and the cumulative incidence of relapse (CIR) 

was 0% vs. 21 +/- 9% (p= 0.32). Moreover, a large meta-analysis did not show any differences 

in survival of JAK2 mutants compared to wildtype patients. In summary, JAK mutations are 

rare in DS-leukemias, except for JAK2 mutations in DS ALL, which have no prognostic value.  
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inTrOduCTiOn

Children with Down Syndrome (DS) have an increased risk of developing leukemia, including 

both acute myeloid (ML-DS) and acute lymphoblastic leukemia (DS ALL).1 These leukemias 

differ in clinical characteristics and biology from leukemias in non-DS children. ML-DS is char-

acterized by a low diagnostic white blood cell count (WBC), young age, FAB M7 morphology, 

excellent clinical outcome with survival rates of >90%, and a high sensitivity to chemotherapy 

in vivo and in-vitro.2,3 Reduced intensity treatment in ML-DS does not lead to an increase 

in relapse rates, however, due to a decrease in treatment related mortality, it does result in 

improved overall survival.4,5 ML-DS is often preceded by transient leukemia in newborns (TL), 

which in most cases resolves spontaneously. Approximately 20% of TL-patients subsequently 

develop ML-DS.6,7 Both the TL and ML-DS blasts are characterized by mutations in the GATA-

1 gene, a hematopoietic transcription factor, which result in a truncated protein GATA1s.8 

Because these mutations occur both in TL and ML-DS, additional genetic abnormalities are 

needed in the progression from TL to ML-DS.

The prognosis of DS ALL patients is at best similar and often inferior to that of non-DS ALL 

patients.9,10 This is in agreement with findings from cellular cytotoxicity assays that showed 

that. DS ALL cells do not have increased sensitivity to chemotherapy in vitro.3 Consequently, 

in DS ALL dose-reduction should only be considered in case of unacceptable toxicity arising 

during treatment. Favorable prognostic factors in non-DS ALL such as high hyperdiploidy and 

ETV6-RUNX1 gene-rearrangements are less frequently found in DS ALL, as well as unfavorable 

factors such as Philadelphia-chromosome or MLL-rearrangements.11,12

Janus kinases (JAK) belong to a family of intracellular non-receptor protein tyrosine kinases 

that transduce cytokine-mediated signals via the STAT family of transcription factors. JAK 

plays an important role in regulating the processes of cell proliferation, differentiation and 

apoptosis in response to growth factors. The JAK2 V617F mutation is well-known in myelo-

proliferative disorders (MPD), and result in the impaired ability of the pseudokinase domain 

to negatively regulate the kinase domain.13 The expression of JAK2 V617F in mouse models 

leads to the development of a disease with a similar phenotype to polycythemia vera, with 

eventual progression to myelofibrosis, underscoring the role of this mutation in the patho-

genesis of myeloproliferative disorders.14,15 We and others have previously described activat-

ing mutations in JAK2 and JAK3 in TL and ML-DS.16,17 Mutations within the pseudokinase 

domain of JAK2 in DS ALL patients have also recently been reported. These activating JAK2 

R683 mutations occur at a different site than the V617F mutation, but both these mutations 

are localized in the pseudokinase domain and both have the same functional consequence, 

i.e. constitutive kinase activity.18-20

As most studies only focus on known mutations in JAK, and hence may underestimate 

mutational frequency, we performed mutational analysis of the whole kinase and pseudoki-

nase domains of JAK 1-3 by direct sequencing.16,17,19-22 Moreover, we analyzed the prognostic 
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significance of JAK2 mutations in DS ALL in our cohort. As all cohorts of the prognostic impact 

of JAK2 mutations in DS ALL are small, we collected all clinical data from these series,18,19 and 

performed a meta-analysis, assuming that since most JAK mutations have been described to 

be activating mutations,18 they will result in increased proliferation and hence in increased 

relapse rates. 

deSiGn and meThOdS

Patient samples

We screened 6 TL, 15 ML-DS (TL and ML-DS samples were unpaired) and 35 DS ALL samples 

taken at initial diagnosis. TL and ML-DS patients were diagnosed between 1994 and 2007. DS 

ALL patients were diagnosed between 1992 and 2008 and were treated according to subse-

quent DCOG treatment protocols ALL 8, 9 and 10. Details of these treatment protocols have 

been reported elsewhere, except for protocol ALL10, which is currently ongoing.23,24 Clinical 

and cell-biological data, including cytogenetic data, were available for all mutated cases. 

Samples were provided by the Dutch Childhood Oncology Group, the AML-‘Berlin-Frankfurt-

Munster’ Study Group, and the Nordic Society for Pediatric Hematology and Oncology. All 

study groups performed central review of the diagnosis, classification and clinical follow-up 

of the patients. All investigations had been approved by the Institutional Review Board, and 

informed consent was obtained according to local law and regulations.

Low-density mononuclear cell populations of bone marrow or peripheral blood were 

isolated after density gradient centrifugation of the sample using Ficoll Isopaque. All re-

sulting samples contained 80% or more leukemic cells, as determined morphologically by 

May-Grünwald-Giemsa (Merck, Darmstadt, Germany)–stained cytospins. Genomic DNA was 

extracted using standard methods. 

Mutation analysis

For mutational analyses, all exons encoding the kinase and pseudokinase domains of JAK1 

(exon 12-25), JAK2 (exon 12-25) and JAK3 (exon 12-24) were PCR amplified. All ML-DS and TL 

samples were screened for GATA-1 mutations in exon 2 and 3. Purified PCR products of JAK 1-3 

and GATA-1 were bi-directionally sequenced on an ABI Prism 3100 genetic analyzer (Applied 

Biosystems Inc., Foster City, CA, USA). The sequence data were assembled and analyzed for 

mutations using CLC Workbench version 3.5.1 (CLC Bio, Aarhus, Denmark). 
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Statistics 

For statistical comparisons the Statistical Package for the Social Sciences (SPSS) Analysis 

system (v.15.0, SPSS Inc., Chicago, IL, USA) was used. P-values less than or equal to 0.05 were 

considered statistically significant (two-tailed testing). 

To evaluate outcome, the following parameters were used: complete remission rate (CR), 

event-free survival (EFS), overall survival (OS) and cumulative incidence of relapse (CIR). 

CR was defined as less than 5% blasts in the bone marrow, with regeneration of tri-lineage 

hematopoiesis plus absence of leukemic cells in the cerebrospinal fluid or elsewhere. Patients 

who did not achieve CR were considered as treatment failure on day 0. OS was measured 

from the date of diagnosis to the date of last follow-up or date of death from any cause. EFS 

was calculated from the date of diagnosis to the date of last follow-up or to the first event, 

including relapse, death in CR, and failure to achieve CR. The Kaplan-Meier method was used 

to estimate the 10-year probabilities of OS (OS), and EFS (EFS), and survival estimates were 

compared using the log-rank test. CIR (with treatment related death as competing event) 

was constructed by the method of Kalbfleisch and Prentice and compared by the Gray test. 

Statistical analysis was only performed when at least 5 patients were available in a given 

subgroup.

For the meta-analysis we collected the original outcome data from all participating study 

groups and evaluated OS and EFS. 

reSuLTS

Patient characteristics 

All 35 DS ALL patients were classified as B-cell precursor ALL and enrolled in consecutive 

DCOG treatment protocols (DCOG ALL 8, 9 and 10). The median age of DS ALL patients was 

4.5 years (range 2.0-17.1 years), the median WBC was 8.7x109/l (range 1.2-390x109/l), and 

51% of the patients were male. The median age of the ML-DS patients was 2.0 years (range 

0.7-2.4 years), the median WBC was 8,0 x109/l (range 2.6-168 x109/l) and 36% were male. The 

TL patients had a median age of 1.5 days (range 1-6 days) with a median WBC of 172.8 x109/l 

(range 35-410 x109/l) and 67% were male. 

The median follow up time for survivors with DS ALL was 5.2 years (range 1.1 – 15.4 years) 

and for survivors with ML-DS 1.9 years (range 0-16.4 years). The patient characteristics of the 

TL, ML-DS and DS ALL patients as well as JAK 1-3 mutations are described in detail Table 1 

and Table 2. 
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Table 1. Clinical and genetic characteristics of the included transient and myeloid leukemia of Down syndrome

id disease Sex age wBC karyotype JAK
GATA 1 

mutation

1
TL Male

1 
day 64 NA JAK3 A573V

itd 105 bpt

2
TL Female

2 
days 193 47,XX,+21c

WT del 2 bp

3
TL Male

1 
day 35 NA

WT ins 14 bp

4
TL Female

2 
days 173 NA

WT
del 1 bp, ins 

2 bp

5
TL Male

6 
days NA NA

WT
del 2 bp

6
TL Male

1 
day 410 NA

WT
ins 14 bp

7 ML-DS Female 0.7 4 NA JAK3 A573V del 4 bp

8 ML-DS Female 2.2 7

45-46,XX,der(1)t(1;6)(q31;q?),ins(4;1)(q12;q25q44),-6,-
7,der(7)t(6;7)(p21;p22),der(7)t(7;8)(q2?2;q2?3),der(11)

t(7;11)(p14;p15),+21c,der(22)t(1;22)(q25;p11)
[cp13]/47,XX,+21c[28]

JAK 1 D625R ins 7 bp

9
ML-DS Male

1.3
6

47,XY,+21c 2/47,idem,t(4;15),(q?21;q?21),del(7)
(q?31q?33)

WT ins 16 bp

10 ML-DS Male 2.0 26 NA WT del 2 bp

11 ML-DS Female 2.2 9 NA WT del 2 bp

12 ML-DS Female 2.0 168 NA WT pointmutation

13 ML-DS Female 2.0 6 NA WT ins 1 bp

14 ML-DS Male 2.3 12 NA WT ins 14 bp

15 ML-DS Female 0.9 19 NA WT del 5 bp

16 ML-DS Male 1.8 7 47,XY,+21c [3] WT ins 4 bp

17 ML-DS Male 1.4 6
48,X,ins(Y;5)(q11;?),der(3)t(3;6)(q2?8;?) or ins(3;6)
(q2?8;?),-5,del(6)(q1?4q2?4),+21c,+21,+mar [24]

WT
del 3 bp, ins 

5 bp

18 ML-DS Female 2.3 49 47,XX,der(9)inv(9)(p24;q2?1)del(9)(q2q3) [14] WT del 3 bp

19 ML-DS Female 1.9 40 47,XX,der(1)t(1;1)(p36;q21),t(5;6)(p15;p23),+21c [23] WT del 6 bp

20
ML-DS Female

2.4
3

47,XX,r(7)(p22q22),+21c,.ish r(7)
(WCP7+,D7Z1+,D7S486-,164D18-,3K23-)

WT pointmutation

WBC= white blood cell count (*109/l); WT = wildtype; NA = not available. Age in years (except for TL). Karyotype nomenclature according to 
ISCN 1995.

Table 2. Clinical and genetic characteristics of the included Down syndrome acute lymphoblastic leukemia patients

id ipT Sex age wBC karyotype JAK GATA 1

21 C-ALL Male 3.1 7 48,XY,+X,+21c[19]
JAK-2 R683 

insertion 
GGCCCCATC

WT

22 C-ALL Female 2.7 2 50,XX,+X,+4,+17,+21c[5]/47,XX,21c[5] JAK-2 R683 WT
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Table 2. (Continued)

id ipT Sex age wBC karyotype JAK GATA 1

23 C-ALL Male 2.2 18 47,XY,+21c[20] JAK-2 R683 WT

24 PRE-B Male 3.8 3 47,XY,+21c[22] JAK-2 R683 WT

25 C-ALL Male 3.3 4 47,XY,+21c JAK-2 R683 WT

26 PRE-B Female 6.2 5 46,XX,der(14;21)(q10;q10)c,+21c[27] JAK-2 R683 WT

27 C-ALL Female 3.4 17 47,XX,+21c[20] JAK-1 V651M WT

28 C-ALL Male 9.2 30 48,XY,+X,t(8;14)(q12;q32),+21c/47,XY,+21c WT WT

29 PRE-B Female 4.9 4 47,XX,+21c[30] WT WT

30 PRE-B Female 2.6 18 48,XX,+X,add(18)(q22),+21c[2]/47,XX,+21c[30] WT WT

31 C-ALL Male 13.5 1 56,XY,+X,+4,+10,+14,+14,+17,+18,+18,+21c,+mar[13]/47,XY,+21c[9] WT WT

32 C-ALL Male 15.4 4
47,XY,t(1;3)(q32;q26),t(2;12)(q23;q13),t(7;8)(q31;q12),del(13)
(q14q32),+21c[17]/40-46,idem[4]

WT WT

33 PRE-B Female 4.0 48 NA WT WT

34 PRE-B Female 2.6 9 57,XX,+5,+6,+17,+18,+21c,+5mar[cp23]/47,XX,+21c[9] WT WT

35 C-ALL Male 4.2 41
46,XY,t(8;9)(q24;p13),del(12)(p13.1),?dic(12;13)
(p11.2;p10),+21c[20].ish del(12)(TEL-,AML1-,CEP12+),?dic(12;13)
(TEL-,AML1-,CEP12+)

WT WT

36 PRE-B Female 2.8 33 47,XX,+21c WT WT

37 PRE-B Male 3.9 78 47,XY,+21c WT WT

38 PRE-B Male 5.6 5 47,XX,+21c WT WT

39 C-ALL Female 7.9 13 47,XX,+21c[21] WT WT

40 C-ALL Male 6.8 199
47,XY,der(9)del(9)(p13p2?2)t(9;22)(q34;q11),+21c,der(22)t(9;22)
[15]/47,idem,add(21)(q22)[7]/47,XY,+21c[1]

WT WT

41 C-ALL Male 3.7 17 48,XY,+21c,+mar[4]/48,XY,+X,+21c[3]/47,XY+21c[13] WT WT

42 C-ALL Male 17.1 20 47,XY,+21c[20] WT WT

43 C-ALL Female 7.0 33 47,XX,del(12)(p11p13),+21c[18]/47,XX,+21c[2] WT WT

44 C-ALL Male 2.0 112 47,XY,+21c WT WT

45 C-ALL Female 8.4 4
58~59,XX,+4[3],+6,+10[2],+11,+?14,+18[2],+21,+21c,+1~5mar,in
c[cp4]/47,XX,+21c[5]

WT WT

46 PRO-B Male 13.3 7 46,XY,-13,+21c[17]/47,XY,+21c[3] WT WT

47 C-ALL Female 13.8 2 49,XX,+X,+5,+21c WT WT

48 C-ALL Male 5.5 5 47,XY,+21c WT WT

49 C-ALL Female 8.1 390 47,XX,-2,-8,+21c,+mar1,+mar2[8]/46,idem,-X/47,XX,+21c[3] WT WT

50 PRE-B Female 5.4 4 47,XX,add(17)(q2?5),+21c[4]/47,XX,+21c[28] WT WT

51 PRE-B Male 4.9 11 47,XY,+21c[32] WT WT

52 C-ALL Female 3.7 9
47,XX,+X,-13,i(17)(q10),der(19)t(13;19)(q1?3;q1?2),+21c[15]/47,idem,d
el(12)(q1?4q2?1)[7]/52,idem,+3,+10,+14,+21,+21[2]/47,XX,+21c[29]

WT WT

53 C-ALL Male 2.3 6 47,XY,+21c WT WT

54 PRE-B Female 4.5 6 47,XX,+21c[32] WT WT

55 C-ALL Female 4.5 5 47 XX +21c [5] WT WT

 WBC=white blood cell count (*109/l) ; WT = wildtype; IPT= immunophenotype; NA = not available. Age in years.  Karyotype nomenclature 
according to ISCN 1995
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Mutation analysis 

GATA1 mutations were identified in all ML-DS and TL cases (details are given in Table 1). 

Mutations in JAK1 were found in 1 (7%) ML-DS patient (D625R), and in 1 (3%) DS ALL patient 

(V651M). These were both missense mutations leading to substitution of a single amino 

acid which are predicted to result in an altered protein. No events occurred in either of the 

patients with a follow-up of 2.4 and 3.1 years, respectively. See Figure 1 for the localization of 

the mutations in JAK 1-3.

JAK2 mutations were not identified in any of the TL and ML-DS patients. However, JAK2 

R683 activating mutations were found in 6/35 (17%) of the DS ALL patients. In 5 patients a 

substitution of nucleotides A à G was found which resulted in a substitution of arginine with 

glycine and 1 patient had an insertion of 9 base pairs (GGCCCCATC) immediately upstream 

of R683. In DS ALL, cases with JAK2 mutations were significantly younger than the wildtype 

patients, with a median age of 3.2 year versus 4.9 years (p= 0.044). There were no significant 

differences in other characteristics such as WBC, sex, and cytogenetics between the JAK2 

mutated and the wildtype DS ALL patients.

One TL-patient (17%) and 1 ML-DS patient (7%) harbored the JAK3 A573V-mutation. Both 

patients are in continuous complete remission (CCR) with a follow up of 1.4 and 1.9 years, 

respectively. 

Survival analysis

None of the 6 JAK2 mutated DS ALL patients experienced an event, whereas 5 of the 29 

patients with wildtype JAK2 relapsed, and one died of treatment-related toxicity. Using 

Figure 1. Localization of mutations in JAK 1-3
Schematic overview of the structure of JAK 1-3 with the kinase, pseudokinase and FERM (4.1-ezrin-radixin-moesin) domain in which the 
location of the mutations we identified is indicated. Mutations in Down syndrome ALL are depicted in black, mutations in myeloid leukemia of 
Down syndrome and transient myeloproliferative leukemia in grey.  
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Kaplan-Meier analysis (see graphs in Figure 2), no significant differences in clinical outcome 

were detected: the 10-year EFS for JAK2 mutated versus JAK2 wildtype patients was 100% vs. 

75 +/- 9%; (p=0.27), the 10 year OS 100% vs. 86 +/- 7% (p=0.3). The cumulative incidence of 

relapse at 10 years after diagnosis in JAK2 wildtype patients was 21 +/- 9% versus 0% in the 

JAK2 mutated group; ( p(Gray)= 0.32).

Meta-analysis

To assess the impact of JAK2 mutations on the survival in a larger cohort of patients, we per-

formed a meta-analysis of the data of 3 studies taken together pooling our data with those 

of Bercovich et al, and Gaikwad et al.17-18 This analysis did not show a statistical significant 

difference for the JAK2 wildtype versus the JAK2 mutated patients. Six year EFS was 71 +/- 5% 

vs. 74 +/- 10%; P= 0.63 and OS was 76.0 +/- 4% vs. 89 +/- 6%; P= 0.30 (Figure 3A and 3B). 

Figure 2. Ten years survival parameters of JAK2 R683 mutations in DS ALL patients
The event-free survival, 100% versus 75±9%; p= 0.27 (A), overall survival, 100% versus 86±7%; p= 0.30 (B), and cumulative incidence of 
relapse, 0% versus 21±9%; p= 0.32 (C) are depicted for patients with JAK2 R683 mutations (grey line) and wildtype JAK2 (black line). 
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diSCuSSiOn

Our study focused on the frequency of mutations in all exons encoding the kinase and pseu-

dokinase domains of JAK 1-3 in DS leukemia patients. We did not detect a higher mutational 

frequency than previously described,13-16 suggesting that there are clear mutational hotspots, 

which can be screened for, in clinical studies. However, given the number of patients we have 

screened we may still have missed rare mutations that occur in a relatively low frequency in 

any of these leukemias. 

Both JAK1 mutations (one in ML-DS and one in DS ALL), which we found, were localized in 

the same region of the pseudokinase domain, but not identical to the activating mutations 

in JAK1 described in non DS ALL patients.25 JAK1 mutations in non-DS cases are mainly found 

in T-cell ALL (27.3 %),26 and in low frequencies in adult ALL T-ALL and B cell precursor ALL 

(3.4%)27 and AML (2.1%).28 These mutations are very heterogeneous in the sense that they are 

dispersed over several JAK1 domains, and differ in their ability to transform hematopoietic 

cells and to activate downstream signaling pathways such as the STAT, PI3K and MAPK cas-

cades.26-28 T-cell ALL is exceedingly rare in DS patients, with frequencies varying between 0% 

and 7.8 % in several larger series,9,29,30 versus approximately 15% in non-DS ALL. No patients 

with DS and T-cell ALL were included in this study.

Recently, Bercovich and others reported activating JAK2 R683 mutations in 18% of DS 

ALL patients.18-20 This mutation was thought to be unique for DS ALL, in a similar fashion as 

GATA-1 mutations are uniquely found in ML-DS. However, the same JAK2 mutations were also 

reported in non DS B-cell precursor ALL patients with a high risk for relapse, which implies 

that this mutation is not specific for DS ALL.25 In our series, the typical JAK2 R683 mutations 

were found in 17% of the DS ALL patients, which is in line with the frequency described by 

others.18-20 One patient had an insertion of 9 base pairs immediately upstream of R683. This 

specific mutation has not been described before, but two different insertions of multiple base 

Figure 3. Survival parameters of JAK2 mutant and wildtype patients; meta-analysis of three datasets
The event-free survival, 74±10% versus 71±5%; p=0.63 (A), and overall survival, 89±6% versus 76±4%; p=0.30 (B) are depicted for patients 
with JAK2 R683 mutations (grey line) and wildtype JAK2 (black line). DS ALL patients were diagnosed between 1992 and 2008.
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pairs at this position have been reported, and were considered to have an effect analogous to 

R683 mutations because of their location.18

In contrast to the non DS B-cell precursor high-risk ALL patients with JAK2 mutations who 

were found to have a high relapse rate,25 none of the JAK2 mutated DS ALL patients in our 

cohort experienced an event. The observed better outcome for JAK2 mutated patients was, 

however, not statistically significant. So far, only two other studies report on the clinical 

relevance of JAK2 mutations in DS-ALL and both studies are in agreement with our results 

reported here. Bercovich et al. reported a 5-year EFS of 73% in JAK2 wildtype patients (n=62) 

versus 78% in JAK2 mutated patients (n= 16), which was also not statistically significant.17 

In addition, Gaikwad et al. described a 5-year EFS in JAK2 wildtype patients (n=43) of 76.3 

% versus 87.5% in JAK2 mutated patients (n=10), again a statistically non-significant differ-

ence.19 A combined analysis of our data plus the 2 studies just mentioned above showed 

no statistically significant difference in survival between JAK2 mutated and JAK2 wildtype 

patients. Since this meta-analysis includes 32 mutated cases and 139 wildtype cases, it pro-

vides substantially greater certainty that there is no survival advantage for DS ALL patients 

with a JAK2 mutation. 

JAK mutations play a role in activation of the JAK-STAT pathway, resulting in a proliferation 

advantage for leukemic cells,18 which led to our initial hypothesis that they would be associ-

ated with poor clinical outcome. One possible explanation for the observed good clinical 

outcome may be that this increased proliferation could contribute to enhanced sensitivity to 

chemotherapy. However, this is contradictory with the outcome of JAK2 mutants in high-risk 

ALL, in which patients with a JAK2 mutation have a high risk for relapse.25 This may be due to 

currently unknown differences in step-wise leukemogenesis or cooperating genetic events 

between DS and non-DS JAK2 mutated ALL. 

Both one TL patient and one ML-DS patient harbored a JAK3 A573V-mutation. This activat-

ing mutation has previously been described in ML-DS patients and the megakaryoblastic 

cell line CMY.21 It has been suggested that JAK3 mutations may be associated with a more 

aggressive form of ML-DS.16 However, our 2 patients with a JAK3 mutation are in continuous 

complete remission (CCR) with a follow up of 1.4 and 1.9 years, respectively. 

Of interest, JAK mutated cases may be sensitive to JAK-inhibitors.25 This might be of benefit, 

since it is well-known that DS patients have an increased risk for chemotherapy related mor-

bidity and mortality. In myeloproliferative disorders, several JAK-inhibitors are already used.31 

Remarkably, patients with and without the JAK2 V617F mutation may benefit to the same 

extent which is due to the fact that the current inhibitors do not differentially inhibit mutated 

and wildtype JAK2, because of the location of the mutation outside the ATP-binding pocket 

of the enzyme.10 Treatment results in a decrease in organomegaly in responding patients.31,32 

The major side-effect of JAK2 inhibitors is myelosuppression, which is due to suppression of 

wildtype JAK2 that is required for normal hematopoiesis,13 and which may render it difficult 

to combine JAK inhibitors with chemotherapy. Given that JAK2 mutated DS ALL cases do not 
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have worse outcome it is difficult to predict whether the cells are addicted to the constitutive 

activity of JAK2, and hence whether inhibiting this will provide a benefit to these patients. We 

therefore feel that studies with JAK2 inhibitors in DS ALL patients require further pre-clinical 

evidence of potential benefit before implementation. 

Unfortunately, due to limited availability of our samples, we were not able to show activa-

tion of the JAK-STAT pathway at the protein level in the Down syndrome patients, and hence 

we may have missed patients that have JAK-STAT activation due to other mechanisms than 

mutations in JAK. Hence, further research is needed to identify potential JAK-STAT activation 

and its causes in patients without JAK-mutations. For instance, it is known that MPL (myelo-

proliferative leukemia virus oncogene) mutations may also activate the JAK-STAT pathway.13 

In an earlier study in 8 TL and ML-DS patients these MPL mutations were not found.22

In conclusion, JAK1 and JAK3 mutations are rare in DS-leukemias (although there seem to 

be mutational hotspots) whereas JAK2 mutations occur relatively frequently in approximately 

17% DS ALL cases. Of interest, none of the DS ALL cases with a JAK2 in our cohort mutation 

relapsed so far, and a meta-analysis confirmed the lack of prognostic significance for JAK2 

mutated DS ALL patients. 
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aBSTraCT

Children with Down syndrome (DS) have an increased risk of developing acute lymphoblastic 

leukemia (ALL) and have a low frequency of established genetic aberrations. We aimed to 

determine which genetic abnormalities are involved in DS ALL. We studied the frequency 

and prognostic value of deletions in B-cell development genes and aberrations of JAK2 and 

CRLF2 using array-CGH, and MLPA in a population-based cohort of 34 DCOG DS ALL samples. 

A population-based cohort of 88 DS samples from UK trials was used to validate survival esti-

mates for IKZF1 and CRLF2 abnormalities. In total, 50% of DS ALL patients had ≥1 deletion in 

the B-cell development genes: PAX5 (12%), VPREB1 (18%), and IKZF1 (35%). JAK2 was mutated 

in 15% of patients, genomic CRLF2 rearrangements in 62%. Outcome was significantly worse 

in patients with IKZF1 deletions (6-year EFS 45±16% vs. 95±4%; p=0.002), which was con-

firmed in the validation cohort (6-year EFS 21±12% vs. 58±11%; p=0.002). This IKZF1 deletion 

was a strong independent predictor for outcome (Hazard-Ratio EFS 3.05; p=0.001). Neither 

CRLF2, nor JAK2 were predictors for worse prognosis. If confirmed in prospective series, IKZF1 

deletions may be used for risk-group stratification in DS ALL. 
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inTrOduCTiOn

Children with Down syndrome (DS) have an increased risk of developing acute myeloid (AML) 

and acute lymphoblastic leukemia (ALL).1 While AML in children with DS is characterized by 

unique acquired mutations in the transcription factor GATA1 (globin transcription factor 1),2-4 

there is no evidence as yet for such a unique genetic event in DS ALL. 

The established cytogenetic abnormalities, such as high hyperdiploidy (51-65 chromo-

somes), ETV6-RUNX1, BCR-ABL1, MLL-rearrangements and TCF3-PBX1, occur in about two-

third of non-DS B-cell precursor (BCP) ALL patients. However, these abnormalities are found 

only in approximately 20% of DS children with ALL.5,6 Recently, genomic abnormalities of 

Cytokine Receptor Like Factor 2 (CRLF2) have been described in approximately 60% of DS ALL 

patients.7 These rearrangements include a) translocations of CRLF2 with the Immunoglobulin 

heavy chain locus (IGH@) at chromosome 14q32 and b) interstitial deletions in the pseudo-

autosomal region 1 (PAR1) resulting in P2RY8-CRLF2 fusion.7-9 Functionally, both aberrations 

result in overexpression of CRLF2 and activation of the JAK-STAT pathway.7-9 Activating muta-

tions in amino acid R683 of Janus Kinase 2 (JAK2) occur in around 20% of DS ALL cases, which 

were initially thought to be unique to DS ALL.6,10-12 Mutations of JAK2 and rearrangements of 

CRLF2 are found in <10% and up to 15% of high-risk non DS ALL patients, respectively.8,12-16 

Deletions in B-cell development and differentiation genes, including IKZF1, TCF3, EBF1, 

PAX5 and VPREB1, have recently been described in DS and non-DS ALL.17-20 The prognostic 

significance of abnormalities of these genes in DS ALL is currently unknown. Therefore, we 

analyzed a population-based cohort of DS ALL samples for deletions in these genes using ge-

nomic profiling and related these to clinical outcome. The survival parameters were validated 

using another population-based cohort of DS ALL patients from UK trials for abnormalities 

involving IKZF1 and CRLF2. 

maTeriaLS and meThOdS 

Patients and patient samples

We identified all DS ALL patients (n=58) enrolled in 3 consecutive Dutch Childhood Oncology 

Group (DCOG) ALL treatment protocols (DCOG ALL8, ALL9 and ALL10). Details of DCOG ALL8 

and ALL9 have been reported elsewhere, and ALL10 is currently ongoing (Supplementary 

figure 1).21,22 In addition, we identified all DS ALL patients (n=114) enrolled in the UK National 

Cancer Research Institute (NCRI) Childhood Cancer and Leukaemia Group (CCLG) treatments 

protocols ALL97, ALL97/99 and ALL2003, which were used as a validation cohort.23,24 Both, 

DCOG and UK treatment protocols were approved by the Institutional Review Board of the 

participating centers according to local law and guidelines, and informed consent was ob-
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tained from all patients, their parents or guardians. Data on clinical characteristics, biological 

features and outcome were extracted from national databases.

Vials with frozen cells were available from 34/58 DCOG patients. After thawing, contami-

nating non-leukemic cells were eliminated as previously described.25 Blast percentages were 

assessed morphologically on May-Grünwald-Giemsa–stained cytospin slides. All patient 

samples contained ≥ 80% leukemic blasts (median 95.5%, range 83% – 99%). Genomic DNA 

and total cellular RNA were extracted from leukemic cells using Trizol reagent (Gibco BRL, 

Life Technologies, Breda, the Netherlands), as previously described.25 DNA quality was tested 

using gel electrophoresis, and DNA quality and quantity were measured on the Nanodrop 

1000 spectrophotometer (Isogen, De Meern, the Netherlands). Analyses for UK patients 

(n=88) were performed on pre-treatment samples using standard methodologies and were 

reported using established nomenclature and definitions.26,27

Cytogenetics and Fluorescence in situ Hybridization 

Diagnostic samples were routinely analyzed using standard cytogenetic procedures by the 

reference cytogenetic laboratories in the University Hospitals participating in the DCOG and 

UK trials. Ploidy status was determined from the karyotypes; if these data were missing array-

CGH results were used. Hypodiploidy was defined as <47 chromosomes, diploidy was defined 

as 47 chromosomes, low hyperdiploidy as ≥48 ≤50 chromosomes, and high hyperdiploidy 

as ≥ 51 chromosomes. All DCOG and UK samples were further analyzed for the presence 

of the ETV6-RUNX1 fusion using fluorescence in-situ hybridization (FISH) with the dual-color 

translocation probe set: LSI ETV6 (TEL)/RUNX1(AML1)ES (Vysis). 

Genomic CRLF2 aberrations in the DCOG and UK cohorts, and IKZF1 deletions in the UK 

cohort were detected using FISH as previously described.8,16 Briefly, we used a break-apart 

FISH probe to identify CRLF2 involvement. A break-apart probe to P2RY8 was designed to 

map the centromeric breakpoint of the deletion in patients with loss of the centromeric sig-

nal indicating deletion within the pseudo autosomal region centromeric of CRLF2. Combined 

results from these two break-apart probes indicated the presence of the P2RY8-CRLF2 fusion. 

The involvement of IGH@ was determined by interphase FISH using the LSI IGH Dual Color 

Break-Apart Rearrangement Probe (Abbott Diagnostics). Results were recorded using a Zeiss 

Axioscop fluorescence microscope (Zeiss) fitted with a 100_/1.30 oil objective, CCD camera 

and digital imaging software: ISIS software version 5.1.9 (Metasystems, Germany) and Cytovi-

sion Version 4.5 (Leica Microsystems, UK). 

Array-Comparative Genomic Hybridization 

To identify copy number changes, particularly in the B-cell development and differentiation 

genes: PAX5, VPREB1, TCF3, EBF1 and IKZF1, we performed 105-K oligonucleotide array-CGH 



89

CHAPTER  5

5

on genomic DNA on the DCOG cohort as previously described.17,28 Genomic losses and gains 

were identified as a minimum of 3 consecutive probes deviating beyond the threshold of -0.8 

for single copy loss and -1.8 for bi-allelic loss (log ratio). Deletions were defined as a loss ≥0.5 

million bases, whereas focal deletions were defined as losses < 0.5 million bases.17 

To further specify deletions of IKZF1 in the DCOG cohort, genomic DNA was PCR amplified 

to detect Isoform 6 of the IKZF1 gene with primers previously described.19

Mutation analysis

To analyze mutations in the coding exons of IKZF1 (exon 2-8) and in the JAK2 R683, PCR ampli-

fied DNA was purified and bi-directionally sequenced as previously described.8,29,30

Multiplex Ligation-dependent Probe Amplification (MLPA)

MLPA was used in both DCOG and UK cases for detection and validation of aberrations in 

B-cell development and differentiation genes found by array-CGH and to further define 

IKZF1 deletions into different splice variants. MLPA analysis was performed using the SALSA 

MLPA kit P335-A3 ALL-IKZF1 which contains probes for selected B-cell development and 

differentiation genes, and the SALSA MLPA kit P202-A1 IKZF1, which contains an increased 

density of probes for IKZF1 (MRC Holland). The full list and location of the MLPA probes can be 

downloaded from the MRC Holland website (http://www.mrc-holland.com). The data were 

normalized, by dividing the peak area of each probe by the mean peak area of the control 

probes. Peak heights below 0.7 (0.75 for MRC UKALL samples) and above 1.3 times the control 

peak height were considered abnormal, with those below 0.7 representing deletions, and 

those above 1.3 representing duplications.31,32 

Gene-expression profiling and Quantitative real-time PCR

Biotinylated cRNA of DCOG subjects was synthesized, hybridized and processed to Affymetrix 

U133 plus 2.0 GeneChips (Affymetrix, Santa Clara, CA USA) as previously described.17,31 Data 

was acquired using Expresso (BioConductor package Affymetrix) and probe-set intensities 

were normalized using the variance-stabilization normalization (VSN) BioConductor package 

in the statistical data analysis environment R, version 2.7.0. VSN RMA normalized data was 

used to test for statistical differences in the expression of CRLF2 (probe set 208303_s_at). We 

performed Quantitative real-time PCR (RT-qPCR)33 with primers as previously described and 

used SYBRgreen (Finnzymes) for expression analysis.7 The average cycle threshold (Ct) value 

was used to calculate mRNA expression levels of CRLF2 relative to the expression level of 

the reference gene ‘ribosomal protein S20’ (RPS20) by use of the comparative cycle time (_Ct) 

method.34 
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Statistics 

For statistical comparisons the Statistical Package for the Social Sciences (SPSS) Analysis 

system (v.15.0, SPSS Inc., Chicago, IL, USA) was used. To compare categorical variables we 

used c2 analyses, for continuous variables the Mann-Whitney U test and Spearman Rho (ρ) 

was used to calculate correlation coefficients. P-values ≤ 0.05 were considered statistically 

significant (two-tailed testing).

To evaluate outcome, statistical analyses were conducted using SAS software (SAS-PC, 

Version 9.1). Complete remission (CR) was defined as less than 5% blast in the bone marrow, 

with regeneration of tri-lineage hematopoiesis plus absence of leukemic cells in the cerebro-

spinal fluid or elsewhere. Event free survival (EFS) was calculated from the date of diagnosis 

to the date of last follow-up or to the first event, including relapse, death in CR, and failure 

to achieve CR (considered as event on day 0). Early death was defined as any death within 

the first 6 weeks of treatment, and was considered as an event on day 0. Overall survival (OS) 

was measured from the date of diagnosis to the date of last follow-up or to the date of death 

from any cause. The Kaplan-Meier method was used to estimate survival rates, and survival 

estimates were compared using the log-rank test. The cumulative incidence of relapse (CIR), 

with other events and death in CR as competing events was constructed by the method of 

Kalbfleisch and Prentice and compared using the Gray test. 

For multivariate analysis, a stepwise Cox proportional-hazard regression model was used. 

Data from both the DCOG and UK validation cohorts were merged for this purpose. Con-

tinuous variables known to be of prognostic value in ALL were categorized according to the 

National Cancer Institute (NCI) risk criteria 35, and with the cut-offs previously described in DS 

ALL and BFM-95.36,37

reSuLTS

Patient samples and characteristics 

A total of 34/58 (59%) DCOG and 88/114 (77%) UK DS ALL patients were enrolled in this study. 

All 122 patients were classified as B-cell precursor ALL and treated with curative intent. The 

clinical and presenting characteristics of the tested cohort and the remaining DS ALL samples 

(residual cohort), for both DCOG and UK, were compared to test for selection bias, and no 

differences were detected (Supplementary Table S1 and S2). Furthermore, we tested for dif-

ferences between the DCOG and the UK sample cohorts (Table 1). Patients from UK trials 

had a lower 6-year survival estimate, which was due to a higher rate of death and relapse in 

early treatment protocols.38 In addition, WBC was slightly higher in UK patients then in DCOG 

patients (18.8 vs. 8.8 x109/L; p=0.07).  
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Cytogenetics and Fluorescence in situ Hybridization 

Cytogenetic data were available for 31/34 DCOG patients (3 were based on array-CGH) and 

88 UK patients (Supplementary Table S3A and B, respectively). A normal karyotype was found 

in 14 (45%) DCOG and 34 UK patients based on the full analysis of least 10 cells (there was 

failure to achieve a successful karyotype in 6 UK patients); 1 DCOG patient had a BCR-ABL1 

fusion, while 1 DCOG and 2 UK patients had t(8;14)(q11;q32).5 The gain of an X chromosome 

was observed in 6 DCOG and 18 UK patients, which were identified as additional derived X 

chromosomes.5 The remaining patients (n=15, 48%) had random cytogenetic aberrations. 

The ETV6-RUNX1 fusion was found in 2 (6%) DCOG patients and 15/85 (18%) UK patients.

Ploidy status of DCOG patients was determined from karyotypes (n=31) and from array-

CGH (n=3). Four (12%) patients had a high hyperdiploid karyotype (HeH) (≥52 chromosomes), 

including trisomy 10 (n=4), trisomy 4 or 18 (n=3), and tetrasomy 21 (including the constitu-

Table 1. Down syndrome ALL patient characteristics of the DCOG cohort compared with the UK Cohort

  dCOG sample cohort uk sample cohort p

number 34 88  

age at diagnosis (year) 4.9 4.8 0.85

Gender     0.29

Male 20 58  

Female 14 26  

median initial wBC (x 109/L) 8.8 18.8 0.07

immune phenotype      

Pro-B 2 NK  

C-ALL 21 NK  

Pre-B 11 NK  

Treatment protocol      

ALL 8 8 NA  

ALL 9 17 NA  

ALL 10 9 NA  

efS 76.2 ± 8.2%  58 ± 6% 0.05

OS 85.1 ± 6.2% 63 ± 6% 0.01

Cir 18 ± 8% 16 ± 5% 0.8

Cytogenetic aberrations      

ETV6-RUNX1 2 (1.5) 15/85* (18) 0.15

HeH 4 (11.8) 4/73* (5) 0.26

IKZF1 12 (35) 23/85* (27) 0.37

CRLF2 21/33* (62) 43/84* (51) 0.07

JAK 2 5 (15) 8/20* (40) 0.05

DCOG, Dutch childhood oncology group; UK, united kingdom; NK, not known; NA, not applicable; WBC, white blood cell count, HeH, high 
hyperdiploidy (>52 chromosomes); ALL, acute lymphoblastic leukemia; * Not all genomic aberrations were analysed in all patients. 
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tional gain) (n=2).  A similar proportion of UK patients (4/73, 5.5%) had a HeH karyotype; and 

included trisomy of 4 (n=5), 10 (n=4) and 18 (n=4) and tetrasomy 21 (n=5).  

In 21/33 (64%) DCOG DS ALL patients, CRLF2 was aberrant, including IGH@-CRLF2 (n=5) 

and P2RY8-CRLF2 (n=16). One patient could not be evaluated due to the poor quality of the 

material. In the UK cohort 43/84 (52%) DS ALL patients had lesions of CRLF2, with 6/84 (7%) 

IGH@-CRLF2 translocations and 37/84 (44%) P2RY8-CRLF2 fusions. Four patients were not 

tested for IGH@-CRLF2, but were negative for P2RY8-CRLF2. 

Array-Comparative Genomic Hybridization 

In total, 17/34 (50%) DCOG cases had ≥1 deletion of B-cell development and differentiation 

genes. Affected genes included the transcription factors: IKZF1 (n=12, 35%), VPREB1 (n=6, 

18%) and PAX5 (n=4, 12%). Eight patients had focal deletions within IKZF1, 2 patients had a 

focal deletion of IKZF1 including the 3’ flanking region, and 2 patients had a deletion of the 

entire gene, as the whole chromosome 7p arm was deleted (Figure 1). In 6 of the patients 

with focal deletions within IKZF1, exon 3 through 6 was deleted, which was validated by PCR. 

This deletion results in the expression of isoform 6, a dominant-negative form of IKZF1.18 No 

deletions were found in EBF1 or TCF3. Deletions in the PAX5 gene were always part of larger 

deleted regions, whereas deletions of the other genes were mainly focal. Aberrations of IKZF1 

were not mutually exclusive: i.e. in 4 cases an IKZF1 deletion was found in combination with 

a PAX5 or VPREB1 deletion. Overlap between IKZF1, CRLF2 and JAK2 aberrations are depicted 

in figure 2. 

Mutation analysis 

No additional mutations were found after sequencing the coding exons (2-8) of IKZF1 in 

DCOG DS ALL patients. Synonymous polymorphisms were found at P334 in 6 patients (17.6%) 

and at N392 in 2 (5.9%) patients. JAK2 R683 activating mutations were found in 5/34 (15%) 

of the DCOG DS ALL patients as previously reported.30 The incidence of JAK2 R683 mutations 

was higher in the UK cohort (8/20, 40%) as previously reported.16

Multiplex Ligation-dependent Probe Amplification

The SALSA MLPA P202-A1 IKZF1 kit, with the majority of probes targeting IKZF1, confirmed 

that 12/34 (35%) of the DCOG DS ALL patients had deletions of IKZF1 which were identical to 

those detected by array-CGH. 

Using the SALSA MLPA P335-A3 ALL-IKZF1 kit, the same results were achieved for IKZF1 

deletions as with the P202 MLPA kit. In addition, in 4 patients (12%), all probes for PAX5 

were deleted, while no focal deletions of PAX5 were seen. No aberrations of EBF1 (0/34) were 
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Figure 1. IKZF1 aberration detected by Array-CGH and MLPA
A) The figure shows a chromosome 7 oligonucleotide Array Comparative Genomic Hybridization (CGH) plot of the log-ratio of patient DNA/
control DNA ratios (grey tracing) versus the dye-swap experiment (black racing) from a patient with an IKZF1 deletion. The figure zooms in on 
the deleted area and presents the genes located in this area.
B) Multiplex Ligation-dependent Probe Amplification (MLPA) plot of a patient with a Isoform6 deletion of IKZF1. Each square indicates a 
different probe. The white squares are control probes, grey squares represent normal probes, and the black squares are deleted probes. All 
probes located in exon 3 through 6 are deleted, resulting in Isoform 6 of IKZF1.
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detected. In the UK cohort, IKZF1 was found to be aberrant in 23/85 (27%) patients, of which 

5 (29%) resulted in IKZF1 Isoform 6, 5 (29%) had whole gene deletions and 7 (41%) had differ-

ent deletion profiles. Interestingly, patients with IKZF1 deletions are significantly older then 

patients with wildtype IKZF1 (8.2 vs. 4.3; p=0.03) (Table 2).

Gene-expression profiling and real-time PCR

Of 23 DCOG DS ALL patients, RNA was available for gene-expression profiling and RT-PCR. 

The median variance-stabilization normalized (VSN) expression value of patients with P2RY8-

CRLF2 (n=11; median 9.4) was significantly higher than in patients with wildtype CRLF2 (n=8; 

median 7.8); p 0.001), and was also higher as compared to patients with IGH@-CRLF2 (n=4; 

median 8.4); p=0.001) (Figure 3A), which was confirmed by RT-PCR (correlation coefficient 

of ρ = 0.7, p=0.0002) (Figure 3B). The median relative mRNA expression of CRLF2 in patients 

with P2RY8-CRLF2 was 6.5 fold higher (median 6.5) than in patients with IGH@-CRLF2 (median: 

0.001) and wildtype CRLF2 (median: 0.001); p<0.001. 

Table 2. Characteristics of patients with aberrant and wildtype IKZF1

  IKZF1 deletions wildtype IKZF1 p

number 35 84  

median age at diagnosis (year) 8.2 4.3 0.03

Gender     0.49

Male 21 56  

Female 14 28  

median initial wBC (109/L) 17.5 14.9 0.07

WBC, white blood cell count
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Figure 2. Venn-diagram showing the overlap between aberrations
A) DCOG cohort. One patient was excluded from the figure since the CRLF2 status was not determined. Four patients were excluded from the 
figure of the UK cohort (B), as IKZF1 or CRLF2 were not known for these cases. 
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Univariate survival analysis

The median follow up time for survivors in the DCOG sample cohort was 5.7 years (range 

1.2–15.4 years), the median FU time for UK survivors was 4.6 years (range 0.4-12.0 years). The 

6-year EFS was 76±8.2%, the 6-year OS 85±6.2% and the CIR was 18±8% in DCOG DS ALL 

patients. UK DS ALL patients had a 6-year EFS of 58±6%, a 6 year OS of 63±6.1% and a CIR of 

16±5%.

DCOG DS ALL patients with a WBC ≥20x109/L at diagnosis (n= 11) had a significantly worse 

outcome than patients with lower WBC (n=23) (6-year EFS 38±16.1% vs. 96±4.3%; p<0.001, 

6-year OS 60±15.5% vs. 96±4.3%; p=0.005), and this was confirmed in the UK cohort (6-year 

EFS 43±8.7% vs. 70±7.4%; p=0.01, 6-year OS 50±8.6% vs. 70±8.3%; p=0.03). There was no 

significant difference in outcome for patients below or above 6 years of age at diagnosis in 

both DCOG and UK patients. 

Patients with an IKZF1 deletion (n=12) had a significantly worse outcome than patients 

without an IKZF1 deletion. In fact, with the exception of a single patient, all 7 events occurred 

in patients with an IKZF1 deletion. The 6 year EFS was 45±16% for IKZF1 deleted vs.95±4% 

for IKZF1 wild-type patients; p=0.002, the OS 66±14% vs. 95±4%; p=0.02 and CIR 37±16% vs. 

5±5 %; p(Gray)=0.044. The poor outcome for IKZF1 deleted patients was confirmed in the UK 

cohort (EFS 21±12% vs. 58±11%; p=0.002, OS 15±12% vs. 71±9%; p=0.02, and CIR 37±15% 

vs. 18±10 %; p(Gray)=0.06) (Figure 4). Also when we combined the DCOG and the UK cohort 

(EFS 31±10% vs. 75±7%; p<0.001, OS 40±10% vs. 82±6%; p=0.0003, and CIR 37±11% vs. 11±6 

Figure 3. CRLF2 expression as determined by gene expression profiling and RT-qPCR 
Graphs showing the expression of CRLF2. Bars represent the median expression in each group. Differences in CRLF2 expression are 
shown between patients with wildtype CRLF2, IGH@-CRLF2 translocation and P2RY8-CRLF2. a) Expression of probe 208303_s_at 
representing the CRLF2 gene after log transformation. Significant differences in median expression are shown between patients with CRLF2 
wildtype (n=8; 7.8) and patients with P2RY8-CRLF2 (n=15; 9.4), p=0.001, between P2RY8-CRLF2 and IGH@-CRLF2 translocation 
(n=4; 8.4, p=0.33), and between wildtype and all patients with CRLF2 lesions, p=0.009. B) Cumulative mRNA expression levels of CRLF2 
relative to RPS20 (%). Significant differences are observed between patients CRLF2 wildtype (n=8; 0.001) and patients with P2RY8-CRLF2 
(n=15; 6.5), p<0.001, between P2RY8-CRLF2 and IGH@-CRLF2 translocation (n=4; 0.001), and between wildtype and all patients with 
CRLF2 lesions, p=0.02.  

A B
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Figure 4. Kaplan-Meier estimates of DS ALL patients with and without IKZF1 aberrations
Six year event free survival (EFS) in DCOG DS ALL patients for IKZF1 is depicted in (A) and EFS for the UK dataset is depicted in (D), the overall 
survival (OS) of DCOG DS ALL patients is shown in (B), the OS for the UK dataset depicted in (E), and the cumulative incidence of relapse (CIR) 
of DCOG DS ALL patients is shown in (C), the CIR for the UK cohort is depicted in (F).  Patients with IKZF1 deletions have a significantly worse 
outcome in terms of OS, EFS, and CIR compared with IKZF1 wildtype patients.
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%; p(Gray)=0.007) (Supplementary figure S2) the poor outcome of IKZF1 deleted cases was 

evident.

There was no statistically significant difference in clinical outcome between patients with 

or without genomic CRLF2 aberrations, neither in the DCOG cohort (EFS 75±10% vs. 79±14% 

in CRLF2 wildtype patients; p=0.6, OS 81±9% vs. 92±8%; p=0.42, CIR 15±8% vs. 21±15%; 

p(Gray)=0.9, supplementary figure S3) nor in the UK cohort (EFS 50±9% vs. 67±8%; p=0.26, 

OS 58±9% vs. 69±8%; p=0.27 and CIR 22±8% vs. 11±5%; p(Gray =0.32, supplementary figure 

S4). 

The OS for DCOG patients with a PAX5 deletion was significantly lower compared to those 

with wildtype PAX5 due to the poor salvage rate at relapse (OS: 50±25% vs. 90±6%; p=0.03). 

No statistically significant differences in outcome were found in DCOG patients with and 

without a deletion of VPREB1 (OS 67± 9% vs. 89±6%; p=0.12, CIR 17±17% vs. 18±9%; p(Gray) 

=0.85), nor for JAK2 R683 (data not shown).

Multivariate survival analysis

A stepwise multivariate Cox regression model was performed on the total dataset (DCOG 

and UK) for enough statistical power and included WBC at diagnosis (≥20 x 109/L), sample 

cohort, mutational status of IKZF1 and genomic CRLF2 aberrations were variables included in 

the multivariate model. 

Deletions of IKZF1 appeared to be the strongest independent risk factor for EFS, OS and 

relapse-free survival (RFS) with a hazard ratio (HR) for EFS of 3.05 (95% CI 1.55 – 6.02; p=0.001), 

for OS of 2.82 (95% CI 1.40 – 5.70; p=0.003) and for RFS of 7.83 (95% CI 2.39 – 25.63; p=0.001). 

The cohort (UK v DCOG) was also an independent risk factor for EFS and OS, but not for RFS 

(EFS: HR 2.37, 95% CI 1.01 – 5.54; p=0.046, OS: HR 3.26, 95% CI 1.23 – 8.65; p = 0.02 (Table 3). 

Genomic CRLF2 aberrations were not a predictor for prognosis. 

diSCuSSiOn

When assessing overall outcome, children with DS-ALL have fared less well than their 

non-DS counterparts in most clinical trials.39-43 There is a need to understand which genetic 

abnormalities contribute to the development of ALL in DS children, and which abnormalities 

predict for poor outcome. This study has focused on the frequency and prognostic value 

of aberrations involving B-cell development and differentiation genes in DS ALL patients, 

especially IKZF1 deletions, based on recent findings in non-DS high-risk ALL, and the recent 

detection of patients with a BCR-ABL1-like gene expression signature by Den Boer et al from 

our department, with a high-risk of recurrent disease.17,18
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in non-DS B-cell precursor ALL. The frequency varies between 67% in high-risk non-DS ALL 

and 82% in non-DS patients with a BCR-ABL1-like gene expression signature.17,18 We found 

that deletions in these genes, including PAX5, VPREB1, TCF3, EBF1 and IKZF1, occurred in ap-

proximately 50% of an unselected cohort of DS ALL, which also included low risk patients. 

The incidence of PAX5 deletions reported in this study is rather low (12%) when compared 

to non-DS ALL patients (21% - 29%) 19,29,44, but similar to a group of non-DS ALL patients with 

genetically unclassified disease (B-other), as previously reported by Den Boer et al.17 None of 

the DS ALL patients had deletions in EBF1, which is in correspondence to the low frequency 

reported in non-DS ALL.17,19,29 

The frequency of IKZF1 deletions in the unselected DCOG (35%) and UK cohorts (26%) is 

comparable to the 29% found in high-risk non DS ALL patients 18 and to the 39% in a group 

of high-risk non-DS ALL patients with a ‘BCR-ABL1 like’ gene-expression signature.17 Interest-

ingly, 38% of the DCOG DS ALL have a gene-expression signature similar to those of BCR-

ABL1-like non-DS ALL as identified in our previous study by a 110 probe-set based classifier. 

Within this DS-BCR-ABL1-like group, 40% has a deletion of IKZF1 similar to the frequency of 

IKZF1 deletions observed in non-DS BCR-ABL1-like cases.17 Taken together, this suggests that 

a relatively large proportion of DS ALL patients have a genetic profile with characteristics of 

high-risk B-cell precursor ALL, and thus need to be treated accordingly, although this should 

be balanced against the increased risk of treatment related mortality in DS children. Given 

that the option for intensification of chemotherapy in DS subjects are limited, it is key to 

unravel the underlying biology of IKZF1 aberrant leukemias, in order to develop les toxic 

Table 3. Results of multivariate analysis for overall survival, event-free survival and relapse free survival for the combined 
DCOG and UK cohorts

Outcome Variable hr 95% Ci P-value

efS

IKZF1 3.05 1.55 - 6.02 0.001

Collaborative Group 2.37 1.01 - 5.54 0.05

Genomic CRLF2 1.69 0.83 - 3.44 0.15

WBC ≥ 20x109/L 2.41 1.20 - 4.85 0.01

OS

IKZF1 2,82 1.40 - 5.70 0.004

Collaborative Group 3.26 1.23 - 8.65 0.02

Genomic CRLF2 1.86 0.87 - 3.94 0.11

WBC ≥ 20x109/L 2.01 0.98 - 4.13 0.06

rfS

IKZF1 7.83 2.39 - 25.63 0.001

Collaborative Group 1.38 0.45 - 4.27 0.58

Genomic CRLF2 1.14 0.39 - 3.36 0.81

WBC ≥ 20x109/L 2.87 0.95 - 8.67 0.06

DCOD, Dutch childhood oncology group; UK, united kingdom; HR, hazard ration; CI, confidence interval, WBC, white blood cell count; EFS, event 
free survival; OS, overall survival; RFS: relapse free survival
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(targeted) therapy options for these patients. If confirmed in future studies or by other collab-

orative study groups, screening for evidence of high-risk genetic abnormalities such as IKZF1 

in DS ALL may lead to improved risk-group stratification. The future DCOG ALL11 treatment 

protocol will already use IKZF1 deletions to assist in this and to tailor anthracycline exposure.

Recently, Mullighan et al. reported that alterations of IKZF1 were associated with JAK2 R683 

mutations in 87% of high-risk non-DS ALL patients.12 These patients had a 4-year CIR of 77%, 

from which the authors concluded that this defined a very poor risk subgroup.12 This is differ-

ent in DS ALL, as only 1/34 DCOG patients had a combined IKZF1 and JAK2 aberrations and 

the clinical course was uneventful during 7 years of follow up. Moreover, none of the 5 JAK2 

R683 mutated DS ALL patients without IKZF1 aberrations experienced an event (data not 

shown). This implies a difference in the pattern of genetic changes leading to leukemogen-

esis, between non-DS and DS ALL patients, which is so far not very well understood.

Aberrations of CRLF2 are recently described genetic abnormalities in DS ALL, 8,9,13 occurring 

at a high frequency of ~51% in this study. Some authors have used gene expression profiling 

to screen for CRLF2 overexpression, however this may occur independently from genomic 

aberrations in the CRLF2 gene.13 Loudin et al, identified with supervised clustering a gene 

expression signature associated with high CRLF2 expression.20 After supervised clustering 

of our DCOG patients, genomic CRLF2 positive samples clustered separately from wildtype 

CRLF2 samples. However, only 4 genes with a false discovery rate <10% were detected (data 

not shown), which implies that CRLF2 is not a strong signature. Furthermore, we found that 

DCOG DS ALL patients who carried the P2RY8-CRLF2 aberration had a significantly higher 

expression of CRLF2 compared to patients with a translocation of IGH@-CRLF2 or wildtype 

CRLF2, which is different from what is found in other studies, although this might be due 

to small numbers in our study.8,14 Moreover, we did not identify the CRLF2 expression level, 

or genomic CRLF2 aberrations to be a significant risk factor for inferior treatment outcome, 

which is in agreement with the interim report of the Ponte di Legno on a large cohort of DS 

ALL patients 37 and several other DS and non-DS ALL studies, 7,9,16,37, but different from some 

other studies. 13,15 

In agreement with our findings, Harvey et al. previously demonstrated in high-risk non-DS 

ALL patients that only IKZF1 deletions, but not CRLF2 aberrations were independently as-

sociated with relapse.14 Furthermore, genomic aberrations of CRLF2 were strongly associated 

with JAK2 mutations.7,8,14 Indeed, in our DS ALL cohort, all patients (n=5) with a JAK2 R683 

mutation harbored P2RY8-CRLF2, although, none of these patients experienced an event. 

Recently Herztberg et al hypothesized that overexpression of CRLF2 is the first event in leu-

kemogenesis of DS ALL, followed by mutations such as JAK2 and CRLF2 6-8,15. However, IKZF1 

deletions, which disrupt normal lymphoid development, are not yet included in this model. 

Further research is needed to identify which of the aberrations is the primary event, and how 

they cooperate in the pathogenesis of DS ALL.   
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Histone gene deletions have been recently reported by Loudin et al. to be more common 

in DS ALL compared to non-DS ALL (22% vs. 3.1%) patients, albeit without prognostic signifi-

cance.20 In our DCOG cohort, only 1 (3%) DS ALL patient had a large deletion at the histone-

cluster at 6p22, while other patients showed only single probe deletions by array-CGH, which 

we consider to be below the threshold for true copy number changes. We did not search for 

point mutations, thus the involvement of the histone cluster may be underestimated in this 

study. In conclusion we could not confirm a high frequency of histon deletions in DS ALL 

patients, but more sensitive techniques are needed. 

In this study, MRD data was only available of a limited number of patients, and patients 

were treated on different protocols. Unfortunately we therefore could not include this pa-

rameter in the multivariate analysis.

In conclusion, this study demonstrates that IKZF1 is a strong and independent predictor for 

poor clinical outcome in DS ALL, which was confirmed in an independent validation cohort 

of UK DS ALL patients. These data suggest that there are similarities between DS and non-DS 

ALL in relation to the underlying genetic background. A relatively large proportion of DS 

ALL patients has high-risk genetic characteristics and thus need to be treated accordingly, in 

balance with TRM. If confirmed in larger and prospective series, IKZF1 abnormalities may be 

integrated into risk stratification of DS ALL patients for treatment. 
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Supplementary Table S1: Characteristics of the Dutch childhood oncology group sample cohort and residual cohort

  Sample cohort residual cohort p-value

number 34 24  

age at diagnosis (year) 4,9 5.3 0,99

Sex      

Male 20 11  

Female 14 13 0.33

median initial wBC (x 109/L) 8.8 7.7 0.26

immune phenotype      

Pro-B 2 8  

C-ALL 21 16  

Pre-B 11 0 0.48

Treatment protocol      

ALL 8 8 4  

ALL 9 17 7  

ALL 10 9 13 0,1

efS 76% ± 8% 65% ± 11% 0,18

OS 85% ± 6% 72% ± 10% 0,16

Cir 18 ± 8%  14 ± 10%  0,6

ALL, Acute lymphoblastic leukemia; Pro, Early B-Lymphocyte Precursor Cells; C, common; Pre, precursor; WBC, white blood cell count; EFS, event 
free survival; OS, overall survival; CIR, cumulative incidence of relapse.

Supplementary Table S2: Characteristics of United Kingdom sample cohort and residual cohort

  Sample cohort residual cohort p-value

number 88 26  

age at diagnosis (year) 4.9 4.9 0.89

Sex     0.22

Male 59 14  

Female 29 12  

median initial wBC (x 109/L) 16.1 13.9 0.78

efS 78.8 ± 6.1 95 ± 4.9 0,41

OS 61 ± 6% 65.3 ± 11.8% 0,48

Cir 15.7 ± 4.6% 4.2 ± 4.1% 0,4

WBC, white blood cell; EFS, event free survival; OS, overall survival; CIR, cumulative incidence of relapse
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ALL 9 NHR up to 109 weeks

Prot. I Prot. M Maintenance

HR

Prot. I Prot. M Prot. II Maintenance

SRG I up to 105 weeks

ALL 8 SRG R

Prot. IA Prot. M Prot. II SRG II (+ L'ASP)
Maintenance

MRG I
MRG R

MRG II Maintenance
Prot. I Prot. II

HRG 3x HR1-3
Prot. IA Block: HR 1-3 Maintenance

MSD: allograft for specific risk-groups

MRD MRD SR up to 104 weeks
TP1 TP2

MRD neg. at TP 
1 and TP 2 Maintenance

ALL 10 MR
P Prot IA Prot IB Prot. M no HR or SR Maintenance

HR
MRD TP 2 ? 

1*10-3 Maintenance

Supplementary Figure S1. Schematic overview of the different treatment blocks of the DCOG ALL-8, ALL 9 and ALL 10 treatment 
protocols 
Prot: protocol; SRG: standard risk group; MRG: medium risk group; HRG: high risk group; NHR: non high risk; HR: high risk; SR: standard risk; MR: 
medium risk; L-ASP: L-asparaginase; MRD: minimal residual disease; TP: time-point.
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Pa,ents	  with	  IKZF1	  dele,ons 	   	  (Events/N	  	  	  9/29)	  
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C)	  

Supplementary Figure S2. Survival of the combined dataset with and without IKZF1 aberrations
Kaplan-Meier estimates for 6-year EFS (A), OS (B) and CIR (C) for IKZF1 in the combined dataset (DCOG and UK DS ALL patients). Patients with 
IKZF1 deletions have a significantly worse outcome in terms of OS and EFS compared with IKZF1 wildtype patients. There is no statistically 
significant difference in CIR.

0.79,	  SE=0.14	  
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Pa.ents	  with	  CRLF2	  wildtype 	   	   	   	  (Events/N	  	  	  2/12)	  
Pa.ents	  with	  genomic	  CRLF2	  aberra.ons 	   	  (Events/N	  	  	  3/21)	  
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C)	  

Supplementary Figure S3. Survival of Dutch childhood oncology group Down syndrome ALL patients with and without CRLF2 aberrations. 
Kaplan-Meier estimates for 6-year EFS (A), OS (B) and CIR (C) for CRLF2 in DCOG DS ALL patients. There was no statistically significant 
difference in clinical outcome between patients with or without genomic CRLF2 aberrations, neither in the DCOG cohort (EFS 75±10% vs. 
79±14%; p=0.6, OS 81±9% vs. 92±8%; p=0.42 and CIR 15±8% vs. 21±15%; p (Gray) = 0.9) nor in the UK cohort (EFS 50±9% vs. 67±8%; 
p=0.26, OS 58±9% vs. 69±8%; p=0.27 and CIR 22±8% vs. 11±5%; p (Gray) = 0.32)
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C)	  

Supplementary Figure S4. Survival of United Kingdom Down syndrome ALL patients with and without CRLF2 aberrations. 
Kaplan-Meier estimates for 6-year EFS (A), OS (B) and CIR (C) for CRLF2 in MRC UK-ALL DS ALL patients. No significant differences in survival 
estimates between patients with wildtype CRLF2 and patients with aberrations in CRLF2.
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6

TO The ediTOr

Children with Down syndrome (DS) have an increased risk of developing acute myeloid (AML) 

and B-cell precursor acute lymphoblastic leukemia (BCP-ALL).1 The prognosis of DS ALL is at 

best similar and often inferior to that of sporadic ALL (non-DS) patients.2,3 DS ALL is character-

ized by unique biological features when compared to non-DS ALL. For instance, DS ALL has 

a lower frequency of the favorable genetic abnormalities t(12;21)(p13;q22) [ETV6-RUNX1] 

and the unfavorable t(9;22)(q34;q11) [BCR-ABL1]],3,4 but a higher frequency of JAK2 muta-

tions and CRLF2 rearrangements.5,6 Using genome wide screening techniques, several (novel) 

genomic aberrations involved in the pathogenesis of (non) DS ALL were identified.7,8 The 

potential prognostic impact of most of these novel aberrations and whether these patients 

may benefit from specific therapies targeted to these unique genetic features needs to be 

investigated further.

The B-cell translocation gene 1 (BTG1) was recently described as a recurrent lesion in 

pediatric BCP-ALL.7,9,10 It was originally identified as a translocation partner of c-MYC in B-cell 

chronic lymphocytic leukemia.11,12 BTG1 is a highly conserved gene and belongs to the family 

of BTG/TOB genes.11,13 It plays a role in several crucial cellular processes, such as proliferation, 

and apoptosis. Recently, Lundin et al. reported on a high frequency of BTG1 deletions (~29%) 

in DS ALL.14 However, the study included a limited number of DS ALL patients (n=17) and 

hence may not be an accurate estimate of the frequency of BTG1 deletions in DS ALL. There-

fore, we investigated the frequency of BTG1 deletions in a large series of DS ALL patients and 

in addition analyzed the prognostic significance of BTG1 abnormalities.

We screened a population-based cohort of 116 DS ALL patients enrolled in consecutive 

DCOG and UK treatment protocols (DCOG ALL 8, 9 and 10 and UK ALL ALL97, ALL97/99 and 

ALL2003).8 Clinical and cell-biological data, including cytogenetics, were available for all 

cases. DCOG and UK centrally reviewed diagnosis, classification and clinical follow-up of the 

patients. The Institutional Review Board approved the investigations, and informed consent 

was obtained according to local law and regulations.

To identify BTG1 deletions, we performed Multiplex Ligation-dependent Probe Amplifi-

cation (MLPA) analysis using the SALSA MLPA kit P335-A3 ALL-IKZF1 (MRC Holland) which 

contains probes for selected B-cell development and differentiation genes.8 The BTG1 gene 

is covered by four probes, probes to exon 1, exon 2, and 2 additional probes localized to 

the highly conserved promoter region of the gene (area 1 and 2). The full list and location 

of the MLPA probes can be downloaded from the MRC Holland website (http://www.mrc-

holland.com). Peak heights below 0.7 (0.75 for MRC UKALL samples) and above 1.3 times 

the control peak height were considered abnormal, with those below 0.7 (0.75) representing 

deletions, and those above 1.3 representing duplications. The Kaplan-Meier method was 

used to estimate the 5-year probability of overall survival (OS), and event-free survival (EFS); 

survival estimates were compared using the log-rank test. OS was measured from the date 
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of diagnosis to the date of last follow-up or date of death from any cause. EFS was calculated 

from the date of diagnosis to the date of last follow-up or to the first event, including relapse, 

failure to achieve CR, and death in complete remission (CR). Cumulative incidence of relapse 

(CIR) was constructed by the method of Kalbfleisch and Prentice and compared by the Gray 

test. 

All 116 DS ALL patients were classified as B-cell precursor ALL and treated with curative 

intent. The median age was 5.1 years (range 1.3 – 23.2), the median WBC was 14 x 109/L (range 

1.2-400), and 65% of the patients were male. The median follow up time for survivors was 4.6 

years (range 1.3 months – 15.3 years).

In total we found 8/116 (6.9 %) deletions of BTG1, a frequency lower than described by 

Lundin et al14 in DS ALL and similar to other non-DS B-cell precursor ALL series.7,9 Remarkably, 

all 8 patients showed a nearly identical deletion pattern in which the BTG1 area 1, area 2, and 

exon 2 probes were deleted, while exon 1 was retained (6x mono-allelic, 2x bi-allelic). Due to 

statistical power, we excluded one patient from the analysis who had a mono-allelic amplifi-

cation of the BTG1 area 2 probe. This patient also had a CRLF2 aberration, but the karyotype 

of this patient showed no other aberration than the constitutional trisomy 21. She remains in 

complete remission for >10 years. The median age of DS ALL patients with a deletion of BTG1 

was 5.4 years (range 2.7 – 23.2), the median WBC was 59 x 109/L (range 11.3-390), and 62% of 

the patients were male. This is different from the cohort of Lundin et al 14, who reported a high 

median age of 12 years in patients with a BTG1 deletion and a WBC of 25x109/L. Interestingly 

they reported that BTG1 deletions occurred in predominantly male patients (80%), which is 

different from our cohort (62% male). BTG1 deletions were not mutually exclusive of other 

genomic aberrations (e.g. IKZF1 in 4 patients, CRLF2 in 4 patients). As previously described 
7,9,10, BTG1 deletions were mainly found in patients with ETV6-RUNX1 positive ALL (38% vs. 

12% in the BTG1 wildtype group; p=0.02). 

Interestingly BTG1 regulates the glucocorticoid (GC) receptor dependent response in 

leukemic cells,15 and it is therefore implicated that loss of this gene perhaps contributes to 

a poor outcome.14,15 Unfortunately, data were available on clinical response to one week of 

prednisone for only 2 patients with a BTG1 deletion; both were good responders. No sig-

nificant differences in long-term clinical outcome between wildtype and BTG1 deleted cases 

were detected:  5-year EFS 67 ± 5% vs. 60 ± 18% (p=0.4), OS 72 ± 5% vs. 60 ±18%; (p=0.3) CIR 

17± 4% vs. 15 ± 15%; (p(Gray)= 0.9). A stepwise multivariate Cox regression model was per-

formed which included WBC ≥50x109, age ≥10 years, and mutational status of BTG1, IKZF1, 

and ETV6-RUNX1 (Table 1). Deletions of BTG1 did not predict for prognosis with a hazard ratio 

(HR) for EFS of 1.97 (95% CI 0.6 – 6.8); p=0.29 and OS HR 2.24 (95% CI 0.6 - 7.9; p=0.2). Instead, 

IKZF1 appeared to be the strongest independent risk factor for EFS, with a HR EFS 2.45 (95% 

CI 1.2–5.1; p=0.02), as previously described by us.8 

In conclusion, we could not confirm the high frequency of BTG1 deletions previously 

described in a small series of DS ALL but found a prevalence similar to non-DS ALL patients. 
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Moreover, BTG1 deletions did not predict for dismal outcome in DS ALL patients in contrast 

to IKZF1 aberrations. Further research is needed to identify other potential players and coop-

erating events in the leukemogenesis in DS children.
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Table 1. Results of multivariate analysis for event-free survival, overall survival, and relapse free survival

Outcome Variable hr 95% Ci P-value

efS

BTG1 1.97 0.57 - 6.84 0.29

IKZF1 2.45 1.18 - 5.07 0.02

ETV6-RUNX1 0.22 0.03 - 1.74 0.15

WBC ≥50x109 2.55 0.88 - 7.39 0.08

Age ≥10 years 1.29 0.59 - 2.85 0.52

OS

BTG1 2.24 0.63 - 7.91 0.21

IKZF1 2.02 0.95 - 4,29 0,06

ETV6-RUNX1 0.21 0.03 -1.67 0.14

WBC ≥50x109 2.49 0.85 - 7.26 0.09

Age ≥10 years 1.20 0.52 - 2.76 0.66

HR, Hazard ration; CI, Confidence interval; EFS, event-free survival; OS, overall survival; WBC, white blood cell 
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aBSTraCT 

Children with Down syndrome (DS) have an increased risk to develop B-cell precursor acute 

lymphoblastic leukemia (BCP-ALL). The driving molecular events in DS ALL pathogenesis are 

as yet unsolved. We compared global gene-expression of 30 DS BCP ALL with 502 non-DS 

BCP ALL patients to obtain insight into this disease and uncover candidate genes involved 

in DS ALL leukemogenesis. Interestingly, 25% of the DS ALL patients with genetically unclas-

sified disease (referred to as B-other ALL) were classified as ‘BCR-ABL1 like’ of which 50% also 

had a deletion of IKZF1, indicating that DS ALL has a prognostic unfavorable genetic profile. 

In total, we identified 357 probe sets (307 genes) differentially expressed between DS and 

non-DS B-other-ALL. Most of these genes were not differentially expressed in DS hemato-

poietic induced pluripotent stem (iPS) cells as compared to non-DS cells. This suggests that 

deregulation is related to the DS leukemogenesis and not to trisomy 21. Interestingly, the 

hematopoietic regulator ERG was overexpressed in DS-B-other-ALL but strongly repressed 

in trisomy 21 hematopoietic iPS cells and healthy DS bone marrow. Literature shows that 

hematopoietic overexpression of ERG causes leukemia in mouse models. Considering this 

oncogenic potential of ERG overexpression, we suggest that loss of ERG repression in DS early 

hematopoietic cells may be an important oncogenic driving event in DS BCP-ALL. 
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inTrOduCTiOn

Children with Down syndrome (DS) have an increased risk of developing B-cell precursor 

acute lymphoblastic leukemia (BCP-ALL).1 The latter differs in presenting phenotypic charac-

teristics as compared non-DS ALL. For instance, an almost complete absence of T cell ALL and 

infant ALL was shown in DS ALL.2-5 In addition, the incidence of the well-known (cyto-) genetic 

subtypes such as ETV6-RUNX1, BCR-ABL1 and MLL is low in DS ALL, whereas the frequency of 

JAK2, CRLF2 and IKZF1 abnormalities is high as compared to non-DS ALL.6-10 However, the 

unique driving genetic event in DS ALL is as yet unknown. Hence, there remains a need to 

further investigate the molecular aberrations associated with DS ALL, providing more insight 

in the biological background of DS ALL. 

Previous studies in non-DS ALL cases showed that relevant genetic subtypes of ALL can be 

distinguished by specific discriminative gene expression profiles (GEP).11-13 In this way, a new 

clinically relevant group of patients with a ‘BCR-ABL1-like’ profile was identified by us and by 

others in 16% of the non-DS ALL and 38% of the DS ALL patients.7,10,13,14 These patients cluster 

together in gene expression profiling with BCR-ABL1 rearranged ALL, although the leukemic 

cells do not harbor the BCR-ABL1 translocation. This ‘BCR-ABL1-like’ profile is associated with 

a poor outcome in non-DS ALL, i.e. event-free survival (EFS) of less than 60% and a cumula-

tive incidence of relapse (CIR) of ~30%.13,14 To date it is unknown what the frequency and 

prognostic impact of the ‘BCR-ABL1-like’ GEP is in DS ALL. 

Interestingly, previous studies have shown that DS ALL cases cluster together with the 

(cyto-) genetic subgroups of their non-DS ALL counterparts, instead of clustering together 

as a separate entity from non-DS ALL.8,15 This suggests that, in contrast to myeloid leukemia 

(ML) of DS, which is characterized by unique acquired mutations in the transcription factor 

GATA1 (globin transcription factor 1),16-18 DS ALL is a molecularly heterogeneous disease often 

driven by similar abnormalities as non-DS ALL.8 To further explore candidate genes and their 

pathways mediating the leukemogenic effect of trisomy 21, we studied gene expression 

profiles of DS and non-DS ALL patients, using the Affymetrix Human Genome U133 plus 

2.0 platform, to determine whether DS ALL can be characterized by differentially expressed 

genes or pathways as compared to non-DS ALL. 

maTeriaLS and meThOdS

Patient material

In total, viably frozen bone marrow (BM) and/or peripheral blood (PB) samples were pro-

vided by the Dutch Childhood Oncology Group (DCOG) and by the German Cooperative ALL 

(CoALL) of respectively 31 and 7 DS ALL patients (BM). Moreover, 10 DS ALL unpaired remis-
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sion samples (9 BM, 1 PB), and 18 healthy newborn DS patients (13 PB, 5 BM) were obtained 

from the DCOG. In total, 502 non-DS ALL samples from the DCOG and the CoALL study group, 

and 22 healthy non-DS ALL samples from the DCOG were collected. Samples from healthy 

non-DS patients were taken during diagnostic work up for disease other than leukemia, such 

as solid tumors. Informed consent was obtained from all patients, after Institutional Review 

Board approval according to national law and regulations. 

The DCOG collected patient characteristics (gender, age, WBC, immunophenotype, 

and karyotype). No clinical data was available of CoALL DS ALL patients. In our laboratory, 

samples were analyzed for the presence of a ETV6-RUNX1 fusion (FISH and RT-PCR), a BCR-

ABL1 translocation (PCR), an MLL-rearrangement (split-signal FISH and PCR), a TCF3 (E2A) 

rearrangement (split-signal FISH), a TCF3-PBX1 (E2A-PBX1) fusion (RT-PCR), and hyperdiploidy 

by FISH for chromosomes 4, 8, 17, 21, X. 

Microarray- based gene expression profiling 

After thawing vials with frozen cells, contaminating non-leukemic cells were eliminated as 

described before,19 and genomic DNA and total cellular RNA were extracted from leukemic 

cells using Trizol reagent (Gibco BRL, Life Technologies, Breda, the Netherlands), as previ-

ously described.20 RNA integrity was checked using the Agilent 2100 Bio-analyzer (Agilent, 

Santa Clara, CA, USA). cDNA and biotinylated cRNA was synthesized and hybridized to the 

Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA) according 

to the manufacturer’s guidelines.  All included samples had a ratio between 3′probe/5′probe 

for β-actin or glyceraldehyde-3-phosphate dehydrogenase smaller than three, suggesting a 

minimal breakdown of RNA/cRNA during the experimental procedure. 

Preprocessing of microarray data

Samples of de novo DS ALL and non-DS ALL patients were hybridized to Affymetrix Gene 

Chips in different time periods, and for normalization procedures, 8 DS ALL samples were 

processed in both datasets. Data acquisition was performed using GCOS 1.0 software, and 

probe set intensities of both DS and non-DS samples were normalized using the variance 

stabilization normalization (VSN-rma) procedure.21 Thereafter, the median of the 8 overlap-

ping DS ALL samples were used as a reference to calculate log2 expression ratios for each 

probe set in the DS ALL and non-DS ALL cohorts separately to correct for batch effects. The 

8 overlapping samples were used as reference samples and therefore removed from the two 

datasets (Supplementary Figure S1). A principal components analysis (PCA) on log2 ratios 

was carried out as a quality control.

To explore whether differences in gene expression were related to the constitutional tri-

somy 21 or to the leukemic clone, we compared our data a with the gene expression profile 
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of induced pluripotent stem cells (iPS) differentiated towards hematopoietic tissue (CD43+, 

CD41+ and CD235+), and derived from DS and non-DS non-disease tissue (GEO dataset 

GDS4377),22 and calculated median log2 ratios per gene, using R, version 3.0.2.23 

Identification of ‘BCR-ABL1-like’ cases

DS ALL patients with a ‘BCR-ABL1-like’ signature were identified based on hierarchical cluster-

ing using our previous described 110 probes in a non-DS ALL reference cohort (Gene Expres-

sion Omnibus accession number GSE13351).13,14 DS ALL cases that clustered together with 

‘BCR-ABL1 positive cases’ were identified as ‘BCR-ABL1-like’ cases if proven negative for the 

BCR-ABL1 translocation. Unsupervised clustering of centralized and scaled expression data, 

was performed in R using cosine correlations (www.r-project.org). 

Quantitative real-time quantitative PCR (RT-qPCR)

The mRNA expression levels of CRLF2 obtained with GEP were validated in 25/38 DS ALL sam-

ples using Taqman. Moreover, expression levels of the ETS-related gene (ERG) were validated 

in 36/38 DS ALL, 10 DS ALL remission, 18 healthy newborn DS, 20 non-DS ALL and 22 healthy 

non-DS samples. The non-DS ALL samples were selected for hyperdiploidy with additional 

copies of chromosome 21 (n=11) and B-other (n=9). We performed quantitative real-time 

PCR (RT-qPCR) with primers as previously described and used SYBRgreen (Finnzymes) for 

expression analysis.9,24 The average cycle threshold (Ct) value was used to calculate mRNA 

expression levels relative to the expression level of the reference gene RPS20 for CRLF2 and 

GAPDH for ERG, by use of the comparative cycle time (ΔCt) method.25

Multiplex Ligation-dependent Probe Amplification (MLPA)

MLPA analysis was performed using the SALSA MLPA kit P335-A3 (MRC Holland). The data 

were normalized, by dividing the peak area of each probe by the mean peak area of the 

control probes. Peak heights below 0.7 and above 1.3 times the control peak height were 

considered abnormal, with those below 0.7 representing deletions, and those above 1.3 

representing duplications.

Array-Comparative Genomic Hybridization 

To identify copy number changes, we performed 105-K oligonucleotide array-CGH on ge-

nomic DNA on the DCOG cohort as previously described.60 Genomic losses and gains were 

identified as a minimum of 3 consecutive probes deviating beyond the threshold of -0.8 for 
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single copy loss and -1.8 for bi-allelic loss (log ratio). Deletions were defined as a loss ≥0.5 

million bases, whereas focal deletions were defined as losses < 0.5 million bases.

Statistics 

The top most discriminative probe sets between DS and non-DS B-other ALL patients were 

selected by rank of p-values obtained by applying an empirical Bayes linear regression model 

(LIMMA).26 Moderated T-statistics p-values were corrected for multiple testing using the 

False Discovery Rate (FDR) method defined by Benjamini and Hochberg.27 Probe set top lists 

were used for analysis in the database for annotation, visualization and integrated discovery 

(DAVID), which can be freely accessed at their website.28 

To evaluate outcome, statistical analyses were conducted using SAS software (SAS-PC, Ver-

sion 9.1). Complete remission (CR) was defined as less than 5% blast in the bone marrow, with 

regeneration of tri-lineage hematopoiesis plus absence of leukemic cells in the cerebrospinal 

fluid or elsewhere. Event-free survival (EFS) was calculated from the date of diagnosis to 

the date of last follow-up or to the first event, including relapse, death in CR, and failure to 

achieve CR (considered as event on day 0). Early death was defined as any death within the 

first 6 weeks of treatment, and was considered as an event on day 0. Overall survival (OS) 

was measured from the date of diagnosis to the date of last follow-up or to the date of death 

from any cause. The Kaplan-Meier method was used to estimate survival rates, and survival 

estimates were compared using the log-rank test. The cumulative incidence of relapse (CIR), 

with other events and death in CR as competing events, was constructed by the method of 

Kalbfleisch and Prentice and compared using the Gray test. Differences with a P value <0.05 

were considered significant. 

reSuLTS

Patients

A cohort of 38 DS ALL (including the aforementioned 8 reference samples) samples were 

available for gene expression profiling. All 38 DS ALL patients were B-cell precursor ALL and 

treated with curative intent according to consecutive DCOG studies (n=31),29,30 and CoALL 

studies (n=7).31 The DCOG DS ALL patients had a median age of 4.5 years at diagnosis (range 

2.0 – 17.1), and a median WBC of 8.1x109/L (range 1.2-112x109/L). Complete cytogenetic data 

were available for 37 patients. ETV6-RUNX1 fusions were found in 2 patients; 2 patients had 

a hyperdiploid (HD) karyotype (51 chromosomes); 1 patient had a BCR-ABL1 translocation, 1 

patient tested negative with molecular methods for ETV6-RUNX1, BCR-ABL1, MLL, and E2A-

PBX1, but could not be tested for HD due to lack of cytospin preparations for immunological 
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Table 1. Patient characteristics of included DS ALL patients

id Study group age wBC Subtype IKZF1 del ‘BCR-ABL1-like’ ERG

1 DCOG 9.2 29.7 B-other No No No

2 DCOG 4.9 4 B-other No No No

3 DCOG 2.6 18.4 B-other No Yes No

4 DCOG 13.5 1.2 HD No No No

5 DCOG 3.5 22.3 B-other Total gene No No

6 DCOG 15.4 4.3 B-other No No No

7 DCOG 4.2 41.2 B-other No No No

8 DCOG 2.8 32.6 B-other exon 3-7 No No

9 DCOG 3.1 7.3 B-other No No No

10* DCOG 3.9 77.9 B-other exon 3-6 No No

11 DCOG 5.6 5 B-other No Yes No

12* DCOG 7.9 12.9 B-other exon 2 Yes No

13* DCOG 6.8 199 BCR-ABL1 exon 3-6 No No

14 DCOG 3.7 16.5 B-other No No No

15 DCOG 17.1 20.3 B-other exon 3-6 Yes No

16 DCOG 7 33 B-other exon 3-7 No No

17 DCOG 2 112 B-other No No No

18 DCOG 13.8 1.5 B-other No No No

19* DCOG 5.5 4.5 B-other No Yes No

20* DCOG 8.1 390 B-other exon 3-6 Yes No

21 DCOG 5.4 3.6 B-other No Yes No

22 DCOG 3.7 8.9 HD No No No

23* DCOG 3.3 3.6 B-other No No No

24 DCOG 2.3 6.4 ETV6-RUNX1 No No No

25 DCOG 4.5 5.7 B-other exon 3-6 Yes No

26 DCOG 6.2 4.5 B-other exon 3-6 No No

27 DCOG 4.5 4.8 B-other Total gene No NK

28 DCOG 2.9 19.6 ETV6-RUNX1 No No NK

29 DCOG 12.8 39.8 B-other exon 3-6 No NK

30* DCOG 18.1 16.8 B-other No No NK

31* DCOG 17.1 12.9 B-other No No NK

32 CoALL NK NK B-other No No NK

33 CoALL NK NK B-other No No NK

34 CoALL NK NK B-other No No NK

35 CoALL NK NK B-other Total gene No NK

36 CoALL NK NK B-other No No NK

37 CoALL NK NK Nk# No No NK

38 CoALL NK NK B-other No No NK

* Samples used as a reference sample; HD, hyperdiploid (≥ 51 chromosomes); NK, not known; NK#, this patient tested negative with molecular 
methods for ETV6-RUNX1, BCR-ABL1, MLL, and E2A-PBX, but could not be tested for HD due to lack of cytospins. 
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staining. The remaining patients (n=32) had no recurrent aberrations and were classified as 

B-other. No MLL rearrangements and E2A-PBX1 fusions were found in DS ALL samples. Dele-

tions of IKZF1 were found in 13/38 (34.2%) (Table 1).

Gene expression profiles of DS ALL patients compared to non-DS ALL patients

Microarray based gene expression profiles of DS ALL patients were compared to non-DS ALL 

patients. To preclude interference by well-known cytogenetic aberrations, only patients with 

genetically unclassified disease (referred to as B-other) were selected for this comparison, 

including 25 DS and 141 non-DS B-other ALL patients. In total, 357 probe sets were dif-

ferentially overexpressed with log fold change (FC) ≥1.5 and pFDR ≤0.05 between these 2 

groups. The most significant differentially overexpressed gene was CRLF2 with median log 

FC 7.3, pFDR 6.13E-28 for DS ALL patients, which was validated with RT-qPCR (correlation 

coefficient of Rs=0.7, p<0.001). Focusing on B-cell development and differentiation genes, 

besides CRLF2, only VPREB1 (log FC 1.9, pFDR 0.001) was significantly overexpressed in DS 

ALL patients (Table 1). The median expression levels for both probe sets (ps) for IKZF1 was 

just below our cutoff (ps 1565818_s_at: log FC 0.9, pFDR 0.5 and ps 1565817_at: log FC 1.0, 

pFDR 0.95). 

Characteristics of ‘BCR-ABL1-like’ DS ALL patients

Eight out of 25 B-other DS ALL patients (32%) were classified as ‘BCR-ABL1 like’. The median 

age of these patients was 5.6 years (range 2.6-17.1) versus 4.7 years (range 2.0-18.1) in the 

non-‘BCR-ABL1 like’ B-other DS patients, p=0.67. The median white blood cell count at 

diagnosis was 9.3x109/L (range 3.6-390x109/L) for ‘BCR-ABL1 like’ versus 16.7.1x109/L (range 

1.5-77.9x109/L) for the non-‘BCR-ABL1 like’ B-other DS patients, p=0.66. In total, 4 (50%) of the 

‘BCR-ABL1 like’ patients had an IKZF1 deletion. 

We next analyzed whether the ‘BCR-ABL1-like’ DS-ALL patients differed in prognosis from 

DS B-other ALL patients without a ‘BCR-ABL1 like’ profile. Six out of 8 ‘BCR-ABL1 like’ patients 

were in continuous CR with a median FU time of 6.5 years, and 2 patients died of relapse. Ka-

plan Meier survival estimates showed no differences in 6-year EFS comparing DS ALL with a 

‘BCR-ABL1 like’ profile versus B-other DS ALL patients (EFS 70±18% vs. 70±11%, p=0.8) overall 

survival (OS 88±12% vs. 77±10%, p=0.5) and cumulative incidence of relapse (30±20% vs. 

7±7%, p=0.2), but numbers were small (Supplementary Figure S2).

Overexpression of DNA replication and apoptosis pathways in DS ALL

Using DAVID Gene Ontology28 to analyze the differentially overexpressed genes for enrich-

ment of pathways, resulted in 17 clusters with a enrichment score (ES) of ≥1.30 (Table 2), 
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meaning a p-value less than 0.05. The most significant up-regulated pathway was DNA repli-

cation with an ES of 3.47. This cluster comprises 12 genes, including TERF2 (log FC 3.0, pFDR 

3.2E-07), which plays a central role in telomere maintenance and protection against end-

to-end fusion of chromosomes.32,33 In addition, the GINS complex genes 1 and 2 (GINS1 log 

FC 2.34, pFDR 1,73E-07, GINS2 log FC 1.77, pFDR 0.0001), 3 mini-chromosome maintenance 

proteins MCM2 (log FC 1.88, pFDR 3.3E-06), MCM5 (log FC 1.85, pFDR 0.0004) and MCM6 (log 

FC 1.6, pFDR 0.01), and CDT1 (log FC 1.65, pFDR 0.003), were all over expressed, and play an 

essential role in initiation of genome replication.34-37 The 2nd up-regulated cluster (ES 2.9) 

included the identical protein binding pathway and the 3rd cluster (ES 2.6) comprised the 

hemoglobin complex. The fourth up-regulated cluster in DS ALL with ES 2.16, included an 

apoptotic pathway comprising genes such as POU4F1 (log FC 2.66, pFDR 0.006), which is an 

anti-apoptotic gene, and associated with t(8;21) in adult AML.38 It also includes EPHA7 (log 

FC 2.04, pFDR 0.0001), which is a receptor tyrosine kinase and known to be up-regulated in 

MLL-AF4 and MLL-AF9 positive cells.39 Furthermore, the cluster showed up-regulation of HRK 

(log FC 2.0, pFDR 0.01) and BAX (log FC 1.77, pFDR 1.41E-06), and genes from the TNF family, 

TNFAIP3 (log FC 2.0, pFDR 0.0007) and TNFSF12- TNFSF13 (log FC 1.67,  pFDR 1.62E-06) all 

Table 2. Genes involved in B-cell development and hematopoietic differentiation 

Gene symbol Chromosome fold-Change p-value fdr

Genes involved in hematopoietic lineage determination and differentiation

CD34 Chr1 1,3 <0.001 0,1

MYB Chr6 1,2 <0.001 <0.001

GATA1 ChrX 1,0 <0.001 <0.001

GFI1B Chr9 1,0 0,9 0,9

CSF1R Chr5 1,0 0,2 0,3

CEBPA Chr19 0,9 0,5 0,6

Genes involved in B-cell development and differentiation

CRLF2 ChrX 7,3 <0.001 <0.001

VPREB1 Chr22 1,9 <0.001 <0.001

IKZF1 Chr7 1,4 <0.001 <0.001

EBF1 Chr5 1,3 <0.001 0,1

CDKN2A Chr9 1,3 <0.001 <0.001

ETV6 Chr12 1,3 0,2 0,3

JAK2 Chr9 1,1 0,2 0,4

CDKN2B Chr9 1,1 <0.001 0,1

PAX5 Chr9 1,0 <0.001 0,1

P2RY8 ChrX 1,0 0,1 0,2

IL3RA ChrX 0,8 <0.001 0,1

BTG1 Chr12 0,7 <0.001 <0.001

FDR, false discovery rate; Chr, chromosome; * Fold change between the median of the DS B-other patients versus the median of the non-DS 
B-other patients.
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Table 3. Significant annotation clusters in DAVID Gene Ontology

Cluster enrichment score pathway Count p-value Benjamini

1 3.47 DNA replication 12 1.2E-4 1.0E-1

2 2.93 Identical protein binding 23 9.0E-5 3.5E-2

3 2.56 Hemoglobin complex 5 2.2E-5 5.5E-3

4 2.26 Regulation of apoptosis 26 3.4E-4 1.8E-1

5 1.86 Cell motion 16 4.7E-3 3.4E-1

6 1.79 DNA replication 8 2.3E-4 2.5E-2

7 1.74 Late endosome 6 1.5E-3 1.7E-1

8 1.58 Regulation of DNA recombination 4 6.4E-3 3.4E-1

9 1.46 Response to wounding 17 5.4E-3 3.2E-1

10 1.45 Immune system development 12 2.7E-3 3.1E-1

11 1.44 Positive regulation of osteoblast differentiation 5 4.6E-4 1.3E-1

12 1.42 Transcription repressor activity 12 5.0E-3 3.9E-1

13 1.39 Pigment granule 7 2.1E-3 1.7E-1

14 1.38 Regulation of DNA metabolic process 7 6.9E-3 3.4E-1

15 1.37 Domain: Helix-loop-helix motif 6 2.3E-2 9.6E-1

16 1.33 Domain: MARVEL 5 4.5E-4 3.2E-1

17 1.30 Transcription repressor activity 12 5.0E-3 3.9E-1

Overview of the upper 5 significant enriched annotation clusters in DAVID Gene Ontology, based on a list of 357 differentially over expressed 
probe sets (FC≥1.5, FDR≤0.05). Only the 3 most significant pathways of each cluster are shown. 

 Table 4. Genes of the DNA replication and apoptosis regulating pathways according to DAVID Gene Ontology analysis

Gene symbol fold-Change p-value fdr

Genes involved in DNA replication

TERF2 3.021 4.08E-09 3.20E-07

GINS1 2.340 1.92E-09 1.73E-07

CTGF 2.292 0.0006 0.0039

MCM2 1.875 7.58E-08 3.30E-06

MCM5 1.852 3.40E-05 0.0004

C16orf75 1.802 1.80E-09 1.64E-07

GINS2 1.769 9.44E-06 0.0002

CDT1 1.653 0.0004 0.0030

FHIT 1.635 1.11E-05 0.0002

MCM6 1.607 0.0023 0.0112

TK1 1.599 1.92E-07 6.86E-06

TYMS 1.470 0.0006 0.0039

Genes involved in apoptosis

POU4F1 2.661 0.0011 0.0064

TP53INP1 2.296 0.0090 0.0325

CD27 2.237 9.23E-06 0.0001
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and the apoptotic pathway, including their corresponding values. 

Overexpression of chromosome 21 located hematopoietic regulator ERG

As DS-ALL is characterized by an extra copy of chromosome 21, it is expected that deregula-

tion of one or more chromosome 21 encoded genes plays a role in driving the oncogenic pro-

cess. However, the top list of overexpressed genes between DS and non-DS B-other ALL (log 

FC ≥1.5, pFDR ≤0.05) showed only 10 genes located on chromosome 21 (Table 4), of which 2 

were hematopoietic regulators (RCAN and ERG). In addition, the median expression (-0.002, 

p25: -0.05, p75: 0.005) of all genes located on chromosome 21 was slightly, but statistically 

significantly, higher for DS ALL patients as compared to non-DS ALL patients (-0.014, p25: 

-0.06, p75: 0.04, p=1.4E-10) (Figure 1A), whereas there was no statistical difference (p=0.58) 

in median expression for the non-chromosome 21 located genes between DS and non-DS 

 Table 4. (Continued)

Gene symbol fold-Change p-value fdr

HSP90B1 2.179 0.0001 0.0011

HSPA1A/B 2.051 3.89E-05 0.0005

TNF-AIP3 2.047 0.0001 0.0007

EPHA7 2.043 3.95E-06 0.0001

HRK 2.034 0.0026 0.0126

TUBB 2.021 4.73E-13 2.39E-10

cystatine B 1.921 2.47E-06 0.0001

CD74 1.898 7.94E-12 2.15E-09

LTB 1.832 0.0100 0.0353

TGFB1 1.794 0.0001 0.0008

BAX 1.777 2.61E-08 1.41E-06

Catalase 1.734 0.0068 0.0263

RAG1 1.703 0.0002 0.0019

TNFSF12-TNFSF13 1.667 3.13E-08 1.62E-06

ID3 1.638 0.0108 0.0376

WFS1 1.635 0.0047 0.0196

HSPB1 1.615 0.0009 0.0052

SQSTM1 1.573 0.0058 0.0232

mutS6 1.547 2.40E-08 1.32E-06

IL6R 1.538 4.78E-06 0.0001

PREX1 1.523 1.97E-07 7.01E-06

CD24 1.512 0.0152 0.0487

RAB27A 1.502 0.0002 0.0016

FDR, false discovery rate
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Figure 1. Distribution of differentially expressed genes 
Hypergeometric distribution of differentially expressed genes for DS as compared to non-DS B-other ALL patients, showing a 2.4% higher 
median expression of genes located on chromosome 21, p=1.4e-10 (a), and a 0.5% higher median expression of all other genes, not located 
on chromosome 21, p=0.58 (B). The pie chart (C) illustrates the distribution of 267 differentially over expressed genes from 357 probe sets 
(FC≥1.5, FDR≤0.05) between DS- and non-DS B-other ALL over the chromosomes. Each part represents a chromosome. The percentage of 
overexpressed genes per chromosome is shown on the respective part. Chromosome 21 is highlighted because of the constitutional trisomy 21 
in DS, and shows an equivalent proportion of genes, c2 p=0.28. Chr, chromosome; BO, B-other; DS, Down syndrome.
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ALL B-other patients (Figure 1B). Consistent with only a slight overall expression increase, 

the proportion of significantly differentially over expressed genes (3.7%) on chromosomes 

21 in DS ALL cases was not increased when compared to all other chromosomes (4.5%, range 

1.1 – 7.5%, c2 p=0.28) (Figure 1C). 

We next explored whether the overexpression of genes localized on chromosome 21 in 

DS ALL as compared to non-DS ALL, was mainly due to trisomy 21 or due to the leukemic 

process promoted by trisomy 21. For that purpose, we compared gene expression changes 

in DS-ALL with expression changes in DS-derived iPS cells.22 The vast majority of genes that 

were found to be overexpressed in DS ALL compared to non-DS ALL patients in our dataset, 

turned out not to be overexpressed when DS-iPS cells where compared to non-DS ALL cells 

(p=0.002), indicating that overexpression is not a consequence of merely having an extra 

copy of chromosome 21 (Figure 2). Interestingly, the chromosome 21 encoded ERG gene was 

strongly reduced in DS-iPS cells, instead of being more highly expressed like the vast majority 

of genes on chromosome 21 (Figure 3B). 

!"#"$

!"#

Figure 2. Overexpressed genes in Down syndrome ALL as compared to non-Down syndrome ALL
Plot showing the expression of chromosome 21 localized and non-chromosome 21 localized genes in DS ALL versus expression changes in 
trisomy 21 hematopoietic derived iPS cells. 
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To assess whether this reduced expression was also present in patient samples, we mea-

sured ERG mRNA levels in bone marrow of DS ALL remission samples, healthy DS samples and 

healthy non-DS individuals. BM samples were taken from 10 DS ALL patients at time of remis-

sion 5.4 (range 1.03-14) months after diagnosis. Samples from healthy newborn DS patients 
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Figure 3. Gene expression in Down syndrome and non Down syndrome hematopoietic differentiated induced pluripotent stem 
cells
a) Correlation of mRNA expression of all genes, with the exception of chromosome 21 located genes, between DS ALL and trisomy 21 
hematopoietic derived iPS cells. B) Correlation of mRNA expression of chromosome 21 located genes between DS ALL and trisomy 21 
hematopoietic derived iPS cells, showing a low expression of ERG in DS ALL cells. C) Boxplot showing the median (line) m-RNA expression 
of ERG in healthy DS and non-DS samples, boxes represent 25th and 75th percentile and lines minimum and maximum expression. d) Results 
of RT-qPCR showing the correlation between the mean expression of 4 probe-sets of ERG on gene expression arrays and mRNA expression of 
ERG relative to GAPDH. Line represents the linear regression fit. 
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were drawn within 4 weeks after birth within the context of a DCOG study regarding neonatal 

prospective screening for Transient Myeloproliferative Disorder (TMD) in DS children. Data on 

the non-DS BCP ALL patients have been previously reported.13,14 We showed that, consistent 

with the DS-iPS data, ERG BM mRNA levels in DS remission and healthy samples were reduced 

(median: -3.5, p25:-4.5, p:75 -2.2) compared to healthy non-DS individuals (median -1.5, p25 

-2.2, p75 -0.3, p=0.004) (Figure 3C). This was confirmed with RT-qPCR showing a correlation 

coefficient of Rs = 0.77, p<0.001 for probe set 213541_s_at (Figure 3D). Array-CGH analysis 

did not show copy number variations of ERG in this DS ALL patient cohort, which potentially 

could influence ERG expression.

As recently was published that ERG deletions and IKZF1 deletions co-occur,40,41 we explored 

the correlation between IKZF1 deletions and increasing ERG expression, but the results 

showed no significant relation (Figure 4).13

diSCuSSiOn

In the present study, we showed that 25% of the B-other cases cluster together with the 

‘BCR-ABL1 like’ non-DS patients. The DS ALL patients with a ‘BCR-ABL1 like profile’ had a 

Figure 4. Distribution of IKZF1 deletions in relation to ERG expression in Down syndrome ALL patients
Histogram showing ERG expression for DS ALL patients, thereby indicating the IZKF1 status of patients. ERG expression is shown in log2 
intensities. Dark grey bars represent patients with IKZF1 deletions, black bars represent patients with wild type IKZF1 (including 1 patient 
with an amplification of exon 2, ID 5835), and light grey bars represent patients with unknown IKZF1 status.
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30% cumulative incidence of relapse, which is similar to their non-DS counterparts.7,13,14,42,43 

Although given the limited sample size, we could not statistically proof that relapse rate was 

increased compared to DS B-other ALL patients without this signature, these data suggests 

that the genetic make-up of DS ALL is unfavorable. In an unselected DCOG series of non-DS 

ALL the frequency of the ‘BCR-ABL1-like’ signature was 15%, and 40% of these had IKZF1 dele-

tions, compared to 20% in ‘non-BCR-ABL1-like’ B-other cases.13,14 In our series, 50% of the DS 

ALL patients within the ‘BCR-ABL1 like’ had an IKZF1 deletion, which we reported before to 

confer poor outcome in DS ALL.7 Interestingly, recent work in non-DS ALL patients showed 

that IKZF1 and ERG deletions co-occur in 1.5% of non-DS ALL cases, and that patients with 

concurrent ERG deletions have a better outcome.40,41 Remarkably, none of our DS ALL patients 

had an ERG deletion (95% CI: 0± 10%).

Consistent with previous studies, the expression profiles showed CRLF2 to be the most 

significant gene differentially expressed between DS and non-DS B-other ALL patients.8,9,44 

Overexpression arises from IGH@-CRLF2, P2RY8-CRLF2 fusions, or gain of function mutations 

of CRLF2 or IL7R.9,44-46 Remarkably, as these abnormalities are present in a substantial propor-

tion (~60%) of all DS ALL patients, CRLF2 was not present in a specific DS ALL signature,8 

despite the fact that this DS ALL signature was associated with CRLF2 overexpression in a 

supervised analysis.15 Since CRLF2 abnormalities in DS and non-DS ALL are lacking prognostic 

relevance,7,47 the value of CRLF2 abnormalities in ALL pathogenesis remains to be seen.

Global analysis of gene expression changes with Gene Ontology (GO)28 revealed an in-

creased expression of DNA replication and apoptosis pathways. For instance, pro-apoptotic 

genes such as BAX and HRK in DS ALL were overexpressed in DS ALL. Hypothetically, over-

expression of BAX results in even more apoptotic activity as it promotes apoptosis through 

binding and antagonizing B-cell lymphoma 2 (BCL2), which is a suppressor of apoptosis.48 If 

apoptosis is less well regulated, it could contribute to clonal expansion of hematopoietic cells, 

thereby facilitating the multistep leukemogenesis of DS ALL. Herztberg et al. also used GO 

and found a significant enrichment in DNA damage and repair genes in DS ALL with a strong 

signature of BCL6.8 They hypothesized that either DS is a predisposing factor for ALL through 

B-cell lymphocytic specific genomic instability involving BCL6 or that CRLF2 abnormalities 

cause a developmental arrest of the pre-leukemic cell in a stage in which BCL6 is active.8 

Further research is needed to investigate the aforementioned pathways and hypothesis.

Interestingly, while genes localized on chromosome 21 are mostly overexpressed in DS 

ALL and DS-iPS cells, we saw a reduced expression of ERG in BM samples taken from DS 

children without leukemia, and non-leukemic DS iPS derived HPSCs. ERG is a chromosome 

21 localized transcriptional regulator of hematopoiesis and is tightly regulated within the 

hematopoietic stem cell network.49-51 Within this network, ERG is repressed by SCL and ETO2, 

which are known repressors of genes necessary for erythroid maturation.52-55 However, these 

genes are also directly and indirectly induced by ERG. Consequently, activation of ERG also 

represses ERG. Hypothetically, the extra copy of the ERG gene in DS patients may result in 
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deregulation of this network causing an over-repression of ERG.49-51 Reduced levels of ERG 

have been found to lead to a significant change in cell morphology, increased apoptosis and 

reduction in hematopoiesis, in particular of the megakaryocyte lineage.55,56 

In contrast to lower ERG levels in DS healthy bone marrow and iPS cells, we found a substan-

tial overexpression of ERG in leukemic samples of DS patients. Notably, none of the DS ALL 

patients in this study had ERG abnormalities, other than the constitutional additional copy, 

which potentially could explain the difference in expression. Until now, the precise mecha-

nism of ERG overexpression is unknown, but hematopoietic overexpression of ERG has been 

shown to cause leukemia in mouse models.57,58 In addition, ERG strongly cooperates with the 

GATA1s truncated protein found in myeloid leukemia (ML) of DS, by immortalizing fetal liver 

megakaryocyte progenitors.58,59 In view of the clear role of ERG overexpression in leukemic 

proliferation, we suggest that ERG is an important chromosome 21 driving oncogene in DS 

BCP-ALL, paradoxically first characterized by  lower expression in healthy DS hematopoiesis.

In conclusion, 25% of the DS B-other ALL patients have a ‘BCR-ABL1-like’ profile The CIR for 

this subset of DS ALL patients was 30%, which is similar as compared to their non-DS coun-

terparts. Furthermore, we found limited up regulation of chromosome 21 localized genes 

in DS ALL compared to non-DS ALL, and many of these changes are trisomy 21 rather than 

leukemia specific. One of the few exceptions to this rule is ERG, which is overexpressed in DS 

ALL but repressed in healthy DS BM and DS iPS derived hematopoietic pluripotent stem cells. 

Further research, studying the role of ERG in DS ALL pathogenesis, is warranted.
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Table 5. Differentially over-expressed genes located on chromosome 21 

Gene symbol Chromosome fold-Change p-value fdr

PDXK Chr21 (DSCR) 2,340 2,70E-18 1,06E-14

CSTB Chr21 (DSCR) 1,921 2,47E-06 5,25E-05

NRIP1 Chr21 1,708 2,34E-05 0,0003

HSPA13 Chr21 1,673 7,11E-06 0,0001

SUMO3 Chr21 (DSCR) 1,649 9,68E-12 2,47E-09

MRPS6 Chr21 (DSCR) 1,545 1,58E-05 0,0002

DONSON Chr21 (DSCR) 1,528 3,16E-05 0,0004

C21orf45 Chr21 (DSCR) 1,509 9,24E-06 0,0001

ERG Chr21 (DSCR) 1,951 0,0002 0,002

RCAN1 Chr21 (DSCR) 1,507 0,003 0,013

FDR, false discovery rate; Chr, chromosome; DSCR, Down syndrome Critical Region located on chromosome 21q22.1 – 21q22.3.

DS	  ALL	  
N=38	  

Non-‐DS	  ALL	  
N=510	  

Overlapping	  DS	  ALL	  
samples	  
N=8	  

Calcula>on	  of	  median	  expression	  per	  probe	  
set	  over	  the	  8	  reference	  samples	  in	  the	  	  DS	  

and	  non-‐DS	  All	  cohorts	  

Sample	  log2	  –reference	  median	  log2	  

Join	  log2	  ra>os	  of	  DS	  and	  non-‐DS	  ALL	  
samples	  in	  a	  data-‐matrix	  

Quality	  control:	  PCA	  on	  log2	  ra>os	  

VSN-‐rma	  normaliza>on	  procedure	  

	  
Use	  8	  overlapping	  DS	  ALL	  samples	  as	  a	  

reference	  
	  

Supplementary Figure S1. Flowchart of experimental set up and normalization process 
Flow chart showing the normalization process of 2 batches of ALL samples. DS, Down syndrome; ALL, Acute Lymphoblastic Leukemia; PCA, 
Principal Components Analysis. 
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Supplementary Figure S2. Kaplan-Meier estimates of DS ALL patients with and without a ‘BCR-ABL1-like’ signature
The overall survival (B), event-free survival (A), and cumulative incidence of relapse (C) are depicted for the n=8 patients with a ‘BCR-ABL1-
like’ signature (grey line) versus B-other DS-ALL patients (n=18, black line).
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In this thesis we aimed at identifying novel genetic abnormalities that characterize DS ALL 

and described clinically relevant prognostic factors and molecular aberrations found in high 

frequencies in DS ALL patients. Here we discuss the main findings in the context of current 

literature, and their implications for future research and treatment approaches.

The unreSOLVed rOLe Of TriSOmy 21 in dOwn SyndrOme Leukemia

Down syndrome is one of the most common congenital chromosomal abnormalities, with a 

prevalence of ~320 live births in the Netherlands.1 Children with DS have an increased risk 

of developing ALL as well as Down syndrome myeloid leukemia (ML DS), which was already 

discovered in the 1930’s.2 3-7 It is reasonable to suspect that the constitutional chromosome 

21 provides a natural model for multistep leukemogenesis. For instance, in studies on abor-

tion material it appeared that trisomy 21 induced an increase in megakaryopoiesis, perhaps 

as a first step towards myeloid leukemia, which is often megakaryoblastic in nature.8 

Remarkably, an additional chromosome 21 is one of the most common changes in non-DS 

ALL cells.9 Moreover, in approximately 8% of the DS ALL patients there are additional copies 

of chromosome 21 on top of the +21c. However, the functional consequences of tri- and 

tetrasomies of genes localized in the “Down syndrome critical region” (DSCR), mapped 

between the DS21S17 marker and Myxovirus Resistance1 (MX1) on chromosome 21, are still 

controversial.10 For instance, it appears that mRNA levels are not always 1.5 fold higher as 

would be expected by the trisomy state.11 However, leukemia initiating evens may not be 

limited to chromosome 21, as for instance in myeloid leukemia of Down syndrome (ML DS) 

GATA1 mutations are pathognomonic, and localized on chromosome X, whereas the high 

frequency of IKZF1 abnormalities found in DS ALL (reported in this thesis in chapter 5) are 

localized on chromosome 7. 

Furthermore, approximately 25-50% of DS ALL cells harbor an additional chromosome 

X, which is a common event in hyperdiploid non-DS ALL as well.12 However, hyperdiploid 

non-DS ALL often also includes additional copies of chromosome 6, 10, 14, 17, 18 and 21, 

whereas in DS ALL an additional chromosome X often is a single event. The latter suggests 

a mechanism between genes localized on chromosome 21 and chromosome X, as also seen 

in myeloid leukemogenesis in DS children.13,14 In addition, other cytogenetic abnormalities 

(discussed in more detail below) may be initiating or additional events in multistep DS ALL 

leukemogenesis. However, in the end, the underlying responsible mechanism for the high 

frequency of leukemias in DS children remains unclear. Moreover, as DS patients have a 

reduced propensity for solid tumors, trisomy 21 is not a cancer susceptible syndrome per se.2  
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CLiniCaL CharaCTeriSTiCS Of aLL in dOwn SyndrOme

DS-ALL patients differ in presenting phenotypic characteristics from non-DS ALL patients. 

For instance, the incidence of T cell ALL and CD10-negative ALL (pro-B cell ALL) is lower in 

DS ALL, but the frequency of these features varies in the literature due the small size of most 

studies in DS-ALL patients. 14-20 In the large international retrospective study including >650 

cases (chapter 2), we indeed showed an almost complete absence of T cell ALL cases (<1%) in 

DS children while the rate in non-DS ALL is 10-15%.15,16,18 Hence the increased risk of lympho-

blastic leukemia in DS is limited to the B cell lineage. Hypothetically, the rarity of T cell ALL 

might be due to a block in the NFAT Calcineurin pathway.21 This pathway is a major regulator 

of T cell development and function, and is inhibited in DS due to the increased dosage of 

chromosome 21 localized RCAN and DYRK1A49-50 genes.22

We also showed that the age distribution at diagnosis is different as compared to non-DS 

ALL, as ALL in DS infants did not occur in our large series.23 The biological background for this 

is not understood. Furthermore, the absence of DS ALL in infants is in sharp contrast to the 

transient myeloid disorders (TMD) that are already present at birth in about 5-10% of all DS 

infants.24-28 The latter may be derived from a major change in normal multi-lineage myeloid 

hematopoiesis in the fetal liver, induced by trisomy 21 itself, and thereby creating a window 

of opportunity for myeloid leukemic transformation in newborn DS children.8 

In the large PdL working group study, we identified a novel clinically favorable prognostic 

subgroup of DS-ALL patients, characterized by age <6 years and WBC <10x109/L.23 These 

criteria predicted outcome more reliably than the classical NCI-criteria (age <10 years and 

WBC <50x109/L).23,29 Remarkably, DS ALL patients aged ≥6 and <10 year at diagnosis had a 

relatively poor outcome (EFS 51±3%, OS 70±5%), which was due to a very high frequency of 

relapse (CIR 41± 6%). This might have contributed to the reduced ability of the classical NCI 

criteria to risk-stratify DS ALL patients (age cut off ≥10 years). The subgroup of DS ALL pa-

tients aged ≥6 and <10 years did not differ in clinical characteristics from patients less than 6 

year or ≥10 year at diagnosis. Moreover, no recurrent cytogenetic aberrations were reported 

for the vast majority of patients within this age group and 42% had a normal karyotype, 

which is similar to other age groups. This subgroup of DS ALL patients, characterized by a 

normal karyotype and a poor prognosis, should be explored further by using next generation 

sequencing to identify the underlying genetic abnormalities that drive the disease.

Unfortunately MRD was not routinely determined during the era of the PdL working group 

study, hence it is unknown whether MRD would be a better predictive biomarker for outcome 

than these revised NCI-criteria, as has been shown for non-DS ALL in multiple studies.



155

CHAPTER  8

8

rOLe Of CyTOGeneTiC and mOLeCuLar aBerraTiOnS Of aLL in dOwn 
SyndrOme

Over the past decades, genetic features of leukemic cells have become an integral part of 

classification and prognosis of pediatric leukemia.30 To better stratify DS ALL patients into 

appropriate risk-adapted treatment strategies, we searched for molecular aberrations with 

modern techniques such as bi-directionally sequencing and multiplex ligation-dependent 

probe amplification (MLPA). In addition we used array-comparative genomic hybridization 

(CGH) to search for copy number variations (CNVs) in DS ALL, and gene expression profiling 

(GEP) and compared DS patients to non-DS ALL patients. 

The frequency of the genetic abnormalities of the leukemic cells that have well established 

favorable and unfavorable prognostic relevance in non-DS ALL, is lower in DS ALL (Figure 

1).13,17,18,30-32 Also, the precise impact of these abnormalities on treatment outcome in DS 

ALL was unknown, as all published series lack a sufficient sample size to draw clear conclu-

sions.13,16-18 In this thesis (chapter 2), we demonstrated that the genetic abnormalities predict-

ing favorable outcome in non-DS ALL similarly predict outcome in DS-ALL.23 For instance, DS 

patients having ETV6-RUNX1 positive ALL or HeH ALL with trisomy 4&10 abnormalities have 

an excellent prognosis, but comprise only ~12% of all DS ALL patients, whereas in non-DS 

ALL they comprise ~35% of patients. The low incidence of MLL rearrangements and BCR-ABL1 

translocations, has precluded us from a definitive answer regarding the predictive value of 

these aberrations, although we did not find evidence that the prognostic impact of these 

aberrations would differ from non-DS ALL.

When focusing on novel molecular aberrations as described in this thesis, the first abnor-

mality is a mutation in the pseudokinase domain of Janus Kinase 2 (JAK2).33 Point mutations 

of JAK2 at R683 were found in ~20% of the DS ALL patients (Chapter 4),33-36 and differ from the 

well-known activating JAK2 V617F mutation found in myeloproliferative neoplasms (MPN).37 

Initially, the JAK2 R683 mutation was thought to be unique for DS ALL, in a similar fashion 

as GATA-1 mutations are for ML-DS.38,39 However, a little later the same JAK2 mutations were 

also reported in less than 10% of high-risk non DS ALL patients.40 JAK belongs to a family of 

intracellular non-receptor protein tyrosine kinases that transduce cytokine-mediated signals 

through the STAT family of transcription factors, and plays an important role in regulating the 

processes of cell proliferation.33,41 In vitro experiments showed immortalization of hemato-

poietic progenitor cells and constitutive activation of the JAK-STAT pathway in JAK2 mutated 

mouse BaF3 cells. Expression of the JAK2 mutants, but not the wild-type gene, conferred 

cytokine-independent proliferation of BaF3 mouse cells, indicating that JAK2 R683 mutations 

are gain-of-function driver mutations.33 As a consequence it is suggested that JAK2 inhibition 

might be a useful therapeutic approach in JAK2 mutated DS ALL.41 

Shortly thereafter, genomic abnormalities of the cytokine receptor like factor 2 (CRLF2), 

have been reported both by others and by our group, in approximately 60% of DS ALL 
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patients (chapter 2 and 5). This is remarkably high as compared to the 15% observed in 

high-risk non-DS ALL patients.42-46 These aberrations include a) translocations of CRLF2 with 

the Immunoglobulin heavy chain locus (IGH@) at chromosome 14q32 and b) interstitial 

Figure 1. Cytogenetic aberrations of Down syndrome and non Down syndrome ALL patients 
Pie chart depicting the genetic heterogeneity of DS-ALL patients (A) and non-DS ALL patients (B). HeH, hyperdiploid: >51 chromosomes in DS 
ALL, >50 chromosomes in non-DS ALL.



157

CHAPTER  8

8

deletions in the pseudo autosomal region 1 (PAR1) resulting in P2RY8-CRLF2 fusion, c) gain 

of function mutations of CRLF2, and d) gain of function mutations of IL7R. CRLF2, together 

with the a-chain of the IL7R, forms a receptor for TSLP, and is known to mediate allergic 

and inflammatory responses.47 Interestingly in ~50% of the DS ALL patients with CRLF2 over-

expression, there are additional genomic mutations in IL7R, or in the signaling components 

downstream, that include the enzymes JAK2 and JAK1.33,35,43,47-49 Functionally, aberrations of 

CRLF2 lead to constitutive activation of the JAK-STAT pathway, enabling increased survival 

and proliferation.43-46 However the exact role of CRLF2 abnormalities in ALL and in particular 

in DS ALL leukemogenesis is still unclear. 

In an attempt to obtain insight in the underlying causal relation between the high frequency 

of CRLF2 aberrations and the biological background of DS ALL, we hypothesized that CRLF2 

alterations are already present prenatally, analogous to non-DS patients with ETV6-RUNX1 

positive ALL which in combination with post-natal genetic changes gives rise to leukemia.50 

For that purpose, we performed, in collaboration with the Institute of Cancer Research (UK), a 

pilot study in 111 peripheral blood samples of healthy newborn DS patients, but none of the 

patient samples showed a P2RY8-CRLF2 fusion transcript (unpublished data). This can be due 

to either CRLF2 being an unstable transcript, which is also sometimes seen in prenatal ETV6-

RUNX1 rearrangements, or due to a low sensitivity of the used method (RT-qPCR), or due to 

CRLF2 aberrations occurring as a second hit occurring later during leukemogenesis. It could 

also indicate that genomic CRLF2 aberrations are passengers or late clonal events, which is 

reflected by the fact that others and we could not confirm the prognostic significance of 

CRLF2.42,43,45,51 

The third molecular aberration investigated in this thesis emerging from our array com-

parative genomic hybridization (CGH) studies were abnormalities in B-cell development and 

differentiation genes (chapter 5). In non-DS BCP ALL, such aberrations recently appeared to 

be common, occurring in a frequency of 67%-82% in high-risk and BCR-ABL1-like non-DS ALL 

patients.52-57 We found deletions in B-cell development genes in approximately 50% of un-

selected DS ALL children, hence also in ‘low risk’ patients as defined by classical NCI-criteria. 

We showed that deletions in IKZF1, encoding the lymphoid transcription factor IKAROS, were 

the most prominent aberrations, being present in 35% of our DS ALL patients, as compared 

to 15% of non–DS B-other ALL.42,55,58 Intriguingly, this frequency is comparable to the inci-

dence in high-risk non-DS ALL patients, and to non-DS ALL patients with a ‘BCR-ABL1 like’ 

gene-expression signature.52,55 The ‘BCR-ABL1 like’ signature denote a new clinically relevant 

entity which is associated with a poor outcome and clusters together in gene expression 

profiling with BCR-ABL1 positive ALL, although these leukemic cells do not harbor the BCR-

ABL1 translocation. Of interest, the ‘BCR-ABL1 like’ signatures as reported by North-American 

and European investigators appear to classify different patients as ‘BCR-ABL1 like’.52,59,60 

Approximately 25% of the DS ALL as compared to 16% of the non-DS ALL patients has a 

‘BCR-ABL1-like’ profile.61 This profile is associated with poor outcome, resulting in an EFS of 
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70% for DS ALL as compared to less than 60% in non-DS ALL.52,61,62 The cumulative incidence 

of relapse is around 30% for both DS and non-DS ‘BCR-ABL1-like’ ALL.61 Within ‘BCR-ABL1-like’ 

DS ALL, 40% has a deletion of IKZF1, which is similar to the frequency of IKZF1 deletions 

observed in non-DS ‘BCR-ABL1-like’ cases.57 The high frequency of ‘BCR-ABL1-like’ and IKZF1 

in DS ALL, suggests that a relatively large proportion of DS ALL patients may have a genetic 

signature with characteristics of high-risk BCP non-DS ALL. This suggestion fits with previous 

published outcome estimates showing that DS ALL patients treated according to a high-risk 

protocol showed similar outcome as compared to non-DS ALL patients, in contrast to what 

was considered standard risk DS ALL patients by classical NCI criteria who experience inferior 

outcome on ‘standard risk’ protocols.17,18 

Using next generation sequencing, Roberts et al., have shown that activating tyrosine ki-

nase and cytokine receptor signaling rearrangements, are a hallmark of ‘BCR-ABL1-like’ ALL.62 

Furthermore, genomic lesions affecting lymphoid transcription factors were found in all 

(n=15) studied cases with ‘BCR-ABL1-like’ ALL, including 2 cases with NUP214-ABL1, one case 

with insertion of the erythropoietin receptor gene (EPOR) into the immunoglobulin heavy 

chain locus (IGH@-EPOR), and 1 case each with the in-frame fusions EBF1-PDGFRB, BCR-JAK2, 

STRN3-JAK2, PAX5-JAK2, ETV6-ABL1, RANBP2-ABL1, and RCSD1-ABL1.62 Moreover, abnormali-

ties of lymphoid transcription factors, the vast majority being IKZF1 deletions, were found 

in all studied cases.62  Considering the high percentage of ‘BCR-ABL1 like’ patients in DS ALL, 

it would be very interesting to investigate if PDGFRB and other targetable fusions are also 

present in ‘BCR-ABL1 like’ DS ALL. 

Interestingly, recent work in non-DS ALL patients showed that IKZF1 and ERG deletions 

may co-occur, and that patients with concurrent ERG deletions, do not have a poor clinical 

outcome.63,64 Approximately 3% of non-DS ALL patients harbor ERG deletions, and 40% of 

these patients also have IKZF1 deletions. Therefore the combination of the latter two is rare, 

as it only comprises ~1.5% of the non-DS patients.63,64 Remarkably, we did not find any ERG 

deletions (95% CI 0±10%) in our DS ALL cohort. 

The role of IKZF1 deletions in ALL and in particular in ‘BCR-ABL1 like’ ALL is yet unsolved. 

However, as disruption of normal lymphoid development by deletions of IKZF1 and rear-

rangements of cytokine receptor signaling by CRLF2 abnormalities, frequently occur in both 

DS and non-DS ‘BCR-ABL1-like’ ALL. This suggests that these two pathways may cooperate in 

inducing precursor B ALL in DS ALL, and this pleads against a unique event initiating DS ALL. 

Another interesting observation is that the expression of the immunoglobulin joining chain 

(IGJ) gene, which is involved in maturation of immunoglobulin’s, is deregulated in IKZF1 

deleted and in ‘BCR-ABL1-like’ ALL. Further research is needed to elucidate whether IKZF1 

deletions functionally affect this maturation process or that IKZF1 deletions cooperate with 

activating JAK-STAT pathway alterations occurring in ~60% of DS ALL patients.  

The last molecular aberration investigated in this thesis concerns deletions of BTG1, which 

was reported to occur in high frequency (27%) in DS ALL.65 We found a prevalence of only 



159

CHAPTER  8

8

7% of BTG1 deletions in DS ALL, which is similar to non-DS ALL patients.66 Deletions of BTG1 

were mainly found in ETV6-RUNX1 positive ALL, which might explain the lack of prognostic 

impact of BTG1 deletions in our cohort of DS ALL patients. Remarkably, recent work in non-DS 

ALL patients, showed that BTG1 deletions are mainly detected in the prognostic unfavorable 

BCR-ABL1 positive subset of ALL, and less frequent in hyperdiploid ALL, which in general has a 

good prognosis.66 All deletions of BTG1 DS ALL were mono-allelic, and localized in the second 

exon at the telomeric site of BTG1, however exon 1 was retained. Interestingly, Waanders, et 

al. identified multiple additional BTG1 deletions at a subclonal level, by using a sensitive PCR-

based screening.66 In some cases these subclones grew out into the major clone at relapse.66 

From literature it is known that at both sites of the BTG1 deletion, a VD(J) recombination 

signal sequence is present, suggesting that illegitimate RAG1/RAG2-mediated recombina-

tion is the responsible molecular mechanism for multiclonal evolution.66 Interestingly, the 

same mechanism is suggested to play a role in IKZF1 deletions.67,68 Since the frequency of 

IKZF1 deletions in DS ALL is as high as 35%, it strengthens our hypothesis that IKZF1 deletions 

are an important driving event in DS ALL leukemogenesis. 

None of the discussed molecular aberrations was mutually exclusive of other genomic 

abnormalities, which is depicted in Figure 2. For instance, DS ALL patients having JAK2 muta-

tions as the sole aberration were not found; instead, JAK2 mutations occur frequently with 

!No	  addi'onal	  aberra'on	  	  

ETV6-‐RUNX1	  

HeH	  

BCR-‐ABL1	  

‘BCR-‐ABL1	  like’	  

Normal	  karyotype	  	  

IKZF1	  

CRLF2	  

IKZF1	  &	  CRLF2	  

CRLF2	  &	  JAK2	  
IKZF1	  &	  CRLF2	  &	  JAK2	  

Figure 2. Circosplot depicting connections between (cyto-) genetic and molecular aberrations in Down syndrome acute 
lymphoblastic leukemia
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IKZF1 deletions and CRLF2 gene rearrangements. Notably, a large subset of patients (40%) 

has no known aberrations. This subset of patients would be an ideal group to apply RNA se-

quencing to identify potential players and cooperating events that underlie leukemogenesis 

in DS children. 

OVereXpreSSiOn Of eTS-reLaTed Gene in dOwn SyndrOme aLL 

Previous studies in non-DS ALL cases showed that gene-expression profiling (GEP) is a 

powerful diagnostic tool to classify relevant genetic subtypes of ALL.52,59,60 However, in previ-

ous studies, it was shown that clustering of DS ALL cases by GEP did not seem feasible, as 

they clustered together with the genetic subgroups of their non-DS ALL counterparts.43,53 

This suggests that the cytogenetic mark adds stronger to the profile than the constitutional 

chromosome 21.43,69 . 

Altered gene expression levels still may play a role in DS ALL leukemogenesis, as an extra 

copy of chromosome 21 disturbs hematopoietic regulating genes encoded by chromosome 

21. Interestingly, in this thesis we show that as compared to non-DS patients, ETS-related 

gene (ERG) has a reduced expression in non-leukemic DS samples, and a high expression in 

leukemic DS ALL samples (Chapter 7). In healthy cells, activation of ERG also represses ERG 

by an indirect and direct feedback loop. As ERG is a chromosome 21 localized transcriptional 

regulator of hematopoiesis, the constitutional extra copy of the ERG gene, may result in dis-

ruption of this feedback loop and subsequently in deregulation of the hematopoietic stem 

cell network.70-72 

Our data suggest that ERG up-regulation occurs in the leukemic state and may play a role 

in leukemogenesis. It is known that hematopoietic overexpression of ERG causes T-cell ALL in 

mouse models,73,74 and, as ERG cooperates with the GATA1 mutated protein by immortalizing 

megakaryocyte progenitors, it is suggested that the additional constitutional copy of ERG in 

trisomy 21 may play a role in ML DS.74  In vitro experiments with induced ERG expression in 

the B cell lineage, showed that ERG expression confers a differentiation arrest of pro-B cells 

to pre-B cells, accompanied by enhanced proliferation of precursor B-cells.75 However, mouse 

models overexpressing ERG, were incapable of inducing B cell ALL. 75 Further research of 

molecular mechanisms regulating inhibition of differentiation and promoting proliferation 

of B-cells through overexpression of ERG, is an important area of further investigations. If 

silencing of ERG expression in B-cells attenuates proliferation or even induces apoptosis, ERG 

might be an interesting target for molecular therapy.
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TreaTmenT STraTeGieS 

It is well known that DS patients have a poor prognosis as compared to their non-DS ALL 

counterparts.15-19,23,42 In addition, although overall prognosis improved significantly over 

the past decades, we showed no improvement in survival for DS ALL patients treated from 

2000-2005 as compared to patients treated from 1995-2000. This may be due to the delicate 

balance between treatment intensity, which is required given the high-risk genetic profile 

of many DS ALL cases, and treatment-related mortality. To improve outcome for DS ALL 

patients, either different risk group stratification and/or novel treatment strategies need to 

be considered for future treatment protocols, especially targeted treatment options which 

specifically exert effect on the leukemic cell population, but not on healthy tissues. 

The clinically favorable prognostic subgroup of DS-ALL patients, characterized by age <6 

years and WBC <10x109/L, had an overall survival of 87%, but still a relatively high cumulative 

incidence of relapse (17%) with a low rate of TRM (3%). This is inferior to what is reported for 

non-DS ALL patients with NCI-SR,76-85 or SR patients in BFM protocols, which use a stratifica-

tion strategy based on MRD in 3 arms.86 This clinical subset of DS ALL patients may need an 

intensification block following induction and CNS-directed therapy and might therefore be 

classified into the intermediate MRD risk group. 

However, although less common as compared to non-DS ALL, ETV6-RUNX1 fusions (in 8.3%) 

and hyperdiploid (HeH) trisomies 4 and 10 (in 12%) predict an excellent outcome in DS ALL in 

our large PdL working group study.23 Notably, TRM rather than relapse was the major cause of 

treatment failure in these patients. Therefore, this group of DS ALL patients might be eligible 

for treatment reduction rather than intensification, such as withholding from anthracyclines, 

and/or stratification in the MRD SR group. 

Contrary to this, IKZF1 deletions, which are present in 35% of the DS ALL patients, predict 

for dismal outcome and in particular for an increased risk of relapse. This subset of patients 

might benefit from treatment intensification, although therapy efficacy needs to be carefully 

balanced against the enhanced toxicity. Notably, as a result of our studies in DS and non-DS 

ALL patients,42,57 patients with IKZF1 deletions are now stratified in an intensified treatment 

arm of the current DCOG ALL-11 treatment protocol.

fuTure perSpeCTiVeS fOr TreaTmenT STraTeGieS

In general, treatment intensification using conventional cytotoxic chemotherapy is not 

preferred in DS ALL as they have an increased risk for TRM. To further improve prognosis in 

DS ALL patients, novel non-myelosuppressive targeted therapies are an interestingly thera-

peutic option to be explored in the near future.  
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First, a substantial proportion (~60%) of the DS ALL patients have genomic CRLF2 aber-

rations, which signals together with IL7R through JAK 1-2, the latter being mutated in 18% 

of the DS ALL patients. The functional consequence of these abnormalities is a constitutive 

activation of the JAK-STAT pathway, thereby promoting survival of leukemic cells, which 

makes it an interesting target for inhibitors. However, the major side effect of JAK2 inhibitors 

is myelosuppression, which is due to co-suppression of wildtype JAK2, and which is required 

for normal hematopoiesis. This may render it difficult to combine JAK inhibitors with con-

ventional chemotherapy in DS-ALL patients who already suffer from higher TRM rates. At 

this moment, the Children’s Oncology Group is completing phase I trials with JAK1/JAK2 

inhibitors such as Ruxolitinib, for children with relapsed or refractory solid tumors, leukemia 

or myeloproliferative disease (Clinical Trial NCT01164163).87,88 In addition, inhibitors of the 

mTOR-signaling pathway, which is also activated through CRLF2/IL7 signaling, might be 

another novel strategy in the subset of CRLF2 positive DS ALL patients, but it is remains to be 

determined whether inhibiting these pathways will benefit DS ALL patients. 

Deletion of IKZF1 is the only aberration that clearly predicts poor survival. However, to 

date there is no targeted approach for IKZF1 deleted DS or non-DS ALL. Since IKZF1 dele-

tions are often found in ‘BCR-ABL1-like’ patients, this might be an interesting subgroup for 

novel therapies. Recently, within ‘BCR-ABL1-like’ ALL, rearrangements of PDGFRB and other 

drugable targets were identified.62 This is probably of clinical value, as for instance patients 

with chronic myeloproliferative disease and activating PDGFRB rearrangements show com-

plete hematologic and molecular responses to Imatinib treatment.62 If so, the combination 

of tyrosine kinase inhibitors such as Imatinib, Dasatinib, or Ruxolitinib and conventional 

chemotherapeutics might improve outcome for ‘BCR-ABL1-like’ DS ALL patients.62,89 90 In ad-

dition, Blinatumomab which belongs to a new class of monoclonal antibodies, bi-specific 

T-cell engagers, is a promising new drug in leukemia in general. Presently, phase 1 and phase 

2 clinical trials in are ongoing for ALL patients.91 Blinatumomab enables the patient’s T cells to 

recognize the malignant B cells by a linking molecule which binds to CD19 and CD3.92 Other 

antibody options may be unlabeled anti-CD22 antibodies such as Epratuzumab or CD20-

antibodies such as Rituximab.

Notably, as a result of our PdL working group study, an initiative is underway to establish 

an international prospective registry to collect demographic, biological and clinical outcome 

data on a large group of DS ALL patients, and to establish uniform immune monitoring and 

supportive care recommendations. The longer-term aspiration is to develop an international 

treatment protocol for DS ALL patients, allowing sufficient power to prospectively evaluate 

new risk-adjusted strategies, and aiming at improving prognosis of future DS ALL patients by 

reducing both relapse and treatment related mortality (TRM).21 
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The LimiTaTiOnS Of TreaTmenT inTenSifiCaTiOn Of aLL in dOwn 
SyndrOme

DS ALL patients are notorious for their enhanced vulnerability for chemotherapy-induced 

side effects.11,48,93-95 Fatal infections are the major cause of TRM, of which the vast majority is of 

bacterial origin.15,16,19,23,96 The causes of infectious toxicities are multifactorial and have been 

linked to decreased phagocytic activity of granulocytes, lower number of B-cells, decreased 

proliferation of T- cells, and low serum immunoglobulin levels in DS children.96,97 Further-

more, certain chemotherapeutic drugs, such as Methotrexate (MTX), can lead to breakdown 

of cellular barriers, increasing the rate and severity of mucositis and creating a window of 

opportunity for infectious diseases.

Intriguingly, the large sample size of our PdL cohort provided evidence that relapse and not 

TRM was the major cause of treatment failure in children with DS ALL. Even in the 18 (2.8%) 

patients who received a SCT, relapse was the main factor contributing to dismal outcome. 

Furthermore, our large retrospective PdL working group study could not associate TRM 

with any specific chemotherapeutic agent. For instance, the comparison between patients 

treated on a 3-drug regimen (CCG/COG/UK, n=193) and patients treated on an anthracycline 

containing 4-drug regimen (AIEOP/BFM, n=106), did not show differences in TRM, nor in 

EFS, OS and CIR. Although there was a trend towards higher TRM for 4-drug induction, the 

hypothesis that anthracycline containing induction regimens had higher rates of TRM could 

not be clearly confirmed in the PdL study. In addition, in the same PdL working group study, 

we could not specifically link high dose MTX courses to TRM. This was remarkable, as it is well 

known that DS ALL patients are more susceptible to MTX-induced side effects than non-DS 

ALL patients.11,48,93-95 One important caveat in interpreting the data from the PdL study is that 

we cannot verify whether toxicity was really well documented in all patients in this retrospec-

tive study, and hence there may be underreporting.  

Although TRM could not be related to a specific drug in our PdL working group study, 

we showed in chapter 3 that grade 3-4 gastro intestinal toxicity was more frequent in DS 

than in non-DS children (25% vs. 4%), but this was not related to differences in plasma MTX 

concentrations between DS and non-DS ALL patients. Hence, these toxic effects are most 

likely explained by differences in pharmacodynamics and not by pharmacokinetic effects 

between DS and non-DS children. For instance, decreased folate levels resulting in enhanced 

polyglutamation and MTX-induced cell kill,98,99 or polymorphisms in genes linked to the 

pharmacodynamics of MTX100,101, or a gene dosage effect as the responsible MTX transport 

folate carrier is localized on chromosome 21, could underlie the enhanced susceptibility of 

the healthy tissues for MTX.11,99,102 The latter one perhaps being less likely as passive diffusion 

of MTX across the cell-membrane also occurs using high-dose MTX schedules.103,104 Interest-

ingly, the Children’s Cancer Group-1991 study showed that DS ALL patients who received 

intensified MTX therapy had better survival than those who did not.105 New developments, 
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such as therapeutic drug monitoring, in which the dose of MTX is based on the clearance 

from the prior course,106 could be a solution to balance enhanced toxicity against therapy 

efficacy if TRM is also taken into account in the model. 

Furthermore, we show in this thesis that TRM is not related to a certain phase of therapy, 

but occurs throughout the treatment period, with about half of the deaths occurring dur-

ing maintenance therapy (Figure 3). We therefore recommend improving supportive care 

measurements for DS ALL patients throughout therapy. The current DCOG ALL-11 treatment 

protocol integrated specific supportive care guidelines for DS ALL patients, including better 

surveillance during induction, such as admission in the hospital from diagnosis until in very 

good clinical condition, and more frequent outpatient visits with additional blood tests.107 

However, additional measurements during maintenance are lacking. 

It is intended that DS ALL patients receive the same treatment intensity as non-DS ALL 

patients. However, a study from the Nordic society of Pediatric Hematology and Oncology 

(NOPHO) reported that the median administered dose of methotrexate (MTX) and 6-mercap-

topurine (6-MP) was 25% lower for DS as compared to non-DS ALL patients.48 As some study 

suggest that DS patients (without leukemia) have lower median WBC and absolute neutrophil 

count (ANC) values as compared to their healthy non-DS counterparts,97,108 chemotherapy 

should result in lower WBC and ANC counts for DS ALL patients. However, Bohnstedt et al. 

showed however that the median WBC and ANC were similar during maintenance in DS ALL 

as compared to non-DS ALL patients.48 This is either the result of treatment reduction or it 

reflects a reduced sensitivity for 6-MP and MTX in DS patients as compared to non-DS ALL 

Figure 3. Distribution of treatment related mortality in relation to therapy phases for Down syndrome ALL patients
Distribution of treatment related mortality in the retrospective Ponte di Legno working group study. Treatment related mortality was cause 
of death in 50 patients and is depicted for 4 different time points on the X-axes. Y-axes shows the absolute number of patients. Infection is 
represented in red, other chemotherapy related toxicity in blue. 



165

CHAPTER  8

8

patients,48 suggesting that in order for the treatment to be effective, a similar target WBC for 

DS and non-DS patients may not be appropriate.

COnCLuSiOn

In this thesis we provided evidence that to date there is no evidence of a unique genetic 

lesion occurring in DS and not in non-DS ALL patients. Moreover, we showed that DS ALL is a 

genetically ‘high risk’ disease, as a substantial proportion of DS ALL patients has a ‘BCR-ABL1-

like’ gene expressions profile and/or IKZF1 deletions. We therefore recommend being cau-

tious in treatment reduction for DS ALL patients, as relapse and not TRM is the major cause of 

treatment failure. The exception to this rule may be the small group of 12% of patients with 

ETV6-RUNX1 rearrangements or hyperdiploid trisomies 4 and 10. To further improve outcome, 

DS-ALL patients may benefit from 1) improved risk-group stratification with current available 

therapy, 2) from the elucidation of the genetic background, especially in the normal karyo-

type cases, 3) the development of targeted therapies that improves prognosis and reduces 

acute and long-term toxicity as well as TRM for all patients, and 4) from enhanced intensive 

supportive care throughout treatment. This requires several novel studies, such as the role of 

MRD in DS ALL, the role of JAK-inhibitors in DS ALL, unraveling the genetic background by 

using novel deep-sequencing procedures, and studies evaluating antibiotic/antifungal and/

or immunoglobulin prophylaxis in DS ALL. As DS ALL is a rare disease, international collabora-

tion is essential to further elucidate the driving mutation or pathway.
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Summary

Children with DS have an increased risk in developing leukemia, including acute myeloid 

(AML) as well as acute lymphoblastic leukemia (ALL). When assessing overall outcome, chil-

dren with DS-ALL have fared less well than their non-DS counterparts due to a high relapse 

rate and an increased treatment related mortality (TRM) throughout the treatment period. 

Hence, there is a need to unravel the biological background of DS ALL, which in turn may 

lead to the development of new and non-myelosuppressive therapies for this vulnerable 

group of patients. In this thesis we studied the clinical and biological features of DS ALL that 

determine prognosis (chapter 2-3), and used several genome wide techniques to identify 

molecular aberrations involved in the pathogenesis of DS ALL (chapter 4-7). 

In chapter 2 we aimed at the identification of clinically relevant outcome parameters, 

determination of the prognostic relevance of well-established and novel (cyto-) genetic aber-

rations, and at the detection of causes of treatment failure in DS ALL. As almost all published 

series lack sufficient power to provide definitive answers to these issues, we undertook a 

large retrospective study within the international Ponte di Legno (PdL) working group. We 

included 653 DS-ALL patients enrolled in 16 international trials from 1995-2004, and used 

non-DS BCP-ALL patients from the Dutch childhood oncology group (DCOG) and Berlin, 

Frankfurt Münster (BFM) group as reference cohorts. DS-ALL patients had a higher 8-year 

cumulative incidence of relapse (CIR) and treatment-related mortality (TRM) than non-DS 

patients, resulting in lower event-free survival (and overall survival (OS), once more confirm-

ing the poor outcome of DS ALL in general. 

Within DS-ALL, we identified good prognosis subgroups, i.e. ETV6-RUNX1 positive ALL or 

ALL with hyperdiploid (HeH) ALL with trisomy 4&10 abnormalities. The CIR for both these 

subgroups was very low and TRM was the major cause of dismal outcome patients with HeH 

trisomy 4&10. This suggest that these patients might be eligible for treatment reduction 

rather than intensification, such as withholding from anthracyclines, and/or stratification in 

the National Cancer Institute standard risk group (NCI SR), preferably with minimal residual 

disease (MRD) confirmation of excellent early response. In addition, we identified a novel 

clinically favorable prognostic subgroup of DS-ALL patients, characterized by age <6 years 

and with blood cell (WBC) count <10x109/L, which differs from the classical prognostic factors 

in non-DS ALL according to the NCI criteria. However, these patients still had a relatively high 

CIR, suggesting they may need an intensification block following induction and CNS-directed 

therapy, and might therefore be classified into the intermediate MRD risk group.

In general, infection associated TRM was not related to a specific treatment-phase or regi-

men, but interestingly about half occurred during maintenance therapy. While relapse remains 

the major cause of poor survival, vigilant supportive care is necessary to improve outcome. We 

therefore recommend improving supportive care measurements for DS ALL patients through-

out therapy with aggressive treatment of infections. Moreover, DS ALL patients should receive 
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the same treatment intensity as non-DS patients in order to prevent relapse but with prompt 

interruptions for aplasia and with more intensive surveillance than non-DS children.

It is well known that DS ALL patients are vulnerable for excessive toxicity. Especially Metho-

trexate (MTX), which is a key agent in current ALL treatment, is notorious for its side effects in 

DS ALL. In chapter 3 we describe the results of a retrospective case-control study in which we 

used non-linear mixed effect modeling to study the pharmacokinetics and toxicity induced 

by high dose (1-5 g/m2) MTX courses in 44 DS and 87 matched non-DS ALL patients. In total, 

we analyzed 468 MTX courses and observed significantly more grade 3-4 gastro-intestinal 

(GI) toxicity in DS patients as compared to non-DS ALL patients. Interestingly, the occurrence 

of grade 3-4 GI toxicity was not related to plasma MTX area under the curve (AUC). MTX-

clearance was 5% lower in DS-ALL patients, however no significant differences in MTX plasma 

levels were detected at T=24 and at T=48 hours. Therefore, we feel that this small difference 

in clearance is probably clinically not relevant. In conclusion, we did not find evidence for 

differences in MTX pharmacokinetics between DS and non-DS patients which could explain 

the higher frequency of GI toxicity, and the greater need for MTX dose reductions. Hence, 

these differences are most likely explained by differential pharmacodynamic effects in the 

tissues between DS and non-DS children. 

In chapter 4, we described mutations of the kinase and pseudokinase domain of Janus 

Kinase 1-3 (JAK), identified with bi-directionally sequencing. We screened 6 DS patients with 

transient myeloproliferative disease (TMD), 15 ML-DS and 35 DS ALL patients. JAK1 mutations 

were found in 1 ML-DS patient and 1 DS ALL patient. JAK2 R683 mutations, which activate 

the JAK-STAT pathway, were found in ~20% of the DS ALL patients, and JAK3 mutations were 

found in 1 TMD and 1 ML-DS patient. JAK2 mutations lack prognostic significance in DS ALL, 

as no relapses occurred. Furthermore, a meta-analysis of published data did not show any 

differences in survival of JAK2 mutants compared to wildtype patients.  

In chapter 5, we used array Comparative Genomic Hybridization (CGH) and Multiplex Ligation-

dependent Probe Amplification (MLPA) to find molecular aberrations in genes involved B-cell 

development and differentiation. We studied a population-based cohort of 34 DCOG DS ALL 

patients and validated our results in 84 DS ALL children from United Kingdom trials. In total, 

50% of DS ALL patients had ≥1 deletion in a B-cell development or differentiation gene. Inter-

estingly, IKZF1 encoding the lymphoid transcription factor IKAROS, was deleted in 35% of all 

DS ALL patients, which is a proportion similar to non-DS high-risk ALL patients. IKZF1 deletions 

independently predicted dismal outcome. Remarkably, 62% of all patients had genomic Cytokine 

Receptor Like Factor 2 (CRLF2) rearrangements but this abnormality lacked prognostic relevance.

In Chapter 6, we established the frequency and the prognostic significance of B-cell trans-

location gene 1 (BTG1) deletions in a large series of DS ALL patients. We found BTG1 aberra-

tions in ~7% of the DS ALL patients and they all showed a nearly identical deletion pattern 

in which the BTG1 area 1, area 2, and exon 2 probes were deleted, while exon 1 was retained. 

Interestingly, BTG1 deletions were mainly found in patients with ETV6-RUNX1 positive ALL. 
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Moreover, BTG1 deletions did not predict for poor clinical outcome in DS ALL patients. In 

short, we could not confirm the high frequency of BTG1 deletions previously described in 

smaller series and found the prevalence to be similar to non-DS ALL patients.

In Chapter 7 we aimed at identifying genes differentially expressed between DS and non-DS ALL, 

which are involved in DS ALL leukemogenesis. Therefore we compared global gene-expression 

profiles (GEP) of 38 DS ALL with 502 non-DS BCP ALL patients. We identified 357 probe sets (307 

genes) being significantly differentially expressed between DS and non-DS BCP-ALL. Interestingly, 

the vast majority of genes overexpressed in DS as compared to non-DS ALL, are not differentially 

expressed in differentiated hematopoietic (CD43+, CD41+ and CD235+) “induced pluripotent 

stem cells (iPS)” derived from DS tissue. This indicates that differences in gene expression are not 

only a consequence of a trisomy 21 but are related to the DS leukemogenesis. In addition, we 

showed that as compared to non-DS patients, ETS-related gene (ERG) has a reduced expression in 

DS bone marrow samples taken from DS children without leukemia, but is overexpressed in bone 

marrow samples of DS ALL patients. As ERG is a chromosome 21 localized transcriptional regula-

tor of hematopoiesis, the constitutional extra copy of the ERG gene, may result in deregulation of 

the hematopoietic stem cell network and therefore be an important driving event in DS BCP-ALL.

Furthermore, we showed that 25% of the DS ALL cases clustered together with ‘BCR-ABL1-like’ 

non-DS patients. Patients with a ‘BCR-ABL1-like’ profile cluster together with BCR-ABL1–posi-

tive cases, although the leukemic cells do not harbor the BCR-ABL1 translocation. Non-DS ALL 

patients with a ‘BCR-ABL1 like’ signature denote a new clinically relevant entity having poor 

outcome. The DS ALL patients with a ‘BCR-ABL1 like profile’ had a CIR of 30%, which is similar 

to their non-DS counterparts. In addition, 50% of the ‘BCR-ABL1-like’ DS ALL patients have dele-

tions of IKZF1, providing further evidence that genetic make-up of DS ALL is unfavorable.

In conclusion, we provided evidence that to date there is no evidence of a unique genetic 

lesion occurring in DS and not in non-DS ALL patients. Moreover, we showed that DS ALL is a 

genetically ‘high risk’ disease, as a substantial proportion of DS ALL patients has a ‘BCR-ABL1-

like’ gene expressions profile and/or IKZF1 deletions. We therefore recommend being cautious 

in treatment reduction for DS ALL patients, as relapse and not TRM is the major cause of treat-

ment failure. The only exception to this rule may be the small group of 12% of patients with 

ETV6-RUNX1 rearrangements or hyperdiploid trisomies 4 and 10. To further improve outcome, 

DS ALL patients may benefit from 1) improved risk-group stratification with current available 

therapy, 2) from the elucidation of the genetic background, especially in the normal karyotype 

cases, 3) the development of targeted therapies that improves prognosis and reduces acute 

and long-term toxicity as well as TRM for all patients, and 4) from enhanced intensive sup-

portive care throughout treatment. This requires several novel studies, such as the role of MRD 

in DS ALL, unraveling the genetic background by using novel deep-sequencing procedures, 

the role  of  JAK-inhibitors in DS ALL, and studies evaluating antibiotic/antifungal and/or im-

munoglobulin prophylaxis in DS ALL. As DS ALL is a rare disease, international collaboration is 

essential to achieve these goals.
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nederLandSe SamenVaTTinG

Kinderen met het syndroom van Down hebben een verhoogde kans op het krijgen van acute 

lymfatische (ALL) en acute myeloide leukemie (AML). Ondanks een duidelijke verbetering in 

de prognose van kinderen met ALL in de laatste 30 jaar,  blijft het toekomstperspectief voor 

leukemie patiënten met het syndroom van Down minder gunstig dan voor patiënten zonder 

Down syndroom. Dit proefschrift behandeld de studies die we verricht hebben op basis van 

klinische data van patiënten met DS ALL (hoofdstuk 2-3) en de moleculaire afwijkingen die 

voorkomen bij DS ALL (hoofdstuk 4-7). 

Hoofdstuk 2 beschrijft een grote internationale retrospectieve studie in samenwerking met 

de Ponte di Legno (PdL) werkgroep. Doel van deze studie was om de prognostische waarde 

van klinische en celbiologische kenmerken en oorzaken van falen van de behandeling te 

bestuderen bij kinderen met DS ALL. In totaal hebben we 653 DS ALL patiënten geïncludeerd 

die behandeld zijn tussen 1 januari 1995 en 1 januari 2005 en hebben deze vergeleken met 

non-DS B cel voorloper (BCP) ALL van de Stichting Kinderoncologie Nederland (SKION) en 

de Berlin Frankfurt Münster (BFM) groep. DS ALL patiënten hadden een hogere kans op het 

krijgen van een recidief dan non-DS ALL patiënten en tevens een hogere kans op therapie-

gerelateerde mortaliteit [Treatment Related Mortality (TRM)] wat resulteerde in een lagere 

gebeurtenis-vrije overleving’ [Event Free Survival (EFS)] en overleving [overall survival (OS)]. 

In de analyse kwam naar voren dat DS ALL patiënten met een leeftijd  jonger dan 6 jaar 

in combinatie met minder dan 10x109/L witte bloedcellen ten tijde van de diagnose, een 

nieuwe groep patiënten vormden met een goede prognose (EFS: 78%, OS: 87%). Deze 

afkappunten van leeftijd en aantal witte bloedcellen zijn anders dan de criteria van het 

Amerikaanse National Cancer Institute (NCI), die boven of onder de 10 jaar en WBC groter 

of kleiner dan 50x109/L gebruikt. Opvallend was echter dat  patiënten <6 jaar met minder 

dan 10x109/L witte bloedcellen nog een relatief hoge kans op het terugkeren van de ziekte 

(CIR 17%) hadden. Dit suggereert dat zij na de inductie therapie nog een extra blok met 

intensieve therapie nodig hebben, eventueel aangevuld met therapie voor leukemiecellen 

in het centraal zenuwstelsel. 

Tevens vonden we dat patiënten met ETV6-RUNX1 fusies in de leukemiecellen of een 

hoog hyperdiploid (HeH) karyotype (≥51 chromosomen) een goede prognose hebben, wat 

overeenkomt met ALL in kinderen zonder DS. Circa 45% van de HeH DS ALL patiënten had-

den zowel 3 kopieën van chromosoom 4 als van chromosoom 10. Deze laatste groep van 

patiënten had een EFS van 88% en geen van hen kreeg een recidief. Ook het aantal kinderen 

met ETV6-RUNX1 fusies had een zeer laag risico voor het recidiveren van de ALL. Dit sug-

gereert dat deze patiënten mogelijk in aanmerking zouden kunnen komen voor reductie 

van therapie door bijvoorbeeld minder of geen anthracyclines toe te dienen. Een andere 

strategie zou zijn om deze patiënten alleen te behandelen in de standaard risico arm van een 

behandelprotocol, waarbij bij voorkeur de excellente respons op therapie bevestigd wordt 
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met een snelle afname van minimale rest ziekte (minimal residual disease [MRD]) in het begin 

van de behandeling. 

Ook hebben we gevonden dat TRM niet gerelateerd was aan een specifieke fase van de 

therapie maar werd gezien gedurende de hele behandelperiode. Tevens vonden we dat TRM 

niet gerelateerd was aan een bepaald chemotherapeuticum. Opvallend was dat het gebruik 

van toxische anthracyclines tijdens de inductie geen duidelijke invloed had op TRM. De 

mortaliteit als gevolg van infectieuze TRM was ook verhoogd in DS ALL. Dit impliceert dat 

betere ondersteunende behandelingen (supportive care) gedurende de hele behandelperi-

ode nodig zijn voor deze kwetsbare groep patiënten. Opvallend was echter dat recidiverende 

ziekte en niet TRM de grootste factor van de slechtere prognose van DS ALL patiënten is. Om 

het terugkeren van de ziekte te voorkomen zou het aantal witte bloedcellen gedurende de 

therapie in DS ALL patiënten net zo laag moeten zijn als in ALL patiënten zonder DS, maar 

met frequente controles en acute onderbreking van therapie indien er sprake is van aplasie. 

Naar aanleiding van bovengenoemde resultaten is er een internationale werkgroep opgezet 

die zich bezig houdt met het verzamelen van gegevens van DS ALL patiënten om van daaruit 

een specifiek behandelprotocol voor kinderen met DS ALL te ontwikkelen. 

Methotrexaat (MTX) is een van de belangrijkste componenten van de ALL behandeling 

in Nederland. DS ALL patiënten ervaren meer MTX gerelateerde toxiciteit dan non-DS ALL 

kinderen en met name de gastro-intestinale toxiciteit staat op de voorgrond. In hoofdstuk 

3 wordt de retrospectieve case-control studie beschreven die verricht is op  een groep van 

44 DS ALL patiënten en 87 non-DS ALL controle patiënten. De ervaren toxiciteit tijdens 

protocol M (meerdere kuren hoge dosis MTX intraveneus) en de bijhorende MTX-spiegels in 

het bloed werden verzameld en geanalyseerd door gebruik te maken van non-linear mixed 

effect modeling (NONMEM). Op deze manier wilden we onderzoeken of het mogelijk was om 

de toxiciteit terug te voeren op een veranderde farmacokinetiek in DS ALL patiënten t.o.v. 

non-DS ALL patiënten. In totaal verzamelden we gegevens van 468 MTX kuren variërend van 

1-5 g/m2 in 44 DS en 87 non-DS ALL patiënten. Graad 3-4 gastro-intestinale toxiciteit werd 

significant vaker waargenomen in DS patiënten in vergelijking met non-DS ALL patiënten 

maar dit was niet gerelateerd aan de hoeveelheid plasma MTX onder de curve. De klaring van 

MTX door DS ALL patiënten was 5% lager dan non-DS ALL patiënten. Echter dit verschil lijkt 

klinisch niet relevant te zijn aangezien er geen verschil werd gezien in de MTX plasma spiegel 

op tijdstip 24 en 48 uur na het starten van de hoge dosis MTX. Hieruit kan worden geconclu-

deerd dat het niet waarschijnlijk is dat DS ALL patiënten een andere farmacokinetiek hebben 

die verantwoordelijk is voor de verhoogde toxiciteit. Het is dan ook meer waarschijnlijk dat 

de farmacodynamiek in de verschillende lichaamsweefsels anders is in DS ALL kinderen t.o.v. 

non-DS kinderen. Aangezien DS ALL kinderen die in ons cohort behandeld werden met een 

gemiddelde dosis MTX (1-3 gram/m2) weinig toxische problemen ondervonden bevelen wij 

deze dosis aan voor toekomstige behandelschema’s van DS ALL kinderen.  
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Al geruime tijd spelen genetische afwijkingen van de leukemiecel een belangrijke rol in 

prognose en maken ze deel uit van de classificatie voor het te volgen behandelprotocol. 

Meer recent is het met nieuwe technieken mogelijk geworden om op moleculair niveau 

afwijkingen van de leukemiecel te detecteren. Deze moleculaire afwijkingen gaan een 

steeds belangrijker rol spelen in de moderne tijd waarin men streeft naar therapie op maat. In 

hoofdstuk 4 hebben we de frequentie van mutaties van de Janus Kinase (JAK) familie genen 

JAK1, JAK2 en JAK3 in kaart gebracht van 6 DS patiënten met transiënte myeloproliferatieve 

leukemie (TMD), 15 ML-DS en 35 DS ALL patiënten. Veel studies richtten zich met name op 

de reeds bekende mutaties waardoor het werkelijke aantal afwijkingen mogelijk onderschat 

werd. Het volledige kinase en pseudokinase domein van JAK1, JAK2 en JAK3 werd met behulp 

van polymerase chain reaction (PCR) geamplificeerd, gesequenced en geanalyseerd. JAK1 

mutaties werden gevonden in 1 ML-DS patiënt en in 1 DS ALL patiënt. In JAK2, zijn in exon 16 

op positie R683 mutaties gevonden in 6 (~20%) DS-ALL patiënten. Deze mutatie activeert het 

JAK-STAT pathway en komt ook voor in een lagere frequentie in high risk non-down ALL. JAK3 

mutaties werden aangetoond in 1 patiënt met TMD en in 1 ML-DS patiënt. Het muterende ef-

fect van de mutaties in zowel JAK1 als JAK3 is onbekend. De prognose van patiënten met een 

JAK2 mutatie bleek niet beter of slechter te zijn dan voor patiënten zonder deze mutatie. De 

’10-jaar gebeurtenis-vrije overleving’ [Event Free Survival (EFS)] was 100% voor patiënten met 

een JAK2 mutatie versus 75% in patiënten zonder afwijking. Hierin worden alle gebeurtenis-

sen zoals refractaire ziekte, recidief, dood door welke oorzaak dan ook, verwerkt. Ook werd 

geen verschil gezien in de 10-jaars OS en de cumulatieve incidentie van recidief (CIR) was 

eveneens gelijkwaardig. Deze resultaten werden bevestigd door een meta-analyse van 171 

DS ALL patiënten. Concluderend, JAK mutaties zijn zeldzaam in DS gerelateerde leukemie, 

met uitzondering van JAK2 mutaties in DS ALL en deze hebben geen prognostische waarde.

Kinderen met DS ALL hebben een lagere frequentie van de veelvoorkomende (cyto-) 

genetische afwijkingen bij non-DS ALL, waardoor we op zoek zijn gegaan naar moleculaire 

afwijkingen die specifiek betrokken zijn bij de pathogenese van DS ALL. Hiervoor is gebruik 

gemaakt van array Comparative Genomic Hybridization (CGH) and Multiplex Ligation-depen-

dent Probe Amplification (MLPA), waarvan de resultaten in hoofdstuk 5 worden beschreven. 

Met zowel array-GCH als met MLPA is het mogelijk kleine amplificaties of deleties in het DNA 

op te sporen die niet zichtbaar zijn met standaard genetisch onderzoek. Bij de analyse is met 

name gekeken naar afwijkingen in genen die betrokken zijn bij de ontwikkeling van B-cellen 

en naar afwijkingen van CRLF2 en JAK2. De resultaten voortvloeiend uit analyse van een 

Dutch Childhood Oncology (DCOG) ‘population based’ cohort van 34 DS ALL samples werd 

gevalideerd door een UK ‘population based’ cohort van 84 DS samples . In totaal had 50% van 

de DS ALL patiënten ≥1 afwijking in een B-cel ontwikkelings-gen: PAX5 (12%), VPREB1 (18%), 

en IKZF1 (35%). JAK2 was gemuteerd in 15% van de patiënten en gnomische afwijkingen 

van CRLF2 werden gevonden bij 62% van de DS ALL patiënten. De overleving van patiënten 

met een afwijking in IKZF1, dit is het gen dat codeert voor de transcriptiefacto IKAROS, 
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was significant slechter dan voor patiënten zonder deze afwijking (6-year EFS 45±16% vs. 

95±4%; p=0.002) en dit werd bevestigd in het validatiecohort van de UK (6-year EFS 21±12% 

vs. 58±11%; p=0.002). In een multivariaat analyse bleek dat deleties van IKZF1 een sterke 

voorspellende waarde hadden voor een slechte prognose. Dit zou kunnen betekenen dat DS 

ALL patiënten gelijkenis vertonen met non-DS ALL patiënten met een high risk profiel en dat 

we daar in de toekomst met de behandeling rekening mee moeten houden. 

In hoofdstuk 6 wordt de frequentie en de prognostische relevantie van afwijkingen van het 

B cel translocatie gen 1 (BTG1) in DS ALL besproken naar aanleiding van een publicatie waarin 

werd beschreven dat deleties van dit gen vaak voorkomen in DS ALL, maar een klein aantal 

patiënten had geïncludeerd. BTG1 speelt een cruciale rol in cel processen zoals proliferatie en 

geprogrammeerde celdood. Dit gen werd onderzocht in een ‘population based’ cohort van 

116 DS ALL patiënten van de DCOG en de UK.  In totaal vonden we in 6.9% van de DS ALL 

patiënten een deletie van BTG1, een frequentie die overeenkomt met non-DS ALL patiënten 

en duidelijker lager dan beschreven in de kleine studie. Opvallend was dat alle afwijkingen 

een nagenoeg identiek patroon van deleties lieten zien waarin de BTG1 regio 1 en 2 en exon 

2 was gedeleteerd maar exon 1 nog in tact was. De mediane leeftijd van patiënten met een 

BTG1 deletie was 5.4 jaar versus 12 jaar in de en 62% had het mannelijk geslacht wat duidelijk 

verschilt van de resultaten in de gepubliceerde studie (12 jaar en 80% man). Mutaties van 

BTG1 kunnen samen met andere (cyto-) genetische afwijkingen voorkomen en werden met 

name gezien in de groep patiënten met een ETV6-RUNX1 afwijking. Afwijkingen van BTG1 

hebben geen prognostische waarde wanneer ze vergeleken worden met DS ALL patiënten 

met een normaal BTG1 gen. Concluderend konden we de hoge frequentie van BTG1 deleties 

in een grote groep DS ALL patiënten niet bevestigen.

In hoofdstuk 7 hebben we gebruik gemaakt van ‘gen-expressie profiling’ (GEP). Met behulp 

van deze gen expressie profielen hebben we gezocht  naar nieuwe genen die karakteristiek 

zijn voor DS ALL patiënten, en die ons mogelijkerwijs iets kunnen leren over de pathogenese 

van DS ALL, en daardoor interessant zijn voor de ontwikkeling van specifiek gerichte therapie 

(targeted therapy). In de analyse hebben we een groep van 38 DS ALL patiënten vergeleken 

met 502 non-DS ALL patiënten. We vonden dat 357 probe sets (307 genen), ≥ 1.5 keer tot 

expressie kwamen in de vergelijking tussen DS en non-DS patiënten. Opmerkelijk was dat de 

genen die tot over-expressie kwamen in deze vergelijking niet tot over-expressie kwamen 

in hematologische pluripotente stamcellen (CD43+, CD41+ and CD235+) afkomstig van DS 

weefsel. Dit impliceert dat veranderingen in expressie van genen niet alleen veroorzaakt 

worden door de extra kopie van chromosoom 21 in het DS, maar gerelateerd zijn aan het 

ontstaan van leukemie. Verder hebben we aangetoond dat in vergelijking met non-DS ALL 

patiënten, het ERG (ETS-related gene) gen  een lagere expressie heeft in het beenmerg van 

DS patiënten zonder leukemie, maar een hogere expressie in het beenmerg van DS patiënten 

met leukemie. Aangezien ERG gelegen is op chromosoom 21 en de transcriptie van hemato-

poietische factoren reguleert, zou de extra kopie van ERG kunnen resulteren in het ontregelen 
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van het hematopoietische netwerk waar ERG onderdeel van uitmaakt. Dit suggereert dat ERG 

een belangrijke rol speelt in het ontstaan van ALL in kinderen met het syndroom van Down.  

Tevens hebben we aangetoond dat 25% van de DS ALL patiënten samen clustert met 

ALL patiënten zonder DS met een ‘BCR-ABL1-like’ profiel. Patiënten met dit profiel clusteren 

samen met patiënten die een BCR-ABL1 translocatie hebben zonder dat deze afwijking in de 

leukemiecellen wordt aangetoond. ALL patiënten zonder DS met het ‘BCR-ABL1-like’ profiel 

vormen een groep met slechte prognostische vooruitzichten. De kans op het terugkeren 

van de ziekte is voor zowel kinderen met het DS als kinderen zonder het DS ongeveer 30%. 

Ten slotte zagen we dat 50% van de kinderen met een ‘BCR-ABL1-like’ profiel ook een deletie 

van IKZF1 hebben. Dit ondersteunt de hypothese dat leukemie in kinderen met DS ALL een 

ongunstig profiel heeft.

Concluderend hebben we aangetoond date er tot op heden geen bewijs is voor een unieke 

mutatie die wel voorkomt in DS ALL maar niet in non-DS ALL. Verder hebben we aangetoond 

dat DS ALL een ziekte is met een hoog risico profiel aangezien een substantieel deel van de 

DS ALL patiënten een ‘BCR-ABL1-like’ profiel heeft en / of IKZF1 deleties. Terughoudendheid 

ten aanzien van het reduceren van behandeling is dan ook geboden, temeer omdat in dit 

proefschrift is aangetoond dat het recidiveren van de ziekte de belangrijkste oorzaak van het 

falen van de behandeling is en niet de toxiciteit van de behandeling. De enige uitzondering 

hierop zijn DS ALL patiënten met ETV6-RUNX1 fusies of met 3 kopieën van chromosoom 4 en 

10. De prognose van DS ALL patiënten zou verbeterd kunnen worden indien zij zouden kun-

nen profiteren van 1) verbeterde stratificatie van DS ALL patiënten in de huidige behandel-

protocollen 2) opheldering van de genetische achtergrond van DS ALL en dan met name in de 

groep van DS ALL patiënten waarin op dit moment nog geen afwijkingen zijn aangetoond, 3) 

de ontwikkeling van doelgerichte (targeted) therapieën die de prognose verbeteren en tege-

lijkertijd de acute en lange termijn toxiciteit en mortaliteit verminderen en 4) van intensieve 

‘supportive care’ gedurende de hele behandeling. Hiervoor zijn nieuwe studies nodig die de 

waarde en de rol van MRD in DS ALL bepalen, studies die de met nieuwe technieken de ge-

netische achtergrond van DS ALL verder onderzoeken, studies naar de rol van JAK-inhibitors 

in DS ALL en studies die de waarde van antibiotica, antischimmelmedicatie en immunoglo-

bulines als profylaxe in de behandeling van DS ALL evalueren. Aangezien DS ALL een zeld-

zame ziekte is, is internationale samenwerking nodig om bovenstaande te bewerkstelligen.  
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LiST Of aBBreViaTiOnS

Abbreviations

ABL1 C-abl oncogene 1, non-receptor tyrosine kinase (gene)

AEIOP Associazione Italiana di Ematologia ed Oncologia Pediatrica

ALL Acute Lymphoblastic Leukemia

AML Acute Myeloid Leukemia

ANC Absolute neutrophil count 

AUC Area under the curve

B-other Genetically unclassified B-ALL

BCL2 B-cell lymphoma 2 

BCP B cell precursor

BCR Breakpoint cluster region (gene)

BFM Berlin-Frankfurt-Münster 

BM Bone marrow

BSA Body surface area

BTG1 B-cell translocation gene 1 (gene)

CCG North American Children’s Oncology Group including the Children’s Cancer Group and the Pediatric 
Oncology Group studies

CCLG Childhood Cancer and Leukaemia Group 

CCR Continuous comple remission

CD Cluster of differentiation

CDKN2A/B Cyclin-Dependent Kinase Inhibitor (gene)

cDNA Complementary DNA

CEBPA CCAAT/enhancer binding proetin (C/EBP), alpha (gene)

CGH Comparative Genomic Hybridization

CI Confidence interval

CIR Cumulative incidence of relapse

CL Central compartment

CLL Chronic Lymphoblastic Leukemia

CML Chronic Myeloid Leukemia

CN Cytogenetically normal

CNS Central nervous system

CNV Copy number variation

CoALL Cooperative study-group for childhood acute lymphoblastic leukemia

Cobs Observed concentration

COG Children’s Oncology Group (North America)

Cpred Predicted concentration

CRCL Creatinine clearance 

CRLF2 Cytokine Receptor Like Factor 

Ct Cycle treshold
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CTCAE Common Toxicity Criteria for Adverse Events 

DAVID Database for Annotation, Visualization, and Integrated Discovery

DCOG Dutch Childhood Oncology Group 

DFCI Dana Faber Cancer Institute

DNA Deoxyribonucleic acid

DS Down Syndrome

DSCR Down syndrome critical region

E2A Transcription Factor E2-Alpha (gene)

EFS Event-free survival

EORTC European Organization for Research and Treatment of Cancer (Belgium)

ERG v-ETS erythroblstosis virus E26 oncogene homolog (gene)

ETV6 Ets variant 6 (gene)

FC Foldchange

FDR False discovery rate

FISH Fluorescence in situ hybridization

GATA1 Globin transcription factor 1 (gene)

GC Glucocorticoid 

GEP Gene expression profiling

GO Gene Ontology

HB Hemoglobine

HeH High hyperdiploid

HR Hazard ratio

HR(G) High risk (group)

HSC Hematopoietic stem cell

HSCT Hematopoietic stem cell transplantation

IGH@ Immunoglobuline heavy chain (gene)

IKZF1 IKAROS family zinc finger 1

iPS Induced pluripotent stem cells

ISCN International System for Human Cytogenetic Nomenclature

ITT Intrathecal triple therapy

JACLS Japan Association of Childhood Leukemia Study 

JAK Janus kinase (gene)

JMML Juvenile myelomonocytic leukemia

kDa kilo Dalton, measurement of atomic mass commonly used to indicate protein mass

KIKA KinderKankervrij

KOCR Kinderoncologisch centrum rotterdam (funding organization for pediatric oncology research and 
training)

LIMMA Llinear models for microarray analysis

MDS Myeodysplastic syndrome

ML Myeloid leukemia

MLL Myeloid/lymphoid or mixed -lineage leukemia
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MLPA Multiplex ligation-dependent probe amplification

6-MP 6-Mercaptopurine

MPD Myeloproliferative disorders

MPL Myeloproliferative leukemia virus oncogene (gene)

MPN Myeloproliferative neoplasms

MR(G) Medium risk (group)

MRC-UKALL Medical Research Council United Kingdom

MRD Minimal residual disease

MTX Methotrexate

MX1 Myxovirus Resistance 1 (gene) 

NCI National Cancer Institute

NCRI National Cancer Research Institute

NK Natural killer

NONMEM Non-linear mixed effect modeling 

NOPHO Nordic Society for Pediatric Hematology and Oncology

NR Non responder

OFV Objective function value 

OS Overall survival

P2RY8- Purinergic Receptor P2Y, G-Protein Coupled, 8 (gene)

PAR1 Pseudoautosomal region 1

PAX5 Paired box 5 (gene)

PB Peripheral blood

PBX1 Pre-B-cell leukemia homeobox 1 (gene)

PCA Principal Component Analysis

PCR Polymerase chain reaction

PdL Ponte di Legno

PK Pharmacokinetics

POG Pediatric Oncology Group 

PPLLSG Polish Paediatric Leukaemia and Lymphoma Study Group 

PS Probe set

Q Inter-compartmental clearance

RFC Reduced folate carrier

RFS Relapse free survival

RNA Ribonucleic acid

RPS20 ribosomal protein S20 (gene)

RT-PCR Reverse transcription PCR

RT-qPCR Quantitative real time PCR

RUNX1 Runt-related transcription factor 1 (gene)

SCT Stem cell transplantation

SJCRH St. Jude Children’s Research Hospital 

SNP Single-nucleotide polymorphism
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SR(G) Standard risk (group)

T Time point

TCCSG Tokyo Children’s Cancer Study Group 

TCF3 Transcription factor 3 (gene)

TL Transient Leukemia

TMD Transient myeloproliferative disorder

TPOG Taiwan Pediatric Oncology Group 

TRM Treatment related mortality

V1 Volume of distribution of the central compartment 

V2 Volume of distribution of the peripheral compartment

VPREB1 Pre-B lymphocyte 1 (gene)

VSN Variance Stabilzation Normalization

WBC White blood cell count

WHO World Health Organization

WT Wild-type
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